WorldWideScience

Sample records for saline water disposal

  1. Treatment and disposal of saline wastewater from coal mines in Poland

    International Nuclear Information System (INIS)

    Ericsson, B.; Hallmans, B.

    1994-01-01

    Some Polish coal mines are reviewed with respect to the disposal of saline wastewater into rivers and its environmental impact. The drainage water from mines has a daily contribution of, in the order of magnitude, 6,500 tons chlorides (Cl - ) and 0.5 tons sulphates (SO 4 2- ) to the rivers Wisla and Odra. The river Wisla contributes to about 55% of the water resources in Poland. This report is based on a part of a commission for the Ministry of Environmental Protection, National Resources and Forestry of Poland by COWI-VBB VIAK joint venture. Different treatment and disposal schemes are described and compared from a technical-economical point of view, out of which methods for desalination with zero discharge as well as deep well injection are the most promising ones. The desalination methods include reverse osmosis (RO) plant, thermal powered desalination and crystallization plant as well as facilities for dewatering and drying of sodium chloride (NaCl) to be sold in Poland and/or on the export market. The valuable main products are potable water, boiler feed water and sodium chloride. A special problem in this connection may be the radioactivity in the wastewater from some of the mines. Special treatment methods for radioactivity removal in the selected treatment and disposal scheme for the mine wastewater are discussed with respect to the effects of radioactivity on the saleability of the recovered salt. In addition methods for recovery of the by-products magnesium hydroxide, iodine and bromine are considered from the point of view of economy and environmental protection. Finally, the desalination project in Katowice for the coal mines Debiensko and Budryk is now in the end of the construction phase. Some modifications of the original design are shown. 1 ref., 2 figs., 1 tab

  2. A fast alternative to core plug tests for optimising injection water salinity for EOR

    DEFF Research Database (Denmark)

    Hassenkam, Tue; Andersson, Martin Peter; Hilner, Emelie Kristin Margareta

    2014-01-01

    of the clays which would lead to permanent reservoir damage but evidence of effectiveness at moderate salinity would offer the opportunity to dispose of produced water. The goal is to define boundary conditions so injection water salinity is high enough to prevent reservoir damage and low enough to induce...... the low salinity effect while keeping costs and operational requirements at a minimum. Traditional core plug testing for optimising conditions has some limitations. Each test requires a fresh sample, core testing requires sophisticated and expensive equipment, and reliable core test data requires several...... experiments can be done relatively quickly on very little material, it gives the possibility of testing salinity response on samples from throughout a reservoir and for gathering statistics. Our approach provides a range of data that can be used to screen core plug testing conditions and to provide extra data...

  3. Groundwater flow and solute transport at the Mourquong saline-water disposal basin, Murray Basin, southeastern Australia

    Science.gov (United States)

    Simmons, Craig; Narayan, Kumar; Woods, Juliette; Herczeg, Andrew

    2002-03-01

    Saline groundwater and drainage effluent from irrigation are commonly stored in some 200 natural and artificial saline-water disposal basins throughout the Murray-Darling Basin of Australia. Their impact on underlying aquifers and the River Murray, one of Australia's major water supplies, is of serious concern. In one such scheme, saline groundwater is pumped into Lake Mourquong, a natural groundwater discharge complex. The disposal basin is hydrodynamically restricted by low-permeability lacustrine clays, but there are vulnerable areas in the southeast where the clay is apparently missing. The extent of vertical and lateral leakage of basin brines and the processes controlling their migration are examined using (1) analyses of chloride and stable isotopes of water (2H/1H and 18O/16O) to infer mixing between regional groundwater and lake water, and (2) the variable-density groundwater flow and solute-transport code SUTRA. Hydrochemical results indicate that evaporated disposal water has moved at least 100 m in an easterly direction and that there is negligible movement of brines in a southerly direction towards the River Murray. The model is used to consider various management scenarios. Salt-load movement to the River Murray was highest in a "worst-case" scenario with irrigation employed between the basin and the River Murray. Present-day operating conditions lead to little, if any, direct movement of brine from the basin into the river. Résumé. Les eaux souterraines salées et les effluents de drainage de l'irrigation sont stockés dans environ 200 bassins naturels ou artificiels destinés à retenir les eaux salines dans tout le bassin de Murray-Darling, en Australie. Leur impact sur les aquifères sous-jacents et sur la rivière Murray, l'une des principales ressources en eau d'Australie, constitue un problème grave. Dans une telle situation, les eaux souterraines salines sont pompées dans le lac Mourquong, complexe dans lequel les nappes se d

  4. Origin of salinity in produced waters from the Palm Valley gas field, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Andrew, Anita S.; Whitford, David J.; Berry, Martin D.; Barclay, Stuart A.; Giblin, Angela M.

    2005-01-01

    The chemical composition and evolution of produced waters associated with gas production in the Palm Valley gas field, Northern Territory, has important implications for issues such as gas reserve calculations, reservoir management and saline water disposal. The occurrence of saline formation water in the Palm Valley field has been the subject of considerable debate. There were no occurrences of mobile water early in the development of the field and only after gas production had reduced the reservoir pressure, was saline formation water produced. Initially this was in small quantities but has increased dramatically with time, particularly after the initiation of compression in November 1996. The produced waters range from highly saline (up to 300,000 mg/L TDS), with unusual enrichments in Ca, Ba and Sr, to low salinity fluids that may represent condensate waters. The Sr isotopic compositions of the waters ( 87 Sr/ 86 Sr = 0.7041-0.7172) are also variable but do not correlate closely with major and trace element abundances. Although the extreme salinity suggests possible involvement of evaporite deposits lower in the stratigraphic sequence, the Sr isotopic composition of the high salinity waters suggests a more complex evolutionary history. The formation waters are chemically and isotopically heterogeneous and are not well mixed. The high salinity brines have Sr isotopic compositions and other geochemical characteristics more consistent with long-term residence within the reservoir rocks than with present-day derivation from a more distal pool of brines associated with evaporites. If the high salinity brines entered the reservoir during the Devonian uplift and were displaced by the reservoir gas into a stagnant pool, which has remained near the reservoir for the last 300-400 Ma, then the size of the brine pool is limited. At a minimum, it might be equivalent to the volume displaced by the reservoired gas

  5. The effect of salinity, light and temperature in a disposal environment on the recovery of E. coli following exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Chan, Y.Y.; Killick, E.G.

    1995-01-01

    The rates of recovery of E.coli previously exposed to a sub-lethal dose of germicidal u.v. radiation have been investigated. The influence of salinity and temperature on both the rates of dark repair and photoreactivation were investigated in order to assess the relative recovery of disinfected effluent released into coastal waters. The photoreactivation rates followed an Arrhenius relationship for samples reactivated in an isotonic medium and reached a maximum of 52% recovery of the viable cell count present before u.v. treatment. For those cells in a saline environment reactivation was slower and a lower maximum recovery was obtained. Dark repair rates were extremely limited in those cells exposed to the saline environment which was produced from synthetic sea water. A maximum recovery of 8% over a nine hour period was achieved. It is concluded that less reactivation by E.coli is likely within u.v. treated effluent disposed of into coastal environments. The levels of reactivation are however dependent upon the temperature and salinity of those waters. (author)

  6. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    Science.gov (United States)

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  7. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  8. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  9. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  10. Low salinity hydrocarbon water disposal through deep subsurface drip irrigation: leaching of native selenium

    Science.gov (United States)

    Bern, Carleton R.; Engle, Mark A.; Boehlke, Adam R.; Zupancic, John W.; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    A subsurface drip irrigation system is being used in Wyoming’s Powder River Basin that treats high sodium, low salinity, coal bed methane (CBM) produced water with sulfuric acid and injects it into cropped fields at a depth of 0.92 m. Dissolution of native gypsum releases calcium that combats soil degradation that would otherwise result from high sodium water. Native selenium is leached from soil by application of the CBM water and traces native salt mobilization to groundwater. Resulting selenium concentrations in groundwater at this alluvial site were generally low (0.5–23 μg/L) compared to Wyoming’s agricultural use suitability standard (20 μg/L).

  11. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  12. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  13. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  14. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    International Nuclear Information System (INIS)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated

  15. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non-saline

  16. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  17. Selected species and amendments for revegetating saline flue gas desulfurization sludge: greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Salo, L.F.; Artiola, J.F.; Goodrich-Mahoney, J.W. [University of Arizona, Tuscon, AZ (United States). Dept. of Soil, Water and Environmental Science

    1997-07-01

    Codisposing low-volume wastes from electrical generating stations with flue gas desulfurization (FGD) scrubber sludge simplifies waste disposal but produces a saline waste that presents unique challenges to revegetation. This greenhouse study identified plants and amendments for revegetating a saline FGD sludge disposal pond in eastern Arizona. Survival and growth of 16 sown accessions plus two vegetatively propagated accessions of inland saltgrass were investigated in saline FGD sludge. Amendments used included two soils from the disposal site, Claysprings gravelly clay and Sheppard sand, composted steer manure, and N-P-K fertilizers. Sols and manure were added at 2:1 sludge/amendment (v/v). Plants were irrigated with a 1:1 mixture of disposal pond water and untreated well water. One accession of inland saltgrass, two cultivars of tall wheatgrass, Altai wildrye tall fescue and alkali sacaton show promise for revegetating saline FGD sludge disposal sites. Survival rates were the same in unamended sludge and in sludge amended with the clay soil or with N-P-K fertilizer. Plant dry matter produced was the same in unamended sludge and in sludge amended with either of the soils or with N-P-K. Although survival rates were significantly lower with manure than with any other amendment, growth was significantly greater by all measurements, due to the high fertility of this treatment. 34 refs., 5 tabs.

  18. Effect of water regime and salinity on artichoke yield

    Directory of Open Access Journals (Sweden)

    Francesca Boari

    2012-03-01

    Full Text Available This work focuses on the effects of different salinity and water inputs on the yield of artichoke Violetto di Provenza. Two years of experimental works had been carried out in a site in Southern Italy characterized by semi-arid climate and deep loam soil. Three salinity levels of irrigation water (S0, S1 and S2 with electrical conductivity (ECw of 0.5, 5 and 10 dS m-1, respectively, were combined with three water regimes (W1, W2 and W3 corresponding in that order to 20 40 and 60% of available water depletion. The overall results of the salinity tolerance are in agreement with those from the literature. However, an higher tolerance to salinity was demonstrated when crop was watered more frequently (at 20% of available water depletion and a lower one when crop watering was performed less frequently (at 60% of available water depletion. The increase of salinity level reduced marketable yield (from 12.9 to 8.8 Mg ha-1, total heads (from 125,100 to 94,700 n ha-1 and heads mean weight (from 99.9 to 94.6 g, while increased heads dry matter (from 161.8 to 193.6 g kg-1 f.w. and reduced edible parte percentage of heads (from 35.2 to 33.2 %. Watering regimes, as average of the salinity levels, affected total heads marketable yield (115,350 n ha-1 and 11.4 Mg ha-1 for W1 and W2, 105,900 n ha-1 and 10 Mg ha-1 for W3. In addition, different watering regimes affected the secondary heads yield for which it was reduced by 3% of mean weight. The effect of different watering regimes changed with various salinity levels. In condition of moderate salinity (S1, maximum water depletion fraction to preserve heads number and weight yield was 40 and 20% of total soil available water, respectively. However, with high salinity (S2, maximum water depletion fraction to keep unchanged heads number and weight yield was 20% for both. The level of soil salinity at beginning of the crop cycle favoured the incidence of head atrophy in the main heads produced in the second year.

  19. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    Science.gov (United States)

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  20. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  1. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    International Nuclear Information System (INIS)

    Hassanli, M.; Ebrahimian, H.

    2016-01-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  2. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    Energy Technology Data Exchange (ETDEWEB)

    Hassanli, M.; Ebrahimian, H.

    2016-07-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  3. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    Science.gov (United States)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    of well water needed to satisfy the crop water requirements as well as the leaching requirement had the lowest impact on soil salinization but resulted in a very low water use efficiency of 0.2 (water transpired / water added). This demonstrates the importance of using larger amounts of water than plant water requirements in this region in order to leach out salt of the root zone. However, in arid region, water is often limited and thus farmers can not afford to waste it. In that case, it is necessary to find a compromise between salinization, sodification and saving water. References: Jacques D., Šimůnek J. (2005). User Manual of the Multicomponent Variably-Saturated Flow and Transport Model HP1. Waste and Disposal Department, Mol, Belgium. USDA, United States Department of Agriculture (1969). Diagnosis and Improvement of Saline and Alkali Soils. United States Salinity Laboratory Staff, Agriculture Handbook No. 60, 160p.

  4. Combination gas producing and waste-water disposal well

    Science.gov (United States)

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  5. Treatability of a Highly-Impaired, Saline Surface Water for Potential Urban Water Use

    Directory of Open Access Journals (Sweden)

    Frederick Pontius

    2018-03-01

    Full Text Available As freshwater sources of drinking water become limited, cities and urban areas must consider higher-salinity waters as potential sources of drinking water. The Salton Sea in the Imperial Valley of California has a very high salinity (43 ppt, total dissolved solids (70,000 mg/L, and color (1440 CU. Future wetlands and habitat restoration will have significant ecological benefits, but salinity levels will remain elevated. High salinity eutrophic waters, such as the Salton Sea, are difficult to treat, yet more desirable sources of drinking water are limited. The treatability of Salton Sea water for potential urban water use was evaluated here. Coagulation-sedimentation using aluminum chlorohydrate, ferric chloride, and alum proved to be relatively ineffective for lowering turbidity, with no clear optimum dose for any of the coagulants tested. Alum was most effective for color removal (28 percent at a dose of 40 mg/L. Turbidity was removed effectively with 0.45 μm and 0.1 μm microfiltration. Bench tests of Salton Sea water using sea water reverse osmosis (SWRO achieved initial contaminant rejections of 99 percent salinity, 97.7 percent conductivity, 98.6 percent total dissolved solids, 98.7 percent chloride, 65 percent sulfate, and 99.3 percent turbidity.

  6. Salinity and temperature variations around Peninsula Malaysia coastal waters

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Jeremy Andy Anak Dominic; Nazrul Hizam Yusof; Mohd Rafaei Murtadza

    2004-01-01

    Vertical profiles of salinity and temperature were measured at several offshore stations along east and west coast of Peninsula Malaysia coastal waters. The measurements which covered South China Sea and Straits of Malacca were made during sampling cruises for Marine Database Project for Peninsula Malaysia, and during an IAEA regional training course for Marine Pollution Project. The results show that the water temperature is highest at the surface and minimum at bottom, while the salinity is lowest at the surface and highest at the bottom. In Malacca Straits, the highest surface water temperature was 30.6 degree C and the lowest bottom water temperature was 20.4 degree C, recorded at a station located in Andaman Sea. The same station also recorded the highest surface and bottom salinity i.e. 31.3 ppt and 34.4 ppt, respectively. For South China Sea, the maximum surface water temperature was 30.4 degree C and the minimum bottom temperature was 25.9 degree C, while the highest surface salinity was 33.2 ppt and the highest bottom salinity was 34.1 ppt. The water in South China Sea also showed some degrees of stratifications with thermocline zones located between 10-40 m water depths. In Malacca Straits, stronger thermocline develops at higher latitude, while at lower latitude the water is more readily mixed. Beside the spatial variations, the seawater temperature and salinity around Peninsula Malaysia also subjected to temporal variation as seawater. (Author)

  7. Saline water intrusion toward groundwater: Issues and its control

    Directory of Open Access Journals (Sweden)

    Purnama S

    2012-10-01

    Full Text Available Nowadays, saline water pollution has been gaining its importance as the major issue around the world, especially in the urban coastal area. Saline water pollution has major impact on human life and livelihood. It ́s mainly a result from static fossil water and the dynamics of sea water intrusion. The problem of saline water pollution caused by seawater intrusion has been increasing since the beginning of urban population. The problem of sea water intrusion in the urban coastal area must be anticipated as soon as possible especially in the urban areas developed in coastal zones,. This review article aims to; (i analyze the distribution of saline water pollution on urban coastal area in Indonesia and (ii analyze some methods in controlling saline water pollution, especially due to seawater intrusion in urban coastal area. The strength and weakness of each method have been compared, including (a applying different pumping patterns, (b artificial recharge, (c extraction barrier, (d injection barrier and (e subsurface barrier. The best method has been selected considering its possible development in coastal areas of developing countries. The review is based considering the location of Semarang coastal area, Indonesia. The results have shown that artificial recharge and extraction barrier are the most suitable methods to be applied in the area.

  8. Organic and inorganic species in produced water: Implications for water reuse

    Science.gov (United States)

    Kharaka, Yousif K.; Rice, Cynthia A.

    2004-01-01

    Currently 20-30 billion barrels of formation water are co-produced annually in the USA with conventional oil and natural gas. The large database on the geochemistry of this produced water shows salinities that vary widely from ~5,000 to >350,000 mg/L TDS. Chloride, Na and Ca are generally the dominant ions, and concentrations of Fe, Mn, B, NH3 and dissolved organics, including, BTEX, phenols and poly aromatic hydrocarbons (PAHs) may be relatively high. Hazardous concentrations of NORMs, including Ra-226 and Rn-222 have been reported in produced water from several states.Coal-bed methane (CBM) wells currently produce close to a billion barrels of water and deliver ~8% of total natural gas. The salinity of this produced water generally is lower than that of water from petroleum wells; salinity commonly is 1,000-20,000 mg/L, but ranges to150,000 mg/L TDS. Most CBM wells produce Na-HCO3-Cl type water that is low in trace metals and has no reported NORMs. This water commonly has no oil and grease and has relatively low DOC, but its organic composition has not been characterized in detail. The water is disposed of by injection into saline aquifers, through evaporation and/or percolation in disposal pits, road spreading, and surface discharge. Water that has an acceptable salinity and sodium absorption ratio (SAR) is considered acceptable for surface discharge and for injection into freshwater aquifers.As an alternative to costly disposal, low salinity produced water is being considered for reclamation, especially in the arid western USA. The cost of reclaiming this water to meet irrigation, industrial and drinking water standards was evaluated in a 10 gpm pilot field study at Placerita oil field, California. This produced water had a low salinity of ~8,000 mg/L, but high concentration of Si and organics. Removal of B, Si, NH3 and especially organics from this water proved difficult, and the estimated treatment cost was high at $0.08-$0.39/bbl for water treated for

  9. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  10. Control of pH of retained water in the coastal waste disposal site

    Directory of Open Access Journals (Sweden)

    Hem Ramrav

    2018-01-01

    Full Text Available After landfilling of wastes is completed, the stabilization of landfilled ground requires much time and cost. Therefore, this study aimed to control the pH of retained water in the coastal waste disposal sites during landfilling process, by conducting field surveys and laboratory experiments. In field surveys, we investigated the changes of retained water quality such as pH, salinity, and dissolved oxygen. The results show the pH of retained water has risen to about 10 when the volume of landfilled wastes reached about 25% of landfill capacity. In lowing the pH, we considered a low-cost method by pumping seawater from the adjacent sea into the landfill. The mechanism in this method is that, H+ dissociated from HCO3- in the fresh seawater react with OH- eluted from wastes would result in pH decrease. The laboratory experiments were conducted to verify the effect on pH change by adding fresh seawater to alkalized seawater. As a result, the effect of injecting fresh seawater into alkalized seawater with pH higher than 9 was confirmed. Therefore, this treatment method is suggested to enable the disposal sites to be used promptly after landfilling is completed, by adding fresh seawater to purify the retained water and waste at low cost during landfilling process.

  11. Influence of salinity and water regime on tomato for processing

    Directory of Open Access Journals (Sweden)

    Vito Cantore

    2012-03-01

    Full Text Available The effects of salinity and watering regime on tomato crop are reported. The trials have been carried out over two years in Southern Italy on a deep loam soil. Three saline levels of irrigation water (with electrical conductivity of 0.5, 5 and 10 dS m-1, three watering regimes (at 20, 40 and 60% of available water depletion, and two cultivars (HLY19 and Perfectpeel were compared. The overall results related to the salinity tolerance are in agreement with those from the literature indicating that water salinity reduced marketable yield by 55% in respect to the control treatments. The irrigation regimes that provided higher total and marketable yield were at 40 and 60% of available water depletion (on average, 90.5 and 58.1 Mg ha-1 against 85.3 and 55.5 Mg ha-1 of the 20% available water depletion. Saline and irrigation treatments did not affect sunburned fruits, while affected incidence of fruits with blossom-end rot. The former disease appeared more dramatically in saline treatments (+28% in respect to the control, and occurred mainly in HLY19. The disease incidence was by 52% lower in W2 respect to the W1 and W3. Fruit firmness was higher in S0, whereas it was not affected by irrigation regimes. Total soluble solids and dry matter content of tomato fruits were increased by salinity, whereas it was not affected by irrigation regimes and cultivars. The pH and the titratable acidity remained unchanged between the years, the cultivar and the saline and irrigation treatments. Similarly to the last parameters, the fruit ascorbic acid content remained unchanged in relation to the treatments, but it was higher in HLY19. The recommended thresholds of easily available water to preserve total and marketable yield were at 40 and 60%, respectively. Watering more frequently, instead, on the soil type of the trial, probably caused water-logging and root hypoxia affecting negatively yield.

  12. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  13. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  14. Surface Energy Balance of Fresh and Saline Waters: AquaSEBS

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelrady

    2016-07-01

    Full Text Available Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System model for large water bodies and add the effect of water salinity to the evaporation rate. Firstly, SEBS is modified for fresh-water whereby new parameterizations of the water heat flux and sensible heat flux are suggested. This is achieved by adapting the roughness heights for momentum and heat transfer. Secondly, a salinity correction factor is integrated into the adapted model. Eddy covariance measurements over Lake IJsselmeer (The Netherlands are carried out and used to estimate the roughness heights for momentum (~0.0002 m and heat transfer (~0.0001 m. Application of these values over the Victoria and Tana lakes (freshwater in Africa showed that the calculated latent heat fluxes agree well with the measurements. The root mean-square of relative-errors (rRMSE is about 4.1% for Lake Victoria and 4.7%, for Lake Tana. Verification with ECMWF data showed that the salinity reduced the evaporation at varying levels by up to 27% in the Great Salt Lake and by 1% for open ocean. Our results show the importance of salinity to the evaporation rate and the suitability of the adapted-SEBS model (AquaSEBS for fresh and saline waters.

  15. Effects of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-12-01

    Full Text Available A two-year study was carried out in order to assess the effects of different irrigation scheduling regimes with saline water on soil salinity, yield and water productivity of pepper under actual commercial-farming conditions in the arid region of Tunisia. Pepper was grown on a sandy soil and drip-irrigated with water having an ECi of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated ETc at levels of 100% (FI, full irrigation, 80% (DI-80, 60% (DI-60, when the readily available water in the control treatment (FI is depleted, deficit irrigation during ripening stage (FI-MDI60 and farmer method corresponding to irrigation practices implemented by the local farmers (FM. Results on pepper yield and soil salinity are globally consistent between the two-year experiments and shows significant difference between irrigation regimes. Higher soil salinity was maintained over the two seasons, 2008 and 2009, with DI-60 and FM treatments than FI. FI-MDI60 and DI-80 treatments resulted also in low ECe values. Highest yields for both years were obtained under FI (22.3 and 24.4 t/ha although we didn’t find significant differences with the regulated deficit irrigation treatment (FI-DI60. However, the DI-80 and DI-60 treatments caused significant reductions in pepper yields through a reduction in fruits number/m² and average fruit weight in comparison with FI treatment. The FM increased soil salinity and caused significant reductions in yield with 14 to 43%, 12 to 39% more irrigation water use than FI, FI-MDI60 and DI-80 treatments, respectively, in 2008 and 2009. Yields for all irrigation treatments were higher in the second year compared to the first year. Water productivity (WP values reflected this difference and varied between 2.31 and 5.49 kg/m3. The WP was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 treatment and FM, respectively. FI treatment provides

  16. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio Enrique [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    Injection of carbon dioxide (CO2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO2 and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO2-H2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO2) the viscosity of carbon

  17. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  18. Intrusion of low-salinity water into the Yellow Sea Interior in 2012

    Science.gov (United States)

    Oh, Kyung-Hee; Lee, Joon-Ho; Lee, Seok; Pang, Ig-Chan

    2014-12-01

    Abnormally low-salinity water was detected in the surface layer of the central region of the Yellow Sea in August 2012. The presence of such low-salinity water in the Yellow Sea interior has never been reported previously. To understand the origin of this low-salinity water, oceanographic and wind data were analyzed, and the circulation of the surface layer was also examined in the Yellow and East China Seas using a numerical ocean model. The results confirmed that typhoons caused the low-salinity water. Two consecutive typhoons passed from east to west across the East China Sea, around the Changjiang Bank in early August 2012. Strong easterly and southeasterly winds created by the typhoons in the Yellow and East China Seas drove the low-salinity water to the north along the coast of China and northeastward toward the central region of the Yellow Sea, respectively. Usually, the northward drifting of Changjiang Diluted Water along the coast of China ends around the Jiangsu coast, where the drifting is blocked and is turned by the offshore Eulerian residual current. Therefore, the Changjiang Diluted Water does not intrude more into the Yellow Sea interior. However, in 2012, the low-salinity water drifted up to the Shandong Peninsula along the coast of China, and formed massive low-salinity water in the Yellow Sea interior combining with the other low-salinity water extended toward the central region of the Yellow Sea directly from the Changjiang Bank. Thus, the typhoons play a key role in the appearance of abnormally low-salinity water in the Yellow Sea interior and it means that the Yellow Sea ecosystem could be significantly influenced by the Changjiang Diluted Water.

  19. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  20. Thermodynamics of saline and fresh water mixing in estuaries

    Science.gov (United States)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  1. The structural modification of cassava starch using a saline water pretreatment

    Directory of Open Access Journals (Sweden)

    Hanny Frans SANGIAN

    2018-04-01

    Full Text Available Abstract The cassava has been modified successfully by using the saline water, which was abundantly available on the planet. The biomass was submerged in saline waters that salt concentrations were altered at 0, 3.5 percent (seawater and 10 percent (w/w and were kept 5 days. After recovery by washing steps, the treated solids were characterized by using XRD (X-ray diffraction , FTIR (Fourier transform infra-red, and SEM (Scanning electron microscopic. The results showed that the XRD pattern of saline water pretreatment decreased significantly. The biggest decrease of X-ray intensity occurred at around 18o. Meanwhile, the fingerprint of FTIR revealed the transmittance intensity of infra-red ray of saline water treated solid inclined for all wave constant numbers, suggesting that many hydrogen bonds were disconnected. Those findings also were enhanced by SEM pictures that showed the change of surface morphology of treated biomass. It was indicative that cassava structure was modified becoming more textured after employing saline water pretreatment. This work is an innovative finding to gradually substitute commercial ionic liquids that are very expensive with saline water for biomass pretreatment.

  2. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    Science.gov (United States)

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element

  3. Salinity and cationic nature of irrigation water on castor bean cultivation

    Directory of Open Access Journals (Sweden)

    Geovani S. de Lima

    Full Text Available ABSTRACT This study aimed to evaluate the water relations, cell damage percentage and growth of the castor bean cv. ‘BRS Energia’ as a function of salinity and cationic nature of the water used in irrigation. The experiment was conducted in drainage lysimeters under greenhouse conditions in eutrophic Grey Argisol of sandy loam texture. Six combinations of water salinity and cations were studied (S1 - Control; S2 - Na+, S3 - Ca2+, S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+, in a randomized block design with four replicates. In the control (S1, plants were irrigated with 0.6 dS m-1 water, whereas the other treatments received 4.5 dS m-1 water, obtained by adding different salts, all in the chloride form. Higher relative water content in the leaf blade of plants irrigated with K+-salinized water associated with leaf succulence are indicative of tolerance of the castor bean cv. ‘BRS Energia’ to salinity. Saline stress negatively affected castor bean growth, regardless of cationic nature of water. Among the ions studied, ‘BRS Energia’ castor bean was more sensitive to the presence of sodium in the irrigation water, in terms of both water relations and leaf succulence.

  4. Saline-water intrusion related to well construction in Lee County, Florida

    Science.gov (United States)

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride

  5. Linking water and carbon cycles through salinity observed from space

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  6. A Geology-Based Estimate of Connate Water Salinity Distribution

    Science.gov (United States)

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  7. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-01-01

    Full Text Available A three-year study was conducted to evaluate the effects of different irrigation regimes with saline water on soil salinity, yield and water productivity of carrot as a fall-winter crop under actual commercial-farming conditions in the arid region of Tunisia. Carrot was grown on a sandy soil and surface-irrigated with a water having an ECi of 3.6 dS/m. For the three years, a complete randomized block design with four replicates was used to evaluate five irrigation regimes. Four irrigation methods were based on the use of soil water balance (SWB to estimate irrigation amounts and timing while the fifth consisted of using traditional farmers practices. SWB methods consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI-100, 80% (DI-80 and 60% (DI-60. FI-100 was considered as full irrigation while DI-80 and DI-60 were considered as deficit irrigation regimes. Regulated deficit irrigation regime where 40% reduction is applied only during ripening stage (FI-DI60 was also used. Farmer method (Farmer consisted in giving fixed amounts of water (25 mm every 7 days from planting till harvest. Results on carrot production and soil salinization are globally consistent between the three-year experiments and shows significant difference between irrigation regimes. Higher soil salinity in the root zone is observed at harvest under DI-60 (3.1, 3.4, 3.9 dS/m, respectively, for the three years and farmer irrigation (3.3, 3.6, 3.9 dS/m treatments compared to FI-100 treatment (2.3, 2.6 and 3.1 dS/m. Relatively low ECe values were also observed under FI-DI60 and DI-80 treatments with respectively (2.7, 3, 3.5 dS/m and (2.5, 2.9, 3.3 dS/m. ECe values under the different irrigation treatments were generally lower than or equal to the EC of irrigation water used. Rainfall received during fall and/or winter periods (57, 26 and 29 mm, respectively, during the three years contributed probably to leaching soluble

  8. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  9. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  10. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  11. Spatial distribution of saline water and possible sources of intrusion ...

    African Journals Online (AJOL)

    The spatial distribution of saline water and possible sources of intrusion into Lekki lagoon and transitional effects on the lacustrine ichthyofaunal characteristics were studied during March, 2006 and February, 2008. The water quality analysis indicated that, salinity has drastically increased recently in the lagoon (0.007 to ...

  12. The effects of salinity in the soil water balance: A Budyko's approach

    Science.gov (United States)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  13. Waste Water Disposal Design And Management II

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book is written about design and management of waste water disposal like settling, floating, aeration and filtration. It explains in detail solo settling, flocculant settling, zone settling, multi-level settling, floating like PPI oil separator, structure of skimming tank and design of skimming tank, water treatment and aeration, aeration device, deaeration like deaeration device for disposal processing of sewage, filtration such as structure and design of Micro-floc filtration, In-line filtration and design of slow sand filter bed.

  14. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  15. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae; Morgan, Craig; Carney, Stephanie

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary

  16. Responses of three tomato cultivars to sea water salinity 1. Effect of ...

    African Journals Online (AJOL)

    The effect of sea water salinity (1500, 2500 and 3500 ppm) on the growth of tomato (Lycopersicon esculentum) cultivars (Trust, Grace and Plitz) was studied. The sea water salinity delayed seed germination and reduced germination percentage especially with increasing salinity level. Chlorophyll b content was higher than ...

  17. Spatio-temporal impacts of dairy lagoon water reuse on soil: heavy metals and salinity.

    Science.gov (United States)

    Corwin, Dennis L; Ahmad, Hamaad Raza

    2015-10-01

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. The spatial impact and sustainability of dairy lagoon water reuse from concentrated animal feeding operations (CAFOs) has not been evaluated at field scale. The objective of this study is to monitor the impact of dairy lagoon water blended with recycled water on a 32 ha field near San Jacinto, CA from 2007 to 2011. Spatial monitoring was based on soil samples collected at locations identified from apparent soil electrical conductivity (ECa) directed sampling. Soil samples were taken at depth increments of 0-0.15, 0.15-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.2, 1.2-1.5, and 1.5-1.8 m at 28 sample sites on 7-11 May 2007 and again on 31 May - 2 June 2011 after 4 years of irrigation with the blended waters. Chemical analyses included salinity (electrical conductivity of the saturation extract, ECe), pHe (pH of the saturation extract), SAR (sodium adsorption ratio), trace elements (As, B, Mo, Se), and heavy metals (Cd, Cu, Mn, Ni, Zn). Results indicate a decrease in mean values of pHe at all depth increments; a decrease in ECe and SAR above a depth of 0.15 m, but an increase below 0.15 m; a decrease in all trace elements except B, which increased throughout the 1.8 m profile; and the accumulation of Cd, Mn, and Ni at all depth increments, while Cu was readily leached from the 1.8 m profile. Zinc showed little change. The results focused concern on the potential long-term agronomic effect of salinity, SAR, and B, and the long-term environmental threat of salinity and Cu to detrimentally impact groundwater. The accumulation of Cd, Mn, and Ni in the soil profile raised concern since it provided a potential future source of metals for leaching. The long-term sustainability of dairy lagoon water reuse hinges on regular monitoring to provide spatial feedback for site-specific management.

  18. Quality of jackfruit seedlings under saline water stress and nitrogen fertilisation

    Directory of Open Access Journals (Sweden)

    Francisco Ítalo Fernandes de Oliveira

    2017-08-01

    Full Text Available The lack of good quality water for agriculture purposes regarding salts and quantity in relation to demand for the plants has, for more than 30 years, been forcing the use of restrictive water because of salinity issues in agricultural production systems worldwide. In Brazil, the situation is no different, in the semi-arid areas, there are reports of losses of seed germination, initial growth of seedlings and yield of crops of commercial importance due to the salinity of the water used in irrigation systems. Therefore, an experiment was carried out from June to September/2014 in a protected environment, with a plastic film on the upper base and a thin screen against insects on the sides, to evaluate the effects of salinity interaction between water irrigation and nitrogen fertilisation sources on soil salinity, initial plant growth and the quality of the jackfruit seedlings. The treatments were distributed in randomised blocks, in the factorial scheme 5 × 3, reference irrigation water of 0.3, 1.0, 2.0, 3.0 and 4.0 dS m-1, in soil with and without ammonium sulfate and urea. An increase in the salinity of the irrigation water to 1.32 and 1.70 dS m-1 on the substrate without nitrogen stimulated an increase in the number of leaves and leaf area of the jackfruit seedlings. The ammonium sulfate was the nitrogen source that mainly contributed to the increase of soil salinity and to the reduction of the quality index of the seedlings. Despite the reduction of the Dickson quality index due to the salinity of the irrigation water and the nitrogen sources, the seedlings were suitable for cultivation.

  19. Oklahoma’s recent earthquakes and saltwater disposal

    Science.gov (United States)

    Walsh, F. Rall; Zoback, Mark D.

    2015-01-01

    Over the past 5 years, parts of Oklahoma have experienced marked increases in the number of small- to moderate-sized earthquakes. In three study areas that encompass the vast majority of the recent seismicity, we show that the increases in seismicity follow 5- to 10-fold increases in the rates of saltwater disposal. Adjacent areas where there has been relatively little saltwater disposal have had comparatively few recent earthquakes. In the areas of seismic activity, the saltwater disposal principally comes from “produced” water, saline pore water that is coproduced with oil and then injected into deeper sedimentary formations. These formations appear to be in hydraulic communication with potentially active faults in crystalline basement, where nearly all the earthquakes are occurring. Although most of the recent earthquakes have posed little danger to the public, the possibility of triggering damaging earthquakes on potentially active basement faults cannot be discounted. PMID:26601200

  20. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    Science.gov (United States)

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  1. Effects of temperature and salinity on light scattering by water

    Science.gov (United States)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  2. Combination gas-producing and waste-water disposal well. [DOE patent application

    Science.gov (United States)

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  3. Spinach biomass yield and physiological response to interactive salinity and water stress

    Science.gov (United States)

    Critical shortages of fresh water throughout arid regions means that growers must face the choice of applying insufficient fresh water, applying saline water, or consider the option of combined water and salt stress. The best approach to manage drought and salinity is evaluation of the impact of wat...

  4. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  5. Water logging and salinity control for environmentally sustainable crop production

    International Nuclear Information System (INIS)

    Chaudhry, M.R.; Bhutta, M.N.

    2005-01-01

    Irrigation supplies at proper time and adequate quantities are imperative for potential agricultural production under arid and semi-arid climatic conditions. To achieve this goal one of the largest integrated irrigation network was established. Without adequate drainage it resulted in the problems of water logging and salinity. To control these problems a big programme of Salinity Control and Reclamation projects (SCARPs) was initiated during 1960 and 82 such SCARPs have been completed and 9 were in progress up to June, 2002 covering an area of 18.6 ma (7.5 mh) at a cost of Rs.93 billions. Under these projects 12746 tube wells in fresh, 3572 in saline groundwater and 13726 km surface and 12612 km tile pipes covering 6391.7 ha, 160 km interceptor drains have been constructed an area of 0.998 ma (GCA). In addition to this some other measures like on farm water management, canal command project, canal lining, construction of evaporation ponds, establishment of research Inst./Organizations were also taken. Many drainage plans like Master Plan (1963), Northern Regional Plan (1967), Water Sector Investment Plan Study (1990), Right Bank Master Plan (1992), Drainage Sector Environmental Assessment (1993) and National Drainage Programme (1995) were prepared and implemented. The cost of the, phase-I of the National Drainage Programme was 785 million US$. The main activities undertaken were remodeling/extension of existing surface and new drains; rehabilitation/replacement of saline ground water (SGW) tube wells; construction of interceptor drains, reclamation of waterlogged areas through biological drainage and transfer of fresh ground water tube wells to the farmers. The data indicate that all the measures taken have played a significant role in reducing the water logging, salinity/sodicity and have increased the crop production and consequently improved the socio-economic conditions of the peoples especially the farming community. The environment in these areas was also

  6. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  7. Transport of Astyanax altiparanae Garutti and Britski, 2000 in saline water

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Salaro

    2015-08-01

    Full Text Available Two experiments were performed. The first aimed to assess the tolerance of fingerlings Astyanax altiparanae to water salinity. Fish were exposed to salinity of 0, 3, 6, 9, 12 or 15 g NaCl L-1 for 96 hours. The fish mortality was 0%, in the levels of 0, 3 and 6 g L-1; 75% in the level of 9 g L-1and 100% at 12 and 15 g L-1 of common salt. The second experiment aimed to assess the parameters of water quality, mortality and blood glucose during transport. For this, A. altiparanae were stored in plastic bags at 22, 30 and 37 g of fish L-1 stocking densities and salinity of 0, 3, 6 and 9 g L-1, for. Fish showed similar mortality levels in the different salinities and stocking densities. The increase in fish density reduced the dissolved oxygen levels and salinity decreased the pH. The blood glucose levels were higher in those fish with 0 g L-1 salinity and higher stocking densities. The addition of salt to the water reduces the stress responses of A. altiparanae during transport.

  8. Water Use Efficiency in Saline Soils under Cotton Cultivation in the Tarim River Basin

    Directory of Open Access Journals (Sweden)

    Xiaoning Zhao

    2015-06-01

    Full Text Available The Tarim River Basin, the largest area of Chinese cotton production, is receiving increased attention because of serious environmental problems. At two experimental stations (Korla and Aksu, we studied the influence of salinity on cotton yield. Soil chemical and physical properties, soil water content, soil total suction and matric suction, cotton yield and water use efficiency under plastic mulched drip irrigation in different saline soils was measured during cotton growth season. The salinity (mS·cm−1 were 17–25 (low at Aksu and Korla, 29–50 (middle at Aksu and 52–62 (high at Aksu for ECe (Electrical conductivity measured in saturation-paste extract of soil over the 100 cm soil profile. The soil water characteristic curves in different saline soils showed that the soil water content (15%–23% at top 40 cm soil, lower total suction power (below 3500 kPa and lower matric suction (below 30 kPa in low saline soil at Korla had the highest water use efficiency (10 kg·ha−1·mm−1 and highest irrigation water use efficiency (12 kg·ha−1·mm−1 and highest yield (6.64 t·ha−1. Higher water content below 30 cm in high saline soil increased the salinity risk and led to lower yield (2.39 t·ha−1. Compared to low saline soils at Aksu, the low saline soil at Korla saved 110 mm irrigation and 103 mm total water to reach 1 t·ha−1 yield and increased water use efficiency by 5 kg·ha−1·mm−1 and 7 kg·ha−1·mm−1 for water use efficiency (WUE and irrigation water use efficiency (IWUE respectively.

  9. Identification of sources and mechanisms of salt-water pollution ground-water quality

    International Nuclear Information System (INIS)

    Richter, B.C.; Dutton, A.R.; Kreitler, C.W.

    1990-01-01

    This book reports on salinization of soils and ground water that is widespread in the Concho River watershed and other semiarid areas in Texas and the United States. Using more than 1,200 chemical analyses of water samples, the authors were able to differentiate various salinization mechanisms by mapping salinity patterns and hydrochemical facies and by analyzing isotopic compositions and ionic ratios. Results revealed that in Runnels County evaporation of irrigation water and ground water is a major salinization mechanism, whereas to the west, in Irion and Tom Green Counties, saline water appears to be a natural mixture of subsurface brine and shallowly circulating meteoric water recharged in the Concho River watershed. The authors concluded that the occurrence of poor-quality ground water is not a recent or single-source phenomenon; it has been affected by terracing of farmland, by disposal of oil-field brines into surface pits, and by upward flow of brine from the Coleman Junction Formation via insufficiently plugged abandoned boreholes

  10. Monitoring soil coverage and yield of cowpea furrow irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Antonia Leila Rocha Neves

    Full Text Available Abstract Cowpea crop is of great importance for northeast Brazil. The objective of this work was to evaluate the application of saline water in different developing stages on plant growth and changes in soil characteristics, measured by soil coverage, and on yield of cowpea plants. The experiment was conducted under field conditions, during the dry season in a completely randomized block design with five treatments and five replications. Each experimental unit consisted of 4 lines of plants with 5.0 m long. The treatments evaluated were: 1. irrigation with groundwater with electrical conductivity (ECw of 0.8 dS m-1 during the whole crop cycle; 2. saline water (5.0 dS m-1 during the whole crop cycle; 3, 4 and 5. saline water (5.0 dS m-1 up to 22nd, during 23rd to 42nd and from the 43rd to 62nd days after sowing, respectively, and groundwater in the remaining period. Soil coverage was evaluated by digital images using the software ENVI for image processing and classification. It was found that the continuous use of saline water inhibits plant growth, while irrigation with saline water during germination and initial growth stages caused retardation in plant development, but in this last case a recovery was observed in the final part of the experimental period. For treatments 2 and 3, a reduction was verified in the number of pods and in seed production, as compared to other treatments. Irrigation with saline water during 23 to 42 and 43 to 62 days after sowing did not affect reproductive and vegetative growth, but the saline water application in the pre-flowering (treatment 4 caused anticipation of the reproductive cycle.

  11. Interaction effects of water salinity and hydroponic growth medium on eggplant yield, water-use efficiency, and evapotranspiration

    Directory of Open Access Journals (Sweden)

    Farnoosh Mahjoor

    2016-06-01

    Full Text Available Eggplant (Solanum melongena L. is a plant native to tropical regions of Southeast Asia. The water crisis and drought on the one hand and eggplant greenhouse crop development as one of the most popular fruit vegetables for people on the other hand, led to the need for more research on the use of saline water and water stress to optimize salinity level and their impact on eggplant evapotranspiration and encounter better yield and crop quality. The objective of the present study was to investigate the interactions of water salinity and hydroponic growth medium on qualitative and quantitative properties of eggplant and its water-use efficiency. The study used the factorial experiment based on completely randomized design with three replications of four levels of water salinity (electrical conductivity of 0.8 (control, 2.5, 5, and 7 dS m−1 and three growth media (cocopeat, perlite, and a 50–50 mixture of the two by volume. Total yield, yield components, evapotranspiration, and water-use efficiency were determined during two growing periods, one each in 2012 and 2013. All of these indices decreased significantly as water salinity increased. Water with of 0.8 dS m−1 produced an average eggplant yield of 2510 g per plant in 2012 and 2600 g in 2013. The highest yield was observed in cocopeat. Water with 7 dS m−1 reduced yield to 906 g per plant in 2012 and to 960 g in 2013. Lowest yield was observed in perlite. The highest evapotranspiration values occurred in cocopeat at the lowest salinity in both years. Cocopeat and the cocopeat–perlite mixture were equally good substrates. The mixture significantly improved the quantitative and qualitative properties of eggplant yield.

  12. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  13. Ecosystem effects from produced water and potash mine disposal activities

    International Nuclear Information System (INIS)

    Roy, R.; Davis, D.; Hopkins, S.

    1993-01-01

    This study was initiated to determine the chemical, physical, and ecosystem effects of produced water and potash mine disposal practices upon naturally occurring-hypersaline playas in southeast New Mexico, Several playas that receive discharges were compared to several nearby reference playas. Results revealed that the treatment playas had been significantly altered when compared to the reference playas. For example, the salinity of treatment playas were greater than 300 per-thousand and those of reference playas were less than 200 per-thousand. The dominant ions in water and sediments of treatment playas were sodium and chloride. The major ions in reference playa water and sediments were sodium, calcium, chloride, and sulfate. In some instances aromatic hydrocarbon concentrations exceeded 13,000 ng/g in sediments from treatment playas. Aromatic hydrocarbon concentrations were less than 100 ng/g in sediments from reference playas. Surveys revealed that treatment playas supported few, if any, invertebrates. On the other hand, reference playas supported dense populations of brine shrimp Artemis and brine fly Hydropyrus larvae. Surveys also indicated that reference playas were used by shorebirds for nesting and feeding, whereas treatment playas were used as loafing areas by waterfowl. Unfortunately, dead waterfowl were found along the shores of several treatment playas. Necropsies revealed that the most likely cause of death was salt toxicosis

  14. Elementary introduction into thermal desalination of saline waters

    International Nuclear Information System (INIS)

    Froehner, K.R.

    1979-01-01

    The principle of thermal conversion of saline waters into potable water are described from an elementary point of view in an easy understandable manner, covering distillation, submerged coil evaporation, flash evaporation, multiple effect distillation, vapour compression, and solar distillation in simple solar stills. (orig.)

  15. Multifactorial control of water and saline intake: role of a2-adrenoceptors

    Directory of Open Access Journals (Sweden)

    L.A. De-Luca Jr.

    1997-04-01

    Full Text Available Water and saline intake is controlled by several mechanisms activated during dehydration. Some mechanisms, such as the production of angiotensin II and unloading of cardiovascular receptors, activate both behaviors, while others, such as the increase in blood osmolality or sodium concentration, activate water, but inhibit saline intake. Aldosterone probably activates only saline intake. Clonidine, an a2-adrenergic agonist, inhibits water and saline intake induced by these mechanisms. One model to describe the interactions between these multiple mechanisms is a wire-block diagram, where the brain circuit that controls each intake is represented by a summing point of its respective inhibiting and activating factors. The a2-adrenoceptors constitute an inhibitory factor common to both summing points

  16. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    Science.gov (United States)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Irrigation with saline-sodic water: effects on two clay soils

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2013-05-01

    Full Text Available The results of a 4-year experiment aimed at evaluating the effect of irrigation with saline-sodic water on the soil are reported. The research was carried out at the Campus of the Agricultural Faculty of Bari University (Italy on 2 clay soils (Bologna – T1 and Locorotondo – T2. The soils were cropped to borlotto bean (Phaseolus vulgaris L., capsicum (Capsicum annuum L., sunflower (Helianthus annuus L., wheat (Triticum durum Desf grown in succession; the crops were irrigated with 9 saline-sodic types of water and subjected to two different leaching fractions (10% and 20% of the watering volume. The 9 solutions were obtained dissolving in de-ionised water weighted amounts of sodium chloride (NaCl and calcium chloride (CaCl2, deriving from the combination of 3 saline concentrations and 3 sodicity levels. The crops were irrigated whenever the water lost by evapotranspiration from the soil contained in the pots was equal to 30% of the soil maximum available water. The results showed that, though the soils were leached during the watering period, they showed a high salt accumulation. Consequently, the saturated soil extract electrical conductivity increased from initial values of 0.65 and 0.68 dS m-1 to 11.24 and 13.61 dS m-1 at the end of the experiment, for the soils T1 and T2, respectively. The saline concentration increase in irrigation water caused in both soils a progressive increase in exchangeable sodium, and a decrease in exchangeable calcium and non-significant variations in exchangeable potassium (K and magnesium (Mg.

  18. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh

    International Nuclear Information System (INIS)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-01-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19–25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. - Highlights: • Freshwater salinization will affect more people and to a greater extent as climate projections are realised in low-lying regions of the world.

  19. Effect of volume loading with water, normal saline, palm wine and ...

    African Journals Online (AJOL)

    A comparative study of the diuretic effect of water, normal saline, palm wine and Lipton tea was carried out on forty (40) randomly selected, apparently normal undergraduate students of Medicine and Pharmacy at the University of Uyo, Nigeria. One and a half (1.5) litres of water, normal saline, palm wine and Lipton tea were ...

  20. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  1. Summary of northern Atlantic coastal plain hydrology and its relation to disposal of high-level radioactive waste in buried crystalline rock; a preliminary appraisal

    Science.gov (United States)

    Lloyd, O.B.; Larson, J.D.; Davis, R.W.

    1985-01-01

    Interpretation of available hydrologic data suggests that some areas beneath the Coastal Plain in the States of Delaware, Maryland, New Jersey, North Carolina, and Virginia might have some potential for the disposal of nuclear waste in crystalline rock that is buried beneath the Coastal Plain sediments. The areas of major interest occur where the top of the basement rock lies between 1,000 and 4,000 feet below sea level, the aquifer(s) immediately above the basement rock are saturated with saline water, confining material overlies the saline water bearing aquifer(s), and groundwater flow in the saline water aquifer(s) can be established. Preliminary data on (1) the distribution and thickness of the lowermost aquifers and confining beds, (2) the distribution of hydraulic conductivity in the lowermost aquifers, (3) estimated hydraulic heads and inferred direction of lateral groundwater flow for 1980, and (4) the distribution of saline water and brine, indicate eastern parts of the study area relatively best meet most of the criteria proposed for sediments that would overlie any potential buried crystalline-rock disposal site.

  2. Improvement of Chickpea Growth and Biological N Fixation under Water Salinity Stress

    International Nuclear Information System (INIS)

    Gadalla, A. M.; Galal, Y. G. M.; Hamdy, A.

    2004-01-01

    This work had been carried out under greenhouse conditions of IAM-Bari, aimed at evaluating the effects of water and soil salinity on growth, yield and nitrogen fixation by chickpea plants inoculated with selected Rhizobium strains. Isotope dilution approach ( 15 N) was applied for quantification of biological N fixation and portions derived from fertilizer and soil (Ndff and Ndfs, respectively). Number of pods was decreased gradually with increasing water salinity levels. High levels of salinity negatively affected shoot, root dry matter, seed yield and N accumulated in shoots and roots. A slight difference in seed N was noticed between fresh water and 9 dS/m treatments. Nitrogen derived from fertilizer by shoots was slightly increased with 3, 6 and 9 dS/m treatments, while they were notably higher than the fresh water control. More than 80% and 70% of N accumulated in shoots and seeds, respectively were derived from fixation. Portions of N 2 -fixed in shoots was decreased with the level of 3 dS/m as compared to the fresh water, then tended to increase with both 6 and 9 dS/m treatments. Stability of %Ndfa with increasing salinity was noticed with seeds-N. Soil-N came next as a fraction of nitrogen demand, where it increased with increasing water salinity levels. Under adverse conditions of salinity, the plants offered some of their N requirements from the other two N sources. Application of the suitable Rhizobium bacteria strains could be profits for both of the plant growth and soil fertility via N 2 fixation. (Authors)

  3. Concentration of saline produced water from coalbed methane gas wells in multiple-effect evaporator using waste heat from the gas compressor and compressor drive engine

    International Nuclear Information System (INIS)

    Sadler, L.Y.; George, O.

    1995-01-01

    The use of heat of compression from the gas compressor and waste heat from the diesel compressor drive engine in a triple-effect feed forward evaporator was studied as a means of concentrating saline produced water to facilitate its disposal. The saline water, trapped in deeply buried coal seams, must be continuously pumped from coalbed natural gas wells so that the gas can desorb from the coal and make its way to the wellbore. Unlike conventional natural gas which is associated with petroleum and usually reaches the wellhead at high pressure, coalbed natural gas reaches the wellhead at low pressure, usually around 101 kPa (1 atm), and must be compressed near the well site for injection into gas transmission pipelines. The water concentration process was simulated for a typical 3.93 m 3 /s (500 MCF/h), at standard conditions (101 kPa, 289K), at the gas production field in the Warrior Coal Basin of Alabama, but has application to the coalbed gas fields being brought into production throughout the world. It was demonstrated that this process can be considered for concentrating saline water produced with natural gas in cases where the gas must be compressed near the wellhead for transportation to market. 9 refs., 1 fig., 2 tabs

  4. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles.

    Science.gov (United States)

    Cramer, Grant R; Ergül, Ali; Grimplet, Jerome; Tillett, Richard L; Tattersall, Elizabeth A R; Bohlman, Marlene C; Vincent, Delphine; Sonderegger, Justin; Evans, Jason; Osborne, Craig; Quilici, David; Schlauch, Karen A; Schooley, David A; Cushman, John C

    2007-04-01

    Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.

  5. Formation and spreading of Arabian Sea high-salinity water mass

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Prasad, T.G.

    The formation and seasonal spreading of the Arabian Sea High-Salinity Water (ASHSW) mass were studied based on the monthly mean climatology of temperature and salinity in the Arabian Sea, north of the equator and west of 80 degrees E, on a 2 degrees...

  6. Physiological changes of pepper accessions in response to salinity and water stress

    Energy Technology Data Exchange (ETDEWEB)

    López-Serrano, L.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, A.

    2017-07-01

    New sources of water stress and salinity tolerances are needed for crops grown in marginal lands. Pepper is considered one of the most important crops in the world. Many varieties belong to the genus Capsicum spp., and display wide variability in tolerance/sensitivity terms in response to drought and salinity stress. The objective was to screen seven salt/drought-tolerant pepper accessions to breed new cultivars that could overcome abiotic stresses, or be used as new crops in land with water and salinity stress. Fast and effective physiological traits were measured to achieve the objective. The present study showed wide variability of the seven pepper accessions in response to both stresses. Photosynthesis, stomatal conductance and transpiration reduced mainly under salinity due to stomatal and non-stomatal (Na+ accumulation) constraints and, to a lesser extent, in the accessions grown under water stress. A positive relationship between CO2 fixation and fresh weight generation was observed for both stresses. Decreases in Ys and YW and increased proline were observed only when accessions were grown under salinity. However, these factors were not enough to alleviate salt effects and an inverse relation was noted between plant salt tolerance and proline accumulation. Under water stress, A31 was the least affected and A34 showed the best tolerance to salinity in terms of photosynthesis and biomass.

  7. Physiological changes of pepper accessions in response to salinity and water stress

    International Nuclear Information System (INIS)

    López-Serrano, L.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, A.

    2017-01-01

    New sources of water stress and salinity tolerances are needed for crops grown in marginal lands. Pepper is considered one of the most important crops in the world. Many varieties belong to the genus Capsicum spp., and display wide variability in tolerance/sensitivity terms in response to drought and salinity stress. The objective was to screen seven salt/drought-tolerant pepper accessions to breed new cultivars that could overcome abiotic stresses, or be used as new crops in land with water and salinity stress. Fast and effective physiological traits were measured to achieve the objective. The present study showed wide variability of the seven pepper accessions in response to both stresses. Photosynthesis, stomatal conductance and transpiration reduced mainly under salinity due to stomatal and non-stomatal (Na+ accumulation) constraints and, to a lesser extent, in the accessions grown under water stress. A positive relationship between CO2 fixation and fresh weight generation was observed for both stresses. Decreases in Ys and YW and increased proline were observed only when accessions were grown under salinity. However, these factors were not enough to alleviate salt effects and an inverse relation was noted between plant salt tolerance and proline accumulation. Under water stress, A31 was the least affected and A34 showed the best tolerance to salinity in terms of photosynthesis and biomass.

  8. Surface energy balance of fresh and saline waters : AquaSEBS

    NARCIS (Netherlands)

    Abdelrady, A.R.; Timmermans, J.; Vekerdy, Z.; Salama, M.S.

    2016-01-01

    Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System) model

  9. Enhanced remediation of an oily sludge with saline water ...

    African Journals Online (AJOL)

    Enhanced remediation of an oily sludge with saline water. ... the remediation of an oily sludge, which was part of the waste stream from the improvement ... m3 of fresh water respectively while 'treatment' reactors C and D received ...

  10. Radium Adsorption to Iron Bearing Minerals in Variable Salinity Waters

    Science.gov (United States)

    Chen, M.; Kocar, B. D.

    2014-12-01

    Radium is a common, naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are a product of natural uranium and thorium decay, and are particularly abundant within groundwaters where minimal flux leads to accumulation within porewaters. Radium has been used as a natural tracer to estimate submarine groundwater discharge (SGD) [1], where the ratios of various radium isotopes are used to estimate total groundwater flux to and from the ocean [2]. Further, it represents a substantial hazard in waste water produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a primary pathway of radium retention within subsurface environments. For SGD studies, it is important to understand adsorption processes to correctly estimate GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids will mediate the activities of radium within produced water. While some studies of radium adsorption to various minerals have been performed [4], there is a limited understanding of the surface chemistry of radium adsorption, particularly to iron-bearing minerals such as pyrite, goethite and ferrihydrite. Accordingly, we present the results of sorption experiments of radium to a suite of iron-bearing minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through the use of artificial groundwater, seawater, and shale formation brine. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the retention of radium. This work lays the groundwork for further study of radium use as a tracer for SGD, as well as understanding mechanisms of radium retention and release from deep aquifer materials following hydraulic fracturing

  11. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  12. Geochemical processes controlling water salinization in an irrigated basin in Spain: Identification of natural and anthropogenic influence

    Energy Technology Data Exchange (ETDEWEB)

    Merchán, D., E-mail: d.merchan@igme.es [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain); Auqué, L.F.; Acero, P.; Gimeno, M.J. [University of Zaragoza — Department of Earth Sciences (Geochemical Modelling Group), C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Causapé, J. [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain)

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. - Highlights: • Salinization in Lerma Basin was controlled by the dissolution of soluble salts. • Water salinization and nitrate pollution were found to be independent processes. • High NO{sub 3}, fresh groundwater evolved to lower NO{sub 3}, higher salinity surface water. • Inverse and direct geochemical modeling confirmed the hypotheses. • Salinization was a natural ongoing process

  13. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  14. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    Science.gov (United States)

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Saline water in southeastern New Mexico

    Science.gov (United States)

    Hiss, W.L.; Peterson, J.B.; Ramsey, T.R.

    1969-01-01

    Saline waters from formations of several geologic ages are being studied in a seven-county area in southeastern New Mexico and western Texas, where more than 30,000 oil and gas tests have been drilled in the past 40 years. This area of 7,500 sq. miles, which is stratigraphically complex, includes the northern and eastern margins of the Delaware Basin between the Guadalupe and Glass Mountains. Chloride-ion concentrations in water produced from rocks of various ages and depths have been mapped in Lea County, New Mexico, using machine map-plotting techniques and trend analyses. Anomalously low chloride concentrations (1,000-3,000 mg/l) were found along the western margin of the Central Basin platform in the San Andres and Capitan Limestone Formations of Permian age. These low chloride-ion concentrations may be due to preferential circulation of ground water through the more porous and permeable rocks. Data being used in the study were obtained principally from oil companies and from related service companies. The P.B.W.D.S. (Permian Basin Well Data System) scout-record magnetic-tape file was used as a framework in all computer operations. Shallow or non-oil-field water analyses acquired from state, municipal, or federal agencies were added to these data utilizing P.B.W.D.S.-compatible reference numbers and decimal latitude-longitude coordinates. Approximately 20,000 water analyses collected from over 65 sources were coded, recorded on punch cards and stored on magnetic tape for computer operations. Extensive manual and computer error checks for duplication and accuracy were made to eliminate data errors resulting from poorly located or identified samples; non-representative or contaminated samples; mistakes in coding, reproducing or key-punching; laboratory errors; and inconsistent reporting. The original 20,000 analyses considered were reduced to 6,000 representative analyses which are being used in the saline water studies. ?? 1969.

  16. Effect of water salinity on wheat inoculated with N fixing bacteria using 15N tracer technique

    International Nuclear Information System (INIS)

    Al-Sayed, M. A.; Soliman, S. M.; Galal, Y. G. M.; El-Hadidi, E. M.

    2012-12-01

    A pot experiment was carried out under greenhouse controlled conditions to investigate the effect of water salinity and bacterial inoculation on growth parameters and nutrient uptake by wheat ( Triticum aestivum, L. seda 6). Dry matter yield of shoots was gradually increased with increasing water salinity levels under dual inoculation (Rh + Az). This phenomenon was more pronounced with 6 ds m -1 rather than 3 ds m -1 water salinity level. This holds true with all inoculation treatments. Similar trend was noticed with root dry matter yield. N uptake by shoots was positively affected by water salinity levels under bacterial inoculation especially the dual treatments where N uptake tended to increase with increasing water salinity levels. N uptake by roots was severely affected by increasing water salinity levels as compared to fresh water treatment. N uptake by shoots was enhanced by inoculation under different water salinity levels as compared to the un inoculated treatment. Nitrogen uptake roots was dramatically affected by inoculation. It was only increased by inoculation when plants were irrigated with fresh water. Portions of Ndff were frequently affected by both water salinity levels and microbial inoculation. wheat plant as representative of cereal crops was more dependent on the portion of nitrogen up taken from fertilizer rather than those fixed from the air. Therefore, the plant-bacteria association was not efficient enough. Inoculated treatments compensated considerable amounts of its N demand from air beside those derived from fertilizer, therefore the remained N from fertilizer in soil was higher than those of un inoculated control which is more dependable on Ndff as well as Ndf s. 1 5N recovery by wheat plants was enhanced by bacterial inoculation as well as water salinity levels did. (Author)

  17. Hydrochemical measures and salinity studies in Inhanhuns' waters, Ceara State, Brazil

    International Nuclear Information System (INIS)

    Lima, Carlos Henrique; Santiago, Marlucia Freitas; Mendes Filho, Josue; Frischkorn, Horst

    1996-08-01

    The Inhamuns region is one of the most arid in Ceara Waters exhibit very high salinity. Here we evaluate measurements of chemical parameters (electrical conductivity, EC, and major ions) and δ 18 O for waters from wells, springs and surface reservoirs. Results show that springs, with EC of up to nearly 5000 μS/cm, are fed by pluvial water, exchange through dams can be excluded. Electrical conductivity is well correlated with Na + Mg ++ and Cl - for waters of various origins, whereas Ca ++ correlates reasonably only for wells. We conclude that aerosol deposition is a major source of salt, Enrichment through evaporation constitutes the most important process for surface water salination. Dissolution of chlorite-silicates is the cause for the magnesian character of underground water. (author)

  18. Salinization may attack you from behind: upconing and related long-term downstream salinization in the Amsterdam Water Supply Dunes (Invited)

    Science.gov (United States)

    Olsthoorn, T.

    2010-12-01

    Groundwater from the Amsterdam Water Supply Dunes (GE: 52.35°N 4.55°E) has been used for the drinking water supply of Amsterdam since 1853. During the first half of the 20th century, severe intrusion and upconing occurred, with many of the wells turning brackish or saline. Already in 1903, the hydrologist/director of the Amsterdam Water Supply, Pennink, predicted this, based on his unique sand-box modeling, which he published in 1915 in the form of a large-size hard-bound book in four languages showing detailed black and white photographs of his tests. This book is now on the web: http://www.citg.tudelft.nl/live/pagina.jsp?id=68e12562-a4d2-489a-b82e-deca5dd32c42&lang=en Pennink devoted much of his work on saltwater upconing below wells, which he so feared. He simulated simultaneous flow of fresh and salt water, using milk to represent the saltwater having about the same density. With our current modeling tools, we can simulate his experiments, allowing to better understand his setup and even to verify our code. Pennink took interest in the way these cones form and in the point at which the salt water enters the screen. Surprizing, at least to many, is that this entry point is not necessarily the screen bottom. Measurements of the salinity distribution in salinized wells in the Amsterdam Water Supply Dune area confirmed this thirty years later when salinzation was severely occurring. The curved cone shape under ambient flow conditions provides part of the explanation why a short-term shut down of a well almost immediately diminishes salt concentrations, but salinization downstream of the wells in case with substantial lateral groundwater flow is not affected. Downstream salinization due to extraction was clearly shown in Pennink's experiments. However, the phenomenon seems still largely unknown or ignored. Downstream salinization also affects downstream heads for years after extraction has stopped. The presentation demonstrates and explains these local and more

  19. An inductive conductivity meter for monitoring the salinity of dialysis water

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1970-01-01

    An inductive conductivity meter is described, especially adapted as a salinity monitor for dialysis water. Salinity are given. The principal problems of the inductive conductivity meter result from the low conductivity of electrolytes. The weak coupling due to the electrolyte means that stray...

  20. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw; Myat, Aung; Gee, Chun Won

    2011-01-01

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher's and Chun & Seban's falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  1. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.

    Science.gov (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W

    2008-05-01

    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1).

  2. Environmental Evaluation of Soil Salinity with Various Watering Technologies Assessment.

    Science.gov (United States)

    Seitkaziev, Adeubay; Shilibek, Kenzhegali; Fakhrudenova, Idiya; Salybayev, Satybaldy; Zhaparova, Sayagul; Duisenbayeva, Saule; Bayazitova, Zulfia; Aliya, Maimakova; Seitkazieva, Karlygash; Aubakirov, Hamit

    2018-01-01

      The purpose of this study is to develop mathematical tools for evaluating the level of environmental safety of various watering technologies. A set of indicators, was developed with regard to the natural factors, the nature of the man-induced load, degradation type, and characteristics of the disruption of humification conditions. Thermal and physical characteristics of the soil, the state of its surface, and meteorological factors, including air temperature, relative humidity, precipitation, wind speed, solar radiation, etc. were studied with a view to determining the heat and air exchange in the soil. An environmental evaluation of the methods for saline land development was conducted with regard to the heat and moisture supply. This tool can be used to determine the level of environmental safety of soil salinization during the environmental evaluation of the investigation of soil salinity with various watering technologies.

  3. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  4. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    Science.gov (United States)

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water.

    Science.gov (United States)

    Ullinger, Heather L; Kennedy, Marla J; Schneider, William H; Miller, Christopher M

    2016-01-01

    The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies.

  6. Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water.

    Directory of Open Access Journals (Sweden)

    Heather L Ullinger

    Full Text Available The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies.

  7. Chickpea (Cicer arietinum L.) physiological, chemical and growth responses to irrigation with saline water

    DEFF Research Database (Denmark)

    Hirich, Abdelaziz; Omari, Halima El; Jacobsen, Sven-Erik

    2014-01-01

    and soluble sugars as osmolytes produced by chickpea to mitigate the effect of salinity stress. The added value of these results is that the crop's responses to salinity are quantified. The obtained values can be used to determine 'threshold values'; should the salinity of the irrigation water go above...... these threshold values one may expect the crop yield parameters to be affected. The quantified responses also indicate the rate of change of yield parameters in response to the irrigation water salinity level. This could help in avoiding significant yield reduction when deciding on the irrigation water salinity...

  8. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil

    2011-10-03

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher\\'s and Chun & Seban\\'s falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  9. Age of ground water and the origin of its salinity in the Leba region

    International Nuclear Information System (INIS)

    Kwaterkiewicz, A.; Sadurski, A.; Zuber, A.

    1999-01-01

    Intensive exploitation of ground waters in the Leba region caused a strong increase of salinity, which on the basis of hydrochemistry, was supposed to result from the intrusion of the Baltic Sea water. Environmental isotope data revealed that water in the tertiary sediments is of glacial origin and its salinity is related to the admixture of ascending older waters. (author)

  10. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    Javid, M.A.; Ali, K.; Javed, M.; Mahmood, A.

    1999-01-01

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  11. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  12. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  13. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    Science.gov (United States)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  14. Modelling saline intrusion for repository performance assessment

    International Nuclear Information System (INIS)

    Jackson, C.P.

    1989-04-01

    UK Nirex Ltd are currently considering the possibility of disposal of radioactive waste by burial in deep underground repositories. The natural pathway for radionuclides from such a repository to return to Man's immediate environment (the biosphere) is via groundwater. Thus analyses of the groundwater flow in the neighbourhood of a possible repository, and consequent radionuclide transport form an important part of a performance assessment for a repository. Some of the areas in the UK that might be considered as possible locations for a repository are near the coast. If a repository is located in a coastal region seawater may intrude into the groundwater flow system. As seawater is denser than fresh water buoyancy forces acting on the intruding saline water may have significant effects on the groundwater flow system, and consequently on the time for radionuclides to return to the biosphere. Further, the chemistry of the repository near-field may be strongly influenced by the salinity of the groundwater. It is therefore important for Nirex to have a capability for reliably modelling saline intrusion to an appropriate degree of accuracy in order to make performance assessments for a repository in a coastal region. This report describes work undertaken in the Nirex Research programme to provide such a capability. (author)

  15. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes

    Science.gov (United States)

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.

    2017-12-01

    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 g.cm-3) were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore

  16. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    Science.gov (United States)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  17. Dryland salinity: threatening water resources in the semi-arid Western Cape

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2010-11-01

    Full Text Available associated with the mobilisation of inorganic salts from the landscape and the consequent increase in salt concentrations in receiving water bodies. Dyland salinity is not new to this area. Wheat lands in the Swartland and Overberg regions are widely known... to contain ?brak kolle? (saline scalds) where the wheat will not germinate. CAPTION: The Berg River near Velddrif. The river drains an area of approximately 9 000 km? and is an important source of water to the Boland and Cape Peninsula (source: Vernon...

  18. Novel water filtration of saline water in the outermost layer of mangrove roots.

    Science.gov (United States)

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-05

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  19. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  20. A broadband helical saline water liquid antenna for wearable systems

    Science.gov (United States)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  1. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.

    Science.gov (United States)

    Izzo, C; Doubleday, Z A; Schultz, A G; Woodcock, S H; Gillanders, B M

    2015-06-01

    This study quantified the per cent contribution of water chemistry to otolith chemistry using enriched stable isotopes of strontium ((86) Sr) and barium ((137) Ba). Euryhaline barramundi Lates calcarifer, were reared in marine (salinity 40), estuarine (salinity 20) and freshwater (salinity 0) under different temperature treatments. To calculate the contribution of water to Sr and Ba in otoliths, enriched isotopes in the tank water and otoliths were quantified and fitted to isotope mixing models. Fulton's K and RNA:DNA were also measured to explore the influence of fish condition on sources of element uptake. Water was the predominant source of otolith Sr (between 65 and 99%) and Ba (between 64 and 89%) in all treatments, but contributions varied with temperature (for Ba), or interactively with temperature and salinity (for Sr). Fish condition indices were affected independently by the experimental rearing conditions, as RNA:DNA differed significantly among salinity treatments and Fulton's K was significantly different between temperature treatments. Regression analyses did not detect relations between fish condition and per cent contribution values. General linear models indicated that contributions from water chemistry to otolith chemistry were primarily influenced by temperature and secondly by fish condition, with a relatively minor influence of salinity. These results further the understanding of factors that affect otolith element uptake, highlighting the necessity to consider the influence of environment and fish condition when interpreting otolith element data to reconstruct the environmental histories of fish. © 2015 The Fisheries Society of the British Isles.

  2. A new water permeability measurement method for unsaturated tight materials using saline solutions

    International Nuclear Information System (INIS)

    Malinsky, Laurent; Talandier, Jean

    2012-01-01

    Document available in extended abstract form only. Relative water permeability of material in a radioactive waste disposal is a key parameter to simulate and predict saturation state evolution. In this paper we present a new measurement method and the results obtained for Callovo-Oxfordian (Cox) clay-stone, host rock of the underground Andra laboratory at Bure (Meuse/Haute-Marne). Relative water permeability of such a low permeability rock as Cox clay-stone has been measured up to now by an indirect method. It consists in submitting a rock sample to successive relative humidity steps imposed by saline solutions. The transient mass variation during each step and the mass at hydric equilibrium are interpreted generally by using an inverse analysis method. The water relative permeability function of water saturation is derived from water diffusion coefficient evolution and water retention curve. The proposed new method consists in directly measuring the water flux across a flat cylindrical submitted to a relative humidity gradient. Two special cells have been developed. The tightness of the lateral sample surface is insured by crushing a polyurethane ring surrounding the sample set in an aluminium device placed over a Plexiglas vessel filled with a saline solution. One of the cells is designed to allow humidity measurement in the cell. These cells can also be used to measure the relative humidity produced by a saline solution or by an unsaturated material. During a permeability measurement, the cell with the sample to be tested is continuously weighted in a Plexiglas box in which a saline solution imposes a different relative humidity at the upper sample face. The experimental set-up is shown on Figure 1. The mean permeability of the sample is proportional to the rate of mass variation when steady state is reached. The result of one test is shown on Figure 2(a). Twenty four permeability measurements have been performed on four argillite samples of 15 mm in height and

  3. Harmful effects of wastewater disposal into water bodies: a case ...

    African Journals Online (AJOL)

    Improper disposal of waste water and the problems of addressing ... Abattoir wastes, industrial wastes from breweries, agricultural runoffs, and waste water from ... Ni and Pb make such water unsuitable for drinking, irrigation, aquatic life and ...

  4. Chemical interaction of fresh and saline waters with compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.; Melamed, A.; Pitkaenen, P.

    1996-01-01

    The interaction of compacted sodium bentonite with fresh and saline ground-water simulant was studied. The parameters varied in the experiments were the compositions of the solutions and oxygen and carbon dioxide content in the surroundings. The main interests of the study were the chemical changes in the experimental solution, bentonite porewater and bentonite together with the microstructural properties of bentonite. The major processes with fresh water were the diffusion of sodium, potassium, sulphate, bicarbonate and chloride from bentonite to the solution, and the diffusion of calcium and magnesium from the solution into bentonite. The major processes in the experiments with saline water were the diffusion of the sodium, magnesium, sulphate and bicarbonate from bentonite into the solution, and the diffusion of calcium from the solution into bentonite

  5. Soil Moisture Ocean Salinity (SMOS) salinity data validation over Malaysia coastal water

    International Nuclear Information System (INIS)

    Reba, M N M; Rosli, A Z; Rahim, N A

    2014-01-01

    The study of sea surface salinity (SSS) plays an important role in the marine ecosystem, estimation of global ocean circulation and observation of fisheries, aquaculture, coral reef and sea grass habitats. The new challenge of SSS estimation is to exploit the ocean surface brightness temperature (Tb) observed by the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture Ocean Salinity (SMOS) satellite that is specifically designed to provide the best retrieval of ocean salinity and soil moisture using the L band of 1.4 GHz radiometer. Tb observed by radiometer is basically a function of the dielectric constant, sea surface temperature (SST), wind speed (U), incidence angle, polarization and SSS. Though, the SSS estimation is an ill-posed inversion problem as the relationship between the Tb and SSS is non-linear function. Objective of this study is to validate the SMOS SSS estimates with the ground-truth over the Malaysia coastal water. The LM iteratively determines the SSS of SMOS by the reduction of the sum of squared errors between Tb SMOS and Tb simulation (using in-situ) based on the updated geophysical triplet in the direction of the minimum of the cost function. The minimum cost function is compared to the desired threshold at each iteration and this recursive least square process updates the SST, U and SSS until the cost function converged. The designed LM's non-linear inversion algorithm simultaneously estimates SST, U and SSS and thus, map of SSS over Malaysia coastal water is produced from the regression model and accuracy assessment between the SMOS and in-situ retrieved SSS. This study found a good agreement in the validation with R square of 0.9 and the RMSE of 0.4. It is concluded that the non-linear inversion method is effective and practical to extract SMOS SSS, U and SST simultaneously

  6. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    Science.gov (United States)

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  7. The use of short rotation willows and poplars for the recycling of saline waste waters

    Science.gov (United States)

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  8. Geoelectric imaging for saline water intrusion in Geopark zone of Ciletuh Bay, Indonesia

    Science.gov (United States)

    Ardi, N. D.; Iryanti, M.; Asmoro, C. P.; Yusuf, A.; Sundana, A. N. A.; Safura, H. Y.; Fitri, M.; Anggraeni, M.; Kurniawan, R.; Afrianti, R.; Sumarni

    2018-05-01

    Saline water intrusion in estuary is an urgent ecological encounter across the world. The Ciletuh Bay, located in the southern Sukabumi district, is an area with high cultivated potential becoming one of the most important geology tourism zones in Indonesia. However, salt water intrusion along the creek is a natural spectacle that disturbs the economic growth of the whole region. This research was intended at plotting the subsurface level of saltwater interventions into aquifers at the northern part of Ciletuh creek, Indonesia. The study implemented geoelectric imaging methods. 37 imaging datum were acquired using Wenner array configuration. The saline water were identified across the study area. The result of two dimensional cross-sectional resistivity shows that there is an indication of sea content in our measured soil, i.e. the smallest resistivity value is 0.579 Ωm found at a depth of 12.4 m to 19.8 m at a track length of 35 m to 60 m is categorized in the clayey which shows low groundwater quality. However, when compared with the results of direct observation of groundwater from the wells of residents, the water obtained is brackish water. A water chemistry test is conducted to ascertain the initial results of this method so that a potential sea intrusion potential map can be interpreted more clearly. This can consequently help as an extrapolative model to define depth to saline water at any site within the saline water zone in the study area.

  9. Mobility of trace metals associated with urban particles exposed to natural waters of various salinities from the Gironde Estuary, France

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Joerg; Blanc, Gerard [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Norra, Stefan [Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry; Klein, Daniel [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry

    2009-08-15

    are preliminary for Bordeaux and may bear important uncertainties due to several assumptions and extrapolation to the annual timescale, the orders of magnitude are probably realistic. Thus, these fluxes are not negligible and need (1) further and improved observation and (2) to be taken into account in both mass budgets at the estuary scale and emission control strategies. Recommendations and perspectives: New approaches combining geochemical and mineralogical characterisation of single urban particle types help identify their role in metal emission into the environment and develop potential limitation strategies (e.g. the ban of priority pollutants in tyres, etc.). Therefore, prioritisation of urban particle sources in terms of fluxes, reactivity of associated pollutants and feasibility of emission reduction is strongly recommended. Coastal cities should integrate extractions of urban particles with saline water into their environmental monitoring programs owing to the fact that saline conditions might cause efficient desorption of potentially toxic trace elements. In continental cities, winter salting is likely to induce intense mobilisation of metals from road sediments that may then reach the aquatic environment, instead of being retained in runoff decantation reservoirs followed by subsequent disposal/treatment with road sediments. However, also particles from continental cities reach coastal waters via rivers and have to be assessed with respect to trace metal desorption under various salinities. There is a strong need for the quantification of fluxes and for the identification of carrier phases and reactivity of metals exported from urban areas to aquatic systems. (orig.)

  10. Strategies for safe exploitation of fresh water through multi-strainer skimming wells in saline groundwater areas

    International Nuclear Information System (INIS)

    Alam, M.M.; Jaffery, H.M.; Hanif, M.

    2005-01-01

    Due to growing population of Pakistan, there is a tremendous pressure on our agriculture sector to increase its production to meet the food and fiber requirement. Water is a basic need to increase the agriculture production and to bring more areas under cultivation. The exploitation of groundwater resources is increasing because of limited surface water availability. Statistics indicated that number of public and private tube-wells have increased to more than 5 lacs. Over exploitations of groundwater caused a number of environmental problems including salt water intrusion and increase in the soil and groundwater salinity. A large number of fresh water tube-wells have started pumping saline groundwater in various parts of Pakistan indicating up-coning of saline groundwater in the relatively fresh water aquifers. Use of poor quality groundwater for irrigation is considered as one of the major causes of salinity in the areas of irrigated agriculture. Indiscriminate pumping of the groundwater of marginal quality through skimming fresh water overlain by saline groundwater can not be helpful in the long run. It can add to the root zone salinity and ultimately reduction of crops yield. Mona Reclamation Experimental Project (MREP) is conducting a collaborative research study on 'Root Zone Salinity Management using Fractional Skimming Wells with Pressurized Irrigation' under a research and studies portfolio of the country wide National Drainage Programme (NDP) MREP, IWMI Pakistan and Water Resources Research Institute of PARC are collaborators in this joint research effort. MREP is responsible to specifically address the objective of the study to identify and test a limited number of promising skimming well techniques in the shallow fresh water aquifers which could control the saline water up-coning phenomenon as a consequence of groundwater pumping. Detailed investigations have been done at various locations in the north-central part of Chaj Doab (Sargodha Region) in the

  11. Water supply, waste water cleaning and waste disposal. 2. rev. ed.

    International Nuclear Information System (INIS)

    Knoch, W.

    1994-01-01

    The first part of the book contains fundamentals of chemistry, always having environmental protection in mind. Numerous examples are calculated. The second part gives detailed explanations of the material-scientific and analytical bases of the indispensable resource water and its conditioning, waste water cleaning and sludge treatment. Collection, transport, handling, disposal and recycling of unavoidable wastes and toxic wastes are finally dealt with. (orig./EF) [de

  12. Trench water chemistry at commercially operated low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Dayal, R.; Kinsley, M.T.; Clinton, J.; Czyscinski, K.S.; Weiss, A.J.

    1982-01-01

    Water samples from the disposal trenches of two low-level radioactive-waste-disposal sites were analyzed for their inorganic, organic, and radionuclide contents. Since oxidation of the trench waters can occur during their movement along the groundwater flow path, experiments were performed to measure the chemical and physical changes that occur in these waters upon oxidation. Low concentrations of chelating agents, shown to exist in trench waters, may be responsible for keeping radionuclides, particularly 60 Co, in solution. 4 figures, 5 tables

  13. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    Science.gov (United States)

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  14. The effect of process water salinity on flotation of copper ore from Lubin mining region (SW Poland

    Directory of Open Access Journals (Sweden)

    Bakalarz Alicja

    2017-01-01

    Full Text Available The process water used for the flotation of sedimentary copper ore in ore concentration plants in KGHM Polska Miedz S.A. were characterized. The process water used in the flotation circuits is heavily saline. It contains between 25 and 45 g/dm3 of soluble components, and the main constituent, in about 75%, is NaCl. Process water used for flotation consists of reclaimed water from the tailing dam and mine water. The effect of process water salinity on the processes of copper flotation from the Lubin mine area was described. The results of laboratory flotation experiments conducted in tap water and in water of different salinity levels were compared. The effect of the salinity of water within specified concentration limits was generally found to be beneficial for upgrading of the examined ore.

  15. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    Science.gov (United States)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  16. Disposal of carbon dioxide in aquifers in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Winter, E.M.; Bergman, P.D.

    1995-11-01

    Deep saline aquifers were investigated as potential disposal sites for CO{sub 2}. The capacity of deep aquifers for CO{sub 2} disposal in the U.S. is highly uncertain. A rough estimate, derived from global estimates, is 5,500 Gt of CO{sub 2}. Saline aquifers underlie the regions in the U.S. where most utility power plants are situated. Therefore, approximately 65 percent of CO{sub 2} from power plants could possibly be injected directly into deep saline aquifers below these plants, without the need for long pipelines.

  17. Effect of Saline Water on Yield and Nitrogen Acquisition by Sugar Beet (Beta vulgaris L.) Using 15N Technique

    International Nuclear Information System (INIS)

    Gadalla, A. M.; Galal, Y. G. M.; Abdel Aziz, A.; Hamdy, A.

    2007-01-01

    Sugar beet growth response to the interactive effects of salinity and N-fertilization was investigated using 15N tracer technique under greenhouse condition. Data showed that dry matter yield of sugar beet shoots and roots were frequently affected by N and water regime. Total N uptake by leaves was increased under almost water salinity treatments in spite of increasing salinity levels. It appears that in case of W I , N I I the N-uptake by roots was significantly decreased along with raising salinity levels from 4 to 8 dS/m. The portions of N derived from fertilizer (whole plant) showed that the trend was affected by salinity level of irrigation water, and fertilization treatments. The highest amount of N derived from fertilizer was obtained with the 4 dS/m level under N I I with the two water regimes. The efficient use of fertilizer-N was slightly but positively affected by raising salinity levels of irrigation water. Sugar percent was increased with increasing salinity levels of irrigation water under both N I and N I I treatments, but it was higher in case of N I than NII under different salinity levels. Generally, Irrigation with saline water in combination with water regime of 75-80% of field capacity and splitting nitrogen technique are better for enhancement of sugar beet production grown under such adverse conditions

  18. NOAA NDBC SOS, 2007-present, sea_water_practical_salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_practical_salinity data. Because of the nature of SOS...

  19. Yield of cherry tomatoes as a function of water salinity and irrigation frequency

    Directory of Open Access Journals (Sweden)

    Alexandre N. Santos

    2016-02-01

    Full Text Available ABSTRACT The use of brackish water in agriculture can cause salinization of soils and reduce plant yield. This problem can be minimized by hydroponic cultivation, which improves plant development. The aim of this study was to evaluate the yield of cherry tomatoes grown in hydroponic system with substrate under salinity levels of the nutrient solution (NS, exposure time to salinity and irrigation frequency. The experiment was conducted in a greenhouse, in a randomized complete block design, in a 6 x 2 x 2 factorial scheme with five replicates: six salinity levels of NS prepared with brackish water (3.01; 4.51; 5.94; 7.34; 8.71 and 10.40 dS m-1; two exposure times to NS (60 and 105 days and two irrigation frequencies (one irrigation per day and irrigation every two days. Yield and production components of cherry tomatoes cv. 'Rita' were evaluated. NS salinity affected plant yield, reducing fruit production, which was more significant when plants were subjected to a longer time of exposure to salinity. There was no difference between NS applications on fruit production, when these applications were performed once a day or once every two days.

  20. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    Science.gov (United States)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global

  1. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Marco Antonio Russo

    2009-12-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  2. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Vito Sardo

    2011-02-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  3. Integral Analysis of Field Work and Laboratory Electrical Resistivity Imaging for Saline Water Intrusion Prediction in Groundwater

    Science.gov (United States)

    Zawawi, M. H.; Zahar, M. F.; Hashim, M. M. M.; Hazreek, Z. A. M.; Zahari, N. M.; Kamaruddin, M. A.

    2018-04-01

    Saline water intrusion is a serious threat to the groundwater as many part of the world utilize groundwater as their main source of fresh water supply. The usage of high salinity level of water as drinking water can lead to a very serious health hazard towards human. Saline water intrusion is a process by which induced flow of seawater into freshwater aquifer along the coastal area. It might happen due to human action and/or by natural event. The climate change and rise up of sea level may speed up the saline water intrusion process. The conventional method for distinguishing and checking saltwater interference to groundwater along the coast aquifers is to gather and test the groundwater from series of observation wells (borehole) with an end goal to give the important information about the hydrochemistry data to conclude whether the water in the well are safe to consume or not. An integrated approach of field and laboratory electrical resistivity investigation is proposed for indicating the contact region between saline and fresh groundwater. It was found that correlation for both soilbox produced almost identical curvilinear trends for 2% increment of seawater tested using sand sample. This project contributes towards predicting the saline water intrusion to the groundwater by non-destructive test that can replaced the conventional method of groundwater monitoring using series of boreholes in the coastal area

  4. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    Science.gov (United States)

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  5. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  6. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    International Nuclear Information System (INIS)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B.

    2011-01-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  7. Algal massive growth in relation to water quality and salinity at Damietta, north of Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Ibraheem Deyab

    2015-02-01

    Full Text Available Objective: To relate the proliferation and dominance of certain algal species at the Damietta and its relation to water quality. Methods: Water and algal biomass were bimonthly sampled from five selected sites at Damietta Province, Egypt during 2012. Algae were identified and quantified. Waters, algae and sediment were analyzed. Results: The physicochemical properties of water showed limited seasonal but substantial local variation. The high levels of nitrogen and phosphorus and turbidity of water pointed to marked eutrophication, which could enhance massive algal growth. The temporal fluctuation in temperature, exposure to industrial and domestic sewage and salinity results in succession between blooming algal species. Spirulina platensis and Chlorella vulgaris alternated in a moderately saline water and Oscillatoria agardhii and Mougeotia scalaris in a fresh water body during summer and winter respectively. Likewise, Microcystis aureginosa and Ulva lactuca alternated in a moderately saline site during autumn and summer respectively. Cladophora albida dominated a fish pond of brackish water and Dunaliella salina dominated the most saline water over the whole period of study. Conclusions: Growth of the predominant algal species is correlated to water quality. These species are of considerable nutritive value, with moderate contents of protein, carbohydrate, macronutrients and micronutrients, which evaluates them for usage as food (green and macroalgae, fodder or bio-fertilizer (cyanophytes.

  8. Influence of Microsprinkler Irrigation Amount on Water, Soil, and pH Profiles in a Coastal Saline Soil

    Directory of Open Access Journals (Sweden)

    Linlin Chu

    2014-01-01

    Full Text Available Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.

  9. Coastal circulation off Bombay in relation to waste water disposal

    Digital Repository Service at National Institute of Oceanography (India)

    Josanto, V.; Sarma, R.V.

    Flow patterns in the coastal waters of Bombay were studied using recording current meters, direct reading current meters, floats and dye in relation to the proposed waste water disposal project of the Municipal Corporation of Greater Bombay from...

  10. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    Science.gov (United States)

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  11. Response of balanites aegyptiaca (l.) del. var. aegyptiaca seedlings from three different sources to water and salinity stressess

    International Nuclear Information System (INIS)

    Elfeel, A.A.; Abohassan, R.A.

    2015-01-01

    Water and salinity are main co-occurring stresses affecting plant growth and development in arid lands. In this study interactive effects of water and salinity stresses on Balanites aegyptiaca seedlings from three different sources (SD5.1, SD6.2 and KSA) were assessed in potted experiment under greenhouse conditions. The effect was measured on stomatal conductance (Gs), specific leaf area (SLA), seedling quality (Shoot to Root ratio (S/R), Dickson Quality Index (DQI) and Sturdiness Quotient (SQ)), Nutrient uptake (N content, K/Na and Ca/Na ratios) and growth. The seedlings were either watered twice a week (well watered) or every two weeks (water stressed), in addition to four salt concentrations (fresh water as control, 5 dS m-1, 7 dS m-1 and 9 dS m-1 EC). Water and salinity stresses resulted in reduced Gs, SLA, DQ, SQ and S/R, associated with lower height and root collar diameter. However, irrespective of salt concentration, water stressed seedlings displayed substantial reduction in Gs, indicating that Gs is among the most important water conservation strategy for this species. S/R also, remarkably decreased in water stressed seedlings, but, within watering treatment it was increased with increasing salt concentration. SLA and DQI were more affected by salinity stress, due to the increased leaf weight with increasing salinity. N content was more sensitive to water stress than salinity. Both Ca/Na and K/Na ratios were decreased with increasing salt concentration. The three sources exhibited significant variation in their response to water and salinity stresses. SD5.1 displayed higher values in most of studied traits. Gs and S/R may be considered as fitness responses of this species to water stress, while DQI, SLA and K/Na can serve as good indicators to measure response to salt stress. (author)

  12. Effects of application timing of saline irrigation water on broccoli production and quality

    Science.gov (United States)

    Irrigation with moderately saline water is a necessity in many semi-arid areas of the Mediterranean Basin, and requires adequate irrigation management strategies. Broccoli (Brassica oleracea var. italica), a crop moderately tolerant to salinity stress, was used to evaluate the effects of the applica...

  13. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  14. Physiology of ‘Paluma’ guava under irrigation with saline water and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Evandro Manoel da Silva

    2017-05-01

    Full Text Available The use of saline water in irrigation causes osmotic and toxic effects and nutritional imbalance in plants, leading to morphophysiological modifications in the leaves and compromising the production of photosynthetic pigments, which negatively reflects in the growth and development of the crops. Hence, this study aimed to evaluate the effect of irrigation water salinity on the content of photosynthetic pigments and leaf morphophysiology of guava seedlings cv. ‘Paluma’ under nitrogen (N fertilization. A randomized block design was used, testing five levels of irrigation water electrical conductivity - ECw (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1 and four N doses (541.1, 773.0, 1,004.9, and 1,236.8 mg of N dm-3 of soil in a 5 x 4 factorial scheme with three replicates and five plants per plot. The contents of photosynthetic pigments in the leaves of the guava seedlings cv. ‘Paluma’ were inhibited by the increase in irrigation water salinity at 190 days after emergence, and the salt stress was lessened with the N dose of 1,004.9 mg dm-3 up to an ECw level of 1.2 dS m-1. Leaf morphophysiology of guava seedlings was not compromised by irrigation water salinity up to 1.5 dS m-1, and the highest values were obtained in plants fertilized with 541.1 mg of N dm-3.

  15. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    Science.gov (United States)

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  16. Study of the Effect of Clay Particles on Low Salinity Water Injection in Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Sina Rezaei Gomari

    2017-03-01

    Full Text Available The need for optimal recovery of crude oil from sandstone and carbonate reservoirs around the world has never been greater for the petroleum industry. Water-flooding has been applied to the supplement primary depletion process or as a separate secondary recovery method. Low salinity water injection is a relatively new method that involves injecting low salinity brines at high pressure similar to conventional water-flooding techniques, in order to recover crude oil. The effectiveness of low salinity water injection in sandstone reservoirs depends on a number of parameters such as reservoir temperature, pressure, type of clay particle and salinity of injected brine. Clay particles present on reservoir rock surfaces adsorb polar components of oil and modify wettability of sandstone rocks to the oil-wet state, which is accountable for the reduced recovery rates by conventional water-flooding. The extent of wettability alteration caused by three low salinity brines on oil-wet sandstone samples containing varying clay content (15% or 30% and type of clay (kaolinite/montmorillonite were analyzed in the laboratory experiment. Contact angles of mica powder and clay mixture (kaolinite/montmorillonite modified with crude oil were measured before and after injection with three low salinity sodium chloride brines. The effect of temperature was also analyzed for each sample. The results of the experiment indicate that samples with kaolinite clay tend to produce higher contact angles than samples with montmorillonite clay when modified with crude oil. The highest degree or extent of wettability alteration from oil-wet to intermediate-wet state upon injection with low salinity brines was observed for samples injected with brine having salinity concentration of 2000 ppm. The increase in temperature tends to produce contact angles values lying in the higher end of the intermediate-wet range (75°–115° for samples treated at 50 °C, while their corresponding

  17. Evaluation of Different Rice Genotypes Tolerance to Saline Irrigation Water

    Directory of Open Access Journals (Sweden)

    S. Jafari Rad

    2015-12-01

    Full Text Available To study the responses of seven rice genotypes (Khazar, SA13, Deylam, Sange Joe, Sepidrud, 831 and T5 to different levels of irrigation water salinity, and determining grain yield based on tolerance indices, a CRD based factorial pot experiment with five levels of irrigation water salinity (1, 2, 4, 6 and 8 dSm-1 and three replications was carried out at Rice Research Institute of Iran in 2011. Indices such as SSI, TOL, MP, GMP, HM, STI, YI and YSI were calculated and their correlations with grain yield were estimated for both stress and non-stress conditions. Results indicated significant differences among genotypes and the indices within both conditions. Results also showed that STI and MP indices could be considered as the best indices to screen salt tolerant genotypes. Among the genotypes used in the experiment, T5 produced the highest yield in both non-stress (19.71 g/plant and stress (10.69 g/plant conditions, while the lowest yield in normal (11.84 g/plant and stressful (4.29 g/plant conditions was recorded for Deylam and Khazar, respectively. The highest and the lowest percentage of yield reduction were found in Khazar (69.49% and Sange Joe (31.48% in stressful conditions, respectively. Overall, genotypes T5, 831, Sepidrud and Sange Joe can probably be considered as superior high yielding genotypes in both saline and non-saline conditions for further research.

  18. Using microbial desalination cells to reduce water salinity prior to reverse osmosis

    KAUST Repository

    Mehanna, Maha

    2010-01-01

    A microbial desalination cell (MDC) is a new method to reduce the salinity of one solution while generating electrical power from organic matter and bacteria in another (anode) solution. Substantial reductions in the salinity can require much larger volumes of the anode solution than the saline water, but any reduction of salinity will benefit the energy efficiency of a downstream reverse osmosis (RO) desalination system. We investigated here the use of an MDC as an RO pre-treatment method using a new type of air-cathode MDC containing three equally sized chambers. A single cycle of operation using a 1 g L -1 acetate solution reduced the conductivity of salt water (5 g L-1 NaCl) by 43 ± 6%, and produced a maximum power density of 480 mW m-2 with a coulombic efficiency of 68 ± 11%. A higher concentration of acetate (2 g L-1) reduced solution conductivity by 60 ± 7%, and a higher salt concentration (20 g L-1 NaCl) reduced solution conductivity by 50 ± 7%. The use of membranes with increased ion exchange capacities further decreased the solution conductivity by 63 ± 2% (20 g L-1 NaCl). These results demonstrate substantial (43-67%) desalination of water is possible using equal volumes of anode solution and salt water. These results show that MDC treatment could be used to substantially reduce salt concentrations and thus energy demands for downstream RO processing, while at the same time producing electrical power. © 2010 The Royal Society of Chemistry.

  19. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1992-10-01

    The project objective is to assess means for controlling waste infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large scale lysimeters (70inch x 45inch x lOinch) at Beltsville, MD and results of the assessment are applicable to disposal of LLW, uranium mill tailings, hazardous waste, and sanitary landfills. Three concepts are under investigation: (1) resistive layer barrier, (2) conductive layer barrier, and bioengineering water management. The resistive layer barrier consists of compacted earth (clay). The conductive layer barrier is a special case of the capillary barrier and it requires a flow layer (e.g. fine sandy loam) over a capillary break. As long as unsaturated conditions am maintained water is conducted by the flow layer to below the waste. This barrier is most efficient at low flow rates and is thus best placed below a resistive layer barrier. Such a combination of the resistive layer over the conductive layer barrier promises to be highly effective provided there is no appreciable subsidence. Bioengineering water management is a surface cover that is designed to accommodate subsidence. It consists of impermeable panels which enhance run-off and limit infiltration. Vegetation is planted in narrow openings between panels to transpire water from below the panels. TWs system has successfully dewatered two lysimeters thus demonstrating that this procedure could be used for remedial action (''drying out'') existing water-logged disposal sites at low cost

  20. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  1. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  2. subsurface sequence delineation and saline water mapping of lagos

    African Journals Online (AJOL)

    A subsurface sequence delineation and saline water mapping of Lagos State was carried out. Ten (10) deep boreholes with average depth of 300 m were drilled within the sedimentary basin. The boreholes were lithologically and geophysically logged. The driller's lithological logs aided by gamma and resistivity logs, ...

  3. Water quality considerations resulting in the impaired injectivity of water injection and disposal wells

    International Nuclear Information System (INIS)

    Bennion, D.B.; Thomas, F.B.; Imer, D.; Ma, T.

    2000-01-01

    An environmentally responsible way to improve hydrocarbon recovery is to maintain pressure by water injection. This is a desirable method because unwanted produced water from oil and gas wells can be re-injected into producing or disposal formations. The success of the operation, however, depends on injecting the necessary volume of water economically, below the fracture gradient pressure of the formation. Well placement, geometry and inherent formation quality and relative permeability characteristics are some of the many other factors which influence the success of any injection project. Poor injection or poor quality of disposal water can also compromise the injectivity for even high quality sandstone or carbonate formations. This would necessitate costly workovers and recompletions. This paper presented some leading edge diagnostic techniques and evaluation methods to determine the quality of injected water. The same techniques could be used to better understand the effect of potential contaminants such as suspended solids, corrosion products, skim/carryover oil and grease, scales, precipitates, emulsions, oil wet hydrocarbon agglomerates and many other conditions which cause injectivity degradation. 14 refs., 1 tab., 15 figs

  4. Batteries for Efficient Energy Extraction from a Water Salinity Difference

    KAUST Repository

    La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D.; Logan, Bruce E.; Cui, Yi

    2011-01-01

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery

  5. Response of lupine plants irrigated with saline water to rhizobium inoculation using 15N-isotope dilution

    International Nuclear Information System (INIS)

    Gadalla, A.M.; El-Ghandour, I.A.; Abdel Aziz, H.A.; Hamdy, A.; Aly, M.M.

    2002-01-01

    The lupine Rhizobium symbiosis and contribution of N 2 fixation under different levels of irrigation water salinity were examined. Lysimeter experiment was established under greenhouse conditions during the year 2002-2003. In this experiment, inoculated plants were imposed to different salinity levels of irrigation water and N-fertilizer treatment. Plant height was decreased under different salinity levels, nitrogen treatments and bacterial inoculation. Similar trend was noticed with leaf area. The highest leaf area was recorded with salt tolerant bacterial inoculation (SBI) and splitting N-treatment. Highest values of N-uptake occurred after 100 day intervals under the tested factors. Relative decrease in N-uptake did not exceed 40% of those recorded with the fresh water treatment as affected by experimental factors. Nitrogen uptake by the whole plant reflected an increase at 3 dS/m salinity level of irrigation water. Relative increases were 5% and 15% for normal bacteria inoculation under single dose (NI) and splitting

  6. Evaluation of Serum for Pathophysiological Effects of Prolonged Low Salinity Water Exposure in Displaced Bottlenose Dolphins (Tursiops truncatus

    Directory of Open Access Journals (Sweden)

    Ruth Y. Ewing

    2017-06-01

    Full Text Available We conducted a retrospective study of serum biochemistry and hematologic findings from displaced, out-of-habitat bottlenose dolphins (Tursiops truncatus exposed to various low salinity environments in waters along the southern United States including southeastern Atlantic and northern Gulf of Mexico. Serum sodium, chloride, and calculated osmolality were significantly lower and below reference ranges in displaced animals compared to free-ranging case control animals. This suggests clinical hyponatremia, hypochloremia, and hypo-osmolality due to an uptake of low saline water from the environment. In addition, significant differences were found in other serum chemistry variables, although none were outside of normal reference ranges for non-controlled free-ranging animals. Multiple linear regressions demonstrated the degree of salinity had a greater pathophysiologic response than the duration of fresh water exposure. The Na/Cl ratio and bicarbonate were the only variables that were significantly modulated by exposure duration. These findings suggest that the degree of salinity is a critical factor when assessing and managing care for dolphins chronically exposed to low salinity water. Results from this study indicate that changes in various biochemical parameters can be used to determine fresh water exposure and aid in determining the treatment for animals recovered from low salinity waters.

  7. Salinity effect on seedling growth, water, sodium and potassium ...

    African Journals Online (AJOL)

    Mature leaves exhibited good adaptative behavior toward salinity stress by increasing succulence due to absorption of large quantities of water and K+ in leaves. Potassium uptake in leaves was not found to be affected by NaCl concentration. As a consequence, monovalent cations adsorption resulted in an increase in the ...

  8. Environmental effects on proline accumulation and water potential in olive leaves (Olea europaea L. (cv Chemlali)) under saline water irrigated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-07-01

    In arid regions in Tunisia suffering from limited water resources, the olive extension to irrigated lands has led to the urgent use of saline water, the most readily available water in the these areas. Nevertheless, the effects of salt stress on olive tree seem to be reinforced by environmental conditions. The issue of this paper is to determine how does the olive tree respond to environmental stress in the Mediterranean climate under saline water irrigated field conditions with respect to leaf proline concentrations and water Status. (Author)

  9. Environmental effects on proline accumulation and water potential in olive leaves (Olea europaea L. CV Chemlali)) under saline water irrigated field conditions

    International Nuclear Information System (INIS)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-01-01

    In arid regions in Tunisia suffering from limited water resources, the olive extension to irrigated lands has led to the urgent use of saline water, the most readily available water in the these areas. Nevertheless, the effects of salt stress on olive tree seem to be reinforced by environmental conditions. The issue of this paper is to determine how does the olive tree respond to environmental stress in the Mediterranean climate under saline water irrigated field conditions with respect to leaf proline concentrations and water Status. (Author)

  10. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    Science.gov (United States)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally

  11. Saline irrigation water and its effect on N.use efficiency, growth and yield of Sorghum plant using 15N

    International Nuclear Information System (INIS)

    Abd El-Latteef, E.M.

    2010-01-01

    Series of pot experiments were conducted and randomly arranged under greenhouse conditions for evaluating the effect of irrigation with saline water (alternative source) in combination with different organic sources (amendments) i.e. leucaena plant residue (LU), Quail feces (QF) and chicken manure (ChM) added in different percentages against the mineral form (ammonium sulfate) either in ordinary or 15 N labeled (2 and 5% 15 N atom excess) forms, on sorghum growth and nutrients acquisition. Artificial saline water with different EC and SAR values was prepared at laboratory using computer program designed by the author with guiding of the designed Package named Artificial Saline Irrigation Water (ASIW) (Manual of Salinity Research Methods). In addition, proline acid was also sprayed (foliar) on leaves of sorghum plants at different concentrations. The experimental results indicated the positive effect of organic amendments, as compared to mineral fertilizer, and foliar application of proline acid on enhancement of plant growth and nutrient uptake. This phenomenon was pronounced under water salinity conditions. In this regard, increasing of water salinity levels induced reduction in plant growth as well as nutrients acquisition. Data of 14 N/ 15 N ratio analysis pointed out enhancement of N derived from mineral source as affected by organic amendments. At the same time, considerable amounts of N was derived from organic sources and utilized by plants. The superiority of organic sources on each others was fluctuated depending on interaction with water salinity levels and proline concentrations. In conclusion, organic additives and proline acid has an improvement effects especially under adverse condition of irrigation water salinity.

  12. Trace metal contamination of water at a solid waste disposal site at ...

    African Journals Online (AJOL)

    , and close to, a solid waste disposal site at Kariba, Zimbabwe, and in water flowing from the area during 1996 and 1997. Soil samples were collected from the surface inside the disposal site and at distances of 3m, 25m and 50m (from the ...

  13. Automated disposal of produced water from a coalbed methane well field, a case history

    International Nuclear Information System (INIS)

    Luckianow, B.J.; Findley, M.L.; Paschal, W.T.

    1994-01-01

    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  14. Multi-purpose logical device with integrated circuit for the automation of mine water disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pop, E.; Pasculescu, M.

    1980-06-01

    After an analysis of the waste water disposal as an object of automation, the author presents a BASIC-language programme established to simulate the automated control system on a digital computer. Then a multi-purpose logical device with integrated circuits for the automation of the mine water disposal is presented. (In Romanian)

  15. The background influence of cadmium detection in saline water using PGNAA technique

    International Nuclear Information System (INIS)

    Daqian Hei; Zhou Jiang; Hongtao Wang; Jiatong Li

    2016-01-01

    In order to solve the background influence of cadmium detection in saline water using prompt gamma neutron activation analysis (PGNAA) technique, a series experiments have been designed and carried out. Furthermore, a method based on internal standard was used to correct the neutron self-shielding effect, and the background influence has been decreased sequentially. The results showed a good linear relationship between the characteristic peak counts and the concentrations of cadmium after the neutron self-shielding correction. And in the detection of saline water by PGNAA technique, the proposed methodology can be used to reduce the influence of background with the self-shielding effect correction. (author)

  16. The geomicrobiology of European mines relevant to radioactive waste disposal

    International Nuclear Information System (INIS)

    Christofi, N.; Philp, J.C.; West, J.M.

    1985-01-01

    Samples for microbiological analysis were taken from experimental mines, which are being used to investigate the technology for radioactive waste disposal, in Belgium, Federal Republic of Germany and Sweden. In total four mines were examined from the three countries. Generally, the number and types of microorganisms increased as the salinity of the water samples decreased. Higher populations were present in the least saline waters of Stripa (Sweden). Here exposed gallery stream-water contained aerobic and anaerobic bacteria as well as autotrophic and heterotrophic types. Water from a deep borehole, drilled into the Stripa granite from within the 360 m level gallery, contained a predominance of anaerobic heterotrophic bacteria. Activity monitored by gas chromatographic techniques showed that this population was organic carbon limited. A shallow borehole sample contained mainly aerobic heterotrophic bacteria which were also carbon limited. Samples from the mines in the FRG and Belgium contained small or no populations of bacteria determined by cultural techniques. Mol (Belgium) Boom clay, a potential backfill material, contained no determinable microbial content, and nutrients extracted from it were unable to support environmental isolates. For this reason it is considered a superior backfill material to Fuller's Earth (calcium montmorillonite). (author)

  17. Nitrogen Recovered By Sorghum Plants As Affected By Saline Irrigation Water And Organic/Inorganic Resources Using 15N Technique

    International Nuclear Information System (INIS)

    ABOU-ELKHAIR, R.A.; EL-MOHTASEM, M.O.; SOLIMAN, S.M.; GALAL, Y.G.M.; ABD EL-LATIF, E.M.

    2009-01-01

    A pot experiment was conducted in the green house of Soil and Water Department, Nuclear Research Centre, Atomic Energy Authority, Egypt, to follow up the effect of saline irrigation water, inorganic and organic fertilizers on sorghum growth and N fractions that recovered by plant organs. Two types of artificial water salinity were used; one has 3 dS m -1 salinity level with 4 and 8 SAR and the second one has 3 and 6 dS m -1 salinity levels with 6 SAR . Leucenae residue and chicken manure were applied as organic sources at rate of 2% v/v. Sorghum was fertilized with recommended doses of super phosphate and potassium sulfate at rate of 150 kg P and 50 kg K per feddan, respectively. Labelled ammonium sulfate with 5% 15 N atom excess was applied to sorghum at rate of 100 kg N fed -1 . Dry matter yield (stalks and roots) was negatively affected by increasing water salinity levels or SAR ratios. Similar trend was recorded with N uptake by either stalks or roots of sorghum plants. On the other hand, both the dry matter yield and N uptake were positively and significantly affected by incorporation of organic sources in comparison to the untreated control. In this regard, the dry matter yield and N uptake induced by incorporation of chicken manure was superior over those recorded with leucenae residues. It means, in general, that the incorporation of organic sources into the soil may maximize the plant ability to combat the hazards effects caused by irrigation with saline water. Nitrogen derived from fertilizer (% Ndff), soil (% Ndfs) and organic resources (% Ndfr) showed frequent trends as affected by water salinity and organic resources but in most cases, severe reduction of these values was recorded when plants were irrigated with saline water. In the same time, plants were more dependent on N derived from organic sources than those derived from mineral fertilizer. Superiority of one organic source over the other was related to water salinity levels and SAR ratios

  18. Effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats.

    Science.gov (United States)

    Kim, Dong-Hyun; Yeo, Sang Won

    2013-01-01

    This prospective, randomized, and controlled study examined the effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats. The study comprised two control groups (untreated and saline-treated) and three experimental groups of Sprague Dawley rats. The experimental groups received an instillation of lipopolysaccharide (LPS) only, LPS+normal saline (LPS/saline), or LPS+selenium-enriched hot spring water (LPS/selenium). Histopathological changes were identified using hematoxylin-eosin staining. Leakage of exudate was identified using fluorescence microscopy. Microvascular permeability was measured using the Evans blue dye technique. Expression of the Muc5ac gene was measured using reverse transcription-polymerase chain reaction. Mucosal edema and expression of the Muc5ac gene were significantly lower in the LPS/saline group than in the LPS group. Microvascular permeability, mucosal edema, and expression of the Muc5ac gene were significantly lower in the LPS/selenium group than in the LPS group. Mucosal edema was similar in the LPS/selenium group and LPS/saline group, but capillary permeability and Muc5ac expression were lower in the LPS/selenium group. This study shows that normal saline and selenium-enriched hot spring water reduce inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. The dynamics of Orimulsion in water with varying salinity and temperature

    International Nuclear Information System (INIS)

    Fingas, M.F.; Wang, Z.; Landriault, M.; Noonan, J.

    2002-01-01

    A study was conducted to determine the complex interaction between salinity, time and temperature when Orimulsion is spilled in a water column. Orimulsion is a surfactant-stabilized oil-in-water emulsion composed of 70 per cent bitumen and 30 per cent water. It behaves very differently from conventional fuel oils when spilled because of its composition. It behaves predictably in both salt and fresh water, but its behaviour is difficult to predict in brackish water (2 per cent salt). Temperature also has an influence on the behaviour of Orimulsion. This study focused on examining the behaviour of Orimulsion at various low temperatures (5 to 15 degrees C), and a wide range of salinity values from fresh to salt water (values ranging from 0.1 to 33 per cent). A total of 19 experiments were conducted. The objective was to determine depletion rates and characteristics of Orimulsion when it was added to a 300 L tank of water and by determining the concentration of bitumen and the particle size distribution over time. The bitumen which rose to the top of the tank was collected and weighed. Simple equations were then developed to explain and predict the concentration of bitumen in the water column as a function of time. Nomograms indicating the quantity of oil on the bottom and on the water surface were also presented. 6 refs., 4 tabs., 10 figs

  20. Modeling Approach for Estimating Co-Produced Water Volumes and Saltwater Disposal Volumes in Oklahoma

    Science.gov (United States)

    Murray, K. E.

    2016-12-01

    Management of produced fluids has become an important issue in Oklahoma because large volumes of saltwater are co-produced with oil and gas, and disposed into saltwater disposal wells at high rates. Petroleum production increased from 2009-2015, especially in central and north-central Oklahoma where the Mississippian and Hunton zones were redeveloped using horizontal wells and dewatering techniques that have led to a disproportional increase in produced water volumes. Improved management of co-produced water, including desalination for beneficial reuse and decreased saltwater disposal volumes, is only possible if spatial and temporal trends can be defined and related to the producing zones. It is challenging to quantify the volumes of co-produced water by region or production zone because co-produced water volumes are generally not reported. Therefore, the goal of this research is to estimate co-produced water volumes for 2008-present with an approach that can be replicated as petroleum production shifts to other regions. Oil and gas production rates from subsurface zones were multiplied by ratios of H2O:oil and H2O:gas for the respective zones. Initial H2O:oil and H2O:gas ratios were adjusted/calibrated, by zone, to maximize correlation of county-scale produced H2O estimates versus saltwater disposal volumes from 2013-2015. These calibrated ratios were then used to compute saltwater disposal volumes from 2008-2012 because of apparent data gaps in reported saltwater disposal volumes during that timeframe. This research can be used to identify regions that have the greatest need for produced water treatment systems. The next step in management of produced fluids is to explore optimal energy-efficient strategies that reduce deleterious effects.

  1. Effects Of Irrigation With Saline Water, And Soil Type On Germination And Seedling Growth Of Sweet Maize (Zea Mays L.)

    International Nuclear Information System (INIS)

    Mostafa, A.Z.; Amato, M.; Hamdi, A.; Mostafa, A.Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    Germination and early growth of maize Sweet Maize (Zea mays L.), var. (SEL. CONETA) under irrigation with saline water were investigated in a pot experiment with different soil types. Seven salinity levels of irrigation water up to 12 dS/m were used on a Clay soil (C) and a Sandy-Loam (SL). Emergence of maize was delayed under irrigation with saline water, and the final percentage of germination was reduced only at 8 dS/m or above. Seedling shoot and root growth were reduced starting at 4 dS/m of irrigation water. Salts accumulated more in the C soil but reductions in final germination rate and seedling growth were larger in the SL soil, although differences were not always significant. Data indicate that germination is rather tolerant to salinity level in var. SEL. CONETA whereas seedling growth is reduced at moderate salinity levels, and that soil type affects plant performance under irrigation with saline water

  2. Soil and plant responses from land application of saline-sodic waters: Implications of management

    Energy Technology Data Exchange (ETDEWEB)

    Vance, G.F.; King, L.A.; Ganjegunte, G.K. [University of Wyoming, Laramie, WY (United States). Department for Renewable Resources

    2008-09-15

    Land application of co-produced waters from coalbed natural gas (CBNG) wells is one management option used in the Powder River Basin (PRB) of Wyoming and Montana. Unfortunately the co-produced CBNG waters may be saline and/or sodic. The objective of this study was to examine the effects of irrigation with CBNG waters on soils and plants in the PRB. Soil properties and vegetation responses resulting from 1 to 4 yr of saline sodic water (electrical conductivity (EC) 1.6-4.8 dS m{sup -1} sodium adsorption ratio (SAR), 17-57 mmol L- applications were studied during 2003 and 2004 field seasons on sites (Ustic Torriorthent Haplocambid, Haplargid and Paleargid) representing native range grasslands seeded grass hayfields and alfalfa hayfields. Parameters measured from each irrigated site were compared directly with representative non-irrigated sites. Soil chemical and physical parameters including pH, EC, SAR, exchangeable sodium percent, texture, bulk density, infiltration and Darcy flux rates, were measured at various depth intervals to 120 cm. Mulitple-year applications of saline sodic water produced consistent trends of increased soil EC AND SAR values to depths of 30 cm reduced surface infiltration rates and lowered Darcy flux rates to 120 cm. Significant differences (p {le} 0.05) were determined between irrigated and non-irrigated areas for EC, SAR infiltration rates and Darcy flux (p {le} 0.10) at most sites. Saline sodic CBNG water applications significantly increased native perennial grass biomass production and cover on irrigated as compared with non-irrigated sites; however overall species evenness decreased. Biological effects were variable and complex reflecting site-specific conditions and water and soil management strategies.

  3. Influence of temperature, exchangeable cation composition, salinity and density in the adsorption of water by a bentonite: implications to the pore water composition

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Melon, A.M.

    2010-01-01

    Document available in extended abstract form only. Compacted bentonites are being considered in many countries as a sealing material in high-level radioactive waste disposal (HLW) concepts because of their low permeability, high swelling capacity and high plasticity. In this context, the knowledge of the pore water composition in bentonites is an uncertainty associated to the retention and transport processes through highly compacted material. The nature of the pore water directly affects how the radionuclides are transported through the buffer materials because of a potential distribution is developed at the solid-liquid interface. Besides, the moisture potential of bentonites is closely related to swelling pressure. The pore water chemistry depends on the hydration and swelling of bentonites (matric and osmotic potentials), and therefore on the distribution of the external and the interlayer water. This relationship depends, in turn, on parameters such as water content, bulk dry density, temperature, type of cations at interlayers and salinity. The osmotic potential is related to the dissolved salt content and increases with pore water salinity. It is well-known that variations in pore water osmotic suction affect osmotic repulsion pressure caused by the diffuse double layers interactions of adjacent particles as both are functions of dissolved salt concentration in pore water. In this work, the moisture potential has been analysed as a function of the water content, temperature (20, 30 and 60 deg. C), type of cations at interlayers, salinity and degree of compaction of the FEBEX bentonite. The aim was to analyse the hydration of this bentonite, and the types and distribution of water as a function of these parameters, since both the Cl-accessible porosity (key parameter for transport processes) and the amount of internal (interlayer)/external water depend strongly on the ionic strength of the saturating solution, the composition at interlayers and the

  4. Monitoring of soil chemical characteristics with time as affected by irrigation with saline water

    International Nuclear Information System (INIS)

    Mostafa, A. Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    A lysimeter study was conducted to investigate the effect of irrigation with saline water on soil chemical characteristics at two depth (0-20) and (20-40 cm).Both fertilized (60, 120 KgN/ha) and unfertilized (0) soil were simulated in a total of 84 lysimeter. Data indicated that the electric conductivity (EC) values tended to increase with time intervals also EC-values as affected by soil depth after 105 days were high in 20 cm depth as compared to 40 cm depth. Chloride concentration did not reflect great variations as affected by time of nitrogen application where the values were nearly closed to each other. At the end of the experiment, much of Cl - content was occurred in the second layer of soil depth (20-40) as compared to depth of 0-20 cm. This was the case under all salinity levels. The irrigation with fresh water did not reflect any significant different in EC values between 120 KgN/ha , 60 KgN/ha or soil depth, however, it tend to increase with increasing water salinity levels. There were no much differences between the nitrogen application time (T1, T2 and T3). In contrast with Cl - , sodium was remained in the upper layer of 0-20 cm soil depth but still increase with increasing water salinity levels.

  5. Influence of drinking water salinity on carcass characteristics and meat quality of Santa Inês lambs.

    Science.gov (United States)

    Castro, Daniela P V; Yamamoto, Sandra M; Araújo, Gherman G L; Pinheiro, Rafael S B; Queiroz, Mario A A; Albuquerque, Ítalo R R; Moura, José H A

    2017-08-01

    This study aimed to evaluate the effects of different salinity levels in drinking water on the quantitative and qualitative characteristics of lamb carcass and meat. Ram lambs (n = 32) were distributed in a completely randomized design with four levels of salinity in the drinking water (640 mg of total dissolved solids (TDS)/L of water, 3188 mg TDS/L water, 5740 mg TDS/L water, and 8326 mg TDS/L water). After slaughter, blending, gutting, and skinning the carcass, hot and biological carcass yields were obtained. Then, the carcasses were cooled at 5 °C for 24 h, and then, the morphometric measurements and the cold carcass yield were determined and the commercial cuts made. In the Longissimus lumborum muscle color, water holding capacity, cooking loss, shear force, and chemical composition were determined. The yields of hot and cold carcass (46.10 and 44.90%), as well as losses to cooling (2.40%) were not affected (P > 0.05) by the salinity levels in the water ingested by the lambs. The meat shear force was 3.47 kg/cm 2 and moisture, crude protein, ether extract, and ash were 73.62, 22.77, 2.5, and 4.3%, respectively. It is possible to supply water with salinity levels of up to 8326 mg TDS/L, because it did not affect the carcass and meat characteristics of Santa Inês lambs.

  6. Waste Water Disposal Design And Management V

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book deals with waste water disposal, design and management, which includes biofilm process, double living things treatment and microscopic organism's immobilized processing. It gives descriptions of biofilm process like construction, definition and characteristic of construction of biofilm process, system construction of biofilm process, principle of biofilm process, application of biofilm process, the basic treatment of double living thing and characteristic of immobilized processing of microscopic organism.

  7. A Tiered Approach to Evaluating Salinity Sources in Water at Oil and Gas Production Sites.

    Science.gov (United States)

    Paquette, Shawn M; Molofsky, Lisa J; Connor, John A; Walker, Kenneth L; Hopkins, Harley; Chakraborty, Ayan

    2017-09-01

    A suspected increase in the salinity of fresh water resources can trigger a site investigation to identify the source(s) of salinity and the extent of any impacts. These investigations can be complicated by the presence of naturally elevated total dissolved solids or chlorides concentrations, multiple potential sources of salinity, and incomplete data and information on both naturally occurring conditions and the characteristics of potential sources. As a result, data evaluation techniques that are effective at one site may not be effective at another. In order to match the complexity of the evaluation effort to the complexity of the specific site, this paper presents a strategic tiered approach that utilizes established techniques for evaluating and identifying the source(s) of salinity in an efficient step-by-step manner. The tiered approach includes: (1) a simple screening process to evaluate whether an impact has occurred and if the source is readily apparent; (2) basic geochemical characterization of the impacted water resource(s) and potential salinity sources coupled with simple visual and statistical data evaluation methods to determine the source(s); and (3) advanced laboratory analyses (e.g., isotopes) and data evaluation methods to identify the source(s) and the extent of salinity impacts where it was not otherwise conclusive. A case study from the U.S. Gulf Coast is presented to illustrate the application of this tiered approach. © 2017, National Ground Water Association.

  8. The dynamics of Orimulsion in water with varying energy, salinity and temperature

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2004-01-01

    Orimulsion is a surfactant-stabilized oil-in-water emulsion composed of 70 per cent bitumen and 30 per cent water. Its unique composition causes it to behave differently from conventional fuel oils when spilled at sea. Earlier studies have shown that Orimulsion is driven by buoyancy to rise in salt water and sink in fresh water. This study conducted 11 experiments at lower temperature and salinity values to obtain new information on the behaviour of Orimulsion in salt, fresh and brackish water. The applied rotational field was adjusted to vary the energy. A time-series of samples of Orimulsion in a 300 litre tank of water were taken to determine depletion rates and characteristics. Oil on the surface was quantified and the concentration of bitumen and particle size distribution was determined. The study also measured changes in bitumen concentration and particle size distribution as a function of time. The data was used to develop simple equations that predict concentrations of bitumen resurfacing and remaining in the water column as a function of time. It was concluded that there is a complex interaction between salinity, time, energy and temperature. 9 refs., 5 tabs., 8 figs

  9. Validation of AquaCrop Model for Simulation of Winter Wheat Yield and Water Use Efficiency under Simultaneous Salinity and Water Stress

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    2016-02-01

    Full Text Available Introduction: FAO AquaCrop model (Raes et al., 2009a; Steduto et al., 2009 is a user-friendly and practitioner oriented type of model, because it maintains an optimal balance between accuracy, robustness, and simplicity; and it requires a relatively small number of model input parameters. The FAO AquaCrop model predicts crop productivity, water requirement, and water use efficiency under water-limiting and saline water conditions. This model has been tested and validated for different crops such as maize, sunflower and wheat (T. aestivum L. under diverse environments. In most of arid and semi-arid regions water shortage is associated with reduction in water quality (i.e. increasing salinity. Plants in these regions in terms of water quality and quantity may be affected by simultaneous salinity and water stress. Therefore, in this study, the AquaCrop model was evaluated under simultaneous salinity and water stress. In this study, AquaCrop Model (v4.0 was used. This version was developed in 2012 to quantify the effects of salinity. Therefore, the objectives of this study were: i evaluation of AquaCrop model (v4.0 to simulate wheat yield and water use efficiency under simultaneous salinity and water stress conditions in an arid region of Birjand, Iran and ii Using different treatments for nested calibration and validation of AquaCrop model. Materials and Methods: This study was carried out as split plot design (factorial form in Birjand, east of Iran, in order to evaluate the AquaCrop model.Treatments consisted of three levels of irrigation water salinity (S1, S2, S3 corresponding to 1.4, 4.5, 9.6 dS m-1 as main plot, two wheat varieties (Ghods and Roshan, and four levels of irrigation water amount (I1, I2, I3, I4 corresponding to 125, 100, 75, 50% water requirement as sub plot. First, AquaCrop model was run with the corresponding data of S1 treatments (for all I1, I2, I3, and I4 and the results (wheat grain yield, average of soil water content

  10. N2-fixation in fababean (vicia faba l.) grown in saline and non saline conditions using 15N tracer technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Kurdali, F.

    2002-09-01

    A pot experiment was conducted to study the performance of growing fababean and barley under saline conditions, in terms of, dry matter yield, total nitrogen and, percentages and amount of N derived from soil, fertilizer and atmosphere using 15 N isotope dilution method. Three saline treatments were performed: First, plants were grown in saline soil and irrigated with saline water (Ws Ss), Second, Plants were grown in saline soil and irrigated with saline water (Ws Ss); and Third, Plants grown in non saline soil and irrigated with saline water (Ws Sn). Furthermore, a control treatment was performed by using non-saline soil and non-saline water (Wn Sn). The different salinity treatments reduced plant growth and the reduction was more pronounced in fababean than in barley. However, under conditions of either saline soil-soft irrigation water or non saline soil-salty irrigation water, the relative growth reduction did not exceed 50% of the control; whereas, a significant negative effect was obtained when plants were grown under completely saline conditions of both soil and irrigation water. Percentage of N 2 -fixed (% Ndfa) was not negatively affected by saline conditions. However, our results clearly demonstrated that the effect of salinity in fababean was more evident on plant growth than on N 2 -fixing activity. Further studies are needed to obtain more salt tolerant faba bean genotypes in terms of growth and yield. This could be simultaneously improve yield and N 2 -fixation under sever saline conditions. (author)

  11. Contributions of groundwater conditions to soil and water salinization

    Science.gov (United States)

    Salama, Ramsis B.; Otto, Claus J.; Fitzpatrick, Robert W.

    Salinization is the process whereby the concentration of dissolved salts in water and soil is increased due to natural or human-induced processes. Water is lost through one or any combination of four main mechanisms: evaporation, evapotranspiration, hydrolysis, and leakage between aquifers. Salinity increases from catchment divides to the valley floors and in the direction of groundwater flow. Salinization is explained by two main chemical models developed by the authors: weathering and deposition. These models are in agreement with the weathering and depositional geological processes that have formed soils and overburden in the catchments. Five soil-change processes in arid and semi-arid climates are associated with waterlogging and water. In all represented cases, groundwater is the main geological agent for transmitting, accumulating, and discharging salt. At a small catchment scale in South and Western Australia, water is lost through evapotranspiration and hydrolysis. Saline groundwater flows along the beds of the streams and is accumulated in paleochannels, which act as a salt repository, and finally discharges in lakes, where most of the saline groundwater is concentrated. In the hummocky terrains of the Northern Great Plains Region, Canada and USA, the localized recharge and discharge scenarios cause salinization to occur mainly in depressions, in conjunction with the formation of saline soils and seepages. On a regional scale within closed basins, this process can create playas or saline lakes. In the continental aquifers of the rift basins of Sudan, salinity increases along the groundwater flow path and forms a saline zone at the distal end. The saline zone in each rift forms a closed ridge, which coincides with the closed trough of the groundwater-level map. The saline body or bodies were formed by evaporation coupled with alkaline-earth carbonate precipitation and dissolution of capillary salts. Résumé La salinisation est le processus par lequel la

  12. Mulching for sustainable use of saline water to grow tomato in sultanate of oman

    International Nuclear Information System (INIS)

    Wahaibi, N.S.A.; Hussain, N.; Rawah, A.A.

    2007-01-01

    Tomato is grown in 991 hectares with production of 44477 tons in the sultanate of Oman. It is very important vegetable crop of Oman oat present being an integral part of daily diet of the people in various from like salad. Ketchup and kitchen cooking. Oman agriculture relies upon groundwater only, a major portion of which is saline that may concentrate further with the ever increasing pumping and probable seawater intrusions. Hence, the use of saline water is inevitable that can ultimately salinized the good productive soils. The production potential of these soils will gradually decrease and sustainability cannot be kept. This study was conducted to manage the saline water for avoiding bad effect on crop yields and soil health. A field experiment was conducted on tomato (Ginan variety) crop. Two mulching materials: organic matter (from date palm residues) and black plastic sheet, were tested in comparison to control (without any mulch). Two saline waters (EC=3 and 6 dSm/sup -1/) were used for irrigation. Uniform dose of fertilizers was applied. Four pickings of tomato were obtained and yield data were recorded EC moisture % age and temperature of soils were recorded after harvesting of crops. It was observed that data palm mulch proved as the most superior in terms of tomato fruit yield and control of increase in soil EC and temperature. It was followed by black plastic mulch. Both types of mulches indicated significant differences over control as well as among each other. (author)

  13. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    Science.gov (United States)

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  14. Salinity Remote Sensing and the Study of the Global Water Cycle

    Science.gov (United States)

    Lagerloef, G. S. E.; LeVine, David M.; Chao, Y.; Colomb, F. Raul; Font, J.

    2007-01-01

    The SMOS and AquariusISAC-D satellite missions will begin a new era to map the global sea surface salinity (SSS) field and its variability from space within the next twothree years. They will provide critical data needed to study the interactions between the ocean circulation, global water cycle and climate. Key scientific issues to address are (1) mapping large expanses of the ocean where conventional SSS data do not yet exist, (2) understanding the seasonal and interannual SSS variations and the link to precipitation, evaporation and sea-ice patterns, (3) links between SSS and variations in the oceanic overturning circulation, (4) air-sea coupling processes in the tropics that influence El Nino, and (4) closing the marine freshwater budget. There is a growing body of oceanographic evidence in the form of salinity trends that portend significant changes in the hydrologic cycle. Over the past several decades, highlatitude oceans have become fresher while the subtropical oceans have become saltier. This change is slowly spreading into the subsurface ocean layers and may be affecting the strength of the ocean's therrnohaline overturning circulation. Salinity is directly linked to the ocean dynamics through the density distribution, and provides an important signature of the global water cycle. The distribution and variation of oceanic salinity is therefore attracting increasing scientific attention due to the relationship to the global water cycle and its influence on circulation, mixing, and climate processes. The oceans dominate the water cycle by providing 86% of global surface evaporation (E) and receiving 78% of global precipitation (P). Regional differences in E-P, land runoff, and the melting or freezing of ice affect the salinity of surface water. Direct observations of E-P over the ocean have large uncertainty, with discrepancies between the various state-of-the-art precipitation analyses of a factor of two or more in many regions. Quantifying the climatic

  15. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    GREG

    2013-05-08

    May 8, 2013 ... For sound land use and water management in irrigated area, knowledge of the chemical ... Nowadays, soil salinity has become important problem in irrigated ... hoe, shovel, plastic bags, hard paper or labeling, markers, rope,.

  16. Shrimp aquaculture in low salinity water feeded with worm flavor

    Directory of Open Access Journals (Sweden)

    Wenceslao Valenzuela Quiñónez

    2012-09-01

    Full Text Available Shrimp aquaculture in Sinaloa is one of the top economic enterprises, generating many jobs and earns significant incomes every year. Shrimp feed is an essential part of maintaining healthy production. In this initial approach of shrimp growth in low salinity water, were tested two formulas of animal protein composed of 40% (APL1 and 20% (APL2 worm protein, a commercial diet, and no supplementary feed. Physicochemical parameters did not have a direct influence in shrimpbehavior. After six weeks of experimentation, shrimp fed with commercial diet had a weight gain 20% higher than those feed with worm protein. There were no significantly differences between sizes with respect to 40% animal protein and 20% animal protein with the commercial diet (P  0.05. However, shrimp fed worm protein had lower mortality. The use of worm protein could be an option to maintain a high quantity of shrimp reared in low salinity waters.

  17. Cultivation of cherry tomato under irrigation with saline water and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Ianne G. S. Vieira

    2016-01-01

    Full Text Available ABSTRACT The study was carried out from August 2013 to January 2014 to evaluate growth and production of cherry tomato cultivated under irrigation with water of different salinity levels and fertilized with different nitrogen (N doses, in experiment conducted in drainage lysimeters under greenhouse conditions, at the Center for Agrifood Science and Technology of the Federal University of Campina Grande. The statistical design was randomized blocks in a 5 x 4 factorial scheme, with three replicates, and the treatments consisted of five levels of electrical conductivity of water (0.3, 1.5, 2.5, 3.5 and 4.5 dS m-1 and four N doses (60, 100, 140 and 180 mg kg-1. Growth and production variables of cherry tomato decrease linearly from the irrigation water salinity of 0.3 dS m-1 on. The longer exposure of plants to salt stress caused the highest reductions, and the root dry matter, leaf area and the number of clusters are the most sensitive variables. The highest value of plant height at 125 days after transplantation was obtained with the N dose of 139 mg kg-1 of soil. Increasing N doses reduced the effect of salinity on cherry tomato growth at 125 days after transplantation.

  18. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    Science.gov (United States)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  19. Experimental studies of low salinity water flooding in carbonate reservoirs: A new promising approach

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Skauge, Arne

    2012-01-01

    Low salinity water flooding is well studied for sandstone reservoirs, both laboratory and field tests have showed improvement in the oil recovery in many cases. Up to very recently, the low salinity effect has been indeterminated for carbonates. Most recently, Saudi Aramco reported that substantial...... additional oil recovery can be achieved when successively flooding composite carbonate core plugs with various diluted versions of seawater. The experimental data on carbonates is very limited, so more data and better understanding of the mechanisms involved is needed to utilize this method for carbonate...... reservoirs. In this paper, we have experimentally investigated the oil recovery potential of low salinity water flooding for carbonate rocks. We used both reservoir carbonate and outcrop chalk core plugs. The flooding experiments were carried out initially with the seawater, and afterwards additional oil...

  20. Power generation from water salinity gradient via osmosis and reverse osmosis

    International Nuclear Information System (INIS)

    Ivanov, Milancho

    2015-01-01

    To reduce dependence on fossil fuels, while at the same time to meet the growing energy demands of the world, it is necessary to explore and promote new alternative energy sources. One such type of renewable energy sources, which recently gained greater credibility is the energy extracted from the water salinity gradient, which is also called blue energy. In this research project will be described a new model of osmotic power plant (MIOS plant), which uses a combination of reverse osmosis and osmosis to convert the energy from the water salinity gradient into electricity. MIOS plant can be built as a vessel anywhere on the surface of the oceans or in the form of dam on the land, which will have a huge advantage over existing plants that can be built only on mouths of rivers. (author)

  1. Estimation of solar energy resources for low salinity water desalination in several regions of Russia

    Science.gov (United States)

    Tarasenko, A. B.; Kiseleva, S. V.; Shakun, V. P.; Gabderakhmanova, T. S.

    2018-01-01

    This paper focuses on estimation of demanded photovoltaic (PV) array areas and capital expenses to feed a reverse osmosis desalination unit (1 m3/day fresh water production rate). The investigation have been made for different climatic conditions of Russia using regional data on ground water salinity from different sources and empirical dependence of specific energy consumption on salinity and temperature. The most optimal results were obtained for Krasnodar, Volgograd, Crimea Republic and some other southern regions. Combination of salinity, temperature and solar radiation level there makes reverse osmosis coupled with photovoltaics very attractive to solve infrastructure problems in rural areas. Estimation results are represented as maps showing PV array areas and capital expenses for selected regions.

  2. Effect of changes in water salinity on ammonium, calcium, dissolved inorganic carbon and influence on water/sediment dynamics

    Science.gov (United States)

    López, P.

    2003-04-01

    The effect of a sudden increase in salinity from 10 to 37 in porewater concentration and the benthic fluxes of ammonium, calcium and dissolved inorganic carbon were studied in sediments of a small coastal lagoon, the Albufera d'Es Grau (Minorca Island, Spain). The temporal effects of the changes in salinity were examined over 17 days using a single diffusion-reaction model and a mass-balance approach. After the salinity change, NH 4+-flux to the water and Ca-flux toward sediments increased (NH 4+-flux: 5000-3000 μmol m -2 d -1 in seawater and 600/250 μmol m -2 d -1 in brackish water; Ca-flux: -40/-76 meq m -2 d -1 at S=37 and -13/-10 meq m -2 d -1 at S=10); however, later NH 4+-flux decreased in seawater, reaching values lower than in brackish water. In contrast, Ca-flux presented similar values in both conditions. The fluxes of dissolved inorganic carbon, which were constant at S=10 (55/45 mmol m -2 d -1), increased during the experiment at S=37 (from ˜30 mmol m -2 d -1 immediately after salinity increase to ˜60 mmol m -2 d -1 after 17 days). In brackish conditions, NH 4+ and Ca 2+ fluxes were consistent with a single diffusion-reaction model that assumes a zero-order reaction for NH 4+ production and a first-order reaction for Ca 2+ production. In seawater, this model explained the Ca-flux observed, but did not account for the high initial flux of NH 4+. The mass balance for 17 days indicated a higher retention of NH 4+ in porewater in the littoral station in seawater conditions (9.5 mmol m -2 at S=37 and 1.6 mmol m -2 at S=10) and a significant reduction in the water consumption at both sites (5 mmol m -2 at S=37; 35/23 mmol m -2 at S=10). In contrast, accumulation of dissolved inorganic carbon in porewater was lower in seawater incubations (-10/-1 meq m -2 at S=37; 50/90 meq m -2 at S=10) and was linked to a higher efflux of CO 2 to the atmosphere, because of calcium carbonate precipitation in water (675/500 meq m -2). These results indicate that increased

  3. Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water

    Directory of Open Access Journals (Sweden)

    B. Kahlaoui

    2018-01-01

    Full Text Available In scope of crop salinity tolerance, an experiment was carried out in a field using saline water (6.57 dS m−1 and subsurface drip irrigation (SDI on two tomato cultivars (Solanum lycopersicum, cv. Rio Grande and Heinz-2274 in a salty clay soil. Exogenous application of proline was done by foliar spray at two concentrations: 10 and 20 mg L−1, with a control (saline water without proline, during the flowering stage. Significant higher increases in proline and total soluble protein contents, glutamine synthetase (GS, EC6.3.1.2 activities and decreases in proline oxidase (l-proline: O2 Oxidoreductase, EC1.4.3.1 activities were detected in both tomato cultivars when irrigated with saline water (6.57 dS m−1 and exogenously applied by the lower concentration of proline. Taking in consideration the obtained results, it was concluded that the foliar spray of low concentration of proline can increase the tolerance of both cultivars of tomato to salinity under field conditions.

  4. Chemical quality of surface waters and sedimentation in the Saline River basin, Kansas

    Science.gov (United States)

    Jordan, Paul Robert; Jones, B.F.; Petri, Lester R.

    1964-01-01

    This report gives the results of an investigation of the sediment and dissolved minerals that are transported by the Saline River and its tributaries. The Saline River basin is in western and central Kansas; it is long and narrow and covers 3,420 square miles of rolling plains, which is broken in some places by escarpments and small areas of badlands. In the western part the uppermost bedrock consists predominantly of calcareous elastic sedimentary rocks of continental origin of Pliocene age and in most places is covered by eolian deposits of Pleistocene and Recent age. In the central part the ex posed bedrock consists predominantly of calcareous marine sedimentary rocks of Late Cretaceous age. In the eastern part the exposed bedrock consists mainly of noncalcareous continental and littoral elastic sedimentary rocks of Early Cretaceous and Permian age. Fluvial deposits are in the valleys, and eolian materials are present over much of the uplands. Average precipitation increases rather uniformly from about 18 inches per year in the west to almost 28 inches per year in the east. Runoff is not affected by irrigation nor regulated by large structures, but it is closely related to precipitation. Average runoff increases from less than 0.2 inch per year in the west to more than 1.5 inches per year in the east. Aquifers of the flood-plain and terrace deposits and of the Cretaceous Dakota Sandstone are the major sources of ground-water accretion to the streams. In the upper reaches of the Saline River, the water is only slightly mineralized; during the period of record the specific conductance near Wakeeney never exceeded 750 micromhos per centimeter. In the lower reaches, however, the water is slightly mineralized during periods of high flow and is highly mineralized during periods of low flow; the specific conductance near Russell exceeded 1,500 micromhos per centimeter more than 80 percent of the time. Near Russell, near Wilson, and at Tescott the water is of the

  5. Restraint effect of water infiltration by soil cover types of LLW disposal facility

    International Nuclear Information System (INIS)

    Park, S. M.; Lee, E. Y.; Lee, C. K.; Kim, C. L.

    2002-01-01

    Since soil cover for LLW disposal vault shows quite different restraint effect of water infiltration depending on its type, four different types of soil cover were studied and simulated using HELP code. Simulation result showed that Profile B1 is the most effective type in restraint of water infiltration to the disposal vault. Profile B1 is totally 6m thick and composed of silt, gravelly sand, pea gravel, sand and clayey soil mixed with bentonite 20%. Profile B1 also includes artificial layers, such as asphalt and geomembrane layers. This profile is designed conceptually by NETEC for the soil cover of the near surface disposal facility of the low-level radioactive waste. For comparison, 3 types of different profile were tested. One profile includes bentonite mixed layer only as water barrier layer, or one as same as profile B1 but without geomembrane layer or one without asphalt layer respectively. The simulation using HELP code showed that the water balance in profile B1 was effectively controlled

  6. Radionuclides and heavy metal uptake by lolium italicum plant as affected by saline water irrigation

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Aly, A.I.; Helal, M.H.

    2001-01-01

    The use of saline waters to grow crops on increasingly metal polluted soils is becoming a common practice in the arid regions. Nevertheless, the effects of soil and water salinity on radionuclides and heavy metal fluxes in polluted areas are not well understood. The aim of this study was to evaluate in pot experiments the plant uptake of cesium-137, Co-60, Mn-54, Zinc, cadmium and copper from a polluted alluvial aridisol as affected by salt water irrigation. Fertilized soil material was planted in pots with L. Italicum for 18 weeks under greenhouse conditions. The plants were irrigated either with water or with salt solution of variable variable Na/Ca ratio and harvested every 5-7 weeks. In addition to elemental analysis of plants and soil extracts root length was determined by a gridline intersect method and the viable part of the roots was estimated by a root protein inex. Saline (Na) water irrigation increased cobalt-60, manganese-54 and heavy metal solubility in soil, reduced root viability and enhanced the uptake of Co-60, Mn-54, Cd, Cu, Zn and Na by L.italicum and reduced the uptake of Cs-137. Ca counteracted these effects partly. The presented results demonstrated a dual effect of salinity on radiouclides and heavy metal availability to plants and suggest a relationship between root mortality and the enhanced Co-60, Mn-54, and heavy metake ny salt stressed plants

  7. Morphophysiology of guava under saline water irrigation and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Idelfonso L. Bezerra

    Full Text Available ABSTRACT The aim of this study was to evaluate the growth of grafted guava cv. ‘Paluma’ subjected to different concentrations of salts in irrigation water and nitrogen (N fertilization. The plants were transplanted to 150 L lysimeters and under field conditions at the Science and Agri-food Technology Center of the Federal University of Campina Grande, in the municipality of Pombal - PB. The experiment was conducted in randomized block design in a 5 x 4 factorial scheme, with three replicates, and the treatments corresponded to five levels of electrical conductivity of irrigation water - ECw (0.3; 1.1; 1.9; 2.7 and 3.5 dS m-1 and four N doses (70, 100, 130 and 160% of the N dose recommended for the crop. The doses equivalent to 100% corresponded to 541.1 mg of N dm-3 of soil. Irrigation water salinity above 0.3 dS m-1 negatively affects the number of leaves, leaf area, stem diameter, dry phytomass of leaves, branches and shoots . A significant interaction between irrigation water salinity and N fertilization was observed only for the number of leaves and leaf area at 120 days after transplanting. N dose above 70% of the recommendation (378.7 mg N dm-3 soil did not mitigate the deleterious effects caused by salt stress on plant growth.

  8. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water.

    Science.gov (United States)

    Olufemi, Olukemi Temiloluwa; Adeyeye, Adeolu Ikechukwu

    2017-01-01

    Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS) or the distilled water (DW) group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Forty-one (42.3%) of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315). The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389). It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities. © The Authors, published by EDP Sciences, 2017.

  9. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water

    Directory of Open Access Journals (Sweden)

    Olufemi Olukemi Temiloluwa

    2017-01-01

    Full Text Available Introduction: Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. Methods: This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS or the distilled water (DW group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Results: Forty-one (42.3% of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315. The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389. Conclusions: It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities.

  10. Effect of irrigation water salinity and zinc application on yield, yield components and zinc accumulation of wheat

    Directory of Open Access Journals (Sweden)

    mohamad ahmadi

    2009-06-01

    Full Text Available Salinity stress is one of the most important problems of agriculture in crop production in arid and semi arid regions. Under these conditions, in addition to management strategies, proper and adequate nutrition also has an important role in crop improvement. A greenhouse experiment was conducted to study the effect of 4 different irrigation water salinities (blank, 4, 8 and 12 dS m-1, prepared with 1:1 molar ratio of chlorides of calcium and sodium and magnesium sulphate salts. and 5 different zinc applications (0, 10, 20, 30 mg Kg-1 soil and foliar application of salt of zinc sulphate on yield, yield components and zinc concentration of wheat, using a completely randomized design, factorial with three replications. Plant height, spike length, 1000 grain weight, number of grain per spike, grain and straw yield was decreased by Irrigation water salinity. And all of these parameters were improved by zinc application except 1000 grain weight. Zinc absorption and concentration in straw and grain was decreased by Saline water compared to blank. And concentration of zinc significantly was increased in straw and grain by increase zinc application. The results indicated that, zinc application under low to medium salinity conditions improved growth and yield of wheat due to decreasing the impacts salinity.

  11. Chemical evolution of formation waters in the Palm Valley gas field, Northern Territory

    International Nuclear Information System (INIS)

    Andrew, A.S.; Giblin, A.M.

    2000-01-01

    The chemical composition and evolution of formation waters associated with gas production in the Palm Valley field, Northern Territory, has important implications for reservoir management, saline water disposal, and gas reserve calculations. Historically, the occurrence of saline formation water in gas fields has been the subject of considerable debate. A better understanding of the origin, chemical evolution and movement of the formation water at Palm Valley has important implications for future reservoir management, disposal of highly saline water and accurate gas reserves estimation. Major and trace element abundance data suggest that a significant component of the highly saline water from Palm Valley has characteristics that may have been derived from a modified evaporated seawater source such as an evaporite horizon. The most dilute waters probably represent condensate and the variation in the chemistry of the intermediate waters suggests they were derived from a mixture of the condensate with the highly saline brine. The chemical and isotopic results raise several interrelated questions; the ultimate source of the high salinity and the distribution of apparently mixed compositions. In this context several key observation are highlighted. Strontium concentrations are extremely high in the brines; although broadly similar in their chemistry, the saline fluids are neither homogeneous nor well mixed; the 87 Sr/ 86 Sr ratios in the brines are higher than the signatures preserved in the evaporitic Bitter Springs Formation, and all other conceivably marine-related evaporites (Strauss, 1993); the 87 Sr/ 86 Sr ratios in the brines are lower than those measured from groundmass carbonates in the host rocks, and that the 87 Sr/ 86 Sr ratios of the brines are similar, but still somewhat higher than those measured in vein carbonates from the reservoir. It is concluded that the high salinity brine entered the reservoir during the Devonian uplift and was subsequently

  12. Carbon dioxide degassing in fresh and saline water. II: Degassing performance of an air-lift

    DEFF Research Database (Denmark)

    Moran, Damian

    2010-01-01

    A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate, and c...... for any water type (i.e. temperature, alkalinity, salinity and influent CO2 concentration).......A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate......, and could be adjusted to three lifting heights: 11, 16 and 25 cm. The gas to liquid ratio (G:L) was high (1.9–2.0) at low water discharge rates (Qw) and represented the initial input energy required to raise the water up the vertical riser section to the discharge pipe. The air-lift increased in pumping...

  13. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water

    DEFF Research Database (Denmark)

    Teakle, Natasha Lea; Colmer, Timothy David; Pedersen, Ole

    2014-01-01

    A combination of flooding and salinity is detrimental to most plants. We studied tolerance of complete submergence in saline water for Melilotus siculus, an annual legume with superhydrophobic leaf surfaces that retain gas films when under water. M. siculus survived complete submergence of 1 week...... at low salinity (up to 50 mol m(-3) NaCl), but did not recover following de-submergence from 100 mol m(-3) NaCl. The leaf gas films protected against direct salt ingress into the leaves when submerged in saline water, enabling underwater photosynthesis even after 3 d of complete submergence. By contrast......, leaves with the gas films experimentally removed suffered from substantial Na(+) and Cl(-) intrusion and lost the capacity for underwater photosynthesis. Similarly, plants in saline water and without gas films lost more K(+) than those with intact gas films. This study has demonstrated that leaf gas...

  14. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  15. Effect of heating and pore water salinity on the swelling characteristics of bentonite buffer

    International Nuclear Information System (INIS)

    Dhawan, Sarita; Rao, M. Sudhakar

    2010-01-01

    Document available in extended abstract form only. Changes in swell potential of bentonite-sand mixture as a function of temperature and pore water salinity were measured. Bentonite dried at 105 deg. C and sand was mixed in 50:50 ratio by weight for study. The bentonite sand mix was compacted to 1.83 Mg/m 3 dry density and 13.8% water content (mixed with distilled water) obtained from Modified proctor compaction test for all test conditions. For the first series, the mix was prepared using distilled water as molding fluid. The compacted samples were dried at temperatures 50 deg. C and 80 deg. C for time periods 2 to 45 days. Dried samples were assembled in oedometer cells and allowed to swell under load of 6.25 kPa. In second series, bentonite sand mixes were prepared with 1000 ppm Na, 1000 ppm K, 1000 ppm Ca and 1000 ppm Mg solutions using chloride salts to achieve water content of 13.8%. The mixes were then compacted and dried at 80 deg. C for 15 days and allowed to swell in oedometer assembly. In third series of experiments, bentonite sand mix were compacted with distilled water as molding fluid and heated at 80 deg. C for 15 days. The dried samples were then swollen inundating with solutions simulating less saline granitic ground water and a moderately saline groundwater. The swell behavior is compared with samples without heating treatment. For samples prepared with distilled water and heated, the swell potential reduced up to 10-28% on heating compared to sample without any heating. The swell reduction varied depending on temperature and time period. The volumetric shrinkage varied from 1.4 to 3.3% of original volume of compacted sample on heating. Addition of sand was found effective in controlling shrinkage caused by heating. For samples prepared with salt solutions with no heating and inundated with distilled water for swell, the swell potential reduced from 12-20% compared to sample mixed and inundated with distilled water. The reduction in swell

  16. Preliminary assessments for disposal of high-level waste within small islets

    International Nuclear Information System (INIS)

    Chen, F.L.; Li, S.H.; Yu, G.P.

    1991-01-01

    This paper analyzes, for the final disposal of high-level waste (HLW), the possibility of a repository sited below the fresh/saline groundwater interface within islet rock formations. Because of their relatively stable tectonics, the offshore islets of some countries (such as those of Taiwan) are worthy of being considered as potential repository sites. Before the emplacement of radwastes in such a repository, however, the mass exchange across the fresh/saline groundwater interface must be limited and the horizontal movement of advective saline ground-water must be extremely low. Theoretical equations for the location and shape of the interface are derived. When radwastes are buried in rock formations, the temperature effect of the decay heat could cause buoyant convection flow of saline groundwater upward across the groundwater interface. This could carry released radionuclides across the groundwater interface to upper formation layers where fresh groundwater flows. The radionuclides could then be carried by the fresh groundwater to the sea. Although basic HLW repository designs should eliminate the significance of this temperature effect, it is incorporated into this preliminary analysis for the purpose of conservative estimations

  17. Spatio-temporal impacts of dairy lagoon water reuse on soil: Heavy metals and salinity

    Science.gov (United States)

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. Dairy lagoon water is degraded water that is often in large supply on concentrated animal feeding operations (CAFOs), but the impact and sustainability of its r...

  18. Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis desalination - Examples from saline ground water in New Mexico, USA

    Science.gov (United States)

    Huff, G.F.

    2006-01-01

    Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.

  19. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.)

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Hooijdonk, van J.

    1999-01-01

    Radish (Raphanus sativus L.) plants were grown at five soil salinity levels (1, 2, 4, 9 and 13 dS m-1) to analyse the effects on growth, dry matter partitioning, leaf expansion and water and nutrient use. Salinity was varied by proportionally changing the concentration of all macro nutrients. When

  20. Satellite remote sensing of a low-salinity water plume in the East China Sea

    Directory of Open Access Journals (Sweden)

    Y. H. Ahn

    2008-07-01

    Full Text Available With the aim to map and monitor a low-salinity water (LSW plume in the East China Sea (ECS, we developed more robust and proper regional algorithms from large in-situ measurements of apparent and inherent optical properties (i.e. remote sensing reflectance, Rrs, and absorption coefficient of coloured dissolved organic matter, aCDOM determined in ECS and neighboring waters. Using the above data sets, we derived the following relationships between visible Rrs and absorption by CDOM, i.e. Rrs (412/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1 with a correlation coefficient R2 0.67 greater than those noted for Rrs (443/Rrs (555 and Rrs (490/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1. Determination of aCDOM (m−1 at 400 nm and 412 nm is particularly necessary to describe its absorption as a function of wavelength λ using a single exponential model in which the spectral slope S as a proxy for CDOM composition is estimated by the ratio of aCDOM at 412 nm and 400 nm and the reference is explained simply by aCDOM at 412 nm. In order to derive salinity from the absorption coefficient of CDOM, in-situ measurements of salinity made in a wide range of water types from dense oceanic to light estuarine/coastal systems were used along with in-situ measurements of aCDOM at 400 nm, 412 nm, 443 nm and 490 nm. The CDOM absorption at 400 nm was better inversely correlated (R2=0.86 with salinity than at 412 nm, 443 nm and 490 nm (R2=0.85–0.66, and this correlation corresponded best with an exponential (R2=0.98 rather than a linear function of salinity measured in a variety of water types from this and other regions. Validation against a discrete in-situ data set showed that empirical algorithms derived from the above relationships could be successfully applied to satellite data over the range of water types for which they have been developed. Thus, we applied these algorithms to a series of SeaWiFS images for the derivation of CDOM and salinity

  1. Engineering risk assessment for emergency disposal projects of sudden water pollution incidents.

    Science.gov (United States)

    Shi, Bin; Jiang, Jiping; Liu, Rentao; Khan, Afed Ullah; Wang, Peng

    2017-06-01

    Without an engineering risk assessment for emergency disposal in response to sudden water pollution incidents, responders are prone to be challenged during emergency decision making. To address this gap, the concept and framework of emergency disposal engineering risks are reported in this paper. The proposed risk index system covers three stages consistent with the progress of an emergency disposal project. Fuzzy fault tree analysis (FFTA), a logical and diagrammatic method, was developed to evaluate the potential failure during the process of emergency disposal. The probability of basic events and their combination, which caused the failure of an emergency disposal project, were calculated based on the case of an emergency disposal project of an aniline pollution incident in the Zhuozhang River, Changzhi, China, in 2014. The critical events that can cause the occurrence of a top event (TE) were identified according to their contribution. Finally, advices on how to take measures using limited resources to prevent the failure of a TE are given according to the quantified results of risk magnitude. The proposed approach could be a potential useful safeguard for the implementation of an emergency disposal project during the process of emergency response.

  2. Analyzing the factors affecting optimal management of saline water by application of Sustainable Livelihoods Framework

    Directory of Open Access Journals (Sweden)

    Masoumeh Forouzani

    2016-11-01

    Full Text Available In recent years, fresh water has been increasingly reduced and saline water has been one of the options to help the continuity and stability of agricultural activities. Hence, long-term sustainability of saline water irrigation depends on how to manage it at the fields. Optimal management requires identifying the factors affecting it. In this regard, this study used the descriptive–survey method to analyze the factors affecting the optimal management of saline water based on the Sustainable Livelihoods Framework. The statistical population of the study consisted of all the farmers of the Karun County (N=19720. By using the table of Krejcie and Morgan, the sample size was determined (n= 120. The sample was chosen through the simple random sampling method. Data were collected using a questionnaire. The questionnaire's face and content validity were approved by a panel of the agricultural extension and education experts and its reliability was confirmed by calculating the Cranach’s alpha coefficient (0.65-0.83. The data was analyzed by using the SPSS software. At the first stage the variables was converted to standard scores in order to construct livelihood assets indices. Then, principal component analysis was ran to assign the weights of the indicators. The results showed that farmers' management behavior in using saline water was dominated by technical management manners. Social capital and physical capital were known as the most and least livelihood assets of farmers, respectively. Also, there were statistically significant differences in farmers' management behavior based on their livelihood assets.

  3. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    Science.gov (United States)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    Salt can be a problem when is originally in aquifers or when it dissolves in groundwater and comes to the ground surface or flows into streams. The problem increases in lakes hydraulically connected with aquifers affecting water quality. This issue is even more alarming when water resources are used for urban and irrigation supply and water quantity and quality restrict that water demand. This work shows a data based and physical modeling approach in the Guadalhorce reservoir, located in southern Spain. This water body receives salt contribution from mainly groundwater flow, getting salinity values in the reservoir from 3500 to 5500 μScm-1. Moreover, Guadalhorce reservoir is part of a complex system of reservoirs fed from the Guadalhorce River that supplies all urban, irrigation, tourism, energy and ecology water uses, which makes that implementation and validation of methods and tools for smart water management is required. Meteorological, hydrological and water quality data from several monitoring networks and data sources, with both historical and real time data during a 40-years period, were used to analyze the impact salinity. On the other hand, variables that mainly depend on the dam operation, such as reservoir water level and water outflow, were also analyzed to understand how they affect to salinity in depth and time. Finally surface and groundwater inflows to the reservoir were evaluated through a physically based hydrological model to forecast when the major contributions take place. Reservoir water level and surface and groundwater inflows were found to be the main drivers of salinity in the reservoir. When reservoir water level is high, daily water inflow around 0.4 hm3 causes changes in salinity (both drop and rise) up to 500 μScm-1, but no significant changes are found when water level falls 2-3 m. However the gradual water outflows due to dam operation and consequent decrease in reservoir water levels makes that, after dry periods, salinity

  4. Groundwater salinity at Olkiluoto and its effects on a spent fuel repository

    Energy Technology Data Exchange (ETDEWEB)

    Vieno, T. [VTT Energy, Espoo (Finland)

    2000-06-01

    The Olkiluoto island rose from the Baltic Sea 2500 to 3000 years ago. The layered sequence of groundwaters can be related to climatic and shoreline changes from modern tune through former Baltic stages to the deglaciation phase about 10 000 years ago and even to preglacial times. Fresh groundwater is found to the depth of about 150 metres, brackish between 100 and 400 metres, deeper groundwaters are saline. At the depth of 500 meters, the content of Total Dissolved Solids (TDS) varies between 10 and 25 g/l. The most saline waters at depths greater than 800 metres have TDS values between 30 and 75 g/l. These deep saline waters seem to have been undisturbed during the most recent glaciation and even much longer in the past. Today fresh water infiltrating at the surface gradually displaces brackish and saline groundwater in the bedrock. Due to the still ongoing postglacial land uplift, Olkiluoto is likely to become an inland site with brackish or fresh groundwater at the depth of 500 metres within the next 10 000 years. During the construction and operation phases groundwater will be drawn into the repository from the surrounding bedrock. As a consequence, more saline groundwaters, presently laying 100 to 200 metres below the repository level, may rise to the disposal level. After the closing of the repository the salinity distribution will gradually return towards the natural state. During the glacial cycle groundwater salinity may increase, for example, during freezing of groundwater into permafrost, when dissolved solids concentrate in the remaining water phase, and in a situation where deep saline groundwaters from under the centre of the glacier are pushed to the upper parts of the bedrock at the periphery of the glacier. The most significant open issue related to saline groundwater is the performance of the tunnel backfill which in the BS-3 concept has been planned to consist of a mixture of crushed rock and 10-30% of bentonite. Saline groundwater may

  5. Effect of saline irrigation water on yield and yield components of rice ...

    African Journals Online (AJOL)

    vaio

    2013-05-29

    May 29, 2013 ... levels at different growth stages of rice on yield and its components. Treatments included ... Therefore, irrigation with saline water at the early growth stages has more negative effect on ...... diversification. Land Degrad. Dev.

  6. Nitrogen Nutrition of Sugar Beet as Affected by Water Salinity, Proline Acid and Nitrogen Forms Using 15N Tracer Technique

    International Nuclear Information System (INIS)

    Abdel Aziz, H.A.

    2014-01-01

    A pot experiment was conducted under green house condition using sugar beet as a test crop. Saline water (sea water) was applied at different levels. i.e. fresh water, 4 and 8 dSm -1 . Labelled urea and ammonium sulphate (5% a.e.) were applied at rate of 120 kg N fed -1 . Also; proline amino acid was sprayed at rate of 25, and 50 ppm. Basal recommended doses of P and K were applied. Crop leaves and tuber yield were severely affected by sea water salinity. These parameters were improved by adding proline acid. Effect of proline acid was significantly varied according to rate of addition, water salinity levels and N forms. In this respect, the improvement of leaves and tuber was more pronounced at rate of 50 ppm proline under 8 dSm -1 salinity when plants fertilized with ammonium sulfate. Another picture was drawn with urea, where the improvement was detected at rate of 25 ppm proline, under 4dSm -1 water salinity level. Nitrogen, phosphorus, potassium and sodium uptake by leaves and tuber of sugar beet plants were significantly improved by addition of 50 ppm proline under 4 and /or 8 dSm -1 salinity levels. Nitrogen uptake was higher in tuber and fertilization with urea than those of leaves and ammonium sulfate, respectively. Other nutrients were varied according to N forms and proline levels. Nitrogen use efficiency was enhanced by spraying proline, despite of addition rates, and negatively affected by increasing salinity levels. In this regard, no big significant difference was detected between urea and ammonium sulfat

  7. Use of azeotropic distillation for isotopic analysis of deuterium in soil water and saturate saline solution

    International Nuclear Information System (INIS)

    Santos, Antonio Vieira dos.

    1995-05-01

    The azeotropic distillation technique was adapted to extract soil water and saturate saline solution, which is similar to the sea water for the Isotopic Determination of Deuterium (D). A soil test was used to determine the precision and the nature of the methodology to extract soil water for stable isotopic analysis, using the azeotropic distillation and comparing with traditional methodology of heating under vacuum. This methodology has been very useful for several kinds of soil or saturate saline solution. The apparatus does not have a memory effect, and the chemical reagents do not affect the isotopic composition of soil water. (author). 43 refs., 10 figs., 12 tabs

  8. The effects of saline water consumption on the ultrasonographic and histopathological appearance of the kidney and liver in Barki sheep.

    Science.gov (United States)

    Ghanem, Mohamed; Zeineldin, Mohamed; Eissa, Attia; El Ebissy, Eman; Mohammed, Rasha; Abdelraof, Yassein

    2018-03-14

    The objective of this study was to evaluate the impact of varying degrees of water salinity on the ultrasonographical and histopathological appearance of the liver and kidneys in Barki sheep. Thirty Barki sheep (initial weight, 29.48 ± 0.81 kg) were allocated into three groups (n=10 per group) based on the type of drinking water for 9 months: the tap water (TW) group (350 ppm total dissolved solids [TDS]); the moderate saline water (MSW) group (4557 ppm TDS); and the high saline water (HSW) group (8934 ppm TDS). After 9 months, the body weight was significantly decreased in sheep subjected to MSW (P=0.0347) and HSW (P=0.0424). Alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, and creatinine were significantly increased (Pinfiltration and vacuolar changes of hepatocytes in both MSW and HSW groups. In conclusion, water salinity negatively affects the body weight, liver and kidney appearance of Barki sheep and thus sheep production.

  9. Measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1981-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)P 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is to be determined. (author)

  10. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1989-01-01

    Water infiltration to buried waste is the prime problem of concern in designing waste disposal units for the humid areas. Conventional compacted clay layers (resistance layer barriers) have been subject to failure by subsidence and by permeability increases brought about by plant roots. A clay barrier with a rock cover sans plants is being investigated. Also a combination of a resistive layer overlying a conductive layer is being investigated. Laboratory studies indicate that this approach can be very effective and field evaluations are underway. However, it must be noted that subsidence will negate the effectiveness of any buried layer barriers. A surface barrier (bioengineering management) has been valuated in the field and found to be very effective in preventing water entry into waste disposal units. This surface barrier is easily repairable if damaged by subsidence and could be the system of choice under active subsidence conditions

  11. Model evaluation of seepage from uranium tailings disposal above and below the water table

    International Nuclear Information System (INIS)

    Nelson, R.W.; Meyer, P.R.; Oberlander, P.L.; Sneider, S.C.; Mayer, D.W.; Reisenauer, A.E.

    1983-03-01

    Model simulations identify the rate and amount of leachate released to the environment if disposed uranium mill tailings come into contact with ground water or if seepage from tailings reaches ground water. In this study, simulations of disposal above and below the water table, with various methods of leachate control, were compared. Three leachate control methods were used in the comparisons: clay bottom liners; stub-sidewall clay liners; and tailings drains with sumps, with the effluent pumped back from the sumps. The best leachate control for both above and below the water table is a combination of the three methods. The combined methods intercept up to 80% of the leachate volume in pits above the water table and intercept essentially all of the leachate in pits below the water table. Effluent pumping, however, requires continuous energy costs and an alternative method of disposal for the leachate that cannot be reused as makeup water in the mill process. Without the drains or effluent pumping, the clay bottom liners have little advantage in terms of the total volume of leachate lost. The clay liners do reduce the rate of leachate flow to the ground water, but the flow continues for a longer time. The buffering, sorption, and chemical reactions of the leachate passing directly through the liner are also advantages of the liner

  12. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    Science.gov (United States)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  13. STUDY ON IMPACT OF SALINE WATER INUNDATION ON FRESHWATER AQUACULTURE IN SUNDARBAN USING RISK ANALYSIS TOOLS

    Directory of Open Access Journals (Sweden)

    B.K Chand

    2012-11-01

    Full Text Available The impact of saline water inundation on freshwater aquaculture was evaluated through risk assessment tools. Fishponds in low-lying areas of Sagar and Basanti block are prone to saline water flooding. Respondents of Sagar block considered events like cyclone and coastal flooding as extreme risk; erratic monsoon, storm surge and land erosion as high risk; temperature rise, sea level rise, hot & extended summer and precipitation as medium risk. Likewise, in Basanti block the respondents rated cyclone as extreme risk; erratic monsoon, storm surge as high risk; temperature rise, hot & extended summer, land erosion, and precipitation as medium risk; coastal flooding and sea level rise as low risk. Fish farmers of Sagar block classified the consequences of saline water flooding like breach of pond embankment and mass mortality of fishes as extreme risk; escape of existing fish stock and diseases as high risk; entry of unwanted species, retardation of growth and deterioration of water quality as medium risk; and damage of pond environment as low risk. Farmers of Basanti block categorised breach of pond dyke, mass mortality of fishes and entry of unwanted species as extreme risk; escape of fish and diseases as high risk; retardation of growth as medium risk; deterioration of water quality and damage of pond environment as low risk. To reduce the threats against saline water ingression, farmers are taking some coping measures like increase in pond dyke height; repair and strengthening of dyke; plantation on dyke; dewatering and addition of fresh water; application of chemicals/ lime/ dung; addition of tree branches in pond for hide outs etc.

  14. A comparative life cycle assessment of process water treatment ...

    African Journals Online (AJOL)

    2011-07-29

    Jul 29, 2011 ... into the co-disposal of saline wastewater with ash (Ras, 2011). These efforts have .... Feed water is dosed at 5 mg/ℓ with chlorine gas (0.15 kg/Mℓ. BFW), and .... technologies relative to a selection of the impact categories for ...

  15. Infections may select for filial cannibalism by impacting egg survival in interactions with water salinity and egg density.

    Science.gov (United States)

    Lehtonen, Topi K; Kvarnemo, Charlotta

    2015-07-01

    In aquatic environments, externally developing eggs are in constant contact with the surrounding water, highlighting the significance of water parameters and pathogens for egg survival. In this study we tested the impact of water salinity, egg density and infection potential of the environment on egg viability in the sand goby (Pomatoschistus minutus), a small fish that exhibits paternal egg care and has a marine origin, but which in the Baltic Sea lives in brackish water. To manipulate the infection potential of the environment, we added either a Saprolegnia infection vector into UV-filtered water or a fungicide into natural Baltic Sea water. Saprolegnia are widely spread water moulds that are a key cause of egg mortality in aquatic organisms in fresh- and brackish water. We found that increased water salinity indeed decreased the egg infection rate and had a positive effect on egg viability, while high egg density tended to have the opposite effect. However, the different factors influenced egg viability interactively, with a higher egg density having negative effects at low, but not in high, salinity. Thus, the challenges facing marine organisms adapting to lower salinity levels can be amplified by Saprolegnia infections that reduce egg survival in interaction with other environmental factors. Our results support the hypothesis that suppressing egg infections is an important aspect of parental care that can select for filial cannibalism, a common but poorly understood behaviour, especially in fish with parental care.

  16. Evaluation of Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR) for Water Quality Monitoring: A Case Study for the Estimation of Salinity

    Science.gov (United States)

    Nazeer, Majid; Bilal, Muhammad

    2018-04-01

    Landsat-5 Thematic Mapper (TM) dataset have been used to estimate salinity in the coastal area of Hong Kong. Four adjacent Landsat TM images were used in this study, which was atmospherically corrected using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer code. The atmospherically corrected images were further used to develop models for salinity using Ordinary Least Square (OLS) regression and Geographically Weighted Regression (GWR) based on in situ data of October 2009. Results show that the coefficient of determination ( R 2) of 0.42 between the OLS estimated and in situ measured salinity is much lower than that of the GWR model, which is two times higher ( R 2 = 0.86). It indicates that the GWR model has more ability than the OLS regression model to predict salinity and show its spatial heterogeneity better. It was observed that the salinity was high in Deep Bay (north-western part of Hong Kong) which might be due to the industrial waste disposal, whereas the salinity was estimated to be constant (32 practical salinity units) towards the open sea.

  17. Growth and yield of cowpea/sunflower crop rotation under different irrigation management strategies with saline water

    Directory of Open Access Journals (Sweden)

    Antônia Leila Rocha Neves

    2015-05-01

    Full Text Available This study aimed to evaluate the effect of management strategies of irrigation with saline water on growth and yield of cowpea and sunflower in a crop rotation. The experiment was conducted in randomized blocks with thirteen treatments and five replications. The treatments consisted of: T1 (control, T2, T3 and T4 using water of 0.5 (A1, 2.2 (A2, 3.6 (A3 and 5.0 (A4 dS m-1, respectively, during the entire crop cycle; T5, T6 and T7, use of A2, A3 and A4 water, respectively, only in the flowering and fructification stage of the crop cycle; using different water in a cyclic way, six irrigations with A1 followed by six irrigations with A2 (T8, A3 (T9 and A4, (T10, respectively; T11, T12 and T13, using water A2, A3 and A4, respectively, starting at 11 days after planting (DAP and continuing until the end of the crop cycle. These treatments were employed in the first crop (cowpea, during the dry season, and the same plots were used for the cultivation of sunflower as succeeding crop during rainy season. The strategies of use of saline water in the salt tolerant growth stage (treatments T5, T6 and T7 or cyclically (treatments T8, T9 and T10 reduced the amount of good quality water used in the production of cowpea by 34 and 47%, respectively, without negative impacts on crop yield, and did not show the residual effects of salinity on sunflower as a succeeding crop. Thus, these strategies appear promising to be employed in areas with water salinity problems in the semiarid region of Brazil.

  18. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC{sub 50} values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC{sub 50} obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC{sub 50}). This LC{sub 50} value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC{sub 50}. For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC{sub 50} and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC{sub 50} of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC{sub 50} values. In contrast, LC{sub 50} determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature.

  19. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-01-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC 50 values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC 50 obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC 50 ). This LC 50 value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC 50 . For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC 50 and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC 50 of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC 50 values. In contrast, LC 50 determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature

  20. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-07-24

    ... joint financing committed to the proposed project is: (i) Twenty percent or more private, local, or...) Colonia. (See definition in Sec. 1777.4). The proposed project will provide water and/or waste disposal... of obtaining federal financing, receive economic benefits that exceed any direct economic costs...

  1. The Effect of Water Table Fluctuation and its Salinity on Fe Crystal and Noncrystal in some Khuzestan Soils

    Directory of Open Access Journals (Sweden)

    mostafa Pajohannia

    2017-01-01

    Full Text Available Introduction: Iron is found in different forms in the soil. In the primary minerals, iron is found as Fe3+ or Fe2+ which converted to Fe2+ and released in unsuitable reduction conditions. Minerals such as sulfide or chlorine and bicarbonate can affect and change the different forms soil Fe. FeAs these elements are abundance in groundwater or soil, they are capable to react chemically with Fe and change different Fe forms and also may deposit or even leach them by increasing its solubility in the soil. Water table fluctuation is a regular phenomenon in Khuzestan that Fe forms change under these situations. The study of Fe oxide forms and its changes can be applied for evaluation of soil development. Therefore, the aim of this study is the water table fluctuation and its quality effects, and some physio-chemical properties on Fe oxides forms in non-saline and saline soils in Khuzestan. Materials and Methods: Soil samples were collected from two regions: saline (Abdolkhan and non-saline (South Susa regions. soil samples were collected from all horizons of 12 soil field studied profiles . The samples were analyzed for soil texture, pH, EC (soil: water ratio 1:5, organic carbon and aggregate stability (Kemper and Rosenau method. Fe forms also were extracted by two methods in all samples: di-tyonite sodium and ammonium oxalate extraction. Fe oxalate extracted was related to Feo (non crystal Fe and Fed-Feo was related to Fec (crystalline Fe. The Fe content were determined by atomic absorbtion spectrophotometer (AAS. Data were analysis in SAS and Excel software and results were presented. Results and Discussion: The results showed that texture were loamy sand to silty clay loam, OM was very poor (0.1-0.7%. The soil salinity was also 2.8-16.8 dS/m. Calcium carbonate equivalent was 38-40%. All pedons were classified in Entisols and Inceptisols according to Keys to soil taxonomy (2010. The results showed that the proportion of Fe with oxalate to di

  2. Effect of water and saline stress on germination of Atriplex nummularia (Chenopodiaceae)

    International Nuclear Information System (INIS)

    Ruiz, Monica B; Parera, Carlos A

    2013-01-01

    Saline soils, characteristic of arid zones, can affect the germination of the species due to low water potential or ion toxicity. The effect of water and saline stress on germination was evaluated in atriplex nummularia a potential source of forage for arid zones. the seeds were scarified to reduce the inhibitory effect on germination and incubated in at 23 Celsius degrade on germination paper imbibed with solutions of sodium chloride (NaCl) and polyethylene glycol (peg) at three water potentials: -0,5; -1,0 and -1,5 MPA. The percentage germination and germination speed were significantly affected by the concentration of the solution and the solute used. While more negative osmotic potentials, the percentage of germination and germination speed were significantly lower. The seeds germinated in peg solution have higher germination and germination speed than the seeds germinated in NaCl, especially in -1,0 MPA. The data suggest that the seeds of a. nummularia show sensitivity to the presence of Na+ and Cl- ions affecting the germination process.

  3. Vegetative changes in boreal peatlands along salinity gradients resulting from produced water spills : implications for the environmental assessment and remediation of upstream oil and gas sites

    Energy Technology Data Exchange (ETDEWEB)

    Bright, D.; Harris, C.; Meier, M. [AECOM Canada Ltd., Ottawa, ON (Canada)

    2010-07-01

    In the province of Alberta, there are approximately 8,000 registered oil effluent and produced pipelines that have significant potential for ruptures and spills due to the highly corrosive nature of the emulsions and produced water they transport. Most releases occur in or adjacent to northern boreal wetlands. The first objective in spill response involves assessment and remediation for residuals, which involves handling and disposal of large volumes of salinized water. This presentation reported on a study that addressed the issues regarding the ecological features of semi-terrestrial and semi-aquatic components of boreal wetland environments as a basis for environmental protection at salt release sites. The fate of salt ions in such environments was examined along with the implications for secondary succession and ecological restoration. The study also examined the reasonable threshold concentration of salt ions in soils or water beyond which there is an inhibition to wetlands plants and bryophyte secondary succession; the reasonable threshold concentration of salt ions in water beyond which there may be adverse effects on invertebrates, vertebrates and other non-plant taxa; and species sensitivity distributions for floral and faunal assemblages found in boreal wetland habitats. The presentation summarized the 3 phases of a project that examined pipeline ruptures at 9 sites. Field methods and site sampling summaries were presented. It was difficult to locate study sites with residual salt contamination in surface media at concentrations above effects threshold for many species. It was concluded that the departures between surface and subsurface salinity indicates a smaller potential for effects on site vegetation. tabs., figs.

  4. Vegetative changes in boreal peatlands along salinity gradients resulting from produced water spills : implications for the environmental assessment and remediation of upstream oil and gas sites

    International Nuclear Information System (INIS)

    Bright, D.; Harris, C.; Meier, M.

    2010-01-01

    In the province of Alberta, there are approximately 8,000 registered oil effluent and produced pipelines that have significant potential for ruptures and spills due to the highly corrosive nature of the emulsions and produced water they transport. Most releases occur in or adjacent to northern boreal wetlands. The first objective in spill response involves assessment and remediation for residuals, which involves handling and disposal of large volumes of salinized water. This presentation reported on a study that addressed the issues regarding the ecological features of semi-terrestrial and semi-aquatic components of boreal wetland environments as a basis for environmental protection at salt release sites. The fate of salt ions in such environments was examined along with the implications for secondary succession and ecological restoration. The study also examined the reasonable threshold concentration of salt ions in soils or water beyond which there is an inhibition to wetlands plants and bryophyte secondary succession; the reasonable threshold concentration of salt ions in water beyond which there may be adverse effects on invertebrates, vertebrates and other non-plant taxa; and species sensitivity distributions for floral and faunal assemblages found in boreal wetland habitats. The presentation summarized the 3 phases of a project that examined pipeline ruptures at 9 sites. Field methods and site sampling summaries were presented. It was difficult to locate study sites with residual salt contamination in surface media at concentrations above effects threshold for many species. It was concluded that the departures between surface and subsurface salinity indicates a smaller potential for effects on site vegetation. tabs., figs.

  5. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    Science.gov (United States)

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-01-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area.Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH.Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil.As a result of investigations at

  6. Salinity of irrigation water in the Philippi farming area of the Cape ...

    African Journals Online (AJOL)

    Salinity of irrigation water in the Philippi farming area of the Cape Flats, Cape Town, ... Isotope analysis was done for the summer samples so as to assess effects of ... It is concluded that the accumulation of salts in groundwater and soil in the ...

  7. Influence of gypsum amendment on methane emission from paddy rice soil affected by saline irrigation water

    Directory of Open Access Journals (Sweden)

    Ei Ei eTheint

    2016-01-01

    Full Text Available To investigate the influence of gypsum application on methane (CH4 emission from paddy rice soil affected by saline irrigation water, two pot experiments with the rice cultivation were conducted. In pot experiment (I, salinity levels 30 mMNaCl (S30 and 90 mMNaCl (S90, that showed maximum and minimum CH4 production in an incubation experiment, respectively, were selected and studied without and with application of 1 Mg gypsum ha-1(G1. In pot experiment (II, CH4 emission was investigated under different rates of gypsum application: 1 (G1, 2.5 (G2.5 and 5 (G5 Mg gypsum ha-1 under a non-saline and saline condition of 25 mMNaCl (S25. In experiment (I, the smallest CH4 emission was observed in S90. Methane emission in S30 was not significantly different with the non-saline control. The addition of gypsum showed significant lower CH4 emission in saline and non-saline treatments compared with non-saline control. In experiment (II, the CH4 emissions in the saline treatments were not significantly different to the non-saline treatments except S25-G5. However, our work has shown that gypsum can lower CH4 emissions under saline and non-saline conditions. Thus, gypsum can be used as a CH4 mitigation option in non-saline as well as in saline conditions.

  8. The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles.

    Science.gov (United States)

    Pallarés, Susana; Arribas, Paula; Bilton, David T; Millán, Andrés; Velasco, Josefa; Ribera, Ignacio

    2017-10-01

    Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso- and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation-resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso- and hypersaline habitats. © 2017 John Wiley & Sons Ltd.

  9. Quantification and characterization of putative diazotrophic bacteria from forage palm under saline water irrigation

    Directory of Open Access Journals (Sweden)

    Gabiane dos Reis Antunes

    2017-09-01

    Full Text Available The aim of this study was to evaluate the density and phenotypical diversity of diazotrophic endophytic bacteria from the forage palm irrigated with different saline water depths. Opuntia stricta (IPA-200016 received five depths of saline water (L1: 80%. ETo; L2: 60%.ETo; L3: 40%; ETo; L4: 20%; ETo and, L5: 0% ETo, where ETo is the reference evapotranspiration. The roots were collected in the field, disinfected, grounded and serial diluted from 10-1 to 10-4. The total concentration of diazotrophic bacteria was determined by the most probable number method (MPN and the isolated bacteria were characterized phenotipically. The concentration of bacteria found in forage palm roots ranged from 0.36 x 104 to 109.89 104 cells per gram of root, with highest occurrence on the 60 and 80% ETo. In the dendrogram of similarity it was possible to observe the formation of 24 phenotypic groups with 100% similarity. All bacteria presented similarity superior to 40%. Among these groups, 14 are rare groups, formed by only a single bacterial isolate. In the Semi-Arid conditions, the forage palm that receives the highest amount of saline water, presents a higher density of putative nitrogen-fixing endophytic bacteria with high phenotypic diversity.

  10. Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Fathia El Mokh

    2014-12-01

    Full Text Available Field experiments were conducted on a sandy soil during spring of 2009 and autumn of 2010 in southern Tunisia for evaluating the effects of two drip irrigation methods and three irrigation regimes on soil moisture and salinity, yield and water use efficiency of potato (Solanum tuberosum L.. The surface drip (SDI and subsurface drip (SSDI irrigation methods were used. Irrigation regimes consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI100, 60% (DI60 and 30% (DI30. FI100 was considered as full irrigation while DI60 and DI30 were considered as deficit irrigation regimes. Well water with an ECi of 7.0 dS/m was used for irrigation. Findings are globally consistent between the two experiments. Results show that soil moisture content and salinity were significantly affected by irrigation treatments and methods. Higher soil moisture content and lower soil salinity were maintained with SSDI than SDI for all irrigation treatments. For both irrigation methods, higher salinity and lower moisture content in the root zone are observed under DI60 and DI30 treatments compared to FI100. Potato yields were highest over two cropping periods for the SSDI method although no significant differences were observed with the SDI. Irrigation regimes resulted in significant difference in both irrigation methods on yield and its components. Yields were highest under FI100. Compared to FI100, considerable reductions in potato yields were observed under DI60 and DI30 deficit treatments resulting from a reduction in tubers number/m² and average tuber weight and size. Water use efficiency (WUE was found to vary significantly among irrigation methods and treatments and varied between 5.9 and 20.5 kg/m3. WUE of SSDI method had generally higher values than SDI. The lowest WUE values were observed for the FI100 treatment, while the highest values were obtained under DI30 treatment for both methods. SSDI method provides

  11. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)- and sulfur-oxidizing microorganisms.

    Science.gov (United States)

    Watling, Helen R; Collinson, David M; Corbett, Melissa K; Shiers, Denis W; Kaksonen, Anna H; Watkin, Elizabeth L J

    2016-09-01

    The application of thermoacidophiles for chalcopyrite (CuFeS2) bioleaching in hot, acidic, saline solution was investigated as a possible process route for rapid Cu extraction. The study comprised a discussion of protective mechanisms employed for the survival and/or adaptation of thermoacidophiles to osmotic stress, a compilation of chloride tolerances for three genera of thermoacidophiles applied in bioleaching and an experimental study of the activities of three species in a saline bioleaching system. The data showed that the oxidation rates of iron(II) and reduced inorganic sulfur compounds (tetrathionate) were reduced in the presence of chloride levels well below chloride concentrations in seawater, limiting the applicability of these microorganisms in the bioleaching of CuFeS2 in saline water. Copyright © 2016. Published by Elsevier Masson SAS.

  12. A 2D fluid motion model of the estuarine water circulation: Physical analysis of the salinity stratification in the Sebou estuary

    Science.gov (United States)

    Haddout, Soufiane; Maslouhi, Abdellatif; Magrane, Bouchaib

    2018-02-01

    Estuaries, which are coastal bodies of water connecting the riverine and marine environment, are among the most important ecosystems in the world. Saltwater intrusion is the movement of coastal saline water into an estuary, which makes up-estuary water, that becomes salty due to the mixing of freshwater with saltwater. It has become a serious environmental problem in the Sebou estuary (Morocco) during wet and dry seasons, which have a considerable impact on residential water supply, agricultural water supply as well as urban industrial production. The variations of salt intrusion, and the vertical stratification under different river flow conditions in the Sebou estuary were investigated in this paper using a two-dimensional numerical model. The model was calibrated and verified against water level variation, and salinity variation during 2016, respectively. Additionally, the model validation process showed that the model results fit the observed data fairly well ( R2 > 0.85, NSC > 0.89 and RMSE = 0.26 m). Model results show that freshwater is a dominant influencing factor to the saltwater intrusion and controlled salinity structure, vertical stratification and length of the saltwater intrusion. Additionally, the extent of salinity intrusion depends on the balance between fresh water discharges and saltwater flow from the sea. This phenomenon can be reasonably predicted recurring to mathematical models supported by monitored data. These tools can be used to quantify how much fresh water is required to counterbalance salinity intrusion at the upstream water intakes.

  13. Disposal of liquid radioactive waste - discharge of radioactive waste waters from hospitals

    International Nuclear Information System (INIS)

    Ludwieg, F.

    1976-01-01

    A survey is given about legal prescriptions in the FRG concerning composition and amount of the liquid waste substances and waste water disposal by emitting into the sewerage, waste water decay systems and collecting and storage of patients excretions. The radiation exposure of the population due to drainage of radioactive waste water from hospitals lower by more than two orders than the mean exposure due to nuclear-medical use. (HP) [de

  14. Phytosynthetic bacteria (PSB) as a water quality improvement mechanism in saline-alkali wetland ponds.

    Science.gov (United States)

    Liu, Fu-jun; Hu, Weng-Ying; Li, Quan-Yi

    2002-07-01

    The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline-alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO3-(-)N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH4-(-)N (NH3-N), NO2-(-)N; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect-exerting speed of PSB was slower, but the effect-sustaining time was longer; (6) the appropriate concentration of PSB application in saline-alkali wetland ponds was 10 x 10(-6) mg/L, one-time effective period was more than 15 days. So PSB was an efficient water quality improver in saline-alkali ponds.

  15. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    International Nuclear Information System (INIS)

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam C.; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. - Highlights: • Oil and gas wastewater disposal may increase endocrine disrupting activity in water. • Tested EDC activity in surface water near oil and gas wastewater injection site. • Water downstream had significantly

  16. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Kassotis, Christopher D., E-mail: christopher.kassotis@duke.edu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Iwanowicz, Luke R. [U.S. Geological Survey, Leetown Science Center, Fish Health Branch, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam C. [U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Drive, MS 430, Reston, VA 20192 (United States); Orem, William H. [U.S. Geological Survey, Eastern Energy Resources Science Center, 12201 Sunrise Valley Drive, MS 956, Reston, VA 20192 (United States); Nagel, Susan C., E-mail: nagels@health.missouri.edu [Department of Obstetrics, Gynecology and Women' s Health, University of Missouri, Columbia, MO 65211 (United States)

    2016-07-01

    Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. - Highlights: • Oil and gas wastewater disposal may increase endocrine disrupting activity in water. • Tested EDC activity in surface water near oil and gas wastewater injection site. • Water downstream had significantly

  17. Effects of water salinity on hatching of egg, growth and survival of larvae and fingerlings of snake head fish, Channa striatus

    Directory of Open Access Journals (Sweden)

    Thumronk Amornsakun

    2017-04-01

    Full Text Available A study on the effect of water salinity ranging from 0-30 ppt on hatching success of snake head fish, Channa striatus was conducted in a 15-liter glass aquarium (water volume 10 liters containing 500 eggs for various levels of water salinity. Fertilization rates at 0, 5, 10, 11, 12, 13 and 14 ppt were 69.33, 72.67, 71.33, 72.67, 82.00, 73.33 and 10.67%, respectively. The fertilization rate at 12-13 ppt salinity was significantly (P0.05 among 0, 5 and 10 ppt.

  18. Origin and geochemistry of saline spring waters in the Athabasca oil sands region, Alberta, Canada

    International Nuclear Information System (INIS)

    Gue, Anita E.; Mayer, Bernhard; Grasby, Stephen E.

    2015-01-01

    Highlights: • Saline groundwater enters the Athabasca and Clearwater rivers in the AOSR via springs. • High TDS is due to subsurface dissolution of Devonian evaporites and carbonates. • Low δ 18 O values, and 3 H and 14 C data suggest some Laurentide glacial meltwater input. • Bacterial sulfate reduction, methanogenesis, and CH 4 oxidation were identified. • Metal and PAH contents are reported; bitumen does not appear to be major influence. - Abstract: The geochemistry of saline spring waters in the Athabasca oil sands region (AOSR) in Alberta (Canada) discharging from Devonian carbonate rocks into the Athabasca and Clearwater rivers was characterized for major ions, trace elements, dissolved gases, and polycyclic aromatic hydrocarbons (PAHs). In addition, stable isotope analyses of H 2 O, SO 4 , dissolved inorganic carbon (DIC), Sr, and CH 4 were used to trace the sources of spring waters and their dissolved solutes, and to identify subsurface processes affecting water chemistry. The spring waters had δ 18 O values as low as −23.5‰, suggesting they are composed of up to 75% Laurentide glacial meltwater. Tritium and radiocarbon age-dating results, analyzed for three spring waters, supported a glacial origin. The high salinity of the spring waters (TDS 7210–51,800 mg/L) was due to dissolution of Devonian evaporite and carbonate deposits in the subsurface. Spring waters were affected by bacterial (dissimilatory) sulfate reduction, methanogenesis, and methane oxidation. Trace elements were present in spring waters at varying concentrations, with only one spring containing several predominant oil sands metals (As, Fe, Mo, Ni, Se, Zn) suggesting bitumen as a source. Five springs contained elements (Al, As, B, Fe, Se) at concentrations exceeding water quality guidelines for the protection of aquatic life. Seven PAHs were detected in spring waters (total PAH concentrations ranged from 7.3 to 273.6 ng/L), but most springs contained a maximum of two PAHs

  19. Balanço hídrico e da salinidade do solo na bananeira irrigada com água de diferentes salinidades = Soil water and salinity balance on banana irrigated with water of varied salinity

    Directory of Open Access Journals (Sweden)

    Ancélio Ricardo de Oliveira Gondim

    2009-01-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito de diferentes níveis de salinidade de água de irrigação no uso consultivo na fase reprodutiva da bananeira e evolução da salinidade do solo. Adotou-se o delineamento inteiramente casualizado em parcelas subdivididas, totalizando oito tratamentos com quatro repetições por tratamento. Os níveis de salinidade foram obtidos a partir de águas naturais de poços dos aquíferos arenito e calcário e foram misturadas em tanques de alvenaria para a obtenção das concentrações de salinidade desejada. Verificou-se que a área do bulbo com umidade superior a 8% representa aproximadamente 50% do volume do solo. A evapotranspiração da cultura diminuiu com o aumento da salinidade entre os tratamentos, o kc médio no período variou de 1,01 a 1,09 em águas de salinidade extremas. Comparando os perfis da salinidade do solo, verificou-se quea concentração de sais foi superior na camada superficial aos 440 dias após plantio.The objective this work was to evaluate the advisory use of two cultivars banana and the salinity of the soil in different water salinity levels (0.55; 1.70; 2.85; and 4.00 dS m-1 during the reproductive phase. The experimental design chosen was randomizedcomplete blocks in subdivided plots, totaling eight treatments with four repetitions per treatment. The salinity levels were obtained from natural waters of wells from sandstone and calcareous aquifers and were mixed in masonry tanks in order to obtain the desiredsalinity concentrations. It was verified that the area of the bulb with moisture greater than 8% represents approximately 50% of the volume of the soil. The evapotranspiration of the culture decreased with the increase in the salinity among the treatments; the average kc in the period varied from 1.01 to 1.09 in waters of extreme salinity. Comparing the salinity profiles of the soil, it was verified that the concentration of salts was highest on the surfacelayer at 440

  20. Batteries for efficient energy extraction from a water salinity difference.

    Science.gov (United States)

    La Mantia, Fabio; Pasta, Mauro; Deshazer, Heather D; Logan, Bruce E; Cui, Yi

    2011-04-13

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na(2-x)Mn(5)O(10) nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future.

  1. Variations of marine pore water salinity and chlorinity in Gulf of Alaska sediments (IODP Expedition 341)

    Science.gov (United States)

    März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah

    2014-05-01

    Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening

  2. In situ prompt gamma-ray measurement of river water salinity in northern Taiwan using HPGe-252Cf probe

    International Nuclear Information System (INIS)

    Jiunnhsing Chao; Chien Chung

    1991-01-01

    A portable HPGe- 252 Cf probe dedicated to in situ survey of river water salinity was placed on board a fishing boat to survey the Tamsui River in northern Taiwan. The variation of water salinity is surveyed by measuring the 6111 keV chlorine prompt photopeak along the river. Results indicate that the probe can be used as a salinometer for rapid, in situ measurement in polluted rivers or sea. (author)

  3. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary

    Science.gov (United States)

    Langevin, C.; Swain, E.; Wolfert, M.

    2005-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. A sequentially coupled time-lagged approach was implemented, based on a variable-density form of Darcy's Law, to couple the surface and subsurface systems. The integrated code also represents the advective transport of salt mass between the surface and subsurface. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Model results confirm several important observations about the coastal wetland: (1) the coastal embankment separating the wetland from the estuary is overtopped only during tropical storms, (2) leakage between the surface and subsurface is locally important in the wetland, but submarine ground-water discharge does not contribute large quantities of freshwater to the estuary, and (3) coastal wetland salinities increase to near seawater values during the dry season, and the wetland flushes each year with the onset of the wet season. ?? 2005 Elsevier B.V. All rights reserved.

  4. The role of ionic strength on the mobility of uranium at ore-water interface

    International Nuclear Information System (INIS)

    Singh, Sarjan; Rout, S.; Kumar, Ajay; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Uranium contamination of soil and groundwater is a legacy of past activities associated with the nuclear fuel cycle, continuing concern associated with current mining operations as well as weathering of uranium bearing minerals. Considerable radio-toxicity is one of the challenges for environmentalist therefore; efforts have been given in recent years to understand 'U' behavior with respect to soil-water and rock-water chemistry for safety assessment of radioactive waste disposal program. Recent studies indicate that U mobility increases at soil-water interface with increase in salinity of the water. If salinization results in increased mobility of U significantly, this would be an important additional adverse phenomenon. It should then be taken into account when evaluating the effects of salinization in the context of environmental risk assessments. Nowadays, groundwater salinization is one of the main problems in arid and semi arid regions. The objective of the study was to evaluate the role of ionic strength of the water in uranium mobilization and speciation in the binary (Ore-Water) system

  5. Are Low Salinity Waters the Remedy to Noctiluca scintillans Blooms in the Arabian Sea?

    Science.gov (United States)

    Gibson, J.

    2017-12-01

    Noctiluca scintillans (Noctiluca) is a mixotrophic, green dinoflagellate that for the past two decades has been producing problematic algal blooms in the Arabian Sea (AS). As a mixotroph, Noctiluca obtains energy from both consumption of phytoplankton as well as its intracellular photosynthesizing endosymbionts named, Pedinomonas noctilucae. It is this autotrophic and heterotrophic dual capability that has largely enabled Noctiluca to be a highly dominant species at the planktonic trophic layer in the AS. Exacerbated by non-point source/point-source pollution in the AS, ocean acidification, and intensified monsoons, Noctiluca currently algal blooms can be as big as three times the size of Texas. By depleting the AS of oxygen, clogging the gills of fish, and altering the AS food web, these algal blooms result in mass fish die offs. In turn this propagates financial and food insecurity issues in countless coastal communities. However, through satellite imaging over the years, it has been observed that the proliferation of Noctiluca is precluded or encounters a "wall" about mid-way along the west coast of India. It is theorized that this "wall" is due to a significant change in salinity. Snow from atop the Himalayan Mountains melts and adds fresh water to the Bay of Bengal (BB), and in winter the East Indian Coastal Current (EICC) carries this fresher water around the southern tip of India and towards the AS. It is believed that this dilution effect impedes the growth of Noctiluca further south. Ultimately, in this study the salinity gradient from the Bay of Bengal (BB) around the horn of India into the AS was replicated in six pairs of culture bottles. Noctiluca was grown in six different salinities including 26, 28, 30, 32, 34, and 38 psu. Algae grown in the 34 and 38 psu bottles, were healthier and 38 psu treated Noctiluca provided optimal conditions for its photosynthesizing endosymbionts. Noctiluca does not grow well at lower salinities, thus applications of low

  6. Salinity variations and chemical compositions of waters in the Frio Formation, Texas Gulf Coast. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Morton, R.A.; Garrett, C.M. Jr.; Posey, J.S.; Han, J.H.; Jirik, L.A.

    1981-11-01

    Waters produced from sandstone reservoirs of the deep Frio Formation exhibit spatial variations in chemical composition that roughly coincide with the major tectonic elements (Houston and Rio Grande Embayments, San Marcos Arch) and corresponding depositional systems (Houston and Norias deltas, Greta-Carancahua barrier/strandplain system) that were respectively active along the upper, lower, and middle Texas Coast during Frio deposition. Within an area, salinities are usually depth dependent, and primary trends closely correspond to pore pressure gradients and thermal gradients. Where data are available (mainly in Brazoria County) the increases in TDS and calcium with depth coincide with the zone of albitization, smectite-illite transition, and calcite decrease in shales. Waters have fairly uniform salinities when produced from the same sandstone reservoir within a fault block or adjacent fault blocks with minor displacement. In contrast, stratigraphically equivalent sandstones separated by faults with large displacement usually yield waters with substantially different salinities owing to the markedly different thermal and pressure gradients across the faults that act as barriers to fluid movement.

  7. California Water Resources Development.

    Science.gov (United States)

    1977-01-01

    of disposing of waterborne wastes, includ- trol, navigation, salinity control, water supply, tidelands ing reclamation and reuse where appropriate...studies for Wilson and Wildwood Creeks streams in the South Coastal Basins have been com- Keys Canyon pleted: Moose Canyon Agua Hedionda Creek Otay...resulted from the De- cember 1966 flood. channel and conduit sections pass the reduced flows through Palm Springs and part of the Agua Caliente As a

  8. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  9. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  10. Local Commune Administration as a Regulator of the Local Water Supply and Sewage Disposal Services Market

    OpenAIRE

    Małysko, Jacek

    2012-01-01

    In this article the author discusses problems related to the regulation of water and sewage disposal services market. In the beginning he describes the processes of water supply and sewage disposal taken by the local commune administration as a natural monopoly. Next he characterizes the structure of this market in Poland. Then he presents the role of local commune administration as a regulator. The author concludes by evaluating the existing Polish system of regulating wate...

  11. Satellite remote sensing of a low-salinity water plume in the East China Sea

    Directory of Open Access Journals (Sweden)

    Y. H. Ahn

    2008-07-01

    Full Text Available With the aim to map and monitor a low-salinity water (LSW plume in the East China Sea (ECS, we developed more robust and proper regional algorithms from large in-situ measurements of apparent and inherent optical properties (i.e. remote sensing reflectance, Rrs, and absorption coefficient of coloured dissolved organic matter, aCDOM determined in ECS and neighboring waters. Using the above data sets, we derived the following relationships between visible Rrs and absorption by CDOM, i.e. Rrs (412/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1 with a correlation coefficient R2 0.67 greater than those noted for Rrs (443/Rrs (555 and Rrs (490/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1. Determination of aCDOM (m−1 at 400 nm and 412 nm is particularly necessary to describe its absorption as a function of wavelength λ using a single exponential model in which the spectral slope S as a proxy for CDOM composition is estimated by the ratio of aCDOM at 412 nm and 400 nm and the reference is explained simply by aCDOM at 412 nm. In order to derive salinity from the absorption coefficient of CDOM, in-situ measurements of salinity made in a wide range of water types from dense oceanic to light estuarine/coastal systems were used along with in-situ measurements of aCDOM at 400 nm, 412 nm, 443 nm and 490 nm. The CDOM absorption at 400 nm was better inversely correlated (R2=0.86 with salinity than at 412 nm, 443 nm and 490 nm (R2=0.85–0.66, and this correlation corresponded best with an exponential (R2=0

  12. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  13. [Adenosine triphosphatase activity in the organs of the crab Hemigrapsus sanguineus, acclimated to sea water of different salinity].

    Science.gov (United States)

    Busev, V M

    1977-01-01

    In crabs acclimated to low salinity, the activity of Na, K-ATPase from the gills increases; the activity also increases in the antennal glands after acclimation of the animals to high salinity. The activity of Na, K-ATPase in the abdominal ganglion and in the heart does not depend on the salinity to which crabs had been acclimated. Changes in the activity of Mg-ATPase in the gills and antennal glands associated with acclimation of crabs to sea water with different salinity correspond to those in the activity of Na, K-ATPase.

  14. A new chlorine logging tool: Application in the oilfield development with high salinity formation water

    International Nuclear Information System (INIS)

    Qing-Yuan, He; Xin-Miao, Hu; Geng-Fei, Wu; Wen-DA, J.

    1997-01-01

    Radiating formations with isotopes neutron source (Am-Be), and using chlorine element contained in the formation water as a tracer indicator, the chlorine spectrum well logging tool has been regarded as the important and useful tool in the determination of water flooding intensity of formation intervals, especially in the oilfield development stages with high salinity formation water. However, the accuracy of determination of the oil/water-bearings needs to be improved. A new chlorine spectrum logging tool with two detectors has been developed. The short (near) detector uses a He-3 counter tube to measure formation epithermal neutron intensity, the long (far) detector uses a BGO crystal detector to replace traditional Nal detector for measuring the captured X gamma ray spectrum produced by the thermal neutron capture process in the formation. Although the energy resolution of BGO detector to gamma rays is less effective than that of Nal detector, the efficiency of BGO detector to high energy gamma rays is much better. This advantage helps to detect captured chlorine gamma rays, which increases the ability of chlorine element detection. The effect of statistical errors is also reduced. The spectrum autostabilization function in the downhole tool improves the reliability of the whole system. The new chlorine spectrum logging tool can give three log curves simultaneously, these curves are formation porosity, chlorine content, and the ratio of chlorine content and thermal neutron intensity. When formation porosity is larger than 10 p.u, formation water salinity is greater than 40,000 ppm, the resolution to the oil/water-bearings is increased to about 10% compared with the old version tool. Field tests show that the accuracy of water flooding intensity evaluation has been upgraded considerably with the use of new chlorine spectrum logging tool, which contributes greatly to the oilfield development with high salinity formation water

  15. A new chlorine logging tool: Application in the oilfield development with high salinity formation water

    Energy Technology Data Exchange (ETDEWEB)

    Qing-Yuan, He; Xin-Miao, Hu; Geng-Fei, Wu [China National Petroleum Corp. (China). Jianghan Well Logging Institute; Wen-DA, J. [China National Petroleum Corp. (China). Development Bureau

    1997-10-01

    Radiating formations with isotopes neutron source (Am-Be), and using chlorine element contained in the formation water as a tracer indicator, the chlorine spectrum well logging tool has been regarded as the important and useful tool in the determination of water flooding intensity of formation intervals, especially in the oilfield development stages with high salinity formation water. However, the accuracy of determination of the oil/water-bearings needs to be improved. A new chlorine spectrum logging tool with two detectors has been developed. The short (near) detector uses a He-3 counter tube to measure formation epithermal neutron intensity, the long (far) detector uses a BGO crystal detector to replace traditional Nal detector for measuring the captured X gamma ray spectrum produced by the thermal neutron capture process in the formation. Although the energy resolution of BGO detector to gamma rays is less effective than that of Nal detector, the efficiency of BGO detector to high energy gamma rays is much better. This advantage helps to detect captured chlorine gamma rays, which increases the ability of chlorine element detection. The effect of statistical errors is also reduced. The spectrum autostabilization function in the downhole tool improves the reliability of the whole system. The new chlorine spectrum logging tool can give three log curves simultaneously, these curves are formation porosity, chlorine content, and the ratio of chlorine content and thermal neutron intensity. When formation porosity is larger than 10 p.u, formation water salinity is greater than 40,000 ppm, the resolution to the oil/water-bearings is increased to about 10% compared with the old version tool. Field tests show that the accuracy of water flooding intensity evaluation has been upgraded considerably with the use of new chlorine spectrum logging tool, which contributes greatly to the oilfield development with high salinity formation water 4 refs., 2 tabs., 7 figs.

  16. Batteries for Efficient Energy Extraction from a Water Salinity Difference

    KAUST Repository

    La Mantia, Fabio

    2011-04-13

    The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na2-xMn 5O10 nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future. © 2011 American Chemical Society.

  17. Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Ahmadi, Seyed Hamid; Adolf, Verena Isabelle

    2011-01-01

    water potential (Wl), shoot and root abscisic acid concentration ([ABA]) and transpiration rate were measured in full irrigation (FI; around 95 % of water holding capacity (WHC)) and progressive drought (PD) treatments using the irrigation water with five salinity levels (0, 10, 20, 30 and 40 dS m)1...

  18. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  19. Yield and Nitrogen Assimilation of Potato Varieties (Solanum tuberosum L.) as Affected by Saline Water Irrigation and Organic Manure

    International Nuclear Information System (INIS)

    Hamdy, A.; Gadalla, A.M.; El-Kholi, A.F.; Galal, Y.G.M.; Ismail, M.M.

    2008-01-01

    The experiment was carried out in lysimeter under controlled greenhouse conditions. Saline water was applied in different levels, i.e. fresh water, 3 and 6 dS/m. Organic manure were applied to soil at rates of 0, 2.6 and 5.2 kg/m2. Basal recommended doses of P and K were applied. Labelled urea (10% a.e.) was applied at rate of 200 kg N/ha. 15 N technique was used to evaluate N-uptake and fertilizer efficiency. Comparison held between the two potato varieties indicated that higher reduction in shoot dry weight was recorded with Nicola variety than Spunta one which irrigated with 6 dS/m water salinity level. Addition of 2.6 kg/m 2 organic rate induced an increase in N uptake with fresh water and 3 dS/m salinity then tended to decrease with 6 dS/m level as compared to the untreated control. Concerning the nitrogen fertilization, data of 15 N analysis showed that, water salinity levels combined with organic addition rates were frequently affected the nitrogen derived from fertilizer and consequently the fertilizer use efficiency. Most of nitrogen was derived from the applied nitrogen fertilizer with maximum accumulation in tuber rather than shoots or roots of both potato varieties. Gradual increase of tuber starch with increasing salinity levels was noticed with addition of 2.6 kg/m 2 of organic matter. In general, Spunta variety showed some superiority in tuber starch over those of Nicola variety tuber

  20. Effects of salinity and water temperature on the ecological performance of Zostera marina

    DEFF Research Database (Denmark)

    Nejrup, Lars Brammer; Pedersen, Morten Foldager

    2008-01-01

    We tested the effects of salinity and water temperature on the ecological performance of eelgrass (Zostera marina L.) in culture-experiments to identify levels that could potentially limit survival and growth and, thus, the spatial distribution of eelgrass in temperate estuaries. The experiments ...

  1. Salinity and water temperature data from the Coastal Waters of Washington/Oregon from 01 March 2001 to 31 December 2001 (NODC Accession 0001142)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity and water temperature data were collected using conductivity sensor and temperature probe in the Coastal Waters of Washington/Orgen from March 1, 2001 to...

  2. Extant or Absent: Formation Water in New York State Drinking Water Wells

    Science.gov (United States)

    Christian, K.; Lautz, L. K.

    2013-12-01

    The current moratorium on hydraulic fracturing in New York State (NYS) provides an opportunity to collect baseline shallow groundwater quality data pre-hydraulic fracturing, which is essential for determining the natural variability of groundwater chemistry and to evaluate future claims of impaired groundwater quality if hydraulic fracturing occurs in the State. Concerns regarding the future environmental impact of shale gas extraction in NYS include potential shallow groundwater contamination due to migration of methane or formation water from shale gas extraction sites. Treatment, storage and disposal of saline flowback fluids after gas extraction could also be a source of water contamination. In this study, we combine southern NYS shallow groundwater chemistry data from Project Shale-Water Interaction Forensic Tools (SWIFT, n=60), the National Uranium Resource Evaluation program (NURE, n=684), and the USGS 305(b) Ambient Groundwater Quality Monitoring program (USGS, n=89) to examine evidence of formation water mixing with groundwater using the methodology of Warner et al. (2012). Groundwater characterized as low salinity (20 mg/L Cl-). A plot of bromide versus chloride shows high salinity groundwater samples with Br/Cl ratios >0.0001 fall on the mixing line between low salinity groundwater and Appalachian Basin formation water. Based on the observed linear relationship between bromide and chloride, it appears there is up to 1% formation water mixing with shallow groundwater in the region. The presence of formation water in shallow groundwater would indicate the existence of natural migratory pathways between deep formation wells and shallow groundwater aquifers. A plot of sodium versus chloride also illustrates a linear trend for Type D waters (R^2= 0.776), but the relationship is weaker than that for bromide versus chloride (R^2= 0.924). Similar linear relationships are not observed between other ions and chloride, including Mg, Ca, and Sr. If high salinity

  3. The study of contamination of discharged runoff from surface water disposal channels of Bushehr city in 2012-2013

    Directory of Open Access Journals (Sweden)

    Vaheid Noroozi-Karbasdehi

    2016-09-01

    Full Text Available Background: In coastal cities, wastewater discharge into the sea is one of the options for sewage disposal that in case of non-compliance with health standards  in wastewater disposal will be led to the spread of infection and disease. On the other hand, water resources preservation and using them efficiently are the principles of sustainable development of each country. This study was aimed to investigate the contamination of discharged runoff from the surface water disposal channels of Bushehr city in 2012 - 13. Materials and Methods: In this study, Sampling was conducted by composite sampling method from output of the five main surface water disposal channels leading to the Persian Gulf located in the coastal region of Bushehr city during two seasons including wet (winter and dry (summer in 2012- 13. Then, experimental tests of BOD5, total coliform and fecal coliform were done on any of the 96 samples according to the standard method. Results: Analysis of the data showed that the BOD5, total coliform and fecal coliform of effluent runoff of the channels were more than the national standard output of disposal wastewaters into the surface waters, and the highest and lowest amount of BOD5 which obtained were 160 mg/L and 28 mg/L, respectively. Conclusion: considering the fact that discharged runoff from surface water disposal channels link from shoreline to sea in close distance and they often are as natural swimming sites and even fishing sites of Bushehr city, and also according to high level of organic and bacterial load of these channels, it is urgently required to be considered by the authorities.

  4. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in Na-Cl brackish waters of north-western Sardinia, Italy

    Science.gov (United States)

    Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R.

    2013-01-01

    In the Mediterranean area the demand of good quality water is often threatened by salinization, especially in coastal areas. The salinization is the result of concomitant processes due to both marine water intrusion and rock-water interaction, which in some cases are hardly distinguishable. In northwestern Sardinia, in the Nurra area, salinization due to marine water intrusion has been recently evidenced as consequence of bore hole exploitation. However, the geology of the Nurra records a long history from Paleozoic to Quaternary, resulting in relative structural complexity and in a wide variety of lithologies, including Triassic evaporites. To elucidate the origin of the saline component in the Nurra aquifer, may furnish a useful and more general model for the salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activities and recent climatic changes, the Nurra has become vulnerable to desertification and, similarly to other Mediterranean islands, surface-water resources can periodically suffer from drastic shortage. With this in mind we report new data, regarding brackish waters of Na-Cl type of the Nurra, including major ions and selected trace elements (B, Br, I and Sr) and isotopic data, including δ18O, δD in water, and δ34S and δ18O in dissolved sulphate. To better depict the origin of the salinity we also analyzed a set of Nurra Triassic evaporites for mineralogical and isotopic composition. The brackish waters have Cl contents up to 2025 mg L-1 and the ratios between dissolved ions and chlorine, with the exception of the Br/Cl ratio, are not those expected on the basis of a simple mixing between rain water and seawater. The δ18O and δD data indicate that most of the waters are within the Regional Meteoric Water Line and the Global Meteoric Water Line supporting the idea that they are meteoric in origin. A relevant consequence of the

  5. Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean.

    Science.gov (United States)

    Lambs, Luc; Mangion, Perrine; Mougin, Eric; Fromard, François

    2016-01-30

    The functioning of mangrove forests found on small coralline islands is characterized by limited freshwater inputs. Here, we present data on the water cycling of such systems located on Europa and Juan de Nova Islands, Mozambique Channel. In order to better understand the water cycle and mangrove growth conditions, we have analysed the hydrological and salinity dynamics of the systems by gauge pressure and isotopic tracing (δ18O and δ2H values). Both islands have important seawater intrusion as measured by the water level change and the high salinities in the karstic ponds. Europa Island displays higher salinity stress, with its inner lagoon, but presents a pluri-specific mangrove species formation ranging from shrub to forest stands. No freshwater signal could be detected around the mangrove trees. On Juan de Nova Island, the presence of sand and detrital sediment allows the storage of some amount of rainfall to form a brackish groundwater. The mangrove surface area is very limited with only small mono-specific stands being present in karstic depression. On the drier Europa Island, the salinity of all the water points is equal to or higher than that of the seawater, and on Juan de Nova the groundwater salinity is lower (5 to 20 PSU). This preliminary study shows that the karstic pothole mangroves exist due to the sea connection through the fractured coral and the high tidal dynamics.

  6. Crescimento inicial do cafeeiro irrigado com água salina e salinização do solo Initial growth of coffee plants irrigated with saline water and soil salinization

    Directory of Open Access Journals (Sweden)

    Vladimir B. Figueirêdo

    2006-03-01

    Full Text Available A cultura do cafeeiro (Coffea arabica L. vem-se expandindo para regiões ainda pouco exploradas, em que o uso da irrigação com água salina possa ser fator limitante. Nesse contexto, avaliou-se o crescimento inicial do cafeeiro, conduzido em casa de vegetação do Departamento de Engenharia da Universidade Federal de Lavras (UFLA, submetendo-o a níveis crescentes de salinidade da água de irrigação. O delineamento utilizado foi inteiramente casualizado com 6 tratamentos (S0 = 0,0 dS m-1, S1 = 0,6 dS m-1, S2 = 1,2 dS m-1, S3 = 1,8 dS m-1, S4 = 2,4 dS m-1 e S5 = 3,0 dS m-1 e 4 repetições. A reposição de água foi realizada com base na curva característica do solo, pela leitura da tensão de água por blocos de resistência, retornando o conteúdo de água à capacidade de campo. Verificou-se que os tratamentos influenciaram significativamente as características da planta e que a salinidade da água a partir de 1,2 dS m-1 prejudicou o crescimento e, em alguns casos, provocou a morte das plantas. A área foliar foi a variável mais prejudicada. Ao final do experimento o solo foi classificado como salino-sódico.The coffee crop is expanding to new areas with not enough studies about its response to saline irrigation water. The initial growth of coffee plant was evaluated, in greenhouse at the Engineering Department of the Federal University of Lavras (UFLA, under different levels of irrigation water salinity. The completely randomized design was used with 6 treatments (S0 = 0.0 dS m-1, S1 = 0.6 dS m-1, S2 = 1.2 dS m-1, S3 = 1.8 dS m-1, S4 = 2.4 dS m-1 and S5 = 3.0 dS m-1 and 4 replications. The irrigation was accomplished according to soil water retention curve and resistance block reading, restoring the soil water content to its field capacity. It was verified that water salinity affected the plants characteristics significantly. The water salinity above 1.2 dS m-1 caused damage to plant development resulting, in some cases, in death of

  7. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    Directory of Open Access Journals (Sweden)

    M. Sarai Tabrizi

    2016-10-01

    Full Text Available Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil response to salinity and to evaluate the effectiveness of available mathematical models for the yield estimation of the Basil . Materials and Methods: The extensive experiments were conducted with 13 natural saline water treatments including 1.2, 1.8, 2, 2.2, 2.5, 2.8, 3, 3.5, 4, 5, 6, 8, and 10 dSm-1. Water salinity treatments were prepared by mixing Shoor River water with fresh water. In order to quantify the salinity effect on Basil yield, seven mathematical models including Maas and Hoffman (1977, van Genuchten and Hoffman (1984, Dirksen and Augustijn (1988, and Homaee et al., (2002 were used. One of the relatively recent methods for soil water content measurements is theta probes instrument. Theta probes instrument consists of four probes with 60 mm long and 3 mm diameter, a water proof container (probe structure, and a cable that links input and output signals to the data logger display. The advantages that have been attributed to this method are high precision and direct and rapid measurements in the field and greenhouse. The range of measurements is not limited like tensiometer and is from saturation to wilting point. In this study, Theta probes instrument was calibrated by weighing method for exact irrigation scheduling. Relative transpiration was calculated using daily soil water content changes. A coarse sand layer with 2 centimeters thick was used to decrease evaporation from the surface soil of the pots. Quantity comparison of the used models was done

  8. Plant-Microbe Interactions and Water Management in Arid and Saline Soils

    KAUST Repository

    Daffonchio, Daniele; Hirt, Heribert; Berg, Gabriele

    2014-01-01

    Drought and salinity are major factors limiting agriculture in many regions in the world, and their importance is predicted to even increase in the near future in parallel with the ongoing global warming and climate changes. Soil and rhizosphere microbes are potential resources for counteracting such abiotic stresses in plants. The knowledge on the roles of root microorganisms in retaining soil humidity and promoting plant growth under such abiotic stresses is analyzed in this chapter. The importance of microbial diversity in the rhizosphere for alleviating drought and salinity effects on the plant physiology is discussed in the light of “Desert Farming”, the general crop management practice that is frequently used in arid regions. The plant growth promoting functional services exerted by microorganisms within the rhizosphere in arid soils are presented in relation to the plant response under water stress.

  9. Plant-Microbe Interactions and Water Management in Arid and Saline Soils

    KAUST Repository

    Daffonchio, Daniele

    2014-12-05

    Drought and salinity are major factors limiting agriculture in many regions in the world, and their importance is predicted to even increase in the near future in parallel with the ongoing global warming and climate changes. Soil and rhizosphere microbes are potential resources for counteracting such abiotic stresses in plants. The knowledge on the roles of root microorganisms in retaining soil humidity and promoting plant growth under such abiotic stresses is analyzed in this chapter. The importance of microbial diversity in the rhizosphere for alleviating drought and salinity effects on the plant physiology is discussed in the light of “Desert Farming”, the general crop management practice that is frequently used in arid regions. The plant growth promoting functional services exerted by microorganisms within the rhizosphere in arid soils are presented in relation to the plant response under water stress.

  10. Saline-boron stress in northern Chile olive accessions: water relations, B and Cl contents and impact on plant growth

    OpenAIRE

    Escobar, Hugo; Lara, Nelson; Zapata, Yubinza; Urbina, Camilo; Rodriguez, Manuel; Figueroa, Leonardo

    2013-01-01

    H. Escobar, N. Lara, Y. Zapata, C. Urbina, M. Rodriguez, and L. Figueroa. 2013. Saline-boron stress in northern Chile olive accessions: water relations, B and Cl contents and impact on plant growth. Cien. Inv. Agr. 40(3): 597-607. The objective of this study was to analyze the effect of saline-boron stress on the vegetative growth, dry leaf weight, water potential (Ψw), relative water content, and leaf and root B and Cl- contents in 8 accessions of olive. Rooted one-year-old plants were culti...

  11. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    OpenAIRE

    M. Sarai Tabrizi; H. Babazadeh; M. Homaee; F. Kaveh Kaveh; M. Parsinejad

    2016-01-01

    Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil respon...

  12. Benthic communities in inland salinized waters with different salinities and nutrient concentrations and the ecology of Chironomus aprilinus (Diptera: Chironomidae) in the Czech Republic.

    Czech Academy of Sciences Publication Activity Database

    Matěna, Josef; Šímová, I.; Brom, J.; Novotná, K.

    2016-01-01

    Roč. 113, January (2016), s. 122-129 E-ISSN 1802-8829 Institutional support: RVO:60077344 Keywords : Diptera * Chironomidae * Chironomus aprilinus * coal mining * hydric restoration * saline inland waters * fertilization Subject RIV: EH - Ecology, Behaviour Impact factor: 1.167, year: 2016

  13. Estimating the burden of illness in an Ontario community with untreated drinking water and sewage disposal problems.

    Science.gov (United States)

    Chambers, L W; Shimoda, F; Walter, S D; Pickard, L; Hunter, B; Ford, J; Deivanayagam, N; Cunningham, I

    1989-01-01

    The Hamilton-Wentworth regional health department was asked by one of its municipalities to determine whether the present water supply and sewage disposal methods used in a community without piped water and regional sewage disposal posed a threat to the health of its residents. Three approaches were used: assessments by public health inspectors of all households; bacteriological and chemical analyses of water samples; and completion of a specially designed questionnaire by residents in the target community and a control community. 89% of the 227 residences in the target community were found to have a drinking water supply that, according to the Ministry of Environment guidelines, was unsafe and/or unsatisfactory. According to on-site inspections, 32% of households had sewage disposal problems. Responses to the questionnaire revealed that the target community residents reported more symptoms associated with enteric infections due to the water supply. Two of these symptoms, diarrhea and stomach cramps, had a relative risk of 2.2 when compared to the control community (p less than 0.05). The study was successfully used by the municipality to argue for provincial funding of piped water.

  14. Salinity of deep groundwater in California: Water quantity, quality, and protection

    Science.gov (United States)

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  15. Impact of Unconventional Shale Gas Waste Water Disposal on Surficial Streams

    Science.gov (United States)

    Cozzarelli, I.; Akob, D.; Mumford, A. C.

    2014-12-01

    The development of unconventional natural gas resources has been rapidly increasing in recent years, however, the environmental impacts and risks are not yet well understood. A single well can generate up to 5 million L of produced water (PW) consisting of a blend of the injected fluid and brine from a shale formation. With thousands of wells completed in the past decade, the scope of the challenge posed in the management of this wastewater becomes apparent. The USGS Toxic Substances Hydrology Program is studying both intentional and unintentional releases of PW and waste solids. One method for the disposal of PW is underground injection; we are assessing the potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in the Wolf Creek watershed in WV. Disposal of PW via injection begun in 2002, with over 5.5 mil. L of PW injected to date. The facility consists of the injection well, a tank farm, and two former holding ponds (remediated in early 2014) and is bordered by two small tributaries of Wolf Creek. Water and sediments were acquired from these streams in June 2014, including sites upstream, within, and downstream from the facility. We are analyzing aqueous and solid phase geochemistry, mineralogy, hydrocarbon content, microbial community composition, and potential toxicity. Field measurements indicated that conductivity downstream (416 μS/cm) was elevated in comparison to upstream (74 μS/cm) waters. Preliminary data indicated elevated Cl- (115 mg/L) and Br- (0.88 mg/L) concentrations downstream, compared to 0.88 mg/L Cl- and impacting nearby streams. In addition, total Fe concentrations downstream were 8.1 mg/L, far in excess of the 0.13 mg/L found upstream from the facility, suggesting the potential for microbial Fe cycling. We are conducting a broad suite of experiments to assess the potential for microbial metabolism of the organic components of PW, and to determine the effects of this metabolism on the

  16. Method for measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1986-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)p 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is determined

  17. Questions on geology in connection with final radioactive waste disposal in the Fennoscandian Shield

    International Nuclear Information System (INIS)

    Bjoerklund, A.

    1990-01-01

    The use of nuclear power involves handling and disposal of radioactive waste. A number of methods for disposal have been proposed, one of which is the construction of repositories in crystalline bedrock of old continental crust. This possibility is usually considered reliable because of the relative stability of such bedrock. The Fennoscandian area has repeatedly been glaciated during the past 3 mission years. The last glacial event terminated some 10 000 years ago. This glacial ''massage'' has maintained a dense network of fractures and faults open for circulating water and ascending gas. Blocks of relatively unfractured bedrock have been proposed as suitable sites for the disposal of nuclear waste. Such questions concern neotectonic activity, the movement, salt content and amount of water at a few hundred metres depth, the mobility of elements in the bedrock as well as the geological processes which might be active beneath any future ice cap. Deep groundwaters, dating of young fracture minerals and neotectonic movements have been studied during 1985 - 1989 in a Nordic reserach program sponsored by NKA, the Nordic Liaison Committee for Atomic Energy. Deep saline groundwaters may have a negative effect on repositories of nuclear waste and the knowledge of the location of such waters may also give a hint as to the pattern of water movement in the bedrock. Therefore the composition, origin and location of deep groundwaters were studied. The development of faults in the bedrock through a site of waste disposal before the radioactivity in the waste has decayed to a safe level is considered a serious risk factor. Neotectonic movements have mostly followed old faults and fracture zones in the bedrock, which repeatedly have been reactivated during geological time, leaving blocks between the faults tectonically undisturbed. (CLS) 80 refs

  18. Implications of salinity pollution hotspots on agricultural production

    Science.gov (United States)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  19. Drinking Water Sodium and Elevated Blood Pressure of Healthy Pregnant Women in Salinity-Affected Coastal Areas.

    Science.gov (United States)

    Scheelbeek, Pauline F D; Khan, Aneire E; Mojumder, Sontosh; Elliott, Paul; Vineis, Paolo

    2016-08-01

    Coastal areas in Southeast Asia are experiencing high sodium concentrations in drinking water sources that are commonly consumed by local populations. Salinity problems caused by episodic cyclones and subsequent seawater inundations are likely (partly) related to climate change and further exacerbated by changes in upstream river flow and local land-use activities. Dietary (food) sodium plays an important role in the global burden of hypertensive disease. It remains unknown, however, if sodium in drinking water-rather than food-has similar effects on blood pressure and disease risk. In this study, we examined the effect of drinking water sodium on blood pressure of pregnant women: increases in blood pressure in this group could severely affect maternal and fetal health. Data on blood pressure, drinking water source, and personal, lifestyle, and environmental confounders was obtained from 701 normotensive pregnant women residing in coastal Bangladesh. Generalized linear mixed regression models were used to investigate association of systolic and diastolic blood pressure of these-otherwise healthy-women with their water source. After adjustment for confounders, drinkers of tube well and pond water (high saline sources) were found to have significantly higher average systolic (+4.85 and +3.62 mm Hg) and diastolic (+2.30 and +1.72 mm Hg) blood pressures than rainwater drinkers. Drinking water salinity problems are expected to exacerbate in the future, putting millions of coastal people-including pregnant women-at increased risk of hypertension and associated diseases. There is an urgent need to further explore the health risks associated to this understudied environmental health problem and feasibility of possible adaptation strategies. © 2016 American Heart Association, Inc.

  20. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India.

    Science.gov (United States)

    Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C

    2012-08-01

    This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

  1. Effects of water salinity and nitrogen fertilization on the growth and yield of ‘BRS Gabriela’ castor beans

    Directory of Open Access Journals (Sweden)

    João Batista dos Santos

    2016-10-01

    Full Text Available The castor bean has attracted the attention of many farmers as an alternative crop for the National Program of Biofuel and its extensive use in the ricinochemical industry. The crop requires large planting areas to meet the demands of the fuel market. The aim of the present study was to evaluate the effects of irrigation water salinity and nitrogen fertilization on the growth and production of castor beans, ‘BRS Gabriela’, in a protected environment. The present study was conducted at the Center of Technology and Natural Resources of the Federal University of Campina Grande. The experimental design was completely randomized in a 5 × 4 factorial with three replications and one plant per plot. The treatments consisted of irrigation water with five electrical conductivity (ECw levels of 0.7, 1.7, 2.7, 3.7, and 4.7 dS m-1 associated with four nitrogen levels of 60, 80, 100, and 120 mg of N kg-1 of soil. The interaction between water salinity and nitrogen rates did not exert significant effects on the variables studied. Increased salinity of irrigation water affected the growth in height and stem diameter of castor beans in all periods, and leaf area from 90 days after sowing. Increased nitrogen levels had a positive effect on leaf area at 60, 90, 120, and 150 days after sowing. The total mass of seeds, one hundred seed mass, yield, and number of fruits per plant decreased with the increase in water salinity, and the total mass of seeds was the most affected variable.

  2. Origin of water salinity in the coastal Sarafand aquifer (South-Lebanon)

    International Nuclear Information System (INIS)

    Hashash, Adnan; Aranyossy, J.F.

    1996-01-01

    Author.The geochemical and isotopic study, based on the analysis of twenty water samples from well in the coastal plain of Sarafand (South-Lebanon), permit to eliminate the hypothesis of marine intrusion in this aquifer. The increase of salinity observed in certain wells is due to the contamination of cretaceous aquifer water by the quaternary formations. The two poles of mixing are respectively characterized: by weak tritium contents (between 2 and 3 UT) and a value of stable isotopes (-5,9<0,18<-5,5) corresponding to the appearance of cretaceous formation area; by the high tritium contents and enrichment relative to heavy isotope in the mineralized water of superficial formations. On the other hand, the isotope contents permit the set a rapid renewal of the cretaceous aquifer water due to quick circulation in the Karstic system

  3. Basic reasons and the practice of using deep water-bearing levels for liquid radioactive waste disposal

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    1978-01-01

    Speculations are presented on the development and organization of liquid radioactive waste underground disposal in deep water-bearing levels completely isolated from other levels and the surface. Major requirements are formulated that are laid down to low-, moderate-and high-radioactive wastes subject to the disposal. Geological and hydrological conditions as well as the scheme and design features of pilot field facilities are described, where works on high-active waste disposal were started in 1972. In 1972 and 1973 450 and 1050 m 3 of the wastes (7.5 and 53 MCi) respecrespectively were disposed. The first results of the pilot disposal and the 3-year surveillance over the plate-collector condition and the performance of the facilities have reaffirmed the feasibility, medical and radiation safety and economic attractiveness of the disposal of wastes with up to 10-25 Ci/l specific activity

  4. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Energy Technology Data Exchange (ETDEWEB)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-10-04

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (~3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO{sub 4} salts more soluble than gypsum. Irrigation with high SAR (24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  5. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Science.gov (United States)

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  6. Flow characteristics and salinity patterns of tidal rivers within the northern Ten Thousand Islands, southwest Florida, water years 2007–14

    Science.gov (United States)

    Booth, Amanda C.; Soderqvist, Lars E.

    2016-12-12

    Freshwater flow to the Ten Thousand Islands estuary has been altered by the construction of the Tamiami Trail and the Southern Golden Gate Estates. The Picayune Strand Restoration Project, which is associated with the Comprehensive Everglades Restoration Plan, has been implemented to improve freshwater delivery to the Ten Thousand Islands estuary by removing hundreds of miles of roads, emplacing hundreds of canal plugs, removing exotic vegetation, and constructing three pump stations. Quantifying the tributary flows and salinity patterns prior to, during, and after the restoration is essential to assessing the effectiveness of upstream restoration efforts.Tributary flow and salinity patterns during preliminary restoration efforts and prior to the installation of pump stations were analyzed to provide baseline data and preliminary analysis of changes due to restoration efforts. The study assessed streamflow and salinity data for water years1 2007–2014 for the Faka Union River (canal flow included), East River, Little Wood River, Pumpkin River, and Blackwater River. Salinity data from the Palm River and Faka Union Boundary water-quality stations were also assessed.Faka Union River was the dominant contributor of freshwater during water years 2007–14 to the Ten Thousand Islands estuary, followed by Little Wood and East Rivers. Pumpkin River and Blackwater River were the least substantial contributors of freshwater flow. The lowest annual flow volumes, the highest annual mean salinities, and the highest percentage of salinity values greater than 35 parts per thousand (ppt) occurred in water year 2011 at all sites with available data, corresponding with the lowest annual rainfall during the study. The highest annual flow volumes and the lowest percentage of salinities greater than 35 ppt occurred in water year 2013 for all sites with available data, corresponding with the highest rainfall during the study.In water year 2014, the percentage of monitored annual flow

  7. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    Science.gov (United States)

    Scheelbeek, Pauline FD; Chowdhury, Muhammad A H; Haines, Andy; Alam, Dewan S; Hoque, Mohammad A; Butler, Adrian P; Khan, Aneire E; Mojumder, Sontosh K; Blangiardo, Marta A G; Elliott, Paul; Vineis, Paolo

    2017-05-30

    Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659.

  8. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh

    Science.gov (United States)

    Chowdhury, Muhammad A.H.; Haines, Andy; Alam, Dewan S.; Hoque, Mohammad A.; Butler, Adrian P.; Khan, Aneire E.; Mojumder, Sontosh K.; Blangiardo, Marta A.G.; Elliott, Paul; Vineis, Paolo

    2017-01-01

    Background: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. Objectives: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. Methods: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from “conventional” ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. Results: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. Conclusions: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in “real-life” salinity-affected settings. https://doi.org/10.1289/EHP659 PMID:28599268

  9. Water balance at a low-level radioactive-waste disposal site

    Science.gov (United States)

    Healy, R.W.; Gray, J.R.; De Vries, G. M.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.

  10. Water balance at a low-level radioactive-waste disposal site

    International Nuclear Information System (INIS)

    Healy, R.W.; Gray, J.R.; de Vries, M.P.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site

  11. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Science.gov (United States)

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  12. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    Science.gov (United States)

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  14. Effects of land disposal of municipal sewage sludge on soil, streambed sediment, and ground- and surface-water quality at a site near Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Gaggiani, N.G.

    1991-01-01

    The report describes the effects of burial and land application of municipal sewage sludge on soil and streambed sediment and water quality in the underlying aquifers and surface water within and around the Lowry sewage-sludge-disposal area. The existing ground-water observation-well network at the disposal area was expanded for the study. Surface-water-sampling sites were selected so that runoff could be sampled from intense rainstorms or snowmelt. The sampling frequency for ground-water and surface-water runoff was changed from yearly to quarterly, and soil samples were collected. Four years of data were collected from 1984 to 1987 during the expanded monitoring program at the Lowry sewage-sludge-disposal area. These data, in addition to the data collected by the U.S. Geological Survey from 1981 to 1983, were used to determine effects of sewage-sludge-disposal on soil and streambed sediment and surface- and ground-water quality at the disposal area.

  15. Validation of AquaCrop Model for Simulation of Winter Wheat Yield and Water Use Efficiency under Simultaneous Salinity and Water Stress

    OpenAIRE

    M. Mohammadi; B. Ghahraman; K. Davary; H. Ansari; A. Shahidi

    2016-01-01

    Introduction: FAO AquaCrop model (Raes et al., 2009a; Steduto et al., 2009) is a user-friendly and practitioner oriented type of model, because it maintains an optimal balance between accuracy, robustness, and simplicity; and it requires a relatively small number of model input parameters. The FAO AquaCrop model predicts crop productivity, water requirement, and water use efficiency under water-limiting and saline water conditions. This model has been tested and validated for different crops ...

  16. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water

    KAUST Repository

    Zhong, Yujiang; Feng, Xiaoshuang; Chen, Wei; Wang, Xinbo; Huang, Kuo-Wei; Gnanou, Yves; Lai, Zhiping

    2015-01-01

    (trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56°C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a

  17. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    Science.gov (United States)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  18. Ra-226 and Rn-222 in saline water compartments of the Aral Sea region

    International Nuclear Information System (INIS)

    Schettler, Georg; Oberhänsli, Hedi; Hahne, Knut

    2015-01-01

    Highlights: • 222 Rn and 226 Ra concentrations in different water compartments of the Aral Sea region. • 226 Ra-analysis based on 222 Rn-ingrowth versus MS-analysis after solid-phase extraction. • 226 Ra in different groundwater types of the Aral Sea Basin. • 222 Rn distribution in the Aral Sea, western basin. - Abstract: The Aral Sea has been shrinking since 1963 due to extensive irrigation and the corresponding decline in the river water inflow. Understanding of the current hydrological situation demands an improved understanding of the surface water/groundwater dynamics in the region. 222 Rn and 226 Ra measurements can be used to trace groundwater discharge into surface waters. Data of these radiometric parameters were not previously available for the study region. We determined 222 Rn activities after liquid phase extraction using Liquid Scintillation Counting (LSC) with peak-length discrimination and analyzed 226 Ra concentrations in different water compartments of the Amu Darya Delta (surface waters, unconfined groundwater, artesian water, and water profiles from the closed Large Aral Sea (western basin). The water samples comprise a salinity range between 1 and 263 g/l. The seasonal dynamics of solid/water interaction under an arid climate regime force the hydrochemical evolution of the unconfined groundwater in the Amu Darya Delta to high-salinity Na(Mg)Cl(SO 4 ) water types. The dissolved radium concentrations in the waters were mostly very low due to mineral over-saturation, extensive co-precipitation of radium and adsorption of radium on coexisting solid substrates. The analysis of very low 226 Ra concentrations (<10 ppq) at remote study sites is a challenge. We used the water samples to test and improve different analytical methods. In particular, we modified a procedure developed for the α-spectrometric determination of 226 Ra after solid phase extraction of radium using 3M Empore™ High Performance Extraction Disks (Purkl, 2002) for the

  19. Effectiveness of inorganic and organic mulching for soil salinity and sodicity control in a grapevine orchard drip-irrigated with moderately saline waters

    Directory of Open Access Journals (Sweden)

    Ramón Aragüés

    2014-05-01

    Full Text Available Soil mulching is a sensible strategy to reduce evaporation, accelerate crop development, reduce erosion and assist in weed control, but its efficiency for soil salinity control is not as well documented. The benefits of inorganic (plastic and organic (grapevine pruning residues mulching for soil salinity and sodicity control were quantified in a grapevine orchard (cultivars ‘Autumn’ Royal and ‘Crimson’ drip-irrigated with moderately saline waters. Soil samples were taken at the beginning and end of the 2008 and 2009 irrigation seasons in six vines of each cultivar and mulching treatment. Soil saturation extract electrical conductivity (ECe, chloride (Cle and sodium adsorption ratio (SARe values increased in all treatments of both grapevines along the irrigation seasons, but the increases were much lower in the mulched than in the bare soils due to reduced evaporation losses and concomitant decreases in salt evapo-concentration. The absolute salinity and sodicity daily increases in ‘Autumn’ and ‘Crimson’ 2008 and in ‘Crimson’ 2009 were on the average 44% lower in the plastic and 76% lower in the organic mulched soils than in the bare soil. The greater efficiency of the organic than the plastic mulch in ‘Crimson’ 2009 was attributed to the leaching of salts by a precipitation of 104 mm that infiltrated the organic mulch but was intercepted by the plastic mulch. Although further work is needed to substantiate these results, the conclusion is that the plastic mulch and, particularly, the organic mulch were more efficient than the bare soil for soil salinity and sodicity control.

  20. Viral tracer studies indicate contamination of marine waters by sewage disposal practices in key largo, Florida.

    Science.gov (United States)

    Paul, J H; Rose, J B; Brown, J; Shinn, E A; Miller, S; Farrah, S R

    1995-06-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys.

  1. Comportamento morfofisiológico da mamoneira BRS Energia submetida à irrigação com água salina Morphophysiological behavior of castor bean BRS Energia submitted to irrigation with saline water

    Directory of Open Access Journals (Sweden)

    João B. dos Santos

    2013-02-01

    Full Text Available Um experimento foi conduzido na estação experimental de Irrigação e Drenagem do Instituto Federal Baiano, para avaliar o crescimento da mamoneira BRS Energia, em função da salinidade da água de irrigação, em sistema de lisimetria. Os tratamentos foram constituídos dos níveis de salinidade da água de 0,12; 0,8; 1,6; 2,4; 3,2; 4,0 e 4,8 dS m-1, dispostos em delineamento inteiramente casualizado, com três repetições e quatro plantas por tratamento. Quinzenalmente foram avaliados, dos 20 até os 80 dias após a emergência, o crescimento e as taxas de crescimento absoluto e relativo da altura de plantas, diâmetro do caule e a área foliar das plantas. O crescimento avaliado pela altura, diâmetro do caule, área foliar e as taxas de crescimento absoluto e relativo de cada variável, diminuíram com o aumento da salinidade da água de irrigação, em todos os períodos estudados. As inibições foram respostas da elevação do nível salino do solo de não salino, para ligeiramente, moderadamente e fortemente salino.An experiment was conducted at the experimental station of Irrigation and Drainage of the Instituto Federal Baiano, to evaluate the growth variables of the castor bean BRS Energia as a function of salinity of irrigation water in lysimeters. The treatments were constituted of water salinity levels of 0.12; 0.8; 1.6; 2.4; 3.2; 4.0 and 4.8 dS m-1, disposed in a completely randomized design, with three replications and four plants per treatment. Fortnightly from 20 to 80 days after emergence, the growth variables and the absolute and relative growth rates of plant height, stem diameter and leaf area of plants were evaluated. The growth measured by height, stem diameter, leaf area and the rates of absolute and relative growth of each variable, decreased with increase in irrigation water salinity in all periods. The restrictions were in response to increase in soil salinity levels from non saline soil to slightly, moderately and

  2. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy

    Science.gov (United States)

    Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R.

    2013-07-01

    Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water-rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L-1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are

  3. Spatial and Temporal Distribution of Sea Surface Salinity in Coastal Waters of China Based on Aquarius

    International Nuclear Information System (INIS)

    Wang, Ying; Jiang, Hong; Zhang, Xiuying; Jin, Jiaxin

    2014-01-01

    Sea surface salinity (SSS) is a fundamental parameter for the study of global ocean dynamics, water cycle, and climate variability. Aquarius launched by NASA and the Space Agency of Argentina is a breakthrough which could achieve the remote sensing data of SSS. The present paper takes the coastal of China as study area, which is a representative area of ocean boundary and influenced by continental rivers (Yangtze River and Pearl River). After analyze the temporal and spatial variation of SSS in the coastal of China, the estuary area has obvious low salinity because the injected of freshwater from continent. Take the East China Sea (ECS) and South China Sea (SCS) as representative region to discuss the effect of freshwater to SSS. The salinity is almost equal in winter when the diluted water is inadequate in both rivers. However, an obvious decrease appeared in summer especial July in Yangtze River for abundance discharge inflow the ECS. This is a reasonable expression of Yangtze River discharge is remarkable influence the SSS in coastal area then Pearl River. Survey the distribution range of Yangtze River diluted water (SSS<31psu). The range is small in winter and expands to peak value in summer

  4. The significance of natural ground-water recharge in site selection for mill tailings disposal

    International Nuclear Information System (INIS)

    Stephens, D.B.

    1985-01-01

    Milling operations throughout the world have created vast amounts of waste by-products, or tailings, which are often disposed on the land surface. The wastes may be disposed behind dams, on untreated ground, or on compacted clay or synthetic liners of impoundments and trenches. Often one of the principle concerns of environmental regulatory agencies is whether seepage from the waste pile could move through the vadose zone to the water table and possibly contaminate an aquifer. The seepage may be generated by the drainage of liquids initially deposited along with the tailings or by infiltrating meteoric water which leaches soluted from the tailings. The purpose of this article is to discuss some of the commonly held assumptions regarding storage of seepage wastes in the unsaturated zone. The significance of recent studies of water movement in dry climates which pertain to tailings site selection are presented

  5. Implications of stillage land disposal: a critical review on the impacts of fertigation.

    Science.gov (United States)

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2014-12-01

    Stillage is the main wastewater from ethanol production, generated specifically in the step of distillation. Regardless the feedstock, stillage contains high concentrations of organic matter, potassium and sulfates, as well as acidic and corrosive characteristics. Currently almost the entire volume of stillage generated in Brazilian distilleries is directed to the fertigation of sugarcane fields, due to its fertilizer character. However, the polluting potential of stillage characterizes its land disposal as problematic, considering probable negative impacts on the soil structure and water resources in case of excessive dosages. Since the literature lacks critical content describing clearly the cons related to the reuse of stillage in agriculture in the long-term, this review aimed to assess the real polluting potential of stillage, and the implications of its land disposal and/or discharge into water bodies. Evidence from the literature indicate that the main obstacles to reuse stillage in natura include risks of soil salinization; clogging of pores, reduction in the microbial activity and the significant depletion of dissolved oxygen concentrations in water bodies; contamination per nitrates and eutrophication; soil structure destabilization due to high concentrations of potassium and sodium; and, possible acidification of soil and water resources, considering the low pH of stillage (∼4,5). Toxic metals, such as cadmium, lead, copper, chromium and nickel, were also identified in concentrations above the recommended limits in stillage samples, increasing risks to human health (e.g. carcinogenic potential) and to crops (e.g. productivity loss). In short, although some studies report benefits from the land application of stillage, its treatment prior to disposal is essential to make fertigation an environmentally suitable practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effect of saline water on growth, yield and N2 fixation by faba bean and lentil plants using nitrogen-15

    International Nuclear Information System (INIS)

    Gadalla, A.M.; Galal, Y.G.M.; Elakel, E.A.; Ismail, H.; Hamdy, A.

    2003-01-01

    This work had been carried out under greenhouse conditions through joint research project between international agronomic mediterranean (IAM, Bari), italy and soils and water dept., Egyptian atomic energy authority. The aim of this dy was to assess the effect of saline water irrigation on growth, yield and nitrogen fixation (% Ndfa) by faba bean and lentil plants inoculated with selected rhizobium strains. Four saline irrigation water levels (fresh water, 3.6 and ds/m) were used. 20 kg N/ha as ammonium sulfate contained 10% N-15 atom excess was applied for quantification of biological N-fixation N-portions derived from fertilizer (Ndff). Results showed that high levels of salinity negatively affected seed yield and N accumulated in tissue of faba bean. Similar trend was noticed with dry matter of lentil while shoot-N was increased at 6 and 9 ds/m. Both leguminous crops were mainly dependent on N 2 fixation as an important source of nitrogen nutrition. Under adverse conditions salinity, the plants gained some of their N requirements from the other two N sources (Ndff and Ndfs). Application of the suitable Rhizobium bacteria strains could be beneficial for both the plant growth and soil fertility via N 2 fixation

  7. Disposing of coal combustion residues in inactive surface mines: Effects on water quality

    International Nuclear Information System (INIS)

    Kim, A.G.; Ackman, T.E.

    1994-01-01

    The disposal of coal combustion residues (CCR) in surface and underground coal mines can provide a stable, low-maintenance alternative to landfills, benefiting the mining and electric power industries. The material may be able to improve water quality at acid generating abandoned or reclaimed coal mine sites. Most combustion residues are alkaline, and their addition to the subsurface environment could raise the pH, limiting the propagation of pyrite oxidizing bacteria and reducing the rate of acid generation. Many of these CCR are also pozzolanic, capable of forming cementitious grouts. Grouts injected into the buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. Both mechanisms, alkaline addition and water diversion, are capable of reducing the amount of acid produced at the disposal site. The US Bureau of Mines is cooperating in a test of subsurface injection of CCR into a reclaimed surface mine. Initially, a mixture of fly ash, lime, and acid mine drainage (AMD) sludge was injected. Lime was the source of calcium for the formation of the pozzolanic grout. Changes in water quality parameters (pH, acidity, anions, and trace metals) in water samples from wells and seeps indicate a small but significant improvement after CCR injection. Changes in the concentration of heavy metals in the water flowing across the site were apparently influenced by the presence of flyash

  8. Evolution of anomalies of salinity of surface waters of Arctic Ocean and their possible influence on climate changes

    Science.gov (United States)

    Popov, A.; Rubchenia, A.

    2009-04-01

    Numerous of model simulations of ice extent in Arctic Ocean predict almost full disappearance of sea ice in Arctic regions by 2050. However, the nature, as against models, does not suffer the unidirectional processes. By means of various feedback responses system aspires to come in an equilibrium condition. In Arctic regions one of the most powerful generators of a negative feedback is the fresh-water stream to Greenland Sea and Northern Atlantic. Increasing or decreasing of a fresh-water volume from the Arctic basin to Greenland Sea and Northern Atlantic results in significant changes in climatic system. At the Oceanology department of Arctic and Antarctic Research Institute (AARI) (St-Petersburg, Russia) in 2007, on the basis of the incorporated Russian-American database of the oceanographic data, reconstruction of long-term time series of average salinity of ocean surface was executed. The received time series describes the period from 1950 to 1993. For allocation of the processes determining formation of changes of average salinity of surface waters in Arctic basin the correlation analysis of interrelation of the received time series and several physical parameters which could affect formation of changes of salinity was executed. We found counter-intuitive result: formation of long-term changes of average salinity of surface waters of Arctic basin in the winter period does not depend on changes of a Siberian rivers runoff. Factors of correlation do not exceed -0,31. At the same time, clear inverse relationship of salinity of surface waters from volumes of the ice formed in flaw lead polynyas of the Siberian shelf seas is revealed. In this case factors of correlation change from -0,56 to -0,7. The maximum factor of correlation is -0,7. It characterizes interrelation of total volume of the ice formed in flaw lead polynyas of all seas of the Siberian shelf and average salinity of surface waters of Arctic basin. Thus, at increase of volumes of the ice formed in

  9. Salinity and resource management in the Hunter Valley

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Cooke, R.; Simons, M. [RA Creelman & Associates (Australia)

    1995-08-01

    If excess water salinity is to be managed in the Hunter Valley, its causes and behaviour must be understood. Although Hunter Valley hydrology, hydrogeology and hydrogeochemistry require further study, there is now enough information available to begin the development of both temporal and spatial models as valley management tools. Currently the Department of Water Resources is developing a model known as Integrated Water Quality and Quantity Model (IQQM). IQQM which includes a salinity module is essentially a surface water simulation model. It wll enable testing of alternate management and operation policies such as the salinity property rights trading scheme recently introduced by the EPA to manage salt release from coal mines and power stations. An overview is presented of the progress made to date on the salinity module for IQQM, and an outline is given of the geological and hydrogeochemical concepts that have been assembled to support the salinity module of IQQM. 17 refs., 3 figs., 1 tab.

  10. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis

    International Nuclear Information System (INIS)

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-01-01

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54 psu) compared with seawater controls (37 psu) over 6 weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2–4 weeks at 54 psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. - Highlights: • We separated salt effects of desalination brine from other deleterious components. • Sublethal salinity stress depended on both salinity increase and exposure time. • Very effective osmoregulation led to tolerance of short intervals of high salinity.

  11. Urbanization accelerates long-term salinization and alkalinization of fresh water

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Doody, T.; Haq, S.; Smith, R. M.; Newcomer Johnson, T. A.; Delaney Newcomb, K.; Gorman, J. K.; Bowman, N.; Mayer, P. M.; Wood, K. L.; Belt, K.; Stack, W.

    2017-12-01

    Human dominated land-use increases transport a major ions in streams due to anthropogenic salts and accelerated weathering. We show long-term trends in calcium, magnesium, sodium, alkalinity, and hardness over 50 years in the Baltimore metropolitan region and elsewhere. We also examine how major ion concentrations have increased significantly with impervious surface cover in watersheds across land use. Base cations show strong relationships with acid anions, which illustrates the coupling of major biogeochemical cycles in urban watersheds over time. Longitudinal patterns in major ions can also show increasing trends from headwaters to coastal waters, which suggests coupled biogeochemical cycles over space. We present new results from manipulative experiments and long-term monitoring across different urban regions regarding patterns and processes of salinization and alkalinization. Overall, our work demonstrates that urbanization dramatically increases major ions, ionic strength, and pH over decades from headwaters to coastal waters, which impacts the integrity of aquatic life, infrastructure, drinking water, and coastal ocean alkalinization.

  12. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    G. Mongelli

    2013-07-01

    Full Text Available Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr, in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the

  13. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  14. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis.

    Science.gov (United States)

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-02-15

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Do cold, low salinity waters pass through the Indo-Sri Lanka Channel during winter?

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, R.R.; Girishkumar, M.S.; Ravichandran, M.; Gopalakrishna, V.V.; Pankajakshan, T.

    cooler, low-salinity waters from the head Bay of Bengal (BoB) into the south-eastern AS. But due to a lack of any direct in situ measurements, it is not clear whether any part of this current that flows through the Indo-Sri Lanka Channel (ISLC...

  16. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Krupka, K.M.; Serne, R.J.

    1998-05-01

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to model pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments

  17. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Serne, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-05-01

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to model pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments.

  18. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1931 to 1955

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1931 to 1955 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  19. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1912 to 1930

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1912 to 1930 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  20. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1956 to 1980

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1956 to 1980 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  1. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1981 to 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1981 to 2005 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  2. Studies of marine macroalgae: saline desert water cultivation and effects of environmental stress on proximate composition. Final subcontract report. [Gracilaria tikvahiae; Ulva lactuca

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; DeBusk, T.A.; Peterson, J.E.

    1985-11-01

    The results presented in this report address the growth potential of marine macroalgae cultivated in desert saline waters, and the effects of certain environmental stresses (e.g., nitrogen, salinity, and temperature) on the proximate composition of several marine macroalgae. Two major desert saline water types were assayed for their ability to support the growth of Gracilaria, Ulva, and Caulerpa. Both water types supported short term growth, but long term growth was not supported. Carbohydrate levels in Gracilaria were increased by cultivation under conditions of high salinity, low temperature, and low nitrogen and phosphorous availability. Data suggests that it may be possible to maximize production of useful proximate constituents by cultivating the algae under optimum conditions for growth, and then holding the resulting biomass under the environmental conditions which favor tissue accumulation of the desired storage products. 16 refs., 21 figs., 19 tabs.

  3. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell.

    Science.gov (United States)

    Sales, B B; Saakes, M; Post, J W; Buisman, C J N; Biesheuvel, P M; Hamelers, H V M

    2010-07-15

    The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potential of this resource, the controlled mixing of river and seawater, is enormous, but existing conversion technologies are still complex and expensive. Here we present a small-scale device that directly generates electrical power from the sequential flow of fresh and saline water, without the need for auxiliary processes or converters. The device consists of a sandwich of porous "supercapacitor" electrodes, ion-exchange membranes, and a spacer and can be further miniaturized or scaled-out. Our results demonstrate that alternating the flow of saline and fresh water through a capacitive cell allows direct autogeneration of voltage and current and consequently leads to power generation. Theoretical calculations aid in providing directions for further optimization of the properties of membranes and electrodes.

  4. Salinization mechanisms in semi-arid regions

    International Nuclear Information System (INIS)

    Santiago, M.M.F.

    1984-01-01

    During a period of three years the basins of the Pereira de Miranda and Caxitore dams, located in the crystalline rock area of Ceara, Brazil, were studied in order to determine the mechanisms of salinization of their waters. Isotope methods ( 18 O/ 16 O) and hidrochemistry (determination of the of the maior ions) were applied to surface, underground and rain water in this study. An isotope model was designed and applied to the determination of evaporation and percolation of dams in semi-arid zones during the dry season. The results are compared to those from a conventional chemical model. As causes of salinization of the water in the dams, the contributions of the rain itself and the lixiviation of the soil are quantified. An interaction between the dams and the underground water is imperceptible. The salinization of the underground water is attributed to recharge of the aquifer with rain water from the surface runoff followed by evaporation of the water rising, due to capilarity, in a one-directional flow to the surface. (Author) [pt

  5. Salinization and dilution history of ground water discharging into the Sea of Galilee, the Dead Sea Transform, Israel

    International Nuclear Information System (INIS)

    Bergelson, G.; Nativ, R.; Bein, A.

    1999-01-01

    The mechanism governing salinization of ground water discharging into the Sea of Galilee in Israel has been the subject of debate for several decades. Because the lake provides 25% of the water consumed annually in Israel, correct identification of the salt sources is essential for the establishment of suitable water-management strategies for the lake and the ground water in the surrounding aquifers. Existing salinization models were evaluated in light of available and newly acquired data including general chemistry, and O, H, C and Cl isotopes. Based on the chemical and isotopic observations, the proposed salt source is an ancient, intensively evaporated brine (21- to 33-fold seawater) which percolated through the valley formations from a lake which had formed in the Rift Valley following seawater intrusion during the late Miocene. Low Na:Cl and high Br:Cl values support the extensive evaporation, whereas high Ca:Cl and low Mg:Cl values indicate the impact of dolomitization of the carbonate host rock on the residual solution. Based on radiocarbon and other isotope data, the dilution of the original brine occurred in two stages: the first took place similar30andpuncsp; omitted000 a ago by slightly evaporated fresh-to-brackish lake water to form the Sea of Galilee Brine. The second dilution phase is associated with the current hydrological regime as the Sea of Galilee Brine migrates upward along the Rift faults and mixes with the actively circulating fresh ground water to form the saline springs. The spatially variable chemical and isotopic features of the saline springs suggest not only differential dilution by fresh meteoric water, but also differential percolation timing of the original brine into the tectonically disconnected blocks, registering different evaporation stages in the original brine. Consequently, various operations to reduce the brine contribution to the lake may be differentially effective in the various areas. (Copyright (c) 1999 Elsevier Science

  6. Porewater salinity and the development of swelling pressure in bentonite-based buffer and backfill materials

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.A. [Atomic Energy of Canada Limited (Canada)

    2000-06-01

    At the depths proposed for a nuclear fuel waste repository, it is likely that saline groundwater conditions will be encountered in the granitic rocks of Finland and Canada. The potential for saline groundwater to influence of the ability of bentonite-based buffer and backfilling materials to swell and thereby generate swelling pressure has been reviewed. Based on the data collected from existing literature, it would appear that porewater salinities as high as 100 g/l will not compromise the ability of confined, bentonite-based materials to develop a swelling pressure of at least 100 kPa on its confinement, provided the effective clay dry density (ECDD), exceeds approximately 0.9 Mg/m{sup 3}. At densities less than approximately 0.9 Mg/m{sup 3} the swelling pressure of bentonite-based materials may be reduced and become sensitive to salt concentration. The influence of porewater salinity on swelling pressure can be compared on the basis of the ECDD required to develop 100 kPa of swelling pressure. In order to generate 100 kPa of swelling pressure an ECDD of approximately 0.7 Mg/m{sup 3} is required to be present under fresh water or brackish porewater conditions. This density would need to be increased to approximately 0.9 Mg/m{sup 3} where the groundwater conditions were saline. The impact that groundwater salinity will have on density specifications for buffer and backfilling materials are discussed with reference to the nuclear fuel waste disposal concepts of Finland and Canada. (orig.)

  7. Characteristics of streams and aquifers and processes affecting the salinity of water in the upper Colorado River basin, Texas

    Science.gov (United States)

    Slade, R.M.; Buszka, P.M.

    1994-01-01

    The upper Colorado River and some of its tributaries between Lake J.B. Thomas and O.H. Ivie Reservoir contain saline water (defined as water having dissolved-solids concentrations greater than 1,000 milligrams per liter). Dissolved-solids loads at nine streamflow water-quality stations increased from 1986 to 1988. The largest increases were in Beals Creek and in the Colorado River downstream from Beals Creek as a result of outflow of saline water from Natural Dam Salt Lake. The outflow contained 654,000 tons of dissolved solids and had a mean dissolved-solids concentration of 7,900 milligrams per liter. This amount represents about 51 percent of the dissolved-solids load to E.V. Spence Reservoir during 1986-88.

  8. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  9. Saline agriculture: A technology for economic utilization and improvement of saline environments (abstract)

    International Nuclear Information System (INIS)

    Aslam, Z.; Malik, K.A.; Khurshid, S.J.; Awan, A.R.; Akram, M.; Hashmi, Z.; Ali, Y.; Gulnaz, A.; Hussain, M.; Hussain, F.

    2005-01-01

    The salinity problem is one of the severe constraints for agriculture in Pakistan. In a socio-economic and salinity and drainage survey over an area of about 25000 acres of salt-affected land recently, crop production is found to be very low. Livestock is underfed and malnourished. Pakistan has spent and allocated over one billion US dollars on Salinity Control and Reclamation Projects (SCARP), of course, with dubious results. Over the years, a Saline Agriculture Technology has been developed as a cheap alternative at NIAB for comfortably living with salinity and to profitably utilize saline land rather than its reclamation. The soil improvement is a fringe benefit in this approach. The Saline Agriculture Technology has been tested at laboratory level, at field stations and at farms of some progressive farmers. Now we are sharing this technology with farming communities through a 'Saline Agriculture Farmer Participatory Development Project in Pakistan', with assistance from the National Rural Support Programme. The new project has been launched simultaneously in all four provinces of Pakistan on 25000 acres of salt-affected land. Under this project seeds of salt tolerant crop varieties wheat, cotton, rice, castor, brassica and barley and saplings of trees/shrubs, e.g. Acacia ampliceps, A. nilotica, Casuarina glauca, ber, jaman, etc selected for development work in various institutions of Pakistan are being provided to farmers. Know-how on new irrigation techniques like bed-and-corrugation and bed-and-furrow, agronomic practices like laser land leveling, planting on beds and in auger holes and soil/water amendment practices (use of gypsum and mineral acids) are being shared with farmers. These interventions are quite efficient, save water up to 40% and enable farmers to utilize bad quality water. In general, farmers are being familiarized with prevalent animal diseases, nutritional problems and prophylactic techniques. They are being helped in developing Saline

  10. Seasonal distribution of temperature and salinity in the surface waters off South West Africa, 1972-1974

    National Research Council Canada - National Science Library

    O'Toole, M. J

    1980-01-01

    Monthly distribution charts of surface water temperature and salinity off the coast of South West Africa between Cape Frio and Hollams Bird Island are presented for the periods August 1972 to March...

  11. Investigating the pore-water chemistry effects on the volume change behaviour of Boom clay

    Science.gov (United States)

    Deng, Y. F.; Cui, Y. J.; Tang, A. M.; Nguyen, X. P.; Li, X. L.; Van Geet, M.

    The Essen site has been chosen as an alternative site for nuclear waste disposal in Belgium. The soil formation involved at this site is the same as at Mol site: Boom clay. However, owing to its geographical situation closer to the sea, Boom clay at Essen presents a pore water salinity 4-5 times higher than Boom clay at Mol. This study aims at studying the effects of pore water salinity on the hydro-mechanical behaviour of Boom clay. Specific oedometer cells were used allowing “flushing” the pore water in soil specimen by synthetic pore water or distilled water. The synthetic pore water used was prepared with the chemistry as that for the site water: 5.037 g/L for core Ess83 and 5.578 g/L for core Ess96. Mechanical loading was then carried out on the soil specimen after flushing. The results show that water salinity effect on the liquid limit is negligible. The saturation or pore water replacement under the in situ effective stress of 2.4 MPa does not induce significant volume change. For Ess83, hydro-mechanical behaviour was found to be slightly influenced by the water salinity; on the contrary, no obvious effect was identified on the hydro-mechanical behaviour of Ess96. This can be attributed to the higher smectite content in Ess83 than in Ess96.

  12. Disposal of Iodine-129

    International Nuclear Information System (INIS)

    Morgan, M.T.; Moore, J.G.; Devaney, H.E.; Rogers, G.C.; Williams, C.; Newman, E.

    1978-01-01

    One of the problems to be solved in the nuclear waste management field is the disposal of radioactive iodine-129, which is one of the more volatile and long-lived fission products. Studies have shown that fission products can be fixed in concrete for permanent disposal. Current studies have demonstrated that practical cementitious grouts may contain up to 18% iodine as barium iodate. The waste disposal criterion is based on the fact that harmful effects to present or future generations can be avoided by isolation and/or dilution. Long-term isolation is effective in deep, dry repositories; however, since penetration by water is possible, although unlikely, release was calculated based on leach rates into water. Further considerations have indicated that sea disposal on or in the ocean floor may be a more acceptable alternative

  13. Modeling hydraulic conductivity and swelling pressure of several kinds of bentonites affected by concentration of saline water

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hasegawa, Takuma; Nakamura, Kunihiko

    2007-01-01

    In case of construction of repository for radioactive waste near the coastal area, the effect of brine on hydraulic conductivity of bentonite as an engineering barrier should be considered because it is known that the hydraulic conductivity of bentonite increases with increasing in salt concentration of water. Thus, the effect of salinity of water on hydraulic conductivity of bentonite has been conducted experimentally. However, it is necessary to elucidate and to model the mechanism of the phenomenon because various kinds of bentonites may possibly be placed in various salinity of salt water. In this study, a model for evaluating permeability of compacted bentonite is proposed considering a) increase in number of sheets of montomorillonite crystal because of cohesion, b) decrease in viscosity of water in interlayer between sheets of montmorillonite crystal. Quantitative evaluation method for permeability of several kinds of bentonite under brine is proposed based on the model mentioned above. (author)

  14. Dosimetric effects of saline- versus water-filled balloon applicators for IORT using the model S700 electronic brachytherapy source.

    Science.gov (United States)

    Redler, Gage; Templeton, Alistair; Zhen, Heming; Turian, Julius; Bernard, Damian; Chu, James C H; Griem, Katherine L; Liao, Yixiang

    The Xoft Axxent Electronic Brachytherapy System (Xoft, Inc., San Jose, CA) is a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low-energy (50-kVp) X-ray source simplifies shielding and increases relative biological effectiveness but increases dose distribution sensitivity to medium composition. Treatment planning systems typically assume homogenous water for brachytherapy dose calculations, including precalculated atlas plans for Xoft IORT. However, Xoft recommends saline for balloon applicator filling. This study investigates dosimetric differences due to increased effective atomic number (Z eff ) for saline (Z eff  = 7.56) versus water (Z eff  = 7.42). Balloon applicator diameters range from 3 to 6 cm. Monte Carlo N-Particle software is used to calculate dose at the surface (D s ) of and 1 cm away (D 1cm ) from the water-/saline-filled balloon applicator using a single dwell at the applicator center as a simple estimation of the dosimetry and multiple dwells simulating the clinical dose distributions for the atlas plans. Single-dwell plans show a 4.4-6.1% decrease in D s for the 3- to 6-cm diameter applicators due to the saline. Multidwell plans show similar results: 4.9% and 6.4% D s decrease, for 4-cm and 6-cm diameter applicators, respectively. For the single-dwell plans, D 1cm decreases 3.6-5.2% for the 3- to 6-cm diameter applicators. For the multidwell plans, D 1cm decreases 3.3% and 5.3% for the 4-cm and 6-cm applicators, respectively. The dosimetric effect introduced by saline versus water filling for Xoft balloon applicator-based IORT treatments is ∼5%. Users should be aware of this in the context of both treatment planning and patient outcome studies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. Method of ground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1991-01-01

    Rock bases are drilled to form a disposal hole, an overhanging hole and a burying hole each as a shaft. An appropriate number of canisters prepared by vitrification of high level radioactive wastes are charged in the disposal hole with a gap to the inner wall of the hole. Shock absorbers each made of bentonite are filled between each of the canisters and between the canister and the inner wall of the disposal hole, and the canisters are entirely covered with the layer of the shock absorbers. Further, plucking materials having water sealing property such as cement mortar are filled thereover. With such a constitution, in a case if water should intrude into the overhung portion, since the disposal hole is covered with the large flange portion in addition to the water sealing performance of the plucking, the shock absorbers and the canisters undergo no undesirable effects. Further, in a case if water should intrude to the disposal hole, the shock absorber layers are swollen by water absorption, to suppress the intrusion of water. (T.M.)

  16. Estimating Leaching Requirements for Barley Growth under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi

    2012-01-01

    Full Text Available The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L. growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF. The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a the salts were found higher near or immediate below the soil surface; b an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1 added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas.

  17. Chemical and mineralogical aspects of water-bentonite interaction in nuclear fuel disposal conditions

    International Nuclear Information System (INIS)

    Melamed, A.; Pitkaenen, P.

    1996-01-01

    In the field of nuclear fuel disposal, bentonite has been selected as the principal sealing and buffer material for placement around waste canisters, forming both a mechanical and chemical barrier between the radioactive waste and the surrounding ground water. Ion exchange and mineral alteration processes were investigated in a laboratory study of the long-term interaction between compacted Na-bentonite (Volclay MX-80) and ground water solutions, conducted under simulated nuclear fuel disposal conditions. The possible alteration of montmorillonite into illite has been a major object of the mineralogical study. However, no analytical evidence was found, that would indicate the formation of this non-expandable clay type. Apparently, the change of montmorillonite from Na- to Ca-rich was found to be the major alteration process in bentonite. In the water, a concentration decrease in Ca, Mg, and K, and an increase in Na, HCO 3 and SO 4 were recorded. The amount of calcium ions available in the water was considered insufficient to account for the recorded formation of Ca-montmorillonite. It is therefore assumed that the accessory Ca-bearing minerals in bentonite provide the fundamental source of these cations, which exchange with sodium during the alteration process. (38 refs.)

  18. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  19. Biochar mitigates salinity stress in potato

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, M.N.; Liu, Fulai

    2015-01-01

    capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water......A pot experiment was conducted in a climate-controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect...... potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared...

  20. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, M.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    1994-01-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. (Copyright (c) 1993, American Society for Microbiology.)

  1. Salinity maxima associated with some sub-surface water masses in the upper layers of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Murty, C.S.; Reddy, C.V.G.

    The distribution of some sub-surface water masses in the western bay of Bengal during the south-west monsoon period is presented. Based on the salinity maxima and sigma t values the existence of waters of Persian Gulf and Red Sea origin could...

  2. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  3. Adopting adequate leaching requirement for practical response models of basil to salinity

    Science.gov (United States)

    Babazadeh, Hossein; Tabrizi, Mahdi Sarai; Darvishi, Hossein Hassanpour

    2016-07-01

    Several mathematical models are being used for assessing plant response to salinity of the root zone. Objectives of this study included quantifying the yield salinity threshold value of basil plants to irrigation water salinity and investigating the possibilities of using irrigation water salinity instead of saturated extract salinity in the available mathematical models for estimating yield. To achieve the above objectives, an extensive greenhouse experiment was conducted with 13 irrigation water salinity levels, namely 1.175 dS m-1 (control treatment) and 1.8 to 10 dS m-1. The result indicated that, among these models, the modified discount model (one of the most famous root water uptake model which is based on statistics) produced more accurate results in simulating the basil yield reduction function using irrigation water salinities. Overall the statistical model of Steppuhn et al. on the modified discount model and the math-empirical model of van Genuchten and Hoffman provided the best results. In general, all of the statistical models produced very similar results and their results were better than math-empirical models. It was also concluded that if enough leaching was present, there was no significant difference between the soil salinity saturated extract models and the models using irrigation water salinity.

  4. Multiple generations of high salinity formation water in the Triassic Sherwood Sandstone: Wytch Farm oilfield, onshore UK

    International Nuclear Information System (INIS)

    Worden, R.H.; Manning, D.A.C.; Bottrell, S.H.

    2006-01-01

    The origin and heterogeneity of oilfield formation water in the Lower Triassic Sherwood Sandstone at Wytch Farm in the Wessex Basin, UK, have been investigated using production data, detailed water geochemistry and O, S and H stable isotope data. The formation waters are highly saline, NaCl-type brines with TDS values of up to 230,000mg/L. There is a general decrease in salinity from the flanks of the field to the crest with Cl - decreasing from about 136,000 to 109,000mg/L. The Cl/Br ratio of the water shows that salinity was largely derived from the dissolution of Upper Triassic continental evaporites found off-structure to the west and north of the field. The water in the field had a meteoric source although variation in δ 2 H values suggests that there may be meteoric waters of different ages in the oilfield, reflecting recharge under different palaeoclimatic conditions. At the crest of the field, aqueous SO 4 2- resulted from dissolution of anhydrite in the reservoir. In contrast, in other parts of the field there is an indication that some of the dissolved SO 4 2- was derived from oxidation of pyrite at some point on the recharge path of meteoric water to the field. There were two meteoric influx events bringing different Cl - concentrations and different δ 2 H values. The first was probably before the Eocene oil influx and could have occurred in the Lower Cretaceous or early Tertiary. The second meteoric influx event probably occurred after or during oil migration into the Wytch Farm structure since the second meteoric water is found at the flanks of the field adjacent to the regions where salt is found in the stratigraphy. The preservation of heterogeneities in oilfield formation water compositions suggests that there has been little aqueous fluid movement or diffusive flux for over 40 million years. Mass flux has been restricted by density stratification within the aquifer and the very low effective permeability for the aqueous phase in the oil

  5. Review of geoscientific data of relevance to disposal of spent nuclear fuel in deep boreholes in crystalline rock

    International Nuclear Information System (INIS)

    Marsic, Nico; Grundfelt, Bertil

    2013-09-01

    from the hole at Outokumpu is there information under all headings. A general conclusion is that data available from deep boreholes demonstrate that there are conductive fractures also at depth. However, the hydrogeochemistry and isotope data suggest that the water in these fractures has been isolated from surface processes for a very long time. Despite this, it appears that the origin of these deep groundwaters is ancient meteoric water rather than fluid inclusions. The deep waters are generally saline, but the salinity varies in a non-regular fashion. Thus, the present study confirm the conceptual picture from the previous studies that the saline groundwater found below a halocline located at 1-2 kilometres depth in flat areas with crystalline rock is virtually stagnant. The results from the Outokumpu hole seem to more clearly explain the origin of the salinity in the deep groundwater than the earlier studies

  6. Review of geoscientific data of relevance to disposal of spent nuclear fuel in deep boreholes in crystalline rock

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, Nico; Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-09-15

    from the hole at Outokumpu is there information under all headings. A general conclusion is that data available from deep boreholes demonstrate that there are conductive fractures also at depth. However, the hydrogeochemistry and isotope data suggest that the water in these fractures has been isolated from surface processes for a very long time. Despite this, it appears that the origin of these deep groundwaters is ancient meteoric water rather than fluid inclusions. The deep waters are generally saline, but the salinity varies in a non-regular fashion. Thus, the present study confirm the conceptual picture from the previous studies that the saline groundwater found below a halocline located at 1-2 kilometres depth in flat areas with crystalline rock is virtually stagnant. The results from the Outokumpu hole seem to more clearly explain the origin of the salinity in the deep groundwater than the earlier studies.

  7. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  8. A literature review of the variation of dispersant effectiveness and salinity

    International Nuclear Information System (INIS)

    Fingas, M.

    2005-01-01

    Surfactants have varying solubilities in water and varying actions toward oil and water. This paper presents a summary of the effects of water salinity on chemical dispersion. Literature reveals that effectiveness testing with salinity variations shows a consistent decrease in effectiveness at lower salinities and a decrease after a maximum salinity is reached between 20 to 40 units of salinity. In waters with 0 salinity, conventional and currently available dispersants have a very low effectiveness or are sometimes even completely ineffective, a fact which is consistent in surfactant literature. Dispersant effectiveness peaks in waters with a salinity ranging from 20 to 40. Corexit 9500 appears to be less sensitive to salinity, but still peaks at about 35. There is a relatively smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and after it exceeds this value. The curves for this salinity effect appear to be Gaussian. While there is some evidence for a temperature-salinity interaction as noted in the data, there is not enough data to make solid conclusions. Recent data is almost exclusively measured using Corexit 9527 and Corexit 9500. Since these have the same surfactant packages, there is a concern that the results may be more relevant to these formulations than to all possible formulations. Observations on 2 field trials in freshwater appear to indicate that the laboratory tests were correct in concluding very low dispersant effectiveness in freshwater. There were few studies on the biological effects of varying salinity and given oil exposure. It was concluded that the findings in the dispersant literature reviewed here are in agreement with those in the theoretical and basic surfactant literature. The effect of ionic strength and salinity on both hydrophilic-lipophilic balance and stability is the reason for the decreased effectiveness noted at low salinities and the same decrease at high salinities

  9. Influence of salinity on the larval development of the fiddler crab Uca vocator (Ocypodidae) as an indicator of ontogenetic migration towards offshore waters

    Science.gov (United States)

    de Jesus de Brito Simith, Darlan; de Souza, Adelson Silva; Maciel, Cristiana Ramalho; Abrunhosa, Fernando Araújo; Diele, Karen

    2012-03-01

    Larvae of many marine decapod crustaceans are released in unpredictable habitats with strong salinity fluctuations during the breeding season. In an experimental laboratory study, we investigated the influence of seven different salinities (0, 5, 10, 15, 20, 25 and 30) on the survival and development time of fiddler crab zoea larvae, Uca vocator, from northern Brazilian mangroves. The species reproduces during the rainy season when estuarine salinity strongly fluctuates and often reaches values below 10 and even 5. Salinity significantly affected the survival rate and development period from hatching to megalopa, while the number of zoeal stages remained constant. In salinities 0 and 5, no larvae reached the second zoeal stage, but they managed to survive for up to 3 (average of 2.3 days) and 7 days (average of 5.1 days), respectively. From salinity 10 onwards, the larvae developed to the megalopal stage. However, the survival rate was significantly lower (5-15%) and development took more time (average of 13.5 days) in salinity 10 than in the remaining salinities (15-30). In the latter, survival ranged from 80-95% and development took 10-11 days. Given the 100% larval mortality in extremely low salinities and their increased survival in intermediate and higher salinities, we conclude that U. vocator has a larval `export' strategy with its larvae developing in offshore waters where salinity conditions are more stable and higher than in mangrove estuaries. Thus, by means of ontogenetic migration, osmotic stress and resulting mortality in estuarine waters can be avoided.

  10. Geochemical controls on the composition of soil pore waters beneath a mixed waste disposal site in the unsaturated zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Hubbell, J.M.

    1989-01-01

    Soil pore waters are collected routinely to monitor a thick unsaturated zone that separates a mixed waste disposal site containing transuranic and low-level radioactive wastes from the Snake River Plain aquifer. The chemistry of the soil pore waters has been studied to evaluate the possible control on the water composition by mineral equilibria and determine the extent, if any, of migration of radionuclides from the disposal site. Geochemical codes were used to perform speciation calculations for the waters. The results of speciation calculations suggest that the installation of the lysimeters affects the observed silica contents of the soil pore waters. The results also establish those chemical parameters that are controlled by secondary mineral precipitation. 15 refs., 6 figs., 1 tab

  11. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  12. Management scenarios for the Jordan River salinity crisis

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2005-01-01

    Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  14. Sorption/ desorption studies of some radionuclides between disposal soil fractions and ground water. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Reefy, S A; Ali, A [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The radioactive waste management program in egypt includes shallow land disposal area for waste package disposal. The proposed site is located to the east of the Hot laboratory centre at Inchas. Assessment of the efficiency of the different sediments and rocks found in this area as a barrier against release of radioactive nuclide to the environment is of major importance. This study is related to evaluate the migration of Cs, Co, and Am within the environment of this site. In this concern, seven soil fractions were taken from a digging well from the proposed disposal site at different depths down to the basalt sheets. A column was constructed containing the soil fractions representing the stratigraphic successions taken from the site. The radionuclides; Cs-137, Co-60, and Am-241 were in this investigation representatives for mono, di- and tri-valent elements and also represented the radionuclides which are mostly associated with radioactive wastes. The sorption/ desorption studies of these radionuclides with the different soil fractions and ground water from the proposed disposal site were carried out. The results obtained were used to predict the migration pathways of these radionuclides within the disposal environment. 2 figs., 1 tab.

  15. Sorption/ desorption studies of some radionuclides between disposal soil fractions and ground water. Vol. 3

    International Nuclear Information System (INIS)

    El-Reefy, S.A.; Ali, A.

    1996-01-01

    The radioactive waste management program in egypt includes shallow land disposal area for waste package disposal. The proposed site is located to the east of the Hot laboratory centre at Inchas. Assessment of the efficiency of the different sediments and rocks found in this area as a barrier against release of radioactive nuclide to the environment is of major importance. This study is related to evaluate the migration of Cs, Co, and Am within the environment of this site. In this concern, seven soil fractions were taken from a digging well from the proposed disposal site at different depths down to the basalt sheets. A column was constructed containing the soil fractions representing the stratigraphic successions taken from the site. The radionuclides; Cs-137, Co-60, and Am-241 were in this investigation representatives for mono, di- and tri-valent elements and also represented the radionuclides which are mostly associated with radioactive wastes. The sorption/ desorption studies of these radionuclides with the different soil fractions and ground water from the proposed disposal site were carried out. The results obtained were used to predict the migration pathways of these radionuclides within the disposal environment. 2 figs., 1 tab

  16. Study of groundwater salinization in Chaj Doab using environmental isotopes

    International Nuclear Information System (INIS)

    Hussain, S.D.; Sajjid, M.I.; Akram, W.; Ahmad, M.; Rafiq, M.

    1991-09-01

    Environmental isotopes and chemical composition of water have been used to study the origin of groundwater salinity in Chaj Doab. Three important possible processes of salinization i.e. enrichment of salt content of water by evaopration, mixing with connate marine water and dissolution of salts from soil sediments have been investigated. No evidence for mixing with connate maine water could be found. The process of evaporation too does not seem to apply any significant role in salinization of groundwater. The dissolution of salts from soil sediments appears as dominant mechanism for increasing the salt content of water in this area. (author)

  17. Salinity measurement in water environment with a long period grating based interferometer

    International Nuclear Information System (INIS)

    Possetti, G R C; Kamikawachi, R C; Muller, M; Fabris, J L; Prevedello, C L

    2009-01-01

    In this work, a comparative study of the behaviour of an in-fibre Mach–Zehnder interferometer for salinity measurement in a water solution is presented. The fibre transducer is composed of two nearly identical long period gratings forming an in-series 7.38 cm long device written in the same fibre optic. Two inorganic and one organic salts (NaCl, KCl, NaCOOH) were characterized within the concentration range from 0 to 150 g L −1 . For the long period grating interferometer, the average obtained sensitivities were −6.61, −5.58 and −3.83 pm/(g L −1 ) for the above salts, respectively, or equivalently −40.8, −46.5 and −39.1 nm RIU −1 . Salinity measured by means of fibre refractometry is compared with measurements obtained using an Abbe refractometer as well as via electrical conductivity. For the long period grating refractometer, the best resolutions attained were 1.30, 1.54 and 2.03 g of salt per litre for NaCl, KCl and NaCOOH, respectively, about two times better than the resolutions obtained by the Abbe refractometer. An average thermal sensitivity of 53 pm °C −1 was measured for the grating transducer immersed in water, indicating the need for the thermal correction of the sensor. Resolutions for the same ionic constituent in different salts are also analysed

  18. Experiences with electrochemical analysis of copper at the PPB-level in saline cooling water and in the water/steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, K [I/S Nordjyllandsvaerket, Vodskov (Denmark)

    1996-12-01

    Determination of trace amounts of copper in saline cooling water and in process water by differential pulse anodic stripping voltammetry combined with an UV-photolysis pretreatment is described. Copper concentrations well below 1 {mu}g/L may be analysed with a precision in the order of 10% and a high degree of accuracy. The basic principles of the method are described together with three applications covering analysis of cooling and process water samples. The analysis method has been applied to document the adherence of environmental limits for the copper uptake of cooling water passing brass condensers, to monitor the formation of protective layers of iron oxides on the cooling water side of brass condensers, and to study the transport of copper in water/steam cycles with heat exchangers and condensers of brass materials. (au)

  19. Jerusalem artichoke (Helianthus tuberosus, L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters

    Science.gov (United States)

    The scarcity of good quality water in semiarid regions of the world is the main limiting factor for increased irrigated agriculture in those regions. Saline water is generally widely available in arid regions at reduced costs, and can be a viable alternative for crop irrigation. However, the literat...

  20. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    Science.gov (United States)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  1. A New Soil Water and Bulk Electrical Conductivity Sensor Technology for Irrigation and Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Evett, Steve; Schwartz, Robert; Casanova, Joaquin [Soil and Water Management Research Unit, Conservation and Production Research Laboratory, USDA-ARS, Bushland, Texas (United States); Anderson, Scott [Acclima, Inc., 2260 East Commercial Street, Meridian, Idaho 83642 (United States)

    2014-01-15

    Existing soil water content sensing systems based on electromagnetic (EM) properties of soils often over estimate and sometimes underestimate water content in saline and salt-affected soils due to severe interference from the soil bulk electrical conductivity (BEC), which varies strongly with temperature and which can vary greatly throughout an irrigation season and across a field. Many soil water sensors, especially those based on capacitance measurements, have been shown to be unsuitable in salt-affected or clayey soils (Evett et al., 2012a). The ability to measure both soil water content and BEC can be helpful for the management of irrigation and leaching regimes. Neutron probe is capable of accurately sensing water content in salt-affected soils but has the disadvantages of being: (1) labour-intensive, (2) not able to be left unattended in the field, (3) subject to onerous regulations, and (4) not able to sense salinity. The Waveguide-On-Access-Tube (WOAT) system based on time domain reflectometry (TDR) principles, recently developed by Evett et al. (2012) is a new promising technology. This system can be installed at below 3 m in 20-cm sensor segments to cover as much of the crop root zone as needed for irrigation management. It can also be installed to measure the complete soil profile from the surface to below the root zone, allowing the measurement of crop water use and water use efficiency - knowledge of which is key for irrigation and farm management, and for the development of new drought tolerant and water efficient crop varieties and hybrids, as well as watershed and environmental management.

  2. Data Validation Package - June 2016 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-10

    This event included annual sampling of groundwater and surface water locations at the Green River, Utah, Disposal Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lrnldownloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 15 monitoring wells and two surface locations at the disposal site as specified in the draft 2011 Ground Water Compliance Action Plan for the Green River, Utah, Disposal Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0179. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up.

  3. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  4. Degree of mucosal coating on double contrast barium enema : comparison of distilled water and normal saline as a suspension

    International Nuclear Information System (INIS)

    Seo, Tae Seok; Lee, Dong Ho; Ko, Young Tae; Lim, Joo Won; Han, Tae Il; Kim, Hyoung Jung

    1997-01-01

    To evaluate the degree of mucosal coating on double contrast barium enema (DCBE), using barium suspension made with distilled water or normal saline Between June 1 and July 30, 1996, fifty-four patients prospectively underwent DCBE using 83% w/v(weight-to-volume) of barium suspension (room temperature, 24 deg C), which was made with 1,200mL of distilled water (Group 1;29cases) and normal saline (Group 2;25cases) per 1Kg of Solotop (Taejoon Pharmacy, Seoul, Korea). Bowel preparation and examination methods were the same in both groups, and four projections(erect view, supine view, both decubitus views) were taken. The mucosal coating was graded as excellent, good, ordinary, or poor by three radiologists working independently, and scored from 3 to 0. Significance was analyzed by t-test. Mean grading scores were 2.33±0.70 in group 1 and 1.56±0.99 in group 2 (P<0.003). When barium suspension made with distilled water was used, the degree of mucosal coating on DCBE was better than when the suspension was made with normal saline

  5. Characterization of trench water at the Maxey Flats low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Weiss, A.J.; Francis, A.J.; Colombo, P.

    1977-01-01

    Currently the United States Geological Survey is conducting a study of the hydrogeological and geochemical behavior of commercially operated low-level radioactive waste disposal sites. The data collected from this study will be used to establish criteria for selection of new sites for disposal of radioactive wastes. As part of this study, water samples from trenches at the Maxey Flats, Kentucky site were analyzed at Brookhaven National Laboratory to determine the source terms of the radionuclides and other components in solution in the trenches. Procedures for collection and filtration of the samples under anoxic conditions are described. The samples were analyzed for inorganic, radiochemical and organic constituents. The inorganic analysis includes the measurements of pH, specific conductance, alkalinity, and various cations and anions. The radionuclides were measured by the gross alpha, gross beta, tritium, and gamma activities, followed by specific measurements of strontium-90 and plutonium isotopes. The organics were extracted, concentrated, and identified by gas chromatography/mass spectrometry. Considerable quantities of organics were detected in all of the trench waters sampled. Specific organics were found in most of the trenches, however, the organic composition of the trench waters vary. The presence of a variety of organic compounds in trench waters suggest that they may play an important role in the transport of radionuclides

  6. Enhanced remediation of an oily sludge with saline water

    African Journals Online (AJOL)

    UFUOMA

    biodegradation of oily sludge by hydrocarbon utilizing bacteria (Bacillus subtilis) at salinity (NaCl ... petroleum waste. In recent times, several literatures have shown that bioremediation has high potentials for restoring polluted media with least negative impact on the ..... salinity, bacterial consortium is highly stable in immo-.

  7. Trees as indicators of subterranean water flow from a retired radioactive waste disposal site

    International Nuclear Information System (INIS)

    Rickard, W.H.; Kirby, L.J.

    1987-01-01

    Tree sampling helped locate a subterranean flow of tritiated water from a low-level radioactive waste disposal site that had not been detected by well water monitoring alone. Deciduous trees growing in a natural forest on the hillsides downslope from the site were sampled for the presence of tritiated water in sap of maple trees and in leaf water extracted from oak and hickory trees. Elevated concentrations of 3 H were detected in the leaf water extracted from several trees located 50 m downslope from the western boundary of the fenced exclusion zone. A 3-m-deep well drilled near these trees indicated that the source of tritiated water was a narrow zone of subterranean flow

  8. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Science.gov (United States)

    Johnson, M. T.

    2010-02-01

    The transfer velocity determines the rate of exchange of a gas across the air-water interface for a given deviation from Henry's law equilibrium between the two phases. In the thin film model of gas exchange, which is commonly used for calculating gas exchange rates from measured concentrations of trace gases in the atmosphere and ocean/freshwaters, the overall transfer is controlled by diffusion-mediated films on either side of the air-water interface. Calculating the total transfer velocity (i.e. including the influence from both molecular layers) requires the Henry's law constant and the Schmidt number of the gas in question, the latter being the ratio of the viscosity of the medium and the molecular diffusivity of the gas in the medium. All of these properties are both temperature and (on the water side) salinity dependent and extensive calculation is required to estimate these properties where not otherwise available. The aim of this work is to standardize the application of the thin film approach to flux calculation from measured and modelled data, to improve comparability, and to provide a numerical framework into which future parameter improvements can be integrated. A detailed numerical scheme is presented for the calculation of the gas and liquid phase transfer velocities (ka and kw respectively) and the total transfer velocity, K. The scheme requires only basic physical chemistry data for any gas of interest and calculates K over the full range of temperatures, salinities and wind-speeds observed in and over the ocean. Improved relationships for the wind-speed dependence of ka and for the salinity-dependence of the gas solubility (Henry's law) are derived. Comparison with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general but significant improvements under certain conditions. The scheme is provided as a downloadable program in the supplementary material, along with input files containing molecular

  9. Control of water infiltration into near-surface, low-level waste-disposal units in humid regions

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1994-01-01

    This study's objective is to assess means for controlling water infiltration through waste-disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters (75 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste-disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care

  10. Features of acid-saline systems of Southern Australia

    International Nuclear Information System (INIS)

    Dickson, Bruce L.; Giblin, Angela M.

    2009-01-01

    The discovery of layered, SO 4 -rich sediments on the Meridiani Planum on Mars has focused attention on understanding the formation of acid-saline lakes. Many salt lakes have formed in southern Australia where regional groundwaters are characterized by acidity and high salinity and show features that might be expected in the Meridiani sediments. Many (but not all) of the acid-saline Australian groundwaters are found where underlying Tertiary sediments are sulfide-rich. When waters from the formations come to the surface or interact with oxidised meteoric water, acid groundwaters result. In this paper examples of such waters around Lake Tyrrell, Victoria, and Lake Dey-Dey, South Australia, are reviewed. The acid-saline groundwaters typically have dissolved solids of 30-60 g/L and pH commonly 4 and MgSO 4 ) or differential separation of elements with differing solubility (K, Na, Ti, Cr). Thus, it is considered unlikely that groundwaters or evaporative salt-lake systems, as found on earth, were involved. Instead, these features point to a water-poor system with local alteration and very little mobilization of elements

  11. Simulation of Salinity Distribution in Soil Under Drip Irrigation Tape with Saline Water Using SWAP Model

    Directory of Open Access Journals (Sweden)

    M. Tabei

    2016-02-01

    Full Text Available Introduction: The to be limited available water amount from one side and to be increased needs of world population from the other side have caused increase of cultivation for products. For this reason, employing new irrigation ways and using new water resources like using the uncommon water (salty water, water drainage are two main strategies for regulating water shortage conditions. On the other side, accumulation of salts on the soil surface in dry regions having low rainfall and much evaporation, i.e. an avoidable case. As doing experiment for determining moisture distribution form demands needs a lot of time and conducting desert experiments are costly, stimulator models are suitable alternatives in answering the problem concerning moving and saltiness distribution. Materials and Methods: In this research, simulation of soil saltiness under drip irrigation was done by the SWAP model and potency of the above model was done in comparison with evaluated relevant results. SWAP model was performed based on measured data in a corn field equipped with drip irrigation system in the farming year 1391-92 in the number one research field in the engineering faculty of water science, ShahidChamran university of Ahvaz and hydraulic parameters of soil obtained from RETC . Statistical model in the form of a random full base plan with four attendants for irrigating water saltiness including salinity S1 (Karoon River water with salinity 3 ds/m as a control treatment, S2 (S1 +0/5, S3 (S1 +1 and S4 (S1 +1/5 dS/m, in 3 repetition and in 3 intervals of 10 cm emitter, 20 cm emitters on the stack, at a depth of 0-90 cm (instead of each 30 cm from soil surface and intervals of 30, 60 and 90 days after modeling cultiviation was done. The cultivation way was done handheld in plots including four rows of 3 m in distance of 75 cm rows and with denseness of 80 bushes in a hectar. Drip irrigation system was of type strip with space of 20 cm pores. Results and Discussion

  12. Effect of various Na/K ratios in low-salinity well water on growth performance and physiological response of Pacific white shrimp Litopenaeus vannamei

    Science.gov (United States)

    Liu, Hongyu; Tan, Beiping; Yang, Jinfang; Lin, Yingbo; Chi, Shuyan; Dong, Xiaohui; Yang, Qihui

    2014-09-01

    To investigate the influence of sodium to potassium (Na/K) ratios on the growth performance and physiological response of the Pacific white shrimp ( Litopenaeus vananmei), various concentrations of KCl were added to low-salinity well water (salinity 4) in an 8-week culture trial. Six treatments with Na/K ratios of 60:1, 42:1, 33:1, 23:1, 17:1, and 14:1 were replicated in triplicate. The highest weight-gain rate (3 506±48)% and survival rate (89.38±0.88)% was observed in well water with Na/K ratios of 23:1 and 42:1, respectively, while the feed conversion ratio (1.02±0.01), oxygen consumption, and ammonia-N excretion rate was the lowest in the medium with a Na/K ratio of 23:1. Gill Na+-K+-ATPase activity, as an indicator of osmoregulation, peaked in the treatment where the Na/K ratio was 17:1. The total hemocyte count, respiratory burst, and immune-related enzyme activities (ALP, LSZ, PO, and SOD) of L. vananmei were affected significantly by Na/K ratios ( Pshrimp reared in a Na/K ratio of 23:1 (30±14.14)% was significantly lower than the control (75±7.07)%. In conclusion, the addition of K+ to low-salinity well water in L. vannamei cultures is feasible. Na/K ratios ranging from 23:1 to 33:1 might improve survival and growth. Immunity and disease resistance are also closely related to the Na/K ratio of the low-salinity well water. The findings may contribute to the development of more efficient K + remediation strategies for L. vananmei culture in low-salinity well water.

  13. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  14. Performance of electrical spectroscopy using a RESPER probe to measure salinity and water content of concrete and terrestrial soil

    Directory of Open Access Journals (Sweden)

    Alessandro Settimi

    2011-08-01

    Full Text Available

    This paper discusses the performance of electrical spectroscopy using a RESPER probe to measure the salinity s and volumetric content θW of the water in concrete or terrestrial soil. The RESPER probe is an induction device for spectroscopy which performs simultaneous and non invasive measurements of the electrical RESistivity 1/σ and relative dielectric PERmittivity εr of a subjacent medium. Numerical simulations establish that the RESPER can measure σ and ε with inaccuracies below a predefined limit (10% up to the high frequency band (HF. Conductivity is related to salinity and dielectric permittivity to volumetric water content using suitably refined theoretical models which are consistent with the predictions of Archie’s and Topp’s empirical laws. The better the agreement, the lower the hygroscopic water content and the higher s; so closer agreement is found with concrete containing almost no bonded water molecules provided these are characterized by a high σ. A novelty of the present paper is the application of a mathematical–physical model to the propagation of errors in the measurements, based on a sensitivity functions tool. The inaccuracy of salinity (water content is the ratio (product between the conductivity (permittivity inaccuracy, specified by the probe, and the sensitivity function of salinity (water content relative to conductivity (permittivity, derived from the constitutive equations of the medium. The main result is the model’s prediction that the lower the inaccuracy for the measurements of s and θW (decreasing by as much as an order of magnitude from 10% to 1%, the higher σ; so the inaccuracy for soil is lower. The proposed physical explanation is that water molecules are mostly dispersed as H+ and OH- ions

  15. Improved method for measuring transparent exopolymer particles (TEP) and their precursors infresh and saline water

    KAUST Repository

    Villacorte, Loreen O.

    2015-03-01

    Transparent exopolymer particles (TEP) and their precursors produced by phyto-/bacterio-planktons in fresh and marine aquatic environments are increasingly considered as a major contributor to organic/particulate and biological fouling in micro-/ultra-filtration and reverse osmosis membrane (RO) systems. However, currently established methods which are based on Alcian blue (AB) staining and spectrophotometric techniques do not measure TEP-precursors and have the tendency to overestimate concentration in brackish/saline water samples due to interference of salinity on AB staining. Here we propose a new semi-quantitative method which allows measurement of both TEP and their colloidal precursors without the interference of salinity. TEP and their precursors are first retained on 10kDa membrane, rinsed with ultra-pure water, and re-suspended in ultra-pure water by sonication and stained with AB, followed by exclusion of TEP-AB precipitates by filtration and absorbance measurement of residual AB. The concentration is then determined based on the reduction of AB absorbance due to reaction with acidic polysaccharides, blank correction and calibration with Xanthan gum standard. The extraction procedure allows concentration of TEP and their pre-cursors which makes it possible to analyse samples with a wide range of concentrations (down to <0.1mg Xeq/L). This was demonstrated through application of the method for monitoring these compounds in algal cultures and a full-scale RO plant. The monitoring also revealed that concentrations of the colloidal precursors were substantially higher than the concentration of TEP themselves. In the RO plant, complete TEP removal was observed over the pre-treatment processes (coagulation-sedimentation-filtration and ultrafiltration) but the TEP precursors were not completely removed, emphasising the importance of measuring this colloidal component to better understand the role of TEP and acidic polysaccharides in RO membrane fouling.

  16. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  17. Multi-saline sample distillation apparatus for hydrogen isotope analyses: design and accuracy. Water-resources investigations

    International Nuclear Information System (INIS)

    Hassan, A.A.

    1981-04-01

    A distillation apparatus for saline water samples was designed and tested. Six samples may be distilled simultaneously. The temperature was maintained at 400 degrees C to ensure complete dehydration of the precipitating salts. Consequently, the error in the measured ratio of stable hydrogen isotopes resulting from incomplete dehydration of hydrated salts during distillation was eliminated

  18. Ingestive behavior of crossbred Santa Inês sheep fed water with different salinity levels

    Directory of Open Access Journals (Sweden)

    José Helder Andrade de Moura

    2016-04-01

    Full Text Available The objective of the present study was to evaluate the effect of four water salinity levels on the ingestive behavior of non-castrated crossbred Santa Inês sheep. Thirty-two non-castrated crossbred Santa Inês sheep in feedlot, at seven months of age and initial average weight of 21.76±1.25 kg, were used in the experiment. The experimental design was completely randomized, with four treatments and eight replicates. Four concentrations of salts in the water fed to the animals were evaluated: low (640 mg/l; medium (3,188 mg/l; high (5,740 mg/l and very high (8,326 mg/l levels of total dissolved solids (TDS. For the ingestive behaviors, the animals were observed every ten minutes, for 24 hours, to determine the time spent feeding, ruminating and idle. Also, cud chewing and the average number of defecations and urinations and the frequency of water ingestion were determined. The time spent feeding, ruminating and idle were not changed by the salinity levels in the water. Dry matter intake, neutral detergent fiber intake, total chewing time, total cud chews per day, number of daily meals, average duration of each meal and number of defecations per day did not change either. However, feeding and rumination efficiency in grams of DM/h, water intake and number of urinations were linearly affected, whereas the variables rumination efficiency in grams of NDF/h, grams of dry matter per cud, grams of neutral detergent fiber per cud, number of cuds, number of chews per cud and chewing time per cud presented quadratic effect. The different levels of total dissolved solids (640; 3,188; 5,740; and 8.326 mg/l in the water fed to the sheep did not cause alterations in their ingestive behavior. In conclusion, water with up to 8,326 mg TDS/l can be an alternative strategic and seasonal method to water crossbred Santa Ines sheep.

  19. An integrated hydrogeochemical and isotopic approach to study groundwater Salinization in the overexploited aquifers of Indo-Gangetic Plain, a part of NCR Delhi

    Science.gov (United States)

    Kumari, R.

    2017-12-01

    roundwater resources in arid and semi-arid areas are highly vulnerable to salinity problems. Inadequate availability of surface water supply, vagaries of mansoonal rainfall and overexploitation due to population pressure and rapid landuse change induced decline in groundwater levels and salinization has been observed in many Asian cities. After green revolution, large part of Indo-Gangetic plain groundwater salinization has been reported. One such region is National Capital Region, Delhi- India's largest and the world's second largest agglomeration of people and economic hub of Northern India. The present study includes National capital territory, Delhi, Gurgaon and Faridabad. In the present study, different graphical plots, Piper plot, saturation index values (using PHREEQC), stable isotopes (δ18O and δD) and GIS is used to create the database for analysis of spatial variation in respective water quality parameters as well as to decipher the hydrogeochemical process occurring in the area. Major ions are analysed to describe the composition and distribution of salinization and dissolution/precipitation dynamics. It was observed that groundwater weathering is governed by carbonate and silicate weathering and reverse ion-exchange, however due to semi-arid climate evaporation is also playing a major role in groundwater chemistry and salinity of the area. δ18O and δD regression line of groundwater samples of the study area is below the LMWL also suggest from non-equilibrium fractionation during evaporation. Large lateral variation in chloride concentration indicates impact of evapotranspiration rate during recharge. Most of water facies are of Na-Cl. Stable isotope (δ18O and δD) analysis helps to identify evaporation and to better understand recharge processes and mixing dynamics in the study region. Limited availability of surface water supply, no pricing exists for groundwater extraction has resulted in a widespread decline in the water table and intermixing of

  20. Watershed-Scale Impacts from Surface Water Disposal of Oil and Gas Wastewater in Western Pennsylvania.

    Science.gov (United States)

    Burgos, William D; Castillo-Meza, Luis; Tasker, Travis L; Geeza, Thomas J; Drohan, Patrick J; Liu, Xiaofeng; Landis, Joshua D; Blotevogel, Jens; McLaughlin, Molly; Borch, Thomas; Warner, Nathaniel R

    2017-08-01

    Combining horizontal drilling with high volume hydraulic fracturing has increased extraction of hydrocarbons from low-permeability oil and gas (O&G) formations across the United States; accompanied by increased wastewater production. Surface water discharges of O&G wastewater by centralized waste treatment (CWT) plants pose risks to aquatic and human health. We evaluated the impact of surface water disposal of O&G wastewater from CWT plants upstream of the Conemaugh River Lake (dam controlled reservoir) in western Pennsylvania. Regulatory compliance data were collected to calculate annual contaminant loads (Ba, Cl, total dissolved solids (TDS)) to document historical industrial activity. In this study, two CWT plants 10 and 19 km upstream of a reservoir left geochemical signatures in sediments and porewaters corresponding to peak industrial activity that occurred 5 to 10 years earlier. Sediment cores were sectioned for the collection of paired samples of sediment and porewater, and analyzed for analytes to identify unconventional O&G wastewater disposal. Sediment layers corresponding to the years of maximum O&G wastewater disposal contained higher concentrations of salts, alkaline earth metals, and organic chemicals. Isotopic ratios of 226 Ra /228 Ra and 87 Sr /86 Sr identified that peak concentrations of Ra and Sr were likely sourced from wastewaters that originated from the Marcellus Shale formation.

  1. Estimation of salinity power potential in India

    Digital Repository Service at National Institute of Oceanography (India)

    Das, V.K.; RamaRaju, D.V.

    Salinity gradient as a source of energy has much potential, but this has been recognized only recently. The energy density of this source is equivalent to about 250 m water head for a salinity difference of 35 ppt. This source exists...

  2. Bibliography on ocean waste disposal. second edition. Final report 1976

    International Nuclear Information System (INIS)

    Stanley, H.G.; Kaplanek, D.W.

    1976-09-01

    This research bibliography is restricted to documents relevant to the field of ocean waste disposal. It is primarily limited to recent publications in the categories of: ocean waste disposal; criteria; coastal zone management; monitoring; pollution control; dredge spoil; dredge spoin disposal; industrial waste disposal; radioactive waste; oil spills; bioassay; fisheries resources; ocean incineration; water chemistry; and, Water pollution

  3. A comparative study of byssogenesis on zebra and quagga mussels: the effects of water temperature, salinity and light-dark cycle.

    Science.gov (United States)

    Grutters, Bart M C; Verhofstad, Michiel J J M; van der Velde, Gerard; Rajagopal, Sanjeevi; Leuven, Rob S E W

    2012-01-01

    The quagga mussel (Dreissena rostriformis bugensis) and zebra mussel (Dreissena polymorpha) are invasive freshwater bivalves in Europe and North America. The distribution range of both Dreissena species is still expanding and both species cause major biofouling and ecological effects, in particular when they invade new areas. In order to assess the effect of temperature, salinity and light on the initial byssogenesis of both species, 24 h re-attachment experiments in standing water were conducted. At a water temperature of 25°C and a salinity of 0.2 psu, the rate of byssogenesis of D. polymorpha was significantly higher than that of D. rostriformis bugensis. In addition, byssal thread production by the latter levelled out between 15°C and 25°C. The rate of byssogenesis at temperatures<25°C was similar for both species. Neither species produced any byssal threads at salinities of 4 psu or higher. At a salinity of 1 psu and a water temperature of 15°C, D. polymorpha produced significantly more byssal threads than D. rostriformis bugensis. There was no significant effect of the length of illumination on the byssogenesis of either species. Overall, D. polymorpha produced slightly more byssal threads than D. rostriformis bugensis at almost all experimental conditions in 24 h re-attachment experiments, but both species had essentially similar initial re-attachment abilities. The data imply that D. rostriformis bugensis causes biofouling problems identical to those of D. polymorpha.

  4. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture

    NARCIS (Netherlands)

    Bruning, B.; Rozema, J.

    2013-01-01

    Saline agriculture provides a solution for at least two environmental and social problems. It allows us to return to agricultural production areas that have been lost as a consequence of salinization and it can save valuable fresh water by using brackish or salt water to irrigate arable lands. Sea

  5. Salinity Impacts on Agriculture and Groundwater in Delta Regions

    Science.gov (United States)

    Clarke, D.; Salehin, M.; Jairuddin, M.; Saleh, A. F. M.; Rahman, M. M.; Parks, K. E.; Haque, M. A.; Lázár, A. N.; Payo, A.

    2015-12-01

    Delta regions are attractive for high intensity agriculture due to the availability of rich sedimentary soils and of fresh water. Many of the world's tropical deltas support high population densities which are reliant on irrigated agriculture. However environmental changes such as sea level rise, tidal inundation and reduced river flows have reduced the quantity and quality of water available for successful agriculture. Additionally, anthropogenic influences such as the over abstraction of ground water and the increased use of low quality water from river inlets has resulted in the accumulation of salts in the soils which diminishes crop productivity. Communities based in these regions are usually reliant on the same water for drinking and cooking because surface water is frequently contaminated by commercial and urban pollution. The expansion of shallow tube well systems for drinking water and agricultural use over the last few decades has resulted in mobilisation of salinity in the coastal and estuarine fringes. Sustainable development in delta regions is becoming constrained by water salinity. However salinity is often studied as an independent issue by specialists working in the fields of agriculture, community water supply and groundwater. The lack of interaction between these disciplines often results in corrective actions being applied to one sector without fully assessing the effects of these actions on other sectors. This paper describes a framework for indentifying the causes and impacts of salinity in delta regions based on the source-pathway-receptor framework. It uses examples and scenarios from the Ganges-Brahmaputra-Meghna delta in Bangladesh together with field measurements and observations made in vulnerable coastal communities. The paper demonstrates the importance of creating an holistic understanding of the development and management of water resources to reduce the impact of salinity in fresh water in delta regions.

  6. Carbon dioxide degassing in fresh and saline water I: Degassing performance of a cascade column

    DEFF Research Database (Denmark)

    Moran, Damian

    2010-01-01

    A study was undertaken to measure carbon dioxide degassing in a cascade column operating with both fresh (0‰) and saline water (35‰ NaCl) at 15 °C. The cascade column contained bio-block type packing material, was 1.7 m long in each dimension, and was tested both with and without countercurrent a...

  7. Salinity in drinking water and the risk of (preeclampsia and gestational hypertension in coastal Bangladesh: a case-control study.

    Directory of Open Access Journals (Sweden)

    Aneire Ehmar Khan

    Full Text Available BACKGROUND: Hypertensive disorders in pregnancy are among the leading causes of maternal and perinatal death in low-income countries, but the aetiology remains unclear. We investigated the relationship between salinity in drinking water and the risk of (preeclampsia and gestational hypertension in a coastal community. METHODS: A population-based case-control study was conducted in Dacope, Bangladesh among 202 pregnant women with (preeclampsia or gestational hypertension, enrolled from the community served by the Upazilla Health Complex, Dacope and 1,006 matched controls from the same area. Epidemiological and clinical data were obtained from all participants. Urinary sodium and sodium levels in drinking water were measured. Logistic regression was used to calculate odds ratios, and 95% confidence intervals. FINDINGS: Drinking water sources had exceptionally high sodium levels (mean 516.6 mg/L, S.D 524.2. Women consuming tube-well (groundwater were at a higher disease risk than rainwater users (p900.01 mg/L, compared to <300 mg/L in drinking water (ORs 3.30 [95% CI 2.00-5.51], 4.40 [2.70-7.25] and 5.48 [3.30-9.11] (p-trend<0.001. Significant associations were seen for both (preeclampsia and gestational hypertension separately. INTERPRETATION: Salinity in drinking water is associated with increased risk of (preeclampsia and gestational hypertension in this population. Given that coastal populations in countries such as Bangladesh are confronted with high salinity exposure, which is predicted to further increase as a result of sea level rise and other environmental influences, it is imperative to develop and evaluate affordable approaches to providing water with low salt content.

  8. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    Science.gov (United States)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  9. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  10. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Siemon, Bernhard; Voortman, Bernard R.; Gunnink, Jan; Van Baaren, Esther S.; Oude Essink, Gualbert

    2011-01-01

    In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence

  11. Impact of fresh and saline water flooding on leaf gas exchange in two Italian provenances of Tamarix africana Poiret.

    Science.gov (United States)

    Abou Jaoudé, R; de Dato, G; Palmegiani, M; De Angelis, P

    2013-01-01

    In Mediterranean coastal areas, changes in precipitation patterns and seawater levels are leading to increased frequency of flooding and to salinization of estuaries and freshwater systems. Tamarix spp. are often the only woody species growing in such environments. These species are known for their tolerance to moderate salinity; however, contrasting information exists regarding their tolerance to flooding, and the combination of the two stresses has never been studied in Tamarix spp. Here, we analyse the photosynthetic responses of T. africana Poiret to temporary flooding (45 days) with fresh or saline water (200 mm) in two Italian provenances (Simeto and Baratz). The measurements were conducted before and after the onset of flooding, to test the possible cumulative effects of the treatments and effects on twig aging, and to analyse the responses of twigs formed during the experimental period. Full tolerance was evident in T. africana with respect to flooding with fresh water, which did not affect photosynthetic performances in either provenance. Saline flooding was differently tolerated by the two provenances. Moreover, salinity tolerance differently affected the two twig generations. In particular, a reduction in net assimilation rate (-48.8%) was only observed in Baratz twigs formed during the experimental period, compared to pre-existing twigs. This reduction was a consequence of non-stomatal limitations (maximum carboxylation rate and electron transport), probably as a result of higher Na transport to the twigs, coupled with reduced Na storage in the roots. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. EFFECTS OF IRRIGATION WATER QUALITY (DIFFERENT SALINITY LEVELS AND BORON CONCENTRATIONS ON MORPHOLOGICAL CHARACTERISTICS OF GRAFTED AND NON-GRAFTED EGGPLANTS

    Directory of Open Access Journals (Sweden)

    İsmail Taş

    2016-07-01

    Full Text Available High yield cultivars with quite high resistance against pests and diseases, irrigation water salinity and deficit irrigation conditions are significant in plant production activities. Researches have been conducted also to improve the resistance of available cultivars. Since 1990s, researchers have tried to use low quality irrigation waters just because of deficit water resources and current trends in global warming and climate change. The basic target in all these researches is to reduce production costs and to improve quality and yields. Availability of low quality irrigation waters is a basic component of sustainable agricultural production. The present study was conducted in 40 liter pots under greenhouse conditions. Grafted and non-grafted eggplant seedlings were planted into these pots. Then, plants were irrigated with irrigations waters with different salinity levels (0.25, 1, 1.5, 2, 4, 6, 10 and 15 dS/m and boron concentrations (0, 1, 2, 4, 8, 16, 32 and 64 ppm. In this way, effects of different irrigation water qualities on plant morphological characteristics were investigated.

  13. Scottish saline lagoons: Impacts and challenges of climate change

    Science.gov (United States)

    Angus, Stewart

    2017-11-01

    The majority of Scotland's saline lagoons are located on the low-lying coastlines of the Western Isles and the northern archipelagos of Orkney and Shetland, where recorded annual relative sea level rise rates are among the highest in Scotland. The sediment-impounded lagoons of Orkney and Shetland will either lose their impoundment and become incorporated in marine coastal waters, or become increasingly saline, as relative sea levels rise. The rock-basin lagoons of the Western Isles will retain their restricted exchange with the sea but will also become more saline with rising sea level. Specialist lagoonal organisms tend to have wide salinity tolerances but may succumb to competition from marine counterparts. In all areas, there are sufficient fresh-water inland water bodies with potential to be captured as lagoons to compensate for loss of extent and number, but the specialist lagoon biota tend to have limited dispersal powers. It is thus possible that they will be unable to transfer to their analogue sites before existing lagoons become fully marine, giving conservation managers the problem of deciding on management options: leave natural processes to operate without interference, manage the saline inflow to maintain the current salinity regime, or translocate lagoon organisms perceived as threatened by rising salinities. Timing of conversion and capture is unpredictable due to local topography and complications caused by variable stratification.

  14. Productive use of saline lands

    International Nuclear Information System (INIS)

    2003-01-01

    Water is essential for life, and not least for agricultural activity. It interacts with solar energy to determine the climate of the globe, and its interaction with carbon dioxide inside a plant results in photosynthesis on which depends survival of all life. Much of the water available to man is used for agriculture and yet its usage has not been well managed. One result has been the build up of soil salinity. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Department of Research and Isotopes, to make more productive use of salt-affected land and to limit future build up of salinity. (IAEA)

  15. Alternate use of good quality and saline irrigation water for tomato production

    International Nuclear Information System (INIS)

    Mehaibi, A.; Rehranan, O.U.; Elamin, N.S.

    2007-01-01

    A pot experiment was set in a completely randomized design. With factorial arrangement on tomato (Lycopersicon esoulentum cv Tatto) to examine the effect of alternate irrigation with good quality and saline 4'aters and mineral fertilization on yield an mineral constituents. The experiment consisted of two irrigation practices (IRI-Continuous irrigation with water of EC 1.0 Ds m and IR2=Alternate irrigation with water of EC 10 and 5.1 d elm) two levels of phosphorous (P1 160 and P2=215 kg P/sub 2/ O/sub 5/ha) added at the beginning of the experiment. There were three nitrogen levels (N0=0, N1=370 and N2=375 kg N/ha) split into six doses a basal dose of potassium was added at the rate of 175 kg K/sub 2/ha. One healthy seedling of tomato was transplanted 3 weeks after germination in each pot (0.07 m/sup 2/) filled with soil classified as Torrifluvents. The treatments were replicated thrice and the pots were put in an open area of Agriculture Research Station Rumais Sultanate of Oman. Equal quantities of good water and good+saline (alternatively) waters were applied per treatments the alternate irrigation was started 15 days after transplanting Mature fruit was plucked; yield total soluble solids TSS) and mineral constituents were determined the results indicated that alternate irrigation (IR2) increased overall yield only by 21% in the first year but decreased it by 21% in the second indicating cumulative effect of salt accumulation Nitrogen application showed a significant linear response in tomato fruit yield. The effect of P application and interactions between treatments were non-significant in both the years. Alternate irrigation mineral fertilization increased the total soluble solids significantly Nitrogen application at the rate of 370 kg N ha (NI) gave the highest total soluble solids (TSS) in the two water treatments with phosphorus application rate of 215 kg P/sub 2/O/sub 5/ha (P2). On the other hand, when nitrogen application rate was increased to 735 kg

  16. Geochemical and Geophysical Study in a Degraded Area Used for Disposal of Sludge from a Water Treatment Plant

    International Nuclear Information System (INIS)

    Moreira, R.C.A.; Nunes, S.A.; Da Silva, D.R.; Lira, C.P.; Boaventura, G.R.; Do Nascimento, C.T.C.; Moreira, R.C.A.; Pinheiro, L.A.

    2011-01-01

    The effects of disposal of sludge from water treatment plant (WTS) in area damaged by laterite extraction and its consequences to soil and groundwater were investigated. Therefore, the presence and concentration of anthropogenic elements and chemical compounds were determinated. WTS disposal's influence was characterized by electroresistivity method. The WTS's geochemical dispersion was noticed in the first meters of the non saturated zone from the lending area. Lateritic profiles were characterized due to the large variation in chemical composition between the horizons. Infiltration and percolation of rainwater through the WTS have caused migration of total dissolved solids to the groundwater. WTS's disposing area has more similarities to local preserved vegetation than to gravel bed area. WTS can be considered a noninert residue if disposed in degraded areas located in regions with similar geological and hydrochemical characteristics.

  17. PRODUCTION OF TOMATO SEEDLINGS UNDER SALINE IRRIGATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Brasiliano Campos

    2007-01-01

    Full Text Available Processing tomato is the most important vegetable crop of the Brazilian agribusiness and few researches have been conducted to evaluate the tolerance of this crop to saline stress. In this study, the effects of five levels of salinity of the irrigation water (1, 2, 3, 4 and 5 dS m-1 and three equivalent proportions of Na:Ca:Mg (1:1:0.5, 4:1:0.5 and 7:1:0.5 were tested on the emergence and vigor of processing tomato, cultivar IPA 6. Seeds were sowed in expanded polystyrene tray (128 cells and each tray received 1 L of water after sowing. The trays were piled and, four days after sowing, they were placed on suspended supports in a greenhouse. Irrigation was accomplished daily from the fifth day after sowing. Only dry weight of shoot and root was affected by sodium proportions, while linear reductions of the speed of emergence, stem length and the dry weight of shoot and root were observed with increasing salinity. Root was more affected than shoot by salinity and relative growth ratioincreased with salinity levels on the 14-21 days after sowing period, indicating that the crop showed a certain increase of salinity tolerance with the time of exposure to salts.

  18. Decline of the world's saline lakes

    Science.gov (United States)

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  19. Modelling of thermally driven groundwater flow in a facility for disposal of spent nuclear fuel in deep boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, Nico; Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-09-15

    100 to 50 metres, the maximum temperature increase in the rock between the boreholes increased from 5 to 10 deg C and the duration of the this thermal pulse increased. Also, the thermally induced groundwater flow rate increased. However, the travel times for the groundwater from the disposal zone to the mobile fresh water zone above the halo cline remained much longer than the duration of the thermal pulse. Hence, the conclusion from previous studies that the thermal output from the fuel is insufficient to jeopardise the stability of the groundwater stratification is confirmed. It should be noted, though, that some mixing occurs at the halo cline if the permeability of the borehole filling material is assumed to increase. This mixing is less pronounced in the case with the sharper salinity interface. Based on the calculations performed in this study, it can be concluded that boreholes for disposal of spent nuclear fuel should not be spaced closer than 100 metres for the type of canisters assumed in this study. The results also indicated that the properties of the material used for backfilling the boreholes has some importance for the stability of the halo cline.

  20. Soil salinization in different natural zones of intermontane depressions in Tuva

    Science.gov (United States)

    Chernousenko, G. I.; Kurbatskaya, S. S.

    2017-11-01

    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  1. Salinity extrema in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shetye, S.R.; Gouveia, A.D.; Michael, G.S.

    are described. Two of the maxima arise from the influence of Red Sea and the Persian Gulf Water. The third, which lies at the bottom of the Equatorial Surface Water, forms due to freshening at the surface of high salinity Arabian Sea near-surface waters...

  2. Irrigation and drainage in agriculture: a salinity and environmental perspective

    NARCIS (Netherlands)

    Zee, van der S.E.A.T.M.; Stofberg, S.F.; Yang, X.; Liu, Y.; Islam, M.N.; Hu, Yin Fei

    2017-01-01

    Whereas irrigation and drainage are intended to address the shortage and surplus of soil water, respectively, an important aspect to address is also the management of salinity. Plants have a limited tolerance for soil water salinity, and despite significant gaps in our practical knowledge, an

  3. Hydrologic modeling in a marsh-mangrove ecotone: Predicting wetland surface water and salinity response to restoration in the Ten Thousand Islands region of Florida, USA

    Science.gov (United States)

    Michot, B.D.; Meselhe, E.A.; Krauss, Ken W.; Shrestha, Surendra; From, Andrew S.; Patino, Eduardo

    2017-01-01

    At the fringe of Everglades National Park in southwest Florida, United States, the Ten Thousand Islands National Wildlife Refuge (TTINWR) habitat has been heavily affected by the disruption of natural freshwater flow across the Tamiami Trail (U.S. Highway 41). As the Comprehensive Everglades Restoration Plan (CERP) proposes to restore the natural sheet flow from the Picayune Strand Restoration Project area north of the highway, the impact of planned measures on the hydrology in the refuge needs to be taken into account. The objective of this study was to develop a simple, computationally efficient mass balance model to simulate the spatial and temporal patterns of water level and salinity within the area of interest. This model could be used to assess the effects of the proposed management decisions on the surface water hydrological characteristics of the refuge. Surface water variations are critical to the maintenance of wetland processes. The model domain is divided into 10 compartments on the basis of their shared topography, vegetation, and hydrologic characteristics. A diversion of +10% of the discharge recorded during the modeling period was simulated in the primary canal draining the Picayune Strand forest north of the Tamiami Trail (Faka Union Canal) and this discharge was distributed as overland flow through the refuge area. Water depths were affected only modestly. However, in the northern part of the refuge, the hydroperiod, i.e., the duration of seasonal flooding, was increased by 21 days (from 115 to 136 days) for the simulation during the 2008 wet season, with an average water level rise of 0.06 m. The average salinity over a two-year period in the model area just south of Tamiami Trail was reduced by approximately 8 practical salinity units (psu) (from 18 to 10 psu), whereas the peak dry season average was reduced from 35 to 29 psu (by 17%). These salinity reductions were even larger with greater flow diversions (+20%). Naturally, the reduction

  4. Effect of Digestate and Biochar Amendments on Photosynthesis Rate, Growth Parameters, Water Use Efficiency and Yield of Chinese Melon (Cucumis melo L. under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Mohammed M. A. Elbashier

    2018-02-01

    Full Text Available Despite the recent interest in biochar and digestate as soil amendments for improving soil quality and increasing crop production, there is inadequate knowledge of the effect of the combination of biochar and digestate, particularly under saline irrigation conditions. A pot experiment with Chinese melon was conducted in a greenhouse, biochar (5% and digestate (500 mL/pot were used with and without the recommended mineral NPK (Nitrogen, Phosphorus and Potassium fertilizer dose (120-150-150 Kg ha−1. The plants were irrigated with tap water (SL0 and 2 dS/m (SL1 NaCl solution. The growth, photosynthesis rate, water use efficiency (WUE and yield of Chinese melon were affected positively when biochar was combined with digestate amendment, particularly under saline irrigation water with and without mineral NPK fertilizer. The maximum yield under normal water was obtained by digestate (SL0: 218.87 t ha−1 and biochar amendment combined with digestate (SL1: 118.8 t ha−1 under saline water. The maximum WUE values were noticed with the biochar and digestate combination under all water treatments (SL0: 32.2 t ha−1 mm−1 and SL1: 19.6 t ha−1 mm−1. It was concluded that digestate alone was more effective than the use of biochar, particularly with normal water. The combination of biochar with digestate had a significant effect on the Chinese melon growth, photosynthesis rate, water use efficiency and yield under saline irrigation, and it can be used as an alternative fertilizer for mineral NPK fertilizer.

  5. Wastes disposal on board a ship. Disposal of sewage and waste water; Senjo no haikibutsu shori. Osui oyobi haisui no shori ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-07-25

    This paper describes technologies and devices suitable for disposing of sewage and waste water produced in a ship. Methods for disposing of sewage in a ship include such physico-chemical disposition methods as disinfection and sterilization, and such biological disposition methods as activated sludge sewage disposition and catalytic oxidation (biological membrane treatment). Sewage treatment devices include a storage tank type sewage treatment device often used in inner sea liners such as ferry boats, and a biological treatment device (aeration device) used as a mainstream in merchant ships, large passenger liners, and governmental ships. With the storage tank type sewage treatment device, sewage is stored in a storage tank provisionally while a ship is cruising in a discharge prohibited sea area, and discharged in a sea area allowing the discharge or when the ship enters a port. The method is simple, but limited in storage volume. An activated sludge sewage treatment device consists of a tank divided into an aeration chamber, a sedimentation chamber and a disinfection chamber, an air compressor, a chlorine dissolving apparatus, and a screen. Sewage is digested and decomposed by activated sludge, and the top clear water is disinfected by chlorine, and then discharged. 1 tab.

  6. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    Science.gov (United States)

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  7. The Brine Shrimp Artemia Survives in Diluted Water of Lake Bunyampaka, an Inland Saline Lake in Uganda

    Directory of Open Access Journals (Sweden)

    Martin Sserwadda

    2018-02-01

    Full Text Available Ugandan aquaculture is in the process of development; however, it requires access to an affordable live food source, such as brine shrimp Artemia. This study fits within a broader feasibility study of domestic Artemia production in salt lakes. Since Uganda is a landlocked country, the only opportunity for live water food sources lies in the salt lakes in the west of the country. This study used saline water from one of these lakes, Lake Bunyampaka (salinity 72 mg L−1. Two Artemia strains, i.e., the Great Salt Lake strain, which is the dominant strain on the market, and the Vinh Chau strain, which is by far the most inoculated strain in the world, were assayed for their survival, growth, and reproduction in diluted Lake Bunyampaka water, using natural seawater as control. The organisms were fed live freshly cultured microalgae Tetraselmis suecica ad libitum. Our study revealed that the Vinh Chau strain performed especially well in Lake Bunyampaka water diluted to 50 g L−1. The data presented in this study generate the first useful information for the future inoculation of Artemia in Lake Bunyampaka in Uganda, and hence domestic Artemia production in the country; however, further larger-scale laboratory work, followed by field trials, is still needed.

  8. Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto).

    Science.gov (United States)

    Perry, L; Williams, K

    1996-03-01

    Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO 2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO 2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt

  9. Defense waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Dukes, M.D.

    1984-01-01

    A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. The disposal process includes emplacing the saltstone in engineered trenches above the water table but below grade at SRP. Design of the waste form and disposal system limits the concentration of salts and radionuclides in the groundwater so that EPA drinking water standards will not be exceeded at the perimeter of the disposal site. 10 references, 4 figures, 3 tables

  10. Development of a coastal drought index using salinity data

    Science.gov (United States)

    Conrads, Paul; Darby, Lisa S.

    2017-01-01

    A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.

  11. Effect of Different Levels of Irrigation Water Salinity and Soil Texture on Growth and N Use Efficiency of Tomato and Melochia Grown in Rotation using 15N

    International Nuclear Information System (INIS)

    Darwish, T.M.; El Moujabber, M.; Atallah, T.; El Chami, D.

    2008-01-01

    Increasing water demands and water scarcity imply large farmer's reliance on groundwater on the coastal area leading to water salinization by seawater intrusion. Irrigation using saline water accumulates salts in the soil notably under protected agriculture leading to negative impact on yields. Consequently salt removal by leaching is required. Bioremediation of salt affected soils through a rotation acquires economic and environmental importance. Pot experiments were conducted under plastic house conditions on sandy soil (T1) and clay soil (T2). Three saline water treatments were used: low (S1=1.0 dS.m-1), moderate (S2=2.5 dS.m-1) and high (S3=5.0 dS.m-1). Tomato cv Tyrade (S and G seeds) was planted first, followed by Melochia or Jew's mallow (Corchorus olitorius) for remediation purposes. Each soil was placed in 24 pots and treatments were distributed randomly. Fertigation was done using drip method. Labeled nitrogen 15 N was used to trace the direct and residual effect of nitrogen under different saline conditions. Tomato yield, for the sandy soil, was negatively affected by the higher level of salinity. This effect could be attributed to the smaller buffering capacity of the sand soil. As a result of salinity, there was a remarkable increase in dry matter contents of fruits in the sandy soil only. Texture had a major effect on leaf area index (LAI) with better development in clay soil. Water consumption in the first 200 days of growth period did not show any significant difference among treatments with around 350-375 mm consumed. Nitrogen derived from fertilizers (% Ndff) was not affected by the soil texture or by the salinity. N yield and use efficiency were higher in the clay soil texture. Moreover, yield and Ndff in Melochia plants were negatively affected due to salt accumulation in the soil. Counting for all recovered N in the tomato-Melochia rotation, N use efficiency was higher in plants grown on clay soil (47%) compared to sandy soil (37.5%). (author)

  12. Land application for disposal of excess water: an overview

    International Nuclear Information System (INIS)

    Riley, G.H.

    1992-01-01

    Water management is an important factor in the operation of uranium mines in the Alligator Rivers Region, located in the Wet-Dry tropics. For many project designs, especially open cut operations, sole reliance on evaporative disposal of waste water is ill-advised in years where the Wet season is above average. Instead, spray irrigation, or the application of excess water to suitable areas of land, has been practised at both Nabarlek and Ranger. The method depends on water losses by evaporation from spray droplets, from vegetation surfaces and from the ground surface; residual water is carried to the groundwater system by percolation. The solutes are largely transferred to the soils where heavy metals and metallic radionuclides attach to particles in the soil profile with varying efficiency depending on soil type. Major solutes that can occur in waste water from uranium mines are less successfully immobilised in soil. Sulphate is essentially conservative and not bound within the soil profile; ammonia is affected by soil reactions leading to its decomposition. The retrospective viewpoint of history indicates the application of a technology inadequately researched for local conditions. The consequences at Nabarlek have been the death of trees on one application area and the creation of contaminated groundwater which has moved into the biosphere down gradient and affected the ecology of a local stream. At Ranger, the outcome of land application has been less severe in the short term but the effective adsorption of radionuclides in surface soils has lead to dose estimates which will necessitate restrictions on future public access unless extensive rehabilitation is carried out. 2 refs., 1 tab

  13. Saline lakes of the glaciated Northern Great Plains

    Science.gov (United States)

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  14. Influence of salinity on the life table demography of a rare Cladocera Latonopsis australis

    Digital Repository Service at National Institute of Oceanography (India)

    Haridevan, G.; Jyothibabu, R.; Arunpandi, N.; Jagadeesan, L.; Biju, A.

    , 12, 14, 16, 18, 20 and 22 salinity). Triplicates were maintained for each treatment. The desired salinity in the experiment vials was prepared by dilution of GF/C filtered and autoclaved sea water with the desired volume of distilled water... production -0.943 p<0.001 23    Table 3 Tukeys HSD Pair wise comparison for age specific fecundity (mx) in different salinity treatments. Bold values indicates at significance level at p < 0.05. Salinity F. water 2 4 6 8 10 12 14 F. water 1 2 0.968 1...

  15. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface

    International Nuclear Information System (INIS)

    You Chun; Jia Chengxia; Pan Gang

    2010-01-01

    This study investigated the influence of solution salinity, pH and the sediment characteristics on the sorption and desorption of perfluorooctane sulfonate (PFOS). The results showed that the sorption of PFOS onto sediment increased by a factor of 3 as the CaCl 2 concentration increased from 0.005 to 0.5 mol L -1 at pH 7.0, and nearly 6 at pH 8.0. Desorption hysteresis occurred over all salinity. The thermodynamic index of irreversibility (TII) values increased with increasing concentration of CaCl 2 . Maximum irreversibility was found in the sorption systems with CaCl 2 in the concentration of 0.5 mol L -1 . The results suggested that PFOS can be largely removed from the water with increasing salinity, and get trapped onto sediments irreversibly. These phenomena could be explained by salting-out effect and Ca-bridging effect. Studies also suggested that the content of total organic carbon is the dominant psychochemical properties of sediment controlling the sorption of PFOS. - Salinity is an important environmental parameter affecting the transport and fate of PFOS in aquatic environment.

  16. Efeitos da lixiviação e salinidade da água sobre um solo salinizado cultivado com beterraba Effects of leaching and water salinity on a saline soil cultivated with sugar beet

    Directory of Open Access Journals (Sweden)

    Paulo A. Ferreira

    2006-09-01

    Full Text Available Os efeitos de cinco lâminas de lixiviação e quatro níveis de salinidade da água de irrigação sobre a salinidade de um Neossolo Flúvico e a produtividade da cultura da beterraba (Beta vulgaris L. foram estudados em lisímetros de drenagem. Os tratamentos foram dispostos em arranjo fatorial com quatro níveis de condutividade elétrica da água de irrigação (1,0, 2,0, 3,0 e 4,0 dS m-1, a 25 °C e cinco lâminas de lixiviação equivalente a 0,25, 0,50, 0,75, 1,00 e 1,25 do volume de poros do solo ou 53, 106, 159, 206 e 248 mm, respectivamente, no delineamento inteiramente casualizado, com quatro repetições. Os componentes avaliados foram a produtividade da cultura e as salinidades no solo e no lixiviado. Os resultados obtidos mostraram incrementos da salinidade no lixiviado com o decréscimo das lâminas de lixiviação. Os maiores índices de salinidade no perfil do solo, ao final do ciclo da cultura, corresponderam aos tratamentos que receberam as menores lâminas de lixiviação e condutividade elétrica da água de irrigação. A produtividade total da beterraba e a produção das raízes com diâmetros maiores que 3, 4, 5, 6 e 7 cm, não foram influenciadas pelos níveis de salinidade da água de irrigação e lâminas de lixiviação.The effects of five leaching depths and four salinity levels of the irrigation water on the salinity of a Neossol Fluvent and the productivity of sugar beet crop were studied using drainage lysimeters. A completely randomized experimental design was used with four replications, the treatments being displayed in a factorial scheme with four electrical conductivity levels of the irrigation water (1.0, 2.0, 3.0 and 4.0 dS m-1 at 25 °C and five leaching depths equivalent to 0.25, 0.50, 0.75, 1.00 and 1.25 of the soil pores volume or 53, 106, 159, 206 e 248 mm, respectively. The crop productivity and the salinity of soil and leachate were evaluated. The results showed increased salinity in the leachate

  17. The Changes in the Physiological Growth and the React of the Salinity and Number of Irrigation Water of Two Cumin Cultivars (Cuminum cyminum L.

    Directory of Open Access Journals (Sweden)

    M kafi

    2017-08-01

    Full Text Available Introduction Water shortage in Iran has always been a limiting factor for crop cultivation. Drought stress at different growth stages, especially flowering and grain filling stages decreases the yield of the plants. Drought stress may limit yield of medicinal and aromatic plants by reducing the harvest index (HI. This can occur even in the absence of a strong reduction in total medicinal and aromatic plants dry matter accumulation, if a brief period of stress coincides with the critical developmental stage around flowering stage. Water stress is the most influential factor affecting crop yield particularly in irrigated agriculture in arid and semi-arid regions. It is necessary to get maximum yield in agriculture by using the least available water in order to get maximum profit per unit area because existing agricultural land and irrigation water are rapidly diminishing due to rapid industrialization and urban development. In general, 15% of the Iran lands are saline and sodic (Parsa, 2000 and it dues to the use of widespread of water resources and the soil salinity of the farms. Unfortunately this factor (soil salinity gradually becomes more serious, in fact even in none-saline water irrigation with salt accumulation in the soil in long period of time it may increase and the result will be the limitation of the products (Sharma, 1996. The analyzing of the growth and product is a method for discovering the factors which are effecting on the plants. The purpose of the analyzing of the plants growth is the reaction of the plants to the environmental factors (Sangwan et al., 1994. Cumin (Cuminum cyminum is one of the most important economic and medicinal plants that can growth in arid and semi-arid conditions. Cumin is mostly grown in China, Uzbekistan, Tajikistan, Iran, Turkey, Morocco, Egypt, Syria, Mexico, Chile and India. In the ancient Egyptian civilization cumin was used as spice and as preservative in mummification. The purpose of this study

  18. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    Science.gov (United States)

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  19. Loviisa power station - final disposal of reactor waste

    International Nuclear Information System (INIS)

    Kankainen, Tuovi

    1986-10-01

    This study forms a part of the research done to assess the suitability of the rapakivi granitic bedrock of the island of Haestholmen, southern Finland, for the management of reactor waste. The aim is to assess the residence time and the origin of the groundwater. In addition, microfossil analyses and conservative ion data were used in deciphering the origin of the groundwater. Fracture mineral studies were limeted to 13 C determinations on two fracture calcites. Groundwater was sampled at several levels of four drill holes, reaching to a depth of some 200 m. The isotopic results were compared with those of water from a percussion drill hole, shallow dug wells, and the Gulf of Finland. The main conclusions are based on 3 H bundances in groundwater, mean residence time of groundwater deduced from 14 C analyses, and stabile isotope content of groundwater, combined with conservative ion data. Additional information was gained from activity ratios of uranium, and sulphur isotope ratios of sulphate. The groundwater of Haestholmen consists of a surface layer of fresh water, and deeper down, of saline water. The fresh water flows and changes rapidly; most of it has precipitated and infiltrated less than 30 years ago. It intermixes with saline water only at the fresh-saline groundwater interface. The saline water underneath the intermediate zone is relatively stagnant. It mainly consists of sea water from the Litorina Sea stage, intermixed with less than 20% glacial melt water. The evolution of the Haestholmen groundwater towards its present stage began during the melting phase of the Weichselian glaciation. Then the groundwater conditions chanced, and infiltration of melt water along open fractures in the bedrock occured. During the Litorian Sea stage heavy saline Litorina sea water slowly infiltrated in the bedrock and displaced the fresh water almost totally. The Haestholmen island rose above the sea level more than 4000 years ago. Then formation of the surficial layer

  20. A review of theories on the origins of saline waters and brines in the Canadian Precambrian Shield

    International Nuclear Information System (INIS)

    Bottomley, D.J.

    1996-02-01

    Groundwater at depths greater that 500 m in the Canadian Precambrian Shield is typically saline with a sodium-calcium/chloride chemical composition. Brines with dissolved solid concentrations exceeding 100 g/L have been encountered in several deep mines (>1000 m) on the Shield. Theories on the origins of these deep saline waters and brines can be grouped into two general categories: (1) autochthonous (in situ) origins attributable to silicate mineral hydrolysis over geologic time scales, leaching of fluid inclusions or radiolysis effects, and (2) allochthonous (external) sources caused by the infiltration of brine of modified seawater origins in the geologic past. Although the chemical and isotopic compositions of these waters clearly reflect the effects of reaction between the water and their silicate host rocks, it is unlikely that the high chlorinity of the brines is in an autochthonous attribute. It is proposed that the compositions of these brines are most compatible with the Paleozoic residual brine hypothesis of Spencer (1987). This theory invokes deep infiltration of a high-density residual brine, formed by the evaporation of seawater during Devonian time, into underlying Precambrian basement rocks where subsequent chemical modifications occurred. (author) 39 refs., 2 figs

  1. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Satellite observations.

    Science.gov (United States)

    Guerrero, Raul A; Piola, Alberto R; Fenco, Harold; Matano, Ricardo P; Combes, Vincent; Chao, Yi; James, Corinne; Palma, Elbio D; Saraceno, Martin; Strub, P Ted

    2014-11-01

    Satellite-derived sea surface salinity (SSS) data from Aquarius and SMOS are used to study the shelf-open ocean exchanges in the western South Atlantic near 35°S. Away from the tropics, these exchanges cause the largest SSS variability throughout the South Atlantic. The data reveal a well-defined seasonal pattern of SSS during the analyzed period and of the location of the export of low-salinity shelf waters. In spring and summer, low-salinity waters over the shelf expand offshore and are transferred to the open ocean primarily southeast of the river mouth (from 36°S to 37°30'S). In contrast, in fall and winter, low-salinity waters extend along a coastal plume and the export path to the open ocean distributes along the offshore edge of the plume. The strong seasonal SSS pattern is modulated by the seasonality of the along-shelf component of the wind stress over the shelf. However, the combined analysis of SSS, satellite-derived sea surface elevation and surface velocity data suggest that the precise location of the export of shelf waters depends on offshore circulation patterns, such as the location of the Brazil Malvinas Confluence and mesoscale eddies and meanders of the Brazil Current. The satellite data indicate that in summer, mixtures of low-salinity shelf waters are swiftly driven toward the ocean interior along the axis of the Brazil/Malvinas Confluence. In winter, episodic wind reversals force the low-salinity coastal plume offshore where they mix with tropical waters within the Brazil Current and create a warmer variety of low-salinity waters in the open ocean. Satellite salinity sensors capture low-salinity detrainment events from shelves SW Atlantic low-salinity detrainments cause highest basin-scale variability In summer low-salinity detrainments cause extended low-salinity anomalies.

  2. Changes in infant disposable diaper weights at selected intervals post-wetting.

    Science.gov (United States)

    Carlisle, Joan; Moore, Amanda; Cooper, Alyssa; Henderson, Terri; Mayfield, Debbie; Taylor, Randa; Thomas, Jennifer; Van Fleet, Laduska; Askanazi, David; Fineberg, Naomi; Sun, Yanhui

    2012-01-01

    Pediatric acute care nurses questioned the practice of weighing disposable infant diapers immediately after voiding. This study asked the research question, "Does volume of saline, diaper configuration, and/or size of diaper statistically effect changes in diaper weights over time?" The method was an experimental, laboratory model. Pre-set volumes of saline were added to disposable diapers that were then left folded or unfolded. Each diaper was weighed immediately post-wetting and re-weighed at hourly intervals for seven hours. Data were analyzed using a repeated measures analysis of variance (RMANOVA) with balanced data (F-test). Diaper weight changes over time were statistically significant for all time points and for all volumes regardless of diaper size; however, the changes in weight were small and without clinical significance. It is appropriate to weigh diapers at the end of eight hours without risk of altering subsequent fluid management of patients in open-air, non-humidified environments. This practice has led to more efficient use of nurses' time with fewer interruptions for patients and families.

  3. The long-term resistance mechanisms, critical irrigation threshold and relief capacity shown by Eugenia myrtifolia plants in response to saline reclaimed water

    DEFF Research Database (Denmark)

    Acosta-Motos, José Ramón; Hernández, José Antonio; Álvarez, Sara

    2017-01-01

    water potential, the relative water content of leaves, leaf stomatal conductance, the leaf photosynthetic rate, water-use efficiency and accumulated evapotranspiration in order to limit water loss; and 4) changes in the antioxidant defence mechanisms. These different responses induced oxidative stress...... to different electric conductivities of the treatments. Based on these premises, we studied the long-term effect of three reclaimed water treatments with different saline concentrations on Eugenia myrtifolia plants. We also looked at the ability of these plants to recover when no drainage was applied. The RW...... with the highest electric conductivity (RW3, EC = 6.96 dS m(-1)) provoked a number of responses to salinity in these plants, including: 1) accumulation and extrusion of phytotoxic ions in roots; 2) a decrease in the shoot/root ratio, leaf area, number of leaves; 3) a decrease in root hydraulic conductivity, leaf...

  4. Factors affecting the release of radioactivity to the biosphere during deep geologic disposal of radioactive solids through underground water

    International Nuclear Information System (INIS)

    Solomah, A.G.

    1984-01-01

    The chemical alteration formed by ground water on the solidified radioactive waste during deep geologic disposal represents the most likely mechanism by which dangerous radioactive species could be reintroduced into the biosphere. Knowing the geologic history of the repository, the chemistry of the ground water and the mechanisms involved in the corrosion of the radioactive solids can provide help to predict the long-term stability of these materials. The factors that must be considered in order to assess the safety and the risk associated with such a disposal strategy are presented. The leaching behavior of a solidified radioactive waste form called SYNROC-B (SYNthetic ROCks) is discussed. Different simulated ground water brines similar to those of the repository sites were prepared and used as the leaching media in leaching experiments

  5. Morphology and Kinetics of Growth of CaCO3 Precipitates Formed in Saline Water at 30°C

    Science.gov (United States)

    Sui, Xin; Wang, Baohui; Wu, Haiming

    2018-02-01

    The crystallization kinetics and morphology of CaCO3 crystals precipitated from the high salinity oilfield water were studied. The crystallization kinetics measurements show that nucleation and nuclei growth obey the first order reaction kinetics. The induction period of precipitation is extended in the high salinity solutions. Morphological studies show that impurity ions remain mostly in the solution phase instead of filling the CaCO3 crystal lattice. The morphology of CaCO3 precipitates can be changed from a smooth surface (calcite) to rough spheres (vaterite), and spindle rod bundles, or spherical, ellipsoid, flowers, plates and other shapes (aragonite).

  6. Osmoregulatory physiology and rapid evolution of salinity tolerance in threespine stickleback recently introduced to fresh water

    Science.gov (United States)

    Divino, Jeffrey N; Monette, Michelle Y.; McCormick, Stephen; Yancey, Paul H.; Flannery, Kyle G.; Bell, Michael A.; Rollins, Jennifer L.; von Hippel, Frank A.; Schultz, Eric T.

    2016-01-01

    Background: Post-Pleistocene diversification of threespine stickleback in fresh water offers a valuable opportunity to study how changes in environmental salinity shape physiological evolution in fish. In Alaska, the presence of both ancestral oceanic populations and derived landlocked populations, including recent lake introductions, allows us to examine rates and direction of evolution of osmoregulation following halohabitat transition.

  7. Assessment of the viability of using saline reclaimed water in grapefruit in medium to long term

    Directory of Open Access Journals (Sweden)

    Cristina Romero-Trigueros

    2014-11-01

    Full Text Available Citrus trees are strongly affected by salinity, especially in countries where irrigation is required as a semi-arid Mediterranean agronomic region. The aims of the study were i to identify the best reliable plant-based water status indicator for field grown grapefruit trees irrigated with saline reclaimed water during five years of cultivation by measuring seasonal changes in physiological parameters (i.e. gas exchange and stem water potential measurements, leaf structural traits (i.e. leaf chlorophyll content, area-based leaf nitrogen and area-based dry mass, phytotoxic elements and yield; ii to estimate phytotoxicity thresholds at leaf level. Our results showed that the chlorophyll content was the parameter with the highest number of measures with significant differences (p≤0.05, ANOVA between trees irrigated with reclaimed water and control trees throughout growing stages. Moreover, Chl a increased linearly with area-based leaf nitrogen (R2=0.63; p<0.001 and area-based dry mass (R2=0.64; p<0.001. We also determined the salt-induced phytotoxicity thresholds at which a reduction in yields occurs; these levels were Na: 0.1 g/100 g, Cl: 0.6 g/100 gand B: 100 ppm. In conclusion, we revealed the importance of leaf chlorophyll measurements as a significance diagnostic indicator of salt stress on field grown grapefruit trees. This parameter was also related to plant-based water status indicators such as stem water potential, stomatal conductance and net photosynthesis. Additionally, a salt accumulation potential at leaf level was shown, leading to possible risk in crop sustainability in the medium to long term.

  8. Cultivation of CNPA G3 sesame irrigated with saline water and fertilized with nitrate-N and ammonium-N

    Directory of Open Access Journals (Sweden)

    Geovani S. de Lima

    Full Text Available ABSTRACT The study aimed to evaluate the effects of irrigation with saline water and fertilization with nitrate (NO3--N and ammonium (NH4+-N ratios on growth, flowering, water consumption and water use efficiency of the sesame cv. CNPA G3. The treatments were distributed in randomized blocks in a 5 x 5 factorial with three replicates, referring to five levels of electrical conductivity of the irrigation water - ECw (0.6, 1.2, 1.8, 2.4 and 3.0 dS m-1 and nitrate (NO3--N and ammonium (NH4+-N (200/0, 150/50, 100/100, 50/150, 0/200 mg kg-1 ratios. Irrigation with saline water above 0.6 dS m-1 inhibited the growth, delayed flowering and promoted early maturation of capsules of sesame, cv. CNPA G3. The proportion of 0/200 mg kg-1 of NO3--N/NH4+-N promoted the greatest increase relative to stem diameter and height of sesame plants. Water consumption decreases with increasing ECw and was significantly lower in plants fertilized with the proportion of 0/200 of NO3--N/NH4+-N. The interaction between ECw levels and ammonium/nitrate proportions significantly affect water use efficiency, and the highest value was obtained with ECw of 0.6 dS m-1 and fertilization with 150:50 mg kg-1 of NO3--N and NH4+-N.

  9. Tritium waste disposal technology in the US

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Towler, O.A.

    1983-01-01

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references

  10. Hydrogen isotope response to changing salinity and rainfall in Australian mangroves.

    Science.gov (United States)

    Ladd, S Nemiah; Sachs, Julian P

    2015-12-01

    Hydrogen isotope ratios ((2) H/(1) H, δ(2) H) of leaf waxes covary with those in precipitation and are therefore a useful paleohydrologic proxy. Mangroves are an exception to this relationship because their δ(2) H values are also influenced by salinity. The mechanisms underlying this response were investigated by measuring leaf lipid δ(2) H and leaf and xylem water δ(2) H and δ(18) O values from three mangrove species over 9.5 months in a subtropical Australian estuary. Net (2) H/(1) H fractionation between surface water and leaf lipids decreased by 0.5-1.0‰ ppt(-1) for n-alkanes and 0.4-0.8‰ ppt(-1) for isoprenoids. Xylem water was (2) H depleted relative to surface water, reflecting (2) H discrimination of 4-10‰ during water uptake at all salinities and opportunistic uptake of freshwater at high salinity. However, leaf water (2) H enrichment relative to estuary water was insensitive to salinity and identical for all species. Therefore, variations in leaf and xylem water δ(2) H values cannot explain the salinity-dependent (2) H depletion in leaf lipids, nor the 30‰ range in leaf lipid δ(2) H values among species. Biochemical changes in direct response to salt stress, such as increased compatible solute production or preferential use of stored carbohydrates, and/or the timing of lipid production and subsequent turnover rates, are more likely causes. © 2015 John Wiley & Sons Ltd.

  11. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  12. Outfall as a Suitable Alternative for Disposal of Municipal Wastewater in Coastal Areas

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2005-11-01

    Full Text Available Disposal of raw municipal wastewater or effluent of preliminary treatment into the sea and ocean is economically more accepted and technically more efficient than secondary treatment. In this method, the wastewater disposed at the bottom of the sea in some points from diffuser. Nowadays, lots of researchers select outfall as a suitable alternative treatment method for coastal cities. The goal of this paper was to introduce the outfall as a wastewater treatment method and its design criteria considering different characteristics of the sea such as salinity, density, temperature, stratification etc. In addition, stagnant sea and thermal stratification is reviewed. In this paper the latest information were reviewed. In this alternative the wastewater treated under dilution, mixing and natural conditions. Moreover, sensitive coastal point are preserved from different wastewater pollutants. Usually, there is no limitation regarding discharge of coliform, DO, BOD, and nutrient concentrations in initial mixing zoom. The parameters such as thermal stratification, salinity stratification, density stratification, marine flows influence design of outfall.

  13. Control of water infiltration into near surface low-level waste disposal units. Final report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1997-09-01

    This study''s objective was to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work was carried out in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration were investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management

  14. The effect of salinity and moisture stress on pea plant

    International Nuclear Information System (INIS)

    Abdalla, A.Abd-El Ghany

    1985-01-01

    Four experiments were carried out in the green house in Inchas, Atomic Energy Establishment, to study the effect os salinity and moisture stress on pea plants. Salinity experiments were conducted in 1981/1982, 1982/1983 and 1983/1984 seasons to study the effect of NaCl and/or CaC l 2 as single or mixed salts and radiation combined with salinity. Water stress studies were conducted in 1983/1984 growing season to investigate the effect of soil moisture stress on growth, yield and water use efficiency

  15. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    Science.gov (United States)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios

  16. A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes

    NARCIS (Netherlands)

    Brogioli, D.; Zhao, R.; Biesheuvel, P.M.

    2011-01-01

    Electrical energy can be obtained from the controlled mixing of fresh (river) and saline (sea) water. Existing technologies such as pressure retarded osmosis and reverse electrodialysis make use of ion-exchange membranes which must be crossed by either the water or the ions. Recently a new physical

  17. Optimization of Deep Borehole Systems for HLW Disposal

    International Nuclear Information System (INIS)

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-01-01

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (@@@ 1%) saline water content showed that vertical convection induced by the waste's decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  18. Optimization of Deep Borehole Systems for HLW Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buongiorno, Jacopo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lester, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Brady, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, B. W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≤ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  19. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including properties of sludge and production amount, stabilization of sludge by anaerobic digestion stabilization of sludge by aerobic digestion, stabilization of sludge by chemical method, and dewatering, water process sludge, human waste and waste fluid of septic tank such as disposal of waste fluid and injection into the land, urban waste like definition of urban waste, collection of urban waste, recycling, properties and generation amount, and disposal method and possibility of injection of industrial waste into the ground.

  20. Effect of Salinity Stress and Foliar Application of Methyl Jasmonate on Photosynthetic Rate, Stomatal Conductance, Water Use Efficiency and Yield of German Chamomile

    Directory of Open Access Journals (Sweden)

    fatemeh Salimi

    2014-09-01

    Full Text Available Jasmonate is new plant growth regulator that plays an essential role at increasing plants resistance to the environmental stresses like salinity stress. Hence, in this research the effect of foliar application of methyl jasmonate on some physiological indices and yield of German chamomile under salinity conditions was studied. A factorial experiment was laid out based on randomized complete block design (RCBD with three replications in the greenhouse condition. Foliar application of methyl jasmonate was five levels (MJ1; 0, MJ2; 75, MJ3; 150, MJ4; 225 and MJ5; 300 μM and salinity stress was four levels (S1; 2, S2; 6, S3; 10, S4; 14 dS m-1. The effect of methyl jasmonate, salinity condition treatments and their interaction was significant for traits of photosynthesis rate, stomata conductance, transpiration rate, carboxylation efficiency, intercellular CO2 concentration and yield of flower. The highest values of photosynthetic rate, stomata conductance, transpiration rate, carboxylation efficiency and yield of flower (3.76 g pot-1 and the lowest intercellular CO2 concentration were achieved at MJ×S treatment. Maximum value of photosynthetic water use efficiency was revealed at MJ5×S2 treatment. With decreasing stomata conductance, photosynthetic water use efficiency and intercellular CO2 concentration were increased. In general, it seems that application of methyl jasmonate by lower dose (MJ2 under salinity conditions especially mild salinity stress (S2 can improve physiological indices and yield of chamomile.

  1. Effect of temperature and salinity on stable isotopic composition of shallow water benthic foraminifera: A laboratory culture study

    Digital Repository Service at National Institute of Oceanography (India)

    Kurtarkar, S.R.; Linshy, V.N.; Saraswat, R.; Nigam, R.

    in the laboratory. In the present work, shallow water benthic foraminiferal species, Rosalina sp. and Pararotalia nipponica were subjected to different combinations of seawater temperature (25�C to 35�C) and salinity (25 psu to 37 psu) in the laboratory to assess...

  2. Salinity in Drinking Water and the Risk of (Pre)Eclampsia and Gestational Hypertension in Coastal Bangladesh: A Case-Control Study

    Science.gov (United States)

    Khan, Aneire Ehmar; Scheelbeek, Pauline Franka Denise; Shilpi, Asma Begum; Chan, Queenie; Mojumder, Sontosh Kumar; Rahman, Atiq; Haines, Andy; Vineis, Paolo

    2014-01-01

    Background Hypertensive disorders in pregnancy are among the leading causes of maternal and perinatal death in low-income countries, but the aetiology remains unclear. We investigated the relationship between salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in a coastal community. Methods A population-based case-control study was conducted in Dacope, Bangladesh among 202 pregnant women with (pre)eclampsia or gestational hypertension, enrolled from the community served by the Upazilla Health Complex, Dacope and 1,006 matched controls from the same area. Epidemiological and clinical data were obtained from all participants. Urinary sodium and sodium levels in drinking water were measured. Logistic regression was used to calculate odds ratios, and 95% confidence intervals. Findings Drinking water sources had exceptionally high sodium levels (mean 516.6 mg/L, S.D 524.2). Women consuming tube-well (groundwater) were at a higher disease risk than rainwater users (psodium concentrations (300.01–600 mg/L, 600.1–900 mg/L, >900.01 mg/L, compared to <300 mg/L) in drinking water (ORs 3.30 [95% CI 2.00–5.51], 4.40 [2.70–7.25] and 5.48 [3.30–9.11] (p-trend<0.001). Significant associations were seen for both (pre)eclampsia and gestational hypertension separately. Interpretation Salinity in drinking water is associated with increased risk of (pre)eclampsia and gestational hypertension in this population. Given that coastal populations in countries such as Bangladesh are confronted with high salinity exposure, which is predicted to further increase as a result of sea level rise and other environmental influences, it is imperative to develop and evaluate affordable approaches to providing water with low salt content. PMID:25268785

  3. Desenvolvimento vegetativo do pepino enxertado irrigado com água salina Vegetative development on grafted cucumber plants irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Marcos Vinícius Folegatti

    2000-09-01

    Full Text Available A salinização dos solos em ambiente protegido devido ao excesso de fertilizantes e falta de lixiviação tem resultado na redução da produtividade das culturas. Este trabalho teve o objetivo de avaliar os efeitos da irrigação com água salina no desenvolvimento vegetativo do pepino enxertado cultivado em ambiente protegido. Foram utilizadas águas de diferentes salinidades (S1=1,58; S2=3,08 e S3=5,13 dS m-1, lâminas de água de irrigação (L0=1,00 x ETc e L1=1,25 x ETc e freqüências de aplicação da lâmina L1 (F1=em todas as irrigações e F2=quando a lâmina de água de irrigação acumulada em L0 atingia 100 mm. Os resultados demonstraram que a altura das plantas, área foliar unitária e índice de área foliar foram afetados linearmente pela salinidade da água, não apresentando diferença para as diferentes lâminas e frequências de aplicação de L1.Greenhouse soil salinization by excessive fertilization and lack of leaching has been a common cause of cucumber yield reduction in Brazil. The aim of this work was to evaluate the effects of irrigation with saline water on the vegetative development of grafted cucumber plants in a greenhouse. Three water salinities (S1=1.58; S2=3.08 e S3=5.13 dS m-1, two irrigation water depths (L0=1.00 x ETc e L1=1.25 x ETc and two application frequencies of L1 (F1=in all irrigations and F2=when the irrigation water depth of L0 reached 100 mm were used. Irrigation water depths and frequencies of L1 were grouped and, therefore, the experimental design was in a factorial scheme 3x3, with randomized blocks. Results showed that plant height, unit leaf area and leaf area index were linearly affected by water salinity. No differences were observed for the various irrigation water depths and frequencies of L1 application.

  4. The side effects of nitrification inhibitors on leaching water and soil salinization in a field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diez, J. A.; Arauzo, M.; Hernaiz, P.; Sanz, A.

    2010-07-01

    In experiments carried out in greenhouses, some authors have shown that ammonium sulphate induces greater soil acidity and salinity than other sources of N. Moreover, nitrification inhibitors (NI) tend to cause ammonium to accumulate in soil by retarding its oxidation to nitrate. This accumulated ammonium would also have an effect on soil salinity. Consequently, the aim of this paper was to evaluate the soil and leaching water salinization effects associated with adding NI, dicyandiamide (DCD) and dimethylpyrazole-phosphate (DMPP) to ammonium sulphate nitrate (ASN) fertilizer. This experiment was carried out in the field with an irrigated maize crop. Drainage and Na concentration were measured during both seasons (2006 and 2007) and leached Na was determined. The treatments with NI (DCD and DMPP) were associated with greater Na concentrations in soil solutions and consequently higher rates of Na leaching (in 2007, ASN-DCD 1,292 kg Na ha{sup -}1, ASN-DMPP 1,019 kg Na ha{sup -}1). A treatment involving only ASN also increased the Na concentration in soil and the amount of Na leached in relation to the Control (in 2007, ASN 928 kg Na ha{sup -}1 and Control 587 kg Na ha{sup -}1). The increase in the ammonium concentration in the soil due to the NI treatments could have been the result of the displacement of Na ions from the soil exchange complex through a process which finally led to an increase in soil salinity. Treatments including ammonium fertilizer formulated with NI produced a greater degree of soil salinization due to the presence of ammonium from the fertilizer and accumulated ammonium from the nitrification inhibition. (Author) 31 refs.

  5. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)

    1999-06-01

    from the Baltic Sea some 4000 years ago. The groundwater varies from modern fresh water at shallow depth to saline water at greater depths, the saline water normally representing a mixture of relic Litorina Sea water and meteoric and glacial meltwater. The maximum Total Dissolved Solids (TDS) in the groundwater is 32 g/l and the chloride content 19 g/1. Reducing conditions are expected to exist at depth, which are favourable for low radionuclide solubility and slow canister corrosion. Suitable bedrock volumes have been identified at the site for locating a repository in the depth range of 400-700 m. No significant geotechnical, hydrogeological and hydrogeochemical constraints have been found to its construction, although it is recommended that certain fracture zones, mainly those that are sub-horizontal, should be avoided when locating the deposition tunnels and disposal holes. The salinity of the groundwater will probably place limits on the use of certain materials for construction purposes. (orig.) 122 refs.

  6. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    4000 years ago. The groundwater varies from modern fresh water at shallow depth to saline water at greater depths, the saline water normally representing a mixture of relic Litorina Sea water and meteoric and glacial meltwater. The maximum Total Dissolved Solids (TDS) in the groundwater is 32 g/l and the chloride content 19 g/1. Reducing conditions are expected to exist at depth, which are favourable for low radionuclide solubility and slow canister corrosion. Suitable bedrock volumes have been identified at the site for locating a repository in the depth range of 400-700 m. No significant geotechnical, hydrogeological and hydrogeochemical constraints have been found to its construction, although it is recommended that certain fracture zones, mainly those that are sub-horizontal, should be avoided when locating the deposition tunnels and disposal holes. The salinity of the groundwater will probably place limits on the use of certain materials for construction purposes. (orig.)

  7. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  8. Circulation of the thermocline salinity maximum waters off the Northern Brazil as inferred from in situ measurements and numerical results

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.C. [Universidade Federal do Ceara, Fortaleza, CE (Brazil). Inst. de Ciencias do Mar; Bourles, B. [Inst. de Recherche pour le Developpement, Cotonou (Benin); Araujo, M. [UFPE, Recife, PE (Brazil). Lab. de Oceanografia Fisica Estuarina e Costeira

    2009-07-01

    High resolution hydrographic observations of temperature and salinity are used to analyse the subsurface circulation along the coast of North Brazil, off the Amazon mouth, between 2 S and 6 N. Observations are presented from four cruises carried out in different periods of the year (March-May 1995, May-June 1999, July-August 2001 and October-November 1997). Numerical model outputs complement the results of the shipboard measurements, and are used to complete the descriptions of mesoscale circulation. The Salinity Maximum Waters are here analyzed, principally in order to describe the penetration of waters originating in the Southern Hemisphere toward the Northern Hemisphere through the North Brazil Current (NBC)/North Brazil Undercurrent (NBUC). Our results show that, if the Equatorial Undercurrent (EUC) is fed by Northern Atlantic Waters, this contribution may only occur in the ocean interior, east of the western boundary around 100 m depth. Modeling results indicate a southward penetration of the Western Boundary Undercurrent (WBUC) below the thermocline, along the North Brazilian coast into the EUC or the North Equatorial Undercurrent (NEUC) (around 48 W-3 N). The WBUC in the region does not flow more south than 3 N. The northern waters are diverted eastward either by the NBC retroflection or by the northern edge of the associated clockwise rings. The existence of subsurface mesoscale rings associated to the NBC retroflection is evidenced, without any signature in the surface layer, so confirming earlier numerical model outputs. These subsurface anticyclones, linked to the NBC/NBUC retroflection into the North Equatorial Undercurrent and the EUC, contribute to the transport of South Atlantic high salinity water into the Northern Hemisphere. (orig.)

  9. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface

    Energy Technology Data Exchange (ETDEWEB)

    You Chun; Jia Chengxia [State Key Lab of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Pan Gang, E-mail: gpan@rcees.ac.c [State Key Lab of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2010-05-15

    This study investigated the influence of solution salinity, pH and the sediment characteristics on the sorption and desorption of perfluorooctane sulfonate (PFOS). The results showed that the sorption of PFOS onto sediment increased by a factor of 3 as the CaCl{sub 2} concentration increased from 0.005 to 0.5 mol L{sup -1} at pH 7.0, and nearly 6 at pH 8.0. Desorption hysteresis occurred over all salinity. The thermodynamic index of irreversibility (TII) values increased with increasing concentration of CaCl{sub 2}. Maximum irreversibility was found in the sorption systems with CaCl{sub 2} in the concentration of 0.5 mol L{sup -1}. The results suggested that PFOS can be largely removed from the water with increasing salinity, and get trapped onto sediments irreversibly. These phenomena could be explained by salting-out effect and Ca-bridging effect. Studies also suggested that the content of total organic carbon is the dominant psychochemical properties of sediment controlling the sorption of PFOS. - Salinity is an important environmental parameter affecting the transport and fate of PFOS in aquatic environment.

  10. The effectiveness of dispersants under various temperature and salinity regimes

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2005-01-01

    A series of tests were conducted to determine the effectiveness of dispersants in Arctic waters where salinity and temperature interactions play a critical role. In particular, Corexit 9500 was tested on Alaska North Slope oil at different temperatures and salinity using the ASTM standard test and variations of this test. Results were compared to the only historically reported test in which both temperature and salinity were changed over a range of values. This series of tests demonstrated that there is an interaction between salinity, temperature and dispersant effectiveness. It was shown that conventional and currently available dispersants are nearly ineffective at 0 salinity. Dispersant effectiveness peaks at 20 to 40 units of salinity, depending on the type of dispersant. Corexit is less sensitive to salinity, while Corexit 9527 is more sensitive to salinity. There is a smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and as it exceeds this value. Results from the 2 field trials in fresh water suggest that laboratory tests correctly conclude that the effectiveness of dispersants is very low in freshwater. The study also examined several analytical factors such as the total petroleum hydrocarbon (TPH) versus relative petroleum hydrocarbon (RPH) methods, specific versus general calibration curves, and automatic versus manual baseline placement. The analytical variations of effectiveness by RPH or TPH methods do not affect the fundamental relationship between salinity and temperature. 6 refs., 6 tabs., 8 figs

  11. Reverse osmosis, the solution for producing steam from highly saline water; Osmosis inversa, la solucion para la produccion de vapor con aguas de alta salinidad

    Energy Technology Data Exchange (ETDEWEB)

    Pujadas, A.

    2003-07-01

    Based on an exhaustive description of a particular example, the costs of installing an implementing various water treatment solutions for feeding a steam boiler are examined. When the characteristics of the water available indicate that it has a high saline content, i is possible to demonstrate the enormous technical, economic and environmental advantages of reducing its saline level by a system of reverse osmosis compared to the classical ion exchange resins. A list is given of the features to be taken into account in defining the equipment involved in treating the water for feeding steam boilers. (Author)

  12. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  13. Pretreated cheese whey wastewater management by agricultural reuse: chemical characterization and response of tomato plants Lycopersicon esculentum Mill. under salinity conditions.

    Science.gov (United States)

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-10-01

    The agricultural reuse of pretreated industrial wastewater resulting from cheese manufacture is shown as a suitable option for its disposal and management. This alternative presents attractive advantages from the economic and pollution control viewpoints. Pretreated cheese whey wastewater (CWW) has high contents of biodegradable organic matter, salinity and nutrients, which are essential development factors for plants with moderate to elevated salinity tolerance. Five different pretreated CWW treatments (1.75 to 10.02 dS m(-1)) have been applied in the tomato plant growth. Fresh water was used as a control run (average salinity level=1.44 dS m(-1)). Chemical characterization and indicator ratios of the leaves, stems and roots were monitored. The sodium and potassium leaf concentrations increased linearly with the salinity level in both cultivars, Roma and Rio Grande. Similar results were found in the stem sodium content. However, the toxic sodium accumulations in the cv. Roma exceeded the values obtained in the cv. Rio Grande. In this last situation, K and Ca uptake, absorption, transport and accumulation capacities were presented as tolerance mechanisms for the osmotic potential regulation of the tissues and for the ion neutralization. Consequently, Na/Ca and Na/K ratios presented lower values in the cv. Rio Grande. Na/Ca ratio increased linearly with the salinity level in leaves and stems, regardless of the cultivar. Regarding the Na/K ratio, the values demonstrated competition phenomena between the ions for the cv. Rio Grande. Despite the high chloride content of the CWW, no significant differences were observed for this nutrient in the leaves and stems. Thus, no nitrogen deficiency was demonstrated by the interaction NO3(-)/Cl(-). Nitrogen also contributes to maintain the water potential difference between the tissues and the soil. Na, P, Cl and N radicular concentrations were maximized for high salinity levels (≥2.22 dS m(-1)) of the pretreated CWW. © 2013

  14. The geochemical environment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Gascoyne, M.

    1995-01-01

    The concept for disposal of Canada's nuclear fuel waste in a geologic environment on the Canadian Shield has recently been presented by Atomic Energy of Canada Limited (AECL) to governments, scientists, and the public, for review. An important part of this concept concerns the geochemical environment of a disposal vault and includes consideration of rock and groundwater compositions, geochemical interactions between rocks, groundwaters, and emplaced vault materials, and the influences and significance of anthropogenic and microbiological effects following closure of the vault. This paper summarizes the disposal concept and examines aspects of the geochemical environment. The presence of saline groundwaters and reducing conditions at proposed vault depths (500-1000 m) in the Canadian Shield has an important bearing on the stability of the used nuclear fuel, its container, and buffer and backfill materials. The potential for introduction of anthropogenic contaminants and microbes during site investigations and vault excavation, operation, and sealing is described with examples from AECL's research areas on the Shield and in their underground research laboratory in southeastern Manitoba. (author)

  15. Effects of environmental conditions on soil salinity and arid region in Tunisia

    International Nuclear Information System (INIS)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-01-01

    The shortage of water resources of good water quality is becoming an issue in the arid and semi arid regions. for this reason, the use of water resources of marginal quality such as treated wastewater and saline groundwater has become and important consideration, particularly in arid region in Tunisia, where large quantities of saline water are used for irrigation. (Author)

  16. Morpho-physiological response of Acacia auriculiformis as influenced by seawater induced salinity stress

    Energy Technology Data Exchange (ETDEWEB)

    Haque, A.; Rahman, M.; Nihad, S.A.I.; Howlader, R.A.; Akand, M.H.

    2016-07-01

    Aim of the study: To evaluate the morpho-physiological changes of Acacia auriculiformis in response to seawater induced salinity stress along with its tolerance limit. Area of study: Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh. Material and methods: Three saline treatments (4, 8, 12 dS m-1) were applied to six-month aged Acacia auriculiformis seedlings from January 2014 to June 2014 and the tap water was used as control treatment. To observe salinity effects, the following parameters were measured by using various established techniques: plant height and leaf number, plant biomass, shoot and root distribution as well as shoot and root density, water uptake capacity (WUC), water saturation deficit (WSD) and water retention capacity (WRC), exudation rate, and cell membrane stability. Main results: Diluted seawater caused a notable reduction in shoot and root distribution in addition to shoot and root density, though plant height, leaf number and plant biomass were found to be decreased to some extent compared to control plants. Water status of the plant also altered when plants were subjected to salinity stress. Nevertheless, membrane stability revealed good findings towards salinity tolerance. Research highlights: Considering the above facts, despite salinity exerts some negative effects on overall plant performance, interestingly the percent reduction value doesn’t exceed 50% as compared to control plants, and the plants were successful to tolerate salinity stress till the end of the experiment (150 days) through adopting some tolerance mechanisms. Abbreviations used: BSMRAU (Bangabandhu Sheikh Mujibur Rahman Agricultural University); RCBD (randomized complete block design); DATI (days after treatment imposition); RWC (relative water content); WUC (water uptake capacity); WSD (water saturation deficit); WRC (water retention capacity); FW (fresh weight); DW (dry weight); TW (turgid weight); ROS (reactive oxygen species). (Author)

  17. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    Salinity Control Unit was 10,700 tons/year. This accounts for approximately 27 percent of the decrease observed downstream from the Grand Valley Salinity Control Unit. Salinity loads were decreasing at the fastest rate (6,950 tons/year) in Region 4, which drains an area between the Colorado River at Cameo, Colorado (station CAMEO) and Colorado River above Glenwood Springs, Colorado (station GLEN) streamflow-gaging stations. Trends in salinity concentration and streamflow were tested at station CAMEO to determine if salinity concentration, streamflow, or both are controlling salinity loads upstream from the Grand Valley Salinity Control Unit. Trend tests of individual ion concentrations were included as potential indicators of what sources (based on mineral composition) may be controlling trends in the upper Colorado. No significant trend was detected for streamflow from 1986 to 2003 at station CAMEO; however, a significant downward trend was detected for salinity concentration. The trend slope indicates that salinity concentration is decreasing at a median rate of about 3.54 milligrams per liter per year. Five major ions (calcium, magnesium, sodium, sulfate, and chloride) were tested for trends. The results indicate that processes within source areas with rock and soil types (or other unidentified sources) bearing calcium, sodium, and sulfate had the largest effect on the downward trend in salinity load upstream from station CAMEO. Downward trends in salinity load resulting from ground-water sources and/or land-use change were thought to be possible reasons for the observed decreases in salinity loads; however, the cause or causes of the decreasing salinity loads are not fully understood. A reduction in the amount of ground-water percolation from Region 4 (resulting from work done through Federal irrigation system improvement programs as well as privately funded irrigation system improvements) has helped reduce annual salinity load from Region 4 by approxima

  18. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  19. Physiological and Growth Responses of Six Turfgrass Species Relative to Salinity Tolerance

    Directory of Open Access Journals (Sweden)

    Md. Kamal Uddin

    2012-01-01

    Full Text Available The demand for salinity-tolerant turfgrasses is increasing due to augmented use of effluent or low-quality water (sea water for turf irrigation and the growing turfgrass industry in coastal areas. Experimental plants, grown in plastic pots filled with a mixture of river sand and KOSASR peat (9 : 1, were irrigated with sea water at different dilutions imparting salinity levels of 0, 8, 16, 24, 32, 40, or 48 dS m-1. Salinity tolerance was evaluated on the basis of leaf firing, shoot and root growth reduction, proline content, and relative water content. Paspalum vaginatum was found to be most salt tolerant followed by Zoysia japonica and Zoysia matrella, while Digitaria didactyla, Cynodon dactylon “Tifdwarf,” and Cynodon dactylon “Satiri” were moderately tolerant. The results indicate the importance of turfgrass varietal selection for saline environments.

  20. Putting produced water to a useful purpose : regulatory gaps and other concerns

    International Nuclear Information System (INIS)

    Kwasniak, A.J.

    2006-01-01

    This presentation discussed issues related to produced water from oil and gas activities and its use and disposal in Alberta. The province is in danger of a water shortage, and studies have shown that runoff volumes in the South Saskatchewan River Basin (SSRB) are below average. A recent assessment of 33 river reaches in the SSRB has shown that 31 river reaches are approaching ecologically unacceptable values. Water produced from coalbed methane (CBM) activities will be only marginally saline or non-saline, and CBM activities are expected to increase in the region in order to supplement Alberta's dwindling natural gas supplies. Approximately 10 per cent of the CBM wells drilled in 2004 targeted seams that contained water. Approximately 50,000 more CBM wells will be drilled in Alberta in the next decade. While water conservation will help to address the situation, the re-use of produced water in processing technologies will help to reduce the impact of oil and gas activities in the province. However, regulatory difficulties may prevent produced water from being re-used. It is not currently known whether operators require a water rights permit to produce water. Regulatory obligations concerning damage to aquifers and water discharges are also unclear. The Water Act currently requires statutory authorizations for diversions of water. If the water is non-saline, then the operator is required to obtain a licence to divert produced water from its source. It was concluded that clear legislation is needed to determine if water can be re-used after it is brought to the surface. The introduction of an American-style beneficial rights use was recommended. refs., tabs., figs

  1. Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: Implications for salinization of surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Gillis, Patricia L., E-mail: patty.gillis@ec.gc.ca [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R-4A6 (Canada)

    2011-06-15

    Chloride concentrations in surface waters have increased significantly, a rise attributed to road salt use. In Canada, this may be a concern for endangered freshwater mussels, many with ranges limited to southern Ontario, Canada's most road-dense region. The acute toxicity of NaCl was determined for glochidia, the mussel's larval stage. The 24 h EC50s of four (including two Canadian endangered) species ranged from 113-1430 mg Cl L{sup -1} (reconstituted water, 100 mg CaCO{sub 3} L{sup -1}). To determine how mussels would respond to a chloride pulse, natural river water (hardness 278-322 mg CaCO{sub 3} L{sup -1}) was augmented with salt. Lampsilis fasciola glochidia were significantly less sensitive to salt in natural water (EC50s 1265-1559 mg Cl L{sup -1}) than in reconstituted water (EC50 285 mg L{sup -1}). Chloride data from mussel habitats revealed chloride reaches levels acutely toxic to glochidia (1300 mg L{sup -1}). The increased salinization of freshwater could negatively impact freshwater mussels, including numerous species at risk. - Highlights: > Compared to other aquatic organisms glochidia are very sensitive to chloride. > Glochidia were less sensitive to salt in natural water than in reconstituted water. > Glochidia were less sensitive to salt in hard water than in soft water. > Road salt runoff may pose a threat to the reproduction of freshwater mussels. > Salinization of freshwater could negatively impact numerous species at risk. - Freshwater mussel larvae were acutely sensitive to sodium chloride, such that chloride levels in some Canadian rivers may pose a threat to the survival of this early life stage.

  2. Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: Implications for salinization of surface waters

    International Nuclear Information System (INIS)

    Gillis, Patricia L.

    2011-01-01

    Chloride concentrations in surface waters have increased significantly, a rise attributed to road salt use. In Canada, this may be a concern for endangered freshwater mussels, many with ranges limited to southern Ontario, Canada's most road-dense region. The acute toxicity of NaCl was determined for glochidia, the mussel's larval stage. The 24 h EC50s of four (including two Canadian endangered) species ranged from 113-1430 mg Cl L -1 (reconstituted water, 100 mg CaCO 3 L -1 ). To determine how mussels would respond to a chloride pulse, natural river water (hardness 278-322 mg CaCO 3 L -1 ) was augmented with salt. Lampsilis fasciola glochidia were significantly less sensitive to salt in natural water (EC50s 1265-1559 mg Cl L -1 ) than in reconstituted water (EC50 285 mg L -1 ). Chloride data from mussel habitats revealed chloride reaches levels acutely toxic to glochidia (1300 mg L -1 ). The increased salinization of freshwater could negatively impact freshwater mussels, including numerous species at risk. - Highlights: → Compared to other aquatic organisms glochidia are very sensitive to chloride. → Glochidia were less sensitive to salt in natural water than in reconstituted water. → Glochidia were less sensitive to salt in hard water than in soft water. → Road salt runoff may pose a threat to the reproduction of freshwater mussels. → Salinization of freshwater could negatively impact numerous species at risk. - Freshwater mussel larvae were acutely sensitive to sodium chloride, such that chloride levels in some Canadian rivers may pose a threat to the survival of this early life stage.

  3. Effects of waste-disposal practices on ground-water quality at five poultry (broiler) farms in north-central Florida, 1992-93

    Science.gov (United States)

    Hatzell, H.H.

    1995-01-01

    Waste-disposal areas such as chicken-house floors, litter stockpiles, fields that receive applications of litter, and dead-chicken pits are potential sources of nitrates and other chemical constituents in downward-percolating recharge water. Broiler- farms in north-central Florida are concentrated in a region where the Upper Floridan aquifer is unconfined and susceptible to contamination. Eighteen monitoring wells installed at five sites were sampled quarterly from March 1992 through January 1993. Increases in median concentrations of constituents relative to an upgradient well were used to determine the source of the nitrate at two sites. At these sites, increases in the median concentrations of nitrate as nitrogen in ground water in the vicinity of waste-disposal areas at these sites were: 5.4 mg/L for one chicken house; 9.0 mg/L for a second chicken house; 2.0 mg/L for a fallow field that received an application of litter; and, 2.0 mg/L for a dead-chicken pit. At the three remaining sites where the direction of local ground-water flow could not be ascertained, the sources of concentrations of nitrate and other constituents could not be determined. However, median nitrate concentrations in the vicinity of waste-disposal areas at these sites were: 45.5 mg/L for a set of two chicken houses; 3.0 mg/L for a stockpile area; and 2.1 mg/L for a hayfield that received an application of litter. The nitrate concentration in ground water in the vicinity of a field that had previously received heavy applications of litter increased from 3.0 mg/L to 105 mg/L approximately 4 months after receiving an application of commercial fertilizer. Increases in concentrations of organic nitrogen in ground water in the vicinity of waste-disposal areas may be related to the decomposition of litter and subsequent movement with downward percolating recharge water.(USGS)

  4. Spatio-temporal assessment and trend analysis of surface water salinity in the coastal region of Bangladesh.

    Science.gov (United States)

    Shammi, Mashura; Rahman, Md Mostafizur; Islam, Md Atikul; Bodrud-Doza, Md; Zahid, Anwar; Akter, Yeasmin; Quaiyum, Samia; Kurasaki, Masaaki

    2017-06-01

    The study was designed to collect water samples over two seasons-wet-monsoon season (n = 96) (March-April) and dry-monsoon season (n = 44) (September-October)-to understand the seasonal variation in anion and cation hydrochemistry of the coastal rivers and estuaries contributing in the spatial trend in salinity. Hydrochemical examination of wet-monsoon season primarily revealed Ca-Mg-HCO 3 type (66%) and followed by Na-Cl type (17.70%) water. In the dry-monsoon season, the scenario reversed with primary water being Na-Cl type (52.27%) followed by Ca-Mg-HCO 3 type (31.81%). Analysis of Cl/Br molar ratio vs. Cl (mg/L) depicted sampling area affected by seawater intrusion (SWI). Spatial analysis by ordinary kriging method confirmed approximately 77% sample in the dry-monsoon, and 34% of the wet-monsoon season had shown SWI. The most saline-intruded areas in the wet-monsoon seasons were extreme south-west coastal zone of Bangladesh, lower Meghna River floodplain and Meghna estuarine floodplain and south-eastern part of Chittagong coastal plains containing the districts of Chittagong and Cox's Bazar adjacent to Bay of Bengal. In addition, mid-south zone is also affected slightly in the dry-monsoon season. From the analyses of data, this study could further help to comprehend seasonal trends in the hydrochemistry and water quality of the coastal and estuarine rivers. In addition, it can help policy makers to obligate some important implications for the future initiatives taken for the management of land, water, fishery, agriculture and environment of coastal rivers and estuaries of Bangladesh.

  5. The influence of salinity of fly ash mixtures on energy looses during flow in pipelines

    Directory of Open Access Journals (Sweden)

    И. Собота

    2017-06-01

    Full Text Available In Polish mining for backfilling the fly ash mixtures are used. Last time for fly ash mixtures preparation the saline water from mine have been used, to thanks to that the saline water missing the surface waters. Usage of saline water for fly ash mixture preparation causes the changes in energy looses during the flow in pipelines. The paper presents the results of energy looses measurement іn laboratory pipeline installation with diameter D =50 mm. The measurements have been performed for different fly ash – saline water proportions. Tested fly-ash from Siersza power plant has typical properties (grain size distribution curve, density for ashes used for backfilling mixtures preparation. Increase of fluid (water salinity modifies fluid viscosity. Brine in comparison with pure water retains as liquid with increased viscosity. Increased viscosity can influence on the mixture ash-brine properties for example causing flocculation effect. Also changeable salinity has an influence on proper determination of resistance (frictional coefficient λ during mixtures flow in pipelines because it depends on Reynolds number which depends on liquid viscosity. Increase of fly-ash concentrations in fly-ash – brine mixtures cause increase of energy losses.

  6. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  7. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.

    Science.gov (United States)

    Agha, Mickey; Ennen, Joshua R; Bower, Deborah S; Nowakowski, A Justin; Sweat, Sarah C; Todd, Brian D

    2018-03-25

    The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long-term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life-history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on

  8. Resistivity-Chemistry Integrated Approaches for Investigating Groundwater Salinity of Water Supply and Agricultural Activity at Island Coastal Area

    Science.gov (United States)

    Baharuddin, M. F. T.; Masirin, M. I. M.; Hazreek, Z. A. M.; Azman, M. A. A.; Madun, A.

    2018-04-01

    Groundwater suitability for water supply and agriculture in an island coastal area may easily be influenced by seawater intrusion. The aim of this study was to investigate seawater intrusion to the suitability of the groundwater for water supply and oil palm cultivation on Carey Island in Malaysia. This is the first study that used integrated method of geo-electrical resistivity and hydrogeochemical methods to investigate seawater intrusion to the suitability of groundwater for water supply and oil palm cultivation at two different surface elevation and land cover. The relationship between earth resistivity, total dissolved solids and earth conductivity was derived with water type classifications and crop suitability classification according to salinity, used to identify water types and also oil palm tolerance to salinity. Results from the contour resistivity and conductivity maps showed that the area facing severe coastal erosion (east area) exhibited unsuitable groundwater condition for water supply and oil palm at the unconfined aquifer thickness of 7.8 m and 14.1 m, respectively. Comparing to the area that are still intact with mangrove (west area), at the same depth, groundwater condition exhibits suitable usage for both socioeconomic activities. Different characteristics of surface elevation and land cover are paramount factors influencing saltwater distribution at the west and east area. By the end of the twenty-first century there will no longer be suitable water for supply and oil palm plantation based on the local sea-level rise prediction and Ghyben–Herzberg assumption (sharp interface), focusing on the severe erosion area of the study site.

  9. Photolysis of 2,4,6-trinitrotoluene in seawater and estuary water: Impact of pH, temperature, salinity, and dissolved organic matter

    International Nuclear Information System (INIS)

    Luning Prak, Dianne J.; Breuer, James E.T.; Rios, Evelyn A.; Jedlicka, Erin E.; O'Sullivan, Daniel W.

    2017-01-01

    The influence of salinity, pH, temperature, and dissolved organic matter on the photolysis rate of 2,4,6-trinitrotoluene (TNT) in marine, estuary, and laboratory-prepared waters was studied using a Suntest CPS +® solar simulator equipped with optical filters. TNT degradation rates were determined using HPLC analysis, and products were identified using LC/MS. Minimal or no TNT photolysis occurred under a 395-nm long pass filter, but under a 295-nm filter, first-order TNT degradation rate constants and apparent quantum yields increased with increasing salinity in both natural and artificial seawater. TNT rate constants increased slightly with increasing temperature (10 to 32 °C) but did not change significantly with pH (6.4 to 8.1). The addition of dissolved organic matter (up to 5 mg/L) to ultrapure water, artificial seawater, and natural seawater increased the TNT photolysis rate constant. Products formed by TNT photolysis in natural seawater were determined to be 2,4,6-trinitrobenzaldehyde, 1,3,5-trinitrobenzene, 2,4,6-trinitrobenzoic acid, and 2-amino-4,6-dinitrobenzoic acid. - Highlights: • 2,4,6-trinitrotoluene (TNT) was photolyzed in marine, estuary, & laboratory waters. • TNT photolysis rates increased with increasing salinity & dissolved organic matter. • Temperature and pH had minimal impact on TNT photolysis in marine waters. • In seawater, TNT photolysis produced 1,3,5-trinitrobenzene & trinitrobenzaldehyde. • Polar products were 2,4,6-trinobenzoic acid & 2-amino-4,6-dinitrobenzoic acid.

  10. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  11. On the necessity for evaluation of the limits of radioactive waste disposal into water systems of international importance

    International Nuclear Information System (INIS)

    Gedeonov, L.I.; Blinov, V.A.; Gustova, L.I.; Ivanova, L.M.; Lazarev, L.N.; Vakulovskij, S.M.; Chumichev, V.B.; Rakov, N.A.

    1977-01-01

    The paper considers the IAEA criteria for determination of the concept of high-level radioactive waste, the disposal of which into the oceans is forbidden according to the London Convention of 1972. It is proposed that this concept be revised every five years, using the experience which may be acquired from the present practice of disposal in the Atlantic. Data on the assessment of global fallout quantities introduced into the Atlantic and on the dilution of contamination in its waters are given. The problem is discussed of the principles of international collaboration in accepting limiting rates of disposal into water systems of international importance. It is shown that in the Irish Sea and the North Sea sources of radioactive contamination have arisen which are dangerous for the Baltic. Co-operative research of the Baltic within the CEC framework is reported. A review and evaluation of radiation conditions and their trends in the Baltic Sea is given. The problem of mutual co-operation in limiting radioactive pollution of the Danube between countries in the Danube Catchment Area is discussed. A review and a forecast of trends of radiation conditions in the Danube area are given. (author)

  12. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application

    Science.gov (United States)

    Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos

    2018-01-01

    Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759

  13. Determination of dissolved oxygen in saline waters applying mathematical methods and as a membrane electrode sensor; Determinacion de oxigeno disuelto en aguas salinas aplicando modelos matematicos y como sensor electrodo de membrana

    Energy Technology Data Exchange (ETDEWEB)

    Mayari, R.; Espinosa, M. C.; Ruiz, M. [Centro Nacional de Investigaciones Ceintificas. La Habana (Cuba); Romero, E. [Universidad de Huelva (Spain)

    2000-07-01

    This work shows as specific methodology for the determination of dissolved oxygen in saline waters that allows to consider the variations of temperature and of concentration of salts. Both factors influence the solubility of the gases in water, making possible in place measurements, in bodies of water with content of salts unto of the concentration of sea water, with greater dependability. The mathematical models obtained are shown, the errors due to equipment, as well as the results obtained when applying this methodology in saline waters with diverse levels of contamination this allows to discern when the decrease of dissolved oxygen levels is due to an increase in the salinity or to an increase in the contamination of the water body. (Author) 7 refs.

  14. Changes in plasma melatonin levels and pineal organ melatonin synthesis following acclimation of rainbow trout (Oncorhynchus mykiss) to different water salinities.

    Science.gov (United States)

    López-Patiño, Marcos A; Rodríguez-Illamola, Arnau; Gesto, Manuel; Soengas, José L; Míguez, Jesús M

    2011-03-15

    Melatonin has been suggested to play a role in fish osmoregulation, and in salmonids has been related to the timing of adaptive mechanisms during smolting. It has been described that acclimation to different environmental salinities alters levels of circulating melatonin in a number of fish species, including rainbow trout. However, nothing is known regarding salinity effects on melatonin synthesis in the pineal organ, which is the main source of rhythmically produced and secreted melatonin in blood. In the present study we have evaluated, in rainbow trout, the effects of acclimation to different salinities on day and night plasma melatonin values and pineal organ melatonin synthesis. Groups of freshwater (FW)-adapted rainbow trout were placed in tanks with four different levels of water salinity (FW, 6, 12, 18 p.p.t.; parts per thousand) and maintained for 6 h or 5 days. Melatonin content in plasma and pineal organs, as well as the pineal content of serotonin (5-HT) and its main oxidative metabolite (5-hydroxyindole-3-acetic acid; 5-HIAA) were measured by high performance liquid chromatography. In addition, day-night changes in pineal organ arylalkylamine N-acetyltransferase (AANAT2) activity and aanat2 gene expression were studied. Plasma osmolalities were found to be higher in rainbow trout exposed to all salinity levels compared with the control FW groups. A salinity-dependent increase in melatonin content was found in both plasma and pineal organs. This effect was observed during the night, and was related to an increase in aanat2 mRNA abundance and AANAT2 enzyme activity, both of which also occurred during the day. Also, the levels of indoles (5-HT, 5-HIAA) in the pineal organ were negatively affected by increasing water salinity, which seems to be related to the higher recruitment of 5-HT as a substrate for the increased melatonin synthesis. A stimulatory effect of salinity on pineal aanat2 mRNA expression was also identified. These results indicate that

  15. Experimentally derived salinity tolerance of hatchling Burmese pythons (Python molurus bivittatus) from the Everglades, Florida (USA)

    Science.gov (United States)

    Hart, Kristen M.; Schofield, Pamela J.; Gregoire, Denise R.

    2012-01-01

    In a laboratory setting, we tested the ability of 24 non-native, wild-caught hatchling Burmese pythons (Python molurus bivittatus) collected in the Florida Everglades to survive when given water containing salt to drink. After a one-month acclimation period in the laboratory, we grouped snakes into three treatments, giving them access to water that was fresh (salinity of 0, control), brackish (salinity of 10), or full-strength sea water (salinity of 35). Hatchlings survived about one month at the highest marine salinity and about five months at the brackish-water salinity; no control animals perished during the experiment. These results are indicative of a "worst-case scenario", as in the laboratory we denied access to alternate fresh-water sources that may be accessible in the wild (e.g., through rainfall). Therefore, our results may underestimate the potential of hatchling pythons to persist in saline habitats in the wild. Because of the effect of different salinity regimes on survival, predictions of ultimate geographic expansion by non-native Burmese pythons that consider salt water as barriers to dispersal for pythons may warrant re-evaluation, especially under global climate change and associated sea-level-rise scenarios.

  16. Mapping the low salinity Changjiang Diluted Water using satellite-retrieved colored dissolved organic matter (CDOM) in the East China Sea during high river flow season

    Science.gov (United States)

    Sasaki, Hiroaki; Siswanto, Eko; Nishiuchi, Kou; Tanaka, Katsuhisa; Hasegawa, Toru; Ishizaka, Joji

    2008-02-01

    Absorption coefficients of colored dissolved organic matter (CDOM) [a g(λ)] were measured and relationship with salinity was derived in the East China Sea (ECS) during summer when amount of the Changjiang River discharge is large. Low salinity Changjiang Diluted Water (CDW) was observed widely in the shelf region and was considered to be the main origin of CDOM, resulting in a strong relationship between salinity and a g(λ). Error of satellite a g(λ) estimated by the present ocean color algorithm could be corrected by satellite-retrieved chlorophyll data. Satellite-retrieved salinity could be predicted with about +/-1.0 accuracy from satellite a g(λ) and the relation between salinity and a g(λ). Our study suggests that satellite-derived a g(λ) can be an indicator of the low salinity CDW during summer.

  17. Water and tritium movement through the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois, 1981-85

    Science.gov (United States)

    Mills, Patrick C.; Healy, Richard W.

    1993-01-01

    The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 mm (millimeters); mean annual recharge to the disposal trenches (July 1982 through June 1984) was estimated to be 107 mm. Average annual tritium flux below the study trenches was estimated to be 3.4 mCi/yr (millicuries per year). Site geology, climate, and waste-disposal practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. Disposal trenches are constructed in complexly layered glacial and postglacial deposits that average 17 m (meters) in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10 -1 to 3.4x10 4 mm/d (millimeters per day). A 120-m-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four disposal trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the site provided water-budget data for estimating recharge to the disposal trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered

  18. Ground-water hydrology and radioactive waste disposal at the Hanford Site

    International Nuclear Information System (INIS)

    Law, A.G.

    1979-02-01

    This paper is a summary of the hydrologic activities conducted at the Hanford Site as a part of the environmental protection effort. The Site encompasses 1,480 square kilometers in the arid, southeastern part of Washington State. Precipitation averages about 160 millimeters per year with a negligible amount, if any, recharging the water table, which is from 50 to 100 meters below the ground surface. An unconfined aquifer occurs in the upper and middle Ringold Formations. The lower Ringold Formation along with interbed and interflow zones in the Saddle Mountain and Wanapum basalts forms a confined aquifer system. A potential exists for the interconnection of the unconfined and confined aquifer systems, especially near Gable Mountain where the anticlinal ridge was eroded by the catastrophic floods of the ancestral Columbia River system. Liquid wastes from chemical processing operations have resulted in large quantities of processing and cooling water disposed to ground via ponds, cribs, and ditches. The ground-water hydrology program at Hanford is designed: (1) to define and quantify the ground-water flow systems, (2) to evaluate the impact of the liquid waste discharges on these flow systems, and (3) to predict the impact on the ground-water systems of changes in system inputs. This work is conducted through a drilling, sampling, testing, and modeling program

  19. The effect of salinity on the growth, morphology and physiology of ...

    African Journals Online (AJOL)

    The salinity of water and soil decreases the growth and yield of agricultural products. Salinity affects many physiological and morphological processes of plant by influencing soil solution osmotic potential and ion absorption and accumulation of minerals. To evaluate the effect of salinity on some physiological and ...

  20. Moving Forward on Remote Sensing of Soil Salinity at Regional Scale

    Directory of Open Access Journals (Sweden)

    Elia Scudiero

    2016-10-01

    Full Text Available Soil salinity undermines global agriculture by reducing crop yield and impairing soil quality. Irrigation management can help control salinity levels within the soil root-zone. To best manage water and soil resources, accurate regional-scale inventories of soil salinity are needed. The past decade has seen several successful applications of soil salinity remote sensing. Two salinity remote sensing approaches exist: direct assessment based on analysis of surface soil reflectance (the most popular approach, and indirect assessment of root-zone (e.g., 0-1 m soil salinity based on analysis of crop canopy reflectance. In this perspective paper, we call on researchers and funding agencies to pay greater attention to the indirect approach because it is better suited for surveying agriculturally important lands. A joint effort between agricultural producers, irrigation specialists, environmental scientists, and policy makers is needed to better manage saline agricultural soils, especially because of projected future water scarcity in arid and semi-arid irrigated areas. The remote sensing community should focus on providing the best tools for mapping and monitoring salinity in such areas, which are of vital relevance to global food production.