WorldWideScience

Sample records for saline solution hypertonic

  1. Rapid Resuscitation with Small Volume Hypertonic Saline Solution ...

    African Journals Online (AJOL)

    Rapid Resuscitation with Small Volume Hypertonic Saline Solution for Patients in Traumatic Haemorrhagic Shock. ... The data were entered into a computer data base and analysed. Results: Forty five patients were enrolled and resuscitated with 250 mls 7.5% HSS. Among the studied patients, 88.9% recovered from shock ...

  2. COMPARATIVE EFFICACY OF HYPERTONIC SALINE AND NORMAL SALINE SOLUTIONS IN EXPERIMENTALLY INDUCED ENDOTOXIC SHOCK IN DOGS

    Directory of Open Access Journals (Sweden)

    M. A. ZAFAR, G. MUHAMMAD, M. H. HUSSAIN, T. AHMAD, A. YOUSAF AND I. SARFARAZ

    2009-07-01

    Full Text Available This study was contemplated to determine the comparative beneficial effects of hypertonic saline solution and sterile saline solution in induced endotoxic shock in dogs. For this purpose, 12 healthy Mongrel dogs were randomly divided into two equal groups (A and B. All the animals were induced endotoxaemia by slow intravenous administration of Escherichia coli endotoxins 0111:B4. Group A was treated with normal saline solution @ 90 ml/kg BW, while group B was given hypertonic saline solution @ 4 ml/kg BW, followed by normal saline solution @ 10 ml/kg BW. Different parameters were observed for evaluation of these fluids including clinical and haematological parameters, serum electrolytes, mean arterial pressure, and blood gases at different time intervals up to 24 hours post treatments. After infusion of respective fluids, all parameters returned to baseline values in both the groups but group B showed better results than group A except bicarbonates, which better recovered in group A. Thus, it was concluded that a small-volume of hypertonic saline solution could be effectively used in reversing the endotoxaemia. Moreover, it provides a rapid and inexpensive resuscitation from endotoxic shock.

  3. [Effect of compound hypertonic saline solution on septic rats].

    Science.gov (United States)

    Dong, Fang; Xu, Liang; Xu, Gang; Wang, Huabing; Lu, Huizhi; Cai, Liping

    2015-01-01

    To study the effect of compound hypertonic saline solution ( HSD ) on sepsis. 133 male Wistar rats were divided into four groups, sham operation group ( n = 15 ), cecal ligation and puncture ( CLP ) group ( n = 45 ), CLP plus normal saline ( NS ) group ( n = 45 ), and CLP plus HSD group ( n = 28 ). A rat model of sepsis was reproduced by CLP, and the rats in sham operation group received celiotomy without ligation and puncture. All rats in four groups received subcutaneous injection of 30 mL/kg 0.9% sodium chloride after laparotomy. The rats in CLP plus NS group and CLP plus HSD group received infusion of 5 mL/kg 0.9% sodium chloride or 7.5% sodium chloride/6% dextran post CLP via jugular vein for 3 hours, with the infusion rate of 0.4 mL×kg(-1)×min(-1). The survival rate of each group was observed 9 hours and 18 hours after laparotomy. Mean arterial pressure ( MAP ) at 0, 9, 18 hours were monitored. Blood specimens were collected from all rats 0, 9 and 18 hours after laparotomy, respectively, for measurement of the plasma levels of tumor necrosis factor-α ( TNF-α), interleukin-1β ( IL-1β ), and procalcitonin ( PCT ). The rats were all sacrificed, and their lung tissues were harvested for the neutrophil count in bronchoalveolar lavage fluid ( BALF ), myeloperoxidase ( MPO ) activity in lung tissue, wet/dry weight ratio ( W/D ) of lung, and pathological changes in lung tissue. There was no death in the sham operation group. The survival rates at 9 hours and 18 hours were 62.2% and 31.1% in the CLP group, 57.8% and 35.6% in the CLP plus NS group, 85.7% and 64.3% in the CLP plus HSD group, and they were all significantly higher compared with those of the CLP group and the CLP plus NS group ( Pmicroscope, no pathobiological changes were found in sham operation group. The lung tissues in the CLP group and the CLP plus NS group showed congestion, edema, infiltrating inflammatory changes, while the inflammatory changes in the lung tissue in the CLP plus HSD group

  4. Investigating effects of hypertonic saline solutions on lipid monolayers at the air-water interface

    KAUST Repository

    Nava Ocampo, Maria F.

    2017-05-01

    More than 70,000 people worldwide suffer from cystic fibrosis, a genetic disease characterized by chronic accumulation of mucus in patients’ lungs provoking bacterial infections, and leading to respiratory failure. An employed age-old treatment to prevent the symptoms of the disease is inhalation of hypertonic saline solution, NaCl at concentrations higher than in the human body (~150 mM). This procedure clears the mucus in the lungs, bringing relief to the patient. However, the biophysical mechanisms underlying this process are not entirely clear. We undertook a new experimental approach to understand the effects of sprayed saline solutions on model lung surfactants towards understanding the mechanisms of the treatment. The surface of lungs contains mainly 1,2-Dipalmitol-sn-glycero-3-phosphocoline (DPPC). As previously assumed by others, we considered that monolayer of DPPC at the air-water interface serves as model system for the lungs surface; we employed a Langmuir-Blodgett (LB) trough and PM-IRRAS to measure surface-specific infrared spectra of the surfactant monolayers and effects on the interfacial tensions. We investigated spraying hyper-saline solutions onto surfactant monolayers at the airwater interface in two parts: (i) validation of our methodology and techniques with stearic acid and (ii) experiments with DPPC monolayers at the air-water interface. Remarkably, when micro-droplets of NaCl were sprayed to the monolayer of stearic acid, we observed enhanced organization of the surfactant, interpreted from the intensities of the CH2 peaks in the surface-specific IR spectra. However, our results with DPPC monolayers didn’t show an effect with the salt added as aerosol, possibly indicating that the experimental methodology proposed is not adequate for the phenomena studied. In parallel, we mimicked respiratory mucous by preparing salt solutions containing 1% (wt%) agar and measured effects on their viscosities. Interestingly, we found that NaCl was much

  5. Hypertonic saline solution and high-dose furosemide infusion in cardiorenal syndrome: our experience

    Directory of Open Access Journals (Sweden)

    Francesco Ventrella

    2013-03-01

    Full Text Available Introduction Heart failure is frequently complicated by renal failure, and this association is a negative prognostic factor. These patients sometimes present oligo-/anuria and resistance to high-dose furosemide, a condition referred to as the cardiorenal syndrome (CRS. Acute or chronic reductions in left ventricular function result in decreased blood flow, with reduction of renal perfusion and activation of several neurohormonal systems, which cause resistance to diuretic therapy. This condition often requires ultrafiltration, which is an effective, but invasive and expensive procedure. Infusions of hypertonic saline solution (HSS and high-dose furosemide can be an effective alternative. Materials and methods From November 2009 through May 2010, our team treated 20 patients with CRS and resistance to iv boluses of high-dose furosemide. These patients were treated with small-volume (150-250 mL infusions of HSS (NaCl 1.57 – 4.5%, depending on serum Na values and high-dose furosemide twice a day. The aim of this treatment is to modify renal hemodynamics and the water-saline balance in the kidney by counteracting the extracellular fluid accumulation and eliminating symptoms of congestion. Results In 18 patients (90%, urine output was restored and renal function improved during the first hours of treatment. Clinical improvement was evident from the first day of therapy, and there were no adverse events. Two patients (10% did not respond to the treatment: one (who had been in critical condition since admission died; the other required regular sessions of ultrafiltration. Conclusions HSS combined with high-dose furosemide is a safe, effective, low-cost approach to the treatment of CRS that is resistant to diuretic therapy.

  6. Hypertonic saline solution reduces the oxidative stress responses in traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Mojtaba Mojtahedzadeh

    2014-01-01

    Full Text Available Background: Oxidative stress processes play an important role in the pathogenesis of secondary brain injury after traumatic brain injury (TBI. Hypertonic saline (HTS has advantages as being preferred osmotic agent, but few studies investigated oxidant and antioxidant effects of HTS in TBI. This study was designed to compare two different regimens of HTS 5% with mannitol on TBI-induced oxidative stress. Materials and Methods: Thirty-three adult patients with TBI were recruited and have randomly received one of the three protocols: 125 cc of HTS 5% every 6 h as bolus, 500 cc of HTS 5%as infusion for 24 h or 1 g/kg mannitol of 20% as a bolus, repeated with a dose of 0.25-0.5 g/kg every 6 h based on patient′s response for 3 days. Serum total antioxidant power (TAP, reactive oxygen species (ROS and nitric oxide (NO were measured at baseline and daily for 3 days. Results: Initial serum ROS and NO levels in patients were higher than control(6.86± [3.2] vs. 1.57± [0.5] picoM, P = 0.001, 14.6± [1.6] vs. 7.8± [3.9] mM, P = 0.001, respectively. Levels of ROS have decreased for all patients, but reduction was significantly after HTS infusion and mannitol (3. 08 [±3.1] to 1.07 [±1.6], P = 0.001, 5.6 [±3.4] to 2.5 [±1.8], P = 0.003 respectively. During study, NO levels significantly decreased in HTS infusion but significantly increased in mannitol. TAP Levels had decreased in all patients during study especially in mannitol (P = 0.004. Conclusion: Hypertonic saline 5% has significant effects on the oxidant responses compared to mannitol following TBI that makes HTS as a perfect therapeutic intervention for reducing unfavorable outcomes in TBI patients.

  7. Intravenous hypertonic saline solution (7.5%) and oral electrolytes to treat of calves with noninfectious diarrhea and metabolic acidosis.

    Science.gov (United States)

    Leal, M L R; Fialho, S S; Cyrillo, F C; Bertagnon, H G; Ortolani, E L; Benesi, F J

    2012-01-01

    The aim of this study was to compare the efficacy of treating osmotic diarrhea and dehydration in calves with hypertonic saline solution (HSS) IV, isotonic electrolyte solution (IES) PO, and a combination of these 2 solutions (HSS + IES). Eighteen male calves 8-30 days of age were used to evaluate the efficacy of 3 methods of fluid therapy after induction of osmotic diarrhea and dehydration. The diarrhea and dehydration were induced by administration of saccharose, spironolactone, and hydrochlorothiazide for 48 hours. The animals were randomly divided into 3 experimental groups: Group 1: 7.2% hypertonic saline solution-HSS (5 mL/kg IV); Group 2: oral isotonic electrolyte solution IES (60 mL/kg PO); or Group 3: HSS+IES. Clinical signs and laboratory finding observed 48 hours post-induction (Time 0) included diarrhea, dehydration, lethargy, and metabolic acidosis. Calves treated with HSS + IES experienced decreases in hematocrit, total protein concentration, albumin concentration, urea nitrogen concentration, and plasma volume as well as increases in blood pH, blood bicarbonate concentration, and central venous pressure between 1 and 3 hours post-treatment. These findings also were observed in animals treated with IES, however, at a slower rate than in the HSS + IES-treated animals. Animals treated with HSS continued to display signs of dehydration, lethargy, and metabolic acidosis 24 hours post-treatment. Treatment with a combination of HSS and IES produced rapid and sustainable correction of hypovolemia and metabolic acidosis in calves with noninfections diarrhea and dehydration. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  8. Effects of Hypertonic Saline Solution on Clinical Parameters, Serum Electrolytes and Plasma Volume in the Treatment of Haemorrhagic Septicaemia in Buffaloes

    Directory of Open Access Journals (Sweden)

    M. Arif Zafar*, G. Muhammad, Zafar Iqbal1 and M. Riaz2

    2010-04-01

    Full Text Available This study was conducted to determine the efficacy of hypertonic saline solution (HSS along with antibiotic (ceftiofur HCl and non-steroidal anti-inflammatory drug (ketoprofen in the treatment of haemorrhagic septicaemia in buffaloes. For this purpose, 50 buffaloes suffering from haemorrhagic septicaemia were randomly divided in two equal groups A and B. Group A served as control and was treated with ceftiofur HCl (IM and ketoprofen (IV @ 6 and 2 mg/Kg BW, respectively, for five days. Buffaloes of group B were administered with rapid intravenous infusion of hypertonic saline solution (7.5% NaCl @ 4 ml/Kg BW once in combination with ceftiofur HCl and ketoprofen. Animals were monitored for 24 hours after initiation of treatment. Clinical parameters, serum electrolytes, plasma volume and survival index were recorded at different intervals after treatment. Survival rate (80% in group B was significantly higher (P<0.05 than 48% in group A. The heart rate and respiration rate recovered more effectively in the buffaloes administered with treatment protocol B. Plasma volume was 98% which was almost normal within 24 hours after the infusion of hypertonic saline solution to the animals of group B. It was concluded from the study that hypertonic saline solution as an adjunct to antibiotic and a non-steroidal anti-inflammatory drug more efficiently improved respiration and heart rates and effectively restored plasma volume in resuscitating the buffaloes from haemorrhagic septicaemia than the conventional treatment.

  9. Therapeutic effects of compound hypertonic saline on rats with sepsis

    Directory of Open Access Journals (Sweden)

    Fang Dong

    2014-09-01

    Full Text Available Sepsis is one of the major causes of death and is the biggest obstacle preventing improvement of the success rate in curing critical illnesses. Currently, isotonic solutions are used in fluid resuscitation technique. Several studies have shown that hypertonic saline applied in hemorrhagic shock can rapidly increase the plasma osmotic pressure, facilitate the rapid return of interstitial fluid into the blood vessels, and restore the effective circulating blood volume. Here, we established a rat model of sepsis by using the cecal ligation and puncture approach. We found that intravenous injection of hypertonic saline dextran (7.5% NaCl/6% dextran after cecal ligation and puncture can improve circulatory failure at the onset of sepsis. We found that the levels of tumor necrosis factor-α, interleukin-1β, interleukin-6 and intracellular adhesion molecule 1 levels in the lung tissue of cecal ligation and puncture rats treated with hypertonic saline dextran were significantly lower than the corresponding levels in the control group. We inferred that hypertonic saline dextran has a positive immunoregulatory effect and inhibits the overexpression of the inflammatory response in the treatment of sepsis. The percentage of neutrophils, lung myeloperoxidase activity, wet to dry weight ratio of lung tissues, histopathological changes in lung tissues, and indicators of arterial blood gas analysis was significantly better in the hypertonic saline dextran-treated group than in the other groups in this study. Hypertonic saline dextran-treated rats had significantly improved survival rates at 9 and 18 h compared to the control group. Our results suggest that hypertonic saline dextran plays a protective role in acute lung injury caused after cecal ligation and puncture. In conclusion, hypertonic/hyperoncotic solutions have beneficial therapeutic effects in the treatment of an animal model of sepsis.

  10. Evaluating the effect of administrating hypertonic and isotonic saline solutions on clinical improvement, serum electrolyte concentrations and renal function of calves affected by diarrhea

    Directory of Open Access Journals (Sweden)

    A Hasanpour

    2009-11-01

    This study was conducted on 40 calves under the age of one mouth with 30 calves affected by diarrhea allocated to 3 treatment groups of 10 calves each and the control group consisting of 10 calves. The control group received neither treatment nor any injections. In the first treatment group, only antibiotics were administered without any fluid therapy. In the second treatment group, apart from antibiotic therapy of diarrhea, hypertonic saline solution (7.5% was administered at a dose of 5 ml/kg as slow intravenous infusion alongside oral ORS solution whereas in the third treatment group isotonic saline solution (0.9% was given intravenously according to the formula (Body weight × %Dehydration alongside oral ORS solution. In all groups, clinical examination and blood sampling was undertaken at times 0, 1, 2, 8 and 24 hours following treatment. At time 0, the diarrhea had resulted in clinical and laboratory signs such as a fever, the dehydration, tachycardia, oligopnea, increased packed sell volume, hypernatremia, hyperchloremia, hyperkalemia, hyperphosphatemia, hypercalcemia, increased serum creatinine and BUN values. Following treatment, fever subsided and the dehydration was corrected and this correction occurred faster in calves which had received hypertonic saline solution. Correction of sodium, potassium, chloride, phosphorus and calsium imbalance occurred faster in patients which were treated by hypertonic solution. Fluid therapy with saline solutions prevented the increase in serum creatinine and BUN values. In conclusion, the administration of hypertonic saline solutions leads to much faster and more reliable clinical improvement and electrolyte imbalance correction in calves affected by diarrhea.

  11. Combined radiofrequency ablation and acetic acid-hypertonic saline solution instillation: an in vivo study of rabbit liver

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Min; Han, Joon-Koo; Kim, Se-Hyung; Choi, Byung-Ihn [Seoul National University, Seoul (Korea, Republic of); Kim, Young-Kon; Kim, Sang-Won [Chonbuk National University, Chonju (Korea, Republic of)

    2004-03-15

    We wanted to determine whether combined radiofrequency ablation (RFA) and acetic acid-hypertonic saline solution (AHS) instillation can increase the extent of thermally mediated coagulation in in vivo rabbit liver tissue. We also wished to determine the optimal concentration of the solution in order to maximize its effect on extent of the RFA-induced coagulation. Forty thermal ablation zones were produced in 40 rabbits by using a 17-gauge internally cooled electrode with a 1-cm active tip under ultrasound guidance. The rabbits were assigned to one of four groups: group A: RFA alone (n=10); group B: RFA with 50% AHS instillation (n=10); group C: RFA with 25% AHS instillation (n=10); group D: RFA with 15% AHS instillation (n=10). A range of acetic acid concentrations diluted in 36% NaCl to a total volume of 2 mL were instilled into the liver before RFA. The RF energy (30W) was applied for three minutes. After RFA, in each group, the maximum diameters to the thermal ablation zones in the gross specimens were compared. Technical success and the complication that arose were evaluated by CT and on the basis of autopsy findings. All procedures are technically successful. There were six procedure-related complications (6/40; 15%); two localized perihepatic hematomas and four chemical peritonitis. The incidence of chemical peritonitis was highest for group B with the 50% AHS solution instillation (30%). With instillation of 15% AHS solution, a marked decrease of tissue impedance (24.5 {+-} 15.6 {omega}) and an increase of current (250 mA) occurred as compared to RFA alone. With instillation of the solutions before RFA (group B, C and D). this produced a greater mean diameter of coagulation necrosis than the diameters for rabbits not instilled with the solution (group A) ({rho}<0.05). However, there was no significant difference between group B, C, and D. Combined AHS instillation and RFA can increase the dimension of coagulation necrosis in the liver with a single

  12. Reposição de volume na sepse com solução salina hipertônica Sepsis volume reposition with hypertonic saline solution

    Directory of Open Access Journals (Sweden)

    Gilberto Friedman

    2008-09-01

    Full Text Available Esta revisão discute os efeitos hemodinâmicos e imunomoduladores da solução hipertônica em choque experimental e em pacientes com sepse. Comentamos sobre os mecanismos de ação da solução hipertônica, recorrendo a dados sobre choque hemorrágico e séptico. Atuações específicas da solução salina hipertônica aplicáveis a sepse grave e choque séptico são enfatizadas. Os dados disponíveis corroboram os benefícios em potencial da infusão de solução salina hipertônica em vários aspetos da fisiopatologia da sepse, inclusive hipoperfusão dos tecidos, consumo reduzido de oxigênio, disfunção endotelial, depressão miocárdica e presença de um amplo elenco de citocinas próinflamatórias e várias espécies de oxidantes. Uma terapia que, ao mesmo tempo, bloqueie os componentes prejudiciais da sepse terá um impacto no seu tratamento. Estudos prospectivos adequadamente desenhados poderão no futuro comprovar o papel benéfico da solução salina hipertônica.The present review discusses the hemodynamic and immune-modulatory effects of hypertonic saline in experimental shock and in patients with sepsis. We comment on the mechanisms of action of hypertonic saline, calling upon data in hemorrhagic and septic shock. Specific actions of hypertonic saline applicable to severe sepsis and septic shock are highlighted. Data available support potential benefits of hypertonic saline infusion in various aspects of the pathophysiology of sepsis, including tissue hypoperfusion, decreased oxygen consumption, endothelial dysfunction, cardiac depression, and the presence of a broad array of pro-inflammatory cytokines and various oxidant species. A therapy that simultaneously blocks the damaging components of sepsis will have an impact on the management of sepsis. Proper designed prospective studies may prove a beneficial role for hypertonic saline solution in the future.

  13. Sodium kinetics in hypertonic saline abortion

    International Nuclear Information System (INIS)

    Telfer, N.; Ballard, C.S.; McKee, D.R.

    1975-01-01

    The sodium kinetics of hypertonic saline abortions have been followed by measuring the radioactivity and the sodium concentrations in amniotic fluid, maternal plasma, urine, the foetus and placenta after intrauterine installation of 20% hypertonic saline labelled with 22 Na in order to determine the reason for abortion of a dead foetus in 24 to 48 hours, and reasons for sodium reactions. There is dilution of the 300 ml of amniotic fluid to a maximum of 1.5 to 2.0 litres in an exponential fashion, by the influx of mainly maternal water, slowing after 8 hours. There is an exponential type of increase in plasma radioactivity, also slowing after 8 hours. However, equilibration is never reached, the specific activity of the amniotic fluid remaining 10 times that of the plasma, and the sodium concentration 3 times that of the plasma. The urine equilibrates with the plasma, and about 3% of the administered dose is lost in 22 hours. The largest foetus and placenta picked up the least radioactivity. Thus, a more mature foetus may be protected to some degree against the hypertonic saline action; this has been observed clinically. Hyperkaliaemia was found in all four subjects, and hypoglycaemia occurred sporadically. These were not accompanied by any symptoms. Factors associated with expulsion of the dead foetus are dehydration and decreased circulation associated with fibrinoid necrosis of the placenta, which may also account for cessation of equilibration between maternal plasma and amniotic fluid. Although no saline reactions occurred, the role of extrauterine deposition of hypertonic saline, as shown in one subject, might be considered. (author)

  14. Operating room use of hypertonic solutions: a clinical review

    Directory of Open Access Journals (Sweden)

    Gustavo Azoubel

    2008-01-01

    Full Text Available Hyperosmotic-hyperoncotic solutions have been widely used during prehospital care of trauma patients and have shown positive hemodynamic effects. Recently, there has been a growing interest in intra-operative use of hypertonic solutions. We reviewed 30 clinical studies on the use of hypertonic saline solutions during surgeries, with the majority being cardiac surgeries. Reduced positive fluid balance, increased cardiac index, and decreased systemic vascular resistance were the main beneficial effects of using hypertonic solutions in this population. Well-designed clinical trials are highly needed, particularly in aortic aneurysm repair surgeries, where hypertonic solutions have shown many beneficial effects. Examining the immunomodulatory effects of hypertonic solutions should also be a priority in future studies.

  15. Infusion of hypertonic saline (7.5% NaCl) causes minor immunological changes in normovolaemic women

    DEFF Research Database (Denmark)

    Petersen, Jens Aage Kølsen; Nielsen, J O D; Bendtzen, K

    2004-01-01

    Haemorrhagic shock is treated effectively by infusion of hypertonic saline/colloid solutions. Furthermore, previous studies found hypertonicity to affect immune responses in animals and in human blood cell cultures. It is unknown, however, whether hypertonic saline infusion affects immune responses...

  16. Hypertonic Saline in Treatment of Pulmonary Disease in Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Emer P. Reeves

    2012-01-01

    Full Text Available The pathogenesis of lung disease in cystic fibrosis is characterised by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. Mucus within the cystic fibrosis airways is enriched in negatively charged matrices composed of DNA released from colonizing bacteria or inflammatory cells, as well as F-actin and elevated concentrations of anionic glycosaminoglycans. Therapies acting against airway mucus in cystic fibrosis include aerosolized hypertonic saline. It has been shown that hypertonic saline possesses mucolytic properties and aids mucociliary clearance by restoring the liquid layer lining the airways. However, recent clinical and bench-top studies are beginning to broaden our view on the beneficial effects of hypertonic saline, which now extend to include anti-infective as well as anti-inflammatory properties. This review aims to discuss the described therapeutic benefits of hypertonic saline and specifically to identify novel models of hypertonic saline action independent of airway hydration.

  17. Hypertonic saline in treatment of pulmonary disease in cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-01-01

    The pathogenesis of lung disease in cystic fibrosis is characterised by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. Mucus within the cystic fibrosis airways is enriched in negatively charged matrices composed of DNA released from colonizing bacteria or inflammatory cells, as well as F-actin and elevated concentrations of anionic glycosaminoglycans. Therapies acting against airway mucus in cystic fibrosis include aerosolized hypertonic saline. It has been shown that hypertonic saline possesses mucolytic properties and aids mucociliary clearance by restoring the liquid layer lining the airways. However, recent clinical and bench-top studies are beginning to broaden our view on the beneficial effects of hypertonic saline, which now extend to include anti-infective as well as anti-inflammatory properties. This review aims to discuss the described therapeutic benefits of hypertonic saline and specifically to identify novel models of hypertonic saline action independent of airway hydration.

  18. Hypertonic saline for cystic fibrosis: worth its salt?

    Science.gov (United States)

    Goralski, Jennifer L; Donaldson, Scott H

    2014-06-01

    Airway dehydration in cystic fibrosis (CF) leads to chronic inflammation, ongoing infection and progressive lung disease. Restoration of airway hydration by inhalation of an osmotic agent (hypertonic saline) has been shown to be safe, effective and well-tolerated in adults with CF. Although the safety of hypertonic saline in infants and young children with CF has also been established, recent studies have reported inconclusive evidence about its efficacy. In this editorial, we discuss the evidence behind hypertonic saline use for adults, children and infants with CF.

  19. Infusion of hypertonic saline before elective hysterectomy: effects on cytokines and stress hormones

    DEFF Research Database (Denmark)

    Kolsen-Petersen, J A; Bendtzen, K; Tonnesen, E

    2008-01-01

    Infusion of hypertonic saline provides early haemodynamic benefits and may affect the immune system. It is unknown if infusion of hypertonic saline affects plasma cytokines and stress hormones after surgery.......Infusion of hypertonic saline provides early haemodynamic benefits and may affect the immune system. It is unknown if infusion of hypertonic saline affects plasma cytokines and stress hormones after surgery....

  20. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis

    Directory of Open Access Journals (Sweden)

    Ajantha Nadesalingam

    2018-03-01

    solutions do not suppress NOX2-independent NETosis. Although hypertonic saline partially suppresses ionomycin-induced NETosis, it enhances A23187-induced NETosis, and it does not alter S. aureus-induced NETosis. Overall, this study determined that hypertonic saline suppresses NOX2-dependent NETosis induced by several agonists; in contrast, it has variable effects on neutrophil death induced by NOX2-independent NETosis agonists. These findings are important in understanding the regulation of NETosis and apoptosis in neutrophils.

  1. Immune-Inflammatory and Metabolic Effects of High Dose Furosemide plus Hypertonic Saline Solution (HSS Treatment in Cirrhotic Subjects with Refractory Ascites.

    Directory of Open Access Journals (Sweden)

    Antonino Tuttolomondo

    Full Text Available Patients with chronic liver diseases are usually thin as a result of hypermetabolism and malnutrition expressed by reduced levels of leptin and impairment of other adyponectins such as visfatin.We evaluated the metabolic and inflammatory effects of intravenous high-dose furosemide plus hypertonic saline solutions (HSS compared with repeated paracentesis and a standard oral diuretic schedule, in patients with cirrhosis and refractory ascites.59 consecutive cirrhotic patients with refractory ascites unresponsive to outpatient treatment. Enrolled subjects were randomized to treatment with intravenous infusion of furosemide (125-250mg⁄bid plus small volumes of HSS from the first day after admission until 3 days before discharge (Group A, n:38, or repeated paracentesis from the first day after admission until 3 days before discharge (Group B, n: 21. Plasma levels of ANP, BNP, Leptin, visfatin, IL-1β, TNF-a, IL-6 were measured before and after the two type of treatment.Subjects in group A were observed to have a significant reduction of serum levels of TNF-α, IL-1β, IL-6, ANP, BNP, and visfatin, thus regarding primary efficacy endpoints, in Group A vs. Group B we observed higher Δ-TNF-α, Δ-IL-1β, Δ-IL-6, Δ-ANP, Δ-BNP, Δ-visfatin, Δ-Leptin at discharge.Our findings underline the possible inflammatory and metabolic effect of saline overload correction in treatment of cirrhosis complications such as refractory ascites, suggesting a possible role of inflammatory and metabolic-nutritional variables as severity markers in these patients.

  2. Hyaluronic acid improves "pleasantness" and tolerability of nebulized hypertonic saline in a cohort of patients with cystic fibrosis.

    Science.gov (United States)

    Buonpensiero, Paolo; De Gregorio, Fabiola; Sepe, Angela; Di Pasqua, Antonio; Ferri, Pasqualina; Siano, Maria; Terlizzi, Vito; Raia, Valeria

    2010-11-01

    Inhaled hypertonic saline improves lung function and decreases pulmonary exacerbations in people with cystic fibrosis. However, side effects such as cough, narrowing of airways and saltiness cause intolerance of the therapy in 8% of patients. The aim of our study was to compare the effect of an inhaled solution of hyaluronic acid and hypertonic saline with hypertonic solution alone on safety and tolerability. A total of 20 patients with cystic fibrosis aged 6 years and over received a single treatment regimen of 7% hypertonic saline solution or hypertonic solution with 0.1% hyaluronate for 2 days nonconsecutively after a washout period in an open crossover study. Cough, throat irritation, and salty taste were evaluated by a modified ordinal score for assessing tolerability; "pleasantness" was evaluated by a five-level, Likert-type scale. Forced expiratory volume in 1 second was registered before and after the end of the saline inhalations. All 20 patients (nine males, 11 females, mean age 13 years, range 8.9-17.7) completed the study. The inhaled solution of 0.1% hyaluronic acid and hypertonic saline significantly improved tolerability and pleasantness compared to hypertonic saline alone. No major adverse effects were observed. No difference was documented in pulmonary function tests between the two treatments. Hyaluronic acid combined with hypertonic saline solution may contribute to improved adherence to hypertonic saline therapy. Further clinical trials are needed to confirm our findings. Considering the extraordinary versatility of hyaluronic acid in biological reactions, perspective studies could define its applicability to halting progression of lung disease in cystic fibrosis.

  3. Use of Hypertonic Sodium Chloride Solution at Surgery under Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    V. V. Lomivorotov

    2012-01-01

    Full Text Available The paper analyzes the data available in the references on different aspects of using hypertonic sodium chloride solution during surgery under extracorporeal circulation in cardiosurgical care. The hypertonic solution is shown to lower positive fluid balance in the perioperative period, to increase cardiac output with simultaneously decreased vascular resistance, to improve lung oxygenating function, and to normalize tissue blood circulation and neurological status in patients exposed to artificial perfusion. There is evidence for its effect on the immune system and capillary endothelium. It is suggested that it is necessary to study the effect of the hypertonic solution on the incidence of complications and death rates during surgery under extracorporeal circulation and it is proposed to use the solution under long-term extracorporeal circulation. Key words: hypertonic saline, sodium chloride, extracorporeal circulation.

  4. Infusion of hypertonic saline before elective hysterectomy: effects on cytokines and stress hormones

    DEFF Research Database (Denmark)

    Kølsen-Petersen, Jens Aage; Bendtzen, Klaus; Tønnesen, Else Kirstine

    2008-01-01

    with the other groups (Peffect on the postoperative concentration of selected plasma cytokines and the hormonal stress......BACKGROUND: Infusion of hypertonic saline provides early haemodynamic benefits and may affect the immune system. It is unknown if infusion of hypertonic saline affects plasma cytokines and stress hormones after surgery. METHODS: Sixty-two women undergoing abdominal hysterectomy were randomized...

  5. Epinephrine Improves the Efficacy of Nebulized Hypertonic Saline in Moderate Bronchiolitis: A Randomised Clinical Trial.

    Directory of Open Access Journals (Sweden)

    J Carlos Flores-González

    Full Text Available There is no evidence that the epinephrine-3% hypertonic saline combination is more effective than 3% hypertonic saline alone for treating infants hospitalized with acute bronchiolitis. We evaluated the efficacy of nebulized epinephrine in 3% hypertonic saline.We performed a randomized, double-blind, placebo-controlled clinical trial in 208 infants hospitalized with acute moderate bronchiolitis. Infants were randomly assigned to receive nebulized 3% hypertonic saline with either 3 mL of epinephrine or 3 mL of placebo, administered every four hours. The primary outcome measure was the length of hospital stay.A total of 185 infants were analyzed: 94 in the epinephrine plus 3% hypertonic saline group and 91 in the placebo plus 3% hypertonic saline group. Baseline demographic and clinical characteristics were similar in both groups. Length of hospital stay was significantly reduced in the epinephrine group as compared with the placebo group (3.94 ±1.88 days vs. 4.82 ±2.30 days, P = 0.011. Disease severity also decreased significantly earlier in the epinephrine group (P = 0.029 and P = 0.036 on days 3 and 5, respectively.In our setting, nebulized epinephrine in 3% hypertonic saline significantly shortens hospital stay in hospitalized infants with acute moderate bronchiolitis compared to 3% hypertonic saline alone, and improves the clinical scores of severity from the third day of treatment, but not before.EudraCT 2009-016042-57.

  6. Efficacy of nebulised L-adrenaline with 3% hypertonic saline versus normal saline in bronchiolitis

    Directory of Open Access Journals (Sweden)

    Shabnam Sharmin

    2016-08-01

    Full Text Available Background: Bronchiolitis is one of the most common respiratory diseases requiring hospitalization. Nebulized epineph­rine and salbutamol therapy has been used in different centres with varying results. Objective: The objective of the study was to compare the efficacy of nebulised adrenaline diluted with 3% hypertonic saline with nebulised adrenaline diluted with normal saline in bronchiolitis. Methods: Fifty three infants and young children with bronchiolitis, age ranging from 2 months to 2 years, presenting in the emergency department of Manikganj Sadar Hospital were enrolled in the study. After initial evaluation, patients were randomized to receive either nebulized adrenaline I .5 ml ( 1.5 mg diluted with 2 ml of3% hypertonic saline (group I ornebulised adrenaline 1.5 ml (1.5 mg diluted with 2 ml of normal saline (group II. Patients were evaluated again 30 minutes after nebulization. Results: Twenty eight patients in the group I (hypertonic saline and twenty five in groupII (normal saline were included in the study. After nebulization, mean respiratory rate decreased from 63.7 to 48.1 (p<.01, mean clinical severity score decreased from 8.5 to 3.5 (p<.01 and mean oxygen satw·ation increased 94.7% to 96.9% (p<.01 in group I. In group II, mean respiratory rate decreased from 62.4 to 47.4 (p<.01, mean clinical severity score decreased from 7.2 to 4.1 (p<.01 and mean oxygen saturation increased from 94. 7% to 96. 7% (p<.01. Mean respiratory rate decreased by 16 in group I versus 14.8 (p>.05 in group 11, mean clinical severity score decreased by 4.6 in group versus 3 (p<.05 in group, and mean oxygen saturation increased by 2.2% and 1.9% in group and group respectively. Difference in reduction in clinical severity score was statistically significant , though the changes in respiratory rate and oxygen saturation were not statistically significant. Conclusion: The study concluded that both nebulised adrenaline diluted with 3% hypertonic saline and

  7. Nebulized hypertonic saline decreases IL-8 in sputum of patients with cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2011-06-01

    Inflammation within the cystic fibrosis (CF) lung is mediated by inflammatory chemokines, such as IL-8. IL-8 is protected from proteolytic degradation in the airways by binding to glycosaminoglycans, while remaining active. Evidence that increased hypertonicity of airway secretions induced by hypertonic saline treatment alters levels of IL-8 is lacking.

  8. Hypertonic Saline Resuscitation Modulates Neutrophil Adhesion Molecule Expression of Post-Traumatic Hemorrhagic Shock Patients

    National Research Council Canada - National Science Library

    Rizoli, Sandro B; Rhind, Shawn G; Shek, Pang N; Inaba, Kenji; Filips, Dennis; Tien, Homer; Brenneman, Fred; Rotstein, Ori D

    2004-01-01

    .... Experimental data suggests that hypertonic saline/dextran (HSD, 7.5% NaCl in 6% dextran-70) exerts antiinflammatory and immunomodulatory effects, reduces multiorgan dysfunction and improves outcome...

  9. In Vitro impairment of whole blood coagulation and platelet function by hypertonic saline hydroxyethyl starch

    Directory of Open Access Journals (Sweden)

    Görlinger Klaus

    2011-02-01

    Full Text Available Abstract Background Hypertonic saline hydroxyethyl starch (HH has been recommended for first line treatment of hemorrhagic shock. Its effects on coagulation are unclear. We studied in vitro effects of HH dilution on whole blood coagulation and platelet function. Furthermore 7.2% hypertonic saline, 6% hydroxyethylstarch (as ingredients of HH, and 0.9% saline solution (as control were tested in comparable dilutions to estimate specific component effects of HH on coagulation. Methods The study was designed as experimental non-randomized comparative in vitro study. Following institutional review board approval and informed consent blood samples were taken from 10 healthy volunteers and diluted in vitro with either HH (HyperHaes®, Fresenius Kabi, Germany, hypertonic saline (HT, 7.2% NaCl, hydroxyethylstarch (HS, HAES6%, Fresenius Kabi, Germany or NaCl 0.9% (ISO in a proportion of 5%, 10%, 20% and 40%. Coagulation was studied in whole blood by rotation thrombelastometry (ROTEM after thromboplastin activation without (ExTEM and with inhibition of thrombocyte function by cytochalasin D (FibTEM, the latter was performed to determine fibrin polymerisation alone. Values are expressed as maximal clot firmness (MCF, [mm] and clotting time (CT, [s]. Platelet aggregation was determined by impedance aggregrometry (Multiplate after activation with thrombin receptor-activating peptide 6 (TRAP and quantified by the area under the aggregation curve (AUC [aggregation units (AU/min]. Scanning electron microscopy was performed to evaluate HyperHaes induced cell shape changes of thrombocytes. Statistics: 2-way ANOVA for repeated measurements, Bonferroni post hoc test, p Results Dilution impaired whole blood coagulation and thrombocyte aggregation in all dilutions in a dose dependent fashion. In contrast to dilution with ISO and HS, respectively, dilution with HH as well as HT almost abolished coagulation (MCFExTEM from 57.3 ± 4.9 mm (native to 1.7 ± 2.2 mm (HH 40

  10. New Form of Hypertonic Solution for Nebulization Therapy

    Directory of Open Access Journals (Sweden)

    Olga I. Simonova

    2016-01-01

    Full Text Available Mucolytic, expectorative and antitussive drugs are traditionally used in acute or chronic respiratory episodes affected by acute respiratory infections. Today, preference is given to drugs in a form of solutions for nebulization therapy. The article presents data on the new dosage form of 7% inhalation hypertonic solution in combination with hyaluronic acid used in mucostasis therapy for chronic respiratory diseases. The information on the properties and the favorable effect of hyaluronic acid is provided. We discuss the evidence base of inhalation of the hypertonic solution in combination with hyaluronic acid in cystic fibrosis.

  11. Experimental pain in human temporal muscle induced by hypertonic saline, potassium and acidity

    DEFF Research Database (Denmark)

    Jensen, K; Norup, M

    1992-01-01

    chloride (n = 12) induced significantly more pain than isotonic saline (ANOVA, p less than 0.0001). Compared to control injections, hypertonic saline and potassium chloride induced a significant reduction in pressure-pain threshold (ANOVA, p less than 0.0001 and p less than 0.05). Forty-eight percent...

  12. Oxytocin and prolactin release after hypertonic saline administration in melatonin-treated male Syrian hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Juszczak, M.; Steger, R.W.; Fadden, C.; Bartke, A. [Southern Illinois Univ., Carbondale, IL (United States)

    1996-12-31

    The aim of the present investigations was to examine the effects of melatonin (Mel) on oxytocin (OT) release under conditions of osmotic stimulation, brought about by hypertonic saline administration, as well as to determine whether osmotically stimulated OT release in Mel-treated Syrian hamster is associated with alterations in the release of prolactin (PRL) and in norepinephrine (NE) and dopamine (DA) content in the hypothalamus. In both Mel- and vehicle-treated hamsters, injection of hypertonic saline was followed by a significant decrease in OT content in the pituitary neurointermediate lobe (NIL) and elevation of plasma OT and PRL levels. Melatonin injections had no significant affect on NIL OT content in either isotonic- or hypertonic-saline treated animals. Pretreatment with Mel did not alter plasma OT or PRL levels in isotonic saline-injected animals. However, Mel facilitated the release of OT, but prevented the release of PRL after hypertonic saline administration. Melatonin treatment reduced hypothalamic NE content (but not that of DA) in isotonic-saline treated animals. After osmotic stimulation, hypothalamic content of NE and DA was significantly lower in Mel-treated than in vehicle-treated animals. Data from the present study suggest that the osmotically-stimulated release of OT and PRL seems to be related to the activation of noradrenergic rather than dopaminergic transmission. Both dopaminergic and noradrenergic transmission may be, however, involved in mediating the effects of Mel on the osmotically-activated OT and PRL release. (author). 48 refs, 3 figs.

  13. Oxytocin and prolactin release after hypertonic saline administration in melatonin-treated male Syrian hamsters

    International Nuclear Information System (INIS)

    Juszczak, M.; Steger, R.W.; Fadden, C.; Bartke, A.

    1996-01-01

    The aim of the present investigations was to examine the effects of melatonin (Mel) on oxytocin (OT) release under conditions of osmotic stimulation, brought about by hypertonic saline administration, as well as to determine whether osmotically stimulated OT release in Mel-treated Syrian hamster is associated with alterations in the release of prolactin (PRL) and in norepinephrine (NE) and dopamine (DA) content in the hypothalamus. In both Mel- and vehicle-treated hamsters, injection of hypertonic saline was followed by a significant decrease in OT content in the pituitary neurointermediate lobe (NIL) and elevation of plasma OT and PRL levels. Melatonin injections had no significant affect on NIL OT content in either isotonic- or hypertonic-saline treated animals. Pretreatment with Mel did not alter plasma OT or PRL levels in isotonic saline-injected animals. However, Mel facilitated the release of OT, but prevented the release of PRL after hypertonic saline administration. Melatonin treatment reduced hypothalamic NE content (but not that of DA) in isotonic-saline treated animals. After osmotic stimulation, hypothalamic content of NE and DA was significantly lower in Mel-treated than in vehicle-treated animals. Data from the present study suggest that the osmotically-stimulated release of OT and PRL seems to be related to the activation of noradrenergic rather than dopaminergic transmission. Both dopaminergic and noradrenergic transmission may be, however, involved in mediating the effects of Mel on the osmotically-activated OT and PRL release. (author). 48 refs, 3 figs

  14. Nebulized hypertonic saline via positive expiratory pressure versus via jet nebulizer in patients with severe cystic fibrosis.

    LENUS (Irish Health Repository)

    O'Connell, Oisin J

    2011-06-01

    Nebulized hypertonic saline is a highly effective therapy for patients with cystic fibrosis (CF), yet 10% of patients are intolerant of hypertonic saline administered via jet nebulizer. Positive expiratory pressure (PEP) nebulizers splint open the airways and offers a more controlled rate of nebulization.

  15. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  16. Prehospital guidelines for use of hypertonic saline are not followed systematically

    DEFF Research Database (Denmark)

    Hejselbaek, Julie; Steinmetz, Jacob; Rasmussen, Lars Simon

    2012-01-01

    Hypertonic saline (HS) was introduced in our physician-based mobile emergency care unit (MECU) in September 2006 for patients with severe traumatic brain injury and hypotension. HS has, however, rarely been used and we sought to identify barriers to its implementation....

  17. Nebulized hypertonic saline decreases IL-8 in sputum of patients with cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-02-01

    RATIONALE: Inflammation within the cystic fibrosis (CF) lung is mediated by inflammatory chemokines, such as IL-8. IL-8 is protected from proteolytic degradation in the airways by binding to glycosaminoglycans, while remaining active. Evidence that increased hypertonicity of airway secretions induced by hypertonic saline treatment alters levels of IL-8 is lacking. OBJECTIVES: To investigate the antiinflammatory effect of hypertonic saline (HTS) treatment within the CF lung by focusing on IL-8. METHODS: Degradation of IL-8 in CF lung secretions after treatment with glycosaminoglycan lyases and HTS was analyzed by Western blot analysis and ELISA. The ex vivo chemotactic activity of purified neutrophils in response to CF airway secretions was evaluated post nebulization of HTS (7% saline). MEASUREMENTS AND MAIN RESULTS: In vivo CF bronchoalveolar lavage fluid (BALF) IL-8 levels were significantly higher than the control group (P < 0.05). Digesting glycosaminoglycans in CF BALF displaced IL-8 from glycosaminoglycan matrices, rendering the chemokine susceptible to proteolytic cleavage. High sodium concentrations also liberate IL-8 in CF BALF in vitro, and in vivo in CF sputum from patients receiving aerosolized HTS, resulting in degradation of IL-8 and decreased neutrophil chemotactic efficiency. CONCLUSIONS: Glycosaminoglycans possess the ability to influence the chemokine profile of the CF lung by binding and stabilizing IL-8, which promotes neutrophil chemotaxis and activation. Nebulized hypertonic saline treatment disrupts the interaction between glycosaminoglycans and IL-8, rendering IL-8 susceptible to proteolytic degradation with subsequent decrease in neutrophil chemotaxis, thereby facilitating resolution of inflammation.

  18. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  19. A comparison of sputum induction methods: ultrasonic vs compressed-air nebulizer and hypertonic vs isotonic saline inhalation.

    Science.gov (United States)

    Loh, L C; Eg, K P; Puspanathan, P; Tang, S P; Yip, K S; Vijayasingham, P; Thayaparan, T; Kumar, S

    2004-03-01

    Airway inflammation can be demonstrated by the modem method of sputum induction using ultrasonic nebulizer and hypertonic saline. We studied whether compressed-air nebulizer and isotonic saline which are commonly available and cost less, are as effective in inducing sputum in normal adult subjects as the above mentioned tools. Sixteen subjects underwent weekly sputum induction in the following manner: ultrasonic nebulizer (Medix Sonix 2000, Clement Clarke, UK) using hypertonic saline, ultrasonic nebulizer using isotonic saline, compressed-air nebulizer (BestNeb, Taiwan) using hypertonic saline, and compressed-air nebulizer using isotonic saline. Overall, the use of an ultrasonic nebulizer and hypertonic saline yielded significantly higher total sputum cell counts and a higher percentage of cell viability than compressed-air nebulizers and isotonic saline. With the latter, there was a trend towards squamous cell contaminations. The proportion of various sputum cell types was not significantly different between the groups, and the reproducibility in sputum macrophages and neutrophils was high (Intraclass correlation coefficient, r [95%CI]: 0.65 [0.30-0.91] and 0.58 [0.22-0.89], p compressed-air nebulizers and isotonic saline. We conclude that in normal subjects, although both nebulizers and saline types can induce sputum with reproducible cellular profile, ultrasonic nebulizers and hypertonic saline are more effective but less well tolerated.

  20. Less impairment of hemostasis and reduced blood loss in pigs after resuscitation from hemorrhagic shock using the small-volume concept with hypertonic saline/hydroxyethyl starch as compared to administration of 4% gelatin or 6% hydroxyethyl starch solution.

    Science.gov (United States)

    Haas, Thorsten; Fries, Dietmar; Holz, Carmen; Innerhofer, Petra; Streif, Werner; Klingler, Anton; Hanke, Alexander; Velik-Salchner, Corinna

    2008-04-01

    Small-volume resuscitation using hypertonic saline/hydroxyethyl starch 200/0.62 (HS-HES) has been shown to be an effective alternative to the administration of crystalloids or colloids in trauma patients. All i.v. fluids cause dose-related dilutional coagulopathy and show intrinsic effects on the hemostatic system, but only few data refer to functional consequences after small-volume resuscitation. Using thrombelastometry (ROTEM), we studied 30 pigs (weighing 35-45 kg) after withdrawal of 60% of blood volume [1484 mL (1369-1624 mL)] and receiving 4 mL/kg HS-HES for compensation of blood loss or 4% gelatin or 6% HES 130/0.4 in a 1:1 ratio to lost blood volume. To compare the ROTEM variables (coagulation time, clot formation time, alpha angle, clot firmness, and fibrinogen polymerization) with bleeding tendency, a hepatic incision was made and blood loss was measured. Median (25th, 75th percentile) fibrinogen polymerization was significantly higher after HS-HES infusion [11 mm (10, 11), P = 0.0034] when compared with administration of 4% gelatin [4.5 mm (3.0, 5.8)] or HES 130/0.4 [3.5 mm (2.3, 4.0)]. Median blood loss after liver incision was 725 mL (900, 375) after HS-HES, 1625 mL (1275, 1950) after 4% gelatin, and 1600 mL (1500, 1800) after 6% HES 130/0.4 (P = 0.004). Hemodynamic stabilization was traceable in all groups but showed differences regarding filling pressures. Resuscitation from hemorrhagic shock with HS-HES 200/0.62 results in less impairment of clot formation when compared with compensation of blood loss by administering 6% HES 130/0.4 or 4% gelatin.

  1. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    Science.gov (United States)

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  2. Advances toward the elucidation of hypertonic saline effects on Pseudomonas aeruginosa from cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Michon

    Full Text Available OBJECTIVES: Nebulized hypertonic saline (HTS has beneficial effects including reducing pulmonary exacerbations in Cystic Fibrosis (CF patients. Several mechanisms may explain these effects but antimicrobial activity of NaCl remains largely unexplored. We aimed to measure the antimicrobial effect of NaCl on Pseudomonas aeruginosa isolated from the respiratory tract in CF patients. METHODS: NaCl minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC were determined for strains characterized for mucoidy, antimicrobial resistance, and ability to form biofilm using 0,9% to 15% NaCl solutions. NaCl effects on biofilm formation, preformed biofilm, and mobility were evaluated. Kinetics of antimicrobial effects was studied. RESULTS: The growth of all isolates (n = 85 from 34 patients was inhibited by 6% NaCl solution. A 10% concentration had a bactericidal activity on 90% of the isolates. Mucoid and multidrug resistant (MDR isolates displayed lower MICs compared to non-mucoid and to non-MDR isolates, respectively. Time-kill kinetics showed that NaCl exhibited a rapid, dose and growth phase dependent bactericidal effect. Three percent or more of NaCl inhibited biofilm formation for 69% of strongly adherent isolates. A dose-dependent decrease of preformed biofilm viability and an inhibitory activity on bacterial motility were observed. CONCLUSIONS: NaCl inhibited the growth of all isolates and killed 38% of tested isolates within concentration range currently used in therapeutics. Our results suggest that anti-pseudomonal activity is another mechanism of action of HTS to add to those already established. Clinical trials are needed to compare diverse HTS conditions of use (rhythm, dose and mode of delivery to obtain efficient and optimized anti-P. aeruginosa effects. More generally, NaCl effect on other opportunistic pathogens as well as on global microbiotae recovered during polymicrobial diseases warrants further investigations.

  3. Nebulised dornase alfa versus placebo or hypertonic saline in adult critically ill patients

    DEFF Research Database (Denmark)

    Claudius, Casper; Perner, Anders; Møller, Morten Hylander

    2015-01-01

    a systematic review with meta-analysis and trial sequential analysis (TSA) using the Cochrane Collaboration methodology. Eligible trials were randomised clinical trials comparing nebulised dornase alfa with placebo, no prophylaxis, or hypertonic saline. The predefined outcome measures were all-cause mortality...... of the primary estimate was assessed by TSA. RESULTS: Two trials (n = 63) were included; both were judged to have high risk of bias. There was no statistically significant difference in mortality (random effects model RR (95 % CI) 0.73 (0.09-5.77); P = 0.24; I (2) = 30 %). TSA could not be conducted because less...

  4. Hypertonic lactated saline resuscitation reduces the risk of abdominal compartment syndrome in severely burned patients.

    Science.gov (United States)

    Oda, Jun; Ueyama, Masashi; Yamashita, Katsuyuki; Inoue, Takuya; Noborio, Mitsuhiro; Ode, Yasumasa; Aoki, Yoshiki; Sugimoto, Hisashi

    2006-01-01

    Secondary abdominal compartment syndrome is a lethal complication after resuscitation from burn shock. Hypertonic lactated saline (HLS) infusion reduces early fluid requirements in burn shock, but the effects of HLS on intraabdominal pressure have not been clarified. Patients admitted to our burn unit between 2002 and 2004 with burns > or =40% of the total body surface area without severe inhalation injury were entered into a fluid resuscitation protocol using HLS (n = 14) or lactated Ringer's solution (n = 22). Urine output was monitored hourly with a goal of 0.5 to 1.0 mL/kg per hour. Hemodynamic parameters, blood gas analysis, intrabladder pressure as an indicator of intraabdominal pressure (IAP), and the peak inspiratory pressure were recorded. Pulmonary compliance and the abdominal perfusion pressure were also calculated. In the HLS group, the amount of intravenous fluid volume needed to maintain adequate urine output was less at 3.1 +/- 0.9 versus 5.2 +/- 1.2 mL/24 h per kg per percentage of total body surface area, and the peak IAP and peak inspiratory pressure at 24 hours after injury were significantly lower than those in the lactated Ringer's group. Two of 14 patients (14%) in the HLS group and 11 of 22 patients (50%) developed IAH within 20.8 +/- 7.2 hours after injury. In patients with severe burn injury, a large intravenous fluid volume decreases abdominal perfusion during the resuscitative period because of increased IAP. Our data suggest that HLS resuscitation could reduce the risk of secondary abdominal compartment syndrome with lower fluid load in burn shock patients.

  5. Clinical application of multislice CT enterography with hypertonic mannitol saline as oral contrast

    International Nuclear Information System (INIS)

    Yan Guixin; Wang Haitao; Chen Wenjing; Liu Wenya

    2011-01-01

    Objective: To assess the feasibility and value of multislice CT enterography (MSCTE) with large dose economy and convenience orally administered hypertonic mannitol salt water (2.5% mannitol and 1.5% NaCl salt water) as negative contrast in demonstrating normal and abnormal small bowel. Methods: 81 patients suffered from digestive disease and suspected of various kinds of small intestinal diseases were examined (male/female=47/34, 26-81 years old, average 57.8 years). About 1500 ml∼3000 ml hypertonic mannitol saline was oral administered within 90 minutes and 20 mg of raceanisodamine hydrochloride injection was injected intramuscularly. CT scanning was performed 20 minutes later. Imaging data were post processed with coronal, sagittal and oblique reconstruction, multiplanar reformation (MPR), maximum intensity projection (MIP), and volumer rendering technique (VRT). The filling degree of stomach, intestine and colon was classified as satisfactory, better and unsatisfactory. The length and superposition of small intestine was classified as dense-type, uniformity-type and straggling-type. The maximum outer diameters of duodenum, jejunum, and ileum were measured respectively in different segments. The degree of bowel wall enhancement in arterial phase and venous phase was classified as obvious enhancement (>90 HU), medium enhancement (60-90 HU) and mild enhancement (<60 HU). CT features of various kinds of small bowel diseases were analyzed. Results: The hypertonic mannitol saline was acceptable by patients, except 5 patients with diarrhea. The filling degree of stomach, intestine and and colon was classified as satisfactory in 46 cases, better in 23 cases and unsatisfactory in 12 cases. The maximum outer diameters of small bowel in different segments were 24 mm ± 4.5 mm at duodenum, 24 mm ±3.9 mm at jejunum and 23 mm ±3.3 mm at ileum respectively. The length and superposition of small intestine were classified as dense-type in 7 cases, uniformity-type in 58

  6. Small volume resuscitation with hypertonic sodium chloride solution in cattle undergoing surgical correction of abomasal volvulus

    DEFF Research Database (Denmark)

    Sickinger, M.; Doll, K.; Roloff, N. C.

    2014-01-01

    .5±2.1 vs. 10.3±3.3cm H2O, respectively). Within the first 60min, the base excess decreased from 5.5±6.9 to 4.7±6.2mmol/L in the hypertonic group whereas it increased from 5.6±5.7 to 6.8±5.4mmol/L in the isotonic group. These results suggest that for cows with abomasal volvulus, IV therapy with hypertonic...... had a significantly greater reduction in volume deficit within the first 10min of therapy than cows treated with isotonic saline (from 5.9±4.8 to 2.1±4.4L/100kg vs. 7.0±4.5 to 4.9±3.8L/100kg, respectively). The central venous pressure (CVP) of the cows given the hypertonic saline rose within the first...... 10 min of therapy from 7.3±3.5 to 10.8±3.4cm H2O, while the CVP of the cattle treated with isotonic saline did not increase significantly during this time.Sixty minutes after the start of the infusion, the CVP of the isotonic group was still significantly lower than that of the hypertonic group (9...

  7. Oral Hypertonic Saline Is Effective in Reversing Acute Mild-to-Moderate Symptomatic Exercise -Associated Hyponatremia.

    Science.gov (United States)

    Bridges, Eileen; Altherwi, Tawfeeq; Correa, José A; Hew-Butler, Tamara

    2018-01-23

    To determine whether oral administration of 3% hypertonic saline (HTS) is as efficacious as intravenous (IV) 3% saline in reversing symptoms of mild-to-moderate symptomatic exercise-associated hyponatremia (EAH) in athletes during and after a long-distance triathlon. Noninferiority, open-label, parallel-group, randomized control trial to IV or oral HTS. We used permuted block randomization with sealed envelopes, containing the word either "oral" or "IV." Annual long-distance triathlon (3.8-km swim, 180-km bike, and 42-km run) at Mont-Tremblant, Quebec, Canada. Twenty race finishers with mild to moderately symptomatic EAH. Age, sex, race finish time, and 9 clinical symptoms. Time from treatment to discharge. We successfully randomized 20 participants to receive either an oral (n = 11) or IV (n = 9) bolus of HTS. We performed venipuncture to measure serum sodium (Na) at presentation to the medical clinic and at time of symptom resolution after the intervention. The average time from treatment to discharge was 75.8 minutes (SD 29.7) for the IV treatment group and 50.3 minutes (SD 26.8) for the oral treatment group (t test, P = 0.02). Serum Na before and after treatment was not significantly different in both groups. There was no difference on presentation between groups in age, sex, or race finish time, both groups presented with an average of 6 symptoms. Oral HTS is effective in reversing symptoms of mild-to-moderate hyponatremia in EAH.

  8. Attenuation of pancreatitis-induced pulmonary injury by aerosolized hypertonic saline.

    LENUS (Irish Health Repository)

    Shields, C J

    2012-02-03

    BACKGROUND: The immunomodulatory effects of hypertonic saline (HTS) provide potential strategies to attenuate inappropriate inflammatory reactions. This study tested the hypothesis that administration of intratracheal aerosolized HTS modulates the development of lung injury in pancreatitis. METHODS: Pancreatitis was induced in 24 male Sprague-Dawley rats by intraperitoneal injection of 20% L-arginine (500 mg\\/100 g body weight). At 24 and 48 h, intratracheal aerosolized HTS (7.5% NaCl, 0.5 mL) was administered to 8 rats, while a further 8 received 0.5 mL of aerosolized normal saline (NS). At 72 hours, pulmonary neutrophil infiltration (myeloperoxidase activity) and endothelial permeability (bronchoalveolar lavage and wet:dry weight ratios) were assessed. In addition, histological assessment of representative lung tissue was performed by a blinded assessor. In a separate experiment, polymorphonucleocytes (PMN) were isolated from human donors, and exposed to increments of HTS. Neutrophil transmigration across an endothelial cell layer, VEGF release, and apoptosis at 1, 6, 12, 18, and 24 h were assessed. RESULTS: Histopathological lung injury scores were significantly reduced in the HTS group (4.78 +\\/- 1.43 vs. 8.64 +\\/- 0.86); p < 0.001). Pulmonary neutrophil sequestration (1.40 +\\/- 0.2) and increased endothelial permeability (6.77 +\\/- 1.14) were evident in the animals resuscitated with normal saline when compared with HTS (0.70 +\\/- 0.1 and 3.57 +\\/- 1.32), respectively; p < 0.04). HTS significantly reduced PMN transmigration (by 97.1, p = 0.002, and induced PMN apoptosis (p < 0.03). HTS did not impact significantly upon neutrophil VEGF release (p > 0.05). CONCLUSIONS: Intratracheal aerosolized HTS attenuates the neutrophil-mediated pulmonary insult subsequent to pancreatitis. This may represent a novel therapeutic strategy.

  9. Changes of hypertonic saline-induced masseter muscle pain characteristics, by an infusion of the serotonin receptor type 3 antagonist granisetron.

    Science.gov (United States)

    Christidis, Nikolaos; Ioannidou, Kiriaki; Milosevic, Milena; Segerdahl, Märta; Ernberg, Malin

    2008-10-01

    This study aimed to investigate whether granisetron reduces masseter muscle pain and allodynia induced by hypertonic saline. Fifteen healthy women and 15 age-matched healthy men participated in this randomized, placebo-controlled, double-blinded study. They first received bilateral injections of hypertonic saline into the masseter muscles (internal control). The evoked pain intensity and the pressure-pain threshold (PPT) were recorded during 30 minutes. Granisetron was then injected on one side and placebo (normal saline) on the contralateral side. Two minutes thereafter, the hypertonic saline injections were repeated. Pain and PPT were again recorded. The first injection of hypertonic saline induced pain of similar intensity, duration, and pain area on both sides, but with larger pain area in the women (P = .017). The PPT did not change significantly. The second injection of hypertonic saline induced considerably less pain (62.5%), of shorter duration (44.1%), and of smaller area (77.4%) on the side pretreated with granisetron (P = .005). The PPT was increased on the granisetron side in the men (P = .002). The results of this study show that local injection of a single dose of granisetron attenuates masseter muscle pain induced by hypertonic saline. This article presents the changes of hypertonic saline-induced masseter muscle pain characteristics by infusion of granisetron. It appears that the pain-inducing effect in this experimental pain model is partly due to activation of 5-HT3-receptors. Hence, the results indicate that granisetron might offer a new treatment approach for localized myofascial pain.

  10. Hypertonic saline (HTS versus standard (isotonic fluid therapy for traumatic brain injuries: a systematic review

    Directory of Open Access Journals (Sweden)

    Andrit Lourens

    2014-12-01

    Full Text Available Traumatic Brain Injury (TBI is one of the foremost causes of mortality secondary to trauma. Poorer outcomes are associated with secondary insults, after the initial brain injury occurred. The management goal of TBI is to prevent or minimise the effects of secondary brain injuries. The primary objective of this systematic review/meta-analysis was to assess the effects of Hypertonic Saline (HTS compared to Standard Fluid Therapy (SFT in the treatment and resuscitation of TBI patients. We searched CENTRAL, MEDLINE (from 1966, EBSCOhost, Scopus, ScienceDirect, Proquest Medical Library and EMBASE (from 1980 in May 2010 and updated searches in February 2011. Data were assessed and extracted by two independent authors. Risk ratios (RR with a 95% confidence interval (CI were used as the effect measure. The review included three RCTs (1184 participants of which two were of high to moderate quality (1005 participants. HTS was not found to be associated with a reduction in mortality (3 RCTs, 1184 participants, RR 0.91, 95%CI 0.76 to 1.09 and morbidity in TBI patients. No significant improvement in haemodynamical stability was found whereas insufficient data were available to indicate a reduction in the intracranial pressure (ICP. In the HTS group, cerebral perfusion pressure (CPP (MD 3.83 mmHg, 95%CI 1.08 to 6.57 and serum sodium level (MD 8 mEq/L, 95%CI 7.47 to 8.53 were higher. Existing studies show no indication that HTS, in comparison to SFT, reduces mortality or morbidity after the occurrence of TBI. Against this backdrop, some uncertainties still exist in terms of the use of different concentrations and volumes of HTS, the timing of administration as well as the benefit in specific injury profiles. As a result, formulating conclusive recommendations is complex.

  11. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats.

    Science.gov (United States)

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M

    2017-05-01

    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. EXPERIENCE OF SEA WATER HYPERTONIC SOLUTION APPLICATION FOR TOPICAL TREATMENT OF CHRONIC TONSILLITIS

    Directory of Open Access Journals (Sweden)

    E.P. Karpova

    2006-01-01

    Full Text Available The study examined the effectiveness of sea water hypertonic solution (Aqua Maris troath and oral cavity spray, Jadran, Croatia medication to treat chronic tonsillitis of the compensated form on 84 children aged between 5 and 15. All children had their tonsil lacunae rinsed in a day № 6–8. 64 children had them rinsed with the sea water hypertonic solution (main group, while 20 children had them rinsed with the nitrofural solution (comparison group. Treatment effectiveness was determined according to dynamics of main symptoms (odynophagia, dysphagia, hyperemia and mucosa infiltration of pillars of the fauces, as well as the degree of tonsil bacterial number before and after treatment (by the 14th day. The dynamic analysis of subjective data during treatment revealed more significant and positive changes among the children of the main group if compared with patients from the comparison group. After treatment the researchers noticed reduction of tonsil bacterial number among 90,62% of children from the main group, whereas this rate made up 60% in the comparison group. Acquired data allowed recommending this medication for the multimodality therapy of infant adenoid disease.Key words: chronic tonsillitis, treatment, children, sea water hypertonic solution.

  13. Approximate Mathematical Modeling of Osmotic Dehydration of Cone-Shaped Fruits and Vegetables in Hypertonic Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Sirousazar

    2017-07-01

    Full Text Available Water loss kinetics in osmotic dehydration of cone-shaped fruits and vegetables was modeled on the basis of diffusion mechanism, using the Fick’s second law. The model was developed by taking into account the influences of the fruit geometrical characteristics, initial water content of fruit, water diffusion coefficient in fruit, and the water concentration in hypertonic solution. Based on the obtained model, it was shown that the water diffusion coefficient and the initial water concentration of fruit have direct effects on the dehydration rate and also inverse influence on the dehydration duration. The geometrical parameters of fruit and water concentration in hypertonic solution showed direct effect on the dehydration duration as well as inverse effect on the dehydration rate. The presented model seems to be useful tool to predict the dehydration kinetics of cone-shaped fruit during osmotic dehydration process and to optimize the process prior to perform the experiments.

  14. Approximate Mathematical Modeling of Osmotic Dehydration of Cone-Shaped Fruits and Vegetables in Hypertonic Solutions

    OpenAIRE

    Mohammad Sirousazar

    2017-01-01

    Water loss kinetics in osmotic dehydration of cone-shaped fruits and vegetables was modeled on the basis of diffusion mechanism, using the Fick’s second law. The model was developed by taking into account the influences of the fruit geometrical characteristics, initial water content of fruit, water diffusion coefficient in fruit, and the water concentration in hypertonic solution. Based on the obtained model, it was shown that the water diffusion coefficient and the initial water concentratio...

  15. Hypertonic Saline in Conjunction with High-Dose Furosemide Improves Dose-Response Curves in Worsening Refractory Congestive Heart Failure.

    Science.gov (United States)

    Paterna, Salvatore; Di Gaudio, Francesca; La Rocca, Vincenzo; Balistreri, Fabio; Greco, Massimiliano; Torres, Daniele; Lupo, Umberto; Rizzo, Giuseppina; di Pasquale, Pietro; Indelicato, Sergio; Cuttitta, Francesco; Butler, Javed; Parrinello, Gaspare

    2015-10-01

    Diuretic responsiveness in patients with chronic heart failure (CHF) is better assessed by urine production per unit diuretic dose than by the absolute urine output or diuretic dose. Diuretic resistance arises over time when the plateau rate of sodium and water excretion is reached prior to optimal fluid elimination and may be overcome when hypertonic saline solution (HSS) is added to high doses of furosemide. Forty-two consecutively hospitalized patients with refractory CHF were randomized in a 1:1:1 ratio to furosemide doses (125 mg, 250 mg, 500 mg) so that all patients received intravenous furosemide diluted in 150 ml of normal saline (0.9%) in the first step (0-24 h) and the same furosemide dose diluted in 150 ml of HSS (1.4%) in the next step (24-48 h) as to obtain 3 groups as follows: Fourteen patients receiving 125 mg (group 1), fourteen patients receiving 250 mg (group 2), and fourteen patients receiving 500 mg (group 3) of furosemide. Urine samples of all patients were collected at 30, 60, and 90 min, and 3, 4, 5, 6, 8, and 24 h after infusion. Diuresis, sodium excretion, osmolality, and furosemide concentration were evaluated for each urine sample. After randomization, 40 patients completed the study. Two patients, one in group 2 and one in group 3 dropped out. Patients in group 1 (125 mg furosemide) had a mean age of 77 ± 17 years, 43% were male, 6 (43%) had heart failure with a preserved ejection fraction (HFpEF), and 64% were in New York Heart Association (NYHA) class IV; the mean age of patients in group 2 (250 mg furosemide) was 80 ± 8.1 years, 15% were male, 5 (38%) had HFpEF, and 84% were in NYHA class IV; and the mean age of patients in group 3 (500 mg furosemide) was 73 ± 12 years, 54% were male, 6 (46%) had HFpEF, and 69% were in NYHA class IV. HSS added to furosemide increased total urine output, sodium excretion, urinary osmolality, and furosemide urine delivery in all patients and at all time points. The percentage increase was 18,14, and

  16. [Changes induced by hypertonic solutions in the transportation of calcium by the cardiac reticular sarcoplasma].

    Science.gov (United States)

    Sierra, M; Holguín, J A

    1979-01-01

    In the sarcoplasmic reticulum of the myocardium, celular organell which function is to regulate the cytoplasmic concentration of calcium in contraction and relaxation, we have studied the effect of hypertonic solutions of sucrose between 1 and 6.96 times the normal tonicity in order to observe the behavior of the internal linked or free calcium of this structure, as well as to prove the hypothesis that hypertonic solutions encourage the calcium exit of the sarcoplasmatic reticulum with the resulting signs of contractures. The following results were obtained: 1. The ATP hydrolisis and calcium transport rate are 14% and 90% respectively of the maximum speeds of 10(-5) M in calcium, while for concentrations of 10(-7) M or ess of the said cation, the transport rates and the ATPase do not reach 5% of the maximum values. 2. Between 1 and 2.54 times of the normal tonicity the calcium uptake remains between 400 and 500 nmoles of calcium/mg protein/min, the transported amount of calcium varies between 14 and 16 nmoles/mg protein and the rate of the ATP hydrolysis increases a 37% to 0.4 M in sucrose. 3. Between 0.4 and 1.2 M in sucrose of 2.54 to 6.96 times the isotonicity, the calcium transport rate velocity as well as the ATP hydrolisis are strongly inhibited. The vesicles volume minimizes and the amount of linked calcium remains within the control values, proving that the capacity of linking this cathion is independent from sarcoplasmic reticulum volume. These results show that the sarcoplasmic reticulum is involved in the contractures induced by hypertonic solutions in intact cells, since the osmolarity increase produces changes of volume which results in a decrease of the calcium transportation velocity or in an increase of the exit of said cathion.

  17. Production of consistent pain by intermittent infusion of sterile 5% hypertonic saline, followed by decrease of pain with cryotherapy.

    Science.gov (United States)

    Long, Blaine C; Knight, Kenneth L; Hopkins, Ty; Parcell, Allen C; Feland, J Brent

    2012-08-01

    It is suggested that postinjury pain is difficult to examine; thus, investigators have developed experimental pain models. To minimize pain, cryotherapy (cryo) is applied, but reports on its effectiveness are limited. To investigate a pain model for the anterior knee and examine cryo in reducing the pain. Controlled laboratory study. Therapeutic modality laboratory. 30 physically active healthy male subjects who were free from any lower extremity orthopedic, neurological, cardiovascular, or endocrine pathologies. Perceived pain was measured every minute. Surface temperature was also assessed in the center of the patella and the popliteal fossa. There was a significant interaction between group and time (F68,864 = 3.0, P = .0001). At the first minute, there was no difference in pain between the 3 groups (saline/cryo = 4.80 ± 4.87 mm, saline/sham = 2.80 ± 3.55 mm, no saline/cryo = 4.00 ± 3.33 mm). During the first 5 min, pain increased from 4.80 ± 4.87 to 45.90 ± 21.17 mm in the saline/cryo group and from 2.80 ± 3.55 to 31.10 ± 20.25 mm in the saline/sham group. Pain did not change within the no-saline/cryo group, 4.00 ± 3.33 to 1.70 ± 1.70 mm. Pain for the saline/sham group remained constant for 17 min. Cryo decreased pain for 16 min in the saline/cryo group. There was no difference in preapplication surface temperature between or within each group. No change in temperature occurred within the saline/sham. Cooling and rewarming were similar in both cryo groups. Ambient temperature fluctuated less than 1°C during data collection. Intermittent infusion of sterile 5% hypertonic saline may be a useful experimental pain model in establishing a constant level of pain in a controlled laboratory setting. Cryotherapy decreased the induced anterior knee pain for 16 min.

  18. Inalação de solução salina hipertônica como coadjuvante da fisioterapia respiratória para reversão de atelectasia no pós-operatório de cirurgia cardíaca pediátrica Inhalation of hypertonic saline solution as coadjuvant in respiratory physiotherapy to reverse atelectasis in the postoperative of pediatric heart surgery

    Directory of Open Access Journals (Sweden)

    Naila Luisa Saiki da Silva

    2006-12-01

    Full Text Available Criança de 11 meses, sexo feminino, submetida à operação de fechamento de comunicação interventricular, comunicação interatrial e ligadura de canal arterial. Evoluiu no pós-operatório com atelectasia persistente em base pulmonar à direita, não respondendo às manobras fisioterapêuticas convencionais, efetuadas seis vezes ao dia. Após associação, como coadjuvante, da inalação de solução salina hipertônica com NaCl a 6%, imediatamente antes e após o atendimento fisioterápico, observou-se crises de tosse produtiva, com maior indução do escarro e resolução completa da atelectasia, com três dias de tratamento.The case of an eleven-month-old female child is presented diagnosed as having congenital heart disease with pulmonary hyperflow, who was submitted to a surgery to close an interventricular communication, interatrial communication and arterial canal ligature. The infant evolved with persistent atelectasis at the right lung base in the postoperative period which did not respond to conventional physiotherapeutic measures. Inhalation of hypertonic saline solution with 6% NaCl was associated as a coadjuvant therapy, giving a total cure of the atelectasis after three days of treatment.

  19. Intratesticular hypertonic sodium chloride solution treatment as a method of chemical castration in cattle.

    Science.gov (United States)

    Neto, Olmiro Andrade; Gasperin, Bernardo G; Rovani, Monique T; Ilha, Gustavo F; Nóbrega, Janduí E; Mondadori, Rafael G; Gonçalves, Paulo B D; Antoniazzi, Alfredo Q

    2014-10-15

    Castration of male calves is necessary for trading to facilitate handling and prevent reproduction. However, some methods of castration are traumatic and lead to economic losses because of infection and myiasis. The objective of the present study was to evaluate the efficiency of intratesticular injection (ITI) of hypertonic sodium chloride (NaCl; 20%) solution in male calf castration during the first weeks of life. Forty male calves were allocated to one of the following experimental groups: negative control-surgically castrated immediately after birth; positive control -intact males; G1-ITI from 1- to 5-day old; G2-ITI from 15- to 20-day old; and G3-ITI from 25- to 30-day old. Intratesticular injection induced coagulative necrosis of Leydig cells and seminiferous tubules leading to extensive fibrosis. Testosterone secretion and testicular development were severely impaired in 12-month-old animals from G1 and G2 groups (P<0.05), in which no testicular structure and sperm cells were observed during breeding soundness evaluation. Rectal and scrotal temperatures were not affected by different procedures. In conclusion, ITI of hypertonic NaCl solution induces sterility and completely suppresses testosterone secretion when performed during the first 20 days of life. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Hypertonic saline enhances host response to bacterial challenge by augmenting receptor-independent neutrophil intracellular superoxide formation.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    OBJECTIVE: This study sought to determine whether hypertonic saline (HTS) infusion modulates the host response to bacterial challenge. METHODS: Sepsis was induced in 30 Balb-C mice by intraperitoneal injection of Escherichia coli (5 x 107 organisms per animal). In 10 mice, resuscitation was performed at 0 and 24 hours with a 4 mL\\/kg bolus of HTS (7.5% NaCl), 10 animals received 4 mL\\/kg of normal saline (0.9% NaCl), and the remaining animals received 30 mL\\/kg of normal saline. Samples of blood, spleen, and lung were cultured at 8 and 36 hours. Polymorphonucleocytes were incubated in isotonic or hypertonic medium before culture with E. coli. Phagocytosis was assessed by flow cytometry, whereas intracellular bacterial killing was measured after inhibition of phagocytosis with cytochalasin B. Intracellular formation of free radicals was assessed by the molecular probe CM-H(2)DCFDA. Mitogen-activated protein (MAP) kinase p38 and ERK-1 phosphorylation, and nuclear factor kappa B (NFkappaB) activation were determined. Data are represented as means (SEM), and an analysis of variance test was performed to gauge statistical significance. RESULTS: Significantly reduced bacterial culture was observed in the animals resuscitated with HTS when compared with their NS counterparts, in blood (51.8 +\\/- 4.3 vs. 82.0 +\\/- 3.3 and 78.4 +\\/- 4.8, P = 0.005), lung (40.0 +\\/- 4.1 vs. 93.2 +\\/- 2.1 and 80.9 +\\/- 4.7, P = 0.002), and spleen (56.4 +\\/- 3.8 vs. 85.4 +\\/- 4.2 and 90.1 +\\/- 5.9, P = 0.05). Intracellular killing of bacteria increased markedly (P = 0.026) and superoxide generation was enhanced upon exposure to HTS (775.78 +\\/- 23.6 vs. 696.57 +\\/- 42.2, P = 0.017) despite inhibition of MAP kinase and NFkappaB activation. CONCLUSIONS: HTS significantly enhances intracellular killing of bacteria while attenuating receptor-mediated activation of proinflammatory cascades.

  1. Body water handling in response to hypertonic-saline induced diuresis in fasting northern elephant seal pups (Mirounga angustirostris)

    Science.gov (United States)

    Ortiz, Rudy M.; Wade, Charles E.; Ortiz, C. Leo

    2003-01-01

    During natural fasting conditions in postweaned northern elephant seal (NES) (Mirounga angustirostris) pups, urinary water loss is minimized and percent total body water (TBW) is maintained constant. However, following infusion of hypertonic saline, glomerular filtration rate (GFR) and urine output increased in fasting pups. Therefore, we quantified the magnitude of the hypernatremia-induced diuresis relative to the animal's total body water (TBW) pool and the percentage of filtered water reabsorbed. Following a 24 h control period, naturally fasting NES pups (n=7) were infused (4 ml min(-1)) with hypertonic saline (16.7%) at a dose of 3 mmol NaCl kg(-1) body mass. Total body water was estimated prior to infusion by tritium dilution, GFR was estimated by standard creatinine clearance, and urine output (V) was measured for 24 h during the control and post infusion periods. Percentage of filtered water reabsorbed was calculated as (1-(V/GFR))x100. Twenty-four hours following the infusion, GFR (control: 69+/-12 ml min(-1) and post-infusion: 118+/-19 ml min(-1); mean+/-S.E.) increased 77+/-28% above control and the percentage of filtered water reabsorbed was decreased 0.4+/-0.1%. The increase in urine output (control: 218+/-47 ml d(-1) and post-infusion: 883+/-92 ml d(-1)) accounted for 1.7+/-0.2% of the pups' TBW. The hypernatremia-induced diuresis was accompanied by the loss of body water indicating the lack of water retention. Although the 77% increase in GFR was only associated with a 0.4% decrease in the percentage of filtered water reabsorbed, this decrease was significant enough to result in a 4-fold increase in urine output. Despite the observed diuresis, fasting NES pups appear to possess an efficient water recycling mechanism requiring only a small percentage of body water to excrete an excess salt load. This water recycling mechanism may allow pups to avoid negative perturbations in body water as they initiate feeding in a marine environment following the

  2. Correction of Hemodynamics with Hypertonic Sodium Chloride Solution in Critical Conditions

    Directory of Open Access Journals (Sweden)

    P. S. Zhbannikov

    2007-01-01

    Full Text Available Objective: to assess the capabilities of small-volume hypertonic infusion in the context of early goal-directed therapy for critical conditions in surgical patients.Subjects and methods. Twenty-nine patients (SAPS II 47.5±6.81 scores operated on for generalized peritonitis (n=24 or severe concomitant injury with damages to chest and/or abdominal organs (n=5 who had the clinical and laboratory signs of a systemic inflammatory reaction were intravenously injected 4 ml/kg of 7.5% of hypertonic sodium chloride solution (HS and colloidal solution, followed by infusion and, if indicated, inotropic maintenance of hemodynamics for 6 hours in order to achieve the goal vales of mean blood pressure (BP, central venous pressure (CVP, central venous blood oxygen saturation (ScvO2, and diuresis. Plasma concentrations of sodium, chlorine, and lactate, acid-base balance, and osmotic blood pressure were monitored.Results. The patients were found to have infusion therapy-refractory critical arterial hypotension, low ScvO2, and oliguria before small-volume circulation maintenance. In all the patients, HS infusion originally caused a rapid rise in BP up to the goal value, with its further colloid infusion maintenance requiring additional dopamine infusion in 12 patients and red blood cell transfusion in 3. This could stabilize over 6 hours BP at the required level in 25 patients, in 9 of whom CVP only approximated the goal value. All the patients were found to have a significant increase in ScvO2 up to an average of 68% in response to HP infusion after 30—60 minutes; in 14 out of them ScvO2 exceeded 70%. By hour 6, ScvO2 stabilized at its goal level in 23 (79% examinees. Administration of HS caused a significantly increased diuresis. In patients with recovered renal function, the observed hypernatremia, hyperchloremia with hyperchloremic acidosis were transient.Conclusion. The results of the study show it possible to include small-volume hypertonic infusion at

  3. Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model.

    Science.gov (United States)

    Pazos, Marta; Yang, Hongli; Gardiner, Stuart K; Cepurna, William O; Johnson, Elaine C; Morrison, John C; Burgoyne, Claude F

    2016-04-01

    To characterize early optic nerve head (ONH) structural change in rat experimental glaucoma (EG). Unilateral intraocular pressure (IOP) elevation was induced in Brown Norway rats by hypertonic saline injection into the episcleral veins and animals were sacrificed 4 weeks later by perfusion fixation. Optic nerve cross-sections were graded from 1 (normal) to 5 (extensive injury) by 5 masked observers. ONHs with peripapillary retina and sclera were embedded, serial sectioned, 3-D reconstructed, delineated, and quantified. Overall and animal-specific EG versus Control eye ONH parameter differences were assessed globally and regionally by linear mixed effect models with significance criteria adjusted for multiple comparisons. Expansions of the optic nerve and surrounding anterior scleral canal opening achieved statistical significance overall (p < 0.0022), and in 7 of 8 EG eyes (p < 0.005). In at least 5 EG eyes, significant expansions (p < 0.005) in Bruch's membrane opening (BMO) (range 3-10%), the anterior and posterior scleral canal openings (8-21% and 5-21%, respectively), and the optic nerve at the anterior and posterior scleral canal openings (11-30% and 8-41%, respectively) were detected. Optic nerve expansion was greatest within the superior and inferior quadrants. Optic nerve expansion at the posterior scleral canal opening was significantly correlated to optic nerve damage (R = 0.768, p = 0.042). In the rat ONH, the optic nerve and surrounding BMO and neurovascular scleral canal expand early in their response to chronic experimental IOP elevation. These findings provide phenotypic landmarks and imaging targets for detecting the development of experimental glaucomatous optic neuropathy in the rat eye. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline.

    LENUS (Irish Health Repository)

    Bergsson, Gudmundur

    2009-07-01

    There is an abundance of antimicrobial peptides in cystic fibrosis (CF) lungs. Despite this, individuals with CF are susceptible to microbial colonization and infection. In this study, we investigated the antimicrobial response within the CF lung, focusing on the human cathelicidin LL-37. We demonstrate the presence of the LL-37 precursor, human cathelicidin precursor protein designated 18-kDa cationic antimicrobial protein, in the CF lung along with evidence that it is processed to active LL-37 by proteinase-3. We demonstrate that despite supranormal levels of LL-37, the lung fluid from CF patients exhibits no demonstrable antimicrobial activity. Furthermore Pseudomonas killing by physiological concentrations of exogenous LL-37 is inhibited by CF bronchoalveolar lavage (BAL) fluid due to proteolytic degradation of LL-37 by neutrophil elastase and cathepsin D. The endogenous LL-37 in CF BAL fluid is protected from this proteolysis by interactions with glycosaminoglycans, but while this protects LL-37 from proteolysis it results in inactivation of LL-37 antimicrobial activity. By digesting glycosaminoglycans in CF BAL fluid, endogenous LL-37 is liberated and the antimicrobial properties of CF BAL fluid restored. High sodium concentrations also liberate LL-37 in CF BAL fluid in vitro. This is also seen in vivo in CF sputum where LL-37 is complexed to glycosaminoglycans but is liberated following nebulized hypertonic saline resulting in increased antimicrobial effect. These data suggest glycosaminoglycan-LL-37 complexes to be potential therapeutic targets. Factors that disrupt glycosaminoglycan-LL-37 aggregates promote the antimicrobial effects of LL-37 with the caveat that concomitant administration of antiproteases may be needed to protect the now liberated LL-37 from proteolytic cleavage.

  5. Minocycline Prevents Muscular Pain Hypersensitivity and Cutaneous Allodynia Produced by Repeated Intramuscular Injections of Hypertonic Saline in Healthy Human Participants.

    Science.gov (United States)

    Samour, Mohamad Samir; Nagi, Saad Saulat; Shortland, Peter John; Mahns, David Anthony

    2017-08-01

    Minocycline, a glial suppressor, prevents behavioral hypersensitivities in animal models of peripheral nerve injury. However, clinical trials of minocycline in human studies have produced mixed results. This study addressed 2 questions: can repeated injections of hypertonic saline (HS) in humans induce persistent hypersensitivity? Can pretreatment with minocycline, a tetracycline antibiotic with microglial inhibitory effects, prevent the onset of hypersensitivity? Twenty-seven healthy participants took part in this double-blind, placebo-controlled study, consisting of 6 test sessions across 2 weeks. At the beginning of every session, pressure-pain thresholds of the anterior muscle compartment of both legs were measured to determine the region distribution and intensity of muscle soreness. To measure changes in thermal sensitivity in the skin overlying the anterior muscle compartment of both legs, quantitative sensory testing was used to measure the cutaneous thermal thresholds (cold sensation, cold pain, warm sensation, and heat pain) and a mild cooling stimulus was applied to assess the presence of cold allodynia. To induce ongoing hypersensitivity, repeated injections of HS were administered into the right tibialis anterior muscle at 48-hour intervals. In the final 2 sessions (days 9 and 14), only sensory assessments were done to plot the recovery after cessation of HS administrations and drug washout. By day 9, nontreated participants experienced a significant bilateral increase in muscle soreness (P minocycline-treated participants experienced a bilateral 70% alleviation in muscle soreness (P minocycline-treated participants showed cold allodynia. This study showed that repeated injections of HS can induce a hypersensitivity that outlasts the acute response, and the development of this hypersensitivity can be reliably attenuated with minocycline pretreatment. Four repeated injections of HS at 48-hour intervals induce a state of persistent hypersensitivity in

  6. A comparative study on the efficacy of 10% hypertonic saline and equal volume of 20% mannitol in the treatment of experimentally induced cerebral edema in adult rats

    Directory of Open Access Journals (Sweden)

    Fang Ming

    2010-12-01

    Full Text Available Abstract Background Hypertonic saline and mannitol are commonly used in the treatment of cerebral edema and elevated intracranial pressure (ICP at present. In this connection, 10% hypertonic saline (HS alleviates cerebral edema more effectively than the equal volume of 20% mannitol. However, the exact underlying mechanism for this remains obscure. This study aimed to explore the possible mechanism whereby 10% hypertonic saline can ameliorate cerebral edema more effectively than mannitol. Results Adult male Sprague-Dawley (SD rats were subjected to permanent right-sided middle cerebral artery occlusion (MCAO and treated with a continuous intravenous infusion of 10% HS, 20% mannitol or D-[1-3H(N]-mannitol. Brain water content (BWC as analyzed by wet-to-dry ratios in the ischemic hemisphere of SD rats decreased more significantly after 10% HS treatment compared with 20% mannitol. Concentration of serum Na+ and plasma crystal osmotic pressure of the 10% HS group at 2, 6, 12 and 18 h following permanent MCAO increased significantly when compared with 20% mannitol treated group. Moreover, there was negative correlation between the BWC of the ipsilateral ischemic hemisphere and concentration of serum Na+, plasma crystal osmotic pressure and difference value of concentration of serum Na+ and concentration of brain Na+ in ipsilateral ischemic hemisphere in the 10% HS group at the various time points after MCAO. A remarkable finding was the progressive accumulation of mannitol in the ischemic brain tissue. Conclusions We conclude that 10% HS is more effective in alleviating cerebral edema than the equal volume of 20% mannitol. This is because 10% HS contributes to establish a higher osmotic gradient across BBB and, furthermore, the progressive accumulation of mannitol in the ischemic brain tissue counteracts its therapeutic efficacy on cerebral edema.

  7. Infusion of hypertonic saline (7.5%) does not change neutrophil oxidative burst or expression of endothelial adhesion molecules after abdominal hysterectomy

    DEFF Research Database (Denmark)

    Kølsen-Petersen, Jens Aage; Rasmussen, Torsten Bøgh; Krog, Jan

    2006-01-01

    of leukocyte and differential count, neutrophil membrane expression of endothelial adhesion molecules by flow cytometry, and O2- -generation by superoxide dismutase-inhibitable reduction of cytochrome C. RESULTS: Surgery induced well-known changes in the number and distribution of white blood cells, reduced...... the expression of adhesion molecules, and halved the superoxide production unrelated to the tonicity or volume of the infused fluids. CONCLUSION: Infusion of a clinically relevant dose of hypertonic saline has no detectable effect on the membrane expression of endothelial adhesion molecules or O2- -generation...

  8. Fourteen-Day Subacute Intravenous Toxicity Study of Hypertonic Saline/ Dextran 70 (Trade name) and its Constituents in New Zealand White Rabbits

    Science.gov (United States)

    1989-11-01

    of Hypertonic Saline/Dextran 70C and its Constituents in New Zealand White Rabbits," Toxicology Series 248, was audited on 20 October 1989. CAROLYNM...at tA "e a .6 L C C o L a L Lm .. .. a. a4 1 . . ao 3.&ow2 aCCa .0 00 c -C a- 4;. *; a 0O .. t x.T 2Cu u . u uu0 0 Uc L 01 2.:4A.1 4xa&C -I - -N .CA -e

  9. Avaliação da hiperresponsividade brônquica à solução salina hipertônica em crianças e adolescentes Bronchial hyperresponsiveness to hypertonic saline challenge in children and adolescents

    Directory of Open Access Journals (Sweden)

    Paulo Kussek

    2006-06-01

    Full Text Available OBJETIVO: Avaliar a hiperresponsividade brônquica à solução salina hipertônica a 4,5% como método alternativo a outros agentes broncoconstritores e sua relação com a sensibilização alérgica do paciente. MÉTODOS: Estudo transversal, experimental, com 85 indivíduos assim distribuídos: 45 no grupo de asmáticos e 17 no grupo controle não asmáticos e não alérgicos, que completaram o teste. Para nebulizar a solução salina hipertônica foi utilizado um nebulizador ultra-sônico de grande volume, sucessivamente durante 0,5, 1, 2, 4 e 8 minutos até haver queda > 15% em relação ao volume expiratório forçado no primeiro segundo basal. A dosagem de imunoglobulina E específica ao Dermatophagoides pteronyssinus por ImmunoCap foi considerada positiva quando > 0,35 kU/L. RESULTADOS: No grupo de asmáticos, 36 apresentaram queda média do volume expiratório forçado no primeiro segundo de 27,4% após nebulização de solução salina hipertônica. Nenhum do grupo controle (imunoglobulina E OBJECTIVE: To assess airway hyperresponsiveness to 4.5% hypertonic saline solution in comparison to that obtained through challenge with other bronchoconstriction agents and in relation to patient allergic sensitization. METHODS: A cross-sectional, experimental study was conducted, initially involving 85 subjects. After exclusions, the final sample consisted of 62 patients, divided into two groups: a study group of those with asthma (n = 45 and a control group of those with no asthma or allergies (n = 17. Hypertonic saline was nebulized using an ultrasonic nebulizer and administered successively for 0.5, 1, 2, 4 and 8 minutes until a drop in forced expiratory volume in one second of = 15% was achieved in relation to the baseline value. The level of specific immunoglobulin E to Dermatophagoides pteronyssinus level was determined by ImmunoCAP assay and was considered positive when > 0.35 kU/L. RESULTS: In the 36 asthma group subjects presenting a

  10. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Davis, C.W.; Boucher, R.C.

    1994-01-01

    exposure (10 min) to 430 mosM luminal solution elicited no regulation of any parameter. Optical measurements revealed a reduction in the thickness of preparations only in response to luminal hypertonic solutions. We conclude that (a) airway epithelial cells exhibit asymmetric water transport properties......- secretion; and (d) cell volume loss increases the resistance of the paracellular path. We speculate that these properties configure human nasal epithelium to behave as an osmotic sensor, transducing information about luminal solutions to the airway wall....

  11. [Effect of hypertonic-hyperoncotic solution infusion on tissue perfusion during surgical treatment of the abdominal aorta].

    Science.gov (United States)

    Soskić, Ljiljana; Davidović, Lazar; Milicić, Biljana; Kocica, Mladen; Kovacević, Natasa; Simić, Tijana

    2007-10-01

    Decreasing of arterial flow below the critical level leads to capillary endothelium edema and to further worsening of tissue perfusion. Hypertonic solution infusion provides mild and short plasma osmolality increasing, while colloidal solutions intensify that effect. The aim of this study was to investigate the effect of hypertonic-hyperoncotic solution (HH) on the organs perfusion during reconstructive surgical procedure on the abdominal aorta (AA). The study included 40 patients submitted to AA reconstruction due to aneurysm or Leriche's syndrome. A clamp was put transversally to the aorta, under the outlets of the renal arterias. According to the solution received when a clamp was on the aorta, the patients were divided into two groups containing 20 patients each: the tested group (A) which received 4 ml/kg of the solution (7.2% NaCl/10% dextran), and the control group (B) which received 0.9% NaCl. The study excluded the patients with the preoperative creatinine level more than 139 micromol/l, and ejection heart fraction less than 40%. The mixed venous blood oxygen saturation increased from 73.3+/-7.33 to 74.95+/-6.19% in the group A, while it decreased from 65.35+/-10.39 to 62.65+/-10.42% in the group B (p = 0.001). The quantity of the provided oxygen in the group A increased significantly from 684.44+/-244.34 to 1362.45+/-2351.01 ml/min, while it decreased from 668.2+/-382.12 to 651.7+/-313.98 ml/min in the group B (p = 0.016). Alveolo-arterial difference in oxygen decreased from 23.12+/-14.74 to 21.1+/-10 mmHg in the group A, while it increased from 23.79+/-15.22 to 26.33+/-13.78 mmHg in the group B (p = 0.05). Satisfactory perfusion of organs during the AA surgery is obtained by using both HH and an isotonic solution. Due to maintaining the optimal values of the minute heart volume, saturation of vein blood blended with oxygen, and al-veolo-arterial difference in oxygen, it is recommended to use HH solution for reanimation of patients in declamping shock.

  12. Osmolality and respiratory regulation in humans: respiratory compensation for hyperchloremic metabolic acidosis is absent after infusion of hypertonic saline in healthy volunteers.

    Science.gov (United States)

    Moen, Vibeke; Brudin, Lars; Rundgren, Mats; Irestedt, Lars

    2014-10-01

    Several animal studies show that changes in plasma osmolality may influence ventilation. Respiratory depression caused by increased plasma osmolality is interpreted as inhibition of water-dependent thermoregulation because conservation of body fluid predominates at the cost of increased core temperature. Respiratory alkalosis, on the other hand, is associated with a decrease in plasma osmolality and strong ion difference (SID) during human pregnancy. We investigated the hypothesis that osmolality would influence ventilation, so that increased osmolality will decrease ventilation and decreased osmolality will stimulate ventilation in both men and women. Our study participants were healthy volunteers of both sexes (ASA physical status I). Ten men (mean 28 years; range 20-40) and 9 women (mean 33 years; range 22-43) were included. All women participated in both the follicular and luteal phases of the menstrual cycle. Hyperosmolality was induced by IV infusion of hypertonic saline 3%, and hypoosmolality by drinking tap water. Arterial blood samples were collected for analysis of electrolytes, osmolality, and blood gases. Sensitivity to CO2 was determined by rebreathing tests performed before and after the fluid-loading procedures. Infusion of hypertonic saline caused hyperchloremic metabolic acidosis with decreased SID in all subjects. Analysis of pooled data showed absence of respiratory compensation. Baseline arterial PCO2 (PaCO2) mean (SD) 37.8 (2.9) mm Hg remained unaltered, with lowest PaCO2 37.8 (2.9) mm Hg after 100 minutes, P = 0.70, causing a decrease in pH from mean (SD) 7.42 (0.02) to 7.38 (0.02), P acidosis was also observed during water loading. Pooled results show that PaCO2 decreased from 38.2 (3.3) mm Hg at baseline to 35.7 (2.8) mm Hg after 80 minutes of drinking water, P = 0.002, and pH remained unaltered: pH 7.43 (0.02) at baseline to pH 7.42 (0.02), P = 0.14, mean difference (confidence interval) = pH -0.007 (-0.017 to 0.003). Our results indicate

  13. Effect of Intravenous Small-Volume Hypertonic Sodium Bicarbonate, Sodium Chloride, and Glucose Solutions in Decreasing Plasma Potassium Concentration in Hyperkalemic Neonatal Calves with Diarrhea.

    Science.gov (United States)

    Trefz, F M; Constable, P D; Lorenz, I

    2017-05-01

    Hyperkalemia is a frequently observed electrolyte imbalance in dehydrated neonatal diarrheic calves that can result in skeletal muscle weakness and life-threatening cardiac conduction abnormalities and arrhythmias. Intravenous administration of a small-volume hypertonic NaHCO 3 solution is clinically more effective in decreasing the plasma potassium concentration (cK) in hyperkalemic diarrheic calves than hypertonic NaCl or glucose solutions. Twenty-two neonatal diarrheic calves with cK >5.8 mmol/L. Prospective randomized clinical trial. Calves randomly received either 8.4% NaHCO 3 (6.4 mL/kg BW; n = 7), 7.5% NaCl (5 mL/kg BW; n = 8), or 46.2% glucose (5 mL/kg BW; n = 7) IV over 5 minutes and were subsequently allowed to suckle 2 L of an electrolyte solution. Infusions with NaHCO 3 and NaCl provided an identical sodium load of 6.4 mmol/kg BW. Hypertonic NaHCO 3 infusions produced an immediate and sustained decrease in plasma cK. Hypertonic glucose infusions resulted in marked hyperglycemia and hyperinsulinemia, but cK remained unchanged for 20 minutes. Between 30 and 120 minutes after initiation of treatment, the most marked decrements in cK from baseline occurred in group NaHCO 3 , which were significantly (P < .05) larger during this period of time than in calves in group NaCl, but not group glucose. After 120 minutes, the mean decrease in cK from baseline was -26 ± 10%, -9 ± 8%, and -22 ± 6% in groups NaHCO 3 , NaCl, and glucose, respectively. Small-volume hypertonic NaHCO 3 infusions appear to have clinical advantages for the rapid resuscitation of hyperkalemic diarrheic calves, compared to hypertonic NaCl or glucose solutions. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients

    Directory of Open Access Journals (Sweden)

    Morrison Laurie J

    2010-01-01

    Full Text Available Abstract Background Traumatic brain injury (TBI initiates interrelated inflammatory and coagulation cascades characterized by wide-spread cellular activation, induction of leukocyte and endothelial cell adhesion molecules and release of soluble pro/antiinflammatory cytokines and thrombotic mediators. Resuscitative care is focused on optimizing cerebral perfusion and reducing secondary injury processes. Hypertonic saline is an effective osmotherapeutic agent for the treatment of intracranial hypertension and has immunomodulatory properties that may confer neuroprotection. This study examined the impact of hypertonic fluids on inflammatory/coagulation cascades in isolated head injury. Methods Using a prospective, randomized controlled trial we investigated the impact of prehospital resuscitation of severe TBI (GCS vs 0.9% normal saline (NS, on selected cellular and soluble inflammatory/coagulation markers. Serial blood samples were drawn from 65 patients (30 HSD, 35 NS at the time of hospital admission and at 12, 24, and 48-h post-resuscitation. Flow cytometry was used to analyze leukocyte cell-surface adhesion (CD62L, CD11b and degranulation (CD63, CD66b molecules. Circulating concentrations of soluble (sL- and sE-selectins (sL-, sE-selectins, vascular and intercellular adhesion molecules (sVCAM-1, sICAM-1, pro/antiinflammatory cytokines [tumor necrosis factor (TNF-α and interleukin (IL-10], tissue factor (sTF, thrombomodulin (sTM and D-dimers (D-D were assessed by enzyme immunoassay. Twenty-five healthy subjects were studied as a control group. Results TBI provoked marked alterations in a majority of the inflammatory/coagulation markers assessed in all patients. Relative to control, NS patients showed up to a 2-fold higher surface expression of CD62L, CD11b and CD66b on polymorphonuclear neutrophils (PMNs and monocytes that persisted for 48-h. HSD blunted the expression of these cell-surface activation/adhesion molecules at all time-points to

  15. Investigating effects of hypertonic saline solutions on lipid monolayers at the air-water interface

    KAUST Repository

    Nava Ocampo, Maria F.

    2017-01-01

    More than 70,000 people worldwide suffer from cystic fibrosis, a genetic disease characterized by chronic accumulation of mucus in patients’ lungs provoking bacterial infections, and leading to respiratory failure. An employed age-old treatment

  16. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Lee, Jae Young; Park, Hee Sun; Hur, Hurn; Choi, Byung Ihn; Shin, Kyung Sook

    2004-01-01

    We wished to compare the in-vitro efficiency of wet radiofrequency (RF) ablation with the efficiency of dry RF ablation and RF ablation with preinjection of NaCl solutions using excised bovine liver. Radiofrequency was applied to excised bovine livers in a monopolar mode for 10 minutes using a 200 W generator and a perfused-cooled electrode with or without injection or slow infusion of NaCl solutions. After placing the perfused-cooled electrode in the explanted liver, 50 ablation zones were created with five different regimens: group A; standard dry RF ablation, group B; RF ablation with 11 mL of 5% NaCl solution preinjection, group C; RF ablation with infusion of 11 mL of 5% NaCl solution at a rate of 1 mL/min, group D; RFA with 6 mL of 36% NaCl solution preinjection, group E; RF ablation with infusion of 6 mL of 36% NaCl solution at a rate of 0.5 mL/min. In groups C and E, infusion of the NaCl solutions was started 1 min before RF ablation and then maintained during RF ablation (wet RF ablation). During RF ablation, we measured the tissue temperature at 15 mm from the electrode. The dimensions of the ablation zones and changes in impedance, current and liver temperature during RF ablation were then compared between the groups. With injection or infusion of NaCl solutions, the mean initial tissue impedance prior to RF ablation was significantly less in groups B, C, D, and E (43-75 Ω) than for group A (80 Ω) (ρ 3 in group A; 12.4 ± 3.8 cm 3 in group B; 80.9 ± 9.9 cm 3 in group C; 45.3 ± 11.3 cm 3 in group D and 81.6 ± 8.6 cm 3 in group E. The tissue temperature measured at 15 mm from the electrode was higher in groups C, D and E than other groups (ρ < 0.05): 53 ± 12 .deg. C in group A, 42 ± 2 .deg. C in group B, 93 ± 8 .deg. C in group C; 79 ± 12 .deg. C in group D and 83 ± 8 .deg.C in group E. Wet RF ablation with 5% or 36% NaCl solutions shows better efficiency in creating a large ablation zone than does dry RF ablation or RF ablation with

  17. A comparative experimental study of the in-vitro efficiency of hypertonic saline-enhanced hepatic bipolar and monopolar radiofrequency ablation

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Han, Joon Koo; Kim, Se Hyung; Sohn, Kyu Li; Lee, Kyoung Ho; Ah, Su Kyung; Choi, Byung Ihn

    2003-01-01

    To compare the in-vitro efficiency of a hypertonic saline (HS)- enhanced bipolar radiofrequency (RF) system with monopolar RF applications by assessing the temperature profile and dimensions of RF-created coagulation necrosis in bovine liver. A total of 27 ablations were performed in explanted bovine livers. After placement of two 16-gauge open-perfused electrodes at an interelectrode distance of 3 cm, 5% HS was instilled into tissue at a rate of 1 mL/min through the electrode. Seventeen thermal ablation zones were created in the monopolar mode (groups A, B), and ten more were created using the two open-perfused electrodes in the bipolar mode (group C). RF was applied to each electrode for 5 mins (for a total of 10 mins, group A) or 10 mins (for a total of 20 mins, group B) at 50W in the sequential monopolar mode, or to both electrodes for 10 min in the bipolar mode (group C). During RF instillation, we measured tissue temperature at the midpoint between the two electrodes. The dimensions of the thermal ablation zones and changes in impedance and wattage during RFA were compared between the groups. With open-perfusion electrodes, the mean accumulated energy output value was lower in the bipolar mode (group C: 26675±3047 Watt's) than in the monopolar mode (group A: 28778±1300 Watt's) but the difference was not statistically significant (p > 0.05). In the bipolar mode, there were impedance rises of more than 700 Ω during RF energy application, but in the monopolar modes, impedance did not changed markedly. In the bipolar mode, however, the temperature at the mid-point between the two probes was higher (85 .deg. C) than in the monopolar modes (65 .deg. C, 80 .deg. C for group A, B, respectively) (p<0.05). In addition, in HS-enhanced bipolar RFA (group C), the shortest diameter at the midpoint between the two electrodes was greater than in either of the monopolar modes: 5.4±5.6 mm (group A); 28.8±8.2 mm (group B); 31.2±7.6 mm (group C) (p<0.05) Using an open

  18. [Clinical pilot study to evaluate the efficacy of a preservative-free hypertonic ophthalmic solution for patients with symptomatic corneal edema].

    Science.gov (United States)

    Rouland, J-F

    2015-11-01

    This exploratory clinical trial aims to assess the effect on visual acuity and central corneal thickness of an unpreserved hypertonic ophthalmic solution containing sodium chloride (5%) and sodium hyaluronate, in patients with chronic corneal edema caused by endothelial disease reducing their visual acuity. Twenty patients were enrolled and treated with the hypertonic solution (1 to 2 drops per eye, 4 times a day over 28 days). Progression of visual acuity (ETDRS score) and corneal thickness (ultrasonic pachymetry) was measured from baseline (without treatment) through the treatment period (Day 7 and Day 28). The analyses were performed on 18 patients (Full Analysis Set [FAS] population). The causes of corneal edema were Fuchs endothelial dystrophy in 10 cases and post-cataract surgery endothelial decompensation in 8 patients. The mean visual acuity values for the FAS population compared between baseline (Day-7) and one week of treatment (Day+7) show a significant 5-point VA improvement (Psolution containing sodium chloride and sodium hyaluronate significantly improved ETDRS visual acuity after one week of use. In this clinical trial, the solution also showed excellent tolerability results. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Modeling liver electrical conductivity during hypertonic injection.

    Science.gov (United States)

    Castellví, Quim; Sánchez-Velázquez, Patricia; Moll, Xavier; Berjano, Enrique; Andaluz, Anna; Burdío, Fernando; Bijnens, Bart; Ivorra, Antoni

    2018-01-01

    Metastases in the liver frequently grow as scattered tumor nodules that neither can be removed by surgical resection nor focally ablated. Previously, we have proposed a novel technique based on irreversible electroporation that may be able to simultaneously treat all nodules in the liver while sparing healthy tissue. The proposed technique requires increasing the electrical conductivity of healthy liver by injecting a hypersaline solution through the portal vein. Aiming to assess the capability of increasing the global conductivity of the liver by means of hypersaline fluids, here, it is presented a mathematical model that estimates the NaCl distribution within the liver and the resulting conductivity change. The model fuses well-established compartmental pharmacokinetic models of the organ with saline injection models used for resuscitation treatments, and it considers changes in sinusoidal blood viscosity because of the hypertonicity of the solution. Here, it is also described a pilot experimental study in pigs in which different volumes of NaCl 20% (from 100 to 200 mL) were injected through the portal vein at different flow rates (from 53 to 171 mL/minute). The in vivo conductivity results fit those obtained by the model, both quantitatively and qualitatively, being able to predict the maximum conductivity with a 14.6% average relative error. The maximum conductivity value was 0.44 second/m, which corresponds to increasing 4 times the mean basal conductivity (0.11 second/m). The results suggest that the presented model is well suited for predicting on liver conductivity changes during hypertonic saline injection. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Effect of equiosmolar solutions of hypertonic sodium lactate versus mannitol in craniectomy patients with moderate traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Muhammad R. Ahmad

    2014-03-01

    Full Text Available Background: Brain relaxation and prevention from cerebral edema are essential in craniectomy. Osmotherapy with 20% mannitol are generally used to withdraw fluid from the brain parenchyma, however may cause hemodynamic fluctuation, due to increase diuresis. On the other hand 0.5 M hypertonic sodium lactate (HSL appeared as an alternative of osmotherapy. This study  aimed to observe the effect of hypertonic sodium lactate (HSL on brain relaxation, blood glucose level and hemodynamic variables in craniectomy due to moderate brain injury.Methods: A randomized controlled study of 42 cases with moderate brain injury, aged 18 - 65 years, ASA 1 - 3, between September-November 2012, was carried out. The patients were divided into group M (n = 21 that received 2.5 mL/kg 20% mannitol and group HSL that received 2.5 mL/kg 0.5M HSL. Mean arterial pressures (MAP, central venous pressures (CVP and urine output were measured after induction, and at 15, 30, 45, 60 min after infusion. Brain relaxation was assessed at a four-point scale after opening the duramater. Blood glucose levels were measured before induction and at 60 min after the infusion. Appropriate statistical tests were used for comparison. Unpaired t-test was used to compare hemodynamic and blood glucose level, and chi-square was used to compare brain relaxation.Results: MAP at 60 minute was significantly higher in HSL group than M group (81.66 ± 7.85 vs 74.33 ± 6.18 mmHg; p = 0.002. There was no difference in brain relaxation (p = 0.988. A significant increase in blood glucose level was observed in group HSL (17.95 ± 11.46 mg/dL; p = 0.001.Conclusion: Half-molar HSL was as effective as 20% mannitol in producing brain relaxation, with better hemodynamic stability and gave significant increase in blood glucose level.Keywords: brain relaxation, hemodynamic, hypertonic sodium lactate, mannitol, traumatic brain injury

  1. Isotonic and hypertonic sodium loading in supine humans

    DEFF Research Database (Denmark)

    Andersen, L J; Jensen, T U; Bestle, M H

    1999-01-01

    extracellular volume were administered intravenously over 90 min either as isotonic saline or as hypertonic saline (850 mmol L(-1)). A third series without saline infusion served as time control. Experiments lasted 8 h. Water balance and sodium loads were maintained by replacing the excreted amounts every hour...

  2. Stability of biodegradable waterborne polyurethane films in buffered saline solutions.

    Science.gov (United States)

    Lin, Ying Yi; Hung, Kun-Che; Hsu, Shan-Hui

    2015-09-21

    The stability of polyurethane (PU) is of critical importance for applications such as in coating industry or as biomaterials. To eliminate the environmental concerns on the synthesis of PU which involves the use of organic solvents, the aqueous-based or waterborne PU (WBPU) has been developed. WBPU, however, may be unstable in an electrolyte-rich environment. In this study, the authors reported the stability of biodegradable WBPU in the buffered saline solutions evaluated by atomic force microscopy (AFM). Various biodegradable WBPU films were prepared by spin coating on coverslip glass, with a thickness of ∼300 nm. The surface AFM images of poly(ε-caprolactone) (PCL) diol-based WBPU revealed nanoglobular structure. The same feature was observed when 20% molar of the PCL diol soft segment was replaced by polyethylene butylenes adipate diol. After hydration in buffered saline solutions for 24 h, the surface domains generally increased in sizes and became irregular in shape. On the other hand, when the soft segment was replaced by 20% poly(l-lactide) diol, a meshlike surface structure was demonstrated by AFM. When the latter WBPU was hydrated, the surface domains appeared to be disconnected. Results from the attenuated total reflectance infrared spectroscopy and x-ray photoelectron spectroscopy indicated that the surface chemistry of WBPU films was altered after hydration. These changes were probably associated with the neutralization of carboxylate by ions in the saline solutions, resulting in the rearrangements of soft and hard segments and causing instability of the WBPU.

  3. Out-of-Hospital Hypertonic Resuscitation Following Severe Traumatic Brain Injury: A Randomized Controlled Trial

    Science.gov (United States)

    Bulger, Eileen M.; May, Susanne; Brasel, Karen J.; Schreiber, Martin; Kerby, Jeffrey D.; Tisherman, Samuel A.; Newgard, Craig; Slutsky, Arthur; Coimbra, Raul; Emerson, Scott; Minei, Joseph P.; Bardarson, Berit; Kudenchuk, Peter; Baker, Andrew; Christenson, Jim; Idris, Ahamed; Davis, Daniel; Fabian, Timothy C.; Aufderheide, Tom P.; Callaway, Clifton; Williams, Carolyn; Banek, Jane; Vaillancourt, Christian; van Heest, Rardi; Sopko, George; Hata, J. Steven; Hoyt, David B.

    2010-01-01

    Context Hypertonic fluids restore cerebral perfusion with reduced cerebral edema and modulate inflammatory response to reduce subsequent neuronal injury and thus have potential benefit in resuscitation of patients with traumatic brain injury (TBI). Objective To determine whether out-of-hospital administration of hypertonic fluids improves neurologic outcome following severe TBI. Design, Setting, and Participants Multicenter, double-blind, randomized, placebo-controlled clinical trial involving 114 North American emergency medical services agencies within the Resuscitation Outcomes Consortium, conducted between May 2006 and May 2009 among patients 15 years or older with blunt trauma and a prehospital Glasgow Coma Scale score of 8 or less who did not meet criteria for hypovolemic shock. Planned enrollment was 2122 patients. Intervention A single 250-mL bolus of 7.5% saline/6% dextran 70 (hypertonic saline/dextran), 7.5% saline (hypertonic saline), or 0.9% saline (normal saline) initiated in the out-of-hospital setting. Main Outcome Measure Six-month neurologic outcome based on the Extended Glasgow Outcome Scale (GOSE) (dichotomized as >4 or ≤4). Results The study was terminated by the data and safety monitoring board after randomization of 1331 patients, having met prespecified futility criteria. Among the 1282 patients enrolled, 6-month outcomes data were available for 1087 (85%). Baseline characteristics of the groups were equivalent. There was no difference in 6-month neurologic outcome among groups with regard to proportions of patients with severe TBI (GOSE ≤4) (hypertonic saline/dextran vs normal saline: 53.7% vs 51.5%; difference, 2.2% [95% CI, −4.5% to 9.0%]; hypertonic saline vs normal saline: 54.3% vs 51.5%; difference, 2.9% [95% CI, −4.0% to 9.7%]; P=.67). There were no statistically significant differences in distribution of GOSE category or Disability Rating Score by treatment group. Survival at 28 days was 74.3% with hypertonic saline

  4. Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions.

    Science.gov (United States)

    Lindinger, Michael I; Leung, Matthew; Trajcevski, Karin E; Hawke, Thomas J

    2011-06-01

    Controversy exists as to whether mammalian skeletal muscle is capable of volume regulation in response to changes in extracellular osmolarity despite evidence that muscle fibres have the required ion transport mechanisms to transport solute and water in situ. We addressed this issue by studying the ability of skeletal muscle to regulate volume during periods of induced hyperosmotic stress using single, mouse extensor digitorum longus (EDL) muscle fibres and intact muscle (soleus and EDL). Fibres and intact muscles were loaded with the fluorophore, calcein, and the change in muscle fluorescence and width (single fibres only) used as a metric of volume change. We hypothesized that skeletal muscle exposed to increased extracellular osmolarity would elicit initial cellular shrinkage followed by a regulatory volume increase (RVI) with the RVI dependent on the sodium–potassium–chloride cotransporter (NKCC). We found that single fibres exposed to a 35% increase in extracellular osmolarity demonstrated a rapid, initial 27–32% decrease in cell volume followed by a RVI which took 10-20 min and returned cell volume to 90–110% of pre-stimulus values. Within intact muscle, exposure to increased extracellular osmolarity of varying degrees also induced a rapid, initial shrinkage followed by a gradual RVI, with a greater rate of initial cell shrinkage and a longer time for RVI to occur with increasing extracellular tonicities. Furthermore, RVI was significantly faster in slow-twitch soleus than fast-twitch EDL. Pre-treatment of muscle with bumetanide (NKCC inhibitor) or ouabain (Na+,K+-ATPase inhibitor), increased the initial volume loss and impaired the RVI response to increased extracellular osmolarity indicating that the NKCC is a primary contributor to volume regulation in skeletal muscle. It is concluded that mouse skeletal muscle initially loses volume then exhibits a RVI when exposed to increases in extracellular osmolarity. The rate of RVI is dependent on the

  5. Variations in peak nasal inspiratory flow among healthy students after using saline solutions.

    Science.gov (United States)

    Olbrich Neto, Jaime; Olbrich, Sandra Regina Leite Rosa; Mori, Natália Leite Rosa; Oliveira, Ana Elisa de; Corrente, José Eduardo

    2016-01-01

    Nasal hygiene with saline solutions has been shown to relieve congestion, reduce the thickening of the mucus and keep nasal cavity clean and moist. Evaluating whether saline solutions improve nasal inspiratory flow among healthy children. Students between 8 and 11 years of age underwent 6 procedures with saline solutions at different concentrations. The peak nasal inspiratory flow was measured before and 30 min after each procedure. Statistical analysis was performed by means of t test, analysis of variance, and Tukey's test, considering p<0.05. We evaluated 124 children at all stages. There were differences on the way a same concentration was used. There was no difference between 0.9% saline solution and 3% saline solution by using a syringe. The 3% saline solution had higher averages of peak nasal inspiratory flow, but it was not significantly higher than the 0.9% saline solution. It is important to offer various options to patients. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  6. Determination of triazines in hemodialysis saline solutions by adsorptive stripping voltammetry after extraction in acetonitrile

    Directory of Open Access Journals (Sweden)

    Nascimento Paulo Cícero do

    2003-01-01

    Full Text Available A method for the voltammetric determination of 2-methylthio-4,6-dialkylamino-1,3,5-triazine (triazines herbicides in hemodialysis (HD saline solutions was developed. The herbicides were detected in the saline solutions at the hanging mercury drop electrode (HMDE with high sensitivities only after extraction of the analytes in acetonitrile (ACN. The salting out effect originated by the saline environment existing in the solutions enabled the extractions. The volume ratio between the saline and ACN phases was investigated in order to find the best sensitivity to detect the triazines. The speciation amongst them (ametryn, desmetryn, prometryn and terbutryn was not possible. Recoveries between 88 and 107% were calculated in spiked samples, and detection limits of 0.03 mumol L-1 were calculated for the triazines in the saline samples using this methodology.

  7. Effects of salinity on growth and organic solutes accumulation of ...

    African Journals Online (AJOL)

    2013-03-27

    Mar 27, 2013 ... accumulation on the leaves and stem, and free amino acids in the roots, leaves and stems. Plants showed a ... with soil salinity, which has increased due to excessive fertilization ... The salts effects in plants has been studied, and its must be of ... To adapt and survive in these adverse conditions, the plants ...

  8. Thermodynamic modeling of iodine and selenium retention in solutions with high salinity

    International Nuclear Information System (INIS)

    Hagemann, Sven; Moog, Helge C.; Herbert, Horst-Juergen; Erich, Agathe

    2012-04-01

    The report on iodine and selenium retention in saline solutions includes the following chapters: (1) Introduction and scope of the work. (2) Actual status of knowledge. (3) Experimental and numerical models. (4) Thermodynamic properties of selenite and hydrogen selenite in solutions of oceanic salts. (5) Thermodynamic properties of selenate in solutions of oceanic salts. (6) Thermodynamic properties of iodide in solutions of oceanic salts. (7) Experimental studies on the retention of iodine and selenium in selected sorbents. (8) Summary and conclusions.

  9. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    Science.gov (United States)

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  10. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  11. Effect of Saline Solution on the Electrical Response of Single Wall Carbon Nanotubes-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hammad Younes

    2017-01-01

    Full Text Available The effects of saline solution on the electrical resistance of single wall carbon nanotubes-epoxy nanocomposites have been investigated experimentally. Ultrasonic assisted fabricated 1.0% and 0.5 W/W% SWCNTs epoxy nanocomposites are integrated into a Kelvin structure by smear cast the nanocomposites on a glass wafer. Four metal pads are deposited on the nanocomposites using the beam evaporator and wires are tethered using soldering. The effect of saline solution on the electrical resistance of the nanocomposites is studied by adding drop of saline solution to the surface of the fabricated nanocomposites and measuring electrical resistance. Moreover, the nanocomposites are soaked completely into 3 wt.% saline solution and real-time measurement of the electrical resistance is conducted. It is found that a drop of saline solution on the surface of the nanocomposites film increases the resistance by 50%. Furthermore, the real-time measurement reveals a 40% increase in the resistance of the nanocomposites film. More importantly, the nanocomposites are successfully reset by soaking in DI water for four hours. This study may open the door for using SWCNTs epoxy nanocomposites as scale sensors in oil and gas industry.

  12. Effects of hypertonic buffer composition on lymph node uptake and bioavailability of rituximab, after subcutaneous administration.

    Science.gov (United States)

    Fathallah, Anas M; Turner, Michael R; Mager, Donald E; Balu-Iyer, Sathy V

    2015-03-01

    The subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after s.c. administration remains a major challenge. In this work we investigated the effects of excipient dependent hyperosmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as the animal model, we compared the effects of NaCl, mannitol and O-phospho-L-serine (OPLS) on the plasma concentration of rituximab over 5 days after s.c. administration. An increase was observed in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, compared with isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to the improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph nodes in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatics, as estimated by the model, increased from 0.05% in isotonic buffer to 13% in hypertonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. The data suggest that hypertonic solutions may be a viable option for improving s.c. bioavailability. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  14. Use of azeotropic distillation for isotopic analysis of deuterium in soil water and saturate saline solution

    International Nuclear Information System (INIS)

    Santos, Antonio Vieira dos.

    1995-05-01

    The azeotropic distillation technique was adapted to extract soil water and saturate saline solution, which is similar to the sea water for the Isotopic Determination of Deuterium (D). A soil test was used to determine the precision and the nature of the methodology to extract soil water for stable isotopic analysis, using the azeotropic distillation and comparing with traditional methodology of heating under vacuum. This methodology has been very useful for several kinds of soil or saturate saline solution. The apparatus does not have a memory effect, and the chemical reagents do not affect the isotopic composition of soil water. (author). 43 refs., 10 figs., 12 tabs

  15. The role of osmolality in saline fluid nebulization after tracheostomy: time for changing?

    Science.gov (United States)

    Wen, Zunjia; Wu, Chao; Cui, Feifei; Zhang, Haiying; Mei, Binbin; Shen, Meifen

    2016-12-09

    Saline fluid nebulization is highly recommend to combat the complications following tracheostomy, yet the understandings on the role of osmolality in saline solution for nebulization remain unclear. To investigate the biological changes in the early stage after tracheostomy, to verify the efficacy of saline fluid nebulization and explore the potential role of osmolality of saline nebulization after tracheostomy. Sprague-Dawley rats undergone tracheostomy were taken for study model, the sputum viscosity was detected by rotational viscometer, the expressions of TNF-α, AQP4 in bronchoalveolar lavage fluid were assessed by western blot analysis, and the histological changes in endothelium were evaluated by HE staining and scanning electron microscopy (SEM). Study results revealed that tracheostomy gave rise to the increase of sputum viscosity, TNF-α and AQP4 expression, mucosa and cilia damage, yet the saline fluid nebulization could significantly decrease the changes of those indicators, besides, the hypertonic, isotonic and hypertonic saline nebulization produced different efficacy. Osmolality plays an important role in the saline fluid nebulization after tracheostomy, and 3% saline fluid nebulization seems to be more beneficial, further studies on the role of osmolality in saline fluid nebulization are warranted.

  16. Gas exchange and organic solutes in forage sorghum genotypes grown under different salinity levels

    Directory of Open Access Journals (Sweden)

    Daniela S. Coelho

    Full Text Available ABSTRACT Adaptation of plants to saline environments depends on the activation of mechanisms that minimize the effects of excess ions on vital processes, such as photosynthesis. The objective of this study was to evaluate the leaf gas exchange, chlorophyll, and organic solute in ten genotypes of forage sorghum irrigated with solutions of different salinity levels. The experiment was conducted in a randomized block design, in a 10 x 6 factorial arrangement, with three replications, using ten genotypes - F305, BRS-655, BRS-610, Volumax, 1.015.045, 1.016.005, 1.016.009, 1.016.013, 1.016.015 and 1.016.031 - and six saline solutions, with electrical conductivity (ECw of 0, 2.5, 5.0, 7.5, 10 and 12.5 dS m-1. The photosynthetic activity in forage sorghum plants reduces with increasing salinity, and this response was found in the ten genotypes evaluated. The chlorophyll and protein contents were not affected by salinity, whereas carbohydrates and amino acid contents increased with increasing ECw. Soluble sugars are essential for osmoregulation of forage sorghum due to its high content in leaves.

  17. Regional deposition of saline aerosols of different tonicities in normal and asthmatic subjects

    International Nuclear Information System (INIS)

    Phipps, P.R.; Gonda, I.; Anderson, S.D.; Bailey, D.; Bautovich, G.

    1994-01-01

    Nonisotonic aerosols are frequently used in the diagnosis and therapy of lung disease. The purpose of this work was to study the difference in the pattern of deposition of aerosols containing aqueous solutions of different tonicities. 99m Technetium-diethyltriaminepentaacetic acid ( 99m Tc-DTPA)-labelled saline aerosols, with mass median aerodynamic diameter 3.7-3.8 μm and geometric standard deviation 1.4, were inhaled under reproducible breathing conditions on two occasions. Hypotonic and hypertonic solutions were used in 11 normals subjects, isotonic and hypertonic solutions in 9 asthmatics. The regional deposition was quantified by a penetration index measured with the help of a tomographic technique. There was a small but significant increase (6.7%) in the penetration index of the hypotonic as compared to the hypertonic aerosols in the normal subjects. The region that was markedly affected was the trachea. The differences in the penetration of the isotonic and hypertonic aerosols in the asthmatics appeared to be strongly dependent on the state of the airways at the time of the study. These findings can be interpreted in terms of effects of growth or shrinkage of nonisotonic aerosols, as well as of airway narrowing, on regional deposition of aerosols. Tonicity of aerosols appears to affect their deposition both through physical and physiological mechanisms. This should be taken into account when interpreting the effects of inhaled aqueous solutions of various tonicities in patients in vivo. (au) (44 refs.)

  18. Transperitoneal transport of sodium during hypertonic peritoneal dialysis

    DEFF Research Database (Denmark)

    Graff, J; Fugleberg, S; Brahm, J

    1996-01-01

    The mechanisms of transperitoneal sodium transport during hypertonic peritoneal dialysis were evaluated by kinetic modelling. A total of six nested mathematical models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective and lymphatic convective solute transport....... Experimental results were obtained from 26 non-diabetic patients undergoing peritoneal dialysis. The model validation procedure demonstrated that only diffusive and non-lymphatic convective transport mechanisms were identifiable in the transperitoneal transport of sodium. Non-lymphatic convective sodium...

  19. Finding a solution: Heparinised saline versus normal saline in the maintenance of invasive arterial lines in intensive care.

    Science.gov (United States)

    Everson, Matthew; Webber, Lucy; Penfold, Chris; Shah, Sanjoy; Freshwater-Turner, Dan

    2016-11-01

    We assessed the impact of heparinised saline versus 0.9% normal saline on arterial line patency. Maintaining the patency of arterial lines is essential for obtaining accurate physiological measurements, enabling blood sampling and minimising line replacement. Use of heparinised saline is associated with risks such as thrombocytopenia, haemorrhage and mis-selection. Historical studies draw variable conclusions but suggest that normal saline is at least as effective at maintaining line patency, although recent evidence has questioned this. We conducted a prospective analysis of the use of heparinised saline versus normal saline on unselected patients in the intensive care of our hospital. Data concerning duration of 471 lines insertion and reason for removal was collected. We found a higher risk of blockage for lines flushed with normal saline compared with heparinised saline (RR = 2.15, 95% CI 1.392-3.32, p  ≤ 0.001). Of the 56 lines which blocked initially (19 heparinised saline and 37 normal saline lines), 16 were replaced with new lines; 5 heparinised saline lines and 11 normal saline lines were reinserted; 5 of these lines subsequently blocked again, 3 of which were flushed with normal saline. Our study demonstrates a clinically important reduction in arterial line longevity due to blockages when flushed with normal saline compared to heparinised saline. We have determined that these excess blockages have a significant clinical impact with further lines being inserted after blockage, resulting in increased risks to patients, wasted time and cost of resources. Our findings suggest that the current UK guidance favouring normal saline flushes should be reviewed.

  20. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  1. Multislice CT of the liver. Effects of contrast material pushed with saline solution on hepatic enhancement

    International Nuclear Information System (INIS)

    Sekiguchi, Ryuzo; Hayashi, Takayuki; Tsukamoto, Tatsuaki; Kuroki, Yoshinori; Nasu, Katsuhiro; Murakami, Koji; Nawano, Shigeru

    2004-01-01

    The purpose of this study was to evaluate the usefulness of a method of power injection of contrast material pushed with saline solution for hepatic multislice CT using a dual-head power injector. One hundred twenty-one patients who underwent multislice CT to detect liver metastases were divided into two groups, depending on the protocol of contrast material administration: 100 mL of non-ionic contrast material (370 mgI/mL) or 100 mL of the same contrast material pushed with 30 mL of saline solution. Both contrast material and saline solution were administered at a rate of 2.5 mL/sec using a dual-head power injector. Attenuation values for the two protocols were obtained from the liver, portal vein, and descending aorta. Hepatic enhancement above 50 Hounsfield unit (HU), which is needed for the diagnosis of liver metastases, was achieved in 76.5% of patients given 100 mL of contrast material and 92.5% of those given 100 mL of contrast material pushed with a 30 mL saline solution. In contingency-table analysis, the CT attenuation value of liver categorized as less than 50 HU or more than 50 HU, showed a good relation between the categorized group and the protocol (p=0.0437). In patients with a body weight of 50 kg or more, 100 mL of contrast material pushed with saline solution provided significantly better CT attenuation values in the liver (p=0.0113), portal vein (p=0.0094), and descending aorta (p=0.0394) than those provided by the injection of 100 mL of contrast material alone. When contrast material pushed with saline solution was used, CT attenuation values in the liver were significantly increased, especially in patients with a body weight of 50 kg or more. This technique will provide a decrease in the volume of contrast material administered and a potential decrease in the side effects of contrast material. (author)

  2. Plant extracts, metaldehyde and saline solutions on the population control of Bradybaena similaris

    Directory of Open Access Journals (Sweden)

    Junir Antonio Lutinski

    2016-08-01

    Full Text Available ABSTRACT: This study aimed to test the efficiency of plant extracts, metaldehyde and saline solutions, as alternatives to the population control of the snail Bradybaena similaris , and to investigate the effect of the plant extracts in reducing the damage of the snail on Brassica oleracea . The experiments were performed at the Entomology Laboratory of the Universidade Comunitária da Região de Chapecó (Unochapecó, using a random experimental design with nine treatments in triplicate. Five adult individuals of B. similaris were subjected to each trial, totaling 135 snails. The following treatments were tested: cinnamon ( Melia azedarach , timbó ( Ateleia glazioveana , rosemary ( Rosmarinus officinalis , mate herb ( Ilex paraguariensis , two concentrations of metaldehyde (3% and 5%, two concentrations of salt solution (5% and 10 %, and a control treatment (distilled water. To evaluate the survival of B. similaris it was checked the treatments every 24 hours, over four consecutive days. The results revealed that the two concentrations of metaldehyde were fully efficient, that the saline solution (10% had and intermediate efficiency, and that all other treatments were not effective. The treatment with the M. azedarach extract induced a higher consumption of B. oleracea , while the saline solution at 10% and the extracts of R. officinalis and I. paraguariensis inhibited leaf consumption.

  3. Efficacy of mesotherapy using drugs versus normal saline solution in chronic spinal pain: a retrospective study.

    Science.gov (United States)

    Ferrara, Paola E; Ronconi, Gianpaolo; Viscito, Rossella; Pascuzzo, Romina; Rosulescu, Eugenia; Ljoka, Concetta; Maggi, Loredana; Ferriero, Giorgio; Foti, Calogero

    2017-06-01

    Mesotherapy, or intradermal therapy, is a therapeutic approach that is gaining popularity, but there is still a significant lack of information on its mechanisms of action or the pharmacokinetics of the therapeutic regimens. This retrospective study on 220 records compared the short-term and long-term effects of mesotherapy using a mixture of drugs versus normal saline solution in the treatment of patients with chronic spinal pain (CSP). At the end of treatment, outcome measures showed a significant improvement (PMesotherapy was effective in patients affected by CSP, with high patient satisfaction reported irrespective of the agent used. Considering the risks and costs of drugs, normal saline solution appears to be the best agent in cost-benefit terms for treating localized pain by mesotherapy in CSP.

  4. Spatial and temporal variation of repetitive plasma discharges in saline solutions

    International Nuclear Information System (INIS)

    Stalder, K R; Nersisyan, G; Graham, W G

    2006-01-01

    Repetitive plasma discharges developed in saline solutions have been investigated using fast, intensified charge coupled detector imaging techniques. The images show that synchronously pulsed multielectrode configurations tend to develop intense, transient plasma regions somewhat randomly in both space and time on short (10 μs) time scales, even though they appear to be stationary on longer (tens of milliseconds) time scales. Evidence for the production of both strongly ionized and weakly ionized plasmas is also presented

  5. Colloid transport in porous media: impact of hyper-saline solutions.

    Science.gov (United States)

    Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander

    2011-05-01

    The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during

  6. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water.

    Science.gov (United States)

    Olufemi, Olukemi Temiloluwa; Adeyeye, Adeolu Ikechukwu

    2017-01-01

    Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS) or the distilled water (DW) group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Forty-one (42.3%) of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315). The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389). It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities. © The Authors, published by EDP Sciences, 2017.

  7. Irrigation solutions in open fractures of the lower extremities: evaluation of isotonic saline and distilled water

    Directory of Open Access Journals (Sweden)

    Olufemi Olukemi Temiloluwa

    2017-01-01

    Full Text Available Introduction: Open fractures are widely considered as orthopaedic emergencies requiring immediate intervention. The initial management of these injuries usually affects the ultimate outcome because open fractures may be associated with significant morbidity. Wound irrigation forms one of the pivotal principles in the treatment of open fractures. The choice of irrigation fluid has since been a source of debate. This study aimed to evaluate and compare the effects of isotonic saline and distilled water as irrigation solutions in the management of open fractures of the lower extremities. Wound infection and wound healing rates using both solutions were evaluated. Methods: This was a prospective hospital-based study of 109 patients who presented to the Accident and Emergency department with open lower limb fractures. Approval was sought and obtained from the Ethics Committee of the Hospital. Patients were randomized into either the isotonic saline (NS or the distilled water (DW group using a simple ballot technique. Twelve patients were lost to follow-up, while 97 patients were available until conclusion of the study. There were 50 patients in the isotonic saline group and 47 patients in the distilled water group. Results: Forty-one (42.3% of the patients were in the young and economically productive strata of the population. There was a male preponderance with a 1.7:1 male-to-female ratio. The wound infection rate was 34% in the distilled water group and 44% in the isotonic saline group (p = 0.315. The mean time ± SD to wound healing was 2.7 ± 1.5 weeks in the distilled water group and 3.1 ± 1.8 weeks in the isotonic saline group (p = 0.389. Conclusions: It was concluded from this study that the use of distilled water compares favourably with isotonic saline as an irrigation solution in open fractures of the lower extremities.

  8. Millimeter wave therapy in hypertonic disease treatment

    Directory of Open Access Journals (Sweden)

    Kotenko К.V.

    2013-12-01

    Full Text Available Millimeter wave therapy in hypertonic disease treatment promotes disappearance of negative clinical symptoms, normalization of arterial pressure indicators, improvement of system and cerebral hemodynamic. In spite of active using of wideband equipment in treatment for cardiovascular diseases, particularly hypertonic disease, the procedures generalizing experience in their use are not enough. Thus further investigation, searching of new treatment methods using up-to-date physiotherapy technology seem to be actual.

  9. Effect of peritoneal cavity lavage with 0.9% and 3.0% saline solution in the lung and spleen of gerbils with induced peritonitis.

    Science.gov (United States)

    Nunes, Vinícius Rodrigues Taranto; Barbuto, Rafael Calvão; Vidigal, Paula Vieira Teixeira; Pena, Guilherme Nogueira; Rocha, Silvia Lunardi; de Siqueira, Lucas Tourinho; Caliari, Marcelo Vidigal; de Araujo, Ivana Duval

    2014-04-01

    Peritoneal cavity lavage is used widely in the treatment of peritonitis. Nonetheless, some studies question its rationale and prove it to be deleterious to the mesothelium. The present study aims to determine whether 0.9% and 3.0% saline lavage of the peritoneal cavity have an effect on the early systemic inflammatory response, namely, in the lung injury and splenic cellularity of gerbils with induced peritonitis. Thirty-four male gerbils were divided into four groups: Control (n=9), submitted to laparotomy at time zero, re-laparotomy after 2 h, and sacrificed after a total of 6 h from start; untreated (n=8), submitted to peritonitis induction through cecal ligation and puncture (CLP) at time zero, re-laparotomy intended for drying of abdominal cavity and resection of the ischemic cecum after 2 h, and sacrifice after a total of 6 h from start; saline (n=8), submitted to peritonitis induction through CLP at time zero, re-laparotomy intended for warm 0.9% saline lavage of the abdominal cavity and resection of the ischemic cecum after 2 h, and sacrificed after a total of 6 h from start; and hypertonic (n=9), submitted to peritonitis induction through CLP at time zero, re-laparotomy intended for warm hypertonic saline (3.0%) lavage of the abdominal cavity and resection of the ischemic cecum after 2 h, and sacrificed after a total of 6 h from start. After sacrifice, we collected the left lung and the spleen for morphometric analysis. In the both the saline and hypertonic groups, there was significant decrease in the mean nuclei count in the lungs, compared with the untreated group (p0.05). The present study demonstrated that the peritoneal lavage with large volumes of warm 0.9% and 3.0% saline has a beneficial effect on the early systemic inflammatory response in infected animals, modulating and reducing the lung injury but having no effect on splenic cell count.

  10. Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution

    International Nuclear Information System (INIS)

    Chelariu, R.; Bolat, G.; Izquierdo, J.; Mareci, D.; Gordin, D.M.; Gloriant, T.; Souto, R.M.

    2014-01-01

    Graphical abstract: - Highlights: • Microstructural and electrochemical characterization of metastable beta Ti-Nb-Mo alloys for biomedical implantation. • Corrosion resistance was established in 0.9 wt% NaCl saline solution at 25 °C using conventional and microelectrochemical techniques. • The materials spontaneously form passivating oxide films on their surface. • Surface films are stable for polarizations more positive than those encountered in the human body. • The addition of niobium to Ti12Mo enhances the capacitive characteristics of the passivating oxide layers. - Abstract: The present study explores the microstructural characteristics and electrochemical responses of four metastable beta Ti-Nb-Mo alloys for biomedical implantation. They were synthesized by the cold crucible levitation melting technique, and compositions were selected to keep the molybdenum equivalency close to 12 wt% Mo eq . For the sake of comparison, Ti12Mo was also investigated. Microstructural characterization reveals that all the alloys are β (body-centred cubic structure), and the surface is composed by β equiaxial grains with dimensions in the range of tens to hundreds μm. The corrosion resistance (potentiodynamic polarization and electrochemical impedance spectroscopy) of the alloys was determined in 0.9 wt% NaCl saline solution at 25 °C. The materials spontaneously form a passivating oxide film on their surface, and they are stable for polarizations up to +1.0 V SCE . No evidence of localized breakdown of the oxide layers is found for polarizations more positive than those encountered in the human body. The passive layers show dielectric characteristics, and the wide frequency ranges displaying capacitive characteristics occur for both higher niobium contents in the alloy and longer exposures to the saline solution. The insulating characteristics of the oxide-covered surfaces were investigated by scanning electrochemical microscopy operated in the feedback mode

  11. Improving tolerance of sunflower and safflower during growth stages to salinity through foliar spray of nutrient solutions

    International Nuclear Information System (INIS)

    Jabeen, N.; Ahmad, R.

    2012-01-01

    The effect of salinity and foliar application of nutrient solutions on sunflower and safflower in vegetative and reproductive phases of the growth were investigated in Bio saline Research Field, University of Karachi, Pakistan. The seeds were sown in pots under non saline condition and saline water irrigation was started at three leaf stage after germination. Different concentration of saline water were made by dissolving 3g and 6g sea salt per litre of tap water, equivalent to an EC of 4.8 and 8.6 dS/m respectively. Nutrient solution (KNO/sub 3 /, H/sub 3/ BO/sub 3/, Fe-EDTA or its mixture) was sprayed thrice, i.e., 45, 75 and 95 days after planting. KNO/sub 3/ was given at the rate 250 ppm and other H/sub 3/ BO/sub 3/ and Fe-EDTA was given at the rate 5 ppm. Salinity caused a significant reduction in nutrient uptake, height, biomass and yield of both sunflower and safflower. Foliar application of macro and micro nutrients (i.e. KNO/sub 3/, H/sub 3/BO/sub 3/, Fe-EDTA and mixture of KNO/sub 3/ + H/sub 3/BO/sub 3/ + Fe-EDTA) partially minimized the salt induced deficiency and showed significant increase in height, fresh and dry biomass, number and weight of seeds, and amount of oil per sunflower and safflower plant irrespective to their growth under non saline or saline conditions. Among the nutrient solutions, mixture of KNO/sub 3/+ H/sub 3/BO/sub 3/ + Fe-EDTA seemed to be the most effective followed by H/sub 3/ BO/sub 3/ and Fe-EDTA. These results suggested that foliar application of nutrients could be used to improve plant tolerance to salinity by alleviating the adverse effects of salinity on growth and reproductive yield. (author)

  12. Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions

    International Nuclear Information System (INIS)

    Bolat, G.; Izquierdo, J.; Gloriant, T.; Chelariu, R.; Mareci, D.; Souto, R.M.

    2015-01-01

    Graphical abstract: - Highlights: • Alloy fabrication method affects both surface finish and corrosion resistance. • More porous surface finish and higher wettability produced by powder sintering. • Passive layer formed on sintered alloy breaks down in saline solution. • Increase in surface porosity facilitated electron transfer through the oxide film. • More corrosion resistant alloy produced by cold crucible levitation melting. - Abstract: The electrochemical properties of Ti20Mo alloys prepared using different fabrication procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were investigated using linear potentiodynamic polarization and EIS measurements. The surface condition was established using AFM, with the observation of a more porous surface finish in the case of powder sintering. A major effect of surface conditioning on the corrosion resistance of Ti20Mo alloys was observed, where the compact finish exhibits a superior corrosion resistance in chloride-containing saline solutions. Less insulating surfaces towards electron exchange resulted for the more porous finish as revealed by scanning electrochemical microscopy (SECM)

  13. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water

    KAUST Repository

    Zhong, Yujiang; Feng, Xiaoshuang; Chen, Wei; Wang, Xinbo; Huang, Kuo-Wei; Gnanou, Yves; Lai, Zhiping

    2015-01-01

    (trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56°C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a

  14. The time-dependent development of electric double-layers in saline solutions

    International Nuclear Information System (INIS)

    Morrow, R; McKenzie, D R; Bilek, M M M

    2006-01-01

    We have studied the time-dependent development of electric double-layers (ionic sheaths) in saline solutions by simultaneously solving the sodium and chlorine ion continuity equations coupled with Poisson's equation in one dimension. The study of the effects of time-varying electric fields in solution is relevant to the possible health effect of radio-frequency electric fields on cells in the human body and to assessing the potential of using external electric fields to orient proteins for attachment to surfaces for biosensing applications. Our calculations, for applied voltages of 10-175 mV between the electrode and the solution, predict time scales of ∼0.1-110 μs for the formation of double-layers in solutions of concentration between 0.001 and 1.0 M. We develop an empirical equation that can predict the double-layer formation time to within 10% over this wide parameter range. The method has been validated by comparing the solutions obtained, once the program has run to a steady state, with the standard non-linear Poisson-Boltzmann equations. Excellent agreement is found with the Gouy-Chapman solution of the non-linear Poisson-Boltzmann equation. Thus the method is not restricted in accuracy and applicability as is the case for the linear Poisson-Boltzmann equation. The method can also provide solutions for cases where there are orders of magnitude changes in the ion densities; this has not been the case for previous studies where small perturbation analysis has been employed. The method developed here can readily be extended to two and three dimensions using time-splitting methods

  15. Thermodynamic data for iron (II) in high-saline solutions at temperatures up to 90 C

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Andres G.; Scharge, Tina; Moog, Helge C.

    2013-12-15

    For natural aqueous systems in general and for the near field of underground nuclear waste repositories in particular thermodynamic properties of iron species and solid phases are of predominant importance. Regardless of the question of the host rock, nuclear waste containment in Germany will be based on massive steel canisters. The total mass of iron present in a repository can be, dependent on the applied variant, sum up to more than 100 000 tons. The overall geochemical milieu including pH and EH will be dominated by the overall abundance of metallic, ferrous, and ferric iron, their aqueous speciation and solid iron-phases. This milieu is imposed on all other equilibria of interest, including those which determine radionuclide solubility. In addition to this, iron bearing corrosion phases due to their shear mass may exhibit a significant sink for radionuclides in terms of incorporation or sorption. As to the evolution of EH it is important to note that application of the Nernst equation requires knowing the electrochemical activities of the involved reactants. Iron is present in aqueous solutions in two oxidation states: +II (ferrous iron) and +III (ferric iron). Ferric iron exhibits a much more complex speciation behavior than ferrous iron, where from a conceptual point of view many species may be neglected. Ferric iron, on the contrary, is subject to considerable complex formation with chloride, sulfate, and - most importantly - with hydroxide. For this reason, experimental and theoretical treatment of ''iron'' at GRS in high saline solutions proceeded along two strings, one for each oxidation state, with the ultimate goal to deliver a thermodynamic model for ''iron'' in high saline solutions.

  16. A new water permeability measurement method for unsaturated tight materials using saline solutions

    International Nuclear Information System (INIS)

    Malinsky, Laurent; Talandier, Jean

    2012-01-01

    Document available in extended abstract form only. Relative water permeability of material in a radioactive waste disposal is a key parameter to simulate and predict saturation state evolution. In this paper we present a new measurement method and the results obtained for Callovo-Oxfordian (Cox) clay-stone, host rock of the underground Andra laboratory at Bure (Meuse/Haute-Marne). Relative water permeability of such a low permeability rock as Cox clay-stone has been measured up to now by an indirect method. It consists in submitting a rock sample to successive relative humidity steps imposed by saline solutions. The transient mass variation during each step and the mass at hydric equilibrium are interpreted generally by using an inverse analysis method. The water relative permeability function of water saturation is derived from water diffusion coefficient evolution and water retention curve. The proposed new method consists in directly measuring the water flux across a flat cylindrical submitted to a relative humidity gradient. Two special cells have been developed. The tightness of the lateral sample surface is insured by crushing a polyurethane ring surrounding the sample set in an aluminium device placed over a Plexiglas vessel filled with a saline solution. One of the cells is designed to allow humidity measurement in the cell. These cells can also be used to measure the relative humidity produced by a saline solution or by an unsaturated material. During a permeability measurement, the cell with the sample to be tested is continuously weighted in a Plexiglas box in which a saline solution imposes a different relative humidity at the upper sample face. The experimental set-up is shown on Figure 1. The mean permeability of the sample is proportional to the rate of mass variation when steady state is reached. The result of one test is shown on Figure 2(a). Twenty four permeability measurements have been performed on four argillite samples of 15 mm in height and

  17. Hot Hypertonic Saline and Compression Device: A Novel Approach ...

    African Journals Online (AJOL)

    hanumantp

    plastic spatula was then padded/bolstered with gauze and then secured on the border ... heat energy that causes disruption of the intima and eventually collapse and ... to occlude and seal off the vessels, and with this, it became possible to ...

  18. Effects of hypertonic dextrose injections in the rabbit carpal tunnel.

    Science.gov (United States)

    Yoshii, Yuichi; Zhao, Chunfeng; Schmelzer, James D; Low, Phillip A; An, Kai-Nan; Amadio, Peter C

    2011-07-01

    This study investigated the effects of different doses of hypertonic dextrose injection on the carpal tunnel subsynovial connective tissue (SSCT) and median nerve in a rabbit model. Thirty-eight New Zealand white rabbits weighing 4.0-4.5 kg were used. One forepaw carpal tunnel was randomly injected with one of five different treatments: saline-single injection; saline-two injections 1 week apart; 10% dextrose-single injection; 20% dextrose-single injection; or 10% dextrose-two injections 1 week apart. Animals were sacrificed at 12 weeks after the initial injection and were evaluated by electrophysiology (EP), SSCT mechanical testing and histology. There were significant increases in the energy absorption of the SSCT in the 10% dextrose-double injection group compared to the saline injection groups. SSCT stiffness was also significantly increased in the 10% dextrose-double injection group compared to the other groups. There was a significant increase in the thickness of the SSCT in the 10% dextrose-double injection group compared to the saline-single injection group and a significant decrease in the nerve short-long diameter ratio in the 10% dextrose-double injection group compared to the saline-single injection group. There were no changes in EP among the groups. SSCT fibrosis is present for up to 12 weeks after dextrose injection; multiple injections have bigger effects, including what appears to be a secondary change in nerve flattening. This model may be useful to study the effects of external fibrosis on nerve morphology and physiology, such as occurs clinically in carpal tunnel syndrome. Copyright © 2011 Orthopaedic Research Society.

  19. Early Implementation of THAM for ICP Control: Therapeutic Hypothermia Avoidance and Reduction in Hypertonics/Hyperosmotics

    Directory of Open Access Journals (Sweden)

    F. A. Zeiler

    2014-01-01

    Full Text Available Background. Tromethamine (THAM has been demonstrated to reduce intracranial pressure (ICP. Early consideration for THAM may reduce the need for other measures for ICP control. Objective. To describe 4 cases of early THAM therapy for ICP control and highlight the potential to avoid TH and paralytics and achieve reduction in sedation and hypertonic/hyperosmotic agent requirements. Methods. We reviewed the charts of 4 patients treated with early THAM for ICP control. Results. We identified 2 patients with aneurysmal subarachnoid hemorrhage (SAH and 2 with traumatic brain injury (TBI receiving early THAM for ICP control. The mean time to initiation of THAM therapy was 1.8 days, with a mean duration of 5.3 days. In all patients, after 6 to 12 hours of THAM administration, ICP stability was achieved, with reduction in requirements for hypertonic saline and hyperosmotic agents. There was a relative reduction in mean hourly hypertonic saline requirements of 89.1%, 96.1%, 82.4%, and 97.0% for cases 1, 2, 3, and 4, respectively, comparing pre- to post-THAM administration. Mannitol, therapeutic hypothermia, and paralytics were avoided in all patients. Conclusions. Early administration of THAM for ICP control could potentially lead to the avoidance of other ICP directed therapies. Prospective studies of early THAM administration are warranted.

  20. Acid–base and hemodynamic status of patients with intraoperative hemorrhage using two solution types: Crystalloid Ringer lactate and 1.3% sodium bicarbonate in half-normal saline solution

    Directory of Open Access Journals (Sweden)

    Sayed Jalal Hashemi

    2016-01-01

    Conclusion: 1.3% sodium bicarbonate in half-normal saline solution can lead to a proper correction of hemodynamic instability. By maintaining hemodynamic status, osmolarity and electrolytes as well as better balance of acid–base, 1.3% sodium bicarbonate solution in half-normal saline solution can be more effective than Ringer lactate solution during intraoperative bleeding.

  1. Corrosion of tinplate T54S and T61 in humid atmosphere and saline solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.; Sandenbergh, R.F. [Dept. of Materials Science and Metallurgical Engineering, Univ. of Pretoria (South Africa)

    2001-09-01

    The initial corrosion mechanism and corrosion behaviors of tinplate T54S and T61 were investigated by chemical stripping layer by layer, humid atmosphere exposure, SEM and potentiodynamic method in saline solutions with the addition of a small amount of components simulating foods and tomato sauce. The results show that T54S initially corroded in the form of pitting at the bottom of grease marks on the surface while T61 displayed the initial corrosion along the steel base on the interface of the tin coating and steel, and both were driven by galvanic corrosion between tin coating as a cathode and base steel as an anode. In the solution of 3.5% NaCl, the free corrosion potential from the outer layer to steel base shifted to negative with an addition of 100 ppm HNO{sub 3} but the potential order reversed as HNO{sub 2} replaced HNO{sub 3} at equivalent content. With an addition of 100 ppm NaHS, a high cathodic peak for either the middle or the inner layers was ascribed to the involvement of the reduction of extra hydrogen, i.e. HS{sup -}. T54S displayed a wider anodic passive zone and lower passive current density than T61, which resulted from the effect of the alloy layer. (orig.)

  2. Sodium bicarbonate versus isotonic saline solution to prevent contrast-induced nephropathy : a systematic review and meta-analysis.

    Science.gov (United States)

    Zapata-Chica, Carlos Andres; Bello Marquez, Diana; Serna-Higuita, Lina Maria; Nieto-Ríos, John Fredy; Casas-Arroyave, Fabian David; Donado-Gómez, Jorge Hernando

    2015-09-30

    Contrast-induced nephropathy is one of the main causes of acute kidney injury and increased hospital-acquired morbidity and mortality. The use of sodium bicarbonate for nephroprotection has emerged as a preventative strategy; however, its efficacy is controversial compared to other strategies, such as hydration using 0.9% saline solution. To compare the effectiveness of sodium bicarbonate vs. hydration using 0.9% saline solution to prevent contrast-induced acute kidney injury. A systematic review of studies registered in the COCHRANE, PUBMED, MEDLINE, LILACS, SCIELO and EMBASE databases was conducted. Randomized controlled studies that evaluated the use of 0.9% saline solution vs. sodium bicarbonate to prevent contrast-induced nephropathy were included. A total of 22 studies (5,686 patients) were included. Sodium bicarbonate did not decrease the risk of contrast-induced nephropathy (RD= 0.00; 95% CI= -0.02 to 0.03; p= 0.83; I(2)= 0%). No significant differences were found in the demand for renal replacement therapy (RD= 0.00; 95% CI= -0.01 to 0-01; I(2)= 0%; p= 0.99) or in mortality (RD= -0.00; 95% CI= -0.001 to 0.001; I(2)= 0%; p= 0.51). Sodium bicarbonate administration is not superior to the use of 0.9% saline solution for preventing contrast-induced nephropathy in patients with risk factors, nor is it better at reducing mortality or the need for renal replacement therapy.

  3. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  4. Proteolysis of Sardine (Sardina pilchardus and Anchovy (Stolephorus commersonii by Commercial Enzymes in Saline Solutions

    Directory of Open Access Journals (Sweden)

    Chau Minh Le

    2015-01-01

    Full Text Available Fish sauce production is a very long process and there is a great interest in shortening it. Among the different strategies to speed up this process, the addition of external proteases could be a solution. This study focuses on the eff ect of two commercial enzymes (Protamex and Protex 51FP on the proteolysis of two fish species traditionally converted into fish sauce: sardine and anchovy, by comparison with classical autolysis. Hydrolysis reactions were conducted with fresh fish at a temperature of 30 °C and under different saline conditions (from 0 to 30 % NaCl. Hydrolysis degree and liquefaction of the raw material were used to follow the process. As expected, the proteolysis decreased with increasing amount of salt. Regarding the fi sh species, higher rate of liquefaction and higher hydrolysis degree were obtained with anchovy. Between the two proteases, Protex 51FP gave better results with both fi sh types. This study demonstrates that the addition of commercial proteases could be helpful for the liquefaction of fi sh and cleavage of peptide bonds that occur during fi sh sauce production and thus speed up the production process.

  5. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water

    KAUST Repository

    Zhong, Yujiang

    2015-12-09

    The concept of using a thermo-responsive ionic liquid (IL) with an upper critical solution temperature (UCST) as a draw solute in forward osmosis (FO) was successfully demonstrated here experimentally. A 3.2 M solution of protonated betaine bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56°C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a water-rich phase and an IL-rich phase: the water-rich phase was the produced water that contained a low IL concentration, and the IL-rich phase could be used directly as the draw solution in the next cycle of the FO process. The thermal stability, thermal-responsive solubility and UV-vis absorption spectra of the IL were also studied in detail.

  6. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-01-01

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs

  7. Comparison of Outcomes for Normal Saline and an Antiseptic Solution for Negative-Pressure Wound Therapy with Instillation.

    Science.gov (United States)

    Kim, Paul J; Attinger, Christopher E; Oliver, Noah; Garwood, Caitlin; Evans, Karen K; Steinberg, John S; Lavery, Larry A

    2015-11-01

    Negative-pressure wound therapy with instillation is an adjunctive treatment that uses periodic instillation of a solution and negative pressure for a wide diversity of wounds. A variety of solutions have been reported, with topical antiseptics as the most frequently chosen option. The objective of this study was to compare the outcomes of normal saline versus an antiseptic solution for negative-pressure wound therapy with instillation for the adjunctive treatment of infected wounds. This was a prospective, randomized, effectiveness study comparing 0.9% normal saline versus 0.1% polyhexanide plus 0.1% betaine for the adjunctive treatment of infected wounds that required hospital admission and operative débridement. One hundred twenty-three patients were eligible, with 100 patients randomized for the intention-to-treat analysis and 83 patients for the per-protocol analysis. The surrogate outcomes measured were number of operative visits, length of hospital stay, time to final surgical procedure, proportion of closed or covered wounds, and proportion of wounds that remained closed or covered at the 30-day follow-up. There were no statistically significant differences in the demographic profiles in the two cohorts except for a larger proportion of male patients (p = 0.004). There was no statistically significant difference in the surrogate outcomes with the exception of the time to final surgical procedure favoring normal saline (p = 0.038). The authors' results suggest that 0.9% normal saline may be as effective as an antiseptic (0.1% polyhexanide plus 0.1% betaine) for negative-pressure wound therapy with instillation for the adjunctive inpatient management of infected wounds. Therapeutic, II.

  8. Determination of phthalate esters in physiological saline solution by monolithic silica spin column extraction method

    Directory of Open Access Journals (Sweden)

    Lu Lu

    2011-05-01

    Full Text Available Monolithic silica spin column extraction (MonoSpin-SPE was developed as a simple, sensitive, and eco-friendly pretreatment method which combined with ultra-fast liquid chromatography-mass spectrometry (UFLC-MS to determine the levels of six phthalate esters, dimethyl-(DMP, diethyl-(DEP, dipropyl- [DPrP], butyl-benzyl-(BBP, dicyclohexyl(DcHP, and di- n-octyl-(DOP phthalate in physiological saline samples. Under optimized experimental conditions, the method was linear in the following ranges: 0.2- 50 μ/L for DMP, DEP, DPrP, DcHP and DOP; 5 – 100 μ/L for BBP. The correlation coefficients (R2 were in the range of O. 9951 – O. 9995 for all the analytes and the limits of detection (LODs and limits of quantification (LOQs were in the ranges of 0.02 – 0.9 μ/L and 0.08 – 2.7 μ/L, respectively. The pretreatment process showed good reproducibility with inter-day and intra-day relative standard deviations (RSDs below 8.5% and 11.2%, respectively. This method was used to determine the levels of six phthalate esters in physiological saline samples and the recoveries ranged from 71.2% to 107. 3%. DMP and DEP were found in actual physical saline samples (brand A and brand B. Keywords: Monolithic silica spin column, Phthalate esters, Physiological saline samples, Ultra fast liquid chromatographymass spectrometry (UFLC-MS

  9. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping

    2014-06-17

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  10. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping; Yang, Wulin; Hatzell, Marta C.; Logan, Bruce E.

    2014-01-01

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  11. Performance of Potassium Bicarbonate and Calcium Chloride Draw Solutions for Desalination of Saline Water Using Forward Osmosis

    Directory of Open Access Journals (Sweden)

    M. Nematzadeh

    2015-01-01

    Full Text Available Forward osmosis (FO has recently drawn attention as a promising membrane based method for seawater and brackish water desalination. In this study, we focus on the use of calciun chloride (CaCl2 and potassium bicarbonate (KHCO3 as inorganic salt draw solution candidates due to their appropriate performance in water flux and reverse salt diffusion as well as reasonable cost. The experiments were carried at 25 °C and cross-flow rate of 3 L min−1.  At the same osmotic pressure, the water flux of CaCl2 draw solution tested against deionized feed water, showed 20% higher permeation than KHCO3, which it was attributed to the lower internal concentration polarization (ICP. The reverse diffusion of CaCl2 was found higher than KHCO3 solution which it would be related to the smaller ionic size and the higher permeation of this salt through the membrane. The water flux for both draw solutions against 0.33 M NaCl feed solution was about 2.8 times lower than deionized feed water because of ICP. Higher concentrations of draw solution is required for increasing the water permeation from saline water feed towards the draw side.

  12. Phosphoinositolphosphate (PIP) cascade induction by hypertonic stress of plant tissue

    International Nuclear Information System (INIS)

    Srivastava, A.; Jacoby, B.

    1989-01-01

    Inositol 1,4,5-trisphosphate (IP 3 ) was determined by competition with [ 3 H]-IP 3 for binding to an IP 3 specific protein. A hypertonic mannitol, sorbitol or lactose shock induced an increase in the rate of K + uptake and raised the IP 3 content of Beta vulgaris slices, excised Vigna mungo and Sorghum bicolor roots, as well as attached V. mungo roots. Increased K + uptake could also be induced by compounds that artificially induce the PIP cascade, or mimic it's products. A hypertonic shock, administered to intact B. vulgaris slices, further enhanced the phosphorylation of a 20 kD protein in the plasmalemma. Maximal IP 3 content was found 10 min after hypertonic induction and maximal K + uptake was obtained 10 min later. The effect of a continuous hypertonic treatment on IP 3 content, but not on K + uptake, was transient. Li + decreased the rate of IP 3 metabolism

  13. Human Peritoneal Mesothelial Cell Death Induced by High-Glucose Hypertonic Solution Involves Ca2+ and Na+ Ions and Oxidative Stress with the Participation of PKC/NOX2 and PI3K/Akt Pathways

    Directory of Open Access Journals (Sweden)

    Felipe Simon

    2017-06-01

    Full Text Available Chronic peritoneal dialysis (PD therapy is equally efficient as hemodialysis while providing greater patient comfort and mobility. Therefore, PD is the treatment of choice for several types of renal patients. During PD, a high-glucose hyperosmotic (HGH solution is administered into the peritoneal cavity to generate an osmotic gradient that promotes water and solutes transport from peritoneal blood to the dialysis solution. Unfortunately, PD has been associated with a loss of peritoneal viability and function through the generation of a severe inflammatory state that induces human peritoneal mesothelial cell (HPMC death. Despite this deleterious effect, the precise molecular mechanism of HPMC death as induced by HGH solutions is far from being understood. Therefore, the aim of this study was to explore the pathways involved in HGH solution-induced HPMC death. HGH-induced HPMC death included influxes of intracellular Ca2+ and Na+. Furthermore, HGH-induced HPMC death was inhibited by antioxidant and reducing agents. In line with this, HPMC death was induced solely by increased oxidative stress. In addition to this, the cPKC/NOX2 and PI3K/Akt intracellular signaling pathways also participated in HGH-induced HPMC death. The participation of PI3K/Akt intracellular is in agreement with previously shown in rat PMC apoptosis. These findings contribute toward fully elucidating the underlying molecular mechanism mediating peritoneal mesothelial cell death induced by high-glucose solutions during peritoneal dialysis.

  14. Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour

    International Nuclear Information System (INIS)

    Chang Hungwen; Hsu Chengche

    2012-01-01

    In this work, three major problems, namely severe electrode damage, poor plasma stability and excess power consumption, arising in ac-driven plasmas in saline solutions are solved using a rectified power source. Diagnostic studies on the effects of power source polarity and frequency on the plasma behaviour are performed. Examination of I-V characteristics and temporally resolved light emission shows that the polarity significantly influences the current amplitude when the plasma exists, while the frequency alters the bubble dynamics, which in turn affects the plasma ignition voltage. When the plasma is driven by a rectified ac power source, the electrode erosion is reduced substantially. With a low frequency, moderate applied voltage and positively rectified ac power source (e.g. 100 Hz and 350 V), a stable plasma is ignited in nearly every power cycle. (paper)

  15. Corrosion Of Stainless Steel With A Laser Bar Code In A Saline Solution

    OpenAIRE

    Domingues S.R.; Proenca M.B.; Ierardi M.C.F.; Freire C.M.A.

    1996-01-01

    The corrosion of stainless steel AISI 304 L plates marked by laser beam fusion is studied. The electrochemical experiments are carried out in 3.5% NaCl water solution. Electrochemical curves are obtained by potentiodynamic method. Sample surfaces are also examined by scanning electron microscopy. The changes of corrosion resistance after laser treatment are insignificant.

  16. The Effect of Potassium Concentration in Nutrient Solution on Lycopene, Vitamin C and Qualitative Characteristics of Cherry Tomato in Saline Conditions

    Directory of Open Access Journals (Sweden)

    E. Shabani Sangtarashani

    2013-06-01

    Full Text Available Potassium (K has a special place in improving the quality of agricultural products. To evaluate the effect of K concentration in nutrient solution on lycopene content, vitamin C and qualitative characteristics of cherry tomato in NaCl salinity conditions, an experiment was carried out as a completely randomized design with five treatments and three replications at university of Tabriz, Tabriz, Iran, in 2010. Treatments consisted of four concentrations of K (0.2, 2, 7 and 14 mM in nutrient solution with 60 mM NaCl concentration. A nutrient solution treatment without salinity was considered as control. The experiment was conducted in greenhouse, in a hydroponic system. The results indicated that increasing of K concentration increased lycopene content in fruit. Lycopene content in control treatment showed significant difference (P<0.01 in comparison with salinity treatments. With increasing the K concentration (except at 14 mM concentration, vitamin C content was increased, but indicated no statistically significant difference. Vitamin C content in saline conditions was more than control treatment, but showed no significant difference. Adding potassium concentration in nutrient solution improved yield and enhanced quality parameters such as percentage of dry matter, soluble solids and electrical conductivity of fruit extract. Since in saline conditions, the qualitative characteristics of tomato at 7 mM concentration were in the best situation, therefore using this concentration is recommended.

  17. Short-term dissolution experiments on various cement formulations in standard Canadian shield saline solution in the presence of clay

    International Nuclear Information System (INIS)

    Heimann, R.B.; Stanchell, M.A.T.

    1986-12-01

    A commercially available sulphate-resisting portland cement (SRPC) and three cement formulations derived from it by adding 10 and 20 vol% silica fume or 35 vol% fly-ash have been leached in Standard Canadian Shield Saline Solution (SCSSS) with added calcium-montmorillonite or sodium-montmorillonite at 150 degrees C for 14 days. The leach solutions have been analyzed by atomic absorption spectroscopy for silicon, magensium, iron and potassium, and by inductively coupled plasma spectrometry for aluminum and phosphorous. The surfaces of the leached samples have been investigated by scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy, and by X-ray powder diffraction methods. Cumulative pore size distrubtion curves have been recorded for as-cured and leached cement samples. It has been shown that the presence of clay accelerates the rate of dissolution of the various cements, and that the pH of the leaching solutions plays a dominant role in the elemental release kinetics

  18. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs

  19. Interactions between globular proteins and F-actin in isotonic saline solution.

    Science.gov (United States)

    Lakatos, S; Minton, A P

    1991-10-05

    Solutions of each of three different globular proteins (cytochrome c, chromophorically labeled serum albumin, and chromophorically labeled aldolase), mixed with another unlabeled globular protein or with fibrous actin, were prepared in pH 8.0 Tris-HCl buffer containing 0.15 M NaCl. Each solution was centrifuged at low speed, at 5 degrees C, until unassociated globular protein in solution achieved sedimentation equilibrium. Individual absorbance gradients of both macrosolutes in the mixtures subsequent to centrifugation were obtained via optical scans of the centrifuge tubes at two wavelengths. The gradients of each macrosolute in mixtures of two globular proteins revealed no association of globular proteins under the conditions of these experiments, but perturbation of the gradients of serum albumin, aldolase, and cytochrome c in the presence of F-actin indicated association of all three globular proteins with F-actin. Perturbation of actin gradients in the presence of serum albumin and aldolase suggested partial depolymerization of the F-actin by the globular protein. Analysis of the data with a simple phenomenological model relating free globular protein, bound globular protein, and total actin concentration provided estimates of the respective equilibrium constants for association of serum albumin and aldolase with F-actin, under the conditions of these experiments, of the order of 0.1 microM-1.

  20. Behavior of gellan in aqueous-salt solutions and oilfield saline water

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2015-09-01

    Full Text Available The influence of storage time and temperature on the behavior of low acyl gellan (LAG was studied by viscometry and 1H NMR spectroscopy without salt addition. The viscometric results revealed that the effectiveness of salts to enhance gelation of gellan changes in the following order: BaСl2>CaCl2»MgCl2>KCl>NaCl. The sol-gel and liquid-solid phase transitions of gellan solutions were observed upon addition of oilfield water containing 73 g L-1 of alkaline and alkaline earth metal ions. The effectiveness of salts to induce the separation of liquid and solid phases changes in the sequence: NaCl>KCl>MgCl2»CaCl2»BaСl2. The hydrodynamic behavior of 0.5 wt.% gellan solution injected into the sand pack model with high (20 Darcy and lower (2 Darcy permeability is useful to model the oil reservoirs in the process of enhanced oil recovery.

  1. Hydrothermal carbonization of glucose in saline solution: sequestration of nutrients on carbonaceous materials

    Directory of Open Access Journals (Sweden)

    Jessica Nover

    2016-02-01

    Full Text Available In this study, feasibility of selected nutrient sequestration during hydrothermal carbonization (HTC was tested for three different HTC temperatures (180, 230, and 300 °C. To study the nutrient sequestration in solid from liquid solution, sugar and salt solutions were chosen as HTC feedstock. Glucose was used as carbohydrate source and various salts e.g., ammonium hydrophosphate, potassium chloride, potassium sulfate, and anhydrous ferric chloride were used as source of nitrogen and phosphorus, potassium, and iron, respectively. Solid hydrochar was extensively characterized by means of elemental, ICP-OES, SEM-EDX, surface area, pore volume and size, and ATR-FTIR to determine nutrients’ sequestration as well as hydrochar quality variation with HTC temperatures. The spherical mesoporous hydrochars produced during HTC have low surface area in the range of 1.0–3.5 m2 g−1. Hydrochar yield was increased about 10% with the increase of temperature from 180 °C to 300 °C. Nutrient sequestration was also increased with HTC temperature. In fact, around 71, 31, and 23 wt% nitrogen, iron, and phosphorus were sequestered at 300 °C, respectively. Potassium sequestration was very low throughout the HTC and maximum 5.2% was observed in solid during HTC.

  2. Analytical Solution for Interface Flow to a Sink With an Upconed Saline Water Lens: Strack's Regimes Revisited

    Science.gov (United States)

    Kacimov, A. R.; Obnosov, Y. V.

    2018-01-01

    A study is made of a steady, two-dimensional groundwater flow with a horizontal well (drain), which pumps out freshwater from an aquifer sandwiched between a horizontal bedrock and ponded soil surface, and containing a lens-shaped static volume of a heavier saline water (DNAPL-dense nonaqueous phase liquid) as a free surface. For flow toward a line sink, an explicit analytical solution is obtained by a conformal mapping of the hexagon in the complex potential plane onto a reference plane and the Keldysh-Sedov integral representation of a mixed boundary-value problem for a complex physical coordinate. The interface is found as a function of the pumping rate, the well locus, the ratio of liquid densities, and the hydraulic heads at the soil surface and in the well. The shape with two inflexion points and fronts varies from a small-thickness bedrock-spread pancake to a critical curvilinear triangle, which cusps toward the sink. The problem is mathematically solvable in a relatively narrow band of geometric and hydraulic parameters. A similar analytic solution for a static heavy bubble confined by a closed-curve interface (no contact with the bedrock) is outlined as an illustration of the method to solve a mixed boundary-value problem.

  3. Corrosion behaviour of 8090 alloy in saline solution with moderate aggressiveness

    International Nuclear Information System (INIS)

    Conde, A.; Damborenea, J.J.

    1998-01-01

    Corrosion studies of Al-Li alloys are not so extensive and concentrate almost exclusively on atmospheric exposure tests and accelerated laboratory tests due to the fact they provide a reasonable approximation to the real behaviour of the alloy in service conditions. This paper attempts to establish a correlation between the evolution of the impedance diagrams and the process of the attack undergone by a commercial 8090 T8171 alloy, with the aim of establishing the kinetics of the corrosion process. After 100 h of immersion, samples showed only a slight intergranular attack. As a results of the low aggressiveness of the solution no major deviations from the ideal behaviour described by the Randles circuit are expected in the impedance plots. After 50 hours of testing, the impedance diagram evolves towards two semicircles which seem to be related with the charge transfer and ionic migration through the oxide layer and the adsorption of electrolyte anions. (Author) 7 refs

  4. Interaction Mechanisms between Air Bubble and Molybdenite Surface: Impact of Solution Salinity and Polymer Adsorption.

    Science.gov (United States)

    Xie, Lei; Wang, Jingyi; Yuan, Duowei; Shi, Chen; Cui, Xin; Zhang, Hao; Liu, Qi; Liu, Qingxia; Zeng, Hongbo

    2017-03-07

    The surface characteristics of molybdenite (MoS 2 ) such as wettability and surface interactions have attracted much research interest in a wide range of engineering applications, such as froth flotation. In this work, a bubble probe atomic force microscope (AFM) technique was employed to directly measure the interaction forces between an air bubble and molybdenite mineral surface before/after polymer (i.e., guar gum) adsorption treatment. The AFM imaging showed that the polymer coverage on the surface of molybdenite could achieve ∼5.6, ∼44.5, and ∼100% after conditioning in 1, 5, and 10 ppm polymer solution, respectively, which coincided with the polymer coverage results based on contact angle measurements. The electrolyte concentration and surface treatment by polymer adsorption were found to significantly affect bubble-mineral interaction and attachment. The experimental force results on bubble-molybdenite (without polymer treatment) agreed well with the calculations using a theoretical model based on the Reynolds lubrication theory and augmented Young-Laplace equation including the effect of disjoining pressure. The overall surface repulsion was enhanced when the NaCl concentration decreased from 100 to 1 mM, which inhibited the bubble-molybdenite attachment. After conditioning the molybdenite surface in 1 ppm polymer solution, it was more difficult for air bubbles to attach to the molybdenite surface due to the weakened hydrophobic interaction with a shorter decay length. Increasing the polymer concentration to 5 ppm effectively inhibited bubble attachment on mineral surface, which was mainly due to the much reduced hydrophobic interaction as well as the additional steric repulsion between the extended polymer chains and bubble surface. The results provide quantitative information on the interaction mechanism between air bubbles and molybdenite mineral surfaces on the nanoscale, with useful implications for the development of effective polymer

  5. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.M., E-mail: mmahmoudradwan@yahoo.com [Ceramics Dept, National Research Centre, Cairo (Egypt); Abd El-Hamid, H.K. [Ceramics Dept, National Research Centre, Cairo (Egypt); Mohamed, A.F. [The Holding Company for Production of Vaccines, Sera and Drugs (EGYVAC) (Egypt)

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C{sub 2}S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C{sub 2}S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}·12H{sub 2}O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C{sub 2}S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C{sub 2}S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C{sub 2}S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way.

  6. Transient photoresponse of nitrogen-doped ultrananocrystalline diamond electrodes in saline solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahnood, Arman, E-mail: arman.ahnood@unimelb.edu.au; Ganesan, Kumaravelu; Stacey, Alastair; Prawer, Steven [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Simonov, Alexandr N.; Spiccia, Leone [School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Melbourne, Victoria 3800 (Australia); Laird, Jamie S. [CSIRO, Minerals Resources Flagship, School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Maturana, Matias I. [National Vision Research Institute, Australian College of Optometry, Carlton, Victoria 3053 (Australia); NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ibbotson, Michael R. [National Vision Research Institute, Australian College of Optometry, Carlton, Victoria 3053 (Australia); ARC Centre of Excellence for Integrative Brain Function, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2016-03-07

    Beyond conventional electrically-driven neuronal stimulation methods, there is a growing interest in optically-driven approaches. In recent years, nitrogen-doped ultrananocrystalline diamond (N-UNCD) has emerged as a strong material candidate for use in electrically-driven stimulation electrodes. This work investigates the electrochemical activity of N-UNCD in response to pulsed illumination, to assess its potential for use as an optically-driven stimulation electrode. Whilst N-UNCD in the as-grown state exhibits a weak photoresponse, the oxygen plasma treated film exhibits two orders of magnitude enhancement in its sub-bandgap open circuit photovoltage response. The enhancement is attributed to the formation of a dense network of oxygen-terminated diamond nanocrystals at the N-UNCD surface. Electrically connected to the N-UNCD bulk via sub-surface graphitic grain boundaries, these diamond nanocrystals introduce a semiconducting barrier between the sub-surface graphitic semimetal and the electrolyte solution, leading to a photovoltage under irradiation with wavelengths of λ = 450 nm and shorter. Within the safe optical exposure limit of 2 mW mm{sup −2}, charge injection capacity of 0.01 mC cm{sup −2} is achieved using a 15 × 15 μm electrode, meeting the requirements for extracellular and intercellular stimulation. The nanoscale nature of processes presented here along with the diamond's biocompatibility and biostability open an avenue for the use of oxygen treated N-UNCD as optically driven stimulating electrodes.

  7. Transient photoresponse of nitrogen-doped ultrananocrystalline diamond electrodes in saline solution

    International Nuclear Information System (INIS)

    Ahnood, Arman; Ganesan, Kumaravelu; Stacey, Alastair; Prawer, Steven; Simonov, Alexandr N.; Spiccia, Leone; Laird, Jamie S.; Maturana, Matias I.; Ibbotson, Michael R.

    2016-01-01

    Beyond conventional electrically-driven neuronal stimulation methods, there is a growing interest in optically-driven approaches. In recent years, nitrogen-doped ultrananocrystalline diamond (N-UNCD) has emerged as a strong material candidate for use in electrically-driven stimulation electrodes. This work investigates the electrochemical activity of N-UNCD in response to pulsed illumination, to assess its potential for use as an optically-driven stimulation electrode. Whilst N-UNCD in the as-grown state exhibits a weak photoresponse, the oxygen plasma treated film exhibits two orders of magnitude enhancement in its sub-bandgap open circuit photovoltage response. The enhancement is attributed to the formation of a dense network of oxygen-terminated diamond nanocrystals at the N-UNCD surface. Electrically connected to the N-UNCD bulk via sub-surface graphitic grain boundaries, these diamond nanocrystals introduce a semiconducting barrier between the sub-surface graphitic semimetal and the electrolyte solution, leading to a photovoltage under irradiation with wavelengths of λ = 450 nm and shorter. Within the safe optical exposure limit of 2 mW mm"−"2, charge injection capacity of 0.01 mC cm"−"2 is achieved using a 15 × 15 μm electrode, meeting the requirements for extracellular and intercellular stimulation. The nanoscale nature of processes presented here along with the diamond's biocompatibility and biostability open an avenue for the use of oxygen treated N-UNCD as optically driven stimulating electrodes.

  8. Exploring Poly(ethylene glycol-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution

    Directory of Open Access Journals (Sweden)

    Noverra M. Nizardo

    2018-03-01

    Full Text Available Nonionic-zwitterionic diblock copolymers are designed to feature a coil-to-globule collapse transition with an upper critical solution temperature (UCST in aqueous media, including physiological saline solution. The block copolymers that combine presumably highly biocompatible blocks are synthesized by chain extension of a poly(ethylene glycol (PEG macroinitiator via atom transfer radical polymerization (ATRP of sulfobetaine and sulfabetaine methacrylates. Their thermoresponsive behavior is studied by variable temperature turbidimetry and 1H NMR spectroscopy. While the polymers with polysulfobetaine blocks exhibit phase transitions in the physiologically interesting window of 30–50 °C only in pure aqueous solution, the polymers bearing polysulfabetaine blocks enabled phase transitions only in physiological saline solution. By copolymerizing a pair of structurally closely related sulfo- and sulfabetaine monomers, thermoresponsive behavior can be implemented in aqueous solutions of both low and high salinity. Surprisingly, the presence of the PEG blocks can affect the UCST-transitions of the polyzwitterions notably. In specific cases, this results in “schizophrenic” thermoresponsive behavior displaying simultaneously an UCST and an LCST (lower critical solution temperature transition. Exploratory experiments on the UCST-transition triggered the encapsulation and release of various solvatochromic fluorescent dyes as model “cargos” failed, apparently due to the poor affinity even of charged organic compounds to the collapsed state of the polyzwitterions.

  9. Acid-base and hemodynamic status of patients with intraoperative hemorrhage using two solution types: Crystalloid Ringer lactate and 1.3% sodium bicarbonate in half-normal saline solution.

    Science.gov (United States)

    Hashemi, Sayed Jalal; Heidari, Sayed Morteza; Yaraghi, Ahmad; Seirafi, Reza

    2016-01-01

    Intraoperative hemorrhage is one of the problems during surgery and, if it happens in a high volume without an immediate action to control, it can be fatal. Nowadays, various injectable solutions are used. The aim of this study was to compare the acid-base and hemodynamic status of the patient using two solutions, Ringer lactate and 1.3% sodium bicarbonate, in half saline solution. This clinical trial was performed at the Al-Zahra Hospital in 2013 on 66 patients who were randomly selected and put in two studied groups at the onset of hemorrhage. For the first group, crystalloid Ringer lactate solution and for the second group, 1.3% sodium bicarbonate in half-normal saline solution was used. Electrocardiogram, heart rate, O2 saturation non-invasive blood pressure and end-tidal CO2 were monitored. The arterial blood gas, blood electrolytes, glucose and blood urea nitrogen were measured before serum and blood injection. After the infusion of solutions and before blood transfusions, another sample was sent for measurement of blood parameters. Data were analyzed using SPSS software. The mean arterial pressure was significantly higher in the second group than in the first group at some times after the infusion of solutions. pHh levels, base excess, bicarbonate, sodium, strong ion differences and osmolarity were significantly greater and potassium and chloride were significantly lower in the second group than in the first group after the infusion of solutions. 1.3% sodium bicarbonate in half-normal saline solution can lead to a proper correction of hemodynamic instability. By maintaining hemodynamic status, osmolarity and electrolytes as well as better balance of acid-base, 1.3% sodium bicarbonate solution in half-normal saline solution can be more effective than Ringer lactate solution during intraoperative bleeding.

  10. Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior

    International Nuclear Information System (INIS)

    Chang, Hung-wen; Hsu, Cheng-che

    2011-01-01

    The effect of frequency on the characteristics of plasmas in saline solution driven by 50-1000 Hz ac power is studied. Two distinct modes, namely bubble and jetting modes, are identified. The bubble mode occurs under low frequencies. In this mode, a millimeter-sized bubble is tightly attached to the electrode tip and oscillates with the applied voltage. With an increase in frequency, it shows the jetting mode, in which bubbles, hundreds of micometers in diameter, are continuously formed and jetted away from the electrode surface. Such a significant change in the bubble behavior influences the power input at a given applied voltage and significantly affects the plasma behavior. In spite of the fact that no significant difference is seen in the optical emission spectra, the broadening of the H β peak shows that the bubble mode has a lower electron density than that of the jetting mode. The temporally resolved optical emission intensities show light emission in the negative half of the power period regardless of the modes. This shows clearly that the driving frequency significantly influences the bubble dynamics, which in turn alters the plasma behavior.

  11. Reverse osmosis, the solution for producing steam from highly saline water; Osmosis inversa, la solucion para la produccion de vapor con aguas de alta salinidad

    Energy Technology Data Exchange (ETDEWEB)

    Pujadas, A.

    2003-07-01

    Based on an exhaustive description of a particular example, the costs of installing an implementing various water treatment solutions for feeding a steam boiler are examined. When the characteristics of the water available indicate that it has a high saline content, i is possible to demonstrate the enormous technical, economic and environmental advantages of reducing its saline level by a system of reverse osmosis compared to the classical ion exchange resins. A list is given of the features to be taken into account in defining the equipment involved in treating the water for feeding steam boilers. (Author)

  12. Groundwater flow and solute transport at the Mourquong saline-water disposal basin, Murray Basin, southeastern Australia

    Science.gov (United States)

    Simmons, Craig; Narayan, Kumar; Woods, Juliette; Herczeg, Andrew

    2002-03-01

    Saline groundwater and drainage effluent from irrigation are commonly stored in some 200 natural and artificial saline-water disposal basins throughout the Murray-Darling Basin of Australia. Their impact on underlying aquifers and the River Murray, one of Australia's major water supplies, is of serious concern. In one such scheme, saline groundwater is pumped into Lake Mourquong, a natural groundwater discharge complex. The disposal basin is hydrodynamically restricted by low-permeability lacustrine clays, but there are vulnerable areas in the southeast where the clay is apparently missing. The extent of vertical and lateral leakage of basin brines and the processes controlling their migration are examined using (1) analyses of chloride and stable isotopes of water (2H/1H and 18O/16O) to infer mixing between regional groundwater and lake water, and (2) the variable-density groundwater flow and solute-transport code SUTRA. Hydrochemical results indicate that evaporated disposal water has moved at least 100 m in an easterly direction and that there is negligible movement of brines in a southerly direction towards the River Murray. The model is used to consider various management scenarios. Salt-load movement to the River Murray was highest in a "worst-case" scenario with irrigation employed between the basin and the River Murray. Present-day operating conditions lead to little, if any, direct movement of brine from the basin into the river. Résumé. Les eaux souterraines salées et les effluents de drainage de l'irrigation sont stockés dans environ 200 bassins naturels ou artificiels destinés à retenir les eaux salines dans tout le bassin de Murray-Darling, en Australie. Leur impact sur les aquifères sous-jacents et sur la rivière Murray, l'une des principales ressources en eau d'Australie, constitue un problème grave. Dans une telle situation, les eaux souterraines salines sont pompées dans le lac Mourquong, complexe dans lequel les nappes se d

  13. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  14. Usefulness of underwater endoscopic submucosal dissection in saline solution with a monopolar knife for colorectal tumors (with videos).

    Science.gov (United States)

    Nagata, Mitsuru

    2018-05-01

    Generally, colorectal endoscopic submucosal dissection (ESD) is performed with a monopolar knife with CO 2 supply from an endoscope. There are few case reports about underwater ESD (UESD) in saline solution with a bipolar knife. The usefulness and safety of UESD in saline solution with a monopolar knife are unclear. The present study aimed to investigate the usefulness and safety of UESD in saline solution with a monopolar knife for colorectal tumors. This retrospective, observational study on UESD for colorectal tumors included 26 colorectal tumors from 24 patients treated with UESD at our department between October 2015 and February 2017. The characteristics of patients, factors associated with ESD difficulty, treatment results, and variations in blood test data before and after UESD were analyzed. En bloc resection was successful in all lesions without any serious adverse events. The median major diameter of the resected specimens was 30 mm (interquartile range [IQR], 28-35) and of the tumor 22.5 mm (IQR, 17.8-25.3). The median procedure time was 60 minutes (IQR, 45-111) and median speed of dissection 10.4 mm 2 /min (IQR, 6.4-12.2). No cases of perforation occurred. Post-ESD bleeding occurred in only 1 case, and endoscopic hemostasis was achieved. There was no case of electrolyte imbalance requiring treatment after UESD. UESD in saline solution with a monopolar knife for colorectal tumors is useful and safe. UESD has potential advantages that should be further assessed. Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  15. Experimental alteration of R7T7 nuclear model glass in solutions with different salinities (90/sup 0/C, 1 bar): implications for the selection of geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Godon, N.; Thomassin, J.H.; Touray, J.C.; Vernaz, E.

    1988-01-01

    In order to simulate the leaching of nuclear wastes in repositories percolated by solutions of variable salinity, leaching tests of R7T7 glass in solutions with different NaCl contents have been performed at 90/sup 0/C and 1 bar using a static procedure. A comparison of the efficiency of the different leachants indicated that the alteration was maximum in pure water and in 23.7 g (NaCl) kg/sup -1/ solution. In deionized water, uranium- and rare-earth elements simulating the actinides were found quite immobile: they have not been detected in solution but are present in the alteration layer. On the other hand, in the 23.7 g (NaCl) kg/sup -1/ solution, high amounts of uranium, cerium and neodymium have been detected in solution and did not accumulate in the solid phases. In the highest salinity brines, the bulk reactivity of the glass decreased. In all leachants, the alteration layer was structured in two parts: hydrated glass and flakes. The flakes were mainly nickel-and zinc-bearing aluminosilicate phases. When crystallized, the flakes were identified as berthierine.

  16. Erythroid differentiation and commitment in rat erythroleukemia cells with hypertonic culture conditions.

    OpenAIRE

    Yamaguchi, Y; Kluge, N; Ostertag, W; Furusawa, M

    1981-01-01

    Cell cultures of 7,12-dimethylbenz[a]anthracene-induced rat erythroleukemia can be stimulated to synthesize hemoglobin when cultured in hypertonic media. During hypertonic treatment the intracellular osmotic conditions immediately readjust to those of the extracellular medium. None of the Friend virus-induced mouse erythroleukemia cell lines was inducible for differentiation with the same hypertonic culture conditions used for rat cells. Earliest commitment to erythroid terminal differentiati...

  17. Development of techniques and models for the determination of redox potentials of saline solutions; Entwicklung von Methoden und Modellen zur Bestimmung des Redoxpotentials salinarer Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven; Bischofer, Barbara; Scharge, Tina; Schoenwiese, Dagmar

    2014-03-15

    The mobility of radionuclides and heavy metals in aqueous systems depends significantly on their oxidation state. Under saline conditions the measurement of pH values and redox potential are distorted/falsified by solution-specific and hardly assessable ion diffusion effects at the reference electrode. The secure prognosis of redox properties is an essential prerequisite for the calculation of the expected heavy metal and radionuclide concentrations in case of a hypothetical solution ingress in an underground disposal facility. The evaluation of the existing data base shows that there are large uncertainties even for the solubility of widespread oxides and oxy-hydroxides like goethite or hematite. The redox properties of natural systems are determined by the solubility of metastable ferrous intermediate products like ferrihydrite, ''green rust'' or jarosite. The work is aimed to establish a consistent data base with information on these phases and ferrous solute species.

  18. Development of techniques and models for the determination of redox potentials of saline solutions; Entwicklung von Methoden und Modellen zur Bestimmung des Redoxpotentials salinarer Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven; Bischofer, Barbara; Scharge, Tina; Schoenwiese, Dagmar

    2014-03-15

    The mobility of radionuclides and heavy metals in aqueous systems depends significantly on their oxidation state. Under saline conditions the measurement of pH values and redox potential are distorted/falsified by solution-specific and hardly assessable ion diffusion effects at the reference electrode. The secure prognosis of redox properties is an essential prerequisite for the calculation of the expected heavy metal and radionuclide concentrations in case of a hypothetical solution ingress in an underground disposal facility. The evaluation of the existing data base shows that there are large uncertainties even for the solubility of widespread oxides and oxy-hydroxides like goethite or hematite. The redox properties of natural systems are determined by the solubility of metastable ferrous intermediate products like ferrihydrite, ''green rust'' or jarosite. The work is aimed to establish a consistent data base with information on these phases and ferrous solute species.

  19. High-spatial-resolution isotropic three-dimensional fast-recovery fast spin-echo magnetic resonance dacryocystography combined with topical administration of sterile saline solution

    International Nuclear Information System (INIS)

    Jing, Zhang; Lang, Chen; Qiu-Xia, Wang; Rong, Liu; Xin, Luo; Wen-Zhen, Zhu; Li-Ming, Xia; Jian-Pin, Qi; He, Wang

    2013-01-01

    Objective: This study aims to investigate the clinical performance of three-dimensional (3D) fast-recovery fast spin-echo (FRFSE) magnetic resonance dacryocystography (MRD) with topical administration of sterile saline solution for the assessment of the lacrimal drainage system (LDS). Methods: A total of 13 healthy volunteers underwent both 3D-FRFSE MRD and two-dimensional (2D)-impulse recovery (IR)-single-shot fast spin-echo (SSFSE) MRD after topical administration of sterile saline solution, and 31 patients affected by primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FRFSE MRD and conventional T1- and T2-weighted sequences. All patients underwent lacrimal endoscopy or surgery, which served as a standard of reference for confirming the MRD findings. Results: 3D-FRFSE MRD detected more visualized superior and inferior canaliculi and nasolacrimal duct than 2D-IR-SSFSE MRD. Compared with 2D-IR-SSFSE MRD, 3D-FRFSE MRD showed more visualized segments per LDS, although the difference was not statistically significant. Significant improvements in the inferior canaliculus and nasolacrimal duct visibility grades were achieved using 3D-FRFSE MRD. 3D-FRFSE MRD had 100% sensitivity and 63.6% specificity for detecting LDS obstruction. In 51 out of the 62 LDSs that were assessed, a 90% agreement was noted between the findings of 3D-FRFSE MRD and lacrimal endoscopy in detecting the obstruction level. Conclusion: 3D-FRFSE MRD combined with topical administration of sterile saline solution is a simple and noninvasive method of obtaining detailed morphological and functional information on the LDS. Overall, 3D-FRFSE MRD could be used as a reliable diagnostic method in many patients with epiphora prior to surgery

  20. Analysis of the variation of the activity of a "9"9"mTc sample after dilution with saline solution

    International Nuclear Information System (INIS)

    Kuahara, L.T.; Correa, E.L.; Potiens, M.P.A.

    2016-01-01

    The activity meter is essential equipment in nuclear medicine services.To ensure its good operation and know the factors which may influence its readings is vital for the activity administered to the patient be correct. Many factors may influence the activity meter accuracy, such as the type of container, geometry, and radioactive material volume. The aim of this study was to analyze the measurements variations in 0.5 ml and 1.0 ml of "9"9"mTc pure and diluted in 2.5 ml of saline solution, in containers used in nuclear medicine. Variations of up to 4 % in measured values were found. (author)

  1. Resposta de cultivares de alface à salinidade da solução nutritiva com rejeito salino em hidroponia Response of lettuce cultivars to nutrient solution salinity with saline rejects in hydropony

    Directory of Open Access Journals (Sweden)

    Nildo da S Dias

    2011-10-01

    Full Text Available No processo de dessalinização se gera, além da água potável, um rejeito altamente salino e de poder poluente elevado, o qual pode ser utilizado na produção agrícola rentável dependendo da adoção de práticas culturais adequadas e da tolerância das plantas às condições salinas. Nos últimos anos a tendência tem sido a substituição da agricultura convencional por sistemas hidropônicos de cultivos, considerados um dos mais eficientes no uso de água. O objetivo desta pesquisa foi analisar a resposta de duas cultivares de alface sob sistema hidropônico de cultivo (Lactuca sativa L., cvs. Verônica e Babá de verão em diferentes níveis de salinidade da solução nutritiva preparadas com água de abastecimento, água de rejeito coletada no dessalinizador e da sua diluição com água de abastecimento a 75, 50 e 25%, resultando em condutividades elétricas da solução nutritiva (CEs de 1,1; 2,4; 3,6; 4,7 e 5,7 dS m-1 após as diluições e adição de fertilizantes. Ocorreu variação genotípica sob as variáveis de crescimento e produção da alface, exceto para o número de folhas, sendo a cultivar Babá de verão a que produziu maior rendimento, independentemente do nível de salinidade e, portanto, a cultivar mais tolerante à salinidade da água com rejeito salino.In desalination process, besides the potable water, highly salty and polluted water (brine is generated, which can be used for producing profitable crops depending on the adequate cultural practices as well as on the plant ability of reacting to saline conditions. The trend in recent years has been towards conversion of conventional agriculture to soilless agriculture which is considered to be a more efficient use of water system. The aim of this research was to examine the response of two lettuce cultivars (Lactuca sativa L. cvs. Veronica, Babá de verão under hydroponic system to different levels of salinity of the nutrient solutions prepared with tap water

  2. Study and application of new chelating resin to recovery uranium from in-situ leach solution with high content saline chloride ion

    International Nuclear Information System (INIS)

    Zhang Jianguo; Qiu Yueshuang; Feng Yu; Deng Huidong; Zhao Chaoya

    2014-01-01

    Research on the adsorption and elution property of D814 chelating resin was carried out aiming at the difficult separation of uranium from high content saline chloride ion in situ leach liquor and the adsorption mechanism is also discussed. Influence factors such as contact time, pH value, Ca"2"+, Mg"2"+ and Cl"- concentration etc. to the resin adsorption were studied. Experimental results show that adsorption rate is lowly which need 6h to arrive at the adsorption equilibrium. The resin adsorption uranium pH in the solution is from l.33 to 9. When total salinity is over 20 g/L, calcium ion, and magnesium ion is about 3 g/L, there are no big influence on resin adsorption capacity. The resin has good chloride ion resistance. When chloride ion is over 60 g/L, it is no influence on resin adsorption uranium. Column experiment results indicate that ratio of saturation volume to break-through point volume is l.82, resin saturation uranium capacity is 40.5 mg. U/_g_(_∓_)_R. When elution volume bed number is 23, the eluted solution uranium concentration is below 80 mg/L. The elution rate of the uranium is 96.2%. (authors)

  3. What are the effects of hypertonic saline plus furosemide in acute heart failure?

    Directory of Open Access Journals (Sweden)

    Patricio Zepeda

    2015-08-01

    Full Text Available En la búsqueda de nuevas terapias para resolver la resistencia a los diuréticos en insuficiencia cardiaca aguda se ha planteado la adición de suero hipertónico. Utilizando la base de datos Epistemonikos, la cual es mantenida mediante búsquedas en 30 bases de datos, identificamos dos revisiones sistemáticas que en conjunto incluyen nueve estudios aleatorizados. Realizamos un metanálisis y tablas de resumen de los resultados utilizando el método GRADE. Se concluye que el suero hipertónico asociado a furosemida probablemente disminuye la mortalidad, estadía y reingreso hospitalario en pacientes con insuficiencia cardiaca descompensada.

  4. Intra-articular injection of hyaluronic acid is not superior to saline solution injection for ankle arthritis: a randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    DeGroot, Henry; Uzunishvili, Sofia; Weir, Robert; Al-omari, Ali; Gomes, Bruna

    2012-01-04

    Intra-articular injections of hyaluronic acid are potentially useful to treat ankle osteoarthritis, yet their effectiveness has not been proven. Both single and multiple-dose treatments for ankle arthritis with use of various hyaluronic acid products have been recommended, but few high-quality studies have been published. The aim of this study was to compare the effectiveness of a single intra-articular injection of hyaluronic acid with a single intra-articular injection of normal saline solution (placebo) for osteoarthritis of the ankle. Sixty-four patients with ankle osteoarthritis who met all study criteria were randomly assigned to a single intra-articular injection of 2.5 mL of low-molecular-weight, non-cross-linked hyaluronic acid or a single intra-articular injection of 2.5 mL of normal saline solution. The primary outcome measure was the change from baseline in the American Orthopaedic Foot & Ankle Society (AOFAS) clinical rating score at the six-week and twelve-week follow-up examination. Secondary outcome measures included the Ankle Osteoarthritis Scale score and patient-reported pain with use of a visual analog pain scale. Of the sixty-four patients randomized and treated, eight patients withdrew, leaving fifty-six patients who completed the entire study. There was one mild adverse event (1.6%) among the sixty-four patients. At six weeks and twelve weeks, the mean AOFAS scores in the hyaluronic acid group had improved from baseline by 4.9 and 4.9 points, respectively, whereas the mean AOFAS scores in the placebo group initially worsened by 0.4 point at six weeks and then improved by 5.4 points at twelve weeks. While the change at twelve weeks from baseline was substantial for both groups, the between-group differences were not significant. We found that a single intra-articular injection of low-molecular-weight, non-cross-linked hyaluronic acid is not demonstrably superior to a single intra-articular injection of saline solution for the treatment of

  5. Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts

    International Nuclear Information System (INIS)

    Marzun, Galina; Nakamura, Junji; Zhang, Xiaorui; Barcikowski, Stephan; Wagener, Philipp

    2015-01-01

    Graphical abstract: - Highlights: • We studied laser-generated, size-controlled palladium nanoparticles in saline solution. • Palladium nanoparticles were electrostatically stabilized by anions. • Photo- and electrocatalyst are prepared by supporting Pd nanoparticles to TiO 2 and graphene. • Particle size does not change during supporting process, while 18 wt% load has been achieved. • Palladium nanoparticles and graphene undergo a redox-reaction during adsorption. - Abstract: In the literature many investigations on colloidal stability and size control of gold nanoparticles are shown but less for ligand-free palladium nanoparticles, which can be promising materials in various applications. Palladium nanoparticles are perspective materials for a manifold of energy application like photo- and electrocatalysis or hydrogen storage. For this purpose, size-controlled nanoparticles with clean surfaces and facile immobilization on catalyst supports are wanted. Laser ablation in saline solution yields ligand-free, charged colloidal palladium nanoparticles that are supported by titania and graphene nanosheets as model systems for photo- and electrocatalysis, respectively. By adjusting the ionic strength during laser ablation in liquid, it is possible to control stability and particle size without compromising subsequent nanoparticle adsorption of supporting materials. A quantitative deposition of nearly 100% yield with up to 18 wt% nanoparticle load was achieved. The average size of the laser-generated nanoparticles remains the same after immobilization on a support material, in contrast to other preparation methods of catalysts. The characterization by X-ray photoelectron spectroscopy reveals a redox reaction between the immobilized nanoparticles and the graphene support

  6. Upper Limb Hypertonicity in Children with Cerebral Palsy: A Review Study on Medical and Rehabilitative Management

    Directory of Open Access Journals (Sweden)

    Mehdi Rassafiani

    2013-10-01

    Full Text Available Hypertonicity is the most common type of cerebral palsy consists of 85% of the affected children. It has a very complex nature making intervention and management very difficult. This article tries to make reader familiar with various types of intervention and introduce a new intervention process to help clinicians decide better. Literature was reviewed with two criteria including: identifying various interventions and their effects on upper limb hypertonicity and level ofinvasiveness of each intervention. This paper suggested a new way of looking at hypertonicitybased on its two components (i.e., neural and biomechanical and effectiveness of each intervention on these components. In the treatment and management of hypertonicity, clinicians are required tolook at all aspects of hypertonicity and then based on the provided decision tree, decide which kind of treatment to be used for the child.

  7. Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions.

    Science.gov (United States)

    Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques

    2014-12-29

    The optical properties of an ultrathin discontinuous gold film in different dielectric surroundings are investigated experimentally by measuring the polarization-dependent wavelength shifts and amplitudes of the cladding mode resonances of a tilted fiber Bragg grating. The gold film was prepared by electron-beam evaporation and had an average thickness of 5.5 nm ( ± 1 nm). Scanning electron imaging was used to determine that the film is actually formed of individual particles with average lateral dimensions of 28 nm ( ± 8 nm). The complex refractive indices of the equivalent uniform film in air at a wavelength of 1570 nm were calculated from the measurements to be 4.84-i0.74 and 3.97-i0.85 for TM and TE polarizations respectively (compared to the value for bulk gold: 0.54-i10.9). Additionally, changes in the birefringence and dichroism of the films were measured as a function of the surrounding medium, in air, water and a saturated NaCl (salt) solution. These results show that the film has stronger dielectric behavior for TM light than for TE, a trend that increases with increasing surrounding index. Finally, the experimental results are compared to predictions from two widely used effective medium approximations, the generalized Maxwell-Garnett and Bruggeman theories for gold particles in a surrounding matrix. It is found that both of these methods fail to predict the observed behavior for the film considered.

  8. Intermediate and long-term radiological consequences of an uncontrolled access of saline solution into the Asse mine - 59163

    International Nuclear Information System (INIS)

    Ustohalova, Veronika; Kueppers, Christian

    2012-01-01

    analytical solution of one- or two-dimensional dispersion-convention transport equation. The tool 'Migration' allows to quickly estimate the possible ranges of radioactive contamination in the ground water table over time whereas several parameters can be varied. The radiological exposure in the tool 'Exposure' can be calculated according to Gernrman approach AVV [3] or BglB [4]. The calculation model was tested on specific examples and the agreement with the reality was proven. There have been several approaches published on the subject of groundwater flow or radionuclide transfer in Asse mine but no one introduced more exactly radionuclide migration with coupled migration of decay chains and combined it in addition with the computation of radionuclide transfer in the biosphere. (authors)

  9. A Comparison Study of Growth Factor Expression following Treatment with Transcutaneous Electrical Nerve Stimulation, Saline Solution, Povidone-Iodine, and Lavender Oil in Wounds Healing

    Directory of Open Access Journals (Sweden)

    Adalet Koca Kutlu

    2013-01-01

    Full Text Available This study compared the effects of transcutaneous electrical nerve stimulation (TENS, saline solution (SS, povidone-iodine (PI, and lavender oil (Lavandula angustifolia through expression of growth factors in a rat model of wound healing. Six experimental groups were established, each containing 8 rats: a healthy group with no incision wounds, an incision-control group, an incision and TENS group, an incision and SS group, an incision and PI group, and an incision and lavender oil group. Experiments continued for 5 days, after which the skin in the excision area was removed. Tissue concentrations of epidermal growth factor (EGF and platelet-derived growth factor (PDGF-A were measured using enzyme-linked immunosorbent assay (ELISA. Tissue expressions of EGF, PDGF-A, and fibroblast growth factor (FGF-2 were determined using immunohistochemistry. Wound closure progressed more rapidly in the TENS and lavender oil groups than in the control and other study groups. In particular, PDGF-A expressions in the dermis and EGF expression in the epidermis were significantly intense in the TENS group (P<0.05. In addition, ELISA levels of growth factors such as PDGF-A and EGF were significantly higher in TENS group compared to the control group (P<0.05. These immunohistochemical and ELISA results suggest that TENS may improve wound healing through increasing growth factors in the dermis and epidermis more than other topical applications.

  10. Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells.

    Science.gov (United States)

    Tokuda, M; Fujisawa, M; Miyashita, K; Kawakami, Y; Morimoto-Yamashita, Y; Torii, M

    2015-02-01

    To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.

  11. Influence of alkaline (PH 8.3-12.0) and saline solutions on chemical, mineralogical and physical properties of two different bentonites - batch experiments at 25 deg. C

    International Nuclear Information System (INIS)

    Heikola, Tiina; Vuorinen, Ulla; Kumpulainen, Sirpa; Kiviranta, Leena; Korkeakoski, Petri

    2012-01-01

    Document available in extended abstract form only. Construction of a spent fuel repository deep in the bedrock will need supporting structures using cement materials. A part of them can be removed before closure but still it is estimated that about 1000 tonnes will remain in the host rock. Degradation of cementitious materials produces leachates of high pH. If such an alkaline plume reaches the bentonite buffer, it may induce mineralogical and chemical changes in bentonite over long term, and further affect the safety functions of the buffer. Laboratory experiments were done with the objective to gain data of possible alterations in mineralogical, chemical and physical properties of bentonites contacted with high-pH saline solutions. Two untreated, high grade, Na- and Ca-bentonites, were used in batch experiments, which were carried out in an anaerobic glove-box at 25±1 deg. C for 554 days. Each bentonite sample (20 g) was leached with approximately 3.8 L of leaching solution, which equals 190 mL/g of bentonite. The bentonites were leached with three types of simulated cement waters (pH 9.7, 11.3 and 12.0) and one saline groundwater simulate (pH 8.3) as a reference. The leaching solutions were 0.3 M, and contained NaCl and CaCl 2 , and trace amounts of SiO 2 , K, Br, Mg and SO 4 . Dissolved oxygen and carbon dioxide were removed from leaching solutions before mixing of bentonite in PC bottles. The samples were placed on a platform shaker in order to allow better contact between bentonite and the leaching solution. The evolution of pH in the samples was followed by measuring the pH-value of each sample in the solution phase approximately twice a week and the solution was renewed when values of two to three consecutive measurements did not change. On average, the leaching solution was renewed once a month. For each renewal of the leaching solution the phases were separated, the reacted solution withdrawn, and the chemical composition analysed. Before analysis the

  12. Role of permissive hypotension, hypertonic resuscitation and the global increased permeability syndrome in patients with severe hemorrhage: adjuncts to damage control resuscitation to prevent intra-abdominal hypertension.

    Science.gov (United States)

    Duchesne, Juan C; Kaplan, Lewis J; Balogh, Zsolt J; Malbrain, Manu L N G

    2015-01-01

    Secondary intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are closely related to fluid resuscitation. IAH causes major deterioration of the cardiac function by affecting preload, contractility and afterload. The aim of this review is to discuss the different interactions between IAH, ACS and resuscitation, and to explore a new hypothesis with regard to damage control resuscitation, permissive hypotension and global increased permeability syndrome. Review of the relevant literature via PubMed search. The recognition of the association between the development of ACS and resuscitation urged the need for new approach in traumatic shock management. Over a decade after wide spread application of damage control surgery damage control resuscitation was developed. DCR differs from previous resuscitation approaches by attempting an earlier and more aggressive correction of coagulopathy, as well as metabolic derangements like acidosis and hypothermia, often referred to as the 'deadly triad' or the 'bloody vicious cycle'. Permissive hypotension involves keeping the blood pressure low enough to avoid exacerbating uncontrolled haemorrhage while maintaining perfusion to vital end organs. The potential detrimental mechanisms of early, aggressive crystalloid resuscitation have been described. Limitation of fluid intake by using colloids, hypertonic saline (HTS) or hyperoncotic albumin solutions have been associated with favourable effects. HTS allows not only for rapid restoration of circulating intravascular volume with less administered fluid, but also attenuates post-injury oedema at the microcirculatory level and may improve microvascular perfusion. Capillary leak represents the maladaptive, often excessive, and undesirable loss of fluid and electrolytes with or without protein into the interstitium that generates oedema. The global increased permeability syndrome (GIPS) has been articulated in patients with persistent systemic inflammation failing

  13. AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface.

    Science.gov (United States)

    Kim, Seong Han; Opdahl, Aric; Marmo, Chris; Somorjai, Gabor A

    2002-04-01

    The surfaces of two types of soft contact lenses neutral and ionic hydrogels--were characterized by atomic force microscopy (AFM) and sum-frequency-generation (SFG) vibrational spectroscopy. AFM measurements in saline solution showed that the presence of ionic functional groups at the surface lowered the friction and adhesion to a hydrophobic polystyrene tip. This was attributed to the specific interactions of water and the molecular orientation of hydrogel chains at the surface. Friction and adhesion behavior also revealed the presence of domains of non-crosslinked polymer chains at the lens surface. SFG showed that the lens surface became partially dehydrated upon exposure to air. On this partially dehydrated lens surface, the non-crosslinked domains exhibited low friction and adhesion in AFM. Fully hydrated in saline solution, the non-crosslinked domains extended more than tens of nanometers into solution and were mobile.

  14. Chemical behaviour of trivalent and pentavalent americium in saline NaCl-solutions. Studies of transferability of laboratory data to natural conditions. Interim report. Reported period: 1.2.1993-31.12.1993

    International Nuclear Information System (INIS)

    Runde, W.; Kim, J.I.

    1994-09-01

    In order to clarify the chemical behaviour of Americium in saline aqueous systems relevant for final storage this study deals with the chemical reactions of trivalent and pentavalent Americium in NaCl-solutions under the influence of radiolysis from its own alpha radiation. The focus of the study was on investigating the geologically relevant reactions, such as hydrolysis or carbonate- and chloride complexing in solid-liquid equilibriums. Comprehensive measurements on solubility and spectroscopic studies in NaCl-solutions were carried out in a CO 2 -free atmosphere and 10 -2 atm CO 2 partial pressure. Identification and characterisation of the AM (III) and AM(V) solid phases were supplemented by structural research with the chemically analogue EU (III) and Np(V) compounds. The alpha-radiation induced radiolysis in saline NaCl solutions and the redox behaviour of Americium which was influenced thereby were spectroscopically quantified. (orig.) [de

  15. Potential application of metabolic engineering to tune the production of compatible solutes for enhancing tolerance of crop plants to salinity/drought (abstract)

    International Nuclear Information System (INIS)

    Sharmila, P.; Saradhi, P.P.

    2005-01-01

    Essential need to develop genotypes of crop plants that can substantially withstand salinity and drought with little yield losses is being increasingly felt, as the cultivable agricultural lands is increasingly being exposed to these stresses. In-spite of gains in productivity, conventional plant breeding methods have their limitations either due to limited gene pool or due to species barrier for gene transfer. Modern molecular tools have paved ways for identification of genes imparting abiotic stress tolerance in unrelated species/organisms and to transfer the selected genes into desirable crop plant species by conquering the incompatibility barriers. In fact, now genetic engineering has been widely realized to be in important tool for developing abiotic stress tolerant crop plants. Abiotic stress tolerance is a complex phenomenon involving simultaneous expression of a number of genes coupled with an interaction of varying weather variables and crop phonology. However, in order to tackle the issue, successful attempts have been made in identifying genes enhancing abiotic stress tolerance. The genes for biosynthesis of various compatible solutes (viz., mtlD for mannitol: P5CS or P5CSF129A for proline; coda/cox or belA/beIB for glycinebetaine' lpsl for trehalose; PINOI for inositol) have been demonstrated to enhance abiotic stress tolerance of plants. We have isolated the codA gene (Accession number AY589052) for choline oxidase from an Indian strain of Arthrobacter sp. from IMTECH (Chandigarh) and the mtlD genes from local strains of E. coli (accession number A Y523630) and halobacterium sp. (Accession number A Y52363 1). We have enhanced the tolerance of Brassica juncea to salt, drought and low temperature stresses by introducing the codA gene from Arthrobacter globiformis using Agrobacterium tumefaciens mediated transformation. Presenting our research team is busy developing genotypes of chickpea black gram, peanut and sorghum besides mustard with enhanced

  16. Modification of permeability of frog perineurium to [14C]-sucrose by stretch and hypertonicity

    International Nuclear Information System (INIS)

    Weerasuriya, A.; Rapoport, S.I.; Taylor, R.E.

    1979-01-01

    An in vitro method has been developed to determine quantitatively the permeability of the perineurium to radiotracers at room temperature. The permeability to [ 14 C]sucrose of the isolated perineurium of the sciatic nerve of the frog, Rana pipiens, was measured at rest length, when the perineurium was stretched and after the perineurium had been subjected to hypertonic treatment. Mean permeability at rest length was calculated to be 5.6 +- 0.27 (S.E.M., n=45)x10 -7 cm/sec, and both stretch and hypertonic treatment increased the permeability. A 10% stretch increased permeability reversibly, whereas a 20% stretch or immersion of the perineurium in a hypertonic bath increased permeability irreversibly. Altered permeability under these conditions might be related to changes in the ultrastructure of tight junctions in the perineurium. (Auth.)

  17. Finite elements-based 2D theoretical analysis of the effect of IEX membrane thickness and salt solution residence time on the ion transport within a salinity gradient power reverse electrodialysis half cell pair

    OpenAIRE

    Etienne, Brauns

    2013-01-01

    Reverse electrodialysis electrical power generation is based on the transport of salt ions through ion conductive membranes. The ion flux, equivalent to an electric current, results from a salinity gradient, induced by two salt solutions at significantly different concentrations. Such equivalent electric current in combination with the corresponding electrochemical potential difference across the membrane, equivalent to an electric potential, results in a battery equivalency. While having a c...

  18. The hypertonic environment differentially regulates wild-type CFTR and TNR-CFTR chloride channels.

    Science.gov (United States)

    Lassance-Soares, Roberta M; Cheng, Jie; Krasnov, Kristina; Cebotaru, Liudmila; Cutting, Garry R; Souza-Menezes, Jackson; Morales, Marcelo M; Guggino, William B

    2010-01-01

    This study tested the hypotheses that the hypertonic environment of the renal medulla regulates the expression of cystic fibrosis transmembrane conductance regulator protein (CFTR) and its natural splice variant, TNR-CFTR. To accomplish this, Madin-Darby canine kidney (MDCK) stable cell lines expressing TNR-CFTR or CFTR were used. The cells were treated with hypertonic medium made with either NaCl or urea or sucrose (480 mOsm/kg or 560 mOsm/kg) to mimic the tonicity of the renal medulla environment. Western blot data showed that CFTR and TNR-CFTR total cell protein is increased by hypertonic medium, but using the surface biotinylation technique, only CFTR was found to be increased in cell plasma membrane. Confocal microscopy showed TNR-CFTR localization primarily at the endoplasmic reticulum and plasma membrane. In conclusion, CFTR and TNR-CFTR have different patterns of distribution in MDCK cells and they are modulated by a hypertonic environment, suggesting their physiological importance in renal medulla. Copyright © 2010 S. Karger AG, Basel.

  19. Inducible nucleosome depletion at OREBP-binding-sites by hypertonic stress.

    Directory of Open Access Journals (Sweden)

    Edith H Y Tong

    Full Text Available BACKGROUND: Osmotic Response Element-Binding Protein (OREBP, also known as TonEBP or NFAT5, is a unique transcription factor. It is hitherto the only known mammalian transcription factor that regulates hypertonic stress-induced gene transcription. In addition, unlike other monomeric members of the NFAT family, OREBP exists as a homodimer and it is the only transcription factor known to bind naked DNA targets by complete encirclement in vitro. Nevertheless, how OREBP interacts with target DNA, also known as ORE/TonE, and how it elicits gene transcription in vivo, remains unknown. METHODOLOGY: Using hypertonic induction of the aldose reductase (AR gene activation as a model, we showed that OREs contained dynamic nucleosomes. Hypertonic stress induced a rapid and reversible loss of nucleosome(s around the OREs. The loss of nucleosome(s was found to be initiated by an OREBP-independent mechanism, but was significantly potentiated in the presence of OREBP. Furthermore, hypertonic induction of AR gene was associated with an OREBP-dependent hyperacetylation of histones that spanned the 5' upstream sequences and at least some exons of the gene. Nevertheless, nucleosome loss was not regulated by the acetylation status of histone. SIGNIFICANCE: Our findings offer novel insights into the mechanism of OREBP-dependent transcriptional regulation and provide a basis for understanding how histone eviction and transcription factor recruitment are coupled.

  20. A model of fluid and solute exchange in the human: validation and implications.

    Science.gov (United States)

    Bert, J L; Gyenge, C C; Bowen, B D; Reed, R K; Lund, T

    2000-11-01

    In order to understand better the complex, dynamic behaviour of the redistribution and exchange of fluid and solutes administered to normal individuals or to those with acute hypovolemia, mathematical models are used in addition to direct experimental investigation. Initial validation of a model developed by our group involved data from animal experiments (Gyenge, C.C., Bowen, B.D., Reed, R.K. & Bert, J.L. 1999b. Am J Physiol 277 (Heart Circ Physiol 46), H1228-H1240). For a first validation involving humans, we compare the results of simulations with a wide range of different types of data from two experimental studies. These studies involved administration of normal saline or hypertonic saline with Dextran to both normal and 10% haemorrhaged subjects. We compared simulations with data including the dynamic changes in plasma and interstitial fluid volumes VPL and VIT respectively, plasma and interstitial colloid osmotic pressures PiPL and PiIT respectively, haematocrit (Hct), plasma solute concentrations and transcapillary flow rates. The model predictions were overall in very good agreement with the wide range of experimental results considered. Based on the conditions investigated, the model was also validated for humans. We used the model both to investigate mechanisms associated with the redistribution and transport of fluid and solutes administered following a mild haemorrhage and to speculate on the relationship between the timing and amount of fluid infusions and subsequent blood volume expansion.

  1. Early Response of Protein Quality Control in Gills Is Associated with Survival of Hypertonic Shock in Mozambique tilapia

    Science.gov (United States)

    Tang, Cheng-Hao; Lee, Tsung-Han

    2013-01-01

    The protein quality control (PQC) mechanism is essential for cell function and viability. PQC with proper biological function depends on molecular chaperones and proteases. The hypertonicity-induced protein damage and responses of PQC mechanism in aquatic organisms, however, are poorly understood. In this study, we examine the short-term effects of different hypertonic shocks on the levels of heat shock proteins (HSPs, e.g., HSP70 and HSP90), ubiquitin-conjugated proteins and protein aggregation in gills of the Mozambique tilapia (Oreochromis mossambicus). Following transfer from fresh water (FW) to 20‰ hypertonicity, all examined individuals survived to the end of experiment. Moreover, the levels of branchial HSPs and ubiquitin-conjugated proteins significantly increased at 3 and 24 h post-transfer, respectively. Up-regulation of HSPs and ubiquitin-conjugated proteins was sufficient to prevent the accumulation of aggregated proteins. However, the survival rate of tilapia dramatically declined at 5 h and all fish died within 7 h after direct transfer to 30‰ hypertonicity. We presumed that this result was due to the failed activation of gill PQC system, which resulted in elevating the levels of aggregated proteins at 3 and 4 h. Furthermore, in aggregated protein fractions, the amounts of gill Na+/K+-ATPase (NKA) remained relatively low when fish were transferred to 20‰ hypertonicity, whereas abundant NKA was found at 4 h post-transfer to 30‰ hypertonicity. This study demonstrated that the response of PQC in gills is earlier than observable changes in localization of ion-secreting transport proteins upon hypertonic challenge. To our knowledge, this is the first study to investigate the regulation of PQC mechanism in fish and characterize its important role in euryhaline teleost survival in response to hypertonic stress. PMID:23690986

  2. The Making of Salty Soy Sauce From Koro Benguk (Mucuna Pruriens (Study of Saline Concentration of Salt Solution and Duration of Moromi's Fermentation

    Directory of Open Access Journals (Sweden)

    Arie Febrianto Mulyadi

    2016-02-01

    Full Text Available The objectives of this study were to determine the saline concentration and moromi’s fermentation duration of Koro Benguk salty soy sauce at best organolepticly and determine consumers’ preferences towards Koro Benguk salty soy sauce from the best treatment results. The study was conducted using a randomized design method using two factors: the saline concentration (17%; 20%; and 23% and duration of moromi’s fermentation (2; 3; and 4 weeks. The best treatment results based on the Friedman test was on the saline concentration of 17% and moromi’s fermentation duration was 4 weeks, with the NP value of 1,000; had a preference color level of 5:40 (liked; aroma of 4.30 (rather liked; flavor of 4.55 (rather liked; and viscosity of 5.05 (liked. The obtained protein was 7.14%; and dissolved solids of 27obrix. Consumers’ preferences towards the best treatment showed that product of Koro Benguk salty soy sauce was acceptable to consumers.

  3. [The effect of hypertonic seawater and isotonic seawater for nasal mucosa of allergic rhinitis mice model].

    Science.gov (United States)

    Deng, Zhifeng; Xu, Yu; Ou, Jin; Xiang, Rong; Tao, Zezhang

    2014-12-01

    To study the effect of hypertonic seawater and isotonic seawater for nasal mucosa of allergic rhinitis mice model, and explore the possible mechanism of nasal irrigation with seawater in treatment of allergic rhinitis. We used Der pl to make allergic rhinitis model of BALB/c mice, and divided them into three groups randomly. Nasal irrigation with hypertonic seawater (HS) or isotonic seawater (IS) in the treatment group 1-14 days after modeling, and black control (BC) group was given no treatment after modeling. Normal control (NC) group was given no treatment, the number of rubs and sneezings in each group were counted in 30 min after the last nasal irrigation. Mice were then killed 24 h after the last therapy. The noses of mice from each group were removed and fixed, then the slices were stained with hematoxylin and eosin, the others were observed by transmission electron microscope. Mice with hypertonic seawater and isotonic seawater were significantly improved in rubs and sneezings compared to the black control group (P 0. 05); Ciliated columnar epithelium cells in mucosal tissues of HS group and IS group were arranged trimly, better than that in the black control group. Morphology and microstructure in nasal mucosal of HS group was closer to the normal group than in IS group. The injury of nasal mucosa ciliated epithelium was significantly improved by nasal irrigation with hypertonic seawater and isotonic seawater, and the former is better than the latter, the mechanism of nasal irrigation with seawater in treatment of allergic rhinitis may rely on repairing the injured nasal mucosa ciliated epithelium, thereby the symptoms of nasal was reduced.

  4. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    Science.gov (United States)

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-10-01

    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  5. [The role of arteriovenous interrelations in the formation of clinical-pathogenetic variants of hypertonic encephalopathy].

    Science.gov (United States)

    Belova, L A

    2012-01-01

    We studied 209 patients with chronic brain ischemia due to arterial hypertension (hypertonic encephalopathy). 93 patients (44.5%) had clinical-anamnestic features of constitutional phlebopathy and 116 (55.5%) had not. Based on the conception of 5 functional-morphological levels of the vascular brain system, a complex ultrasound study was conducted. The control group included 30 people without cerebrovascular pathology. In hypertonic encephalopathy, pathological processes developing in the 1st and 2nd structural-functional levels (extra- and intracerebral arteries) correspond to remodeling, that is characteristic of arterial hypertension, and do not depend on the presence of the constitutional venous insufficiency. Changes in parameters of the blood flow in the 3rd, 4th and 5th structural-functional levels of the brain's blood supply (microcirculatory bed, head venous system, jugular and spine veins) form a dopplerographic pattern of the cerebral venous dyscirculation which is mostly pronounced in constitutional phlebopathy in patients with hypertonic encephalopathy. This pattern includes the reduction of linear blood flow velocity in nitroglycerine test, lower values of the resistance index and the increase in the linear blood flow velocity in the sinus transversus and Rosenthal vein, lack of ostial valves of the inner jugular veinas well as the decrease of linear and increase in the volume blood flow velocity along it. The methodology of the system approach based on using clinical and instrumental method in the study of cerebral hemodynamics is important for treatment optimization in patients with chronic brain ischemia.

  6. Selection of an approach for the density determination of high-saline solutions. Report on working package 2. Development of the international status of science and technology concerning methods and tools for operational and long-term safety cases; Auswahl eines Ansatzes zur Bestimmung der Dichte in hochsalinaren Loesungen. Bericht zum Arbeitspaket 2. Weiterentwicklung des internationalen Stands von Wissenschaft und Technik zu Methoden und Werkzeugen fuer Betriebs- und Langzeitsicherheitsnachweise

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Kim-Marisa; Moog, Helge C.; Seher, Holger

    2016-09-15

    The report describes the approaches for density determination of low- and high saline solutions using the chemical composition. As an example for a simplified calculation method the procedure implemented in the TOUGH2 code is discussed. The GRS approach and the saline solutions relevant for a final repository are specified. The results of different calculation approaches are compae4d with experimental results.

  7. Local Irritation Toxicity Study of Hypertonic Saline/Dextran 70 (Trade Name) and Constituents in New Zealand White Rabbits

    Science.gov (United States)

    1988-12-01

    34 Toxicology Series 244, was audited on 21 November 1988. CAROLYN M. LEWIS, MS Diplomate, American Board of Toxicology Chief, Quality Assurance vi TABLE OF...a aa O l-4 i)’ a a a Lia _ at . acca - ).a *a a a a ...j a0 ~ mal- a a 4 0. 4 a a a a I Da~ a a a o _a a a 0.a ~ a a a a ja a a a U a aa EA- a aa a- 0

  8. Pre-Hospital Resuscitation of Traumatic Hemorrhagic Shock with Hypertonic Solutions Worsen Hypocoagulation and Hyperfibrinolysis

    Science.gov (United States)

    2015-07-01

    Treatment with HS/HSD led to higher admission systolic blood pressure, sodium , chloride, and osmolarity, whereas lactate, base deficit, fluid requirement...of 70 mmHg or less or SBP 71 to 90 mmHg with a heart rate of 108 beats/min or more. Exclusion criteria were pregnancy , younger than 15 years, more...NS. As expected, sodium , chloride, and osmo- larity were higher for HS and HSD groups compared with NS. All patients included in this study were

  9. Particles and solutes migration in porous medium : radionuclides and clayey particles simultaneous transport under the effect of a salinity gradient; Migration de particules et de solutes en milieu poreux : modelisation du transport simultane de particules argileuses et de radionucleides sous l`effet d`un gradient de salinite

    Energy Technology Data Exchange (ETDEWEB)

    Faure, M H

    1994-03-29

    This work deals with the radiation protection of high-level and long-life radioactive waste storages. The colloids presence in ground waters can accelerate the radionuclides migration in natural geological deposits. The aim of this thesis is then to control particularly the particles motion in porous medium in order to anticipate quantitatively their migration. Liquid chromatography columns are filled with a clayey sand and fed with a decreasing concentration sodium chloride solution in order to study the particles outlet under a salinity gradient. When the porous medium undergoes a decrease of salinity it deteriorates. The adsorption of the cations : sodium 22, calcium 45, cesium 137 and neptunium 237 is then studied by the ions exchange method. The radionuclide solution is injected before the decrease of the feed solution salinity. The decrease of the sodium chloride concentration leads to the decrease of the radionuclides concentration because the adsorption competition between the sodium ion and the injected cation is lower. The particles transport, without fouling of the porous medium, is carried out in particular physical and chemical conditions which are described. (O.L.). 71 refs., 105 figs., 26 tabs.

  10. Investigations in Marine Chemistry: Salinity II.

    Science.gov (United States)

    Schlenker, Richard M.

    Presented is a science activity in which the student investigates methods of calibration of a simple conductivity meter via a hands-on inquiry technique. Conductivity is mathematically compared to salinity using a point slope formula and graphical techniques. Sample solutions of unknown salinity are provided so that the students can sharpen their…

  11. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH

    International Nuclear Information System (INIS)

    Singh, J.K.; Singh, D.D.N.

    2012-01-01

    Highlights: ► LAS rebars corrode 2–3 times slower than PCS in concrete pore solution and mortars. ► Raman and XRD studies show that goethite and maghemite phases of rusts formed on LAS. ► On PCS unstable phases of lepidocrocite and akaganite are formed. ► EIS confirms more stable rust on LAS than on PCS. ► A model is proposed to explain formation of passive film on surface of steels. - Abstract: Correlation of corrosion characteristics and nature of rusts on low alloy (LA) and plain carbon (PC) steels exposed in simulated concrete pore solution of different pH is studied. Rusts formed under wet/dry conditions are examined by Raman spectroscopy and X-ray diffraction. LA rust is more adherent compared to PC as confirmed by measurement of weight in gain and electrochemical studies. EIS results show improvement in protective properties of steels with passage of time. Both steels are found prone to pitting attack in chloride contaminated pore solution. Rebars embedded in concrete exhibit same trend as recorded in solution exposure tests.

  12. Ex Vivo Experiment of Saline-Enhanced Hepatic Bipolar Radiofrequency Ablation with a Perfused Needle Electrode: Comparison with Conventional Monopolar and Simultaneous Monopolar Modes

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Kim, Se Hyung; Han, Joon Koo; Sohn, Kyu Li; Choi, Byung Ihn

    2005-01-01

    The purpose of this study was to validate the saline-enhanced bipolar radiofrequency ablation (RFA) technique using a perfused electrode to increase RF-created coagulation necrosis, to compare that technique with monopolar RFAs and to find appropriate concentrations and volumes of perfused NaCl solution for the bipolar RFA. A total of 90 ablations were performed in explanted bovine livers. In the initial experiments to determine appropriate conditions for bipolar RFA, we created five thermal ablation zones in each condition, with instillations of varied concentrations (0.9-36%) or injection rates (30 mL/hr-120 mL/hr) of NaCl solution. After placement of one or two 16-gauge open-perfused electrodes into bovine livers, the NaCl solution was instilled into the tissue through the electrode. In the second part of the study, 10 ablation zones were created using one or two perfused electrodes for each of five groups under different conditions: a conventional monopolar mode with 0.9% NaCl solution (group A) or with 6% NaCl solution (group B), a simultaneous monopolar mode with 6% NaCl solution (group C) and a bipolar mode with 6% NaCl solution (groups D and E). RF was applied to each electrode for 20 min in groups A, B, C, and E, or for 10 min in group D. During RFA, we measured the tissue temperature 15 mm from the electrode. The temperature changes during the RFA and the dimensions of the ablation zones were compared among the groups. Bipolar RFA created larger short-axis diameters of coagulation necrosis with 6% NaCl solution (35.8 ± 15 mm) than with 0.9% NaCl solution (17 ± 9.7 mm) (P 0.05): 31.0 ± 5.4 mm (group A); 28.8 ± 3.8 mm (group B); 25.5 ± 6.4 mm (group C); 32.6 ± 4.2 mm (group D); 49.4 ± 5.0 mm (group E). Bipolar RFA with instillation of 6% NaCl solution through an open perfusion system demonstrates better efficacy in creating a larger ablation zone than does conventional or simultaneous monopolar modes at the various times examined. Therefore

  13. Differentiation between Candida albicans and Candida dubliniensis using hypertonic Sabouraud broth and tobacco agar

    Directory of Open Access Journals (Sweden)

    Fabíola Silveira-Gomes

    2011-08-01

    Full Text Available INTRODUCTION: Opportunistic fungal infections in immunocompromised hosts are caused by Candida species, and the majority of such infections are due to Candida albicans. However, the emerging pathogen Candida dubliniensis demonstrates several phenotypic characteristics in common with C. albicans, such as production of germ tubes and chlamydospores, calling attention to the development of stable resistance to fluconazole in vitro. The aim of this study was to evaluate the performance of biochemistry identification in the differentiating between C. albicans and C. dubliniensis, by phenotyping of yeast identified as C. albicans. METHODS: Seventy-nine isolates identified as C. albicans by the API system ID 32C were grown on Sabouraud dextrose agar at 30°C for 24-48h and then inoculated on hypertonic Sabouraud broth and tobacco agar. RESULTS: Our results showed that 17 (21.5% isolates were growth-inhibited on hypertonic Sabouraud broth, a phenotypic trait inconsistent with C. albicans in this medium. However, the results observed on tobacco agar showed that only 9 (11.4% of the growth-inhibited isolates produced characteristic colonies of C. dubliniensis (rough colonies, yellowish-brown with abundant fragments of hyphae and chlamydospores. CONCLUSIONS: The results suggest that this method is a simple tool for screening C. albicans and non-albicans yeast and for verification of automated identification.

  14. Differentiation between Candida albicans and Candida dubliniensis using hypertonic Sabouraud broth and tobacco agar.

    Science.gov (United States)

    Silveira-Gomes, Fabíola; Sarmento, Dayse Nogueira; Espírito-Santo, Elaine Patrícia Tavares do; Souza, Nádia de Oliveira; Pinto, Thifany Mendes; Marques-da-Silva, Silvia Helena

    2011-01-01

    Opportunistic fungal infections in immunocompromised hosts are caused by Candida species, and the majority of such infections are due to Candida albicans. However, the emerging pathogen Candida dubliniensis demonstrates several phenotypic characteristics in common with C. albicans, such as production of germ tubes and chlamydospores, calling attention to the development of stable resistance to fluconazole in vitro. The aim of this study was to evaluate the performance of biochemistry identification in the differentiating between C. albicans and C. dubliniensis, by phenotyping of yeast identified as C. albicans. Seventy-nine isolates identified as C. albicans by the API system ID 32C were grown on Sabouraud dextrose agar at 30°C for 24-48h and then inoculated on hypertonic Sabouraud broth and tobacco agar. Our results showed that 17 (21.5%) isolates were growth-inhibited on hypertonic Sabouraud broth, a phenotypic trait inconsistent with C. albicans in this medium. However, the results observed on tobacco agar showed that only 9 (11.4%) of the growth-inhibited isolates produced characteristic colonies of C. dubliniensis (rough colonies, yellowish-brown with abundant fragments of hyphae and chlamydospores). The results suggest that this method is a simple tool for screening C. albicans and non-albicans yeast and for verification of automated identification.

  15. Leachability of 226Ra and 210Pb from botton sediments by river waters from the Pocos de Caldas region and by saline solutions

    International Nuclear Information System (INIS)

    Oliveira, A.E. de; Franca, E.P.

    1983-01-01

    River bottom sediment samples collected in eight points of Rio das Antas and Rio Verde basins were contamined with 226 Ra or 210 Pb in the laboratory, and leached by distilled and river water or solutions of inorganic salts which should be presented in the final tailing pond effluent (Na 2 SO 4 , MgSO 4 , CaSO 4 , BaCl 2 and NaF). (E.G.) [pt

  16. An advanced analytical solution for pressure build-up during CO2 injection into infinite saline aquifers: The role of compressibility

    Science.gov (United States)

    Wu, Haiqing; Bai, Bing; Li, Xiaochun

    2018-02-01

    Existing analytical or approximate solutions that are appropriate for describing the migration mechanics of CO2 and the evolution of fluid pressure in reservoirs do not consider the high compressibility of CO2, which reduces their calculation accuracy and application value. Therefore, this work first derives a new governing equation that represents the movement of complex fluids in reservoirs, based on the equation of continuity and the generalized Darcy's law. A more rigorous definition of the coefficient of compressibility of fluid is then presented, and a power function model (PFM) that characterizes the relationship between the physical properties of CO2 and the pressure is derived. Meanwhile, to avoid the difficulty of determining the saturation of fluids, a method that directly assumes the average relative permeability of each fluid phase in different fluid domains is proposed, based on the theory of gradual change. An advanced analytical solution is obtained that includes both the partial miscibility and the compressibility of CO2 and brine in evaluating the evolution of fluid pressure by integrating within different regions. Finally, two typical sample analyses are used to verify the reliability, improved nature and universality of this new analytical solution. Based on the physical characteristics and the results calculated for the examples, this work elaborates the concept and basis of partitioning for use in further work.

  17. Dissolution and carbonation of a serpentinite: Inferences from acid attack and high P-T experiments performed in aqueous solutions at variable salinity

    International Nuclear Information System (INIS)

    Orlando, Andrea; Borrini, Daniele; Marini, Luigi

    2011-01-01

    Highlights: → In order to perform geological sequestration of CO 2 , serpentinite should be dissolved by acids or by aqueous solutions. → At atmospheric pressure serpentinite is efficaciously dissolved at 70 deg. C using acid attacks. → At higher P-T conditions, significant carbonation occurs at 30 MPa and 300 deg. C using CO 2 saturated aqueous solutions. - Abstract: Dissolution experiments on a serpentinite were performed at 70 deg. C, 0.1 MPa, in H 2 SO 4 solution, in open and closed systems, in order to evaluate the overall dissolution rate of mineral components over different times (4, 9 and 24 h). In addition, the serpentinite powder was reacted with a NaCl-bearing aqueous solution and supercritical CO 2 for 24 h at higher pressures (9-30 MPa) and temperatures (250-300 deg. C) either in a stirred reactor or in an externally-heated pressure vessel to assess both the dissolution rate of serpentinite minerals and the progress of the carbonation reaction. Results show that, at 0.1 MPa, MgO extraction from serpentinite ranges from 82% to 98% and dissolution rate varies from 8.5 x 10 -10 mole m -2 s -1 to 4.2 x 10 -9 mole m -2 s -1 . Attempts to obtain carbonates from the Mg-rich solutions by increasing their pH failed since Mg- and NH 4 - bearing sulfates promptly precipitated. On the other hand, at higher pressures, significant crystallization (5.0-10.4 wt%) of Ca- and Fe-bearing magnesite was accomplished at 30 MPa and 300 deg. C using 100 g L -1 NaCl aqueous solutions. The corresponding amount of CO 2 sequestered by crystallization of carbonates is 9.4-15.9 mole%. Dissolution rate (from 6.3 x 10 -11 mole m -2 s -1 to 1.3 x 10 -10 mole m -2 s -1 ) is lower than that obtained at 0.1 MPa and 70 deg. C but it is related to pH values much higher (3.3-4.4) than that (-0.65) calculated for the H 2 SO 4 solution. Through a thorough review of previous experimental investigations on the dissolution kinetics of serpentine minerals the authors propose adopting: (i

  18. Dissolution and carbonation of a serpentinite: Inferences from acid attack and high P-T experiments performed in aqueous solutions at variable salinity

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, Andrea, E-mail: orlando@igg.cnr.it [C.N.R., Istituto di Geoscienze e Georisorse, U.O.S. di Firenze, Via G. La Pira, 4, I-50121 Firenze (Italy); Borrini, Daniele [Dipartimento di Scienze della Terra, Universita degli Studi di Firenze, Via G. La Pira, 4, I-50121 Firenze (Italy); Marini, Luigi [Consultant in Applied Geochemistry, Via A. Fratti 253, I-55049 Viareggio (Italy)

    2011-08-15

    Highlights: > In order to perform geological sequestration of CO{sub 2}, serpentinite should be dissolved by acids or by aqueous solutions. > At atmospheric pressure serpentinite is efficaciously dissolved at 70 deg. C using acid attacks. > At higher P-T conditions, significant carbonation occurs at 30 MPa and 300 deg. C using CO{sub 2} saturated aqueous solutions. - Abstract: Dissolution experiments on a serpentinite were performed at 70 deg. C, 0.1 MPa, in H{sub 2}SO{sub 4} solution, in open and closed systems, in order to evaluate the overall dissolution rate of mineral components over different times (4, 9 and 24 h). In addition, the serpentinite powder was reacted with a NaCl-bearing aqueous solution and supercritical CO{sub 2} for 24 h at higher pressures (9-30 MPa) and temperatures (250-300 deg. C) either in a stirred reactor or in an externally-heated pressure vessel to assess both the dissolution rate of serpentinite minerals and the progress of the carbonation reaction. Results show that, at 0.1 MPa, MgO extraction from serpentinite ranges from 82% to 98% and dissolution rate varies from 8.5 x 10{sup -10} mole m{sup -2} s{sup -1} to 4.2 x 10{sup -9} mole m{sup -2} s{sup -1}. Attempts to obtain carbonates from the Mg-rich solutions by increasing their pH failed since Mg- and NH{sub 4}- bearing sulfates promptly precipitated. On the other hand, at higher pressures, significant crystallization (5.0-10.4 wt%) of Ca- and Fe-bearing magnesite was accomplished at 30 MPa and 300 deg. C using 100 g L{sup -1} NaCl aqueous solutions. The corresponding amount of CO{sub 2} sequestered by crystallization of carbonates is 9.4-15.9 mole%. Dissolution rate (from 6.3 x 10{sup -11} mole m{sup -2} s{sup -1} to 1.3 x 10{sup -10} mole m{sup -2} s{sup -1}) is lower than that obtained at 0.1 MPa and 70 deg. C but it is related to pH values much higher (3.3-4.4) than that (-0.65) calculated for the H{sub 2}SO{sub 4} solution. Through a thorough review of previous experimental

  19. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions; Etude physico-chimique de la separation des isotopes du calcium par echange chimique entre amalgame et solution saline

    Energy Technology Data Exchange (ETDEWEB)

    Duie, P; Dirian, G [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between {sup 40}Ca and {sup 46}Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH){sub 2}; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H{sub 2} bubbles. (authors) [French] On a fait une etude preliminaire, pour des systemes amalgame de calcium - solution aqueuse ou organique de sels de calcium, des principaux parametres pouvant intervenir dans l'application d'un procede d'echange a l'enrichissement isotopique du calcium: facteur de separation, cinetique de l'echange, cinetique de la decomposition de l'amalgame. Les facteurs de separation {sup 40}Ca-{sup 46}Ca sont de l'ordre de 1,02. L'echange est assez lent pour les solutions aqueuses, extremement lent pour les solutions organiques. La decomposition de l'amalgame est pratiquement inexistante avec les solutions dans le dimethyl- formamide, appreciable pour les solutions alcooliques, rapide pour les solutions aqueuses d'halogenures; elle est normalement lente pour les solutions aqueuses de formiate et surtout de chaux, mais la decomposition est en general acceleree par une reaction parasite entre l'amalgame et l'eau a l'etat vapeur, reaction que l'on n'evite dans des conditions tres particulieres. (auteurs)

  20. The osmolyte type affects cartilage associated pathologic marker expression during in vitro mesenchymal stem cell chondrogenesis under hypertonic conditions.

    Science.gov (United States)

    Ahmadyan, Sorour; Kabiri, Mahboubeh; Tasharofi, Noushin; Hosseinzadeh, Simzar; Kehtari, Mousa; Hajari Zadeh, Athena; Soleimani, Masoud; Farazmand, Ali; Hanaee-Ahvaz, Hana

    2018-02-28

    Stem cells' fate during in vitro differentiation is influenced by biophysicochemical cues. Osmotic stress has proved to enhance chondrocyte marker expression, however its potent negative impacts had never been surveyed. We questioned whether specific osmotic conditions, regarding the osmolyte agent, could benefit chondrogenesis while dampening undesired concomitant hypertrophy and inflammatory responses. To examine the potential side effects of hypertonicity, we assessed cell proliferation as well as chondrogenic and hypertrophic marker expression of human Adipose Derived-MSC after a two week induction in chondrogenic media with either NaCl or Sorbitol, as the osmolyte agent to reach a +100 mOsm hypertonic condition. Calcium deposition and TNF-α secretion as markers associated with hypertrophy and inflammation were then assayed. While both hyperosmotic conditions upregulated chondrogenic markers, sorbitol had a nearly three times higher chondro-promotive effect and a lesser hypertrophic effect compared to NaCl. Also, a significantly lesser calcium deposition was observed in sorbitol hypertonic group. NaCl showed an anti-proinflammatory effect while sorbitol had no effect on inflammatory markers. The ossification potential and cartilage associated pathologic markers were affected differentially by the type of the osmolyte. Thus, a vigilant application of the osmotic agent is inevitable in order to avoid or reduce undesired hypertrophic and inflammatory phenotype acquisition by MSC during chondrogenic differentiation. Our findings are a step towards developing a more reliable chondrogenic regimen using external hypertonic cues for MSC chondrogenesis with potential applications in chondral lesions cell therapy.

  1. Assessment Impact of Foot Sensory Modulation on Inhibition of Hypertonicity of the Lower Limb in Children with Diplegia Spastic

    Directory of Open Access Journals (Sweden)

    Saeed Fatoureh-Chi

    2005-01-01

    Full Text Available Objective: The purpose of this study was to assess impact of foot sensory modulation on inhibition of hypertonicity of the lower limb in children with diplegia spastic cerebral palsy. Materials & Methods: 24 selected children (aged 2.5 to 4.5 years were randomly assigned to a control and experimental groups. Muscle tone was assessed using modified Ashworth scale, passive Range of motion by goniameter (Pedretti, neurodevelopmental level by Bobath scale. All children were pre-post tested in an interval of ten weeks. Results: Significant reduction was observed in hypertonicity of hip extensor (p<0/1 and ankle planter flexor (P<0/05. Significant increase was observed in passive Range of motion of hip flexion (P<0/1, knee extension (P<0/05 and ankle dorsi flexion (P<0/05. There was found no significant difference of reduction in hypertonicity of knee flexor and improvement neurodevelopmental level. Meaningful relationship was observed between reduction hypertonicity of the hip extensor (P<0/05 and improvement of neurodevelopmental level (P<0/05. Conclusion: Impact of sensory modulation on children with diplegia spastic cerebral palsy reduces spasticity of lower limb and also extends joints domain of motion.

  2. The PHREEQC modeling of CO{sub 2} transport in highly saline solutions of a final radioactive waste repository; PHREEQC. Modellierung des Transportes von CO{sub 2} in hochsalinaren Loesungen eines Endlagers

    Energy Technology Data Exchange (ETDEWEB)

    Weyand, Torben [Bonn Univ. (Germany); Gesellschaft fuer Reaktorsicherheit mbH (GRS), Koeln (Germany); Bracke, Guido [Gesellschaft fuer Reaktorsicherheit mbH (GRS), Koeln (Germany); Reichert, Barbara [Bonn Univ. (Germany)

    2014-03-15

    The safe confinement of radioactive materials in the containment providing zone of the host rock (CPRZ) over a period of one million years is required for a final repository for highly radioactive heat-generating waste (BMU 2010). In order to assess the safe containment of radionuclides in the CPRZ a sound understanding of the ongoing processes in a repository is necessary. These processes include the transport and chemical interactions of the radionuclide {sup 14}C in the gas phase and in highly saline solutions in a final repository for radioactive waste. The geochemical code PHREEQC /PAR 13/ was used to study the chemical interactions of CO{sub 2} and {sup 14}C as {sup 14}CO{sub 2} during transport in the gas phase and highly saline solutions. The model and scenario was based on the concept for a repository in Gorleben /BOL 11/. A gas generation of CO{sub 2} containing {sup 14}C was assumed since the disposed containers with the radioactive waste corrode /LAR 13/. The advective transport is triggered by gas generation. The physical dissolution of CO{sub 2}, chemical equilibria with aquatic carbon-containing species (e. g. HCO{sub 3}{sup -}(aq), CO{sub 3}{sup 2-}(aq)) and solid phases (e. g. magnesite, MgCO{sub 3}) coupled with transport were modelled. Due to the addition of dissolved MgCl{sub 2} in the crushed salt backfill of the main drift the aquatic species MgCO{sub 3}(aq) and the mineral MgCO{sub 3}(s) is formed. The influence of CO{sub 2} partial pressure and the chemical interactions in the presence of dissolved Fe{sup 2+}, Ca{sup 2+}, Mg{sup 2+} and K{sup +} were studied. Due to the physical solution, the CO{sub 2} partial pressure has a major influence on the transport of {sup 14}C. In the presence of calcium CaCO{sub 3}(aq), the minerals calcite (CaCO{sub 3}(s)) and dolomite (MgCa(CO{sub 3}){sub 2}(s)) were formed in the highly saline solutions. No siderite (FeCO{sub 3}) in the presence of Fe{sup 2+} was formed. The transport of {sup 14}C was delayed

  3. Solubility Model for Ferrous Iron Hydroxide, Hibbingite, Siderite, and Chukanovite in High Saline Solutions of Sodium Chloride, Sodium Sulfate, and Sodium Carbonate

    International Nuclear Information System (INIS)

    Kim, Sungtae; Marrs, Cassandra; Nemer, Martin; Jang, Jay Je-Hun

    2017-01-01

    Here, a solubility model is presented for ferrous iron hydroxide (Fe(OH) 2 (s)), hibbingite (Fe 2 Cl(OH) 3 (s)), siderite (FeCO 3 (s)), and chukanovite (Fe 2 CO 3 (OH) 2 (s)). The Pitzer activity coefficient equation was utilized in developing the model to account for the excess free energies of aqueous species in the background solutions of high ionic strength. Solubility limiting minerals were analyzed before and after experiments using X-ray diffraction. Formation of Fe(OH) 2 (s) was observed in the experiments that were initiated with Fe 2 Cl(OH) 3 (s) in Na 2 SO 4 solution. Coexistence of siderite and chukanovite was observed in the experiments in Na 2 CO 3 + NaCl solutions. Two equilibrium constants that had been reported by us for the dissolution of Fe(OH) 2 (s) and Fe 2 Cl(OH) 3 (s) (Nemer et al.) were rederived in this paper, using newer thermodynamic data selected from the literature to maintain internal consistency of the series of our data analyses in preparation, including this paper. Three additional equilibrium constants for the following reactions were determined in this paper: dissolution of siderite and chukanovite and dissociation of the aqueous species Fe(CO 3 ) 2 –2 . Five Pitzer interaction parameters were derived in this paper: β (0) , β (1) , and C φ parameters for the species pair Fe +2 /SO 4 –2 ; β (0) and β (1) parameters for the species pair Na+/Fe(CO3)2–2. Our model predicts that, among the four inorganic ferrous iron minerals, siderite is the stable mineral in two WIPP-related brines (WIPP: Waste Isolation Pilot Plant), i.e., GWB and ERDA6 (Brush and Domski), and the electrochemical equilibrium between elemental iron and siderite provides a low oxygen fugacity (10 –91.2 atm) that can keep the actinides at their lowest oxidation states. (Nemer et al., Brush and Domski; references numbered 1 and 2 in the main text).

  4. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    Science.gov (United States)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure blood use and lower mortality compared to historic controls of patients refusing blood. Transfusion reductions with HBOC use have been modest. Two HBOCs (Hemopure and Polyheme) are now in new or planned large-scale multicenter prehospital trials of trauma treatment. A new implementation of small volume resuscitation is closed-loop resuscitation (CLR), which employs microprocessors to titrate just enough fluid to reach a physiologic target . Animal studies suggest less risk of rebleeding in uncontrolled hemorrhage and a reduction in fluid needs with CLR. The first clinical application of CLR was treatment of burn shock and the US Army. Conclusions: Independently sponsored civilian trauma trials and clinical evaluations in operational combat conditions of

  5. Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon

    Directory of Open Access Journals (Sweden)

    Ahmed El Nemr

    2015-01-01

    Full Text Available Pterocladia capillacea, a red marine macroalgae, was tested for its ability to remove toxic hexavalent chromium from aqueous solution. A new activated carbon obtained from P. capillacea via acid dehydration was also investigated as an adsorbent for toxic chromium. The experiments were conducted to study the effect of important parameters such as pH, chromium concentration and adsorbent weight. Batch equilibrium tests at different pH conditions showed that at pH 1.0, a maximum chromium uptake was observed for both inactivated dried red alga P. capillacea and its activated carbon. The maximum sorption capacities for dried red alga and its activated carbon were about 12 and 66 mgg−1, respectively, as calculated by Langmuir model. The ability of inactivated red alga P. capillacea and developed activated carbon to remove chromium from synthetic sea water, natural sea water and wastewater was investigated as well. Different isotherm models were used to analyze the experimental data and the models parameters were evaluated. This study showed that the activated carbon developed from red alga P. capillacea is a promising activated carbon for removal of toxic chromium.

  6. Development of a thermodynamic model for zinc, lead and cadmium in saline solutions; Entwicklung eines thermodynamischen Modells fuer Zink, Blei und Cadmium in salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven

    2012-07-15

    Waters on aboveground and underground landfills often contain high concentrations of pollutants like zinc, lead and cadmium. Interactions between wastes and aqueous solutions could lead to a mobilisation of these elements. If their maximum solubilities are to be predicted by geochemical modelling a thermodynamic data base is needed. Due to the lack of experimental data such a data base could not be developed yet. In order to fill the gaps isopiestic as well as solubility measurements were made at 25 C. Furthermore the complex formation of zinc and cadmium was investigated and quantified by means of Raman spectrometry and evolving factor analysis. It could be proven that only complexes with two and four chlorine atoms achieve significant concentrations. On basis of these results and a critical evaluation of literature data a consistent thermodynamic data base for was developed for the calculation of activity coefficients and solubilities in the system Na, K, Mg, Ca, Zn, Cd, Cl, SO{sub 4}-H{sub 2}O at 298,15 K.

  7. Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions - Part 1: Long term corrosion behaviour

    International Nuclear Information System (INIS)

    Sherar, B.W.A.; Keech, P.G.; Shoesmith, D.W.

    2011-01-01

    Highlights: → Anaerobic-aerobic cycling on pipeline steel forms two distinct surface morphologies. → Seventy-five percentage of the surface was covered by a black, compact layer ∼4.5 μm thick. → A tubercle, ∼3 to 4 mm in cross section, covered the remaining 25% of surface. → The tubercle cross section showed a single large pit ∼275 μm deep. - Abstract: The influence of anaerobic-aerobic cycling on pipeline steel corrosion was investigated in near-neutral carbonate/sulphate/chloride solution (pH 9) over 238 days. The corrosion rate increased and decreased as exposure conditions were switched between redox conditions. Two distinct corrosion morphologies were observed. The majority of the surface corroded uniformly to produce a black magnetite/maghemite layer approximately 4.5 μm thick. The remaining surface was covered with an orange tubercle, approximately 3-4 mm in cross section. Analysis of the tubercle cross section revealed a single large pit approximately 275 μm deep. Repeated anaerobic-aerobic cycling localized the corrosion process within this tubercle-covered pit.

  8. The effect of aerobic corrosion on anaerobically-formed sulfide layers on carbon steel in dilute near-neutral pH saline solutions

    International Nuclear Information System (INIS)

    Sherar, B.W.A.; Keech, P.G.; Shoesmith, D.W.

    2013-01-01

    Highlights: •The corrosion rate is low when steel is exposed to anaerobic conditions (pH = 8.9). •An anaerobic corrosion with sulfide to aerobic switch increases the corrosion rate. •Aerobic conditions leads to corrosion and oxide deposition beneath FeS. •Continual air exposure leads to the blistering of the original FeS film. -- Abstract: The aerobic corrosion of pipeline steel was investigated in an aqueous sulfide solution by monitoring the corrosion potential and periodically measuring the polarization resistance. The properties and composition of the corrosion product deposits formed were determined using scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy. The establishment of aerobic conditions leads to corrosion and (oxyhydr)oxide deposition beneath the anaerobically-formed mackinawite film originally present on the steel surface. This leads to blistering and spalling of the sulfide film. Chemical conversion of the mackinawite to Fe(III) (oxyhydr)oxides also occurs but is a relatively slow reaction

  9. The transport systems of Ventricaria ventricosa: hypotonic and hypertonic turgor regulation.

    Science.gov (United States)

    Bisson, M A; Beilby, M J

    2002-11-01

    The time course of hypertonic and hypotonic turgor regulation was studied in Ventricaria (Valonia) using pressure probe and I/V(current-voltage) analysis. Of 11 cells, 9 exhibited hypertonic turgor regulation, ranging from 100% regulation in 150 min to 14% regulation (14% recovery of the decrease in turgor) in 314 min. Some cells began regulating immediately, others took up to 90 min to begin. The resting PD (potential difference) became more positive in most cells. The I/V characteristics became more nonlinear with high resistance between -150 and -20 mV and negative conductance region near -70 mV. Prolonged (16 sec) voltage clamps to negative levels (-100 to -150 mV) showed progressively more rapid current turn-off, but subsequent I/V characteristics were not affected. Clamping to +150 mV, however, abolished the high conductance between -50 and +100 mV to yield a uniform high resistance I/V characteristic, similar to that in high [K+]o. Decreasing illumination from 2.02 micromol sec(-1) m(-2) to 0.5 micromol sec(-1)1 m(-2) had a similar effect. Two out of a total of three cells exhibited hypotonic turgor regulation. Both cells started regulating within minutes and achieved near 50% regulation within 50 min. The PD became more negative. The I/V curves exhibited high resistance between +50 and +150 mV. The characteristics were similar to those in cells exposed to low [K+]o. Prolonged voltage clamps to both negative and positive levels showed slow current increase. Decreased illumination increased the membrane resistance.

  10. The distribution of soluble radionuclide-relevant trace elements between salt minerals and saline solutions; Die Verteilung loeslicher Radionuklid-relevanter Spurenelemente zwischen Salzmineralen und salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Ina

    2015-07-16

    The research platform ENTRIA (Disposal options for radioactive residues Interdisciplinary analyses and development of evaluation principles) includes the sub-project ''Final disposal in deep geological formations without any arrangements for retrieval''. This approach considers rock salt (beside clay and granite) as host rock formation for disposal of heat-producing long-live waste. Most rock salt formations contain Mg-rich brines derived from highly evolved sea water evaporation processes now included in the rock salt mass. If such brines get access to metal-canister corrosion will allow release of soluble nuclides to the brine. In this scenario, it cannot be excluded that contaminated brines leave the deep seated disposal area and move along geological or technical migration pathways towards the rock salt/cap rock contact. The temperature of the brine will drop from near 80 C to 25 or 30 C. The deceasing temperature of the brine causes precipitation of magnesian chloride and sulfate phase in equilibrium with the brine. In order to understand the salt precipitation and the retention mechanism of dissolved trace elements experiments have been set up which allow formation of sylvite, carnallite, kainite, and hydrous Mg-sulphates under controlled conditions. The retention capacity of crystallizing salt minerals based occurring in magnesian brine solutions at decreasing temperature within a salt dome is best measured as the distribution coefficient D. This concept assumes incorporation of trace elements into the lattice of salt minerals. The distribution coefficients of the trace elements, Rb, Cs, Co, Ni, Zn, Li and B between sylvite, carnallite, kainite, and MgSO{sub 4} phases have been determined at experimental temperatures of 25, 35, 55 and 83 C. The results clearly indicate the following range of distribution coefficients (D): Sylvite D > 1 Rb and Br, D < 1 Co, Ni, Zn, Li and B, Carnallite D > 1 Rb and Cs, D < 1 Co, Ni, Zn, Li and B, Kainite D

  11. Improvement of Neuroenergetics by Hypertonic Lactate Therapy in Patients with Traumatic Brain Injury Is Dependent on Baseline Cerebral Lactate/Pyruvate Ratio

    KAUST Repository

    Quintard, Hervé ; Patet, Camille; Zerlauth, Jean-Baptiste; Suys, Tamarah; Bouzat, Pierre; Pellerin, Luc; Meuli, Reto; Magistretti, Pierre J.; Oddo, Mauro

    2015-01-01

    Energy dysfunction is associated with worse prognosis after traumatic brain injury (TBI). Recent data suggest that hypertonic sodium lactate infusion (HL) improves energy metabolism after TBI. Here, we specifically examined whether the efficacy

  12. Hypertonic-induced lamin A/C synthesis and distribution to nucleoplasmic speckles is mediated by TonEBP/NFAT5 transcriptional activator

    International Nuclear Information System (INIS)

    Favale, Nicolas O.; Sterin Speziale, Norma B.; Fernandez Tome, Maria C.

    2007-01-01

    Lamin A/C is the most studied nucleoskeletal constituent. Lamin A/C expression indicates cell differentiation and is also a structural component of nuclear speckles, which are involved in gene expression regulation. Hypertonicity has been reported to induce renal epithelial cell differentiation and expression of TonEBP (NFAT5), a transcriptional activator of hypertonicity-induced gene transcription. In this paper, we investigate the effect of hypertonicity on lamin A/C expression in MDCK cells and the involvement of TonEBP. Hypertonicity increased lamin A/C expression and its distribution to nucleoplasm with speckled pattern. Microscopy showed codistribution of TonEBP and lamin A/C in nucleoplasmic speckles, and immunoprecipitation demonstrated their interaction. TonEBP silencing caused lamin A/C redistribution from nucleoplasmic speckles to the nuclear rim, followed by lamin decrease, thus showing that hypertonicity induces lamin A/C speckles through a TonEBP-dependent mechanism. We suggest that lamin A/C speckles could serve TonEBP as scaffold thus favoring its role in hypertonicity

  13. Generating chimeric mice from embryonic stem cells via vial coculturing or hypertonic microinjection.

    Science.gov (United States)

    Lee, Kun-Hsiung

    2014-01-01

    The generation of a fertile embryonic stem cell (ESC)-derived or F0 (100 % coat color chimerism) mice is the final criterion in proving that the ESC is truly pluripotent. Many methods have been developed to produce chimeric mice. To date, the most popular methods for generating chimeric embryos is well sandwich aggregation between zona pellucida (ZP) removed (denuded) 2.5-day post-coitum (dpc) embryos and ESC clumps, or direct microinjection of ESCs into the cavity (blastocoel) of 3.5-dpc blastocysts. However, due to systemic limitations and the disadvantages of conventional microinjection, aggregation, and coculturing, two novel methods (vial coculturing and hypertonic microinjection) were developed in recent years at my laboratory.Coculturing 2.5-dpc denuded embryos with ESCs in 1.7-mL vials for ~3 h generates chimeras that have significantly high levels of chimerism (including 100 % coat color chimerism) and germline transmission. This method has significantly fewer instrumental and technological limitations than existing methods, and is an efficient, simple, inexpensive, and reproducible method for "mass production" of chimeric embryos. For laboratories without a microinjection system, this is the method of choice for generating chimeric embryos. Microinjecting ESCs into a subzonal space of 2.5-dpc embryos can generate germline-transmitted chimeras including 100 % coat color chimerism. However, this method is adopted rarely due to the very small and tight space between ZP and blastomeres. Using a laser pulse or Piezo-driven instrument/device to help introduce ESCs into the subzonal space of 2.5-dpc embryos demonstrates the superior efficiency in generating ESC-derived (F0) chimeras. Unfortunately, due to the need for an expensive instrument/device and extra fine skill, not many studies have used either method. Recently, ESCs injected into the large subzonal space of 2.5-dpc embryos in an injection medium containing 0.2-0.3 M sucrose very efficiently generated

  14. Chondrogenic Effect of Intra-articular Hypertonic-Dextrose (Prolotherapy) in Severe Knee Osteoarthritis.

    Science.gov (United States)

    Topol, Gastón Andrés; Podesta, Leandro Ariel; Reeves, Kenneth Dean; Giraldo, Marcia Mallma; Johnson, Lanny L; Grasso, Raul; Jamín, Alexis; Clark, Tom; Rabago, David

    2016-11-01

    Dextrose injection is reported to improve knee osteoarthritis (KOA)-related clinical outcomes, but its effect on articular cartilage is unknown. A chondrogenic effect of dextrose injection has been proposed. To assess biological and clinical effects of intra-articular hypertonic dextrose injections (prolotherapy) in painful KOA. Case series with blinded arthroscopic evaluation before and after treatment. Physical medicine and day surgery practice. Symptomatic KOA for at least 6 months, arthroscopy-confirmed medial compartment exposed subchondral bone, and temporary pain relief with intra-articular lidocaine injection. Four to 6 monthly 10-mL intra-articular injections with 12.5% dextrose. Visual cartilage growth assessment of 9 standardized medial condyle zones in each of 6 participants by 3 arthroscopy readers masked to pre-/postinjection status (total 54 zones evaluated per reader); biopsy of a cartilage growth area posttreatment, evaluated using hematoxylin and eosin and Safranin-O stains, quantitative polarized light microscopy, and immunohistologic cartilage typing; self-reported knee specific quality of life using the Western Ontario McMaster University Osteoarthritis Index (WOMAC, 0-100 points). Six participants (1 female and 5 male) with median age of 71 years, WOMAC composite score of 57.5 points, and a 9-year pain duration received a median of 6 dextrose injections and follow-up arthroscopy at 7.75 months (range 4.5-9.5 months). In 19 of 54 zone comparisons, all 3 readers agreed that the posttreatment zone showed cartilage growth compared with the pretreatment zone. Biopsy specimens showed metabolically active cartilage with variable cellular organization, fiber parallelism, and cartilage typing patterns consistent with fibro- and hyaline-like cartilage. Compared with baseline status, the median WOMAC score improved 13 points (P = .013). Self-limited soreness after methylene blue instillation was noted. Positive clinical and chondrogenic effects were seen

  15. Expression and Trafficking of the γ Subunit of Na,K-ATPase in Hypertonically Challenged IMCD3 Cells

    International Nuclear Information System (INIS)

    Pihakaski-Maunsbach, Kaarina; Nonaka, Shoichi; Maunsbach, Arvid B.

    2008-01-01

    The γ subunit (FXYD2) of Na,K-ATPase is an important regulator of the sodium pump. In this investigation we have analysed the trafficking of γ to the plasma membrane in cultures of inner medullary collecting duct cells (IMCD3) following acute hypertonic challenge and brefeldin A (BFA) treatment. Following hypertonic challenging for 24 hr immunofluorescence labeling revealed initial co-localization of the γ subunit and 58K Golgi protein in the cytoplasm, but no co-localization of α1 and Golgi protein. Exposure of the challenged cells to BFA prevented the subsequent incorporation of γ into the basolateral plasma membrane. The γ subunit instead remained in cytoplasmic vesicles while cell proliferation and cell viability decreased simultaneously. Following removal of BFA from the hypertonic medium the IMCD3 cells recovered with distinct expression of γ in the basolateral membrane. The α1 subunit was only marginally influenced by BFA. The results demonstrate that the γ subunit trafficks to the plasma membrane via the Golgi apparatus, despite the absence of a signal sequence. The results also suggest that the γ and α subunits do not traffic together to the plasma membrane, and that the γ and α subunit have different turnover rates during these experimental conditions

  16. Parameter Identification for Salinity in a Quasilinear Thermodynamic System of Sea Ice

    OpenAIRE

    Wei Lv; Xiaojiao Li; Enmin Feng

    2014-01-01

    This study is intended to provide a parameter identification method to determine salinity of sea ice by temperature and salinity observations. A quasilinear thermodynamic system of sea ice with unknown salinity is described and its property is proved. Then, a parameter identification model is established and the existence of its optimal solution is discussed. The salinity profile is calculated by the temperature and salinity data, which were measured at Nella Fjord around Zhongshan Station, A...

  17. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient; Migration de particules et de solutes en milieu poreux. Modelisation du transport simultane de particules argileuses et de radionucleides sous l`effet d`un gradient de salinite

    Energy Technology Data Exchange (ETDEWEB)

    Faure, M H

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs.

  18. Tratamiento del prolapso rectal en la infancia con infiltración de solución salina al 16,5 % Treatment of the prolapse of the rectum in childhood with 16,5 % saline solution infiltration

    Directory of Open Access Journals (Sweden)

    Carlos Ramírez Pérez

    2011-09-01

    el grupo experimental (6,2 %, un caso más. La recurrencia se comportó de forma inversa, predominó en un 6,2 % en el grupo control. Para disminuir el número de complicaciones se estipuló el uso profiláctico de antimicrobianos, el día del procedimiento y 2 días más. Conclusiones: quedó demostrado que el tratamiento de elección del prolapso rectal en la infancia es la infiltración, y que una sola sesión con 20 mL de solución salina al 16,5 % en cada paciente es un efectivo agente esclerosante.Introduction: when the conservative medical treatment fails in children with prolapse of the rectum it is necessary the perirrectal infiltration with irritant substances. In 1990s these infiltrations in our center were carried out using glycerin, but due to be scarce in the market we must to find other alternative infiltrating agent. The objective of present paper is to describe the experience with the use of 16,5 % saline solution. Methods: an experimental, prospective, longitudinal and interventional study of non-controlled clinical trial was conducted. It consists of a second part in which we used the randomization with a control group for validation. Universe included 27 patients and sample included 16 patients with prolapse of the rectum over 2003-2007, seen in service of gastroenterology of the Provincial Children Hospital of Holguín province. The variables developed were: a concentration suitable for treatment, amount of substance to be infiltrated, complications, recurrence, number of infiltrations and the cure at a year. Results are showed in percentage tables. Results: the effectiveness of the 16,5 % saline solution was of 100 %, all patients cured and any had relapse, thus there were not necessary two or more treatment sessions. There was a comment on a child that, after failure of breast milk infiltration like a first option and also of the cerclage, finally, resolved with this method. Complications were relatively few (18,9 %: an abscess, a cellulitis

  19. Stochastic modeling of soil salinity

    Science.gov (United States)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  20. BLANCHIMENT ACCÉLÉRÉ DES ŒUFS NON FÉCONDÉS DE TRUITE ARC-EN-CIEL (ONCORHYNCHUS MYKISS SOUS L’EFFET DE SOLUTIONS SALINES EN VUE DE LEUR TRI MÉCANIQUE

    Directory of Open Access Journals (Sweden)

    MILLA S.

    2007-01-01

    Full Text Available Le blanchiment des œufs non fécondés dans les pontes de salmonidés en incubation artificielle permet leur élimination par tri mécanique. Le déclenchement de ce phénomène normalement plus ou moins tardif durant l’incubation a pu être accéléré grâce à une brève exposition des œufs à une solution de sel de mer. Les modalités et les effets de cette exposition sur les taux de mortalité et de malformations des embryons ont été testés sur des pontes de truite arc-en-ciel à divers stades de développement (140, 190 et 240 degrés*jours. Le passage durant 1 à 20 min dans une solution saline de 30 à 120 g/l a permis d’augmenter significativement le taux de blanchiment des œufs non fécondés sans affecter celui des œufs fécondés. Toutefois, par un effet mécanique, la manipulation nécessaire au traitement a entraîné une augmentation significative de la mortalité embryonnaire pour une manipulation à 140 degrés*jours et du taux de malformations larvaires pour une manipulation à 190 degrés*jours. A 240 degrés*jours, la manipulation n’a pas affecté le développement embryonnaire mais a entraîné un retard de l’éclosion de quelques heures. Cette étude offre de nouvelles perspectives pour améliorer le tri mécanique des œufs fécondés et non fécondés au cours de l’incubation chez la truite arc-en-ciel.

  1. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture

    NARCIS (Netherlands)

    Bruning, B.; Rozema, J.

    2013-01-01

    Saline agriculture provides a solution for at least two environmental and social problems. It allows us to return to agricultural production areas that have been lost as a consequence of salinization and it can save valuable fresh water by using brackish or salt water to irrigate arable lands. Sea

  2. Dextrose saline compared with normal saline rehydration of hyperemesis gravidarum: a randomized controlled trial.

    Science.gov (United States)

    Tan, Peng Chiong; Norazilah, Mat Jin; Omar, Siti Zawiah

    2013-02-01

    To compare 5% dextrose-0.9% saline against 0.9% saline solution in the intravenous rehydration of hyperemesis gravidarum. Women at their first hospitalization for hyperemesis gravidarum were enrolled on admission to the ward and randomly assigned to receive either 5% dextrose-0.9% saline or 0.9% saline by intravenous infusion at a rate 125 mL/h over 24 hours in a double-blind trial. All participants also received thiamine and an antiemetic intravenously. Oral intake was allowed as tolerated. Primary outcomes were resolution of ketonuria and well-being (by 10-point visual numerical rating scale) at 24 hours. Nausea visual numerical rating scale scores were obtained every 8 hours for 24 hours. Persistent ketonuria rates after the 24-hour study period were 10 of 101 (9.9%) compared with 11 of 101 (10.9%) (P>.99; relative risk 0.9, 95% confidence interval 0.4-2.2) and median (interquartile range) well-being scores at 24 hours were 9 (8-10) compared with 9 (8-9.5) (P=.73) in the 5% dextrose-0.9% saline and 0.9% saline arms, respectively. Repeated measures analysis of variance of the nausea visual numerical rating scale score as assessed every 8 hours during the 24-hour study period showed a significant difference in favor of the 5% dextrose-0.9% saline arm (P=.046) with the superiority apparent at 8 and 16 hours, but the advantage had dissipated by 24 hours. Secondary outcomes of vomiting, resolution of hyponatremia, hypochloremia and hypokalemia, length of hospitalization, duration of intravenous antiemetic, and rehydration were not different. Intravenous rehydration with 5% dextrose-0.9% saline or 0.9% saline solution in women hospitalized for hyperemesis gravidarum produced similar outcomes. ISRCTN Register, www.controlled-trials.com/isrctn, ISRCTN65014409. I.

  3. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    International Nuclear Information System (INIS)

    Deli, Martin; Fritz, Jan; Mateiescu, Serban; Busch, Martin; Carrino, John A.; Becker, Jan; Garmer, Marietta; Grönemeyer, Dietrich

    2013-01-01

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 ± 9 min in the gadolinium-enhanced saline solution group and 22 ± 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  4. Saline-induced natriuresis and renal blood flow in conscious dogs: effects of sodium infusion rate and concentration

    DEFF Research Database (Denmark)

    Sandgaard, N C F; Andersen, J L; Holstein-Rathlou, N-H

    2005-01-01

    AIM: This study focused on static and dynamic changes in total renal blood flow (RBF) during volume expansion and tested whether a change in RBF characteristics is a necessary effector mechanism in saline-induced natriuresis. METHODS: The aortic flow subtraction technique was used to measure RBF...... continuously. Identical amounts of NaCl (2.4 mmol kg(-1)) were given as slow isotonic (Iso, 120 min), slow hypertonic (Hyper, 120 min), and rapid isotonic loads (IsoRapid, 30 min). RESULTS: During Iso and IsoRapid, arterial blood pressure increased slightly (6-7 mmHg), and during Hyper it remained unchanged...... saline loading simulating daily sodium intake, the rate of sodium excretion may increase 10-20-fold without any change in mean arterial blood pressure or in RBF. Regulatory responses to changes in total body NaCl levels appears, therefore, to be mediated primarily by neurohumoral mechanisms and may occur...

  5. Comparative results of gastric submucosal injection with hydroxypropyl methylcellulose, carboxymethylcellulose and normal saline solution in a porcine model Resultados comparativos de injeção submucosa gástrica com hidroximetil celulose, carboximetilcelulose e soro fisiológico em modelo suíno

    Directory of Open Access Journals (Sweden)

    Luciano Lenz

    2010-06-01

    Full Text Available CONTEXT: Endoscopic mucosal resection is an established modality for excision of sessile lesions in the gastrointestinal tract. Submucosal fluid injection creates a cushion and may prevent thermal injury and perforation. OBJECTIVES: This blind study investigated the performance of three different solutions to create submucosal fluid cushions in porcine stomach. METHODS: Three solutions were injected in the stomach of nine pigs BR1: normal saline solution, carboxymethylcellulose 0.5% and hydroxypropyl methylcellulose 0.25%. In each pig, submucosal injections with 6 mL per test-solution were performed. One drop of methylene blue was added to all injections for better visualization. The time for the bleb to disappear was recorded. RESULTS: The overall median time of visible submucosal cushion was 37 minutes (range 12-60 min for hydroxypropyl methylcellulose, 31 minutes for carboxymethylcellulose (range 10-43 min and 19 minutes for normal saline solution (range 8-37 min. There was no statistically significant difference neither between normal saline solution and carboxymethylcellulose (P = 0.146 nor carboxymethylcellulose and hydroxypropyl methylcellulose (P = 0.119 but the median duration of hydroxypropyl methylcellulose was significantly longer than normal saline solution (P = 0.039. CONCLUSIONS: The length of hydroxypropyl methylcellulose submucosal fluid cushion is longer in comparison with normal saline solution. The median time for carboxymethylcellulose was not longer than normal saline solution. Hydroxypropyl methylcellulose, in the concentration of 0.25%, may be a durable alternative for submucosal injection.CONTEXTO: A ressecção endoscópica mucosa é uma modalidade estabelecida para a excisão de lesões sésseis no trato gastrointestinal. A injeção de fluídos na submucosa cria uma coxim que pode prevenir lesão térmica e perfuração. OBJETIVO: Este estudo cego investiga o desempenho de três diferentes soluções para criar um

  6. Adaptations of semen characteristics and sperm motility to harsh salinity: Extreme situations encountered by the euryhaline tilapia Sarotherodon melanotheron heudelotii (Dumeril, 1859).

    Science.gov (United States)

    Legendre, Marc; Alavi, Sayyed Mohammad Hadi; Dzyuba, Boris; Linhart, Otomar; Prokopchuk, Galina; Cochet, Christophe; Dugué, Rémi; Cosson, Jacky

    2016-09-15

    In most teleost fishes, sperm cells are quiescent in the seminal plasma and are activated by either a drop (fresh water fish) or an increase in osmolality (marine fish) when released in the water. It is most interesting to examine how the mechanisms of sperm motility activation can adapt to a broad range of salinities, as applies to some euryhaline species, and particularly to the tilapia Sarotherodon melanotheron heudelotii, which can reproduce at salinities from 0 up to 120 in the wild. Here, the gonado-somatic index, semen characteristics, and the osmotic and ionic requirements of sperm motility activation were compared in S. m. heudelotii reared in fresh water (FW), sea water (SW), or hypersaline water (HW; salinities of 0, 35, and 70, respectively). No salinity-dependent differences were found in gonado-somatic index or semen characteristics, except for an increase of seminal plasma osmolality with increasing salinity (from 318 to 349 mOsm kg(-1) in FW and HW fish, respectively). The osmolality range allowing the highest percentages of sperm activation broadened and shifted toward higher values with increasing fish ambient salinity (150-300, 300-800, and 500-1200 mOsm kg(-1), for FW, SW, and HW fish, respectively). Nevertheless, at the three fish rearing salinities, sperm could be activated in media that were hypotonic, isotonic, or hypertonic relative to the seminal plasma, at least when some calcium was present above a threshold concentration. The [Ca(2+)] required for the activation of S. m. heudelotii sperm is (1) higher in fish reared at a higher salinity (2) higher in hypertonic than that in hypotonic activation media, whatever the fish rearing salinity, and (3) higher in the presence of Na(+) or K(+), the negative effects of which increased with an increase in fish rearing salinity. The [Ca(2+)]/[Na(+)] ​ ratios allowing for maximal sperm motility in SW or HW fish are close to those observed in natural environments, either in sea or hypersaline

  7. Manejo da fertirrigação e controle da salinidade do solo sob ambiente protegido, utilizando-se extratores de solução do solo Fertigation management and soil salinity control in a protected ambient using soil solution extractors

    Directory of Open Access Journals (Sweden)

    Nildo da S. Dias

    2005-12-01

    solution. The initial soil salinity value was obtained by applying saline solutions of fertilizer salts using an artificial soil salinization curve previously obtained in laboratory. Results showed that the solution extractors allow determination of the ionic concentration in soil solution with satisfactory accuracy. The soil salinity increased in time and higher salinity levels were observed near the soil surface and below the drippers. The differences in water consumption caused by soil salinity were more evident with fertigation management control, adjusting to a quadratic model.

  8. The effect of salinity on the growth, morphology and physiology of ...

    African Journals Online (AJOL)

    The salinity of water and soil decreases the growth and yield of agricultural products. Salinity affects many physiological and morphological processes of plant by influencing soil solution osmotic potential and ion absorption and accumulation of minerals. To evaluate the effect of salinity on some physiological and ...

  9. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  10. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments.

    Science.gov (United States)

    Obruca, Stanislav; Sedlacek, Petr; Mravec, Filip; Krzyzanek, Vladislav; Nebesarova, Jana; Samek, Ota; Kucera, Dan; Benesova, Pavla; Hrubanova, Kamila; Milerova, Miluse; Marova, Ivana

    2017-10-25

    Numerous prokaryotes accumulate polyhydroxybutyrate (PHB) intracellularly as a storage material. It has also been proposed that PHB accumulation improves bacterial stress resistance. Cupriavidus necator and its PHB non-accumulating mutant were employed to investigate the protective role of PHB under hypertonic conditions. The presence of PHB granules enhanced survival of the bacteria after exposure to hypertonic conditions. Surprisingly, when coping with such conditions, the bacteria did not utilize PHB to harvest carbon or energy, suggesting that, in the osmotic upshock of C. necator, the protective mechanism of PHB granules is not associated with their hydrolysis. The presence of PHB granules influenced the overall properties of the cells, since challenged PHB-free cells underwent massive plasmolysis accompanied by damage to the cell membrane and the leakage of cytoplasm content, while no such effects were observed in PHB containing bacteria. Moreover, PHB granules demonstrated "liquid-like" properties indicating that they can partially repair and stabilize cell membranes by plugging small gaps formed during plasmolysis. In addition, the level of dehydration and changes in intracellular pH in osmotically challenged cells were less pronounced for PHB-containing cultures, demonstrating the important role of PHB for bacterial survival under hyperosmotic conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  12. Metabolic cost of osmoregulation in a hypertonic environment in the invasive African clawed frog Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Isaac Peña-Villalobos

    2016-07-01

    Full Text Available Studies of aquatic invertebrates reveal that salinity affects feeding and growth rates, reproduction, survival, and diversity. Little is known, however, about how salinity impacts the energy budget of vertebrates and amphibians in particular. The few studies focused on this topic in vertebrates suggest that the ingestion of salts and the resulting osmoregulatory activity is energetically expensive. We analyzed the effect of saline acclimation on standard metabolic rates (SMR and the activities of metabolic enzymes of internal organs and osmoregulatory variables (plasma osmolality and urea plasma level in females of Xenopus laevis by means of acclimating individuals to an isosmotic (235 mOsm NaCl; ISO group and hyper-osmotic (340 mOsm NaCl; HYP group environment for 40 days. After acclimation, we found that total and mass-specific SMR was approximately 80% higher in the HYP group than those found in the ISO group. These changes were accompanied by higher citrate synthase activities in liver and heart in the HYP group than in the ISO group. Furthermore, we found a significant and positive correlation between metabolic rates and plasma urea, and citrate synthase activity in liver and heart. These results support the notion that the cost of osmoregulation is probably common in most animal species and suggest the existence of a functional association between metabolic rates and the adjustments in osmoregulatory physiology, such as blood distribution and urea synthesis.

  13. Uso da solução salina para manutenção de acessos venosos em adultos: uma revisão Uso de la solución salina para la manutención de sondas venosas en adultos: una revisión Use of saline solutions for the mantenaince of venous catheters in adults: a review

    Directory of Open Access Journals (Sweden)

    Francimar Tinoco de Oliveira

    2006-12-01

    Full Text Available Trata-se de uma revisão bibliográfica sobre a prática da salinização em cateteres venosos periféricos. O estudo objetivou analisar os artigos científicos sobre o uso de solução salina na manutenção da permeabilidade de cateteres venosos periféricos em adultos, indexados no MedLine e LILACS no período de 1995 a 2005. A amostra consistiu de 5 artigos os quais foram analisados quanto à procedência e periódico de publicação, ao delineamento do estudo, a amostragem, e ao efeito da solução salina. Dois estudos indicam evidências da salinização, outros dois o oposto e um não é conclusivo. Há pequena produção acerca da temática exigindo-se novas pesquisas para validação do método.Es una revisión bibliográfica con el objetivo de analizar los resúmenes de salinización de catéteres venosos en el banco de dados MedLine y LILACS en el período de 1995 a 2005 y la base de datos OVID. La muestra se ha compuesto con cinco artículos que se han analizado a partir de la procedencia y periódico de publicación, el delineamiento del estudio, el tamaño de las muestras y si los resultados son conclusivos o no para evidencias de salinización. Dos estudios indican evidencias del efecto de la salinización en la permeabilidad, otro dos lo contrario y uno no es conclusivo. Se concluye que hay poca producción lo que valida nuevas encuestas.This article is a bibliography review about the use of saline solution in peripheral venous catheters. The study aimed at analyzing scientific articles about the use of saline solution for the maintenance of peripheral venous catheters patency in adults, indexed at the MedLine and LILACS databases in the periods between 1995 and 2005. The sample consisted of 5 articles analyzed in publication frequency, saline solution effects, study delineation, and nursing periodic publications. The review concluded that this thematic has a modest production and not conclusive about the efficacy of the saline

  14. Cultured cells from a severe combined immunodeficient mouse have a slower than normal rate of repair of potentially lethal damage sensitive to hypertonic treatment

    International Nuclear Information System (INIS)

    Kimura, H.; Terado, T.; Ikebuchi, M.; Aoyama, T.; Komatsu, K.; Nozawa, A.

    1995-01-01

    The effects of hypertonic 0.5 M NaCl treatment after irradiation on the repair of DNA damage were examined in fibroblasts of the severe combined immunodeficient (scid) mouse. These cells are hypersensitive to ionizing radiation because of a deficiency in the repair of double-strand breaks. Hypertonic treatment caused radiosensitization due to a fixation of potentially lethal damage (PLD) in scid cells, demonstrating that scid cells normally repair PLD. To assess the kinetics of the repair of PLD, hypertonic treatment was delayed for various times after irradiation. Potentially lethal damage was repaired during these times in isotonic medium at 37 degrees C. It was found that the rate of repair of PLD was much slower in scid cells than in BALB/c 3T3 cells, which have a open-quotes wild-typeclose quotes level of radiosensitivity. This fact indicates that the scid mutation affects the type of repair of PLD that is sensitive to 0.5 M NaCl treatment. In scid hybrid cells containing fragments of human chromosome 8, which complements the radiosensitivity of the scid cells, the rate of repair was restored to a normal level. An enzyme encoded by a gene on chromosome 8 may also be connected with PLD which is sensitive to hypertonic treatment. 29 refs., 3 figs

  15. The Impact of Cranios acral Therapy on Inhibition of Hypertonicity of the Lower Limb in Children with Dipelgia Spastic Cerebral Palsy of 3-8 Years Old

    Directory of Open Access Journals (Sweden)

    Ebrahim Pishyareh

    2001-01-01

    Full Text Available Objective: The purpose of this study was to assess the facilitating impact of craniosacral therapy on inhibition of hypertonicity of the lower limb in children with spastic dipelgic cerebral palsy. Materials & Methods: 100 children with cerebral palsy were studied and 36 children selected, aged 3 to 8 years, were randomly assigned to a control and an experimental group. Muscle tone was assessed using modified Ashworth scale, passive range of motion by goniometer, neurodevelopment level by Bobath scale. All children were Pre-Post-tested with in an interval of three months. Results: A further finding of the analyses revealed that significant reduction was observed in hypertonicity of the hip adductors and the ankle plantar flexors. Significant increase was observed in passive range of motion of the hip abduction and the ankle dorsiflexion. There was found no significant difference of reduction in hypertonicity of the knee flexors, of increase in passive range of motion of the knee extensor, of improvement neurodevelopmental level. Meaningful relationship was observed between reduction hypertonicity of the hip adductors and improvement of the neurodevelopmental level. Conclusion: It should be mentioned that in all above cases the was set at 5%. Implications for clinical O.T. are mentioned.

  16. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  17. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  18. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2011-01-01

    Full Text Available Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models.

    First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies.

    Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol

  19. Case report

    African Journals Online (AJOL)

    abp

    2013-01-09

    . The electrolytes analysis revealed an acute hyponatremia. (sodium concentration 125 mmol/L). Medical treatment consisted of hypertonic saline solution 3%, volume expansion, intubation and ventilation. The presented case ...

  20. TURP syndrome: à propos d'un cas | Benlamkaddem | Pan African ...

    African Journals Online (AJOL)

    , visual fog and bradycardia, suggesting TURP syndrome. Ionogramme objectified a serum sodium level of 118meq/L, hence the patient was treated with 3% hypertonic saline solution, with good evolution. This study describes a common but ...

  1. Isotonic saline nasal irrigation in clinical practice: a literature review

    Directory of Open Access Journals (Sweden)

    Sabrina Costa Lima

    Full Text Available Abstract Introduction: Nasal instillation of saline solution has been used as part of the treatment of patients with upper respiratory tract diseases. Despite its use for a number of years, factors such as the amount of saline solution to be used, degree of salinity, method and frequency of application have yet to be fully explained. Objective: Review the reported outcomes of saline nasal irrigation in adults with allergic rhinitis, acute or chronic sinusitis and after functional endoscopic sinus surgery (FESS, and provide evidence to assist physiotherapists in decision making in clinical practice. Methods: A search was conducted of the Pubmed and Cochrane Library databases between 2007 and 2014. A combination of the following descriptors was used as a search strategy: nasal irrigation, nasal lavage, rhinitis, sinusitis, saline, saline solution. Results: Eight clinical trials were included, analyzed according to participant diagnosis. Conclusion: The evidence found was heterogeneous, but contributed to elucidating uncertainties regarding the use of nasal lavage in the clinical practice of physical therapy, such as the protocols used.

  2. Solute coupled diffusion in osmotically driven membrane processes.

    Science.gov (United States)

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process.

  3. Sweet pepper production in substrate in response to salinity, nutrient solution management and training system Produção de pimentão cultivado em substrato em resposta à salinidade, manejo da solução nutritiva e sistema de condução

    Directory of Open Access Journals (Sweden)

    José S Rubio

    2011-09-01

    Full Text Available The objective of the present study was to evaluate the marketable fruit yield of sweet pepper plants (Capsicum annuum cv. Orlando in function of the management of nutrient solution with training system. Plants were grown on coconut coir dust under greenhouse conditions in the southeast of Spain. A randomized block design in split-split plot with four blocks was used to test the effect of the nutrient solution strength (full or half-strength Hoagland nutrient solution, training system (two and three stems per plant and water salinity (saline and non-saline on total and marketable yield, fruit quality, and fruit mineral concentration. Salt treatment decreased fruit yield by decreasing the fruit fresh weight but not the number of fruits per plant. Under saline and non-saline conditions, the higher yield of fruits was obtained in plants watered with half-strength Hoagland solution, and grown with three stems per plant. Blossom end rot incidence increased under saline conditions or using full-strength Hoagland solution, but decreased with the combination of half-strength Hoagland solution and three-stem training system. Salt treatment also decreased fruit quality in all the treatments due to a decrease in PO2-, SO4(2-, Fe2+;3+, Cu1+;2+ and Mn2+ concentrations, and fruit shape index. Likewise, plants exposed to salinity and watered with half-strength Hoagland solution and trained with three stems showed a reduction in juice glucose and fructose concentration. Based on these results, an increase of the marketable fruit yield could be obtained under non or moderate saline conditions with the implementation of suitable culture practices.Este experimento teve como objetivo avaliar a produção comercial de pimentão doce (Capsicum annuum cv. Orlando em função do manejo da solução nutritiva, da salinidade e do sistema de condução. As plantas de pimentão doce foram cultivadas em substrato de fibra de coco em casa de vegetação no sudeste da Espanha

  4. Estresse salino no crescimento inicial e nutrição mineral de gliricídia (Gliricidia sepium (Jacq. Kunth ex Steud em solução nutritiva(1 Growth and mineral nutrition of (Gliricidia sepium (Jacq. Kunth ex Steud seedlings in nutrient solution under saline stress

    Directory of Open Access Journals (Sweden)

    Séfora Gil Gomes de Farias

    2009-10-01

    Full Text Available A salinidade é um dos fatores que mais limitam o crescimento e desenvolvimento de plantas na região semiárida. A sobrevivência destas em ambientes salinos dependerá de processos adaptativos, que envolvem absorção, transporte e distribuição de íons nos vários órgãos da planta. Com o objetivo de avaliar o crescimento e a nutrição mineral de mudas de gliricídia cultivada em diferentes condições de salinidade, realizou-se um experimento em telado de náilon da Unidade Acadêmica de Engenharia Florestal da Universidade Federal de Campina Grande, Patos - PB. As sementes foram colocadas para germinar em vasos de Leonard, contendo solução nutritiva de Hoagland & Arnon (50 % da concentração original, com as concentrações de NaCl: 0, 100 200 e 400 mmol L-1. Os tratamentos foram distribuídos em delineamento inteiramente casualizado, com quatro repetições, com uma planta por vaso. Aos 60 dias após a emergência, as plantas foram colhidas e avaliadas quanto a altura, matéria seca e teores de N, P, K, Ca, Mg, S e Na na raiz, no caule e nas folhas. O aumento da salinidade promoveu reduções no crescimento e nos teores de macronutrientes, ocorrendo o inverso nos teores de Na, sobretudo na raiz. A gliricídia mostrou-se sensível à salinidade.Salinity is one of the most limiting factors to plant growth and development. Plant survival in saline environments depends on adaptive processes involving uptake, transport, and distribution of ions in plant organs. To evaluate growth and mineral nutrition of Gliricidia sepium seedlings under saline conditions, an experiment was carried out under nylon-mesh protection, at the Federal University of Campina Grande, in Patos - PB. Seeds were sown in pots containing Hoagland & Arnon nutrient solution with four NaCl levels (0, 100, 200 and 400 mmol L-1, with four replications (1 plant/pot in a completely randomized design. Sixty days after seedling emergence, the plant height and root, stem and

  5. Chemical interaction of fresh and saline waters with compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.; Melamed, A.; Pitkaenen, P.

    1996-01-01

    The interaction of compacted sodium bentonite with fresh and saline ground-water simulant was studied. The parameters varied in the experiments were the compositions of the solutions and oxygen and carbon dioxide content in the surroundings. The main interests of the study were the chemical changes in the experimental solution, bentonite porewater and bentonite together with the microstructural properties of bentonite. The major processes with fresh water were the diffusion of sodium, potassium, sulphate, bicarbonate and chloride from bentonite to the solution, and the diffusion of calcium and magnesium from the solution into bentonite. The major processes in the experiments with saline water were the diffusion of the sodium, magnesium, sulphate and bicarbonate from bentonite into the solution, and the diffusion of calcium from the solution into bentonite

  6. Chemical behaviour of trivalent and pentavalent americium in saline NaCl-solutions. Studies of transferability of laboratory data to natural conditions. Interim report. Reported period: 1.2.1993-31.12.1993; Chemisches Verhalten von drei- und fuenfwertigem Americium in Salinen NaCl-Loesungen. Untersuchung der Uebertragbarkeit von Labordaten auf natuerliche Verhaeltnisse. Zwischenbericht. Berichtszeitraum 1.2.1993-31.12.1993

    Energy Technology Data Exchange (ETDEWEB)

    Runde, W; Kim, J I

    1994-09-15

    In order to clarify the chemical behaviour of Americium in saline aqueous systems relevant for final storage this study deals with the chemical reactions of trivalent and pentavalent Americium in NaCl-solutions under the influence of radiolysis from its own alpha radiation. The focus of the study was on investigating the geologically relevant reactions, such as hydrolysis or carbonate- and chloride complexing in solid-liquid equilibriums. Comprehensive measurements on solubility and spectroscopic studies in NaCl-solutions were carried out in a CO{sub 2}-free atmosphere and 10{sup -2} atm CO{sub 2} partial pressure. Identification and characterisation of the AM (III) and AM(V) solid phases were supplemented by structural research with the chemically analogue EU (III) and Np(V) compounds. The alpha-radiation induced radiolysis in saline NaCl solutions and the redox behaviour of Americium which was influenced thereby were spectroscopically quantified. (orig.) [Deutsch] Zur Klaerung des chemischen Verhaltens von Americium in endlagerrelevanten salinen aquatischen Systemen befasst sich die vorliegende Arbeit mit den chemischen Reaktionen des drei- und fuenfwertigen Americiums in NaCl-Loesungen unter dem Einfluss der Radiolyse durch die eigene {alpha}-Strahlung. Der Schwerpunkt dieser Arbeit lag auf der Untersuchung der geologisch relevanten Reaktionen, wie Hydrolyse sowie Carbonat- und Chloridkomplexierung in fest-fluessig Gleichgewichtssystemen. Hierzu wurden umfassende Loeslichkeitsmessungen und spektroskopische Untersuchungen in NaCl-Loesungen, sowohl unter CO{sub 2}-freier Atmosphaere als auch unter 10{sup -2} atm CO{sub 2}-Partialdruck, durchgefuehrt. Die Identifizierung und Charakterisierung der Am(III)- und Am(V)-Festphasen wurde ergaenzt durch strukturelle Untersuchungen mit den chemisch analogen Eu(III)- und Np(V)-Verbindungen. Die von der {alpha}-Strahlung induzierte Radiolyse in salinen NaCl-Loesungen und das dadurch beeinflusste Redoxverhalten von Americium

  7. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  8. INFLUENCIA DEL TIEMPO DE INMERSIÓN EN SOLUCIÓN SALINA EN EL COMPORTAMIENTO ELECTROQUÍMICO DE LA ALEACIÓN COMERCIAL DE ALUMINIO AA3003H16 | INFLUENCE OF IMMERSION TIME IN SALINE SOLUTION ON ELECTROCHEMICAL BEHAVIOR OF COMMERCIAL ALUMINUM ALLOY AA3003H16

    Directory of Open Access Journals (Sweden)

    Solange Ysbeth Paredes-Dugarte

    2015-11-01

    Full Text Available The behavior of AA3003H16 aluminum alloy was analyzed in a saline environment. The corrosion rate of the alloy at different exposure times (12 h, 1, 2, 4, 6 and 8 days in the corrosive medium was determined by electrochemical technique of Tafel extrapolation. The corrosion damage morphology was examined by optical microscopy and scanning electron microscopy with energy dispersive X-ray microanalysis. Results show that corrosion speed of alloy AA3003H16 increased with time of exposure. Such behavior was attributed not only to the change in the natural oxide film, but also to the characteristics of the intermetallic particles and the aluminum matrix. The corrosion attack nucleated preferentially at the periphery of the intermetallic particles α-Al (FeMn Si and β-Al (FeMn. The exposure time in the corrosive medium does not influence the morphology of the attack, showing small and large bites from the early hours of immersion in saline solution.

  9. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    Science.gov (United States)

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  10. Optimizing silicon application to improve salinity tolerance in wheat

    Directory of Open Access Journals (Sweden)

    A. Ali

    2009-05-01

    Full Text Available Salinity often suppresses the wheat performance. As wheat is designated as silicon (Si accumulator, hence Si application may alleviate the salinity induced damages. With the objective to combat the salinity stress in wheat by Si application (0, 50, 100, 150 and 200 mg L-1 using calcium silicate, an experiment was conducted on two contrasting wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5 in salinized (10 dS m-1 and non-salinized (2 dS m-1 solutions. Plants were harvested 32 days after transplanting and evaluation was done on the basis of different morphological and analytical characters. Silicon supplementation into the solution culture improved wheat growth and K+/Na+ with reduced Na+ and enhanced K+ uptake. Concomitant improvement in shoot growth was observed; nonetheless the root growth remained unaffected by Si application. Better results were obtained with 150 and 200 mg L-1 of Si which were found almost equally effective. It was concluded that SARC-5 is better than Auqab-2000 against salt stress and Si inclusion into the solution medium is beneficial for wheat and can improve the crop growth both under optimal and salt stressful conditions.

  11. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  12. In situ measurement of flow characteristics of natural saline rock in loose zones for gas and saline solutions in given rock stress conditions. Final report; In-situ-Ermittlung von Stroemungskennwerten natuerlicher Salzgesteine in Auflockerungszonen gegenueber Gas und Salzloesungen unter den gegebenen Spannungsbedingungen im Gebirge. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, F.; Belohlavek, K.U.; Behr, A.; Foerster, S.; Pohl, A.

    2001-04-01

    A method and equipment were developed for measuring the extension of loose zones around worked areas in saline rock and for in situ measurement of very small permeabilities and porosities in these zones. The experiments are based on unsteady borehole logs with flowing gases or liquids with special multiple pack systems that enable measurements from 4 cm to 15 m from the cavern contour. The measurements were evaluated by a specially developed software with automatic parameter identification. Permeabilities were identified between 10{sup 14} m{sup 2} and the detection limit of 10{sup 24} m{sup 2} and effective porosities of less than 0.1% at experimental times of several minutes up to several days. The logs were made in 3 mines in Stassfurt rock salt at depths of 700 and 500 m with different geological and geomechanical boundary conditions, worked in different ways and for different periods of time (between a few days and 37 years). Some of the findings were validated by ultrasonic measurements. [German] Fuer die Ermittlung der Ausdehnung von Auflockerungszonen um bergmaennisch aufgefahrene Strecken/Hohlraeume im Salzgestein und zur In-situ-Bestimmung kleinster Permeabilitaeten und Porositaeten in diesen Bereichen wurde ein Verfahren und eine praktikable Versuchsausruestung entwickelt. Diese eignet sich auch fuer Frac-Untersuchungen. Basis der Versuchsdurchfuehrungen sind instationaere Bohrlochuntersuchungen mit Gasen oder Fluessigkeiten als Stroemungsfluid unter Einsatz spezieller Mehrfachpackersysteme. Damit sind Messungen ab 4 cm Abstand zur Hohlraumkontur bis zu 15 m moeglich. Die Versuchsauswertung erfolgt mittels einer speziell entwickelten Software mit automatischer Parameteridentifikation, die die instationaere Stroemung um die Versuchsbohrung raeumlich vollstaendig beschreibt. Permeabilitaeten wurden je nach Abstand zur Hohlraumkontur zwischen 10{sup -14} m{sup 2} und der Nachweisgrenze 10{sup -24} m{sup 2} und effektive Porositaeten bis <0,1% ermittelt, bei

  13. NOAA Average Annual Salinity (3-Zone)

    Data.gov (United States)

    California Natural Resource Agency — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  14. Mapping the Salinity Gradient in a Microfluidic Device with Schlieren Imaging

    Directory of Open Access Journals (Sweden)

    Chen-li Sun

    2015-05-01

    Full Text Available This work presents the use of the schlieren imaging to quantify the salinity gradients in a microfluidic device. By partially blocking the back focal plane of the objective lens, the schlieren microscope produces an image with patterns that correspond to spatial derivative of refractive index in the specimen. Since salinity variation leads to change in refractive index, the fluid mixing of an aqueous salt solution of a known concentration and water in a T-microchannel is used to establish the relation between salinity gradients and grayscale readouts. This relation is then employed to map the salinity gradients in the target microfluidic device from the grayscale readouts of the corresponding micro-schlieren image. For saline solution with salinity close to that of the seawater, the grayscale readouts vary linearly with the salinity gradient, and the regression line is independent of the flow condition and the salinity of the injected solution. It is shown that the schlieren technique is well suited to quantify the salinity gradients in microfluidic devices, for it provides a spatially resolved, non-invasive, full-field measurement.

  15. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  16. World Ocean Atlas 2005, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  17. Genetic variation and plasticity of Plantago coronopus under saline conditions

    NARCIS (Netherlands)

    Smekens, Marret; Van Tienderen, P.H.

    2001-01-01

    Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions.

  18. Genotypic variation in the response of tomato to salinity | Turhan ...

    African Journals Online (AJOL)

    In order to determine the predictive screening parameters that can be applied at early development stages of tomato plants, 18 tomato cultivars were grown in nutrient solution with 12 dS m-1 NaCl. The research was conducted in a completely randomized design with tree replications. The relationships among the salinity ...

  19. Extracting renewable energy from a salinity difference using a capacitor.

    Science.gov (United States)

    Brogioli, Doriano

    2009-07-31

    Completely renewable energy can be produced by using water solutions of different salinity, like river water and sea water. Many different methods are already known, but development is still at prototype stage. Here I report a novel method, based on electric double-layer capacitor technology. Two porous electrodes, immersed in the salt solution, constitute a capacitor. It is first charged, then the salt solution is brought into contact with fresh water. The electrostatic energy increases as the salt concentration of the solution is reduced due to diffusion. This device can be used to turn sources of salinity difference into completely renewable sources of energy. An experimental demonstration is given, and performances and possible improvements are discussed.

  20. Variação da pressão sistólica como indicadora precoce de hipovolemia e guia de reposição volêmica com solução hiperosmótica e hiperoncótica no cão Variación de la presión sistólica como indicadora precoz de hipovolemia y guía de reposición volemica con solución hiperosmótica e hiperoncótica en el perro Systolic pressure variation as an earlier hypovolemia indicator and a guide for volume replacement with hypertonic and hyperoncotic solution in dogs

    Directory of Open Access Journals (Sweden)

    Odilar de Paiva Filho

    2003-06-01

    reposición, en niveles superiores a los del control. Los índices de resistencia vascular sistemica (IRVS y pulmonar (IRVP no se alteraran antes, más diminuyeron después de la reposición, con el IRVS en niveles inferiores a los del control y el IRVP en niveles semejantes a los do control. Los índices de trabajo sistólico de los ventrículos derecho (ITSVD e izquierdo (ITSVE diminuían durante el sangramiento, más aumentaron después de la reposición, con el ITSVD en niveles superiores a los del control y el ITSVE en niveles semejantes a los del control. La VPS y ddown aumentaron progresivamente durante el sangramiento y diminuyeron después de la reposición, mas manteniendo en valores superiores a los del control. Las mayores correlaciones de VPS y ddown fueron con IS, PAPO, PAD y ITSVE. CONCLUSIONES: En el perro, en las condiciones utilizadas, la VPS y su derivada ddown son indicadoras precoces de hipovolemia y guías sensibles de reposición volémica con SHD.BACKGROUND AND OBJECTIVES: Studies have introduced a new method for preload evaluation based on systolic pressure variation analysis (SPV during mechanical ventilation. This research aimed at evaluating whether SPV and its delta down derived (ddown are earlier hypovolemia indicators and guides for volume replacement with hypertonic and hyperoncotic solutions. METHODS: Twelve dogs were submitted to graded hemorrhage of 5% of their volume until reaching 20% of volume (14 ml.kg-1. Before (control and after every hemorrhage, hemodynamic, ventilatory and blood parameters were evaluated. Then, dogs were submitted to volume replacement with 7.5% NaCl in 3.75% dextran 70 (SHD (4 ml.kg-1, and the parameters were again evaluated 5 and 30 minutes after volume replacement. RESULTS: Mean blood pressure decreased during hemorrhage and increased after SHD infusion, however without returning to baseline values. Right atrium (RAP and pulmonary artery pressure (PAP decreased before and increased after volume replacement

  1. Compatibility of 5-fluorouracil and total parenteral nutrition solutions.

    Science.gov (United States)

    Hardin, T C; Clibon, U; Page, C P; Cruz, A B

    1982-01-01

    The physicochemical stability and availability of 0.1% 5-fluorouracil solutions in D5W and a typical total parenteral nutrition solution (hypertonic dextrose and crystalline amino acids) were studied in both glass and Viaflex delivery systems. Serial samples collected over a 48-hour period were assayed for 5-fluorouracil concentration using a high performance liquid chromatographic technique. Changes in the pH as well as precipitate formation were also investigated. There was no reduction in the amount of 5-fluorouracil at 48 hours in either the glass or plastic system, regardless of whether the drug was added to D5W or to the total parenteral nutrition solution. No pH changes or precipitates were observed. These findings indicate that 5-fluorouracil is compatible with and available from total parenteral solutions of hypertonic dextrose and amino acid in both plastic and glass containers. Use of such a system would allow for (1) a reduction in vascular access in patients receiving both treatments and (2) continued administration of nutritional support without the requirement for additional fluid volume.

  2. Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: Tolerance, morphological gill alterations and Na+/K+-ATPase localization

    International Nuclear Information System (INIS)

    Bernabò, Ilaria; Bonacci, Antonella; Coscarelli, Francesca; Tripepi, Manuela; Brunelli, Elvira

    2013-01-01

    Freshwater habitats are globally threatened by human-induced secondary salinization. Amphibians are generally poorly adapted to survive in saline environments. We experimentally investigated the effects of chronic exposure to various salinities (5%, 10%, 15%, 20%, 25%, 30% and 35% seawater, SW) on survival, larval growth and metamorphosis of tadpoles from two amphibian populations belonging to two species: the green toad Bufo balearicus and the common toad Bufo bufo. In addition, gill morphology of tadpoles of both species after acute exposure to hypertonic conditions (20%, 25%, and 30% SW) was examined by light and electron microscopy. Tadpoles experienced 100% mortality above 20% SW in B. balearicus while above 15% SW in B. bufo. We detected also sublethal effects of salinity stress on growth and metamorphosis. B. bufo cannot withstand chronic exposure to salinity above 5% SW, tadpoles grew slower and were significantly smaller than those in control at metamorphosis. B. balearicus tolerated salinity up to 20% SW without apparent effects during larval development, but starting from 15% SW tadpoles metamorphosed later and at a smaller size compared with control. We also revealed a negative relation between increasing salt concentration and gill integrity. The main modifications were increased mucous secretion, detachment of external layer, alteration of epithelial surface, degeneration phenomena, appearance of residual bodies, and macrophage immigration. These morphological alterations of gill epithelium can interfere with respiratory function and both osmotic and acid-base regulation. Significant variations in branchial Na + /K + -ATPase activity were also observed between two species; moreover an increase in enzyme activity was evident in response to SW exposure. Epithelial responses to increasing salt concentration were different in the populations belonging to two species: the intensity of histological and ultrastructural pathology in B. bufo was greater and we

  3. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

    KAUST Repository

    Nam, Joo-Youn; Logan, Bruce E.

    2011-01-01

    sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near

  4. Assessment of the effect of salinity on the early growth stage of the ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... The results showed that plant growth decreased proportionally with increasing ... Therefore, agriculturalists can assess growth rate changes caused by salinity using remote .... pH of all solutions was adjusted to 6. De-ionized ...

  5. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  6. Incomplete turgor adjustment in Cladophora rupestrisunder fluctuating salinity regimes

    Science.gov (United States)

    Wiencke, Christian; Gorham, John; Tomos, Deri; Davenport, John

    1992-04-01

    Turgor pressure fluctuates strongly in Cladophora rupestrissubjected to low salinities and shows only a small tendency to readjust to the normal value in full seawater (incomplete turgor adjustment). This was revealed by direct turgor pressure measurements and by chemical analyses of osmotic solutes after exposure of upper and lower shore Cladophorato the different salinity regimes occurring in the intertidal zone or representing steady state osmotic acclimation. The main internal osmotic solutes were K +, Cl -, amino acids, NO 3-and glycine betaine. Na +, SO 42-and PO 43-were of less importance. The sum of the charges on the cations was similar to that for the anions. K +, Cl -and, to a lesser extent, amino acids were responsible for limited turgor pressure adjustment which did occur. The concentrations of the major osmotic solutes were influenced not only by salinity but also by light: those of amino acids and NO 3-were increased while those of K +and Cl -were decreased under illumination. Cladophorapopulations from the upper and lower shore differed in their ability to restore internal K +and Cl -levels on transfer to full seawater after long term exposure to low salinity. This may indicate ecotypic variation.

  7. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application

    Science.gov (United States)

    Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos

    2018-01-01

    Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759

  8. Fixation of potentially lethal radiation damage by post-irradiation exposure of Chinese hamster cells to 0.5 M or 1.5 M NaCl solutions

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Dewey, W.C.

    1979-01-01

    The effect of 0.05 M and 1.5 M NaCl treatments on CHO cells during and after irradiation has been examined. Treatment with either hypotonic or hypertonic salt solutions during and after irradiation resulted in the fixation of radiation damage which would otherwise not be expressed. The half time for fixation was 4 to 5 min, and the increased expression of the potentially lethal damage by anisotonic solutions was mainly characterized by large decreases in the shoulder of the survival curve, as well as by decreases in Dsub(o). Fixation of radiation damage at 37 0 C occurred to a much greater extent for the hypertonic treatment than for the hypotonic treatment and was greater at 37 0 C than at 20 0 C. Although both the hypotonic and hypertonic treatments during and after irradiation reduced or eliminated the repair of sublethal and potentially lethal damage, treatment during irradiation only, radiosensitized the cells when the treatment was hypotonic, and radioprotected the cells when the treatment was hypertonic. These observations are discussed in relation to salt treatments and different temperatures altering competition between repair and fixation of potentially lethal lesions, the number of which depends on the particular salt treatment at the time of irradiation. (author)

  9. Productive use of saline lands

    International Nuclear Information System (INIS)

    2003-01-01

    Water is essential for life, and not least for agricultural activity. It interacts with solar energy to determine the climate of the globe, and its interaction with carbon dioxide inside a plant results in photosynthesis on which depends survival of all life. Much of the water available to man is used for agriculture and yet its usage has not been well managed. One result has been the build up of soil salinity. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Department of Research and Isotopes, to make more productive use of salt-affected land and to limit future build up of salinity. (IAEA)

  10. Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined

    Science.gov (United States)

    Malik, Al Imran; English, Jeremy Parker; Colmer, Timothy David

    2009-01-01

    Background and Aims When root-zone O2 deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O2 deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat. Methods Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0·2 or 200 mol m−3 NaCl in aerated or stagnant nutrient solution for 28–29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O2 loss (ROL) and leaf ion (Na+, K+, Cl−) concentrations were determined. Key Results Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2–38 % in stagnant solution, by 8–42 % in saline solution (aerated) and by 39–71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24–33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier ‘strength’. Leaf Na+ concentration was 142–692 µmol g−1 d. wt for plants in saline solution (aerated), and only increased to 247–748 µmol g−1 d. wt in the stagnant plus saline treatment. Leaf Cl− also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K+ declined to lower levels, and leaf Na+ and

  11. Doses de N e K no tomateiro sob estresse salino: I. Concentração de nutrientes no solo e na planta Doses of N and K in tomato under saline stress: I. Concentration of nutrients in the soil solution and plant

    Directory of Open Access Journals (Sweden)

    Flávio F. Blanco

    2008-02-01

    Full Text Available Em geral, culturas tolerantes à salinidade geralmente apresentam maiores teores foliares de certos nutrientes, sugerindo que a adubação em culturas sensíveis poderia elevar os teores desses nutrientes nas folhas, aumentando sua tolerância aos sais. Este trabalho teve o objetivo de estudar os efeitos do N e do K na condutividade elétrica, pH e concentração de nutrientes da solução do solo e nos teores de nutrientes e prolina nas folhas do tomateiro irrigado com água salina. Os tratamentos foram compostos da combinação de três níveis de N (7,5; 15,0 e 22,5 g por planta e de K (8, 16 e 24 gK2O por planta aplicados via fertirrigação por gotejamento, no esquema fatorial 3 x 3, com cinco repetições, sendo que à água de irrigação foram adicionados os sais cloreto de sódio e cloreto de cálcio, para obtenção de condutividade elétrica da água de 9,5 dS m-1. As concentrações de NO3 e K na solução do solo e de N e K nas folhas do tomateiro aumentaram com as doses de N e K mas não promoveram redução dos teores de Cl nem de Na nas folhas das plantas. O aumento do teor de prolina com as doses de K e a redução de Cl/N com as doses de N, sugerem que o aumento na adubação potássica e nitrogenada pode ser benéfico para o tomateiro sob condições de salinidade moderada.Crops tolerant to salinity generally present higher concentrations of some nutrients in the leaves, suggesting that the fertilization of sensitive crops could increase the contents of these nutrients in the leaves to increase the crop tolerance to salts. This work had the objective of studying the effects of N and K on electrical conductivity, pH and nutrient concentrations of soil solution and on concentration of nutrients and proline in the leaves of tomatos irrigated with saline water. The treatments were composed of the combination of three levels of N (7.5, 15.0 and 22.5 g per plant and K (8, 16 and 24 g K2O per plant applied by drip fertigation, in a 3

  12. Salt exclusion and mycorrhizal symbiosis increase tolerance to NaCl and CaCl2 salinity in ‘Siam Queen’ basil

    Science.gov (United States)

    A study was conducted to evaluate the effects of salinity on growth and nutrient uptake in basil (Ocimum basilicum L.). Plants were fertilized with a complete nutrient solution and exposed to no, low, or moderate levels of salinity from NaCl or CaCl2. Plants in the control and moderate salinity tre...

  13. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  14. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  15. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  16. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  17. 40 CFR 230.25 - Salinity gradients.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...

  18. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  19. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    Positively charged lipid bilayer systems are a promising class of nonviral vectors for safe and efficient gene and drug delivery. Detailed understanding of these systems is therefore not only of fundamental but also of practical biomedical interest. Here, we study bilayers comprising a binary...... are concluded to be interesting for the physics of the whole membrane, especially considering its interaction dynamics with charged macromolecular surfaces....

  20. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    Science.gov (United States)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure surgery. HSD and HSS have received regulatory approval in 14 and 3 countries, respectively, with 81,000+ units sold. The primary reported use was head injury and trauma resuscitation. Complications and reported adverse events are surprisingly rare and not significantly different from other solutions.HBOCs are potent volume expanders in addition to oxygen carriers with volume expansion greater than standard colloids. Several investigators have evaluated small volume hyperoncotic HBOCs or HS-HBOC formulations for hypotensive and normotensive resuscitation in animals. A consistent finding in resuscitation with HBOCs is depressed cardiac output. There is some evidence that HBOCs more efficiently unload oxygen from plasma hemoglobin as well as facilitate RBC

  1. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inês S.

    2015-07-22

    Increase in soil salinity levels is becoming a major cause of crop yield losses worldwide. Rice (Oryza sativa) is the most salt-sensitive cereal crop, and many studies have focused on rice salinity tolerance, but a global understanding of this crop\\'s response to salinity is still lacking. We systematically analyzed phenotypic data previously collected for 56 rice genotypes to assess the extent to which rice uses three known salinity tolerance mechanisms: shoot-ion independent tolerance (or osmotic tolerance), ion exclusion, and tissue tolerance. In general, our analyses of different phenotypic traits agree with results of previous rice salinity tolerance studies. However, we also established that the three salinity tolerance mechanisms mentioned earlier appear among rice genotypes and that none of them is predominant. Against the pervasive view in the literature that the K+/Na+ ratio is the most important trait in salinity tolerance, we found that the K+ concentration was not significantly affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use our results together with an extensive literature research to highlight some issues commonly observed in salinity stress tolerance studies and to propose solutions for future experiments.

  2. Small volume hypertonic resuscitation of circulatory shock Soluções hipertônicas para reanimação de pacientes em choque

    Directory of Open Access Journals (Sweden)

    Mauricio Rocha-e-Silva

    2005-04-01

    Full Text Available Small volume hypertonic resuscitation is a relatively new conceptual approach to shock therapy. It was originally based on the idea that a relatively large blood volume expansion could be obtained by administering a relatively small volume of fluid, taking advantage of osmosis. It was soon realized that the physiological vasodilator property of hypertonicity was a useful byproduct of small volume resuscitation in that it induced reperfusion of previously ischemic territories, even though such an effect encroached upon the malefic effects of the ischemia-reperfusion process. Subsequent research disclosed a number of previously unsuspected properties of hypertonic resuscitation, amongst them the correction of endothelial and red cell edema with significant consequences in terms of capillary blood flow. A whole set of actions of hypertonicity upon the immune system are being gradually uncovered, but the full implication of these observations with regard to the clinical scenario are still under study. Small volume resuscitation for shock is in current clinical use in some parts of the world, in spite of objections raised concerning its safety under conditions of uncontrolled bleeding. These objections stem mainly from experimental studies, but there are few signs that they may be of real clinical significance. This review attempts to cover the earlier and the more recent developments in this field.O uso de soluções hipertônicas para reanimação de pacientes em choque é um conceito relativamente novo. Baseou-se originalmente na idéia de que uma expansão volêmica significativa podia ser obtida às custas de um volume relativamente diminuto de infusão, aproveitando a propriedade física de osmose. Logo ficou claro que a capacidade fisiológica de produzir vasodilatação, compartilhada por todas as soluções hipertônicas, seria valiosa para reperfundir territórios tornados isquêmicos pelo choque, embora os malefícios da seq

  3. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    Science.gov (United States)

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  4. Dynamics of Ca2+i and pHi in Ehrlich ascites tumor cells after Ca2+-mobilizing agonists or exposure to hypertonic solution

    DEFF Research Database (Denmark)

    Pedersen, Stine F.; Jørgensen, Nanna K.; Hoffmann, Else Kay

    1998-01-01

    Intracellular free calcium concentration ([Ca2+]i) and intracellular pH (pHi) were monitored in Ehrlich ascites tumor cells using Fura-2 or 2',7',-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF), or both probes in combination. An increase in [Ca2+]i induced by thrombin or bradykinin, agonists...

  5. Contribuição de solutos orgânicos e inorgânicos no ajustamento osmótico de pinhão-manso submetido à salinidade Contribution of organic and inorganic solutes to osmotic adjustment of physic nut under salinity

    Directory of Open Access Journals (Sweden)

    Evandro Nascimento da Silva

    2009-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a acumulação de solutos orgânicos e inorgânicos e suas contribuições para o ajustamento osmótico de folhas de pinhão-manso (Jatropha curcas L. submetido à salinidade. O experimento foi conduzido em delineamento experimental inteiramente casualizado, com cinco tratamentos (0, 25, 50, 75 e 100 mmol L-1 de NaCl e quatro repetições. As plantas foram cultivadas hidroponicamente em casa de vegetação, em condições controladas de fotoperíodo (12 horas, temperatura (média de 28ºC e umidade relativa do ar (média de 65%, com radiação fotossinteticamente ativa máxima média de 700 µmol m-1 s-1. O potencial osmótico das folhas decresceu progressivamente e variou de -0,84 a -2,05 MPa, enquanto o conteúdo relativo de água aumentou nos tratamentos com 75 e 100 mmol L-1. Os íons Na+ e Cl- foram os mais importantes, em termos quantitativos, e contribuíram com cerca de 52 e 20%, respectivamente, para o ajustamento osmótico das folhas de plantas tratadas com NaCl. A contribuição do K+ decresceu de modo acentuado e foi de 17 e 5% nos tratamentos com 25 e 100 mmol L-1 de NaCl. A contribuição média dos solutos orgânicos, açúcares, aminoácidos, glicina betaína e prolina, foi de 5,5, 6, 4 e 0,03%, respectivamente. As folhas de pinhão-manso ajustam-se osmoticamente em presença de salinidade, e mantêm bom nível de hidratação, principalmente por meio da acumulação de Na+ e Cl-. A glicina betaína tem papel quantitativo mais importante do que a prolina no ajustamento osmótico, tanto em presença quanto em ausência de salinidade.The objectives of this work were to evaluate the organic and inorganic solutes accumulation and measure their contribution to the osmotic adjustment of physic nut (Jatropha curcas L. leaves under salinity. The experiment was carried out using a completely randomized design with five treatments (0, 25, 50, 75, and 100 mmol L-1 of NaCl and four replications. Plants

  6. Coastal hazards and groundwater salinization on low coral islands.

    Science.gov (United States)

    Terry, James P.; Chui, T. F. May

    2016-04-01

    Remote oceanic communities living on low-lying coral islands (atolls) without surface water rely for their survival on the continuing viability of fragile groundwater resources. These exist in the form of fresh groundwater lenses (FGLs) that develop naturally within the porous coral sand and gravel substrate. Coastal hazards such as inundation by high-energy waves driven by storms and continuing sea-level rise (SLR) are among many possible threats to viable FGL size and quality on atolls. Yet, not much is known about the combined effects of wave washover during powerful storms and SLR on different sizes of coral island, nor conversely how island size influences lens resilience against damage. This study investigates FGL damage by salinization (and resilience) caused by such coastal hazards using a modelling approach. Numerical modelling is carried out to generate steady-state FGL configurations at three chosen island sizes (400, 600 and 800 m widths). Steady-state solutions reveal how FGL dimensions are related in a non-linear manner to coral island size, such that smaller islands develop much more restricted lenses than larger islands. A 40 cm SLR scenario is then imposed. This is followed by transient simulations to examine storm-induced wave washover and subsequent FGL responses to saline damage over a 1 year period. Smaller FGLs display greater potential for disturbance by SLR, while larger and more robust FGLs tend to show more resilience. Further results produce a somewhat counterintuitive finding: in the post-SLR condition, FGL vulnerability to washover salinization may actually be reduced, owing to the thinner layer of unsaturated substrate lying above the water table into which saline water can infiltrate during a storm event. Nonetheless, combined washover and SLR impacts imply overall that advancing groundwater salinization may lead to some coral islands becoming uninhabitable long before they are completely submerged by sea-level rise, thereby calling

  7. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  8. ( Phaseolus vulgaris L. ) seedlings to salinity stress

    African Journals Online (AJOL)

    The effect of salinity stress on five cultivars of common bean: Bassbeer, Beladi, Giza 3, HRS 516 and RO21 were evaluated on a sand/peat medium with different salinity levels (0, 50 and 100 mM NaCl) applied 3 weeks after germination for duration of 10 days. Salinity had adverse effects not only on the biomass yield and ...

  9. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  10. Advances in measuring ocean salinity with an optical sensor

    International Nuclear Information System (INIS)

    Menn, M Le; De Bougrenet de la Tocnaye, J L; Grosso, P; Delauney, L; Podeur, C; Brault, P; Guillerme, O

    2011-01-01

    Absolute salinity measurement of seawater has become a key issue in thermodynamic models of the oceans. One of the most direct ways is to measure the seawater refractive index which is related to density and can therefore be related to the absolute salinity. Recent advances in high resolution position sensitive devices enable us to take advantage of small beam deviation measurements using refractometers. This paper assesses the advantages of such technology with respect to the current state-of-the-art technology. In particular, we present the resolution dependence on refractive index variations and derive the limits of such a solution for designing seawater sensors well suited for coastal and deep-sea applications. Particular attention has been paid to investigate the impact of environmental parameters, such as temperature and pressure, on an optical sensor, and ways to mitigate or compensate them have been suggested here. The sensor has been successfully tested in a pressure tank and in open oceans 2000 m deep

  11. Salinity Temperature and Roughness Remote Scanner (STARRS)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides spatially continuous high-resolution surface salinity imagery in a synoptic manner from small aircraft. Its output complements data collected from...

  12. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    Science.gov (United States)

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  13. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    Directory of Open Access Journals (Sweden)

    Yan Guo

    Full Text Available In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9 allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v as well as other EMI instruments (e.g. DUALEM-421 can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  14. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought.

    Science.gov (United States)

    Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L

    2017-02-01

    Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in

  15. Reinforcement of spinal anesthesia by epidural injection of saline: a comparison of hyperbaric and isobaric tetracaine.

    Science.gov (United States)

    Yamazaki, Y; Mimura, M; Hazama, K; Namiki, A

    2000-04-25

    An epidural injection of saline was reported to extend spinal anesthesia because of a volume effect. The aim of this study was to evaluate the influence of the baricity of spinal local anesthetics upon the extension of spinal anesthesia by epidural injection of saline. Forty patients undergoing elective lower-limb surgery were randomly allocated to four groups of 10 patients each. Group A received no epidural injection after the spinal administration of hyperbaric tetracaine (dissolved in 10% glucose). Group B received an epidural injection of 8 ml of physiological saline 20 min after spinal hyperbaric tetracaine. Group C received no epidural injection after spinal isobaric tetracaine (dissolved in physiological saline). Group D received an epidural injection of 8 ml of saline 20 min after spinal isobaric tetracaine. The level of analgesia was examined by the pinprick method at 5-min intervals. The levels of analgesia 20 min after spinal anesthesia were significantly higher in hyperbaric groups than in isobaric groups [T5 (T2-L2) vs. T7 (T3-12)]. After epidural injection of saline, the levels of analgesia in groups B and D were significantly higher than in groups A and C. The segmental increases after epidural saline injection were 2 (0-3) in group B and 2 (1-7) in group D. Sensation in the sacral area remained 20 min after spinal block in one patient in group D; however, it disappeared after epidural saline injection. In this study, 8 ml of epidural saline extended spinal analgesia. However, there was no difference between the augmenting effect in isobaric and hyperbaric spinal anesthesia. We conclude that the reinforcement of spinal anesthesia by epidural injection of saline is not affected by the baricity of the spinal anesthetic solution used.

  16. Mapping Spatial Variability of Soil Salinity in a Coastal Paddy Field Based on Electromagnetic Sensors

    Science.gov (United States)

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles. PMID:26020969

  17. Practical salinity management for leachate irrigation to poplar trees.

    Science.gov (United States)

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    fifteen year record of monitoring and operational data are presented that can be used by others in managing irrigation of saline water to poplar trees. When salinity is carefully managed, tree systems can help to provide sustainable leachate management solutions for landfills.

  18. Organic matter and salinity modify cadmium soil (phyto)availability.

    Science.gov (United States)

    Filipović, Lana; Romić, Marija; Romić, Davor; Filipović, Vilim; Ondrašek, Gabrijel

    2018-01-01

    Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg -1 ). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd 2+ pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCl n 2-n complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2013-01-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  20. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2013-03-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  1. Valsalva maneuver procedures in the diagnosis of right-to-left shunt by contrast-enhanced transcranial doppler using agitated saline solution with blood as a contrast agent Manobra de Valsalva no diagnóstico de embolia paradoxal pelo doppler transcraniano contrastado com o uso de solução salina agitada associada a sangue como meio de contraste

    Directory of Open Access Journals (Sweden)

    Marcos Christiano Lange

    2010-06-01

    Full Text Available OBJECTIVE: To compare two different timings for the performance of the Valsalva maneuver (VM using an infusion of agitated saline solution with blood as contrast agent (CA to right-to-left shunt (RLS screening. METHOD: 42 patients were submitted to a standardized contrast-enhanced transcranial doppler (cTCD to screen for right-to-left shunt (RLS. cTCD technique was done with two different moments of the VM: [1] the CA injection during the VM (CAduringVM test; [2] the CA injection before the VM (CApreVM test. RESULTS: Positive MCA tests were observed in 47 (56% CAduringVM tests and in 50 (59.5% CApreVM tests, p=0.64. There was an almost perfect agreement for the positive tests between the CAduringVM and CApreVM test, r s=0.829 (95% CI 0.61-1.00, pOBJETIVO: Comparar dois momentos diferentes da manobra de Valsalva (MV com o uso de solução salina com sangue como meio de contraste (MC para investigação de embolia paradoxal (EP. MÉTODO: 42 pacientes foram submetidos a protocolo padronizado de DTCc com a MV em dois momentos diferentes: [1] injeção do MC durante a MV (teste ACduranteMV; [2] injeção de MC antes da MV (teste ACpreMV. RESULTADOS: Exames positivos foram observados em 47 (56% ACMs testes ACduranteMV e 50 (59.5% testes ACpreMV, p=0.64. Houve uma correlação quase perfeita entre ambos os testes, r s=0.829 (95% CI 0.61-1.00, p<0.001. CONCLUSÃO: O presente estudo demonstra que não existe diferença significativa na positividade de EP pelo DTCc quando são comparados dois momentos diferentes da MV.

  2. Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Lieven Van Meulebroek

    2016-05-01

    Full Text Available As the presence of health-promoting substances has become a significant aspect of tomato fruit appreciation, this study investigated nutrient solution salinity as a tool to enhance carotenoid accumulation in cherry tomato fruit (Solanum lycopersicum L. cv. Juanita. Hereby, a key objective was to uncover the underlying mechanisms of carotenoid metabolism, moving away from typical black box research strategies. To this end, a greenhouse experiment with five salinity treatments (ranging from 2.0 to 5.0 decisiemens (dS m−1 was carried out and a metabolomic fingerprinting approach was applied to obtain valuable insights on the complicated interactions between salinity treatments, environmental conditions, and the plant’s genetic background. Hereby, several hundreds of metabolites were attributed a role in the plant’s salinity response (at the fruit level, whereby the overall impact turned out to be highly depending on the developmental stage. In addition, 46 of these metabolites embraced a dual significance as they were ascribed a prominent role in carotenoid metabolism as well. Based on the specific mediating actions of the retained metabolites, it could be determined that altered salinity had only marginal potential to enhance carotenoid accumulation in the concerned tomato fruit cultivar. This study invigorates the usefulness of metabolomics in modern agriculture, for instance in modeling tomato fruit quality. Moreover, the metabolome changes that were caused by the different salinity levels may enclose valuable information towards other salinity-related plant processes as well.

  3. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  4. Decline of the world's saline lakes

    Science.gov (United States)

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  5. Estimation of salinity power potential in India

    Digital Repository Service at National Institute of Oceanography (India)

    Das, V.K.; RamaRaju, D.V.

    Salinity gradient as a source of energy has much potential, but this has been recognized only recently. The energy density of this source is equivalent to about 250 m water head for a salinity difference of 35 ppt. This source exists...

  6. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-01-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC 50 values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC 50 obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC 50 ). This LC 50 value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC 50 . For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC 50 and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC 50 of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC 50 values. In contrast, LC 50 determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature

  7. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC{sub 50} values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC{sub 50} obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC{sub 50}). This LC{sub 50} value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC{sub 50}. For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC{sub 50} and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC{sub 50} of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC{sub 50} values. In contrast, LC{sub 50} determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature.

  8. Tea (Camellia sinensis (L.) Kuntze) leaf compost ameliorates the adverse effects of salinity on growth of cluster beans (Cyamopsis tetragonoloba L.)

    International Nuclear Information System (INIS)

    Saeed, R.; Shah, P.; Jahan, B.

    2016-01-01

    The pot experiment was carried out to evaluate the effect of tea compost on plant growth under salinity. Plants were grown in clay pots filled with sandy loam soil and irrigated by saline water (0, 50 and 100mM NaCl) with and without tea compost amendments. Soil evapotranspiration (ET), vegetative and reproductive growth and biochemical parameters were studied in this experiment. ET rate was increased with increasing salinity, whereas, it decreased with application of tea compost under all salinity. Vegetative (shoot height, number of leaves, fresh and dry biomass) and reproductive (number of seeds per plant) growth significantly decline under increasing salinity levels. Tea compost treatment helped in improving all these parameters. Total photosynthetic pigments (chlorophyll a, b, carotenoids and total chlorophyll content) showed reduction under raising salinity levels, while betterment was recorded with application of tea compost. Organic solutes (soluble sugars, proteins, free amino acids and phenolic content) increased with increasing salinity (50-100mM NaCl). Increased soluble sugars were found with tea compost treatment under non-saline control and decreased in salinity. Soluble proteins, amino acids and phenolic content increased with application of tea compost under both control and salinity. It is concluded that tea compost treatment is found to cope with salinity stress and improve plant growth and biochemical parameters by diluting the hazardous effects of salinity. (author)

  9. Salinity-Dependent Adhesion Response Properties of Aluminosilicate (K-Feldspar) Surfaces

    DEFF Research Database (Denmark)

    Lorenz, Bärbel; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    is composed predominantly of quartz with some clay, but feldspar grains are often also present. While the wettability of quartz and clay surfaces has been thoroughly investigated, little is known about the adhesion properties of feldspar. We explored the interaction of model oil compounds, molecules...... in well sorted sandstone. Adhesion forces, measured with the chemical force mapping (CFM) mode of atomic force microscopy (AFM), showed a low salinity effect on the fresh feldspar surfaces. Adhesion force, measured with -COO(H)-functionalized tips, was 60% lower in artificial low salinity seawater (LS......, ∼1500 ppm total dissolved solids) than in the high salinity solution, artificial seawater (HS, ASW, ∼35 600 ppm). Adhesion with the -CH3 tips was as much as 30% lower in LS than in HS. Density functional theory calculations indicated that the low salinity response resulted from expansion of the electric...

  10. Etched FBG coated with polyimide for simultaneous detection the salinity and temperature

    Science.gov (United States)

    Luo, Dong; Ma, Jianxun; Ibrahim, Zainah; Ismail, Zubaidah

    2017-06-01

    In marine environment, concrete structures can corrode because of the PH alkalinity of concrete paste; and the salinity PH is heavily related with the concentration of salt in aqueous solutions. In this study, an optical fiber salinity sensor is proposed on the basis of an etched FBG (EFBG) coated with a layer of polyimide. Chemical etching is employed to reduce the diameter of FBG and to excite Cladding Mode Resonance Wavelengths (CMRWs). CMRW and Fundamental Mode Resonance Wavelength (FMRW) can be used to measure the Refractive index (RI) and temperature of salinity. The proposed sensor is then characterized with a matrix equation. Experimental results show that FMRW and 5th CMRW have the detection sensitivities of 15.407 and 125.92 nm/RIU for RI and 0.0312 and 0.0435 nm/°C for temperature, respectively. The proposed sensor can measure salinity and temperature simultaneously.

  11. Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives.

    Science.gov (United States)

    Grattieri, Matteo; Minteer, Shelley D

    2018-04-01

    This review is aimed to report the possibility to utilize microbial fuel cells for the treatment of saline and hypersaline solutions. An introduction to the issues related with the biological treatment of saline and hypersaline wastewater is reported, discussing the limitation that characterizes classical aerobic and anaerobic digestions. The microbial fuel cell (MFC) technology, and the possibility to be applied in the presence of high salinity, is discussed before reviewing the most recent advancements in the development of MFCs operating in saline and hypersaline conditions, with their different and interesting applications. Specifically, the research performed in the last 5years will be the main focus of this review. Finally, the future perspectives for this technology, together with the most urgent research needs, are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of Saline Pushing after Contrast Material Injection in Abdominal Multidetector Computed Tomography with the Use of Different Iodine Concentrations

    International Nuclear Information System (INIS)

    Tatsugami, F.; Matsuki, M.; Kani, H.; Tanikake, M.; Miyao, M.; Yoshikawa, S.; Narabayashi, I.

    2006-01-01

    Purpose: To investigate whether saline pushing after contrast material improves hepatic vascular and parenchymal enhancement, and to determine whether this technique permits decreased contrast material concentration. Material and Methods: 120 patients who underwent hepatic multidetector computed tomography were divided randomly into four groups (Groups A-D): receiving 100 ml of contrast material (300 mgI/ml) only (A) or with 50 ml of saline solution (B); or 100 ml of contrast material (350 mgI/ml) only (C) or with 50 ml of saline solution (D). Computed tomography (CT) values of the aorta in the arterial phase, the portal vein in the portal venous inflow phase, and the liver in the hepatic phase were measured. Visualization of the hepatic artery and the portal vein by 3D CT angiography was evaluated as well. Results: Although the enhancement values of the aorta were not improved significantly with saline pushing, they continued at a high level to the latter slices with saline pushing. The enhancement value of the portal vein increased significantly and CT portography was improved with saline pushing. The enhancement value of the liver was not improved significantly using saline pushing. In a comparison between groups B and C, the enhancement values of the aorta and portal vein and the visualization of CT arteriography and portography were not statistically different. Conclusion: The saline pushing technique can contribute to a decrease in contrast material concentration for 3D CT arteriography and portography

  13. Use of radioactive sodium-22 to study the processes of soil salinization and desalinization

    International Nuclear Information System (INIS)

    Alzubaidi, A.H.

    1979-01-01

    This study deals with the salinization of four undisturbed soil columns of silt loam soil, collected with special plexiglass columns. The salinization was effected by adding a certain volume of salt solution consisting of a mixture of NaCl, CaCl 2 and MgCl 2 and containing 0.5 mCi of sodium-22. The salt solution was added to the surface of the first two columns and then the soil columns were leached with distilled water, while for the other two columns, the salt solution was added from the bottom of the columns using a syphon technique. The first two columns represent a model for the desalinization process of saline soils, while the latter two columns represent a model for the salinization process under the effect of high groundwater table. The downward and upward movements of sodium through the soil columns were recorded by measuring sodium radioactivity periodically, using a special scanner which continuously and automatically detected the radioactivity of sodium with the help of a gamma spectrometer. The final distribution curves for sodium movement throughout these soil columns versus time were obtained by computer. The data obtained indicate that radioactive sodium can be used with success to study the movement of salts in soil. The results also bring a new and better understanding of the nature of the salt movement during the processes of salinization and desalinization, the most important soil processes in the arid and semi-arid regions. (author)

  14. Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: Tolerance, morphological gill alterations and Na{sup +}/K{sup +}-ATPase localization

    Energy Technology Data Exchange (ETDEWEB)

    Bernabò, Ilaria; Bonacci, Antonella; Coscarelli, Francesca [Department of Ecology, University of Calabria, Via P. Bucci, 87036 Rende (Cosenza) (Italy); Tripepi, Manuela [University of Pennsylvania, Department of Biology, 201 Leidy Laboratories, Philadelphia, PA 19104 (United States); Brunelli, Elvira, E-mail: brunelli@unical.it [Department of Ecology, University of Calabria, Via P. Bucci, 87036 Rende (Cosenza) (Italy)

    2013-05-15

    Freshwater habitats are globally threatened by human-induced secondary salinization. Amphibians are generally poorly adapted to survive in saline environments. We experimentally investigated the effects of chronic exposure to various salinities (5%, 10%, 15%, 20%, 25%, 30% and 35% seawater, SW) on survival, larval growth and metamorphosis of tadpoles from two amphibian populations belonging to two species: the green toad Bufo balearicus and the common toad Bufo bufo. In addition, gill morphology of tadpoles of both species after acute exposure to hypertonic conditions (20%, 25%, and 30% SW) was examined by light and electron microscopy. Tadpoles experienced 100% mortality above 20% SW in B. balearicus while above 15% SW in B. bufo. We detected also sublethal effects of salinity stress on growth and metamorphosis. B. bufo cannot withstand chronic exposure to salinity above 5% SW, tadpoles grew slower and were significantly smaller than those in control at metamorphosis. B. balearicus tolerated salinity up to 20% SW without apparent effects during larval development, but starting from 15% SW tadpoles metamorphosed later and at a smaller size compared with control. We also revealed a negative relation between increasing salt concentration and gill integrity. The main modifications were increased mucous secretion, detachment of external layer, alteration of epithelial surface, degeneration phenomena, appearance of residual bodies, and macrophage immigration. These morphological alterations of gill epithelium can interfere with respiratory function and both osmotic and acid-base regulation. Significant variations in branchial Na{sup +}/K{sup +}-ATPase activity were also observed between two species; moreover an increase in enzyme activity was evident in response to SW exposure. Epithelial responses to increasing salt concentration were different in the populations belonging to two species: the intensity of histological and ultrastructural pathology in B. bufo was

  15. A broadband helical saline water liquid antenna for wearable systems

    Science.gov (United States)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  16. Influence of salinity and cadmium on the survival and ...

    African Journals Online (AJOL)

    osmoregulated at salinities between 5 and 25 and osmoconformed at salinities greater than 25. Chiromantes eulimene followed a hyper-hypo-osmoregulatory strategy; it hyper-regulated in salinities from 0 up to isosmotic conditions at about 28 (c.

  17. The effect of salinity on some endocommensalic ciliates from shipworms

    Digital Repository Service at National Institute of Oceanography (India)

    Santhakumari, V.

    . Seasonal incidence and relative abundance of these ciliates showed that they were more abundant during the low saline than the high saline periods. Eventhough these ciliates can endure higher salinities through gradual acclimatization of their habitat...

  18. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrã o, Só nia; Schmö ckel, S. M.; Tester, Mark A.

    2016-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making

  19. Salinity induced metabolic changes in rice (oryza sativa l.) seeds during germination

    International Nuclear Information System (INIS)

    Shereen, A.; Ansari, R.; Raza, A.; Mumtaz, S.; Khan, M.A.; Khan, M.A.

    2011-01-01

    Six inbred lines of rice exhibiting differential tolerance to salinity were exposed to 0, 50, 75, 100 and 200 mM NaCl for 24, 48, 72 and 96 h. The salinity induced metabolic changes (solute leakage, K efflux and a-amylase activity) were studied during germination. Germination of rice seeds was not affected by NaCl concentration less than 100 mM. At higher salinity levels (100 and 200 mM NaCl), a delay of 3-6 days in germination was observed. In the present study, comparatively higher values of solute leakage were observed in those lines in which germination was comparatively affected more adversely (sensitive). Sodium chloride reduced alpha-amylase activity in germinating rice seeds to varying degree even at low NaCl concentrations (50 and 75 mM), where germination was not affected greatly. The tolerant lines exhibited higher enzymatic activity than the sensitive ones. (author)

  20. The role of silicon in higher plants under salinity and drought stress

    Directory of Open Access Journals (Sweden)

    Devrim Coskun

    2016-07-01

    Full Text Available Although deemed a non-essential mineral nutrient, silicon (Si is clearly beneficial to plant growth and development, particularly under stress conditions, including salinity and drought. Here, we review recent research on the physiological, biochemical, and molecular mechanisms underlying Si-induced alleviation of osmotic and ionic stresses associated with salinity and drought. We distinguish between changes observed in the apoplast (i.e. suberization, lignification, and silicification of the extracellular matrix; transpirational bypass flow of solutes and water, and those of the symplast (i.e. transmembrane transport of solutes and water; gene expression; oxidative stress; metabolism, and discuss these features in the context of Si biogeochemistry and bioavailability in agricultural soils, evaluating the prospect of using Si fertilization to increase crop yield and stress tolerance under salinity and drought conditions.

  1. Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto).

    Science.gov (United States)

    Perry, L; Williams, K

    1996-03-01

    Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO 2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO 2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt

  2. Reexamining ultrafiltration and solute transport in groundwater

    Science.gov (United States)

    Neuzil, C. E.; Person, Mark

    2017-06-01

    Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.

  3. Approaches to improving brain protection in cardiac and aortic surgery:an experimental study in a porcine model with hypertonic saline dextran, levosimendan, leukocyte depleting filter and different acid base management strategies

    OpenAIRE

    Kaakinen, H. (Hanna)

    2008-01-01

    Abstract In the repair of complex congenital heart defects or in surgery of the aortic arch, normal circulation may be temporarily halted to ensure a clean, bloodless operation field. The brain is the organ most vulnerable to ischemic injury during this no-flow period, and the mortality and morbidity of these procedures today consists mostly of neurological complications. Hypothermia decreases the need for oxygen and other metabolites, and cooling the patient with an extracorporeal heart-l...

  4. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    Science.gov (United States)

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The effect of topical treatments for CRS on the sinonasal epithelial barrier.

    Science.gov (United States)

    Ramezanpour, M; Rayan, A; Smith, J L P; Vreugde, S

    2017-06-01

    Several topical treatments are used in the management of Chronic Rhinosinusitis (CRS), some of which the safety and efficacy has yet to be determined. The purpose of this study was to investigate the effect of commonly used topical treatments on the sinonasal epithelial barrier. Normal saline (0.9% Sodium Chloride), hypertonic saline (3% Sodium Chloride), FESS Sinu-Cleanse Hypertonic, FLO Sinus Care and Budesonide 1 mg/ 2 ml were applied to the apical side of air-liquid interface (ALI) cultures of primary human nasal epithelial cells (HNECs) from CRS patients (n=3) and non-CRS controls (n=3) for 24 hours. Epithelial barrier structure and function was assessed using trans-epithelial electrical resistance (TEER), measuring the passage of Fluorescein Isothiocyanate labelled Dextrans (FITC-Dextrans) and assessing the expression of the tight junction protein Zona Occludens-1 (ZO-1) using immunofluorescence. Toxicity was assessed using a Lactate Dehydrogenase (LDH) assay. Data was analysed using ANOVA, followed by Tukey HSD post hoc test. Hypertonic solution and budesonide significantly increased TEER values in CRS derived HNECs. In contrast, FESS Sinu-Cleanse Hypertonic significantly reduced TEER 5 minutes after application of the solution followed by an increase in paracellular permeability of FITC-Dextrans (30 minutes) and increased LDH levels 6 hours after application of the solution. Our findings confirm that isotonic and hypertonic saline solutions do not compromise epithelial barrier function in vitro but underscore the importance of examining safety and efficacy of over-the-counter wash solutions.

  6. NOAA NOS SOS, EXPERIMENTAL, 1902-present, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have salinity data. *These services are for testing and evaluation use...

  7. Biochar mitigates salinity stress in potato

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, M.N.; Liu, Fulai

    2015-01-01

    capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water......A pot experiment was conducted in a climate-controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect...... potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared...

  8. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage

    NARCIS (Netherlands)

    Tufa, Ramato Ashu; Pawlowski, Sylwin; Veerman, Joost; Bouzek, Karel; Fontananova, Enrica; di Profio, Gianluca; Velizarov, Svetlozar; Goulão Crespo, João; Nijmeijer, Kitty; Curcio, Efrem

    2018-01-01

    Salinity gradient energy is currently attracting growing attention among the scientific community as a renewable energy source. In particular, Reverse Electrodialysis (RED) is emerging as one of the most promising membrane-based technologies for renewable energy generation by mixing two solutions of

  9. Microstrip Patch Sensor for Salinity Determination.

    Science.gov (United States)

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  10. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  11. Microstrip Patch Sensor for Salinity Determination

    Directory of Open Access Journals (Sweden)

    Kibae Lee

    2017-12-01

    Full Text Available In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS, and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under −20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of −35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF tunable sensors for salinity determination.

  12. Yield of cherry tomatoes as a function of water salinity and irrigation frequency

    Directory of Open Access Journals (Sweden)

    Alexandre N. Santos

    2016-02-01

    Full Text Available ABSTRACT The use of brackish water in agriculture can cause salinization of soils and reduce plant yield. This problem can be minimized by hydroponic cultivation, which improves plant development. The aim of this study was to evaluate the yield of cherry tomatoes grown in hydroponic system with substrate under salinity levels of the nutrient solution (NS, exposure time to salinity and irrigation frequency. The experiment was conducted in a greenhouse, in a randomized complete block design, in a 6 x 2 x 2 factorial scheme with five replicates: six salinity levels of NS prepared with brackish water (3.01; 4.51; 5.94; 7.34; 8.71 and 10.40 dS m-1; two exposure times to NS (60 and 105 days and two irrigation frequencies (one irrigation per day and irrigation every two days. Yield and production components of cherry tomatoes cv. 'Rita' were evaluated. NS salinity affected plant yield, reducing fruit production, which was more significant when plants were subjected to a longer time of exposure to salinity. There was no difference between NS applications on fruit production, when these applications were performed once a day or once every two days.

  13. The effects of salinity and temperature shock on Kappaphycus alvarezii seaweed spores release

    Science.gov (United States)

    Harwinda, F. K.; Satyantini, W. H.; Masithah, E. W.

    2018-04-01

    One of the reproductive aspects of development step that is considered as the solution of this issue is seaweed sporulation technique through which is induced through salinity and temperature shock. This study aims to determine the effect of combination and interaction of salinity and temperature shock on the release of K. alvarezii spores in order to produce superior seeds. This research was conducted using Complete Randomized Design Factorial which consists of nine combinations of treatments and three replications. The used treatment in this study is the combination of different environmental factors such as salinity shock and temperature shock. The data were analyzed using ANOVA (Analysis of Variance) followed by Duncan Multiple Range Test. The results showed that salinity (31 ppt, 33 ppt, and 35 ppt) and temperature (30°C, 32°C, and 34°C). shock affected the osmoregulation system and the release of K. alvarezii spores. The salinity shock and temperature shock had interaction with K. alvarezii spore release on the sixth and seventh day with the best treatment at 32°C temperature and 31 ppt salinity and released 5413 cells/ml spores on the seventh day.

  14. PHYSIOLOGICAL AND BIOCHEMICAL MARKERS OF SALINITY TOLERANCE IN PLANTS

    Directory of Open Access Journals (Sweden)

    Mustafa YILDIZ

    2011-02-01

    Full Text Available Salt stress limits plant productivity in arid and semi arid regions. Salt stress causes decrease in plant growth by adversely affecting physiological processes, especially photosynthesis. Salinity tolerance is defined as the ability of plant to maintain normal rowth and development under salt conditions. Salt stress results in accumulation of low molecular weight compounds, termed compatible solutes, which do not interfere with the normal biochemical reactions. These compatible solutes such as carbohydrates, polyols, amino acids and amides, quaternary ammonium compounds, polyamines andsoluble proteins may play a crucial role in osmotic adjustment, protection of macromolecules, maintenance of cellular pH and detoxification of free radicals. On the other hand, plants subjected to environmental stresses such as salinity produce reactive oxygen species (ROS and these ROS are efficiently eliminated by antioxidant enzyme systems. In plant breeding studies, the use of some physiological and biochemical markers for improving the salt tolerance in plants is crucial. In this review, the possibility of using some physiological and biochemical markers as selection criteria for salt tolerance is discussed.

  15. Growth and ionic content of quinoa under saline irrigation

    DEFF Research Database (Denmark)

    Riccardi, M.; Pulvento, C.; Lavini, A.

    2014-01-01

    Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in quinoa plants. An irriga......Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in quinoa plants...... incorporated salt ions in the tissues (stems, roots, leaves) preserving seed quality. Treatment with a reduction in the irrigation water to 25 % of full irrigated treatment (Q25) caused an increase in WP and a reduced dry matter accumulation in the leaves. Quinoa plants (Q25) were initially negatively affected...... by severe drought with RGR and NAR reduction, and then, they adapted to it. Quinoa could be considered a drought tolerant crop that adapt photosynthetic rate to compensate for a reduced growth....

  16. PRODUCTION OF TOMATO SEEDLINGS UNDER SALINE IRRIGATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Brasiliano Campos

    2007-01-01

    Full Text Available Processing tomato is the most important vegetable crop of the Brazilian agribusiness and few researches have been conducted to evaluate the tolerance of this crop to saline stress. In this study, the effects of five levels of salinity of the irrigation water (1, 2, 3, 4 and 5 dS m-1 and three equivalent proportions of Na:Ca:Mg (1:1:0.5, 4:1:0.5 and 7:1:0.5 were tested on the emergence and vigor of processing tomato, cultivar IPA 6. Seeds were sowed in expanded polystyrene tray (128 cells and each tray received 1 L of water after sowing. The trays were piled and, four days after sowing, they were placed on suspended supports in a greenhouse. Irrigation was accomplished daily from the fifth day after sowing. Only dry weight of shoot and root was affected by sodium proportions, while linear reductions of the speed of emergence, stem length and the dry weight of shoot and root were observed with increasing salinity. Root was more affected than shoot by salinity and relative growth ratioincreased with salinity levels on the 14-21 days after sowing period, indicating that the crop showed a certain increase of salinity tolerance with the time of exposure to salts.

  17. Using microbial desalination cells to reduce water salinity prior to reverse osmosis

    KAUST Repository

    Mehanna, Maha

    2010-01-01

    A microbial desalination cell (MDC) is a new method to reduce the salinity of one solution while generating electrical power from organic matter and bacteria in another (anode) solution. Substantial reductions in the salinity can require much larger volumes of the anode solution than the saline water, but any reduction of salinity will benefit the energy efficiency of a downstream reverse osmosis (RO) desalination system. We investigated here the use of an MDC as an RO pre-treatment method using a new type of air-cathode MDC containing three equally sized chambers. A single cycle of operation using a 1 g L -1 acetate solution reduced the conductivity of salt water (5 g L-1 NaCl) by 43 ± 6%, and produced a maximum power density of 480 mW m-2 with a coulombic efficiency of 68 ± 11%. A higher concentration of acetate (2 g L-1) reduced solution conductivity by 60 ± 7%, and a higher salt concentration (20 g L-1 NaCl) reduced solution conductivity by 50 ± 7%. The use of membranes with increased ion exchange capacities further decreased the solution conductivity by 63 ± 2% (20 g L-1 NaCl). These results demonstrate substantial (43-67%) desalination of water is possible using equal volumes of anode solution and salt water. These results show that MDC treatment could be used to substantially reduce salt concentrations and thus energy demands for downstream RO processing, while at the same time producing electrical power. © 2010 The Royal Society of Chemistry.

  18. Determine the Efficacy of Salinity on Bioremediation of Polluted Soil by Phenanthrene

    Directory of Open Access Journals (Sweden)

    Masoumeh Ravanipour

    2011-04-01

    Full Text Available Background: Phenanthrene is one of the Polycyclic Aromatic Hydrocarbons (PAHs that are formed during the incomplete combustion of fossil fuels, oil pollution and different process of oil and gas plants. PAHs-contaminated area have increased a health risk to humans and environments due to toxicity, carcinogenicity, hydrophobicity and their tendency to accumulation in soil and sediment and their entrance to food chain. Bioremediation is an effective method for removing toxic pollutants from soils such as Phenanthrene. The main object of this study is the assessment of the effects of salinity on the efficacy of the process of bioremediation on polluted soils by Phenanthrene. Methods: The bare soil of any organic and microbial pollution was first polluted artificially to the phenanthrene then a nutrient solution with two minimum and maximum concentrations of salinity were added to it in order to have the proportion of 10% w:v (soil: water. After that a microbial mixture which was enable degradation the phenanthrene added to the slurry and aerated. After the extraction of phenanthrene by ultrasonic, the residual concentration in the soil was analyzed by GC. Results: In the conditions that salinity concentration was maximum, the microbial growth has a longer lag phase than the minimum salinity. The findings from extraction process by GC depict the removal percentage of maximum and minimum salinity in 56th %70.5 day and %71.8, respectively. Conclusion: In In spite of the longer log phase of maximum concentration of salinity and according to GC results, there was just a little difference between two solutions. Therefore it reveals that salinity can increase the lag phase but haven't any inhibitory effect on Phenanthrene removal.

  19. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  20. The Mechanisms of Salinity Tolerance in the Xero-halophyte Blue Panicgrass (Panicum antidotale Retz

    Directory of Open Access Journals (Sweden)

    Hamid R. ESHGHIZADEH

    2012-05-01

    Full Text Available Identifying the physiological traits associated with salt tolerance is important in optimal management of biosaline systems and optimum utilization of saline water resources in dry and saline areas. Therefore, some indices of photosynthetic activity, dry matter production and accumulation of sodium and potassium ions in Blue panicgrass (Panicum antidotale Retz were evaluated in five levels of salinity treatment (0, 70, 140, 210 and 280 mM NaCl solution under greenhouse conditions. The results showed that at 28 and 35 days after salt stress, plant leaf area reduced in the highest salinity treatment, 93 and 96% respectively, compared with control. Leaf stomatal conductance, CO2 fixation and quantum efficiency of photosystem II were decreased by increasing salinity. It caused also a reduction in chlorophyll content (Chl a, Chl b in leaves of Blue panicgrass. Content of carotenoids showed binary patterns to different salinity levels, slightly increased in 70-140 mM NaCl and decreased again in 210-280 mM, respectively. Increasing levels of salinity, increased sodium content in both roots and shoots but the shoots potassium content decreased. Decline in photosynthesis indices caused the reduction of root and shoot dry weight. This decrease resulted from lower leaf area (r=0.91**, lower stomatal conductance (r=0.78**, lower CO2 fixed in photosynthesis (r=0.63**, lower quantum efficiency of photosystem II (r=0.54** and lower Chl a (r=0.45**, respectively. Data analysis base on using stepwise regression introduced leaf area (?=0.560, chlorophyll a content (?=0.245 and shoot potassium content (?= 0.264 as main effective components of salinity tolerance in Blue panicgrass.

  1. N2-fixation in fababean (vicia faba l.) grown in saline and non saline conditions using 15N tracer technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Kurdali, F.

    2002-09-01

    A pot experiment was conducted to study the performance of growing fababean and barley under saline conditions, in terms of, dry matter yield, total nitrogen and, percentages and amount of N derived from soil, fertilizer and atmosphere using 15 N isotope dilution method. Three saline treatments were performed: First, plants were grown in saline soil and irrigated with saline water (Ws Ss), Second, Plants were grown in saline soil and irrigated with saline water (Ws Ss); and Third, Plants grown in non saline soil and irrigated with saline water (Ws Sn). Furthermore, a control treatment was performed by using non-saline soil and non-saline water (Wn Sn). The different salinity treatments reduced plant growth and the reduction was more pronounced in fababean than in barley. However, under conditions of either saline soil-soft irrigation water or non saline soil-salty irrigation water, the relative growth reduction did not exceed 50% of the control; whereas, a significant negative effect was obtained when plants were grown under completely saline conditions of both soil and irrigation water. Percentage of N 2 -fixed (% Ndfa) was not negatively affected by saline conditions. However, our results clearly demonstrated that the effect of salinity in fababean was more evident on plant growth than on N 2 -fixing activity. Further studies are needed to obtain more salt tolerant faba bean genotypes in terms of growth and yield. This could be simultaneously improve yield and N 2 -fixation under sever saline conditions. (author)

  2. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)

    KAUST Repository

    Wang, Xi

    2011-10-01

    Several alternative cathode catalysts have been proposed for microbial fuel cells (MFCs), but effects of salinity (sodium chloride) on catalyst performance, separate from those of conductivity on internal resistance, have not been previously examined. Three different types of cathode materials were tested here with increasingly saline solutions using single-chamber, air-cathode MFCs. The best MFC performance was obtained using a Co catalyst (cobalt tetramethoxyphenyl porphyrin; CoTMPP), with power increasing by 24 ± 1% to 1062 ± 9 mW/m2 (normalized to the projected cathode surface area) when 250 mM NaCl (final conductivity of 31.3 mS/cm) was added (initial conductivity of 7.5 mS/cm). This power density was 25 ± 1% higher than that achieved with Pt on carbon cloth, and 27 ± 1% more than that produced using an activated carbon/nickel mesh (AC) cathode in the highest salinity solution. Linear sweep voltammetry (LSV) was used to separate changes in performance due to solution conductivity from those produced by reductions in ohmic resistance with the higher conductivity solutions. The potential of the cathode with CoTMPP increased by 17-20 mV in LSVs when the NaCl addition was increased from 0 to 250 mM independent of solution conductivity changes. Increases in current were observed with salinity increases in LSVs for AC, but not for Pt cathodes. Cathodes with CoTMPP had increased catalytic activity at higher salt concentrations in cyclic voltammograms compared to Pt and AC. These results suggest that special consideration should be given to the type of catalyst used with more saline wastewaters. While Pt oxygen reduction activity is reduced, CoTMPP cathode performance will be improved at higher salt concentrations expected for wastewaters containing seawater. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  3. Salinity tolerance of the South African endemic amphipod ...

    African Journals Online (AJOL)

    Salinities were prepared using natural seawater and synthetic sea salt. Grandidierella lignorum tolerated all salinities, but showed highest survival at salinities of 7–42. Salinity tolerance was modified by temperature, with highest survival occurring between 10 and 25 °C. These represent the range of conditions at which ...

  4. Investigation of Soil Salinity to Distinguish Boundary Line between ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Investigation of Soil Salinity to Distinguish Boundary Line between Saline and ... Setting 4 dSm-1 as the limit between saline and non-saline soils in kriging algorithms resulted in a .... number of sample points within the search window,.

  5. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  6. The Effects of Stereotactic Cerebroventricular Administration of Albumin, Mannitol, Hypertonic Sodium Chloride, Glycerin and Dextran in Rats with Experimental Brain Edema.

    Science.gov (United States)

    Ates, Tuncay; Gezercan, Yurdal; Menekse, Guner; Turkoz, Yusuf; Parlakpinar, Hakan; Okten, Ali Ihsan; Akyuva, Yener; Onal, Selami Cagatay

    2017-01-01

    To evaluate the effects of cerebroventricular administration of hyperoncotic/hyperosmotic agents on edematous brain tissue in rats with experimental head trauma. The study included 54 female Sprague-Dawley rats with weights ranging between 200 and 250 g. Six experimental groups were examined with each group containing 9 rats. All rats were exposed to head trauma, and treatment groups were administered 2 µl of one of the drugs (albumin, mannitol, hypertonic sodium chloride (NaCl), glycerin and dextran) 6, 12 and 24 hours after the trauma via the cerebroventricular route and using a stereotactic device. Rats were sacrificed 48 hours after the trauma, and brain tissues were extracted without damage. Biochemical analyses including reduced glutathione (GSH), nitric oxide (NO), malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) were performed on the injured left hemisphere. Compared with the control group, the albumin, mannitol, 3% NaCl and glycerin treatment groups revealed dramatic increases in GSH levels (p < 0.001). Levels of MDA, which is the end-product of brain edema and lipid peroxidation, failed to show a statistically significant decrease, but there was a decreasing trend observed in the inter-group comparisons. NO levels were also decreased in the 3% NaCl treatment group. An analysis of TNF-α and IL-1β, two proinflammatory cytokines associated with the trauma, revealed that IL-1β decreased significantly in all treatment groups (p=0.001), whereas no significant difference was detected in TNF-α levels. Cerebroventricular administration of hyperoncotic/hyperosmotic agents provides substantial effects on the treatment of brain edema.

  7. Improvement of Neuroenergetics by Hypertonic Lactate Therapy in Patients with Traumatic Brain Injury Is Dependent on Baseline Cerebral Lactate/Pyruvate Ratio

    KAUST Repository

    Quintard, Hervé

    2015-09-30

    Energy dysfunction is associated with worse prognosis after traumatic brain injury (TBI). Recent data suggest that hypertonic sodium lactate infusion (HL) improves energy metabolism after TBI. Here, we specifically examined whether the efficacy of HL (3h infusion, 30-40 μmol/kg/min) in improving brain energetics (using cerebral microdialysis [CMD] glucose as a main therapeutic end-point) was dependent on baseline cerebral metabolic state (assessed by CMD lactate/pyruvate ratio [LPR]) and cerebral blood flow (CBF, measured with perfusion computed tomography [PCT]). Using a prospective cohort of 24 severe TBI patients, we found CMD glucose increase during HL was significant only in the subgroup of patients with elevated CMD LPR >25 (n = 13; +0.13 [95% confidence interval (CI) 0.08-0.19] mmol/L, p < 0.001; vs. +0.04 [-0.05-0.13] in those with normal LPR, p = 0.33, mixed-effects model). In contrast, CMD glucose increase was independent from baseline CBF (coefficient +0.13 [0.04-0.21] mmol/L when global CBF was <32.5 mL/100 g/min vs. +0.09 [0.04-0.14] mmol/L at normal CBF, both p < 0.005) and systemic glucose. Our data suggest that improvement of brain energetics upon HL seems predominantly dependent on baseline cerebral metabolic state and support the concept that CMD LPR - rather than CBF - could be used as a diagnostic indication for systemic lactate supplementation following TBI. Copyright © 2016 Mary Ann Liebert, Inc.

  8. A randomized, controlled, double-blind crossover study on the effects of 1-L infusions of 6% hydroxyethyl starch suspended in 0.9% saline (voluven) and a balanced solution (Plasma Volume Redibag) on blood volume, renal blood flow velocity, and renal cortical tissue perfusion in healthy volunteers.

    Science.gov (United States)

    Chowdhury, Abeed H; Cox, Eleanor F; Francis, Susan T; Lobo, Dileep N

    2014-05-01

    We compared the effects of intravenous administration of 6% hydroxyethyl starch (maize-derived) in 0.9% saline (Voluven; Fresenius Kabi, Runcorn, United Kingdom) and a "balanced" preparation of 6% hydroxyethyl starch (potato-derived) [Plasma Volume Redibag (PVR); Baxter Healthcare, Thetford, United Kingdom] on renal blood flow velocity and renal cortical tissue perfusion in humans using magnetic resonance imaging. Hyperchloremia resulting from 0.9% saline infusion may adversely affect renal hemodynamics when compared with balanced crystalloids. This phenomenon has not been studied with colloids. Twelve healthy adult male subjects received 1-L intravenous infusions of Voluven or PVR over 30 minutes in a randomized, double-blind manner, with crossover studies 7 to 10 days later. Magnetic resonance imaging proceeded for 60 minutes after commencement of infusion to measure renal artery blood flow velocity and renal cortical perfusion. Blood was sampled, and weight was recorded at 0, 30, 60, 120, 180, and 240 minutes. Mean peak serum chloride concentrations were 108 and 106 mmol/L, respectively, after Voluven and PVR infusion (P = 0.032). Changes in blood volume (P = 0.867), strong ion difference (P = 0.219), and mean renal artery flow velocity (P = 0.319) were similar. However, there was a significant increase in mean renal cortical tissue perfusion after PVR when compared with Voluven (P = 0.033). There was no difference in urinary neutrophil gelatinase-associated liopcalin to creatinine ratios after the infusion (P = 0.164). There was no difference in the blood volume-expanding properties of the 2 preparations of 6% hydroxyethyl starch. The balanced starch produced an increase in renal cortical tissue perfusion, a phenomenon not seen with starch in 0.9% saline.

  9. Phosphorus sorption capacity of biochars varies with biochar type and salinity level.

    Science.gov (United States)

    Dugdug, Abdelhafid Ahmed; Chang, Scott X; Ok, Yong Sik; Rajapaksha, Anushka Upamali; Anyia, Anthony

    2018-02-10

    Biochar is recognized as an effective material for recovering excess nutrients, including phosphorus (P), from aqueous solutions. Practically, that benefits the environment through reducing P losses from biochar-amended soils; however, how salinity influences P sorption by biochar is poorly understood and there has been no direct comparison on P sorption capacity between biochars derived from different feedstock types under non-saline and saline conditions. In this study, biochars derived from wheat straw, hardwood, and willow wood were used to compare P sorption at three levels of electrical conductivity (EC) (0, 4, and 8 dS m -1 ) to represent a wide range of salinity conditions. Phosphorus sorption by wheat straw and hardwood biochars increased as aqueous solution P concentration increased, with willow wood biochar exhibiting an opposite trend for P sorption. However, the pattern for P sorption became the same as the other biochars after the willow wood biochar was de-ashed with 1 M HCl and 0.05 M HF. Willow wood biochar had the highest P sorption (1.93 mg g -1 ) followed by hardwood (1.20 mg g -1 ) and wheat straw biochars (1.06 mg g -1 ) in a 25 mg L -1 P solution. Although the pH in the equilibrium solution was higher with willow wood biochar (~ 9.5) than with the other two biochars (~ 6.5), solution pH had no or minor effects on P sorption by willow wood biochar. The high sorption rate of P by willow wood biochar could be attributed to the higher concentrations of salt and other elements (i.e., Ca and Mg) in the biochar in comparison to that in wheat straw and hardwood biochars; the EC values were 2.27, 0.53, and 0.27 dS m -1 for willow wood, wheat straw, and hardwood biochars, respectively. A portion of P desorbed from the willow wood biochar; and that desorption increased with the decreasing P concentration in the aqueous solution. Salinity in the aqueous solution influenced P sorption by hardwood and willow wood but not by wheat straw

  10. Experimental antegrade enema: effects on water, electrolyte and acid-base balances with different solutions Enema anterógrado experimental: equilíbrio hídrico eletrolítico e ácido-base em coelhos submetidos a enema com diferentes soluções

    Directory of Open Access Journals (Sweden)

    Laura Helman

    2007-10-01

    Full Text Available PURPOSE: To study the effects on the water, electrolyte, and acid-base balances in rabbits submitted to antegrade enema with different solutions through appendicostomy. METHODS: Forty male New Zealand rabbits were submitted to appendicostomy, and distributed in 4 groups, according to the antegrade enema solution: PEG group, polyethylene glycol electrolyte solution (n=10; ISS group, isotonic saline solution (n=10; GS group, glycerin solution (n=10; SPS group, sodium phosphate solution (n=10. After being weighed, arterial blood gas analysis, red blood count, creatinine and electrolytes were measured at 4 times: preoperatively (T1; day 6 postop, before enema (T2; 4h after enema (T3; and 24h after T3 (T4. RESULTS: In PEG group occurred Na retention after 4h, causing alkalemia, sustained for 24h with HCO3 retention. In ISS group occurred isotonic water retention and hyperchloremic acidosis after 4h, which was partially compensated in 24h. GS group showed metabolic acidosis after 4h, compensated in 24h. In SPS group occurred hypernatremic dehydration, metabolic acidosis in 4h, and hypokalemia, hypocalcemia, hypomagnesemia, and metabolic alkalosis with partially compensated dehydration in 24h. CONCLUSIONS: All solutions used in this study caused minor alterations on water, electrolyte or acid-base balances. The most intense ones were caused by hypertonic sodium phosphate solution (SPS and isotonic saline solution (ISS and the least by polyethyleneglycol electrolyte solution (PEG and glycerin solution 12% (GS.OBJETIVO: Estudar os efeitos no equilíbrio hídrico, eletrolítico e ácido-base, do enema anterógrado com diferentes soluções em coelhos através de apendicostomia. MÉTODOS: 40 coelhos Nova Zelândia, machos, submetidos a apendicostomia, distribuídos em quatro grupos segundo a solução de enema: grupo PEG (n = 10 solução de polietilenoglicol com eletrólitos; grupo SF (n = 10 solução fisiológica; grupo SG (n = 10 solução glicerinada

  11. Effect of salt solutions on the radiosensitivity of mammalian cells as a function of the state of adhesion and the water structure

    Energy Technology Data Exchange (ETDEWEB)

    Moggach, P G; Lepock, J R; Kruuv, J [Waterloo Univ., Ontario (Canada). Dept. of Physics

    1979-11-01

    The radiation isodose survival curve of attached Chinese hamster (V79) cells, subjected to a wide concentration range of salt or sucrose solutions, was characterized by two maxima separated by a minimum. Cells were radioprotected at the maxima (high and low hypertonic salt concentrations) while they were radiosensitized at the minimum (intermediate hypertonic salt concentrations). Both cations and anions could alter the cellular radiosensitivity above and beyond the (osmotic) effect observed for cells treated with sucrose solutions. However, the basic curve shape, except in the case of sulphate salts, remained the same. When these experiments were repeated with single cells in suspension, the isodose survival curve was quite different in that high salt concentrations did not protect cells in suspension unlike the case with attached cells. The curve shape was also altered in that the second maximum was absent with many salt solutions. When multicellular spheroids were used for these experiments, the data resembled those for single cell suspensions rather than for attached cells. The radiation survival data for cells in suspension in salt solutions correlated with water proton spin lattice relaxation time (T/sub 1/) and, in hypo- and iso-tonic solutions, with cell volume.

  12. Comparative salinity responses among tomato genotypes and rootstocks

    International Nuclear Information System (INIS)

    Oztekin, G.B.; Tuzel, Y.

    2011-01-01

    Salinity is a major constraint limiting agricultural crop productivity in the world. However, plant species and cultivars differ greatly in their response to salinity. This study was conducted in a greenhouse to determine the response of 4 commercial tomato rootstocks, 21 cultivars and 8 candidate varieties to salinity stress. Seeds were germinated in peat and when the plants were at the fifth-true leaf stage, salt treatment was initiated except control treatment. NaCl was added to nutrient solution daily with 25 mM concentration and had been reached to 200 mM final concentration. On harvest day, genotypes were classified based on the severity of leaf symptoms caused by NaCl treatment. After symptom scoring, the plants were harvested and leaf number, root length, stem length and diameter per plant were measured. The plants were separated into shoots and roots for dry matter production. Our results showed that, on average, NaCl stress decreased all parameters and the rootstocks gave the highest performance than genotypes. Among all rootstocks, three varieties (2211 and 2275) and ten genotypes (Astona, Astona RN, Caracas, Deniz, Durinta, Export, Gokce, Target, Yeni Talya and 144 HY) were selected as tolerant with slight chlorosis whereas the genotype Malike was selected as sensitive with severe chlorosis. Candidate varieties 2316 and 1482 were the most sensitive ones. Plant growth and dry matter production differed among the tested genotypes. However no correlation was found between plant growth and dry matter production. Rootstock Beaufort gave the highest shoot dry matter although Heman had highest root dry matter. Newton showed more shoot and root dry matter than other genotypes. It is concluded that screening of genotypes based on severity of symptoms at early stage of development and their dry matter production could be used as a tool to indicate genotypic variation to salt stress. (author)

  13. Freshwater salinization syndrome on a continental scale.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Pace, Michael L; Utz, Ryan M; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-23

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. Copyright © 2018 the Author(s). Published by PNAS.

  14. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)- and sulfur-oxidizing microorganisms.

    Science.gov (United States)

    Watling, Helen R; Collinson, David M; Corbett, Melissa K; Shiers, Denis W; Kaksonen, Anna H; Watkin, Elizabeth L J

    2016-09-01

    The application of thermoacidophiles for chalcopyrite (CuFeS2) bioleaching in hot, acidic, saline solution was investigated as a possible process route for rapid Cu extraction. The study comprised a discussion of protective mechanisms employed for the survival and/or adaptation of thermoacidophiles to osmotic stress, a compilation of chloride tolerances for three genera of thermoacidophiles applied in bioleaching and an experimental study of the activities of three species in a saline bioleaching system. The data showed that the oxidation rates of iron(II) and reduced inorganic sulfur compounds (tetrathionate) were reduced in the presence of chloride levels well below chloride concentrations in seawater, limiting the applicability of these microorganisms in the bioleaching of CuFeS2 in saline water. Copyright © 2016. Published by Elsevier Masson SAS.

  15. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordium vulgare under salinity stress (NaCl

    Directory of Open Access Journals (Sweden)

    MOHAMED A. BAKHETA

    2014-05-01

    Full Text Available Bakheta MA, Hussein MM. 2014. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordium vulgare under salinity stress (NaCl. Nusantara Bioscience 6: 39-44. Pot experiments were carried out during two growth seasons 2010 / 2011 under greenhouse conditions of the National Research Centre, Dokki, Cairo, Egypt to investigate the response of barley plants (Hordium vulgare L grown under salinity stress (2500 or 5000 ppm to spraying with solutions of uniconazole at 150 or 200 ppm. The obtained results showed that irrigation with saline solutions caused increases in the amounts of abscisic acid (ABA, crude protein, total soluble-protein and proline contents. The results showed that spraying barley plants grown under saline solutions with uniconazole increased endogenous hormone contents of ABA, cytokinins, crude protein, total soluble protein and proline but caused decreases in the amounts of endogenous indole acetic acid (IAA and gibberellic acid (GA3. High protection of abscisic acid in treating plants with uniconazole and under salt stress (interaction effect increases proline, proteins and soluble protein which has been proposed to act as compatible solutes that adjust the osmotic potential in the cytoplasm. Thus, these biochemical characters can be used as a metabolic marker in relation to salinity stress.

  16. Plasma membrane and salinity tolerance of barley plants

    International Nuclear Information System (INIS)

    Al-Rahmani, F. H.; Al-Mashhadani, M. S.; Al-Delemee, N. H.

    1997-01-01

    Barley cultivar, California Mario ut, was grown in a nutrient solution containing increasing Nacl concentrations up to 250 mm. The effect of Nacl on growth, mineral compost ion ant integrity of the plasma membrane was studied. Growth of the shoot'and root was stimulated or little affected by 10 and 20 ml Nacl. Further increase in Nacl concentrations depressed the growth. The depression was conspicuous between 100 and 250 mm Nacl. Increasing Nacl concentration decreased potassium content in the shoots and roots and led to steep increase in sodium accumulation. The integrity of the plasma membrane was measured in term of potassium leakage from the root tips. Rapid leakage of potassium was obtained at Nacl concentrations ranging from 100 to 250 mm. At the same concentrations of Nacl, adenosine triphosphatase activity in the root tips was increased. Results indicate that the plasma membrane of root cells was damaged by the increased levels of salinity. It was concluded that the plasma membrane of root cells is the primary site of salinity toxicity. (authors). 40 refs., 5 tabs. 3 figs

  17. An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline.

    Science.gov (United States)

    Manuel, Thomas J; Munnangi, Pujita; Rubinsky, Boris

    2017-07-01

    Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols.

  18. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.

    Science.gov (United States)

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-06-11

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.

  19. Seed Germination and Physiological Response of Sunflower (Helianthus annuus L. Cultivars under Saline Conditions

    Directory of Open Access Journals (Sweden)

    Carmen BEINSAN

    2018-05-01

    Full Text Available The purpose of the experiment was to highlight the germination of sunflower seeds affected by the presence of saline stress and the identification of tolerant genotypes. The biological material was represented by sunflower cvs. (Helianthus annuus L.: Coril, Select, Santiago and Fundulea-206. To simulate the saline conditions, germination solutions of sodium chloride (NaCl were used with concentrations corresponding to the osmotic pressures -6 and -10 atm and the control seed hydration was performed with distilled water. Determination of seed germination, growth of seedling, percentage of plumules dry matter, chlorophyll content and free proline were performed. The experimental data obtained suppose the existence in the assimilation apparatus of sunflowers seedling subjected to stress a competitive chlorophyll/free proline biosynthesis processes. The experimental results regarding the effect of salinity on seed germination and seedling growth revealed important differences between genotypes. The radicle growth in the germination process were strongly affected by saline excess, with significant differences between cultivars. Saline stress results in significant reductions in the amount of chlorophyll, and high levels of free proline. It can be observed that with the increase of the stress level the percentage of the dry matter increases, indicating an accentuated water deficit.

  20. Hydrogen isotope response to changing salinity and rainfall in Australian mangroves.

    Science.gov (United States)

    Ladd, S Nemiah; Sachs, Julian P

    2015-12-01

    Hydrogen isotope ratios ((2) H/(1) H, δ(2) H) of leaf waxes covary with those in precipitation and are therefore a useful paleohydrologic proxy. Mangroves are an exception to this relationship because their δ(2) H values are also influenced by salinity. The mechanisms underlying this response were investigated by measuring leaf lipid δ(2) H and leaf and xylem water δ(2) H and δ(18) O values from three mangrove species over 9.5 months in a subtropical Australian estuary. Net (2) H/(1) H fractionation between surface water and leaf lipids decreased by 0.5-1.0‰ ppt(-1) for n-alkanes and 0.4-0.8‰ ppt(-1) for isoprenoids. Xylem water was (2) H depleted relative to surface water, reflecting (2) H discrimination of 4-10‰ during water uptake at all salinities and opportunistic uptake of freshwater at high salinity. However, leaf water (2) H enrichment relative to estuary water was insensitive to salinity and identical for all species. Therefore, variations in leaf and xylem water δ(2) H values cannot explain the salinity-dependent (2) H depletion in leaf lipids, nor the 30‰ range in leaf lipid δ(2) H values among species. Biochemical changes in direct response to salt stress, such as increased compatible solute production or preferential use of stored carbohydrates, and/or the timing of lipid production and subsequent turnover rates, are more likely causes. © 2015 John Wiley & Sons Ltd.

  1. Seed Priming with Melatonin Effects on Seed Germination and Seedling Growth in Maize under Salinity Stress

    International Nuclear Information System (INIS)

    Jiang, X.; Li, H.; Song, X.

    2016-01-01

    The effects on seed germination and seedling growth in maize under salinity stress by seed priming with melatonin were investigated. Seeds of maize cultivar Nonghua101 were soaked in 0.4, 0.8 and 1.6 mM aerated solution of melatonin for 24 h, and primed seeds were germinated under the condition of 150 mM NaCl with paper media. The results showed seed priming with 0.8 mM melatonin was the best performance of all the treatments to seed germination and seedling growth in maize under salinity stress. Then primed with 0.8 mM melatonin or water for 24 h and unprimed seeds were germination under the condition of 150 mM NaCl with sand media. The results showed seed priming with 0.8 mM melatonin significantly improved germination energy, germination percentage, seedling vigor index, shoot and root lengths, seedling fresh and dry weights, K/sup +/ content, relative water content, proline and total phenolic contents, superoxide dismutase, catalase and phenylalanin ammonia lyase activities; and significantly decreased mean emergence time, Na/sup +/ content, electrolyte leakage and malondialdehyde content compared with untreated seeds under salinity stress. These results suggest that seed priming with melatonin alleviates the salinity damage to maize and seed priming with melatonin may be an important alternative approach to decrease the impact of salinity stress in maize. (author)

  2. Saline agriculture: A technology for economic utilization and improvement of saline environments (abstract)

    International Nuclear Information System (INIS)

    Aslam, Z.; Malik, K.A.; Khurshid, S.J.; Awan, A.R.; Akram, M.; Hashmi, Z.; Ali, Y.; Gulnaz, A.; Hussain, M.; Hussain, F.

    2005-01-01

    The salinity problem is one of the severe constraints for agriculture in Pakistan. In a socio-economic and salinity and drainage survey over an area of about 25000 acres of salt-affected land recently, crop production is found to be very low. Livestock is underfed and malnourished. Pakistan has spent and allocated over one billion US dollars on Salinity Control and Reclamation Projects (SCARP), of course, with dubious results. Over the years, a Saline Agriculture Technology has been developed as a cheap alternative at NIAB for comfortably living with salinity and to profitably utilize saline land rather than its reclamation. The soil improvement is a fringe benefit in this approach. The Saline Agriculture Technology has been tested at laboratory level, at field stations and at farms of some progressive farmers. Now we are sharing this technology with farming communities through a 'Saline Agriculture Farmer Participatory Development Project in Pakistan', with assistance from the National Rural Support Programme. The new project has been launched simultaneously in all four provinces of Pakistan on 25000 acres of salt-affected land. Under this project seeds of salt tolerant crop varieties wheat, cotton, rice, castor, brassica and barley and saplings of trees/shrubs, e.g. Acacia ampliceps, A. nilotica, Casuarina glauca, ber, jaman, etc selected for development work in various institutions of Pakistan are being provided to farmers. Know-how on new irrigation techniques like bed-and-corrugation and bed-and-furrow, agronomic practices like laser land leveling, planting on beds and in auger holes and soil/water amendment practices (use of gypsum and mineral acids) are being shared with farmers. These interventions are quite efficient, save water up to 40% and enable farmers to utilize bad quality water. In general, farmers are being familiarized with prevalent animal diseases, nutritional problems and prophylactic techniques. They are being helped in developing Saline

  3. The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine coracana L. Gaertn.) germplasm.

    Science.gov (United States)

    Krishnamurthy, Lakshmanan; Upadhyaya, Hari Deo; Purushothaman, Ramamoorthy; Gowda, Cholenahalli Lakkegowda Laxmipathi; Kashiwagi, Junichi; Dwivedi, Sangam Lal; Singh, Sube; Vadez, Vincent

    2014-10-01

    Finger millet (Eleusine coracana L. Gaertn.) ranks third in production among the dry land cereals. It is widely cultivated in Africa and South Asia where soil salinization is a major production constraint. It is a potential crop for salt affected soils. To identify salt tolerant germplasm, the minicore finger millet germplasm (n=80) was screened for grain yield performance in a soil saturated with NaCl solution of 100 or 125mM. Genotype effect was significant for most traits, while salinity×genotype interaction was significant only in one year. Salinity delayed phenology, marginally reduced shoot biomass and grain yield. There was a large range of genotypic variation in grain yield under salinity and other traits. The yield loss was higher in accessions with prolific growth and yield potential was associated with saline yields. Based on saline yields, accessions were grouped in to four groups and the top tolerant group had 22 accessions with IE 4797 remaining at the top. Salinity had no adverse impact on grain yield of five accessions. Root anatomy in selected genotype of pearl and finger millet showed presence of porous cortex and well fortified endodermis in finger millet that can exclude Na(+) and enhance N absorption. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Effect of Nitrogen and Triple Super Phosphate Levels on Physiological Characteristics of Kochia scoparia in Salinity Stress

    Directory of Open Access Journals (Sweden)

    saeed khaninejad

    2014-09-01

    Full Text Available Decreasing yield and forage quality in saline water irrigating conditions, is one of the problems of forage production. Therefore, using the chemical fertilizers can be considered as a useful solution. This study was conducted to assess the effects of different levels of phosphorus and nitrogen fertilizers with saline water on physiological characteristics of Kochia, through a split plot factorial experiments with three replications .The main experimental units consisted of the levels of salinity of irrigating water, 5.2 and 16.5 dS m-1, and the subsidiary experimental units consisted of three nitrogen levels in form of 46%N (0, 100, 200 kg ha-1 and three phosphorus levels in form of triple super phosphate (0, 75, 150 kg ha-1, arranged in factorial form in experimental units. Results showed that the effect of salinity on studied physiological properties was not significant. Green area index (GAI and membrane stability index (MSI were significantly increased with using nitrogen fertilizers on 5.2 dS/m salinity level to control group ,while phosphorus did not affect on them. In all properties, fertilizers application on 16.5 dS/m salinity level not only had no considerable effect on stress tolerance, but also increased the harmful effects of salinity. GAI had a high correlation (0.71 with dry forage yield related to the studied factors. Generally, 75 kg Triple Super Phosphate fertilizer from 100 kg Urea improved studied physiological properties without side effects.

  5. Wave Induced Saline Intrusion in Sea Outfalls

    DEFF Research Database (Denmark)

    Larsen, Torben; Burrows, Richard

    1989-01-01

    Experimental and numerical studies have shown that the influence of wave increases the tendency of saline intrusion in multi-riser sea outfalls. The flow field in the diffusor under such unsteady and inhomogeneous circumstances is in general very complex, but when sufficient wave energy is dissip...

  6. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  7. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  8. Salinity extrema in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shetye, S.R.; Gouveia, A.D.; Michael, G.S.

    are described. Two of the maxima arise from the influence of Red Sea and the Persian Gulf Water. The third, which lies at the bottom of the Equatorial Surface Water, forms due to freshening at the surface of high salinity Arabian Sea near-surface waters...

  9. Investigations in Marine Chemistry: Salinity I.

    Science.gov (United States)

    Schlenker, Richard M.

    Presented is a unit designed for curriculum infusion and which relies on the hands-on discovery method as an instructive device. The student is introduced to the theory of a functioning salt water conductivity meter. The student explores the resistance of salt water as salinity increases and he treats the data which he has gathered,…

  10. Routine saline infusion sonohysterography prior to assisted ...

    African Journals Online (AJOL)

    53.85%), 8 (30.77%) and 4 (15.38%) respectively. The average duration of the procedure was 6 minutes with a range of 4-9 minutes. Saline infusion sonohysterography is a reliable, cost effective and safe diagnostic tool in the evaluation of the ...

  11. Biomass production on saline-alkaline soils

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A.N.

    1985-01-01

    In a trial of twelve tree species (both nitrogen fixing and non-fixing) for fuel plantations on saline-alkaline soil derived from Gangetic alluvium silty clay, Leucaena leucocephala failed completely after showing rapid growth for six months. Results for other species at age two showed that Prosopis juliflora had the best productivity.

  12. Morphology and Kinetics of Growth of CaCO3 Precipitates Formed in Saline Water at 30°C

    Science.gov (United States)

    Sui, Xin; Wang, Baohui; Wu, Haiming

    2018-02-01

    The crystallization kinetics and morphology of CaCO3 crystals precipitated from the high salinity oilfield water were studied. The crystallization kinetics measurements show that nucleation and nuclei growth obey the first order reaction kinetics. The induction period of precipitation is extended in the high salinity solutions. Morphological studies show that impurity ions remain mostly in the solution phase instead of filling the CaCO3 crystal lattice. The morphology of CaCO3 precipitates can be changed from a smooth surface (calcite) to rough spheres (vaterite), and spindle rod bundles, or spherical, ellipsoid, flowers, plates and other shapes (aragonite).

  13. Morphometry and granulosa cells number of preantral ovarian follicles from bovine (“Bos indicus” preserved at 4ºC in saline solution for different periods of time Morfometria e número de células da granulosa de folículos ovarianos pré-antrais de bovino ("Bos indicus" preservados a 4ºC em solução salina por diferentes períodos de tempo

    Directory of Open Access Journals (Sweden)

    Hélder Silva Luna

    2008-04-01

    Full Text Available The present study had the objective to evaluate the effect of cooling at 4 ºC, at different periods of time, in the morphometry and number of granulosa cells of preantral ovarian follicles of bovines. Ovaries were gotten from slaughterhouse, divided in 4 parts and distributed in 4 groups: control (without cooling and groups cooled for 12, 24 and 48 h in saline solution (NaCl 0.9% at 4 ºC. After treatment, samples were fixed in Carnoy and forwarded to classic histology techniques. The follicles were analyzed with optic and ocular microscope with micrometric scale. Total of 340 follicles were analyzed, which 242 were primordial and 98 primary. Results indicated that the primordial and primary follicles when cooled in saline solution at 4 ºC did not present variation in oocyte and diameter and amount of cells of the granulosa when comparing the control group to 12, 24 and 48 h groups (P > 0.05. In conclusion, the temperature at 4 ºC does not influence the morphometry of the follicles and the amount of the granulosa cells.O presente trabalho teve como objetivo avaliar o efeito do resfriamento a 4 ºC, em diferentes períodos de tempo, na morfometria e número de células da granulosa de folículos pré-antrais de ovário bovino. Os ovários foram obtidos em abatedouro, divididos em 4 partes e distribuídos em 4 grupos: controle (sem resfriamento e grupos resfriados por 12, 24 e 48 h em solução salina (NaCl a 0,9% a 4 ºC. Após tratamento, as amostras foram fixadas em Carnoy e encaminhadas para rotina histológica clássica. Para análise folicular, utilizou-se microscópio óptico e ocular com escala micrométrica. Foram analisados um total de 340 folículos, sendo 242 primordiais e 98 primários. Os resultados obtidos indicam que os folículos primordiais e primários, quando resfriados em solução salina a 4 ºC, não apresentam variação em sua morfometria e quantidade de células da granulosa, quando comparado o grupo controle com

  14. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  15. Effect of salinity and temperature on treatment of concentrated wastewater from RO by FO-MD

    Science.gov (United States)

    Zhou, Yingru; Huang, Manhong; Deng, Qian

    2018-02-01

    In this study the appropriate temperature of the membrane distillation (MD) hot side (the permeation flux of MD was controlled by adjusting the hot side temperature) was selected according to the water flux of FO process so that the water transfer rate on both sides of FO and MD was consistent and the FO-MD process could be stable operation. When the salt concentration of feed solution was 30, 55, 80 and 100 g/L, the desalination rates changed little, which were 99.1%, 98.4%, 98.9% and 98.7%, respectively. The removal rate of COD was 93.8%, 94.2%, 91.6% and 92.7% which also changed little like the desalination rates. The removal rate of chromaticity increased with the increase of salinity, which attained 96.6%, 97.0%, 97.2% and 97.9%, respectively. This study proved that salinity of the feed solution affected little on the removal rate of contaminants but great on the water flux, with the increase of salinity from 30 to 100 g/L, the water flux was 6.05, 4.81, 4.33 and 3.87 LMH with the appropriate temperature (67.5±0.5, 64.5±0.5, 62.5±0.5 and 60.5±0.5 °C) of MD hot side. In a word, FO-MD was first used to treat the high salinity RO water with over 30 g/L total dissolved solids (TDS), FO-MD was a promising new process for high salinity wastewater treatment, and the hybrid system can solve the problem of lower draw solution concentration, and the high-quality production water will be obtained directly by this hybrid system with low membrane fouling tendency.

  16. Valuation of using saline flush technique of contrast medium on abdominal multidetector row CT scanning

    International Nuclear Information System (INIS)

    Zhao Hong; Wang Ying; He Yanli; Liu Xiaobing; Bao Shiliang; Han Mingjun

    2006-01-01

    Objective: The purpose of this study was to compare the enhancement degree of abdomen organs and vessels after different amount of contrast medium using saline flush in abdomen MDCT scanning, which aimed to not affect contrast enhancement, decreased the amount of contrast medium, and reduced the side-effect. Methods: This study group consisted of 75 patients who were referred for contrast enhanced abdominal MDCT for various reasons. Patients were allocated into three groups: injection of 100ml of contrast medium only (A group), injection of 80ml pushed with 20ml of saline solution (B group), and injection of 70ml pushed with 30ml of saline solution (C group). Attenuation values were measured from the liver, spleen, pancreas, kidney, aorta, portal vein, and inferior vena cava in 33 second and 80 second of imaging after injection contrast medium. Results: The portal venous phases of the spleen, pancreas, kidney, aorta, portal vein had statistically significant difference among groups A, B and C. Post hoc test showed statistically significant difference between A group and C group, But no statistically significant difference during the portal venous phases of the pancreas and the kidney between A group and B group. Conclusion: Using a saline flush technique after the injection contrast medium in abdominal MDCT reduced waste of contrast medium and decrease in nephrotoxicity, at the same time, it would not lose important diagnostic information and saved patients cost for the contrast medium. (authors)

  17. Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca oleracea).

    Science.gov (United States)

    de Lacerda, Laís Pessôa; Lange, Liséte Celina; Costa França, Marcel Giovanni; Zonta, Everaldo

    2015-01-01

    In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.

  18. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  19. Smoke Priming, a Potent Protective Agent Against Salinity: Effect on Proline Accumulation, Elemental Uptake, Pigmental Attributes and Protein Banding Patterns of Rice (Oryza Sativa

    Directory of Open Access Journals (Sweden)

    Jamil, Muhammad

    2013-02-01

    Full Text Available The exogenous application of plant derived smoke solution through seed pre treatment is consider to create tolerance in the plant against salinity, for this purpose different dilution of plant derived smoke solution as 1:5000 Buhania, 1:1000 Buhania, 1:1000 Cymbopogon, 1:500 Cymbopogon were used against 0 mM, 50, 100 and 150mM NaCl solution in the medium. The effect was observed on total proline accumulation, heavy metals uptake, photosynthetic pigments and protein polypeptide bands intensity in two rice varieties as Basmati 385 (B-385 and Shaheen Basmati (S. Basmati. Proline concentration increases while chlorophyll “a” chlorophyll “b” and carotene level decreases with increasing salinity. On other hand zinc concentration increases while cadmium and lead concentration decrease in the crop under saline conditions. Intensity of protein polypeptides bands decreases gradually with increasing salinity level but plants from the seeds soaked with smoke solution alleviate the drastic affect of salinity, and intensity of bands is quite good by comparing with non primed seeds. It is concluded that seed priming with plant derived smoke solution show beneficial effect on crop to protect them from salinity.

  20. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  1. Evaluation of the Aqua‎Crop Model to Simulate Maize Yiled Response under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Aida Mehrazar

    2017-01-01

    Full Text Available Introduction: Limited water resources and its salinity uptrend has caused reducing water and soil quality and consequently reducing the crop production. Thus, use of saline water is the management strategies to decrease drought and water crisis. Furthermore, simulation models are valuable tools for improving on-farm water management and study about the effects of water quality and quantity on crop yield.. The AquaCrop model has recently been developed by the FAO which has the ability to check the production process under different propositions. The initial version of the model was introduced for simulation of crop yield and soil water movement in 2007, that the effect of salinity on crop yield was not considered. Version 4 of the model was released in 2012 in which also considered the effects of salinity on crop yield and simulation of solute Transmission in soil profile. Material and methods: In this project, evaluation of the AquaCrop model and its accuracy was studied in the simulating yield of maize under salt stress. This experiment was conducted in Karaj, on maize hybrid (Zea ma ys L in a sandy soil for investigation of salinity stress on maize yield in 2011-2012. This experiment was conducted in form of randomized complete block design in four replications and five levels of salinity treatments including 0, 4.53, 9.06, 13.59 and 18.13 dS/m at the two times sampling. To evaluate the effect of different levels of salinity on the yield of maize was used Version 4 AquaCrop model and SAS ver 9.1 software .The model calibration was performed by comparing the results of the field studies and the results of simulations in the model. In calculating the yield under different scenarios of salt stress by using AquaCrop, the model needs climate data, soil data, vegetation data and information related to farm management. The effects of salinity on yield and some agronomic and physiological traits of hybrid maize (Shoot length, root length, dry weight

  2. Thermal Inactivation Kinetics and Secondary Structure Change of a Low Molecular Weight Halostable Exoglucanase from a Marine Aspergillus niger at High Salinities.

    Science.gov (United States)

    Xue, Dong-Sheng; Liang, Long-Yuan; Lin, Dong-Qiang; Yao, Shan-Jing

    2017-11-01

    Two kinds of exoglucanase were purified from a marine Aspergillus niger. Catalytic ability of halophilic exoglucanase with a lower molecular weight and secondary structure change was analyzed at different salinities. Activity of the low molecular weight exoglucanase in 10% NaCl solution (w/v) was 1.69-fold higher of that in NaCl-free solution. Half-life time in 10% NaCl solution (w/v) was over 1.27-fold longer of that in NaCl-free solution. Free energy change of the low molecular weight exoglucanase denaturation, △G, in 10% NaCl solution (w/v) was 0.54 kJ/mol more than that in NaCl-free solution. Melt point in 10% NaCl solution (w/v), 52.01 °C, was 4.21 °C higher than that in NaCl-free solution, 47.80 °C. K m value, 0.179 mg/ml in 10% NaCl solution (w/v) was less 0.044 mg/ml than that, 0.224 mg/ml, in NaCl-free solution. High salinity made content of α-helix increased. Secondary structure change caused by high salinities improved exoglucanase thermostability and catalysis activity. The halophilic exoglucanase from a marine A. niger was valuable for hydrolyzing cellulose at high salinities.

  3. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing.

    Science.gov (United States)

    Rahman, Hifzur; Jagadeeshselvam, N; Valarmathi, R; Sachin, B; Sasikala, R; Senthil, N; Sudhakar, D; Robin, S; Muthurajan, Raveendran

    2014-07-01

    Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.

  4. Screening of recombinant inbred lines for salinity tolerance in bread ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... 2Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran ... indexes for screening bread wheat genotypes for salinity tolerance. ... published on screening methods in salinity tolerance in.

  5. Identification of Proteins Involved in Salinity Tolerance in Salicornia bigelovii

    KAUST Repository

    Salazar Moya, Octavio Ruben

    2017-01-01

    by providing a genome, transcriptomes, and organellar proteomes, contributing to salinity tolerance research overall. We identified a set of candidate genes for salinity tolerance with the aim of shedding some light on the mechanisms by which this plant thrives

  6. Time-dependence of salinity in monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Vijith, V.; Sundar, D.; Shetye, S.R.

    processes (diffusion, gravity current formation, impact of tidal asymmetries, etc.) is balanced by salinity-egress induced by runoff. Here we point out that the salinity field of the estuaries that are located on the coasts of the Indian subcontinent...

  7. Penaeid Shrimp Salinity Gradient Tank Study 2005-2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We designed an experimental gradient tank to examine salinity preferences of juvenile brown shrimp and white shrimp. Although no strong pattern of salinity avoidance...

  8. Global Temperature and Salinity Profile Programme (GTSPP) Data, 1985-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Temperature-Salinity Profile Programme (GTSPP) develops and maintains a global ocean temperature and salinity resource with data that are both up-to-date...

  9. Sustainable management of coastal saline soils in the Saloum river ...

    African Journals Online (AJOL)

    conductivity, pH, water soluble cations and anions) were analysed to estimate the salinity level at each .... (floodplain, low terrace), saline soils are now .... Apart from having a high salt content, ..... permeability and thereby promotes continuous.

  10. Microbial Fuel Cells under Extreme Salinity

    Science.gov (United States)

    Monzon del Olmo, Oihane

    I developed a Microbial Fuel Cell (MFC) that unprecedentedly works (i.e., produces electricity) under extreme salinity (≈ 100 g/L NaCl). Many industries, such as oil and gas extraction, generate hypersaline wastewaters with high organic strength, accounting for about 5% of worldwide generated effluents, which represent a major challenge for pollution control and resource recovery. This study assesses the potential for microbial fuel cells (MFCs) to treat such wastewaters and generate electricity under extreme saline conditions. Specifically, the focus is on the feasibility to treat hypersaline wastewater generated by the emerging unconventional oil and gas industry (hydraulic fracturing) and so, with mean salinity of 100 g/L NaCl (3-fold higher than sea water). The success of this novel technology strongly depends on finding a competent and resilient microbial community that can degrade the waste under extreme saline conditions and be able to use the anode as their terminal electron acceptor (exoelectrogenic capability). I demonstrated that MFCs can produce electricity at extremely high salinity (up to 250 g/l NaCl) with a power production of 71mW/m2. Pyrosequencing analysis of the anode population showed the predominance of Halanaerobium spp. (85%), which has been found in shale formations and oil reservoirs. Promoting Quorum sensing (QS, cell to cell communication between bacteria to control gene expression) was used as strategy to increase the attachment of bacteria to the anode and thus improve the MFC performance. Results show that the power output can be bolstered by adding 100nM of quinolone signal with an increase in power density of 30%, for the first time showing QS in Halanaerobium extremophiles. To make this technology closer to market applications, experiments with real wastewaters were also carried out. A sample of produced wastewater from Barnet Shale, Texas (86 g/L NaCl) produced electricity when fed in an MFC, leading to my discovery of another

  11. A New Method to Infer Advancement of Saline Front in Coastal Groundwater Systems by 3D: The Case of Bari (Southern Italy Fractured Aquifer

    Directory of Open Access Journals (Sweden)

    Costantino Masciopinto

    2016-02-01

    Full Text Available A new method to study 3D saline front advancement in coastal fractured aquifers has been presented. Field groundwater salinity was measured in boreholes of the Bari (Southern Italy coastal aquifer with depth below water table. Then, the Ghyben-Herzberg freshwater/saltwater (50% sharp interface and saline front position were determined by model simulations of the freshwater flow in groundwater. Afterward, the best-fit procedure between groundwater salinity measurements, at assigned water depth of 1.0 m in boreholes, and distances of each borehole from the modelled freshwater/saltwater saline front was used to convert each position (x, y in groundwater to the water salinity concentration at depth of 1.0 m. Moreover, a second best-fit procedure was applied to the salinity measurements in boreholes with depth z. These results provided a grid file (x, y, z, salinity suitable for plotting the actual Bari aquifer salinity by 3D maps. Subsequently, in order to assess effects of pumping on the saltwater-freshwater transition zone in the coastal aquifer, the Navier-Stokes (N-S equations were applied to study transient density-driven flow and salt mass transport into freshwater of a single fracture. The rate of seawater/freshwater interface advancement given by the N-S solution was used to define the progression of saline front in Bari groundwater, starting from the actual salinity 3D map. The impact of pumping of 335 L·s−1 during the transition period of 112.8 days was easily highlighted on 3D salinity maps of Bari aquifer.

  12. Plugging solution

    Energy Technology Data Exchange (ETDEWEB)

    Sharipov, A U; Yangirov, I Z

    1982-01-01

    A clay-powder, cement, and water-base plugging solution is proposed having reduced solution viscosity characteristics while maintaining tensile strength in cement stone. This solution utilizes silver graphite and its ingredients, by mass weight, are as follows: cement 51.2-54.3%; claypowder 6.06-9.1%; silver graphite 0.24-0.33%; with water making up the remainder.

  13. Differential toxicity and influence of salinity on acute toxicity of ...

    African Journals Online (AJOL)

    Differential toxicity and influence of salinity on acute toxicity of copper sulphate and lead nitrate against Oreochromis niloticus. KA Bawa-Allah, F Osuala, J Effiong. Abstract. This study investigated the salinity-tolerance of Oreochromis niloticus and the influence of salinity changes on the acute toxicities of copper sulphate ...

  14. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    Louw, de P.G.B.; Eeman, S.; Siemon, B.; `Voortman, B.R.; Gunnink, J.; Baaren, E.S.; Oude Essink, G.H.P.

    2011-01-01

    In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and

  15. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Siemon, Bernhard; Voortman, Bernard R.; Gunnink, Jan; Van Baaren, Esther S.; Oude Essink, Gualbert

    2011-01-01

    In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence

  16. Salinity ranges of some southern African fish species occurring in ...

    African Journals Online (AJOL)

    The recorded salinity ranges of 96 fish species occurring in southern African estuaries are documented. Factors influen- cing the tolerance of fishes to low and high salinity regimes are discussed, with most species tolerant of low rather than high salinity conditions. This is important since most systems are subject to periodic ...

  17. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    Science.gov (United States)

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  18. Modelling souring in a high salinity reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael; Crossland, Alan; Stott, Jim

    2006-03-15

    CAPCIS Ltd (Capcis) have developed a souring model for use in highly saline reservoirs where salinity limits the growth of sulphate reducing bacteria (SRB). Capcis have successfully applied the model to a field in North Africa. The conceptual basis of the model considers the course of the H2S from generation in the reservoir including dilution, sulphide retardation and scavenging and H2S fluid phase partitioning. At each stage mathematical equations governing the behaviour of the H2S were produced. In order to estimate the potential for H2S generation, it is required to know the chemistry of the injection and formation waters, as well as the properties of the indigenous SRB, i.e. the maximum salinity for their growth. This is determined by bottle testing of H2S generation by SRB at a range of injection/formation water ratios. The maximum salinity for SRB growth then determines the mixing ratios at which H2S generation takes place. Sulphide retardation due to adsorption at immobile interfaces was empirically modeled from reservoir data. Sulphide scavenging due to reaction with iron generated from corrosion was also modelled. Reservoir mineral scavenging was not modelled but could be incorporated in an extension to the model. Finally, in order to compute the gas-phase concentration of generated H2S, the H2S in the well stream is partitioned between the gas, oil and water phases. Capcis has carried out detailed computations of H2S solubility in crude oil and formation waters and the derivation of distribution ratios based on the respective partition coefficients using Gerard's line method, a modification of Henry's Law. (author) (tk)

  19. Resource competition model predicts zonation and increasing nutrient use efficiency along a wetland salinity gradient

    Science.gov (United States)

    Schoolmaster, Donald; Stagg, Camille L.

    2018-01-01

    A trade-off between competitive ability and stress tolerance has been hypothesized and empirically supported to explain the zonation of species across stress gradients for a number of systems. Since stress often reduces plant productivity, one might expect a pattern of decreasing productivity across the zones of the stress gradient. However, this pattern is often not observed in coastal wetlands that show patterns of zonation along a salinity gradient. To address the potentially complex relationship between stress, zonation, and productivity in coastal wetlands, we developed a model of plant biomass as a function of resource competition and salinity stress. Analysis of the model confirms the conventional wisdom that a trade-off between competitive ability and stress tolerance is a necessary condition for zonation. It also suggests that a negative relationship between salinity and production can be overcome if (1) the supply of the limiting resource increases with greater salinity stress or (2) nutrient use efficiency increases with increasing salinity. We fit the equilibrium solution of the dynamic model to data from Louisiana coastal wetlands to test its ability to explain patterns of production across the landscape gradient and derive predictions that could be tested with independent data. We found support for a number of the model predictions, including patterns of decreasing competitive ability and increasing nutrient use efficiency across a gradient from freshwater to saline wetlands. In addition to providing a quantitative framework to support the mechanistic hypotheses of zonation, these results suggest that this simple model is a useful platform to further build upon, simulate and test mechanistic hypotheses of more complex patterns and phenomena in coastal wetlands.

  20. Modelling saline intrusion for repository performance assessment

    International Nuclear Information System (INIS)

    Jackson, C.P.

    1989-04-01

    UK Nirex Ltd are currently considering the possibility of disposal of radioactive waste by burial in deep underground repositories. The natural pathway for radionuclides from such a repository to return to Man's immediate environment (the biosphere) is via groundwater. Thus analyses of the groundwater flow in the neighbourhood of a possible repository, and consequent radionuclide transport form an important part of a performance assessment for a repository. Some of the areas in the UK that might be considered as possible locations for a repository are near the coast. If a repository is located in a coastal region seawater may intrude into the groundwater flow system. As seawater is denser than fresh water buoyancy forces acting on the intruding saline water may have significant effects on the groundwater flow system, and consequently on the time for radionuclides to return to the biosphere. Further, the chemistry of the repository near-field may be strongly influenced by the salinity of the groundwater. It is therefore important for Nirex to have a capability for reliably modelling saline intrusion to an appropriate degree of accuracy in order to make performance assessments for a repository in a coastal region. This report describes work undertaken in the Nirex Research programme to provide such a capability. (author)

  1. Salinization mechanisms in semi-arid regions

    International Nuclear Information System (INIS)

    Santiago, M.M.F.

    1984-01-01

    During a period of three years the basins of the Pereira de Miranda and Caxitore dams, located in the crystalline rock area of Ceara, Brazil, were studied in order to determine the mechanisms of salinization of their waters. Isotope methods ( 18 O/ 16 O) and hidrochemistry (determination of the of the maior ions) were applied to surface, underground and rain water in this study. An isotope model was designed and applied to the determination of evaporation and percolation of dams in semi-arid zones during the dry season. The results are compared to those from a conventional chemical model. As causes of salinization of the water in the dams, the contributions of the rain itself and the lixiviation of the soil are quantified. An interaction between the dams and the underground water is imperceptible. The salinization of the underground water is attributed to recharge of the aquifer with rain water from the surface runoff followed by evaporation of the water rising, due to capilarity, in a one-directional flow to the surface. (Author) [pt

  2. Growth responses of Phragmites karka - a candidate for second generation biofuel from degraded saline lands

    Science.gov (United States)

    Zaheer Ahmed, Muhammad; Shoukat, Erum; Abideen, Zainul; Aziz, Irfan; Gulzar, Salman; Ajmal Khan, M.

    2017-04-01

    Global changes like rapidly increasing population, limited fresh water resources, increasing salinity and aridity are the major causes of land degradation. Increasing feed production for bioenergy through direct and indirect land use cause major threat to biodiversity besides competing with food resources. Growing halophytes on saline lands would provide alternate source of energy without compromising food and cash crop farming. Phragmites karkahas recently emerged as a potential bio-fuel crop, which maintains optimal growth at 100 mM NaCl with high ligno-cellulosic biomass. However, temporal and organ specific plant responses under salinity needs to be understood for effective management of degraded saline lands. This study was designed to investigate variation in growth, water relations, ion-flux, damage markers, soluble sugars, stomatal stoichiometry and photosynthetic responses of P. karka to short (0-7 days) and long (15-30 days) term exposure with 0 (control), 100 (moderate) and 300 (high) mM NaCl. A reduced shoot growth ( 45%) during earlier (within 7 days) phase was observed in 300 mM NaCl compared to control and moderate salinity. Reduced leaf elongation rate and leaf senescence from 7th day in 300 mM NaCl (and later in moderate salinity) correspond to increasing hydrogen peroxide and malondialdehyde contents. Leaf turgor loss represents the osmotic effect of NaCl at both concentrations, however turgor recovered completely in moderate salinity within a week. Plant appeared to use both organic solutes (soluble sugars) and ions (Na++K++Cl-) for osmotic adjustment along with improved water use efficiency under saline conditions. Turgor loss in high salinity (300 mM NaCl) was related to increased bulk elastic modulus and decreased hydraulic capacitance which ultimately resulted in low water potential. Leaf Na+ and Cl- accumulation increased earlier (from 7th day) in 300 mM NaCl and later in 100 mM. Higher ion sequestration in different organs was found in the

  3. Metabolic and hemodynamic effects of saline infusion to maintain volemia on temporary abdominal aortic occlusion

    Directory of Open Access Journals (Sweden)

    Fábio Ferreira Amorim

    2002-10-01

    Full Text Available OBJECTIVE: To analyze hemodynamic and metabolic effects of saline solution infusion in the maintenance of blood volume in ischemia-reperfusion syndrome during temporary abdominal aortic occlusion in dogs. METHODS: We studied 20 dogs divided into 2 groups: the ischemia-reperfusion group (IRG, n=10 and the ischemia-reperfusion group with saline solution infusion aiming at maintaining mean pulmonary arterial wedge pressure between 10 and 20 mmHg (IRG-SS, n=10. All animals were anesthetized with sodium thiopental and maintained on spontaneous ventilation. Occlusion of the supraceliac aorta was obtained with inflation of a Fogarty catheter inserted through the femoral artery. After 60 minutes of ischemia, the balloon was deflated, and the animals were observed for another 60 minutes of reperfusion. RESULTS: IRG-SS dogs did not have hemodynamic instability after aortic unclamping, and the mean systemic blood pressure and heart rate were maintained. However, acidosis worsened, which was documented by a greater reduction of arterial pH that occurred especially due to the absence of a respiratory response to metabolic acidosis that was greater with the adoption of this procedure. CONCLUSION: Saline solution infusion to maintain blood volume avoided hemodynamic instability after aortic unclamping. This procedure, however, caused worsening in metabolic acidosis in this experimental model.

  4. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

    KAUST Repository

    Nam, Joo-Youn

    2011-11-01

    High rates of hydrogen gas production were achieved in a two chamber microbial electrolysis cell (MEC) without a catholyte phosphate buffer by using a saline catholyte solution and a cathode constructed around a stainless steel mesh current collector. Using the non-buffered salt solution (68 mM NaCl) produced the highest current density of 131 ± 12 A/m3, hydrogen yield of 3.2 ± 0.3 mol H2/mol acetate, and gas production rate of 1.6 ± 0.2 m3 H2/m 3·d, compared to MECs with catholytes externally sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near the membrane separating the chambers was 83 ± 4%, similar to that obtained with the cathode placed more distant from the membrane (84 ± 4%). Using a carbon cloth cathode instead of the stainless steel mesh cathode did not significantly affect performance, with all reactor configurations producing similar performance in terms of total gas volume, COD removal, rcat and overall energy recovery. These results show MEC performance can be improved by using a saline catholyte without pH control. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  5. Evolution of the electrical resistivity anisotropy during saline tracer tests: insights from geoelectrical milli-fluidic experiments

    Science.gov (United States)

    Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.

    2017-12-01

    The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our

  6. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil; Myat, Aung; Chun, Won Gee; Ng, Kim Choon

    2013-01-01

    film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film

  7. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  8. The effectiveness of dispersants under various temperature and salinity regimes

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2005-01-01

    A series of tests were conducted to determine the effectiveness of dispersants in Arctic waters where salinity and temperature interactions play a critical role. In particular, Corexit 9500 was tested on Alaska North Slope oil at different temperatures and salinity using the ASTM standard test and variations of this test. Results were compared to the only historically reported test in which both temperature and salinity were changed over a range of values. This series of tests demonstrated that there is an interaction between salinity, temperature and dispersant effectiveness. It was shown that conventional and currently available dispersants are nearly ineffective at 0 salinity. Dispersant effectiveness peaks at 20 to 40 units of salinity, depending on the type of dispersant. Corexit is less sensitive to salinity, while Corexit 9527 is more sensitive to salinity. There is a smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and as it exceeds this value. Results from the 2 field trials in fresh water suggest that laboratory tests correctly conclude that the effectiveness of dispersants is very low in freshwater. The study also examined several analytical factors such as the total petroleum hydrocarbon (TPH) versus relative petroleum hydrocarbon (RPH) methods, specific versus general calibration curves, and automatic versus manual baseline placement. The analytical variations of effectiveness by RPH or TPH methods do not affect the fundamental relationship between salinity and temperature. 6 refs., 6 tabs., 8 figs

  9. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrão, Sónia

    2016-10-06

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.

  10. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio Enrique [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    Injection of carbon dioxide (CO2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO2 and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO2-H2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO2) the viscosity of carbon

  11. Effect of NaCl Priming on Seed Germination of Tunisian Fenugreek (Trigonella foenum-graecum L. Under Salinity Conditions

    Directory of Open Access Journals (Sweden)

    Souguir, Maher

    2013-04-01

    Full Text Available Salinity is one major problem of increasing production in crop growing areas throughout the world. The objective of this research was to evaluate the effect of NaCl priming on seed germination of Tunisian fenugreek (Trigonella foenum-graecum L. under salinity conditions. Seeds of fenugreek were primed with NaCl (4g/l for 36 h in continuous 25°C. Experimental factors were included 2 priming treatments (NaCl and non-priming as control and five salinity solution (4,6,8,10 and 12 gl-1. Results showed that seed priming increased final germination percentage, germination speed and radicle length over the non-primed treatment. At the lowest levels of salinity, there were no notable differences between primed and non-primed seeds, but with increasing salinity levels, primed seeds showed the better performance than non-primed seeds. These results indicated that NaCl priming significantly improved seed performance under salinity conditions.

  12. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations.

    Science.gov (United States)

    Bouzourra, Hazar; Bouhlila, Rachida; Elango, L; Slama, Fairouz; Ouslati, Naceur

    2015-02-01

    Coastal aquifers are at threat of salinization in most parts of the world. This study was carried out in coastal shallow aquifers of Aousja-Ghar El Melh and Kalâat el Andalous, northeastern of Tunisia with an objective to identify sources and processes of groundwater salinization. Groundwater samples were collected from 42 shallow dug wells during July and September 2007. Chemical parameters such as Na(+), Ca(2+), Mg(2+), K(+), Cl(-), SO4 (2-), HCO3 (-), NO3 (-), Br(-), and F(-) were analyzed. The combination of hydrogeochemical, statistical, and GIS approaches was used to understand and to identify the main sources of salinization and contamination of these shallow coastal aquifers as follows: (i) water-rock interaction, (ii) evapotranspiration, (iii) saltwater is started to intrude before 1972 and it is still intruding continuously, (iv) irrigation return flow, (v) sea aerosol spray, and finally, (vi) agricultural fertilizers. During 2005/2006, the overexploitation of the renewable water resources of aquifers caused saline water intrusion. In 2007, the freshening of a brackish-saline groundwater occurred under natural recharge conditions by Ca-HCO3 meteoric freshwater. The cationic exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. The sulfate reduction process and the neo-formation of clays minerals characterize the hypersaline coastal Sebkha environments. Evaporation tends to increase the concentrations of solutes in groundwater from the recharge areas to the discharge areas and leads to precipitate carbonate and sulfate minerals.

  13. Influence of Ophthalmic Solutions on Tear Components.

    Science.gov (United States)

    Shigeyasu, Chika; Yamada, Masakazu; Akune, Yoko

    2016-11-01

    Tear fluids are a mixture of secretions derived from lacrimal glands, accessory lacrimal glands, conjunctiva, and meibomian glands. Compositional changes to tears occur in the normal state and during ocular surface disease, such as dry eye conditions. We have investigated compositional changes to tears after topical application of ophthalmic solutions, with regard to tear-specific proteins (secretory immunoglobulin A, lactoferrin, lipocalin-1, and lysozyme) and ocular surface mucin in normal and dry eye conditions using high-performance liquid chromatography. After application of saline solution (0.9% sodium chloride) in normal subjects, transient but significant decreases in all tear components were observed. The recovery of protein concentrations took up to 30 minutes and lasted longer when the saline solution was applied more frequently. When applying ophthalmic solutions, a balance between washout and dilutional effects should be considered in addition to the therapeutic effect. Investigation of the effect of diquafosol solution (3%) in normal subjects revealed a significant increase in sialic acid concentration, a marker of ocular mucin, at 5 minutes after application, whereas a significant decrease was observed with saline. This result indicates the accelerated secretion of mucin from ocular tissues induced by diquafosol. A clinical study to determine the efficacy of diquafosol in patients with dry eye revealed improvements in tear breakup time, keratoconjunctival staining scores, and Schirmer test score, accompanied by an increase in sialic acid concentration in tears. Investigating normal and dry eye conditions through tear analysis may clarify the pathophysiology of dry eye conditions and support the efficacy of treatments.

  14. Evaluation of salinity stress on morphophysiological traits of four salin tolarant wheat cultivars

    Directory of Open Access Journals (Sweden)

    leila yadelerloo

    2009-06-01

    Full Text Available For assessment the effects of salinity on morphophysiological traits of wheat an experiment with four caltivars (Karchia, Sorkh tokhm, Sholeh and Roshan and one line (1-66-22 in four salt concentrations(0, 60, 120, and 180 mM NaCl, were conducted by factorial analysis in a completely randomized design with three replications. The rate of leaf area were measured in four stages. In booting stage, relative chlorophyll content (SPAD meter, and in pollination phase the rate of Na+ and K+ iones in four leaves(up to down were assessed and finally stem length and total dry matter were measured. Results showed that salinity reduced leaf area, total dry matter stem length of plants and relative chlorophyll content. With increasing of salinity the rate of Na+ were increased but the rate of K+ iones were decreased. Also the salt exclusion was observed at nodes of stem that of 1-66-22 was spot form.

  15. Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of Faba bean plant

    International Nuclear Information System (INIS)

    Abdelhamid, Magdi T; Sadak, Mervat Sh; Schmidhalter, Urs; El Saady, Abdel Kareem M.

    2013-01-01

    solutes concentrations in seeds of salinity treated plants. Nicotinamide not only neutralized the effect of salinity stress but resulted in a significant improvement in physiological and biochemical parameters as well as the concentrations of soluble sugars, proline, amino acids, and total N and other mineral contents.

  16. RESPONSE OF SPECKLED SPUR-FLOWER TO SALINITY STRESS AND SALICYLIC ACID TREATMENT

    Directory of Open Access Journals (Sweden)

    Piotr Salachna

    2015-11-01

    Full Text Available One of the limitations to using ornamental plants in green areas is too high salinity and alkalization of the soil. The adverse effect of salinity on plant growth and development may be effectively reduced by application of salicylic acid. Plectranthus ciliatus is an attractive bed plant with ornamental leaves, recommended for growing in containers, hanging baskets, or sunny borders. The aim of this study was to investigate the response of P. ciliatus to salicylic acid and calcium chloride. The plants were grown in pots in a glasshouse and were sprayed with solution of 0.5 mM salicylic acid and watered with 200 mM calcium chloride. The application of salicylic acid resulted in an increased weight of the aboveground parts, higher stomatal conductance and leaf greenness index and enhanced leaf content of nitrogen, potassium, iron and zinc. Salinity-exposed plants were characterized by reduced weight, stomatal conductance and leaf greenness index. Salt stress caused also a drop in leaf content of nitrogen, potassium and iron, and an increase in calcium, sodium, chlorine, copper and manganese concentration. Salicylic acid seemed to relieve salinity-mediated plant stress.

  17. Radionuclides and heavy metal uptake by lolium italicum plant as affected by saline water irrigation

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Aly, A.I.; Helal, M.H.

    2001-01-01

    The use of saline waters to grow crops on increasingly metal polluted soils is becoming a common practice in the arid regions. Nevertheless, the effects of soil and water salinity on radionuclides and heavy metal fluxes in polluted areas are not well understood. The aim of this study was to evaluate in pot experiments the plant uptake of cesium-137, Co-60, Mn-54, Zinc, cadmium and copper from a polluted alluvial aridisol as affected by salt water irrigation. Fertilized soil material was planted in pots with L. Italicum for 18 weeks under greenhouse conditions. The plants were irrigated either with water or with salt solution of variable variable Na/Ca ratio and harvested every 5-7 weeks. In addition to elemental analysis of plants and soil extracts root length was determined by a gridline intersect method and the viable part of the roots was estimated by a root protein inex. Saline (Na) water irrigation increased cobalt-60, manganese-54 and heavy metal solubility in soil, reduced root viability and enhanced the uptake of Co-60, Mn-54, Cd, Cu, Zn and Na by L.italicum and reduced the uptake of Cs-137. Ca counteracted these effects partly. The presented results demonstrated a dual effect of salinity on radiouclides and heavy metal availability to plants and suggest a relationship between root mortality and the enhanced Co-60, Mn-54, and heavy metake ny salt stressed plants

  18. Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles.

    Science.gov (United States)

    Jeon, Junho; Kannan, Kurunthachalam; Lim, Byung J; An, Kwang Guk; Kim, Sang Don

    2011-06-01

    The influence of salinity and organic matter on the distribution coefficient (K(d)) for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in a brackish water-clay system was studied. The distribution coefficients (K(d)) for PFAs onto inorganic clay surfaces increased with salinity, providing evidence for electrostatic interaction for the sorption of PFAs, whereas the relationship between K(d) and organic carbon content (f(oc)) suggested that hydrophobic interaction is the primary driving force for the sorption of PFAs onto organic matter. The organic carbon normalized adsorption coefficient (K(oc)) of PFAs can be slightly overestimated due to the electrostatic interaction within uncoated inorganic surfaces. In addition, the dissolved organic matter released from coated clay particles seemed to solvate PFA molecules in solution, which contributed to a decrease in K(d). A positive relationship between K(d) and salinity was apparent, but an empirical relationship for the 'salting-out' effect was not evident. The K(d) values of PFAs are relatively small compared with those reported for persistent organic pollutants. Thus, sorption may not be a significant route of mass transfer of PFAs from water columns in estuarine environments. However, enhancement of sorption of PFAs to particulate matter at high salinity values could evoke potential risks to benthic organisms in estuarine areas.

  19. Evaluation by design of experiments of active clay specimens behavior in the presence of distilled water, saline solutions and cationic inhibitors; Avaliacao por analise estatistica experimental do comportamento de corpos de prova de argila aditivada na presenca de agua destilada, solucoes salinas e inibidores cationicos

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Emanuella Layne Ferreira; Araujo, Bruno Alysson Barbosa Duarte; Borges, Mauricio Rodrigues; Garcia, Rosangela Balaban [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    During the drilling, in general, there are layers of clays which water absorption easily as smectites. In drilling with clays swelling when is applied water-base fluid there is necessary the use of the clay inhibitors to avoid the incorporation of the cutting to the drilling fluid. The most used chemical inhibitors in drilling fluids are sodium and potassium chlorides. However, the cationic inhibitors have been used as alternative form to increase the inhibition power of the drilling fluids. In this work was evaluated the behaviour of the activated clay test bodies in the presence of distilled water, aqueous solution potassium chlorides, and cationic inhibitors. The solutions were submitted at Capillary Suction Timer tests to evaluation the capacity of the water retention in activated clay samples. At the interpretation of the results was used Design of Experiments (DOE) by Response Surface Methodology (RSM), using Umetrics MODDE 7.0{sup TM} programme. It was observed that the clay samples when in contact with the solutions presented lower water retention than in the presence of distilled water only. This result indicates that the clay was inhibited. (author)

  20. A randomized controlled trial comparing parenteral normal saline with and without 5% dextrose on the course of labor in nulliparous women.

    Science.gov (United States)

    Sharma, Chanderdeep; Kalra, Jasvinder; Bagga, Rashmi; Kumar, Praveen

    2012-12-01

    The objective of this study was to compare intravenous normal saline with and without 5% dextrose on the course of labor in nulliparous women in active phase of spontaneous labor. In a randomized controlled trial, term, nulliparous women with singleton pregnancy in active labor were randomized into one of two groups receiving either normal saline or normal saline alternating with 5% dextrose at rate of 175 ml/h. The primary outcome was total length of labor from onset of study fluid in vaginally delivered women. Maternal and neonatal outcomes were also analyzed. Of 250 women enrolled, in vaginally delivered subjects, there was significant difference in the duration of labor (p=0.0) and prolonged labor (p=0.01), with favorable results for women in 5% dextrose alternating with normal saline. No statistically significant differences were observed in the cesarean section rates between the groups. The cord pH was significantly higher in neonates born to women in 5% dextrose alternating with normal saline infusion as compared to normal saline alone (p=0.01), however, no neonate in the study had acidemia. Administration of a 5% dextrose solution alternating with normal saline is a better parenteral fluid for significantly decreasing duration of labor in term vaginally delivered nulliparous women in spontaneous active labor as compared to normal saline alone.

  1. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    Science.gov (United States)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global

  2. Salinity fronts in the tropical Pacific Ocean.

    Science.gov (United States)

    Kao, Hsun-Ying; Lagerloef, Gary S E

    2015-02-01

    This study delineates the salinity fronts (SF) across the tropical Pacific, and describes their variability and regional dynamical significance using Aquarius satellite observations. From the monthly maps of the SF, we find that the SF in the tropical Pacific are (1) usually observed around the boundaries of the fresh pool under the intertropical convergence zone (ITCZ), (2) stronger in boreal autumn than in other seasons, and (3) usually stronger in the eastern Pacific than in the western Pacific. The relationship between the SF and the precipitation and the surface velocity are also discussed. We further present detailed analysis of the SF in three key tropical Pacific regions. Extending zonally around the ITCZ, where the temperature is nearly homogeneous, we find the strong SF of 1.2 psu from 7° to 11°N to be the main contributor of the horizontal density difference of 0.8 kg/m 3 . In the eastern Pacific, we observe a southward extension of the SF in the boreal spring that could be driven by both precipitation and horizontal advection. In the western Pacific, the importance of these newly resolved SF associated with the western Pacific warm/fresh pool and El Niño southern oscillations are also discussed in the context of prior literature. The main conclusions of this study are that (a) Aquarius satellite salinity measurements reveal the heretofore unknown proliferation, structure, and variability of surface salinity fronts, and that (b) the fine-scale structures of the SF in the tropical Pacific yield important new information on the regional air-sea interaction and the upper ocean dynamics.

  3. Saline flushing fluids restricting contamination of the near-face zone

    Energy Technology Data Exchange (ETDEWEB)

    Weil, W

    1982-01-01

    Questions are covered which concern the characteristics and main properties of saline solutions without solid phase and their use as flushing fluids. Attention is drawn to the fact that these solutions are universally used in flushing and other operations of wells with high gradients of bed pressures, and also in those cases where the oil and gas levels are especially sensitive to negative influence of traditional clay solutions which cause irreversible decrease in permeability of the reservoirs through contamination and plugging of the pores in the near-face zone, and consequently, influence the decrease in bed productivity. The described methods and chemical reagents decrease the filtering of these solutions in the reservoirs, improve viscosity and stabilize the near-face zone.

  4. Osmotic relations of the coelomic fluid and body wall tissues in Arenicola marina subjected to salinity change

    DEFF Research Database (Denmark)

    Weber, Roy E.; Spaargaren, D.H.

    1979-01-01

    nitrogenous organic molecules (ninhydrin-positive substances, NPS) in the body wall tissues and in the coelomic fluid of specimens of Arenicola in response to sudden changes in salinity. The coelomic solutes consist almost entirely of electrolytes and the osmotic contribution of NPS is essentially negligible....... In the body wall extracts, however, NPS accounts for at least one third of the osmotic concentration and for most of the substantial non-electrolyte fraction. There is no evidence from coelomic NPS measurements for extrusion of cellular amino acids during adaptation to lowered salinity. In diluted sea water...

  5. Solution preparation

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results

  6. Evaluation of Corrosion Resistance of Nanotubular Oxide Layers on the Ti13Zr13Nb Alloy in Physiological Saline Solution / Ocena Odporności Korozyjnej Nanotubularnych Struktur Tlenkowych Na Stopie Ti13Zr13Nb W Środowisku Płynów Ustrojowych”

    Directory of Open Access Journals (Sweden)

    Smołka A.

    2015-12-01

    Full Text Available Evaluation of corrosion resistance of the self-organized nanotubular oxide layers on the Ti13Zr13Nb alloy, has been carried out in 0.9% NaCl solution at the temperature of 37ºC. Anodization process of the tested alloy was conducted in a solution of 1M (NH42SO4 with the addition of 1 wt.% NH4F. The self-organized nanotubular oxide layers were obtained at the voltage of 20 V for the anodization time of 120 min. Investigations of surface morphology by scanning transmission electron microscopy (STEM revealed that as a result of the anodization under proposed conditions, the single-walled nanotubes (SWNTs can be formed of diameters that range from 10 to 32 nm. Corrosion resistance studies of the obtained nanotubular oxide layers and pure Ti13Zr13Nb alloy were carried out using open circuit potential, anodic polarization curves, and electrochemical impedance spectroscopy (EIS methods. It was found that surface modification by electrochemical formation of the selforganized nanotubular oxide layers increases the corrosion resistance of the Ti13Zr13Nb alloy in comparison with pure alloy.

  7. Soil transport parameters of potassium under a tropical saline soil condition using STANMOD

    Science.gov (United States)

    Suzanye da Silva Santos, Rafaelly; Honorio de Miranda, Jarbas; Previatello da Silva, Livia

    2015-04-01

    Environmental responsibility and concerning about the final destination of solutes in soil, so more studies allow a better understanding about the solutes behaviour in soil. Potassium is a macronutrient that is required in high concentrations, been an extremely important nutrient for all agricultural crops. It plays essential roles in physiological processes vital for plant growth, from protein synthesis to maintenance of plant water balance, and is available to plants dissolved in soil water while exchangeable K is loosely held on the exchange sites on the surface of clay particles. K will tend to be adsorbed onto the surface of negatively charged soil particles. Potassium uptake is vital for plant growth but in saline soils sodium competes with potassium for uptake across the plasma membrane of plant cells. This can result in high Na+:K+ ratios that reduce plant growth and eventually become toxic. This study aimed to obtain soil transport parameters of potassium in saline soil, such as: pore water velocity in soil (v), retardation factor (R), dispersivity (λ) and dispersion coefficient (D), in a disturbed sandy soil with different concentrations of potassium chlorate solution (KCl), which is one of the most common form of potassium fertilizer. The experiment was carried out using soil samples collected in a depth of 0 to 20 cm, applying potassium chlorate solution containing 28.6, 100, 200 and 500 mg L-1 of K. To obtain transport parameters, the data were adjusted with the software STANMOD. At low concentrations, interaction between potassium and soil occur more efficiently. It was observed that only the breakthrough curve prepared with solution of 500 mg L-1 reached the applied concentration, and the solution of 28.6 mg L-1 overestimated the parameters values. The STANMOD proved to be efficient in obtaining potassium transport parameters; KCl solution to be applied should be greater than 500 mg L-1; solutions with low concentrations tend to overestimate

  8. Types, harms and improvement of saline soil in Songnen Plain

    Science.gov (United States)

    Wang, Zhengjun; Zhuang, Jingjing; Zhao, Anping; Li, Xinxin

    2018-03-01

    Saline soil is an extremely difficult and modified soil, widely distributed around the world. According to UN-UNESCO and FAO, the world’s saline soil area is about 9.54×108hm2, and there is a growing trend, every year in 1.0×106-1.5×106hm2 speed growth, the effective utilization of land resources to the world is the most serious threat. The total area of saline-alkali land in China is about 9.91×107hm2, including the Songnen Plain, which is called one of the three major saline soil concentrations in the world. The Songnen plain is an important grain producing area in China, and the saline soil occupies most of the Songnen plain, so it is of great significance to study the saline soil and improvement in Songnen plain.

  9. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  10. Postprocedural pain in shoulder arthrography: differences between using preservative-free normal saline and normal saline with benzyl alcohol as an intraarticular contrast diluent.

    Science.gov (United States)

    Storey, Troy F; Gilbride, George; Clifford, Kelly

    2014-11-01

    The purpose of this study was to prospectively evaluate the effect of benzyl alcohol, a common preservative in normal saline, on postprocedural pain after intraarticular injection for direct shoulder MR arthrography. From April 2011 through January 2013, 138 patients underwent direct shoulder MR arthrography. Using the Wong-Baker Faces Pain Scale, patients were asked to report their shoulder pain level immediately before and immediately after the procedure and then were contacted by telephone 6, 24, and 48 hours after the procedure. Fourteen patients did not receive the prescribed amount of contrast agent for diagnostic reasons or did not complete follow-up. Sixty-two patients received an intraarticular solution including preservative-free normal saline (control group) and 62 patients received an intraarticular solution including normal saline with 0.9% benzyl alcohol as a contrast diluent (test group). Patients were randomized as to which intraarticular diluent they received. Fluoroscopic and MR images were reviewed for extracapsular contrast agent administration or extravasation, full-thickness rotator cuff tears, and adhesive capsulitis. The effect of preservative versus control on pain level was estimated with multiple regression, which included time after procedure as the covariate and accounted for repeated measures over patients. Pain scale scores were significantly (p = 0.0382) higher (0.79 units; 95% CI, 0.034-1.154) with benzyl alcohol preservative compared with control (saline). In both study arms, the pain scale scores decreased slightly after the procedure, increased by roughly 1 unit over baseline for the test group and 0.3 unit over baseline for the control group by 6 hours after the procedure, were 0.50 unit over baseline for the test group and 0.12 unit over baseline for the control group at 24 hours, then fell to be slightly greater than baseline at 48 hours with benzyl alcohol and slightly less than baseline without benzyl alcohol. These trends

  11. The side effects of nitrification inhibitors on leaching water and soil salinization in a field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diez, J. A.; Arauzo, M.; Hernaiz, P.; Sanz, A.

    2010-07-01

    In experiments carried out in greenhouses, some authors have shown that ammonium sulphate induces greater soil acidity and salinity than other sources of N. Moreover, nitrification inhibitors (NI) tend to cause ammonium to accumulate in soil by retarding its oxidation to nitrate. This accumulated ammonium would also have an effect on soil salinity. Consequently, the aim of this paper was to evaluate the soil and leaching water salinization effects associated with adding NI, dicyandiamide (DCD) and dimethylpyrazole-phosphate (DMPP) to ammonium sulphate nitrate (ASN) fertilizer. This experiment was carried out in the field with an irrigated maize crop. Drainage and Na concentration were measured during both seasons (2006 and 2007) and leached Na was determined. The treatments with NI (DCD and DMPP) were associated with greater Na concentrations in soil solutions and consequently higher rates of Na leaching (in 2007, ASN-DCD 1,292 kg Na ha{sup -}1, ASN-DMPP 1,019 kg Na ha{sup -}1). A treatment involving only ASN also increased the Na concentration in soil and the amount of Na leached in relation to the Control (in 2007, ASN 928 kg Na ha{sup -}1 and Control 587 kg Na ha{sup -}1). The increase in the ammonium concentration in the soil due to the NI treatments could have been the result of the displacement of Na ions from the soil exchange complex through a process which finally led to an increase in soil salinity. Treatments including ammonium fertilizer formulated with NI produced a greater degree of soil salinization due to the presence of ammonium from the fertilizer and accumulated ammonium from the nitrification inhibition. (Author) 31 refs.

  12. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    Science.gov (United States)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  13. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  14. QTLs for seedling traits under salinity stress in hexaploid wheat

    OpenAIRE

    Ren, Yongzhe; Xu, Yanhua; Teng, Wan; Li, Bin; Lin, Tongbao

    2018-01-01

    ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl co...

  15. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn; Cusick, Roland D.; Kim, Younggy; Logan, Bruce E.

    2012-01-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown

  16. Physiological responses of PEA (Pisum sativum cv. meteor) to irrigation salinity

    International Nuclear Information System (INIS)

    Shahid, M.A.; Pervez, M.A.; Balal, R.M.; Azhar, N.; Shahzad, J.; Ubaidullah

    2008-01-01

    The effects of irrigation water or soil salinity on physiological aspects of pea (Pisum sativum cv.Meteor) were contrived. Ten weeks old pea plants were treated with NaCl at 0, 40, 90 and 140 mM in nutrient solution Plants were grown in controlled environment and harvested at each 3 days interval for decisiveness 0 physiological parameters. Photosynthetic rate, relative water content, stomatal conductance and chlorophyll contents reduced by increasing the NaCI concentration while CO/sub 2/ concentration and free proline content intensified. By experiment it was adumbrated that high salinity level along with prolonged accentuate duration is more drastic to pea plants physiology. Results also exhibited that pea plants could indulge 40 and 90 mM NaCl but are sensitive to 140 mM. (author)

  17. Responses of rice to salinity and exogenous glycinebetaine by using positron emitting tracer imaging system

    International Nuclear Information System (INIS)

    Le Xuan Tham; Vo Huy Dang; Noriko, S.

    2002-01-01

    Effect of salinity stress (NaCl) and glycinebetaine on typical non-halophyte plants - rice (Oryza sativa L.) was examined for the growth, net photosynthesis and transpiration functions of seedlings. Using 22 Na, the inhibition of net uptake and translocation of sodium of seedlings stressed at 0.15% NaCl in solution and previously treated with exogenous glycinebetaine was observed by positron-emitting tracer imaging system, namely PETIS for diagnosis of early responses of plants to salt stress. Effects of exogenous glycinebetaine on rice plants stressed with salinity via osmotic protection and particularly stabilization of membrane permeability to inhibit Na uptake and translocation were discussed in connection with promising potentials of PETIS for researches on plants. (Author)

  18. The origin of groundwater salinity in granitic rocks: identification and characterisation of chloride sources

    International Nuclear Information System (INIS)

    Savoye, Sebastien

    1998-01-01

    This research thesis aims at clearly identifying the possible origins of chlorine in solution in underground waters in a granitic environment, and is thus a first step in the prediction of concentration of dissolved compounds in waters in crystalline environment, with respect to the geological context. In a first part, the author proposes a synthetic and critical overview of knowledge and previous studies: definition of the term 'salinity', presentation of geochemical tracers, presentation of available data on potential chlorine sources in granitic rocks. The author then describes the experimental protocols and studied sites, reports results of the characterisation of different chlorine tanks performed on samples from each studied site. Based on mass assessment calculations and on the use of tracers, the author finally discusses the contribution of each of the chlorine tanks to the salinity of underground waters [fr

  19. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell.

    Science.gov (United States)

    Sales, B B; Saakes, M; Post, J W; Buisman, C J N; Biesheuvel, P M; Hamelers, H V M

    2010-07-15

    The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potential of this resource, the controlled mixing of river and seawater, is enormous, but existing conversion technologies are still complex and expensive. Here we present a small-scale device that directly generates electrical power from the sequential flow of fresh and saline water, without the need for auxiliary processes or converters. The device consists of a sandwich of porous "supercapacitor" electrodes, ion-exchange membranes, and a spacer and can be further miniaturized or scaled-out. Our results demonstrate that alternating the flow of saline and fresh water through a capacitive cell allows direct autogeneration of voltage and current and consequently leads to power generation. Theoretical calculations aid in providing directions for further optimization of the properties of membranes and electrodes.

  20. Investigating groundwater salinity in the Machile-Zambezi Basin (Zambia) with hydrogeophysical methods

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; A. Nyambe, Imasiku; Larsen, Flemming

    resources worldwide. This thesis presents the application of geo-electrical and electromagnetic methods for the investigation of groundwater salinity in the Machile-Zambezi Basin in south western Zambia, southern central Africa. Aerial and ground based transient electromagnetic measurenments were used...... use of direct current and transient electromagnetic data in one optimization. The result from the regional mapping with transient electromagnetic measurenments showed a spatial distribution of electrical resistivity that indicated block faulting in the Machile-Zambezi Basin. Saline groundwater...... parameters. This was for a coupled flow and solute transport model setup for the Kasaya transect under the forcing of evapotranspiration. Performance of the coupled hydrogeophysical inversion was better with the inclusion of direct current data in comparison to the use of transient electromagnetic data alone...

  1. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    Energy Technology Data Exchange (ETDEWEB)

    Younker, Jessica M.; Walsh, Margaret E., E-mail: mwalsh2@dal.ca

    2015-12-15

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  2. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    International Nuclear Information System (INIS)

    Younker, Jessica M.; Walsh, Margaret E.

    2015-01-01

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  3. Non‐diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle

    2016-01-01

    Background The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non‐diluted seawater and diluted seawater, on nasal mucosa functional parameters. Methods For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non‐diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Results Non‐diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Conclusion Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non‐diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. PMID:27101776

  4. Non-diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline.

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle; de Gabory, Ludovic

    2016-10-01

    The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non-diluted seawater and diluted seawater, on nasal mucosa functional parameters. For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non-diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Non-diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non-diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. © 2016 The Authors International Forum of Allergy & Rhinology, published by ARSAAOA, LLC.

  5. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Thi My Linh Hoang

    2016-10-01

    Full Text Available Rice (Oryza sativa L. is an important staple crop that feeds more than one half of the world’s population and is the model system for monocotyledonous plants. However, rice is very sensitive to salinity and is the most salt sensitive cereal crop with a threshold of 3 dSm−1 for most cultivated varieties. Despite many attempts using different strategies to improve salinity tolerance in rice, the achievements so far are quite modest. This review aims to discuss challenges that hinder the improvement of salinity stress tolerance in rice as well as potential opportunities for enhancing salinity stress tolerance in this important crop.

  6. Production of salinity tolerant Nile tilapia, Oreochromis niloticus ...

    African Journals Online (AJOL)

    Production of salinity tolerant Nile tilapia, Oreochromis niloticus through traditional and modern breeding methods: II. Application of genetically modified breeding by introducing foreign DNA into fish gonads.

  7. Electrocapillary Phenomena at Edible Oil/Saline Interfaces.

    Science.gov (United States)

    Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao

    2017-03-01

    Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil oil oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.

  8. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effect of water and saline stress on germination of Atriplex nummularia (Chenopodiaceae)

    International Nuclear Information System (INIS)

    Ruiz, Monica B; Parera, Carlos A

    2013-01-01

    Saline soils, characteristic of arid zones, can affect the germination of the species due to low water potential or ion toxicity. The effect of water and saline stress on germination was evaluated in atriplex nummularia a potential source of forage for arid zones. the seeds were scarified to reduce the inhibitory effect on germination and incubated in at 23 Celsius degrade on germination paper imbibed with solutions of sodium chloride (NaCl) and polyethylene glycol (peg) at three water potentials: -0,5; -1,0 and -1,5 MPA. The percentage germination and germination speed were significantly affected by the concentration of the solution and the solute used. While more negative osmotic potentials, the percentage of germination and germination speed were significantly lower. The seeds germinated in peg solution have higher germination and germination speed than the seeds germinated in NaCl, especially in -1,0 MPA. The data suggest that the seeds of a. nummularia show sensitivity to the presence of Na+ and Cl- ions affecting the germination process.

  10. Salinity alters curcumin, essential oil and chlorophyll of turmeric (Curcuma longa L.).

    Science.gov (United States)

    Mostajeran, A; Gholaminejad, A; Asghari, G

    2014-01-01

    Turmeric (Curcuma longa L.) is a perennial rhizomatous plant from the family of Zingibraceae, native in South Asia. The main components of turmeric are curcuminoids and essential oil which are responsible for turmeric characteristic such as odor and taste. Due to the large areas of saline land in Iran and less information related to cultivation of turmeric, in this research, the effect of salinity on growth, curcumin and essential oil of turmeric was evaluated. Rhizomes were planted in coco peat and perlite for germination. Then uniform germinated rhizomes transferred to hydroponic condition containing Hoagland's solution. Two months old plants were exposed to salinity (0, 20, 60 and 100 mM NaCl) for two months via hydroponic media using Hoagland's solution. Then dry weight of different plant parts, chlorophyll, curcumin and essential oil components of turmeric were determined. The result indicated that, dry weight reductions in 100 mM NaCl were 191%, 141%, 56%, 30% in leaf, pseudo-stem, root and rhizome, respectively (This is almost equal to 6.9, 2.87, 0.34 and 0.23 mg plant(-1) mM(-1)NaCl reduction of dry weight, respectively). The reductions in chlorophyll a and b are almost 3.32 and 0.79 μg/gFW respectively due to one unit addition of NaCl (P curcumin of rhizome for four months old plant versus three months were almost 5 fold for 0 mM NaCl and 2 fold for 100 mM NaCl due to one month of delay in harvest. Low salinity has positive effect in curcumin production but higher salinity (higher than 60 mM) had adverse effect and causes 24% reduction of curcumin compared to control plants. There were more para-cymene and terpineol in volatile oils of turmeric rhizome than the other components, most of the volatile oil compounds were unchanged or varied slightly as salinity changed.

  11. Effect of Organic Matter and Gypsum Powder Some Traits of Maize in a Saline-Sodic Soil

    Directory of Open Access Journals (Sweden)

    M Khotabaee

    2015-04-01

    Full Text Available Saline-sodic soils have improper physical, chemical and biological condition and the crop productivity is low in these conditions. Application of conditioners often can be a proper solution for reclamation and improving the productivity of saline-sodic soils. In order to study the effect of some conditioners on soil chemical characteristics and yield of maize (SC260 cultivar in a saline-sodic soil, an experiment was carried out as a completely randomized design with 3 replications in a research greenhouse of Ferdowsi university of Mashhad. The studied treatments included control and 10 ton/ha of compost (MC, vermi-compost (VC, poultry manure (PM, and gypsum powder (G. The results showed that poultry manure and vemi-compost treatments increased significantly (p

  12. Uranium geochemistry on the Amazon shelf: Chemical phase partitioning and cycling across a salinity gradient

    International Nuclear Information System (INIS)

    Swarzenski, P.W.; McKee, B.A.; Booth, J.G.

    1995-01-01

    The size distribution of U was examined in surface waters of the Amazon shelf. Water samples were collected during a low discharge river stage across a broad salinity gradient (0.3-35.4%) and fractionated by planar filtration and tangential-flow ultrafiltration into (1) solution (U s , c , 10,000 MW-0.4 μm), (3) dissolved (U d p >0.4 μm) phases. Concentrations of colloidal U comprise up to 92% of the dissolved U fraction at the river mouth and attain highest values (∼0.45 μg/L) in the productive, biogenic region of the Amazon shelf (salinities above ∼20%). U d and U c distributions are highly nonconservative relative to ideal dilution of river water and seawater, indicating extensive removal at salinities below ∼10%. The distribution of U s also shows some nonconservative behavior, yet removal, if any, is minimal. Saltwater-induced precipitation and aggregation of riverine colloidal material is most likely the dominant mechanism of U removal in the low salinity, terrigenous region of the Amazon shelf. There is evident of a substantial colloidal U input (∼245% of the riverine U c flux) into surface waters above 5%. Such U c enrichment most likely is the result of colloidal U-rich porewater diffusion/advection from the seabed and fluid muds or shelf-wide particle-colloid disaggregation. Removal of solution and dissolved phase U via a colloidal intermediate and U c aggregation in terms of coagulation phase U via a colloidal intermediate and U c aggregation was examined in terms of coagulation theory. The high reactive nature of all U phases on the Amazon shelf suggests that remobilization and fractionation of U may also occur in other river-influenced coastal environments

  13. Treatment of post-operative pain in old oncology patients with intravenous application of 50% glucose solution

    Directory of Open Access Journals (Sweden)

    Jovanović Nikola Č.

    2003-01-01

    Full Text Available Postoperative pain is the most important factor od so called "tumor promotive effect of surgery" ie. of endocrine-metabolic changes having the consequence drop in immune, antiinfective and antitumor defense. Due to presence of organic involutive changes, old people (≥ 65 years, often have serious side effects during application of usual analgetics. Since hypertonic glucose (33% given i.v. or per os, works analgesically in small children there is assumption that it can be used in treatment of postoperative pain in old oncology patients. We tested the hypothesis that postoperative pain in old oncology patients can be treated with i.v. application of 50% of glucose solution. 37 oncology patients over 65 years, 26 females and 11 males, operated for breast cancer and soft tissue cancer, werw investigated. Average age of the patients was 72±4 years. 50% Glucose solution was given in two boluses of 20 ml each: the first bolus was given to all patients at the end of anesthesia and the other bolus was given individually after appearance of post-operative pain. Pain intensity (in coefficients of the visual analogue scale VAK = 1-100 and its characteristics were tested by oral testing of operated patients: after weaking from anesthesia, after the first appearance of the pain and 15 minutes after giving of the second glucose bolus. None patient had pain weaking from anesthesia. All tested patients experienced pain during the first 70 minutes and it could be categorized as very strong pain (=82 VAK. The pain was decreased with another glucose bolus by approximately (=56% VAK so it was classifies in category of bearable pains (=36 VAK. In 9 patients (24,3% the pain had neuropatic component (filing of "burning" which could not be eliminated by hypertonic glucose but only with application of tramadol. Activation of the central cholinergic transmission is the most significant mechanism of analgesic glucose effect, but, probably there is another one

  14. Salinity and spectral reflectance of soils

    Science.gov (United States)

    Szilagyi, A.; Baumgardner, M. F.

    1991-01-01

    The basic spectral response related to the salt content of soils in the visible and reflective IR wavelengths is analyzed in order to explore remote sensing applications for monitoring processes of the earth system. The bidirectional reflectance factor (BRF) was determined at 10 nm of increments over the 520-2320-nm spectral range. The effect of salts on reflectance was analyzed on the basis of 162 spectral measurements. MSS and TM bands were simulated within the measured spectral region. A strong relationship was found in variations of reflectance and soil characteristics pertaining to salinization and desalinization. Although the individual MSS bands had high R-squared values and 75-79 percent of soil/treatment combinations were separable, there was a large number of soil/treatment combinations not distinguished by any of the four highly correlated MSS bands under consideration.

  15. Saline water in southeastern New Mexico

    Science.gov (United States)

    Hiss, W.L.; Peterson, J.B.; Ramsey, T.R.

    1969-01-01

    Saline waters from formations of several geologic ages are being studied in a seven-county area in southeastern New Mexico and western Texas, where more than 30,000 oil and gas tests have been drilled in the past 40 years. This area of 7,500 sq. miles, which is stratigraphically complex, includes the northern and eastern margins of the Delaware Basin between the Guadalupe and Glass Mountains. Chloride-ion concentrations in water produced from rocks of various ages and depths have been mapped in Lea County, New Mexico, using machine map-plotting techniques and trend analyses. Anomalously low chloride concentrations (1,000-3,000 mg/l) were found along the western margin of the Central Basin platform in the San Andres and Capitan Limestone Formations of Permian age. These low chloride-ion concentrations may be due to preferential circulation of ground water through the more porous and permeable rocks. Data being used in the study were obtained principally from oil companies and from related service companies. The P.B.W.D.S. (Permian Basin Well Data System) scout-record magnetic-tape file was used as a framework in all computer operations. Shallow or non-oil-field water analyses acquired from state, municipal, or federal agencies were added to these data utilizing P.B.W.D.S.-compatible reference numbers and decimal latitude-longitude coordinates. Approximately 20,000 water analyses collected from over 65 sources were coded, recorded on punch cards and stored on magnetic tape for computer operations. Extensive manual and computer error checks for duplication and accuracy were made to eliminate data errors resulting from poorly located or identified samples; non-representative or contaminated samples; mistakes in coding, reproducing or key-punching; laboratory errors; and inconsistent reporting. The original 20,000 analyses considered were reduced to 6,000 representative analyses which are being used in the saline water studies. ?? 1969.

  16. Gulf-Wide Information System, Environmental Sensitivity Index Salinity, Geographic NAD83, LDWF (2001) [esi_salinity_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) salinity data of coastal Louisiana. The ESI is a classification and ranking system, which characterizes...

  17. CO{sub 2} storage in saline aquifers; Stockage du CO{sub 2} dans les aquiferes salins

    Energy Technology Data Exchange (ETDEWEB)

    Bentham, M.; Kirby, G. [British Geological Survey (BGS), Kingsley Dunham Centre, Keyworth, Nottingham (United Kingdom)

    2005-06-01

    Saline aquifers represent a promising way for CO{sub 2} sequestration. Storage capacities of saline aquifers are very important around the world. The Sleipner site in the North Sea is currently the single case world-wide of CO{sub 2} storage in a saline aquifer. A general review is given on the specific risks for CO{sub 2} storage in saline aquifer. The regional distribution of CO{sub 2} storage potential is presented. Finally, the knowledge gaps and the future research in this field are defined. (authors)

  18. The Effect of Salinity on the Release of Copper (Cu, Lead (Pb And Zinc (Zn from Tailing

    Directory of Open Access Journals (Sweden)

    Apriani Sulu Parubak

    2010-06-01

    Full Text Available The effects of salinity on the release of copper (Cu, lead (Pb and zinc (Zn in tailing sediment have been studied by stripping voltammetry. The purpose of the research is to know the effect of salinity on the release of metals with certain pH, conductivity and variety of metals. Simultaneous determination of copper, lead and zinc in tailing was done by Differential Pulse Anodic Stripping Voltammetry (DPASV onto hanging mercury drop electrode (HMDE and nitric acid 65% as support electrolyte. The limit of detection for this method 0.60 µg/L, 0.150 µg/L and 0.238 µg/L for copper, lead and iMc respectively. The stripping solution of 300/00 salinity with pH= 7.85, conductivity= 46.62 mS/cm gives the amounts of released metals as follows :14.867 µg/L Cu, 0.976 µg/L Pb and 6.224 µg/L Zn. These results are higher as compared with the results from 15 0/00 salinity with pH= 7.66, conductivity= 23.22 mS/cm that give released metals of Cu= 7.988 µg/L, Pb= 0.311 µg/L and Zn= 4.699 µg/L. the results from ANOVA suggest that this is due to different in salinity of the solution. It also found that the conductivity does not give any effect. It can be concluded that the higher salinity will that give higher concentration or released metals.

  19. Evaluation of saline, RPMI and DMEM/F12 for storage of split-thickness skin grafts.

    Science.gov (United States)

    Boekema, B K H L; Boekestijn, B; Breederveld, R S

    2015-06-01

    Skin grafting is standard of care for severe burn and trauma patients. Graft sites are often accompanied with more pain than the burn sites. To minimize graft site areas, excess skin remaining after harvesting, is stored in saline at 4°C to be used for transplantation up to 1 week later. However, the optimal storage solution and maximum storage time are not known. We set out to determine the storage time after which stored skin is still viable. In addition, different storage solutions were tested. Split-thickness skin from 15 donors with a thickness of 0.3 mm was stored in normal saline, in medium, RPMI or DMEM/F12, allowing pairwise comparison. Biopsies were taken up to 3 weeks for histology and for skin viability assessment using an MTT based activity assay. Activity of the saline stored control decreased to 62% at day 7 and to 27% at day 14. Activity was retained at a higher level in RPMI and was 78% at day 7 and 70% at day 14. Results with DMEM/F12 showed a similar trend as the saline control. Based on activity, RPMI was found to be superior to DMEM/F12 (on days 3 and 10) and both saline and DMEM/F12 (on days 14 and 21). Capability to proliferate (BrdU incorporation) did not differ between media, up to 7 days. Histologically, the number of apoptotic cells increased in time but differences between media were not noted. Based on these results, RPMI would be an improvement over saline in retaining viability of skin grafts during storage, and possibly in improved take rate. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  20. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    Science.gov (United States)

    Zaib Jadoon, Khan; Umer Altaf, Muhammad; McCabe, Matthew Francis; Hoteit, Ibrahim; Muhammad, Nisar; Moghadas, Davood; Weihermüller, Lutz

    2017-10-01

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  1. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    Directory of Open Access Journals (Sweden)

    K. Z. Jadoon

    2017-10-01

    Full Text Available A substantial interpretation of electromagnetic induction (EMI measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  2. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    KAUST Repository

    Jadoon, Khan Zaib

    2017-10-26

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes\\' rule. The electromagnetic forward model based on the full solution of Maxwell\\'s equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  3. On the Balancing of the SMOS Ocean Salinity Retrieval Cost Function

    Science.gov (United States)

    Sabia, R.; Camps, A.; Portabella, M.; Talone, M.; Ballabrera, J.; Gourrion, J.; Gabarró, C.; Aretxabaleta, A. L.; Font, J.

    2009-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission will be launched in mid 2009 to provide synoptic sea surface salinity (SSS) measurements with good temporal resolution [1]. To obtain a proper estimation of the SSS fields derived from the multi-angular brightness temperatures (TB) measured by the Microwave Interferometric Radiometer by Aperture Synthesis (MIRAS) sensor, a comprehensive inversion procedure has been defined [2]. Nevertheless, several salinity retrieval issues remain critical, namely: 1) Scene-dependent bias in the simulated TBs, 2) L-band forward geophysical model function definition, 3) Auxiliary data uncertainties, 4) Constraints in the cost function (inversion), especially in salinity term, and 5) Adequate spatio-temporal averaging. These issues will have to be properly addressed in order to meet the proposed accuracy requirement of the mission: a demanding 0.1 psu (practical salinity units) after averaging in a 30-day and 2°x2° spatio-temporal boxes. The salinity retrieval cost function minimizes the difference between the multi-angular measured SMOS TBs (yet simulated, so far) and the modeled TBs, weighted by the corresponding radiometric noise of the measurements. Furthermore, due to the fact that the minimization problem is both non-linear and ill-posed, background reference terms are needed to nudge the solution and ensuring convergence at the same time [3]. Constraining terms in SSS, sea surface temperature (SST) and wind speed are considered with their respective uncertainties. Moreover, whether SSS constraints have to be included or not as part of the retrieval procedure is still a matter of debate. On one hand, neglecting background reference information on SSS might prevent from retrieving salinity with the prescribed accuracy or at least within reasonable error. Conversely, including constraints in SSS, relying for instance on the climatology, may force the retrieved value to be too close to the reference prior values, thus

  4. Organic-Silica Interactions in Saline: Elucidating the Structural Influence of Calcium in Low-Salinity Enhanced Oil Recovery.

    Science.gov (United States)

    Desmond, J L; Juhl, K; Hassenkam, T; Stipp, S L S; Walsh, T R; Rodger, P M

    2017-09-08

    Enhanced oil recovery using low-salinity solutions to sweep sandstone reservoirs is a widely-practiced strategy. The mechanisms governing this remain unresolved. Here, we elucidate the role of Ca 2+ by combining chemical force microscopy (CFM) and molecular dynamics (MD) simulations. We probe the influence of electrolyte composition and concentration on the adsorption of a representative molecule, positively-charged alkylammonium, at the aqueous electrolyte/silica interface, for four electrolytes: NaCl, KCl, MgCl 2 , and CaCl 2 . CFM reveals stronger adhesion on silica in CaCl 2 compared with the other electrolytes, and shows a concentration-dependent adhesion not observed for the other electrolytes. Using MD simulations, we model the electrolytes at a negatively-charged amorphous silica substrate and predict the adsorption of methylammonium. Our simulations reveal four classes of surface adsorption site, where the prevalence of these sites depends only on CaCl 2 concentration. The sites relevant to strong adhesion feature the O - silica site and Ca 2+ in the presence of associated Cl - , which gain prevalence at higher CaCl 2 concentration. Our simulations also predict the adhesion force profile to be distinct for CaCl 2 compared with the other electrolytes. Together, these analyses explain our experimental data. Our findings indicate in general how silica wettability may be manipulated by electrolyte concentration.

  5. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  6. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non-saline

  7. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer