Sample records for saline aquifers beneath

  1. Saline Groundwater from Coastal Aquifers As a Source for Desalination. (United States)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yoseph; Rahav, Eyal; Oren, Yoram; Kasher, Roni


    Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface. In this research, we studied the potential use of saline groundwater of the coastal aquifer as feedwater for desalination in comparison to seawater using fieldwork and laboratory approaches. The chemistry, microbiology and physical properties of saline groundwater were characterized and compared with seawater. Additionally, reverse osmosis desalination experiments in a cross-flow system were performed, evaluating the permeate flux, salt rejection and fouling propensities of the different water types. Our results indicated that saline groundwater was significantly favored over seawater as a feed source in terms of chemical composition, microorganism content, silt density, and fouling potential, and exhibited better desalination performance with less flux decline. Saline groundwater may be a better water source for desalination by RO due to lower fouling potential, and reduced pretreatment costs.

  2. Effect of hypersaline cooling canals on aquifer salinization (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Brakefield-Goswami, Linzy


    The combined effect of salinity and temperature on density-driven convection was evaluated in this study for a large (28 km2) cooling canal system (CCS) at a thermoelectric power plant in south Florida, USA. A two-dimensional cross-section model was used to evaluate the effects of hydraulic heterogeneities, cooling canal salinity, heat transport, and cooling canal geometry on aquifer salinization and movement of the freshwater/saltwater interface. Four different hydraulic conductivity configurations, with values ranging over several orders of magnitude, were evaluated with the model. For all of the conditions evaluated, aquifer salinization was initiated by the formation of dense, hypersaline fingers that descended downward to the bottom of the 30-m thick aquifer. Saline fingers reached the aquifer bottom in times ranging from a few days to approximately 5 years for the lowest hydraulic conductivity case. Aquifer salinization continued after saline fingers reached the aquifer bottom and coalesced by lateral movement away from the site. Model results showed that aquifer salinization was most sensitive to aquifer heterogeneity, but was also sensitive to CCS salinity, temperature, and configuration.

  3. Assessing the impact of modern recharge on a sandstone aquifer beneath a suburb of Doncaster, UK


    Morris, Brian L.; Darling, W. George; Cronin, Aidan A; Rueedi, Joerg; Whitehead, Emily J.; Gooddy, Daren C.


    A major water quality issue in urban areas underlain by a productive aquifer is the impact of modern recharge. Using a variety of sample sources including multi-level boreholes, detectable concentrations of CFCs and SF6 have been found throughout the upper 50 m of the saturated aquifer beneath a suburb of Doncaster, UK, indicating that modern (

  4. Using helicopter TEM to delineate fresh water and salt water zones in the aquifer beneath the Okavango Delta, Botswana (United States)

    Podgorski, Joel E.; Kinzelbach, Wolfgang K. H.; Kgotlhang, Lesego


    The Okavango Delta is a vast wetland wilderness in the middle of the Kalahari Desert of Botswana. It is a largely closed hydrological system with most water leaving the delta by evapotranspiration. In spite of this, the channels and swamps of the delta remain surprisingly low in salinity. To help understand the hydrological processes at work, we reanalyzed a previous inversion of data collected from a helicopter transient electromagnetic (HTEM) survey of the entire delta and performed an inversion of a high resolution dataset recorded during the same survey. Our results show widespread infiltration of fresh water to as much as ∼200 m depth into the regional saline aquifer. Beneath the western delta, freshwater infiltration extends to only about 80 m depth. Hydrological modeling with SEAWAT confirms that this may be due to rebound of the regional saltwater-freshwater interface following the cessation of surface flooding over this part of the delta in the 1880s. Our resistivity models also provide evidence for active and inactive saltwater fingers to as much as ∼100 m beneath islands. These results demonstrate the great extent of freshwater infiltration across the delta and also show that all vegetated areas along the delta's channels and swamps are potential locations for transferring solutes from surface water to an aquifer at depth.

  5. Saltwater movement in the upper Floridan aquifer beneath Port Royal Sound, South Carolina (United States)

    Smith, Barry S.


    Freshwater for Hilton Head Island, South Carolina, is supplied by withdrawals from the Upper Floridan aquifer. Freshwater for the nearby city of Savannah, Georgia, and for the industry that has grown adjacent to the city, has also been supplied, in part, by withdrawal from the Upper Floridan aquifer since 1885. The withdrawal of ground water has caused water levels in the Upper Floridan aquifer to decline over a broad area, forming a cone of depression in the potentiometric surface of the aquifer centered near Savannah. In 1984, the cone of depression extended beneath Hilton Head Island as far as Port Royal Sound. Flow in the aquifer, which had previously been toward Port Royal Sound, has been reversed, and, as a result, saltwater in the aquifer beneath Port Royal Sound has begun to move toward Hilton Head Island. The Saturated-Unsaturated Transport (SUTRA) model of the U.S. Geological Survey was used for the simulation of density-dependent ground-water flow and solute transport for a vertical section of the Upper Floridan aquifer and upper confining unit beneath Hilton Head Island and Port Royal Sound. The model simulated a dynamic equilibrium between the flow of seawater and freshwater in the aquifer near the Gyben-Herzberg position estimated for the period before withdrawals began in 1885; it simulated reasonable movements of brackish water and saltwater from that position to the position determined by chemical analyses of samples withdrawn from the aquifer in 1984, and it approximated hydraulic heads measured in the aquifer in 1976 and 1984. The solute-transport simulations indicate that the transition zone would continue to move toward Hilton Head Island even if pumping ceased on the island. Increases in existing withdrawals or additional withdrawals on or near Hilton Head Island would accelerate movement of the transition zone toward the island, but reduction in withdrawals or the injection of freshwater would slow movement toward the island, according to the

  6. Recharge Rates and Chemistry Beneath Playas of the High Plains Aquifer - A Literature Review and Synthesis (United States)

    Gurdak, Jason J.; Roe, Cassia D.


    Playas are ephemeral, closed-basin wetlands that are important zones of recharge to the High Plains (or Ogallala) aquifer and critical habitat for birds and other wildlife in the otherwise semiarid, shortgrass prairie and agricultural landscape. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on ground water from the High Plains aquifer has prompted many questions regarding the contribution of recharge from playas to the regional aquifer. To address these questions and concerns, the U.S. Geological Survey, in cooperation with the Playa Lakes Joint Venture, present a review and synthesis of the more than 175 publications about recharge rates and chemistry beneath playas and interplaya settings. Although a number of questions remain regarding the controls on recharge rates and chemistry beneath playas, the results from most published studies indicate that recharge rates beneath playas are substantially (1 to 2 orders of magnitude) higher than recharge rates beneath interplaya settings. The synthesis presented here supports the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this synthesis yield science-based implications for the protection and management of playas and ground-water resources of the High Plains aquifer and directions for future research.

  7. Maximizing the value of pressure data in saline aquifer characterization (United States)

    Yoon, Seonkyoo; Williams, John R.; Juanes, Ruben; Kang, Peter K.


    The injection and storage of freshwater in saline aquifers for the purpose of managed aquifer recharge is an important technology that can help ensure sustainable water resources. As a result of the density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial salinity distribution, and therefore experiences transient changes. The effect of variable density can be quantified by the mixed convection ratio, which is a ratio between the strength of two convection processes: free convection due to the density differences and forced convection due to hydraulic gradients. We combine a density-dependent flow and transport simulator with an ensemble Kalman filter (EnKF) to analyze the effects of freshwater injection rates on the value-of-information of transient pressure data for saline aquifer characterization. The EnKF is applied to sequentially estimate heterogeneous aquifer permeability fields using real-time pressure data. The performance of the permeability estimation is analyzed in terms of the accuracy and the uncertainty of the estimated permeability fields as well as the predictability of breakthrough curve arrival times in a realistic push-pull setting. This study demonstrates that injecting fluids at a rate that balances the two characteristic convections can maximize the value of pressure data for saline aquifer characterization.

  8. Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, L.B.; Drellack, S.L. Jr.


    Work is currently underway within the Underground Test Area subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Pahute Mesa, which has been identified in the FFACO as consisting of the Western and Central Pahute Mesa Corrective Action Units. Part of this effort requires that hydrogeologic data be compiled for inclusion in a regional model that will be used to predict a contaminant boundary for these Corrective Action Units. Hydrogeologic maps have been prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted at Pahute Mesa. Much of the groundwater flow beneath Pahute Mesa occurs within lava-flow aquifers. An understanding of the distribution and hydraulic character of these important hydrogeologic units is necessary to accurately model groundwater flow beneath Pahute Mesa. This report summarizes the results of a study by Bechtel Nevada geologists to better define the hydrogeology of lava-flow aquifers at Pahute Mesa. The purpose of this study was twofold: (1) aid in the development of the hydrostratigraphic framework for Pahute Mesa, and (2) provide information on the distribution and hydraulic character of lava-flow aquifers beneath Pahute Mesa for more accurate computer modeling of the Western and Central Pahute Mesa Corrective Action Units.

  9. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.


    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  10. Hydrogeologic framework and geochemistry of the Edwards aquifer saline-water zone, south-central Texas (United States)

    Groschen, George E.; Buszka, Paul M.


    The Edwards aquifer supplies drinking water for more than 1 million people in south-central Texas. The saline-water zone of the Edwards aquifer extends from the downdip limit of freshwater to the southern and eastern edge of the Stuart City Formation. Water samples from 16 wells in the Edwards aquifer saline-water zone were collected during July–September 1990 and analyzed for major and minor dissolved constituents, selected stable isotopes, and radioisotopes. These data, supplemental data from an extensive water-quality data base, and data from other previous studies were interpreted to clarify the understanding of the saline-waterzone geochemistry.

  11. Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection (United States)

    Kang, Peter K.; Lee, Jonghyun; Fu, Xiaojing; Lee, Seunghak; Kitanidis, Peter K.; Juanes, Ruben


    Managing recharge of freshwater into saline aquifers requires accurate estimation of the heterogeneous permeability field for maximizing injection and recovery efficiency. Here we present a methodology for subsurface characterization in saline aquifers that takes advantage of the density difference between the injected freshwater and the ambient saline groundwater. We combine high-resolution forward modeling of density-driven flow with an efficient Bayesian geostatistical inversion algorithm. In the presence of a density difference between the injected and ambient fluids due to differences in salinity, the pressure field is coupled to the spatial distribution of salinity. This coupling renders the pressure field transient: the time evolution of the salinity distribution controls the density distribution which then leads to a time-evolving pressure distribution. We exploit this coupling between pressure and salinity to obtain an improved characterization of the permeability field without multiple pumping tests or additional salinity measurements. We show that the inversion performance improves with an increase in the mixed convection ratio—the relative importance between viscous forces from injection and buoyancy forces from density difference. Our work shows that measuring transient pressure data at multiple sampling points during freshwater injection into saline aquifers can be an effective strategy for aquifer characterization, key to the successful management of aquifer recharge.

  12. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia


    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  13. Tracing Recharge Sources and Salinization Processes of the Quaternary Aquifer Using Stable Isotopes and Hydrogeochemistry, South of the Ismailia Canal, Egypt (United States)

    Khalil, M. M. A. M.; Tokunaga, T.


    The reclamation policy to alleviate overpopulation problem of the Nile Delta, Egypt, has created both quality and quantity problems for the Quaternary aquifer beneath the reclaimed areas. It is partly because of the less well managed way for land use planning and lack of the environmental impact assessment at least at the early stage of the development. A stable isotopic ( δ 18O and δ 2H) and hydrochemical investigation was carried out in the reclaimed area at the south of the Ismailia Canal to identify recharge sources, and mixing and salinization processes of the Quaternary aquifer. On the basis of the isotopic data, four end-members, i.e., the Quaternary aquifer, the Miocene aquifer, surface freshwater and wastewater ponds were found to be mixed in different degree in the study area. As a consequence of mixing with groundwater in the Miocene aquifer which shows highly saline and depleted isotopic signature, groundwater in the Quaternary aquifer was found to have a depleted isotopic trend towards south, i.e., toward structural highs. On the contrary, northward trends of the enriched isotopic values and lower EC values in the Quaternary aquifer indicated the mixing with surface water. Local abnormal EC values at an agricultural area and the vicinity of well field were considered to be related to the excessive pumping for irrigation and reclamation activities which in turn resulted in upconing of deeper saline groundwater. Mixing pattern also suggested local contribution of the wastewater ponds to the recharge process, which is consistent with the previously reported heavy metal contamination in the vicinity of these ponds, indicating the necessity to protect and remediate the subsurface water resources in the area.

  14. Tracking the multiple origins of salinity in three different karstic aquifers (southern France): Sr isotopes constraints. (United States)

    Le Gal La Salle, Corinne; Khaska, Mahmoud; Lancelot, Joël


    Groundwater resources of the Mediterranean area are submitted to a high anthropic pressure and face a set of major climatic and geological constraints. The potential exploitation of karst aquifers is still unclear and probably underestimated, but their vulnerability to pollution is high and potential for salinization in coastal aquifer increases with over exploitation and the rise of sea level. In order to trace the origin of salinity in karst aquifers in a Mediterranean coastal environment, a multi-tracer approach coupling major, specific trace elements and stable (δ18O, δ2H) and radiogenic (87Sr/86Sr) isotopes was held. Three close sites in southern France have been studied to investigate a different origin of the salinity. In the coastal karst aquifer of la Clape (Aude), salinity originated from deep salt water due to a paleoseawater intrusion followed by water-rock interaction with the carbonate host rock. On land and off-shore, powerful tertiary sedimentary deep deposits limit the karst network communications with the seawater. The presence of many faults could be a contributing factor to the mixing of salt water within the karst water. There it was shown that the paleoseawater proportions in the aquifer ranged from 0 to 16 %. Slightly further inland, in another similar karstic aquifer, the source of Oeillal (Aude) displayed a high salinity. Salinity most surely originated from deep horizons that come to the surface by a major normal fault where it mixes with karst waters. Deep brines from ancient meteoric water evolved by water-rock interaction with evaporites in the underlying Keuper formation. There calculated proportions of salt water into the mixture with karst water varied between 30 and 40%. In the third site located on the edge of the seawater shoreline, the simple limestone karst aquifer of Pliocene in Frontignan (Hérault) was under increasing salinity intrusion of seawater, which proportions of mixing between seawater and karst water varied from 2

  15. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer (United States)

    Sáinz-García, Alvaro; Abarca, Elena; Rubí, Violeta; Grandia, Fidel


    Renewable energies are unsteady, which results in temporary mismatches between demand and supply. The conversion of surplus energy to hydrogen and its storage in geological formations is one option to balance this energy gap. This study evaluates the feasibility of seasonal storage of hydrogen produced from wind power in Castilla-León region (northern Spain). A 3D multiphase numerical model is used to test different extraction well configurations during three annual injection-production cycles in a saline aquifer. Results demonstrate that underground hydrogen storage in saline aquifers can be operated with reasonable recovery ratios. A maximum hydrogen recovery ratio of 78%, which represents a global energy efficiency of 30%, has been estimated. Hydrogen upconing emerges as the major risk on saline aquifer storage. However, shallow extraction wells can minimize its effects. Steeply dipping geological structures are key for an efficient hydrogen storage.

  16. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hovorka, Susan


    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  17. Locating the zone of saline intrusion in a coastal karst aquifer using springflow data. (United States)

    Arfib, Bruno; de Marsily, Ghislain; Ganoulis, Jacques


    Coastal fresh water aquifers are an increasingly desirable resource. In a karstic aquifer, sea water intrusion occurs as a salt water wedge, like in porous media. However, preferential flow conduits may alter the spatial and temporal distribution of the salt water. This is typically the case when the outlet of the aquifer is a brackish spring. This paper shows that salinity and flow rate variations at a spring, where salinity is inversely proportional to discharge, can help to understand the hydrodynamic functioning of the aquifer and to locate the fresh water-sea water mixing zone deep inside the aquifer. The volume of water-filled conduit between the sea water intrusion zone and the spring outlet is calculated by the integral over time of the flow rate during the time lag between the flow rate increase and the salinity decrease as measured at the spring. In the example of the spring at Almyros of Heraklio (Crete, Greece), this time lag is variable, depending on the discharge, but the volume of water-filled conduit appears to be constant, which shows that the processes of salt water intrusion and mixing in the conduit are constant throughout the year. The distance between the spring and the zone where sea water enters the conduit is estimated and provides an indication of the position where only fresh water is present in the conduit.

  18. Measurement and modeling of CO2 diffusion coefficient in Saline Aquifer at reservoir conditions (United States)

    Azin, Reza; Mahmoudy, Mohamad; Raad, Seyed; Osfouri, Shahriar


    Storage of CO2 in deep saline aquifers is a promising techniques to mitigate global warming and reduce greenhouse gases (GHG). Correct measurement of diffusivity is essential for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of GHG in saline aquifers. In this study, diffusivity of CO2 into a saline aquifer taken from oil field was measured and modeled. Equilibrium concentration of CO2 at gas-liquid interface was determined using Henry's law. Experimental measurements were reported at temperature and pressure ranges of 32-50°C and 5900-6900 kPa, respectively. Results show that diffusivity of CO2 varies between 3.52-5.98×10-9 m2/s for 5900 kPa and 5.33-6.16×10-9 m2/s for 6900 kPa initial pressure. Also, it was found that both pressure and temperature have a positive impact on the measures of diffusion coefficient. Liquid swelling due to gas dissolution and variations in gas compressibility factor as a result of pressure decay was found negligible. Measured diffusivities were used model the physical model and develop concentration profile of dissolved gas in the liquid phase. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions, which can be applied in full-field studies of carbon capture and sequestration projects.

  19. Sequestration of carbon in saline aquifers - mathematical and numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nordbotten, Jan Martin


    The work in this thesis focuses equally on two main topics. The set of these subjects deals with development of criteria for monotonicity of control volume methods. These methods are important and frequently used for solving the pressure equation arising in porous media flow. First we consider homogeneous parallelogram grids, and subsequently general logical Cartesian grids in heterogeneous media. This subject is concluded by the development of a new class of Multi Point Flux Approximation methods, motivated by the monotonicity results obtained. The second topic of this thesis is the development of analytical and semi- analytical solutions to the problem of leakage through abandoned wells. More specially, we look at a set of aquifers, separated by impermeable layers (aquicludes), where injection of water or CO{sub 2} takes place in some or all the aquifers. The aquifers and aquicludes are frequently penetrated by abandoned wells from oil exploration, and our problem consists of finding solutions to flow and leakage through these wells. The goal is to obtain expressions for leakage rates that may be evaluated quickly enough such that Monte Carlo realizations over statistical distributions of properties for abandoned wells can be performed. (author)

  20. Influence of upwelling saline groundwater on iron and manganese cycling in the Rio Grande floodplain aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Matthew F. [Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 (United States)], E-mail:; Crossey, Laura J. [Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 (United States); Takacs-Vesbach, Cristina [Department of Biology, University of New Mexico, Albuquerque, NM 87131 (United States); Newell, Dennis L. [Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 (United States); Bowman, Robert S. [Department of Earth and Environmental Science, New Mexico Tech, Socorro, NM 87801 (United States)


    Salinity contributions from upwelling groundwater significantly degrade water quality in the Rio Grande, a major source of water for the southwestern USA. This study considers the influence of this upwelling water on the geochemistry and microbiology of the Rio Grande floodplain alluvial aquifer. The composition of surface water, groundwater, and floodplain sediment samples collected from three transects in the Socorro Basin was examined. Terminal-restriction fragment length polymorphism (T-RFLP) was also used to examine microbial biomass samples. The distribution of salinity in the floodplain groundwater largely reflects the configuration of local groundwater flow and mixing of two major water sources, deeply-sourced saline groundwater and river water. Microbial populations in the shallow aquifer consume O{sub 2} and NO{sub 3}{sup -} and serve to redistribute metal oxides from the saturated zone to locations of groundwater discharge at the surface and possibly near the water table. The upwelling saline groundwater affects floodplain microbial processes by transporting reduced metals and organic electron donors to the alluvial aquifer system. This enhances metal reduction in the saturated zone and ultimately metal oxidation at or near the surface. Geochemical modeling suggests that mixing of the saline groundwater with more dilute water in the floodplain creates conditions more favorable for metal oxidation to occur and thereby influences the distribution of metal oxides.

  1. Hydrogeology and trichloroethene contamination in the sea-level aquifer beneath the Logistics Center, Fort Lewis, Washington (United States)

    Dinicola, Richard S.


    The U.S. Army disposed of waste trichloroethene (TCE) and other materials in the East Gate Disposal Yard near the Logistics Center on Fort Lewis, Washington, from the 1940s to the early 1970s. As a result, ground water contaminated with primarily TCE extends more than 3 miles downgradient from the East Gate Disposal Yard. The site is underlain by a complex and heterogeneous sequence of glacial and non-glacial deposits that have been broadly categorized into an upper and a lower aquifer (the latter referred to as the sea-level aquifer). TCE contamination was detected in both aquifers. This report describes an investigation by the U.S. Geological Survey (USGS) of the source, migration, and attenuation of TCE in the sea-level aquifer. A refined conceptual model for ground-water flow and contaminant migration into and through the sea-level aquifer was developed in large part from interpretation of environmental tracer data. The tracers used included stable isotopes of oxygen (18O), hydrogen (2H), and carbon (13C); the radioactive hydrogen isotope tritium (3H); common ions and redox-related analytes; chlorofluorocarbons; and sulfur hexafluoride. Tracer and TCE concentrations were determined for samples collected by the USGS from 37 wells and two surface-water sites in American Lake during 1999-2000. Ground-water levels were measured by the USGS in more than 40 wells during 2000-01, and were combined with measurements by the U.S. Army and others to create potentiometric-surface maps. Localized ground-water flow features were identified that are of particular relevance to the migration of TCE in the study area. A ridge of ground water beneath American Lake diverts the flow of TCE-contaminated ground water in the sea-level aquifer to the west around the southern end of the lake. Tracer data provided clear evidence that American Lake is a significant source of recharge to the sea-level aquifer that has created that ridge of ground water. High ground-water altitudes at

  2. Influence of the paleogeographic evolution on the groundwater salinity in a coastal aquifer. Cabo de Gata aquifer, SE Spain (United States)

    Vallejos, A.; Sola, F.; Yechieli, Y.; Pulido-Bosch, A.


    The groundwater of the Cabo de Gata detritic aquifer, in southeastern Spain, exhibit salinities of between 70-726 mmol/L of Cl- (brackish-salt to hypersaline waters). We have investigated the causes of the high salinity anomaly, which at certain points exceeds that of present-day seawater (600 mmol/L). Two hypotheses are considered as possible sources for the saline water: (1) The deeper, more saline groundwater date back to an old marine intrusion that occurred at the end of the last Ice Age (14-17 ka), when seawater salinity was higher than in the present day. This hypothesis is supported by the values of 14C measured in this water (∼6-10 pmc), which indicate old water of up to 17 ka. However, the values of 18O and 2H are lower than would be expected. (2) The water is the result of mixing between fresh groundwater and seawater. The latter explanation agrees well with the low values of 18O and 2H. This mixture is later subject to evaporation, explaining its high salinity. Hydrogeochemical modelling was carried out for the most saline samples, assuming such mixing between freshwater and seawater followed by evaporation, and the results show a very good agreement between the measured and simulated values. According to the model calculation, the original mixture contained approximately 60% seawater and its volume subsequently was reduced through evaporation by around 30%. This mixing and evaporation could occur during the Flandrian Transgression (6000-8000 y), when this area accommodated a coastal lagoon.

  3. Sources of salinity and urban pollution in the Quaternary sand aquifers of Dar es Salaam, Tanzania (United States)

    Walraevens, Kristine; Mjemah, Ibrahimu Chikira; Mtoni, Yohana; Van Camp, Marc


    Groundwater is globally important for human consumption, and changes in quality can have serious consequences. The study area is within a coastal aquifer where groundwater quality is influenced by various potential sources of salinity that determine the composition of water extracted from wells. Groundwater chemistry data from the aquifer have been acquired to determine the geochemical conditions and processes that occur in this area and assess their implications for aquifer susceptibility. Analysis of groundwater samples shows that the dominant watertype is mostly NaCl with pH important result of this study is the observation of high nitrate concentrations, that call for improved sanitation in the area, where domestic sewage with on-site sanitation (mainly pit latrines) also threatens the groundwater resource.

  4. Evaluation and mapping of Dead Sea coastal aquifers salinity using Transient Electromagnetic (TEM) resistivity measurements (United States)

    Ezersky, Michael G.; Frumkin, Amos


    Evaporite karst has intensively developed recently along the Dead Sea (DS) coastal area in Israel and Jordan. It takes place in very saline groundwater dissolving buried salt layers, causing collapse of the surface. In this paper, groundwater salinity throughout the DS coastal area is investigated using the Transient Electromagnetic (TEM) method. Twenty-eight TEM soundings along the DS coastal area were carried out close to observation boreholes to calibrate resistivity-salinity relationships. Groundwater electrical conductivity was measured in these boreholes, and its salinity was analyzed at the laboratory by the Geological Survey of Israel (GSI). Quantitative relationships between bulk resistivity (ρx), water resistivity (ρw) and chloride concentration (Ccl) were derived in the resistivity range less than 1.0 Ω·m that enabled to evaluate the salinity of the aquifer in in situ conditions. Average values of the effective porosity of sandy sediments, φe = 0.32, and of silty ones, φe = 0.44, were used to generate the corresponding Archie equations. The study has shown that a DS aquifer with bulk resistivity in the range of 0.55-1.0 Ω·m contains in pores brine with 50-110 gchloride/l of (22-50% of that in saturated conditions, respectively), i.e. it keeps the potential to dissolve up to 114-174 g/l of salt.

  5. CO2 reactive transport simulations in an Italian deep saline aquifer


    Cantucci, B.; Montegrossi, G.; Lucci, F.; Buttinelli, M.; O. Vaselli; Quattrocchi, F


    In this study numerical simulations of reactive transport in an off-shore deep saline aquifer for the geological sequestration of carbon dioxide are presented and discussed. The main goals are to assess: i) the CO2 injection impact in the reservoir and ii) the cap-rock stability, both being strategic requisites for feasibility studies that are about to be started in Italy. The stratigraphic succession is characterized by a sedimentary succession: from Triassic anhydrites to Jurassic Tuscan...

  6. Characterization of saline groundwater across the coastal aquifer of Israel as resource for desalination (United States)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yospeh; Oren, Yoram; Kasher, Roni


    In arid countries with access to marine water seawater desalination is becoming an important water source in order to deal with the water scarcity and population growth. Seawater reverse osmosis (RO) facilities use open seawater intake, which requires pretreatment processes to remove particles in order to avoid fouling of the RO membrane. In small and medium size desalination facilities, an alternative water source can be saline groundwater in coastal aquifers. Using saline groundwater from boreholes near the shore as feed water may have the advantage of natural filtration and low organic content. It will also reduce operation costs of pretreatment. Another advantage of using groundwater is its availability in highly populated areas, where planning of large RO desalination plants is difficult and expensive due to real-estate prices. Pumping saline groundwater underneath the freshwater-seawater interface (FSI) might shift the interface towards the sea, thus rehabilitating the fresh water reservoirs in the aquifer. In this research, we tested the potential use of saline groundwater in the coastal aquifer of Israel as feed water for desalination using field work and desalination experiments. Specifically, we sampled the groundwater from a pumping well 100 m from the shore of Tel-Aviv and sea water from the desalination plant in Ashqelon, Israel. We used an RO cross flow system in a pilot plant in order to compare between the two water types in terms of permeate flux, permeate flux decline, salt rejection of the membrane and the fouling on the membrane. The feed, brine and fresh desalinated water from the outlet of the desalination system were chemically analyzed and compared. Field measurements of dissolved oxygen, temperature, pH and salinity were also conducted in situ. Additionally, SDI (silt density index), which is an important index for desalination, and total organic carbon that has a key role in organic fouling and development of biofouling, were measured and

  7. Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers (United States)

    Han, Dongmei; Post, Vincent E. A.; Song, Xianfang


    Seawater intrusion (SWI) has led to salinization of fresh groundwater reserves in coastal areas worldwide and has forced the closure of water supply wells. There is a paucity of well-documented studies that report on the reversal of SWI after the closure of a well field. This study presents data from the coastal carbonate aquifer in northeast China, where large-scale extraction has ceased since 2001 after salinization of the main well field. The physical flow and concomitant hydrogeochemical processes were investigated by analyzing water level and geochemical data, including major ion chemistry and stable water isotope data. Seasonal water table and salinity fluctuations, as well as changes of δ2H-δ18O values of groundwater between the wet and dry season, suggest local meteoric recharge with a pronounced seasonal regime. Historical monitoring testifies of the reversibility of SWI in the carbonate aquifer, as evidenced by a decrease of the Cl- concentrations in groundwater following restrictions on groundwater abstraction. This is attributed to the rapid flushing in this system where flow occurs preferentially along karst conduits, fractures and fault zones. The partially positive correlation between δ18O values and TDS concentrations of groundwater, as well as high NO3- concentrations (>39 mg/L), suggest that irrigation return flow is a significant recharge component. Therefore, the present-day elevated salinities are more likely due to agricultural activities rather than SWI. Nevertheless, seawater mixing with fresh groundwater cannot be ruled out in particular where formerly intruded seawater may still reside in immobile zones of the carbonate aquifer. The massive expansion of fish farming in seawater ponds in the coastal zone poses a new risk of salinization. Cation exchange, carbonate dissolution, and fertilizer application are the dominant processes further modifying the groundwater composition, which is investigated quantitatively using hydrogeochemical

  8. Salinization in a stratified aquifer induced by heat transfer from well casings (United States)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan; Cirkel, D. Gijsbert; Raoof, Amir


    The temperature inside wells used for gas, oil and geothermal energy production, as well as steam injection, is in general significantly higher than the groundwater temperature at shallower depths. While heat loss from these hot wells is known to occur, the extent to which this heat loss may result in density-driven flow and in mixing of surrounding groundwater has not been assessed so far. However, based on the heat and solute effects on density of this arrangement, the induced temperature contrasts in the aquifer due to heat transfer are expected to destabilize the system and result in convection, while existing salt concentration contrasts in an aquifer would act to stabilize the system. To evaluate the degree of impact that may occur under field conditions, free convection in a 50-m-thick aquifer driven by the heat loss from penetrating hot wells was simulated using a 2D axisymmetric SEAWAT model. In particular, the salinization potential of fresh groundwater due to the upward movement of brackish or saline water in a stratified aquifer is studied. To account for a large variety of well applications and configurations, as well as different penetrated aquifer systems, a wide range of well temperatures, from 40 to 100 °C, together with a range of salt concentration (1-35 kg/m3) contrasts were considered. This large temperature difference with the native groundwater (15 °C) required implementation of a non-linear density equation of state in SEAWAT. We show that density-driven groundwater flow results in a considerable salt mass transport (up to 166,000 kg) to the top of the aquifer in the vicinity of the well (radial distance up to 91 m) over a period of 30 years. Sensitivity analysis showed that density-driven groundwater flow and the upward salt transport was particularly enhanced by the increased heat transport from the well into the aquifer by thermal conduction due to increased well casing temperature, thermal conductivity of the soil, as well as decreased

  9. Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea, Gran Canaria, Canary Islands, Spain. (United States)

    Cruz-Fuentes, Tatiana; Cabrera, María del Carmen; Heredia, Javier; Custodio, Emilio


    The origin of the groundwater salinity and hydrochemical conditions of a 44km(2) volcano-sedimentary aquifer in the semi-arid to arid La Aldea Valley (western Gran Canaria, Spain) has been studied, using major physical and chemical components. Current aquifer recharge is mainly the result of irrigation return flows and secondarily that of rainfall infiltration. Graphical, multivariate statistical and modeling tools have been applied in order to improve the hydrogeological conceptual model and identify the natural and anthropogenic factors controlling groundwater salinity. Groundwater ranges from Na-Cl-HCO3 type for moderate salinity water to Na-Mg-Cl-SO4 type for high salinity water. This is mainly the result of atmospheric airborne salt deposition; silicate weathering, and recharge incorporating irrigation return flows. High evapotranspiration produces significant evapo-concentration leading to relative high groundwater salinity in the area. Under average conditions, about 70% of the water used for intensive agricultural exploitation in the valley comes from three low salinity water runoff storage reservoirs upstream, out of the area, while the remaining 30% derives from groundwater. The main alluvial aquifer behaves as a short turnover time reservoir that adds to the surface waters to complement irrigation water supply in dry periods, when it reaches 70% of irrigation water requirements. The high seasonality and intra-annual variability of water demand for irrigation press on decision making on aquifer use by a large number of aquifer users acting on their own. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. What lies beneath: Rural landholder interpretation of the risks of aquifer exploitation in Australia (United States)

    Mendham, Emily; Curtis, Allan


    Risks associated with the management of groundwater in farming landscapes are at the forefront of public discourse in Australia and North America. There has been very little social research examining rural landholder attitudes to groundwater use and management. This is an important gap given the critical role social acceptability plays in resource access decisions, the important role groundwater plays in sustaining livelihoods, and the vital role it plays in maintaining groundwater dependent ecosystems. This paper attempts to address that gap by exploring how rural landholders interpret risks associated with groundwater use for irrigated agriculture. We do that by using a case study from south eastern Australia where farmers' livelihoods are increasingly dependent on groundwater. We draw upon spatially referenced survey data to investigate the general extent and nature of concern about risk associated with pumping groundwater. We also explore the factors influencing risk interpretation, including occupational identity and proximity to the aquifer. Survey results suggest that while there is concern about pumping groundwater for irrigated agriculture in the Wimmera region, there is also considerable confidence that negative outcomes can be avoided. The dimension of risk of most concern to respondents was the possibility that the benefits of pumping groundwater would not be shared equitably. Those reporting lower concern about the risks of groundwater pumping were more likely to own properties located above the aquifer, to exhibit a strong business orientation including prioritising economic values compared to environmental values, and to express attitudes indicating they thought private property rights should be protected. A substantial proportion of survey respondents indicated they were 'Unsure' on all the risk items in the survey. It seems the future social acceptability of groundwater exploitation in the Wimmera region will depend on the extent that those 'Unsure

  11. Reactive Multiphase behavior of CO2 in Saline Aquifers beneath the Colorado Plateau

    Energy Technology Data Exchange (ETDEWEB)

    R. G. Allis; J. Moore; S. White


    Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region are natural laboratories for studying the factors that promote long-term storage of CO{sub 2}. They also provide sites for storing additional CO{sub 2} if it can be separated from the flue gases of coal-fired power plants in this part of the U.S.A. These natural reservoirs are developed primarily in sandstones and dolomites; shales, mudstones and anhydrite form seals. In many fields, stacked reservoirs are present, indicating that the gas has migrated up through the section. There are also geologically young travertine deposits at the surface, and CO{sub 2}-charged groundwater and springs in the vicinity of known CO{sub 2} occurrences. These near-surface geological and hydrological features also provide examples of the environmental effects of leakage of CO{sub 2} from reservoirs, and justify further study. During reporting period covered here (the second quarter of Year 2 of the project, i.e. January 1-March 31, 2002), the main achievements were: (1) Field trips to the central Utah and eastern Arizona travertine areas to collect data and water samples to support study of surface CO{sub 2}-rich fluid leakage in these two areas. (2) Partial completion of a manuscript on natural analogues CO{sub 2} leakage from subsurface reservoirs. The remaining section on the chemistry of the fluids is in progress. (3) Improvements to CHEMTOUGH code to incorporate kinetic effects on reaction progress. (4) Submission of two abstracts (based on the above work) to the topical session at the upcoming GSA meeting in Denver titled ''Experimental, Field, and Modeling Studies of Geological Carbon Sequestration''. (5) Submission of paper to upcoming GGHT-6 conference in Kyoto. Co-PI S. White will attend this conference, and will also be involved in three other papers.


    Energy Technology Data Exchange (ETDEWEB)

    R.G. Allis; J. Moore; S. White


    The six coal-fired power plants located in the Colorado Plateau and southern Rocky Mountain region of the U.S. produce 100 million tons of CO{sub 2} per year. Thick sequences of collocated sedimentary rocks represent potential sites for sequestration of the CO{sub 2}. Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. The results are being incorporated into a series of two-dimensional numerical models that represent the major chemical and physical processes induced by injection. During reporting period covered here (March 30 to June 30, 2003), the main achievements were: Presentation of three papers at the Second Annual Conference on Carbon Sequestration (May 5-8, Alexandria, Virginia); Presentation of a poster at the American Association of Petroleum Geologists meeting; Co-PI organized and chaired a special session on Geologic Carbon Dioxide Sequestration at the American Association of Petroleum Geologists annual convention in Salt Lake City (May 12-15).

  13. Hurricane Ingrid and Tropical Storm Hanna's effects on the salinity of the coastal aquifer, Quintana Roo, Mexico (United States)

    Kovacs, Shawn E.; Reinhardt, Eduard G.; Stastna, Marek; Coutino, Aaron; Werner, Christopher; Collins, Shawn V.; Devos, Fred; Le Maillot, Christophe


    There is a lack of information on aquifer dynamics in anchialine systems, especially in the Yucatán Peninsula of Mexico. Most of our knowledge is based on ;spot; measurements of the aquifer with no long-term temporal monitoring. In this study spanning four years (2012-2016), sensors (water depth and conductivity (salinity)) were deployed and positioned (-9 and -10 m) in the meteoric Water Mass (WM) close to the transition with the marine WM (halocline) in 2 monitoring sites within the Yax Chen cave system to investigate precipitation effects on the salinity of the coastal aquifer. The results show variation in salinity (95 mm) such as Hurricane Ingrid (2013) and Tropical Storm Hanna (2014) shows meteoric water mass salinity rapidly increasing (approx. 6.39 to >8.6 ppt), but these perturbations have a shorter duration (weeks and days). Wavelet analysis of the salinity record indicates seasonal mixing effects in agreement with the wet and dry periods, but also seasonal effects of tidal mixing (meteoric and marine water masses) occurring on shorter time scales (diurnal and semi-diurnal). These results demonstrate that the salinity of the freshwater lens is influenced by precipitation and turbulent mixing with the marine WM. The salinity response is scaled with precipitation; larger more intense rainfall events (>95 mm) create a larger response in terms of the magnitude and duration of the salinity perturbation (>1 ppt). The balance of precipitation and its intensity controls the temporal and spatial patterning of meteoric WM salinity.

  14. A new operational paradigm for small-scale ASR in saline aquifers. (United States)

    van Ginkel, Marloes; Olsthoorn, Theo N; Bakker, Mark


    A new operational paradigm is presented for small-scale aquifer storage and recovery systems (ASR) in saline aquifers. Regular ASR is often not feasible for small-scale storage in saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. In the new paradigm, fresh water storage is combined with salt water extraction from below the fresh water cone. The salt water extraction counteracts the buoyancy due to the density difference between fresh water and salt water, thus preventing the fresh water from floating up. The proposed approach is applied to assess the feasibility of ASR for the seasonal storage of fresh water produced by desalination plants in tourist resorts along the Egyptian Red Sea coast. In these situations, the continuous extraction of salt water can be used for desalination purposes. An analytical Dupuit solution is presented for the steady flow of salt water toward a well with a volume of fresh water floating on top of the cone of depression. The required salt water discharge for the storage of a given volume of fresh water can be computed with the analytical solution. Numerical modeling is applied to determine how the stored fresh water can be recovered. Three recovery approaches are examined. Fresh water recovery rates on the order of 70% are achievable when salt water is extracted in high volumes, subsurface impermeable barriers are constructed at a distance from the well, or several fresh water recovery drains are used. The effect of ambient flow and interruptions of salt water pumping on the recovery efficiency are reported. © 2013, National Ground Water Association.

  15. Insights into saline intrusion and freshwater resources in coastal karstic aquifers using a lumped Rainfall-Discharge-Salinity model (the Port-Miou brackish spring, SE France) (United States)

    Arfib, Bruno; Charlier, Jean-Baptiste


    The aim of this study was to develop a conceptual model of saline intrusion within coastal karst aquifers by analyzing Rainfall-Discharge-Salinity data and to assess freshwater resources using a lumped modeling approach. In a first step, we analyzed 4 years of data (rainfall, discharge and salinity times series) of the Port-Miou brackish submarine spring in South France (400 km2). A conceptual model of the aquifer was then designed to differentiate a deep brackish reservoir and a shallower fresh one. Salinity variations at the spring are assumed to be controlled mainly by dilution originating from the fresh water in the shallower reservoir. In a second step, a lumped modeling approach was developed based on the conceptual model to simulate discharge as well as salinity over time. We proposed a reservoir-model to take into account slow and fast components in the shallower part of the aquifer and a saline intrusion in the deeper one. This Rainfall-Discharge-Salinity model was calibrated and validated for two periods of 1.5 years at a daily time step and was also tested to reproduce a multi-annual evolution of the available discharge and salinity time series. Good simulation results were obtained to reproduce water and mass budgets as well as discharge and salinity dynamics during several hydrological cycles. The simultaneous modeling of hydrodynamics and quality data showed the robustness of the model in addition to its easy implementation. Our results led us to propose a new type of seawater mixing mechanism for brackish springs: the dilution type, in addition to the well-known Ventury suction and Head balance types. The application of the lumped model on the Port-Miou brackish spring validated the hydrogeological processes deduced from experimental data, given an initial quantification of the freshwater resources available in such complex brackish karstic aquifers.

  16. Nutrient Discharge Beneath Urban Lawns To A Sandy Coastal Aquifer, Perth, Western Australia (United States)

    Sharma, M. L.; Herne, D. E.; Byrne, J. D.; Kin, P. G.


    Excess nitrogen and phosphorus leaching beneath urban lawns on sandy soils in metropolitan Perth, Western Australia, may pose a serious threat not only to the quality of the underlying groundwater but also to many surface-water bodies. In this study, suction-driven lysimeters were developed and used to quantify water and nutrient fluxes below the root zone at four urban lawn sites in Perth. The four sites received similar fertiliser treatment but differed in irrigation regimes. Over a period of 12 months, up to 51 percent of incident water passed below the root zone. Annual flow-weighted concentrations of NO3-N in the leachate ranged from 0.8-5.4 mg/L, whereas PO4-P concentrations ranged from 0.003-0.034 mg/L. At most sites, NO3-N concentrations periodically equalled or exceeded the World Health Organization (WHO) drinking-water limit of 10 mg/L; high concentration were maintained for longer periods at two sites with coarser sands and high irrigation regimes. Evidence exists that concentrations of N and P in urban groundwater are reduced through dilution and possibly through chemical transformation and adsorption. It is unlikely that NO3-N concentrations in groundwater will exceed the WHO drinking limit except for relatively short periods of time. However, nutrients (especially N) from fertilised lawns are a threat to wetlands and waterways into which nutrient-rich groundwater is discharged. Modified management practices for urban lawns, or alternative-style home gardens may need to be developed in order to minimise nutrient enrichment of groundwater and water bodies. Some suggestions for these are presented.

  17. Numerical simulation of CO2 geological storage in saline aquifers – case study of Utsira formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheming; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)


    CO2 geological storage (CGS) is one of the most promising technologies to address the issue of excessive anthropogenic CO2 emissions in the atmosphere due to fossil fuel combustion for electricity generation. In order to fully exploit the storage potential, numerical simulations can help in determining injection strategies before the deployment of full scale sequestration in saline aquifers. This paper presents the numerical simulations of CO2 geological storage in Utsira saline formation where the sequestration is currently underway. The effects of various hydrogeological and numerical factors on the CO2 distribution in the topmost hydrogeological layer of Utsira are discussed. The existence of multiple pathways for upward mobility of CO2 into the topmost layer of Utsira as well as the performance of the top seal are also investigated.

  18. Spatiotemporal analysis of aquifers salinization in coastal area of Yunlin, Taiwan (United States)

    Chen, P.-C.; Tan, Y.-C.


    In the past, time and space characteristics often discussed separately. This study adopts regionalized variables theory, and describes the water quality in terms of its structure in time and space to assess the situation of Yunlin. This study applied the Quantum Bayesian Maximum Entropy Toolbox (QtBME), which is a spatiotemporal statistics function, can be applied to estimate and map a non-stationary and non-homogeneous spatiotemporal process under the platform of Quantum GIS (QGIS) software. Kernel smoothing method is used to divide the original process into a deterministic trend and a stationary and homogeneous spatiotemporal process, assuming that a spatiotemporal process can be divided into high and low frequency. The covariance model of the process of high frequency is selected objectively by particle swarm optimization (PSO) method and Akaike's information criterion (AIC). Bayesian maximum entropy method is then applied to spatiotemporal mapping of the variable of interest. In this study, QtBME estimated the situation of aquifers salinization at Yunlin coastal area in 1992 to 2010. Finally, one investigated the rainfall and aquifers salinization on the degree of impact.

  19. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Lise, E-mail: [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Petelet-Giraud, Emmanuelle [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Bertrand, Guillaume [Institute of Geosciences, University of São Paulo, Rua do Lago, 562 Butantã, 05508-080 Sao Paulo (Brazil); Kloppmann, Wolfram [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Aquilina, Luc [OSUR-Géosciences Rennes, Université Rennes 1 — CNRS, 35000 Rennes (France); Martins, Veridiana; Hirata, Ricardo [Institute of Geosciences, University of São Paulo, Rua do Lago, 562 Butantã, 05508-080 Sao Paulo (Brazil); Montenegro, Suzana [Civil Engineering Department, Federal University of Pernambuco, 50740 Recife, PE Brazil (Brazil); Pauwels, Hélène [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Chatton, Eliot [OSUR-Géosciences Rennes, Université Rennes 1 — CNRS, 35000 Rennes (France); Franzen, Melissa [CPRM, Brazilian Geologic Survey, Avenida Sul 2291, Recife PE (Brazil); Aurouet, Axel [Géo-Hyd, 101 rue Jacques Charles, 45160 Olivet (France); Lasseur, Eric; Picot, Géraldine; Guerrot, Catherine; Fléhoc, Christine [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); and others


    In the coastal multilayer aquifer system of a highly urbanized southern city (Recife, Brazil), where groundwaters are affected by salinization, a multi-isotope approach (Sr, B, O, H) was used to investigate the sources and processes of salinization. The high diversity of the geological bodies, built since the Atlantic opening during the Cretaceous, highly constrains the heterogeneity of the groundwater chemistry, e.g. Sr isotope ratios, and needs to be integrated to explain the salinization processes and groundwater pathways. A paleoseawater intrusion, most probably the 120 ky B.P. Pleistocene marine transgression, and cationic exchange are clearly evidenced in the most salinized parts of the Cabo and Beberibe aquifers. All {sup 87}Sr/{sup 86}Sr values are above the past and present-day seawater signatures, meaning that the Sr isotopic signature is altered due to additional Sr inputs from dilution with different freshwaters, and water–rock interactions. Only the Cabo aquifer presents a well-delimitated area of Na-HCO{sub 3} water typical of a freshening process. The two deep aquifers also display a broad range of B concentrations and B isotope ratios with values among the highest known to date (63–68.5‰). This suggests multiple sources and processes affecting B behavior, among which mixing with saline water, B sorption on clays and mixing with wastewater. The highly fractionated B isotopic values were explained by infiltration of relatively salty water with B interacting with clays, pointing out the major role played by (palaeo)-channels for the deep Beberibe aquifer recharge. Based on an increase of salinity at the end of the dry season, a present-day seawater intrusion is identified in the surficial Boa Viagem aquifer. Our conceptual model presents a comprehensive understanding of the major groundwater salinization pathways and processes, and should be of benefit for other southern Atlantic coastal aquifers to better address groundwater management issues

  20. Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: Case of the Rhone delta (Southern France)

    Energy Technology Data Exchange (ETDEWEB)

    Montety, Veronique de [Universite d' Avignon et des Pays de Vaucluse - INRA, UMR 1114 EMMAH, F-84000 Avignon (France)], E-mail:; Radakovitch, Olivier; Vallet-Coulomb, Christine [CEREGE, Aix-Marseille Universite, CNRS-CDF-IRD, Europole Mediterraneen de L' Arbois, BP 80, 13545 Aix en Provence (France); Blavoux, Bernard [Universite d' Avignon et des Pays de Vaucluse - INRA, UMR 1114 EMMAH, F-84000 Avignon (France); Hermitte, Daniel [CEREGE, Aix-Marseille Universite, CNRS-CDF-IRD, Europole Mediterraneen de L' Arbois, BP 80, 13545 Aix en Provence (France); Valles, Vincent [Universite d' Avignon et des Pays de Vaucluse - INRA, UMR 1114 EMMAH, F-84000 Avignon (France)


    The Rhone delta, South of France (Camargue, 750 km{sup 2}) is a coastal saline wetland located along the Mediterranean Sea. The confined aquifer of this delta shows high values of electrical conductivity rising from the north (4 mS/cm) to the shoreline (58 mS/cm). This work aims to identify the origin of groundwater salinity and the geochemical processes occurring in this coastal confined aquifer according to the degree of salinity. A natural tracing approach is considered using monthly sampling in 8 piezometers for chemical and isotopic analyses ({sup 18}O, {sup 2}H, {sup 13}C{sub TDIC}). Ionic and isotopic ratios demonstrate that strong salinities are due to a simple mixing between Mediterranean seawater and freshwater; seawater contribution reaches up to 98% at 8 km from the shoreline. Seawater intrusion induces a particular groundwater chemistry which varies with the degree of seawater contribution: (1) In the less saline part of the aquifer (seawater contribution <20%), the intrusion induces an increase of Na{sup +} in groundwater leading to Ca{sup 2+}/Na{sup +} exchange processes. The {delta}{sup 13}C{sub TDIC} analyses show that matrix exchange processes most likely occur for the less saline samples. (2) In the saline part of the aquifer (seawater contribution >20%), the intrusion induces SO{sub 4} reduction which is confirmed by highly depleted {delta}{sup 13}C{sub TDIC} values (up to -19 per mille ). The {delta}{sup 13}C{sub TDIC} also reveals that methanogenesis processes may occur in the most reductive part of the aquifer. Due to SO{sub 4} reduction, the intrusion induces a shift in carbonate equilibrium leading to supersaturation with respect to dolomite and/or magnesian calcite. Thus carbonate precipitation may occur in the area strongly influenced by seawater.

  1. Salinization of porewater in a multiple aquitard-aquifer system in Jiangsu coastal plain, China (United States)

    Li, Jing; Liang, Xing; Zhang, Yanian; Liu, Yan; Chen, Naijia; Abubakari, Alhassan; Jin, Menggui


    Chemical and isotopic compositions were analyzed in porewater squeezed from a clayey aquitard in Jiangsu coastal plain, eastern China, to interpret the salinity origin, chemical evolution and water-mass mixing process. A strong geochemical fingerprint was obtained with an aligned Cl/Br ratio of 154 in the salinized aquitard porewater over a wide Cl- concentration range (396-9,720 mg/L), indicating that porewater salinity is likely derived from a mixing with old brine with a proportion of less than 20%. Very small contributions of brine exerted limited effects on water stable isotopes. The relationships between porewater δ18O and δD indicate that shallow and intermediate porewaters could be original seawater and were subsequently diluted with modern meteoric water, whereas deep porewaters with depleted stable isotopic values were probably recharged during a cooler period and modified by evaporation and seawater infiltration. The cation-Cl relationship and mineralogy of associated strata indicate that porewater has been chemically modified by silicate weathering and ion-exchange reactions. 87Sr/86Sr ratios of 0.7094-0.7112 further confirm the input source of silicate minerals. Numerical simulations were used to evaluate the long-term salinity evolution of the deep porewater. The alternations of boundary conditions (i.e., the third aquifer mixed with brine at approximately 70 ka uc(BP), followed by recharge of glacial meltwater at 20-25 ka uc(BP), and then mixing with Holocene seawater at 7-10 ka uc(BP)) are responsible for the shift in porewater salinity. These timeframes correspond with the results of previous studies on ancient marine transgression-regression in Jiangsu coastal plain.

  2. Fingerprinting groundwater salinity sources in the Gulf Coast Aquifer System, USA (United States)

    Chowdhury, Ali H.; Scanlon, Bridget R.; Reedy, Robert C.; Young, Steve


    Understanding groundwater salinity sources in the Gulf Coast Aquifer System (GCAS) is a critical issue due to depletion of fresh groundwater and concerns for potential seawater intrusion. The study objective was to assess sources of groundwater salinity in the GCAS using ˜1,400 chemical analyses and ˜90 isotopic analyses along nine well transects in the Texas Gulf Coast, USA. Salinity increases from northeast (median total dissolved solids (TDS) 340 mg/L) to southwest (median TDS 1,160 mg/L), which inversely correlates with the precipitation distribution pattern (1,370- 600 mm/yr, respectively). Molar Cl/Br ratios (median 540-600), depleted δ2H and δ18O (-24.7‰, -4.5‰) relative to seawater (Cl/Br ˜655 and δ2H, δ18O 0‰, 0‰, respectively), and elevated 36Cl/Cl ratios (˜100), suggest precipitation enriched with marine aerosols as the dominant salinity source. Mass balance estimates suggest that marine aerosols could adequately explain salt loading over the large expanse of the GCAS. Evapotranspiration enrichment to the southwest is supported by elevated chloride concentrations in soil profiles and higher δ18O. Secondary salinity sources include dissolution of salt domes or upwelling brines from geopressured zones along growth faults, mainly near the coast in the northeast. The regional extent and large quantities of brackish water have the potential to support moderate-sized desalination plants in this location. These results have important implications for groundwater management, suggesting a current lack of regional seawater intrusion and a suitable source of relatively low TDS water for desalination.

  3. Revision of the documentation for a model for calculating effects of liquid waste disposal in deep saline aquifers (United States)

    INTERA Environmental Consultants, Inc.


    The model developed under this contract is a modified version of the deep well disposal model developed by INTERCOMP Resource Development and Engineering, Inc., for the U.S. Geological Survey (A model for calculating effects of liquid waste disposal in deep saline aquifers). The model is a finite-difference numerical solution of the partial differential equations describing

  4. Enhancement of CO2 Trapping in Saline Aquifers Using a Water-Alternating-Gas Method (United States)

    Joodaki, Saba; Niemi, Auli; Rasmusson, Kristina; Yang, Zhibing; Bensabat, Jacob


    Geological formations in general and saline aquifer in particular can be used to store considerable amount of CO2. The efficiency and durability of the storage are not only defined by the formation hydro-geological properties but also by injection strategy employed. Previous studies have shown that certain injection strategies result in enhanced residual trapping and dissolution trapping that can noticeably increase CO2 immobilization and the efficiency of the aquifer to store CO2. One such enhancement method to increase the trapping mechanisms is water-alternating-gas (WAG) in which intermittent slugs of gas and water are injected. The injection rate, injection duration, the WAG ratio and the total volume of the injected components affect the efficiency of trapping. The objective of this study is to investigate different WAG injection schemes considering a heterogeneous field and find an optimized method to enhance the storage efficiency. The Heletz site in Israel, where CO2 trapping will be quantified in a field injection experiment, is selected as an example for the optimization. We use the iTOUGH2-EOS7C code to simulate the trapping processes. The formation heterogeneity is considered; gas injection and migration are simulated in spatially correlated random permeability fields, which are generated based on currently available geological information and borehole data at Heletz.

  5. Integrated hydrogeochemical, isotopic and geomorphological depiction of the groundwater salinization in the aquifer system of Delhi, India (United States)

    Kumar, Manish; Rao, M. Someshwar; Deka, Jyoti Prakash; Ramanathan, AL.; Kumar, Bhishm


    The problem of salinization in the Delhi aquifer, that currently exhibits rapid landuse change, is conspicuous and severe. Salinization may be caused either by a single process, or a combination of different processes; including anthropogenic related activities, water logging and evaporative concentration of salts, influx of natural saline water, upconing of brines from the deeper parts of the aquifer, and airborne salts depositions. However, there is a lack of well-proven theory that can explain the salinity of the order of 5000 μS/cm in the deeper aquifers of Delhi. This work identifies inconclusiveness in the previous theories of marine ingression, evaporation enrichment and subsequent leaching of salt. Further, the study depicts a conceptual understanding of the origin of salinity in groundwater based on the integrated investigations of groundwater quality, age and stable isotopic fingerprinting as well as GIS based mapping of geomorphic features. In order to explain the salinity observed in groundwater of NCT Delhi, a phenomenological scenario is illustrated and supported by additional evidences. The highest average EC value was for the shallow aquifer and is strongly symptomatic of anthropogenic influences on groundwater chemistry. Piper diagram showed heterogeneous water type and sufficient recharge/mixing of the groundwater from different aquifers. The relationship between Cl-/Br- ratios vs. Cl- indicated dissolution of salt deposits containing evaporative fraction present in the unsaturated zones or in the sediments of deeper aquifers and leaching of evaporative minerals from dunes of the adjacent Thar Desert. Cl-/SO42- ratio suggested the presence of connate seawater, halite dissolution and concentration of dissolved salts by evapo-transpiration of river water diverted for irrigation. The results show, that the closed inland marine conditions developed and buried with the active sedimentation in the geological past in this region, and further intensive

  6. Effects of brine displacement on pressure and salinity increases in a regional freshwater aquifer complex with respect to CO2 storage in saline subsurface formations (United States)

    Janetz, Silvio; Jahnke, Christoph; Tillner, Elena; Kempka, Thomas; Röhmann, Lina; Kühn, Michael


    The geological storage of CO2 in deep saline aquifers may cause upward migration of displaced brines along leakage pathways such as highly-transmissive faults due to an increasing pore pressure in the storage formation. Besides the risk of CO2 leakage, the protection of the shallow freshwater reservoirs from upward migrating brine is a requirement with regard to environmental compatibility of future CCS projects. In the present study, the regional impact of pressure build-up and salinity increases in a freshwater reservoir induced by brine displacement due to CO2 injection into saline subsurface formations was investigated. A multi-layered aquifer-aquitard system of Triassic to Cenozoic age was used as a framework to ensure that realistic hydrodynamic and hydrochemical conditions were applied in this assessment. The prospective storage horizon corresponding to a Lower Triassic sandstone aquifer is located in a broad anticlinal structure at the southeastern margin of the Northeast German Basin. This intracontinental basin is not only characterised by large salinity gradients but also by hydrogeologically significant fault zones and glacial erosional structures that may act as migration pathways for saline formation water into Cenozoic freshwater reservoirs. In a first step, a detailed three-dimensional geological model was implemented. The model has a horizontal extent of 73 km (N-S) × 85 km (E-W) and a vertical extent of 2.4 km. In a second step, the geological model was transferred into a hydrogeological model by discretisation and parameterisation using data obtained from borehole measurements, field observations and geological maps. The modelling was performed using the FEFLOW FMH3® code. Long-term transport simulations with NaCl as a tracer were conducted to comprehend the natural freshwater-saltwater distribution of the regional aquifer system. Based on these initial conditions, simulations of possible upward brine migration into a freshwater aquifer complex

  7. Groundwater salinization survey of the Upper Cretaceous-Miocene Complexe terminal aquifer in the Sabaa Biar area of southwestern Tunisia (United States)

    Mhamdi, Abdelkader; Dhahri, Ferid; Gouasmia, Mouez; Moumni, Lahmadi; Mohamed, Soussi


    An integrated hydrogeological study involving the Schlumberger depth sounding method, geological data and wells data was conducted at the Sabaa Biar area of southern Tunisia to elucidate the problem of increasing groundwater salinity within The ;Complexe Terminal;. The ;Complexe Terminal; aquifer near Sabaa Biar region is a bi-layered aquifer comprised of fractured limestones of the Cretaceous (Campanian-Maastrichtian) Berda Formation and sandstone of the Miocene Beglia Formation. The aquifer is affected by a main NW-trending fault, which is a chemical barrier that divides the study area into eastern and western blocks delivering freshwater and saline water, respectively. The salinization of groundwater within the limestone (Campanian-Maastrichtian Berda Formation) is linked mainly to the dissolution of outcropping Coniacian-Santonian gypsum along the core of the Jebel Sidi Bouhlel anticline to the east of the study area. Meteoric water dissolves salt from outcropping gypsum, flows through the fractures networks, and recharges the fractured limestone of the upper Berda Formation. The mobilization of salts stored in the salt-rich Quaternary sediment on hillslopes and inchannels contributes also to the salinization of groundwater within the sandstone (Miocene Beglia Formation) by lateral infiltration subsequent to water drainage during the wet season. The over exploitation of water from the Miocene sandstone causes an influx of saline-rich water from the underlying limestone of the Berda Formation into the sandstone of the Beglia Formation. Other sources of salinization of groundwater (such as ascension of hypersaline water from deep aquifer along faults, and the return flow of irrigation waters in the Djerid region) have been documented in this region, but are not discussed in this paper.

  8. The effect of salinization and freshening events in coastal aquifers on nutrient characteristics as deduced from field data (United States)

    Russak, A.; Yechieli, Y.; Herut, B.; Lazar, B.; Sivan, O.


    The effect of seawater intrusion and freshening events in coastal aquifers on nutrient (dissolved inorganic nitrogen species, phosphate and silica) dynamics across the fresh-saline groundwater interface (FSI) were quantified using field data. Seasonal vertical profiles revealed a clear transition between nutrient species across the FSI, which is also an oxycline. In view of the results of our experimental simulations, it is clear that the major process controlling the nutrient dynamics at the FSI, besides the mixing that takes place between the two different water bodies, is the seasonal variation between seawater intrusion (salinization) in summer and flushing of the aquifer (freshening) in winter. Aquifer salinization during the summer shifts the FSI and the anaerobic depth-location upwards and leads to the enrichment of NH4+, PO43- and DSi (dissolved silica) in the saline groundwater. NH4+ and PO43- are enriched due to ion exchange, and DSi is enriched either by ion exchange (as PO43-) or as a result of dissolution of biogenic silica. Denitrification occurs at the base of the FSI, as indicated by the slight NO3- depletion and the enrichment in δ15N of NO3-. Aquifer freshening during the winter shifts the FSI downward and the water becomes suboxic with the influence of the oxic fresh groundwater. This leads to nitrification of the NH4+, enrichment of NO2- and depletion of 15N in the residual NO3- in the FSI. These cyclic processes generate a certain depletion of N and enrichment of P in the saline groundwater. Circulation of the saline groundwater below the FSI back to the sea can serve as a partial counterbalance to the high anthropogenic load of N impacting the coastal groundwater system.

  9. Extenuation of Saline Solutes in Shallow Aquifer of a Small Tropical Island: A Case Study of Manukan Island, North Borneo

    Directory of Open Access Journals (Sweden)

    Ahmad Zaharin Aris


    Full Text Available Intensive exploitation of groundwater from Manukan Island’s aquifer has disturbed the natural equilibrium between fresh and saline water and has resulted in the increase of groundwater salinity and the hydrochemical complexities of freshwater-seawater contact. It was observed that the mixing between freshwater-seawater has created diversity in the geochemical processes of Manukan Island’s aquifer and altered the freshwater and seawater mixture away from the theoretical composition line. The results from reactive transport modelling confirmed that the migration of seawater into the fresher parts of the aquifer apparently leads to a calcification of the aquifer despite the seawater being supersaturated for carbonate minerals and shows that the composition of the near coast zone and further landward area may vary and have a significant effect on the processes during the intrusion. It was observed that the effect of freshening aquifer in the landward area near the recharge zone of the study area has incriminated the calcite saturation states of the area. The accumulation of Ca as the interface travels landward up to 100 m from the coast leads to an increasing calcite supersaturation with travelled distance and possibly to the precipitation of calcite.

  10. Sources of groundwater based on Helium analyses in and near the freshwater/saline-water transition zone of the San Antonio segment of the Edwards Aquifer, South-Central Texas, 2002-03 (United States)

    Hunt, Andrew G.; Lambert, Rebecca B.; Fahlquist, Lynne


    This report evaluates dissolved noble gas data, specifically helium-3 and helium-4, collected by the U.S. Geological Survey, in cooperation with the San Antonio Water System, during 2002-03. Helium analyses are used to provide insight into the sources of groundwater in the freshwater/saline-water transition zone of the San Antonio segment of the Edwards aquifer. Sixty-nine dissolved gas samples were collected from 19 monitoring wells (categorized as fresh, transitional, or saline on the basis of dissolved solids concentration in samples from the wells or from fluid-profile logging of the boreholes) arranged in five transects, with one exception, across the freshwater/saline-water interface (the 1,000-milligrams-per-liter dissolved solids concentration threshold) of the Edwards aquifer. The concentration of helium-4 (the dominant isotope in atmospheric and terrigenic helium) in samples ranged from 63 microcubic centimeters per kilogram at standard temperature (20 degrees Celsius) and pressure (1 atmosphere) in a well in the East Uvalde transect to 160,587 microcubic centimeters per kilogram at standard temperature and pressure in a well in the Kyle transect. Helium-4 concentrations in the 10 saline wells generally increase from the western transects to the eastern transects. Increasing helium-4 concentrations from southwest to northeast in the transition zone, indicating increasing residence time of groundwater from southwest to northeast, is consistent with the longstanding conceptualization of the Edwards aquifer in which water recharges in the southwest, flows generally northeasterly (including in the transition zone, although more slowly than in the fresh-water zone), and discharges at major springs in the northeast. Excess helium-4 was greater than 1,000 percent for 60 of the 69 samples, indicating that terrigenic helium is largely present and that most of the excess helium-4 comes from sources other than the atmosphere. The helium data of this report cannot be

  11. Percolation pond as a method of managed aquifer recharge in a coastal saline aquifer: A case study on the criteria for site selection and its impacts (United States)

    Christy, Raicy Mani; Lakshmanan, Elango


    Percolation ponds have become very popular methods of managed aquifer recharge due to their low cost, ease of construction and the participation and assistance of community. The objective of this study is to assess the feasibility of a percolation pond in a saline aquifer, north of Chennai, Tamil Nadu, India, to improve the storage and quality of groundwater. Electrical resistivity and ground penetrating radar methods were used to understand the subsurface conditions of the area. From these investigations, a suitable location was chosen and a percolation pond was constructed. The quality and quantity of groundwater of the nearby area has improved due to the recharge from the pond. This study indicated that a simple excavation without providing support for the slope and paving of the bunds helped to improve the groundwater quality. This method can be easily adoptable by farmers who can have a small pond within their farm to collect and store the rainwater. The cost of water recharged from this pond works out to be about 0.225 Re/l. Cleaning the pond by scrapping the accumulated sediments needs to be done once a year. Due to the small dimension and high saline groundwater, considerable improvement in quality at greater depths could not be achieved. However, ponds of larger size with recharge shafts can directly recharge the aquifer and help to improve the quality of water at greater depths.

  12. Mapping deep aquifer salinity trends in the southern San Joaquin Valley using borehole geophysical data constrained by chemical analyses (United States)

    Gillespie, J.; Shimabukuro, D.; Stephens, M.; Chang, W. H.; Ball, L. B.; Everett, R.; Metzger, L.; Landon, M. K.


    The California State Water Resources Control Board and the California Division of Oil, Gas and Geothermal Resources are collaborating with the U.S. Geological Survey to map groundwater resources near oil fields and to assess potential interactions between oil and gas development and groundwater resources. Groundwater resources having salinity less than 10,000 mg/L total dissolved solids may be classified as Underground Sources of Drinking Water (USDW) and subject to protection under the federal Safe Drinking Water Act. In this study, we use information from oil well borehole geophysical logs, oilfield produced water and groundwater chemistry data, and three-dimensional geologic surfaces to map the spatial distribution of salinity in aquifers near oil fields. Salinity in the southern San Joaquin Valley is controlled primarily by depth and location. The base of protected waters occurs at very shallow depths, often protected water is much deeper, often >1,500 meters, in the eastern part of the San Joaquin Valley where higher runoff from the western slopes of the Sierra Nevada provide relatively abundant aquifer recharge. Stratigraphy acts as a secondary control on salinity within these broader areas. Formations deposited in non-marine environments are generally fresher than marine deposits. Layers isolated vertically between confining beds and cut off from recharge sources may be more saline than underlying aquifers that outcrop in upland areas on the edge of the valley with more direct connection to regional recharge areas. The role of faulting is more ambiguous. In some areas, abrupt changes in salinity may be fault controlled but, more commonly, the faults serve as traps separating oil-bearing strata that are exempt from USDW regulations, from water-bearing strata that are not exempt.

  13. Aquifers (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  14. Artificial Injection of Fresh Water into a Confined Saline Aquifer: A Case Study at the Nakdong River Delta Area, Korea (United States)

    Chung, S. Y.; Senapathi, V.; Rajendran, R.; Khakimov, E.


    Injection test in a confined saline aquifer was performed to assess the potential of artificial recharge as a means of replacing saline water with fresh water, thereby securing fresh groundwater resources for the Nakdong Delta area of Busan City, Korea. The study area comprises a confined aquifer, in which a 10~21m thick clay layer overlies 31.5~36.5 m thick of sand and a 2.8~11m thick layer of gravel. EC logging of five monitoring wells yielded a value of 7~44 mS/cm, with the transition between saline and fresh water occurring at a depth of 15-38 m. Above 5 m depth, water temperature was 10~15.5°C, whereas between 5 and 50 m depth, the temperature was 15.5~17℃ and pH was 7.15~7.49. The quality of injected fresh water was 388 μS/cm with the temperature of 6.2℃, and pH was 7.70. Approximately 950 m3 of fresh water was injected into the OW-5 injection well at a rate of 370 m3/day for 62 hours, after which the fresh water zone was detected by a CTD Diver installed at a depth of 40 m. The persistence of the fresh water zone was determined via EC and temperature logging at 1 day, 21 days, 62days and 95 days after injection. The contact between fresh and saline water in the injection well was represented by a sharp boundary rather than a transitional boundary. It was concluded that the injected fresh water occupied a specific space and served to maintain the original water quality throughout the observation period. Moreover, we suggest that artificial recharge via long-term injection could help secure a new alternative water resource in this saline coastal aquifer.

  15. A New Method to Infer Advancement of Saline Front in Coastal Groundwater Systems by 3D: The Case of Bari (Southern Italy Fractured Aquifer

    Directory of Open Access Journals (Sweden)

    Costantino Masciopinto


    Full Text Available A new method to study 3D saline front advancement in coastal fractured aquifers has been presented. Field groundwater salinity was measured in boreholes of the Bari (Southern Italy coastal aquifer with depth below water table. Then, the Ghyben-Herzberg freshwater/saltwater (50% sharp interface and saline front position were determined by model simulations of the freshwater flow in groundwater. Afterward, the best-fit procedure between groundwater salinity measurements, at assigned water depth of 1.0 m in boreholes, and distances of each borehole from the modelled freshwater/saltwater saline front was used to convert each position (x, y in groundwater to the water salinity concentration at depth of 1.0 m. Moreover, a second best-fit procedure was applied to the salinity measurements in boreholes with depth z. These results provided a grid file (x, y, z, salinity suitable for plotting the actual Bari aquifer salinity by 3D maps. Subsequently, in order to assess effects of pumping on the saltwater-freshwater transition zone in the coastal aquifer, the Navier-Stokes (N-S equations were applied to study transient density-driven flow and salt mass transport into freshwater of a single fracture. The rate of seawater/freshwater interface advancement given by the N-S solution was used to define the progression of saline front in Bari groundwater, starting from the actual salinity 3D map. The impact of pumping of 335 L·s−1 during the transition period of 112.8 days was easily highlighted on 3D salinity maps of Bari aquifer.

  16. Uranium isotope dynamics across salinity and redox gradients in a coastal aquifer: implications for the oceanic uranium budget (United States)

    Linhoff, B.; Charette, M. A.; Thompson, W. G.


    To balance the ocean's uranium budget it may be necessary to invoke submarine groundwater discharge as a major source for uranium. However, uranium removal from seawater has been observed in coastal aquifers where steep redox gradients at the seawater-freshwater mixing zone result in the reduction of soluble U(IV) to insoluble U(IV). We investigated uranium cycling in groundwater within a permeable sand subterranean estuary in Waquoit Bay, MA using major and trace element chemistry as well as ∂234U measurements. Groundwater and sediment samples were collected across the seawater-freshwater mixing zone. In the groundwater samples uranium does not behave conservatively. During mixing it is removed in the intermediate salinities (3-4 m; 2-12 salinity; 0.1 nM U) and enriched in higher salinities (4-6 m; 20-25 salinity; 32 nM) while in salinities >25, uranium is again removed (7-8 m; 8 nM). Geochemical modeling suggests that U is removed at the seawater-freshwater interface by adsorption to Mn-oxides (3-4 m) while in the deeper saline aquifer (7-8 m), U is removed through reduction from U(VI) to U(IV). Surprisingly, while ∂234U is above secular equilibrium in both the freshwater and seawater, within the intermediate salinities ∂234U is depleted below secular equilibrium (as much as ∂234U = -50). Sediment samples were subjected to a partial leach to extract surface-exchangeable U. This leach was analyzed for ∂234U and found to be highly depleted (∂234U -80 - -20). Based on the depleted ∂234U of the sediment leaches and groundwater, we hypothesize that the high U concentrations observed within the intermediate salinities likely have a sediment source. This also implies that U within this intermediate salinity zone must have a long residence time relative to groundwater-surface water exchange rates. This might be possible if redox boundaries and Mn-oxides act as a barrier to U in the intermediate salinities allowing U leached from sediments to accumulate

  17. Characterisation of the bacterial populations in a saline heat storage aquifer in the North German Basin (United States)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Mangelsdorf, K.; Seibt, A.; Wolfgramm, M.; Würdemann, H.


    The colonization and the ecology of microorganisms in the deep biosphere arouse increasing interest of scientists because of utilizing the subsurface for e.g. energy storage and recovery. The research project AquiScreen investigates the operational reliability of eight geothermally used groundwater systems in Germany under microbial, geochemical, mineralogical, and petrological aspects. This study shows the results of the heat storage in Neubrandenburg (depth: 1250 m), a typical site for saline fluids in the North German Basin. The seasonal alternation in charge and discharge mode enabled sampling the warm (75˚ C) and the cold (45˚ C) side of the geothermal doublet. The analyses focus on microbially induced corrosion on plant components and scaling resulting in filter and/or formation clogging. Microbiological analyses were carried out with fluid and solid phase samples by 16S rDNA based Single Strand Conformation Polymorphism (SSCP) fingerprinting. The analyses are utilized to evaluate the impact of microbial populations on such systems. The genetic fingerprinting revealed significant differences in the bacterial community structure between the warm and cold side of the heat storage. Since the geochemical analyses revealed no remarkable differences, the temperature might be crucial for the different community structures. At the warm side of the aquifer the identified bacteria are closely related to Variovorax and Sphingomonas. At the cold side of the heat storage sulphate reducing and fermentative bacteria were detected. These results correspond with locally observed iron sulphide precipitation and corrosion processes on plant components. Particularly the bacterial population of the cold side was studied over a period of two years. Thereby seasonal changes in the abundance of the identified bacteria, depending on the operational mode of the geothermal plant, were observed. After a malfunction in the pump system of the cold side of the heat storage changes in

  18. A fast and robust TOUGH2 module to simulate geological CO2 storage in saline aquifers (United States)

    Shabani, Babak; Vilcáez, Javier


    A new TOUGH2 module to simulate geological CO2 storage (GCS) in saline aquifers is developed based on the widely employed ECO2N module of TOUGH2. The newly developed TOUGH2 module uses a new non-iterative fugacity-activity thermodynamic model to obtain the partitioning of CO2 and H2O between the aqueous and gas phases. Simple but robust thermophysical correlations are used to obtain density, viscosity, and enthalpy of the gas phase. The implementation and accuracy of the employed thermophysical correlations are verified by comparisons against the national institute of standards and technology (NIST) online thermophysical database. To assess the computation accuracy and efficiency, simulation results obtained with the new TOUGH2 module for a one-dimensional non-isothermal radial and a three-dimensional isothermal system are compared against the simulation results obtained with the ECO2N module. Treating salt mass fraction in the aqueous phase as a constant, along with the inclusion of a non-iterative fugacity-activity thermodynamic model, and simple thermophysical correlations, resulted in simulations much faster than simulations with ECO2N module, without losing numerical accuracy. Both modules yield virtually identical results. Additional field-scale simulations of CO2 injection into an actual non-isothermal and heterogeneous geological formation confirmed that the new module is much faster than the ECO2N module in simulating complex field-scale conditions. Owing to its capability to handle CO2-CH4-H2S-N2 gas mixtures and its compatibility with TOUGHREACT, this new TOUGH2 module offers the possibility of developing a fast and robust TOUGHREACT module to predict the fate of CO2 in GCS sites under biotic conditions where CO2, CH4, H2S, and N2 gases can be formed.

  19. Assessing the Risk of Aquifer Salinization in a Large-Scale Coastal Irrigation Scheme in Southern Italy (United States)

    Zaccaria, Daniele; Passarella, Giuseppe; D'Agostino, Daniela; Giordano, Raffaele; Sandoval-Solis, Samuel; Maggi, Sabino; Bruno, Delia; Foglia, Laura


    A research study was conducted on a coastal irrigated agricultural area of southern Italy to assess the risks of aquifer degradation likely resulting from the intensive groundwater pumping from individual farm wells and reduced aquifer recharge. Information were collected both from farmers and delivery system's operators during a survey conducted in 2012 revealing that farmers depend mainly on groundwater with the aim to achieve flexible irrigation management as opposed to the rigid rotational delivery service of surface water supply provided by the local water management agency. The study area is intensively farmed by small land-holding growers with high-value micro-irrigated horticultural crops. Our team appraised the soil and aquifer degradation hazards using a simplified procedure for environmental risk assessment that allowed identifying the risk-generating processes, evaluating the magnitude of impacts, and estimating the overall risks significance. We also collected the stakeholders' perceptions on agricultural water management and use through field interviews, whereas parallel investigations revealed significant aquifer salinity increase during the recent years. As a final step, some preliminary risk mitigation options were appraised by exploring the growers' response to possible changes of irrigation deliveries by the water management agency. The present study integrated multi-annual observations, data interpretation, and modelling efforts, which jointly enabled the analysis of complex water management scenarios and the development of informed decisions. Keywords: Environmental risk assessment, Fuzzy cognitive maps, Groundwater degradation, Seawater intrusion

  20. Rapid salinization of a karst aquifer after a typhoon-generated storm surge: Hydraulics, geochemistry, and community impact (United States)

    Bennett, P.; Cardenas, M. B.; Zamora, P. B.; Befus, K. M.; Rodolfo, R. S.; Cabria, H. B.; Lapus, M. R.; Muan, M.


    Super Typhoon (STY) Haiyan made landfall in the Philippines with sustained winds of 315 kph producing a 7+ meter storm surge that inundated parts of Leyte and Samar; >8000 died, > 106 homes were destroyed, and thousands of people are still missing. The surge reached 1 km inland and resulted in widespread seawater (SW) contamination of groundwater (GW) resources critical for coastal villages. We conducted field-work in a village of ~2200 residents, inundated by a 5-6 m surge, 2 months and again 8 months after STY Haiyan. The 330+ shallow tube wells (STWs) had been drilled through beach sand into karstic reef carbonates to 5-20m below the water table (WT). Residents reported their STWs salinized immediately after the storm, even the deepest wells, and the only source of fresh water was a karst spring 1 km from the village. 2 months after the storm GW salinity was up to 18% SW. Electrical Resistivity Tomography (ERT) was used to image salt distribution in the surficial aquifer alongside the developed village. ERT detected an electrically conductive layer ~1m below the WT, and water sampling confirmed that this was due to infiltrated seawater. Variable-density flow and transport models corroborate the ER tomograms and show that the salt is infiltrating through the aquifer and slowly flushing to the ocean. We hypothesize that SW rapidly infiltrated the ~2m sandy unsaturated zone and contaminated the shallow GW over a wide area. This salt layer is slowly sinking and flushing toward the ocean, and flow models show that it might be several years to flush the system. Results from a second ERT survey 6 months later show little change in the ER field, consistent with model predictions. But karst features and the STWs themselves served as preferential paths into the aquifer for SW injection to the deeper zone under the 6m surge potential, salinizing deep wells ahead of the advancing shallow SW layer. These wells have seen substantial decrease in salinity over 6 months, as much

  1. Tackling the salinity-pollution nexus in coastal aquifers from arid regions using nitrate and boron isotopes. (United States)

    Re, V; Sacchi, E


    Salinization and nitrate pollution are generally ascertained as the main issues affecting coastal aquifers worldwide. In arid zones, where agricultural activities also result in soil salinization, both phenomena tend to co-exist and synergically contribute to alter groundwater quality, with severe negative impacts on human populations and natural ecosystems' wellbeing. It becomes therefore necessary to understand if and to what extent integrated hydrogeochemical tools can help in distinguishing among possible different salinization and nitrate contamination origins, in order to provide adequate science-based support to local development and environmental protection. The alluvial plain of Bou-Areg (North Morocco) extends over about 190 km2 and is separated from the Mediterranean Sea by the coastal Lagoon of Nador. Its surface is covered for more than 60% by agricultural activities, although the region has been recently concerned by urban population increase and tourism expansion. All these activities mainly rely on groundwater exploitation and at the same time are the main causes of both aquifer and lagoon water quality degradation. For this reason, it was chosen as a case study representative of the typical situation of coastal aquifers in arid zones worldwide, where a clear identification of salinization and pollution sources is fundamental for the implementation of locally oriented remedies and long-term management strategies. Results of a hydrogeochemical investigation performed between 2009 and 2011 show that the Bou-Areg aquifer presents high salinity (often exceeding 100 mg/L in TDS) due to both natural and anthropogenic processes. The area is also impacted by nitrate contamination, with concentrations generally exceeding the WHO statutory limits for drinking water (50 mg/L) and reaching up to about 300 mg/L, in both the rural and urban/peri-urban areas. The isotopic composition of dissolved nitrates (δ15NNO3 and δ18ONO) was used to constrain pollution

  2. The influence of fish ponds and salinization on groundwater quality in the multi-layer coastal aquifer system in Israel (United States)

    Tal, A.; Weinstein, Y.; Yechieli, Y.; Borisover, M.


    This study focuses on the impact of surface reservoirs (fish ponds) on a multi aquifer coastal system, and the relation between the aquifer and the sea. The study was conducted in an Israeli Mediterranean coastal aquifer, which includes a sandy phreatic unit and two confined calcareous sandstone units. The geological description is based on 52 wells, from which 33 samples were collected for stable isotope analysis and 25 samples for organic and inorganic parameters. Hydraulic head and chemical measurements suggest that there is an hydraulic connection between the fish ponds above the aquifer and the phreatic unit, whereas the connection with the confined units is very limited. The phreatic unit is characterized by a low concentration of oxygen and high concentrations of ammonium and phosphate, while the confined units are characterized by higher oxygen and much lower ammonium and phosphate concentrations. Organic matter fluorescence was found to be a tool to distinguish the contribution of the pond waters, whereby a pond water signature (characterized by proteinaceous (tryptophan-like) and typical humic-matter fluorescence) was found in the phreatic aquifer. The phreatic unit is also isotopically enriched, similar to pond waters, with δ18O of -1‰ and δD of -4.6‰, indicating enhanced evaporation of the pond water before infiltration, whereas there is a depleted isotopic composition in the confined units (δ18O = -4.3‰, δD = -20.4‰), which are also OM-poor. The Phreeqc model was used for quantitative calculation of the effect of pond losses on the different units. The Dissolved Inorganic Nitrogen (DIN) in the upper unit increases downstream from the ponds toward the sea, probably due to organic matter degradation, suggesting contribution of DIN from shallow groundwater flow to the sea. 87Sr/86Sr and Mg/Ca in the brackish and saline groundwater of the lower confined units increase toward seawater value, suggesting that the salinization process in the region

  3. Using electrical resistivity tomography to assess the effectiveness of managed aquifer recharge in a salinized coastal aquifer. (United States)

    García-Menéndez, Olga; Ballesteros, Bruno J; Renau-Pruñonosa, Arianna; Morell, Ignacio; Mochales, Tania; Ibarra, Pedro I; Rubio, Félix M


    Over 40 years, the detrital aquifer of the Plana de Castellón (Spanish Mediterranean coast) has been subjected to seawater intrusion because of long dry periods combined with intensive groundwater exploitation. Against this backdrop, a managed artificial recharge (MAR) scheme was implemented to improve the groundwater quality. The large difference between the electrical conductivity (EC) of the ambient groundwater (brackish water due to marine intrusion) and the recharge water (freshwater) meant that there was a strong contrast between the resistivities of the brackish water saturated zone and the freshwater saturated zone. Electrical resistivity tomography (ERT) can be used for surveying similar settings to evaluate the effectiveness of artificial recharge schemes. By integrating geophysical data with lithological information, EC logs from boreholes, and hydrochemical data, we can interpret electrical resistivity (ER) with groundwater EC values and so identify freshwater saturated zones. Using this approach, ERT images provided a high-resolution spatial characterization and an accurate picture of the shape and extent of the recharge plume of the MAR site. After 5 months of injection, a freshwater plume with an EC of 400-600 μS/cm had formed that extended 400 m in the W-E direction, 250 m in the N-S direction, and to a depth of 40 m below piezometric level. This study also provides correlations between ER values with different lithologies and groundwater EC values that can be used to support other studies.

  4. Have We Overestimated Saline Aquifer CO2 Storage Capacities? Avons-nous surestimé les capacités de stockage de CO2 des aquifères salins ?

    Directory of Open Access Journals (Sweden)

    Thibeau S.


    Full Text Available During future, large scale CO2 geological storage in saline aquifers, fluid pressure is expected to rise as a consequence of CO2 injection, but the pressure build up will have to stay below specified values to ensure a safe and long term containment of the CO2 in the storage site. The pressure build up is the result of two different effects. The first effect is a local overpressure around the injectors, which is due to the high CO2 velocities around the injectors, and which can be mitigated by adding CO2 injectors. The second effect is a regional scale pressure build up that will take place if the storage aquifer is closed or if the formation water that flows away from the pressurised area is not large enough to compensate volumetrically the CO2 injection. This second effect cannot be mitigated by adding additional injectors. In the first section of this paper, we review some major global and regional assessments of CO2 storage capacities in deep saline aquifers, in term of mass and storage efficiency. These storage capacities are primarily based on a volumetric approach: storage capacity is the volumetric sum of the CO2 that can be stored through various trapping mechanisms. We then discuss in Section 2 storage efficiencies derived from a pressure build up approach, as stated in the CO2STORE final report (Chadwick A. et al. (eds (2008 Best Practice for the Storage of CO2 in Saline Aquifers, Observations and Guidelines from the SACS and CO2STORE Projects, Keyworth, Nottingham, BGS Occasional Publication No. 14 and detailed by Van der Meer and Egberts (van der Meer L.G.H., Egberts P.J.P. (2008 A General Method for Calculating Subsurface CO2 Storage Capacity, OTC Paper 19309, presented at the OTC Conference held in Houston, Texas, USA, 5-8 May. A quantitative range of such storage efficiency is presented, based on a review of orders of magnitudes of pore and water compressibilities and allowable pressure increase. To illustrate the relevance of

  5. Reactive Transport Modelling of CO2 Storage in Saline Aquifers to Elucidate Fundamental Processes, Trapping Mechanisms, and Sequestration Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J W; Nitao, J J; Knauss, K G


    The ultimate fate of CO{sub 2} injected into saline aquifers for environmental isolation is governed by three interdependent yet conceptually distinct processes: CO{sub 2} migration as a buoyant immiscible fluid phase, direct chemical interaction of this rising plume with ambient saline waters, and its indirect chemical interaction with aquifer and cap-rock minerals through the aqueous wetting phase. Each process is directly linked to a corresponding trapping mechanism: immiscible plume migration to hydrodynamic trapping, plume-water interaction to solubility trapping, and plume-mineral interaction to mineral trapping. In this study, reactive transport modeling of CO{sub 2} storage in a shale-capped sandstone aquifer at Sleipner has elucidated and established key parametric dependencies of these fundamental processes, the associated trapping mechanisms, and sequestration partitioning among them during consecutive 10-year prograde (active-injection) and retrograde (post-injection) regimes. Intra-aquifer permeability structure controls the path of immiscible CO{sub 2} migration, thereby establishing the spatial framework of plume-aquifer interaction and the potential effectiveness of solubility and mineral trapping. Inter-bedded thin shales--which occur at Sleipner--retard vertical and promote lateral plume migration, thereby significantly expanding this framework and enhancing this potential. Actual efficacy of these trapping mechanisms is determined by compositional characteristics of the aquifer and cap rock: the degree of solubility trapping decreases with increasing formation-water salinity, while that of mineral trapping is proportional to the bulk concentration of carbonate-forming elements--principally Fe, Mg, Ca, Na, and Al. In the near-field environment of Sleipner-like settings, 80-85% by mass of injected CO{sub 2} remains and migrates as an immiscible fluid phase, 15-20% dissolves into formation waters, and less than 1% precipitates as carbonate minerals

  6. ECO2N - A New TOUGH2 Fluid Property Module for Studies of CO2Storage in Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten; Spycher, Nicholas


    ECO2N is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O-NaCl-CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for the temperature, pressure and salinity conditions of interest(10 C {le} T {le} 110 C; P {le} 600 bar; salinity up to full halite saturation). Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-phase mixtures. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. ECO2N can model super- as well as sub-critical conditions, but it does not make a distinction between liquid and gaseous CO{sub 2}. This paper highlights significant features of ECO2N, and presents illustrative applications.

  7. Potential effects of alterations to the hydrologic system on the distribution of salinity in the Biscayne aquifer in Broward County, Florida (United States)

    Hughes, Joseph D.; Sifuentes, Dorothy F.; White, Jeremy T.


    To address concerns about the effects of water-resource management practices and rising sea level on saltwater intrusion, the U.S. Geological Survey in cooperation with the Broward County Environmental Planning and Community Resilience Division, initiated a study to examine causes of saltwater intrusion and predict the effects of future alterations to the hydrologic system on salinity distribution in eastern Broward County, Florida. A three-dimensional, variable-density solute-transport model was calibrated to conditions from 1970 to 2012, the period for which data are most complete and reliable, and was used to simulate historical conditions from 1950 to 2012. These types of models are typically difficult to calibrate by matching to observed groundwater salinities because of spatial variability in aquifer properties that are unknown, and natural and anthropogenic processes that are complex and unknown; therefore, the primary goal was to reproduce major trends and locally generalized distributions of salinity in the Biscayne aquifer. The methods used in this study are relatively new, and results will provide transferable techniques for protecting groundwater resources and maximizing groundwater availability in coastal areas. The model was used to (1) evaluate the sensitivity of the salinity distribution in groundwater to sea-level rise and groundwater pumping, and (2) simulate the potential effects of increases in pumping, variable rates of sea-level rise, movement of a salinity control structure, and use of drainage recharge wells on the future distribution of salinity in the aquifer.

  8. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer. (United States)

    Plaksina, Tatyana; Kanfar, Mohammed


    With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3) approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  9. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    Directory of Open Access Journals (Sweden)

    Plaksina Tatyana


    Full Text Available With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3 approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  10. Carbon Sequestration in Saline Aquifers: Modeling Diffusive and Convective Transport Of a Carbon-­Dioxide Cap

    KAUST Repository

    Allen, Rebecca


    An increase in the earth’s surface temperature has been directly linked to the rise of carbon dioxide (CO2) levels In the atmosphere and an enhanced greenhouse effect. CO2 sequestration is one of the proposed mitigation Strategies in the effort to reduce atmospheric CO2 concentrations. Globally speaking, saline aquifers provide an adequate storage capacity for the world’s carbon emissions, and CO2 sequestration projects are currently underway in countries such as Norway, Germany, Japan, USA, and others. Numerical simulators serve as predictive tools for CO2 storage, yet must model fluid transport behavior while coupling different transport processes together accurately. With regards to CO2 sequestration, an extensive amount of research has been done on the diffusive-convective transport that occurs under a cap of CO2-saturated fluid, which results after CO2 is injected into an aquifer and spreads laterally under an area of low permeability. The diffusive-convective modeling reveals an enhanced storage capacity in saline aquifers, due to the density increase between pure fluid and CO2‐saturated fluid. This work presents the transport modeling equations that are used for diffusive- convective modeling. A cell-centered finite difference method is used, and simulations are run using MATLAB. Two cases are explored in order to compare the results from this work’s self-generated code with the results published in literature. Simulation results match relatively well, and the discrepancy for a delayed onset time of convective transport observed in this work is attributed to numerical artifacts. In fact, onset time in this work is directly attributed to the instability of the physical system: this instability arises from non-linear coupling of fluid flow, transport, and convection, but is triggered by numerical errors in these simulations. Results from this work enable the computation of a value for the numerical constant that appears in the onset time equation that

  11. Distribution, movement, and fate of nitrate in the surficial aquifer beneath citrus groves, Indian River, Martin, and St Lucie Counties, Florida (United States)

    Crandall, Christy A.


    The surficial aquifer system beneath citrus groves in Indian River, Martin, and St. Lucie Counties, Florida, was studied to determine the effects of citrus agriculture on ground-water quality. The surficial aquifer is the primary drinking-water source for Martin and St. Lucie Counties and furnishes about 33 percent of the drinking-water for Indian River County. Water-quality samples and water-level data were collected from December 1996 through October 1998. Nitrate concentrations in ground water exceeded 10 milligrams per liter (mg/L), the U.S. Environmental Protection Agency?s maximum contaminant level for nitrate reported as nitrogen, in 5 percent of the samples from citrus groves. These exceedances occurred in samples from wells with depths of 10 feet or less at citrus groves, and mostly in samples collected during or immediately following fertilizer applications. Samples from wells with depths of 20-25 feet contained little or no nitrate. The decreased nitrate concentrations in ground water with depth was not consistent with chloride and dissolved-solids concentrations, two other common indicators of agricultural activity. Chloride and dissolved-solids concentrations remained elevated in ground-water samples from all depths at citrus groves; median chloride and dissolved-solids concentrations in samples from citrus sites were 125 and 779 mg/L, respectively. In comparison, samples from the reference site had maximum chloride and dissolved-solids concentrations of 61 and 366 mg/L, respectively. Based on the age of ground water at 20-25 foot depths (3-50 years, measured with tritium and helium-3 concentration ratios), nitrate concentrations also should have remained elevated with depth because fertilizers have been used for at least 20-30 years at these citrus groves. Nitrate concentrations decreased with depth as a result of denitrification. This could have occurred because favorable conditions for denitrification existed in the aquifer, including high

  12. Simulation of subsurface storage and recovery of treated effluent injected in a saline aquifer, St. Petersburg, Florida (United States)

    Yobbi, D.K.


    The potential for subsurface storage and recovery of treated effluent into the uppermost producing zone (zone A) of the Upper Floridan aquifer in St. Petersburg, Florida, is being studied by the U.S. Geological Survey, in cooperation with the city of St. Petersburg and the Southwest Florida Water Management District. A measure of the success of this practice is the recovery efficiency, or the quantity of water relative to the quantity injected, that can be recovered before the water that is withdrawn fails to meet water-quality standards. The feasibility of this practice will depend upon the ability of the injected zone to receive, store, and discharge the injected fluid. A cylindrical model of ground-water flow and solute transport, incorporating available data on aquifer properties and water quality, was developed to determine the relation of recovery efficiency to various aquifer and fluid properties that could prevail in the study area. The reference case for testing was a base model considered representative of the saline aquifer underlying St. Petersburg. Parameter variations in the tests represent possible variations in aquifer conditions in the area. The model also was used to study the effect of various cyclic injection and withdrawal schemes on the recovery efficiency of the well and aquifer system. A base simulation assuming 15 days of injection of effluent at a rate of 1.0 million gallons per day and 15 days of withdrawal at a rate of 1.0 million gallons per day was used as reference to compare changes in various hydraulic and chemical parameters on recovery efficiency. A recovery efficiency of 20 percent was estimated for the base simulation. For practical ranges of hydraulic and fluid properties that could prevail in the study area, the model analysis indicates that (1) the greater the density contrast between injected and resident formation water, the lower the recovery efficiency, (2) recovery efficiency decreases significantly as dispersion

  13. Use of a time-domain electromagnetic method with geochemical tracers to explore the salinity anomalies in a small coastal aquifer in north-eastern Tunisia (United States)

    Chekirbane, Anis; Tsujimura, Maki; Kawachi, Atsushi; Lachaal, Fethi; Isoda, Hiroko; Tarhouni, Jamila


    The study area is a small coastal plain in north-eastern Tunisia. It is drained by an ephemeral stream network and is subject to several pollutant discharges such as oilfield brine coming from a neighboring oil company and wastewater from Somâa city, located in the upstream of the plain. Furthermore, a hydraulic head near the coastal part of the aquifer is below sea level, suggesting that seawater intrusion may occur. A time-domain electromagnetic (TDEM) survey, based on 28 soundings, was conducted in Wadi Al Ayn and Daroufa plains to delineate the saline groundwater. Based on longitudinal and transversal resistivity two-dimensional pseudosections calibrated with boring data, the extent of saline water was identified. Geochemical tracers were combined with the resistivity dataset to differentiate the origin of groundwater salinization. In the upstream part of the plain, the infiltration of oilfield brine through the sandy bed of Wadi Al Ayn seems to have a considerable effect on groundwater salinization. However, in the coastal part of the aquifer, groundwater salinization is due to seawater intrusion and the saltwater is reaching an inland extent around 1.3 km from the shoreline. The contribution ratios of saline water bodies derived from the inverted chloride data vary for the oilfield brine from 1 to 13 % and for the seawater from 2 to 21 %.

  14. Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France)

    Energy Technology Data Exchange (ETDEWEB)

    Petelet-Giraud, Emmanuelle, E-mail: [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Négrel, Philippe [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Aunay, Bertrand [BRGM, Réunion Agency, 5, rue Sainte-Anne, CS 51016, 97404 Saint Denis Cedex (France); Ladouche, Bernard; Bailly-Comte, Vincent [BRGM Montpellier Agency, 1039, rue de Pinville, 34000 Montpellier (France); Guerrot, Catherine; Flehoc, Christine [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Pezard, Philippe; Lofi, Johanna [Géosciences Montpellier, UMR 5243, Université de Montpellier, cc069, Place Eugène Bataillon, 34095 Montpellier Cedex 05 (France); Dörfliger, Nathalie [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France)


    The Roussillon sedimentary Basin (South France) is a complex multi-layered aquifer, close to the Mediterranean Sea facing seasonally increases of water abstraction and salinization issues. We report geochemical and isotopic vertical variability in this aquifer using groundwater sampled with a Westbay System® at two coastal monitoring sites: Barcarès and Canet. The Westbay sampling allows pointing out and explaining the variation of water quality along vertical profiles, both in productive layers and in the less permeable ones where most of the chemical processes are susceptible to take place. The aquifer layers are not equally impacted by salinization, with electrical conductivity ranging from 460 to 43,000 μS·cm{sup −1}. The δ{sup 2}H–δ{sup 18}O signatures show mixing between seawater and freshwater components with long water residence time as evidenced by the lack of contribution from modern water using {sup 3}H, {sup 14}C and CFCs/SF6. S(SO{sub 4}) isotopes also evidence seawater contribution but some signatures can be related to oxidation of pyrite and/or organically bounded S. In the upper layers {sup 87}Sr/{sup 86}Sr ratios are close to that of seawater and then increase with depth, reflecting water–rock interaction with argillaceous formations while punctual low values reflect interaction with carbonate. Boron isotopes highlight secondary processes such as adsorption/desorption onto clays in addition to mixings. At the Barcarès site (120 m deep), the high salinity in some layers appear to be related neither to present day seawater intrusion, nor to Salses-Leucate lagoonwater intrusion. Groundwater chemical composition thus highlights binary mixing between fresh groundwater and inherited salty water together with cation exchange processes, water–rock interactions and, locally, sedimentary organic matter mineralisation probably enhanced by pyrite oxidation. Finally, combining the results of this study and those of Caballero and Ladouche (2015

  15. The origin of increased salinity in the Cambrian-Vendian aquifer system on the Kopli Peninsula, northern Estonia (United States)

    Karro, Enn; Marandi, Andres; Vaikmäe, Rein

    Monitoring of the confined Cambrian-Vendian aquifer system utilised for industrial water supply at Kopli Peninsula in Tallinn over 24 years reveals remarkable changes in chemical composition of groundwater. A relatively fast 1.5 to 3.0-fold increase in TDS and in concentrations of major ions in ed groundwater is the consequence of heavy pumping. The main sources of dissolved load in Cambrian-Vendian groundwater are the leaching of host rock and the other geochemical processes that occur in the saturated zone. Underlying crystalline basement, which comprises saline groundwater in its upper weathered and fissured portion, and which is hydraulically connected with the overlying Cambrian-Vendian aquifer system, is the second important source of ions. The fractured basement and its clayey weathering crust host the Ca-Cl type groundwater, which is characterised by high TDS values (2-20 g/L). Intensive water ion accelerates the exchange of groundwaters and increases the area of influence of pumping. Chemical and isotopic studies of groundwater indicate an increasing contribution of old brackish water from the crystalline basement and rule out the potential implication of an intrusion of seawater into aquifer. L'origine de la salinité croissante dans le système aquifère du Cambrien-Vendien dans la péninsule de Kopli, nord de l'Estonie Le suivi à long terme du système aquifère captif du Cambrien-Vendien utilisé pour l'approvisionnement d'eaux industrielles dans la Péninsule de Kopli, nord de l'Estonie, révèle de remarquables changements dans la composition chimique des eaux souterraines. Une augmentation de facteur 1.5 à 3 de la TDS et des concentrations en ions majeurs dans l'eau souterraine est la conséquence de pompages intensifs. Les sources principales des charges dissoutes dans les eaux de l'aquifère du Cambrien-Vendien sont le lessivage des roches et d'autres phénomènes géochimiques ayant lieu dans la zone saturée. Le soubassement rocheux cristallin

  16. Comparative Study of Effects of CO 2 Concentration and pH on Microbial Communities from a Saline Aquifer, a Depleted Oil Reservoir, and a Freshwater Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.


    Injected CO2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO2. Microbial community change in these subsurface sites may affect injectivity of CO2, permanence of stored CO2, and shallow subsurface water quality. The effect of CO2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%, and 100% pCO2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO2-exposed deep saline aquifer fluids. Overall, results suggest that CO2 exposure to microbial communities will result in pH-dependent population change, and the CO2-selected microbial communities will vary among sites. This is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO2-exposed environments.

  17. The effect of salinization and freshening events in coastal aquifers on nutrient characteristics as deduced from column experiments under aerobic and anaerobic conditions (United States)

    Russak, A.; Sivan, O.; Herut, B.; Lazar, B.; Yechieli, Y.


    This study experimentally quantified the effect of seawater intrusion (salinization) and freshening events in coastal aquifers on nutrient (N, P and DSi) dynamics across the fresh-saline groundwater interface. Laboratory column experiments were conducted under aerobic and anaerobic conditions in order to simulate the processes occurring in the fresh-saline interface. They were performed with aquifer sediments, simulating the natural conditions during alterations of natural fresh groundwater to seawater and vice versa. The salinization and freshening experiments showed that NH4+ and PO43- and DSi were affected mainly by ion exchange processes while microbial activity controlled the nitrogen species NO3- and NO2-. Due to the cation exchange, salinization generated enrichment (above the expected conservative behavior) of NH4+, up to 80 μmol L-1 (an order of magnitude higher than in seawater or fresh groundwater). Under anaerobic conditions NO3- was removed by denitrification, as demonstrated by the decrease in NO3- concentrations, the increase in NO2- concentrations, and the increase in δ15N by 15-25‰. Clear evidence was shown for anion exchange of PO43-, which competes with HCO3- and boron on adsorption sites. DSi seems to take part in the exchange process, similar to PO43-.

  18. Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco (United States)

    Bouchaou, L.; Michelot, J.L.; Vengosh, A.; Hsissou, Y.; Qurtobi, M.; Gaye, C.B.; Bullen, T.D.; Zuppi, G.M.


    Groundwater and surface water in Souss-Massa basin in the west-southern part of Morocco is characterized by a large variation in salinity, up to levels of 37 g L-1. The high salinity coupled with groundwater level decline pose serious problems for current irrigation and domestic water supplies as well as future exploitation. A combined hydrogeologic and isotopic investigation using several chemical and isotopic tracers such as Br/Cl, ??18O, ??2H, 3H, 87Sr/86Sr, ??11B, and 14C was carried out in order to determine the sources of water recharge to the aquifer, the origin of salinity, and the residence time of water. Stable isotope, 3H and 14C data indicate that the high Atlas mountains in the northern margin of the Souss-Massa basin with high rainfall and low ??18O and ??2H values (-6 to -8??? and -36 to -50???) is currently constitute the major source of recharge to the Souss-Massa shallow aquifer, particularly along the eastern part of the basin. Localized stable isotope enrichments offset meteoric isotopic signature and are associated with high nitrate concentrations, which infer water recycling via water agricultural return flows. The 3H and 14C data suggest that the residence time of water in the western part of the basin is in the order of several thousands of years; hence old water is mined, particularly in the coastal areas. The multiple isotope analyses and chemical tracing of groundwater from the basin reveal that seawater intrusion is just one of multiple salinity sources that affect the quality of groundwater in the Souss-Massa aquifer. We differentiate between modern seawater intrusion, salinization by remnants of seawater entrapped in the middle Souss plains, recharge of nitrate-rich agricultural return flow, and dissolution of evaporate rocks (gypsum and halite minerals) along the outcrops of the high Atlas mountains. The data generated in this study provide the framework for a comprehensive management plan in which water exploitation should shift

  19. Numerical Modeling Studies of The Dissolution-Diffusion-Convection ProcessDuring CO2 Storage in Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten; Zhang, Keni


    For purposes of geologic storage, CO2 would be injected into saline formations at supercritical temperature and pressure conditions, and would form a separate phase that is immiscible with the aqueous phase (brine). At typical subsurface temperature and pressure conditions, supercritical CO2 (scCO2) has lower density than the aqueous phase and would experience an upward buoyancy force. Accordingly, the CO2 is expected to accumulate beneath the caprock at the top of the permeable interval, and could escape from the storage formation wherever (sub-)vertical pathways are available, such as fractures or faults through the caprock, or improperly abandoned wells. Over time, an increasing fraction of CO2 may dissolve in the aqueous phase, and eventually some of the aqueous CO2 may react with rock minerals to form poorly soluble carbonates. Dissolution into the aqueous phase and eventual sequestration as carbonates are highly desirable processes as they would increase permanence and security of storage. Dissolution of CO2 will establish phase equilibrium locally between the overlying CO2 plume and the aqueous phase beneath. If the aqueous phase were immobile, CO2 dissolution would be limited by the rate at which molecular diffusion can remove dissolved CO2 from the interface between CO2-rich and aqueous phases. This is a slow process. However, dissolution of CO2 is accompanied by a small increase in the density of the aqueous phase, creating a negative buoyancy force that can give rise to downward convection of CO2-rich brine, which in turn can greatly accelerate CO2 dissolution. This study explores the process of dissolution-diffusion-convection (DDC), using high-resolution numerical simulation. We find that geometric features of convection patterns are very sensitive to small changes in problem specifications, reflecting self-enhancing feedbacks and the chaotic nature of the process. Total CO2 dissolution rates on the other hand are found to be quite robust against

  20. Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu [Colorado School of Mines, Golden, CO (United States); Chen, Zizhong [Univ. of California, Riverside, CA (United States); Kazemi, Hossein [Colorado School of Mines, Golden, CO (United States); Yin, Xiaolong [Colorado School of Mines, Golden, CO (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Winterfeld, Philip [Colorado School of Mines, Golden, CO (United States); Zhang, Ronglei [Colorado School of Mines, Golden, CO (United States)


    This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO2 Flow Module,” we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For

  1. Integrating an artificial intelligence approach with k-means clustering to model groundwater salinity: the case of Gaza coastal aquifer (Palestine) (United States)

    Alagha, Jawad S.; Seyam, Mohammed; Md Said, Md Azlin; Mogheir, Yunes


    Artificial intelligence (AI) techniques have increasingly become efficient alternative modeling tools in the water resources field, particularly when the modeled process is influenced by complex and interrelated variables. In this study, two AI techniques—artificial neural networks (ANNs) and support vector machine (SVM)—were employed to achieve deeper understanding of the salinization process (represented by chloride concentration) in complex coastal aquifers influenced by various salinity sources. Both models were trained using 11 years of groundwater quality data from 22 municipal wells in Khan Younis Governorate, Gaza, Palestine. Both techniques showed satisfactory prediction performance, where the mean absolute percentage error (MAPE) and correlation coefficient (R) for the test data set were, respectively, about 4.5 and 99.8% for the ANNs model, and 4.6 and 99.7% for SVM model. The performances of the developed models were further noticeably improved through preprocessing the wells data set using a k-means clustering method, then conducting AI techniques separately for each cluster. The developed models with clustered data were associated with higher performance, easiness and simplicity. They can be employed as an analytical tool to investigate the influence of input variables on coastal aquifer salinity, which is of great importance for understanding salinization processes, leading to more effective water-resources-related planning and decision making.

  2. Integrating an artificial intelligence approach with k-means clustering to model groundwater salinity: the case of Gaza coastal aquifer (Palestine) (United States)

    Alagha, Jawad S.; Seyam, Mohammed; Md Said, Md Azlin; Mogheir, Yunes


    Artificial intelligence (AI) techniques have increasingly become efficient alternative modeling tools in the water resources field, particularly when the modeled process is influenced by complex and interrelated variables. In this study, two AI techniques—artificial neural networks (ANNs) and support vector machine (SVM)—were employed to achieve deeper understanding of the salinization process (represented by chloride concentration) in complex coastal aquifers influenced by various salinity sources. Both models were trained using 11 years of groundwater quality data from 22 municipal wells in Khan Younis Governorate, Gaza, Palestine. Both techniques showed satisfactory prediction performance, where the mean absolute percentage error (MAPE) and correlation coefficient ( R) for the test data set were, respectively, about 4.5 and 99.8% for the ANNs model, and 4.6 and 99.7% for SVM model. The performances of the developed models were further noticeably improved through preprocessing the wells data set using a k-means clustering method, then conducting AI techniques separately for each cluster. The developed models with clustered data were associated with higher performance, easiness and simplicity. They can be employed as an analytical tool to investigate the influence of input variables on coastal aquifer salinity, which is of great importance for understanding salinization processes, leading to more effective water-resources-related planning and decision making.

  3. Natural attenuation processes of nitrate in a saline lake-aquifer system: Pétrola Basin (Central Spain) (United States)

    Valiente, Nicolas; Menchen, Alfonso; Jirsa, Franz; Hein, Thomas; Wanek, Wolfgang; Gomez-Alday, Juan Jose


    Saline wetlands associated with intense agricultural activities in semi-arid to arid climates are among the most vulnerable environments to NO3- pollution. The endorheic Pétrola Basin (High Segura River Basin, Central Spain) was declared vulnerable to NO3- pollution by the Regional Government of Castilla-La Mancha in 1998. The hypersaline lake was classified as a heavily modified waterbody, due to the inputs of pollutants from agricultural sources and urban waste waters, the latest are discharged directly into the lake without proper treatment. Previous studies showed that the aquifer system has two main flow components: regional groundwater flow from recharge areas into the lake, and a density-driven flow from the lake to the underlying aquifer. The NO3- inputs derived from agriculture originate from nitrification of synthetic ammonium fertilizers, and afterwards, NO3- is expected to be attenuated by denitrification (up to 60%) in the saltwater-freshwater interface around the lake. However, the spatial and temporal pattern of nitrate reduction in lake sediments is not known. In this study, an isotope pairing technique was used in order to clarify the main pathways for the NO3- attenuation linked to the sediment-water interface. For that purpose mesocosm experiments were performed: organic-rich lake sediment (up to 23% organic carbon content) was incubated for 96 hours with the addition of 15N nitrate tracer. During the experiments two factors were modified: light and oxic conditions. Analyzing inorganic N-species (n=20) over time (72 hours) showed that NO3- attenuation was coupled with an increment in the NH4+ concentration (from 0.8 mg/L up to 5.3 mg/L) and a decrease in redox values (from 135.1 mV up to -422 mV) in the water column. The main outcome of this study was to elucidate the importance of different microbial pathways denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (Anammox), in controlling the fate

  4. CO{sub 2} storage in saline aquifers : design of a demonstration project to dispose CO{sub 2} associated with natural gas fields in South China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Zhang, Y.; Ren, S.R. [China Univ. of Petroleum, Beijing (China); Mi, H.G.; Ma, Y.X. [China National Offshore Oil Co., Beijing (China)


    The South China Sea has many gas fields with high carbon dioxide (CO{sub 2}) concentration. The China National Offshore Oil Company (CNOOC) has examined many options to dispose of the CO{sub 2} from the DF1-1 gas field. This study investigated the feasibility of geological storage of CO{sub 2} into offshore saline aquifers near the gas separation plant on the Hainan Island. A demonstration project was proposed and designed, considering aquifer selection and assessment, CO{sub 2} transportation and injection schemes, and economic viability of the project. Many aquifer structures around the gas field were evaluated in terms of geological structure, reservoir features, fluid properties, storage capacity and location. The LT13-1 saline aquifer located 60 km offshore in the Yingghehai Basin was selected as the site to sequester the CO{sub 2} discharged from the DF1-1 gas terminal. A high-pressure subsea pipeline will transport the CO{sub 2}, which will be injected into the aquifer via a subsea wellhead and through a horizontal well. The study required reservoir simulation and injectivity analysis in order to determine the injection rate and pressure, and to predict the migration of CO{sub 2} after injection. The CO{sub 2} storage capacity was calculated to be 95.20 Mt. About 4 million tons of CO{sub 2} can be stored after 20 years of injection, most of which will be dissolved in formation water and the CO{sub 2} plume will be within 0.8 km around the injector wellbore. 15 refs., 4 tabs., 5 figs.

  5. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems (United States)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan


    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.

  6. Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis desalination - Examples from saline ground water in New Mexico, USA (United States)

    Huff, G.F.


    Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.

  7. Four phase equilibrium and partitioning calculations for sequestration of carbon dioxide and hydrogen sulfide in deep saline aquifers (United States)

    Leal, Allan M. M.

    A fully compositional numerical simulator for sequestration of CO 2 and H2S in deep saline aquifers requires a large number of flash equilibrium calculations at each time step. Therefore, a robust and efficient flash solver is needed in order to resolve the thermodynamic equilibrium of systems composed of brine, CO2, and H2S, i.e., determine the equilibrium phases that emerge in the system, resolve the partitioning of the species among them, and calculate the phase molar fractions. In this work, we develop two fast and accurate flash equilibrium methods, the GeometricFlash and the ProgressiveFlash, for Brine-CO2 and Brine-CO2-H 2S systems. The temperature and pressure ranges are 12-100°C and 1-600 bar for Brine-CO2 systems and 12-100°C and 1-200 bar for Brine-CO2-H2S systems. In this study brine is a solution of NaCl in water. A serial and GPU-based parallel implementations of the above-mentioned flash equilibrium methods are developed for the computation of hundreds of thousands of flash equilibrium calculations. A performance analysis of the computations shows that the progressive flash is faster than the geometric one when executed in serial (on CPUs), while the geometric flash is slightly faster when solved on GPUs. Average speedups of 180 and 300 were achieved with the use of GPUs for the progressive and geometric flash method, respectively.

  8. Issues Related to Seismic Activity Induced by the Injection of CO2 in Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Sminchak, Joel [Battelle Memorial Institute, Columbus, OH (US); Gupta, Neeraj [Battelle Memorial Institute, Columbus, OH (US); Byrer, Charles [National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV (US); Bergman, Perry [National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV (US)


    Case studies, theory, regulation, and special considerations regarding the disposal of carbon dioxide (CO2) into deep saline aquifers were investigated to assess the potential for induced seismic activity. Formations capable of accepting large volumes of CO2 make deep well injection of CO2 an attractive option. While seismic implications must be considered for injection facilities, induced seismic activity may be prevented through proper siting, installation, operation, and monitoring. Instances of induced seismic activity have been documented at hazardous waste disposal wells, oil fields, and other sites. Induced seismic activity usually occurs along previously faulted rocks and may be investigated by analyzing the stress conditions at depth. Seismic events are unlikely to occur due to injection in porous rocks unless very high injection pressures cause hydraulic fracturing. Injection wells in the United States are regulated through the Underground Injection Control (UIC) program. UIC guidance requires an injection facility to perform extensive characterization, testing, and monitoring. Special considerations related to the properties of CO2 may have seismic ramifications to a deep well injection facility. Supercritical CO2 liquid is less dense than water and may cause density-driven stress conditions at depth or interact with formation water and rocks, causing a reduction in permeability and pressure buildup leading to seismic activity. Structural compatibility, historical seismic activity, cases of seismic activity triggered by deep well injection, and formation capacity were considered in evaluating the regional seismic suitability in the United States. Regions in the central, midwestern, and southeastern United States appear best suited for deep well injection. In Ohio, substantial deep well injection at a waste disposal facility has not caused seismic events in a seismically active area. Current

  9. Characterization of Recharge Mechanisms and Sources of Groundwater Salinization in Ras Jbel Coastal Aquifer (Northeast Tunisia Using Hydrogeochemical Tools, Environmental Isotopes, GIS, and Statistics

    Directory of Open Access Journals (Sweden)

    Jamila Hammami Abidi


    Full Text Available Groundwater is among the most available water resources in Tunisia; it is a vital natural resource in arid and semiarid regions. Located in north-eastern Tunisia, the Metline-Ras Jbel-Raf Raf aquifer is a mio-plio-quaternary shallow coastal aquifer, where groundwater is the most important source of water supply. The major ion hydrochemistry and environmental isotope composition (δ18O, δ2H were investigated to identify the recharge sources and processes that affect the groundwater salinization. The combination of hydrogeochemical, isotopic, statistical, and GIS approaches demonstrates that the salinity and the groundwater composition are largely controlled by the water-rock interaction particularly the dissolution of evaporate minerals and the ion exchange process, the return flow of the irrigation water, agricultural fertilizers, and finally saltwater intrusion which started before 1980 and which is partially mitigated by the artificial recharge since 1993. As for the stable isotope signatures, results showed that groundwater samples lay on and around the local meteoric water line LMWL; hence, this arrangement signifies that the recharge of the Ras Jbel aquifer is ensured by recent recharge from Mediterranean air masses.

  10. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    G. Mongelli


    Full Text Available Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr, in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the

  11. Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Starr, Robert Charles; Green, Timothy Scott; Hull, Laurence Charles


    A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

  12. Brine migration resulting from CO2 injection into saline aquifers – An approach to risk estimation including various levels of uncertainty

    DEFF Research Database (Denmark)

    Walter, Lena; Binning, Philip John; Oladyshkin, Sergey


    Comprehensive risk assessment is a major task for large-scale projects such as geological storage of CO2. Basic hazards are damage to the integrity of caprocks, leakage of CO2, or reduction of groundwater quality due to intrusion of fluids. This study focuses on salinization of freshwater aquifers...... for large-scale 3D models including complex physics. Therefore, we apply a model reduction based on arbitrary polynomial chaos expansion combined with probabilistic collocation method. It is shown that, dependent on data availability, both types of uncertainty can be equally significant. The presented study...

  13. Sulfur isotopic study of sulfate in the aquifer of Costa de Hermosillo (Sonora, Mexico) in relation to upward intrusion of saline groundwater, irrigation pumping and land cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Szynkiewicz, Anna [Indiana University, Department of Geological Sciences, 1001 E 10th Street, Bloomington, IN 47405 (United States)], E-mail:; Medina, Miguel Rangel [Sonora University, Department of Geology, Universidad de Sonora, Luis Encinas y Av. Rosales, Centro Hermosillo, Son 83000 (Mexico); Modelska, Magdalena [Sonora University, Department of Geology, Universidad de Sonora, Luis Encinas y Av. Rosales, Centro Hermosillo, Son 83000 (Mexico); Wroclaw University, Institute of Geological Sciences, Cybulskiego 30, 50-204 Wroclaw (Poland); Monreal, Rogelio [Sonora University, Department of Geology, Universidad de Sonora, Luis Encinas y Av. Rosales, Centro Hermosillo, Son 83000 (Mexico); Pratt, Lisa M. [Indiana University, Department of Geological Sciences, 1001 E 10th Street, Bloomington, IN 47405 (United States)


    Groundwater from the Costa de Hermosillo aquifer has been used extensively for irrigation over the past 60 a in the Sonora region of northwestern Mexico resulting in salinization of fresh groundwater resources. Salinization of groundwater is most pronounced on the western/coastal side of the aquifer, with an aerial extent of 26.7 km{sup 2}, where maximum values are reported for conductivity (31 mS/cm) and Cl{sup -} concentrations (16,271 mg/L). Salinization is likely to increase if groundwater pumping continues at levels comparable to the present time. Upward incursion of marine water into the aquifer is inferred from {delta}{sup 2}H (-7.2 per mille ) and {delta}{sup 18}O (+1.6 per mille ) compositions of groundwater samples with the highest conductivity. Compared to modern seawater in the Gulf of California, ratios of SO{sub 4}/Cl and Cl/Br are small (0.01 and 33, respectively) and the S isotopic composition of SO{sub 4}{sup 2-} is high (+32.7%) in the most saline portions of the Costa de Hermosillo. This saline groundwater is inferred to result from an earlier phase of dissimilatory bacterial SO{sub 4}{sup 2-} reduction coupled to decomposition of organic matter in marine blue clays deposited during the Miocene/Pliocene transgression. The isotopic composition of present-day surface discharge from agricultural fields is substantially enriched in {sup 32}S due to widespread application of (NH{sub 4}){sub 2}SO{sub 4} fertilizers and potential mobilization of S from mineral resources. Surface water discharging from irrigated fields has {delta}{sup 34}S values ranging from -2.1 to 3.3 per mille which are distinctly different from groundwater and surface water in adjacent non-agricultural areas with {delta}{sup 34}S values ranging from 5.2 to 13.5 per mille . Prolonged irrigation pumping that promotes the incursion of air to the subsurface could enhance the weathering of S-bearing minerals such as magmatic sulfides, producing {sup 32}S-enriched SO{sub 4}{sup 2-}.

  14. Saltwater intrusion in the surficial aquifer system of the Big Cypress Basin, southwest Florida, and a proposed plan for improved salinity monitoring (United States)

    Prinos, Scott T.


    The installation of drainage canals, poorly cased wells, and water-supply withdrawals have led to saltwater intrusion in the primary water-use aquifers in southwest Florida. Increasing population and water use have exacerbated this problem. Installation of water-control structures, well-plugging projects, and regulation of water use have slowed saltwater intrusion, but the chloride concentration of samples from some of the monitoring wells in this area indicates that saltwater intrusion continues to occur. In addition, rising sea level could increase the rate and extent of saltwater intrusion. The existing saltwater intrusion monitoring network was examined and found to lack the necessary organization, spatial distribution, and design to properly evaluate saltwater intrusion. The most recent hydrogeologic framework of southwest Florida indicates that some wells may be open to multiple aquifers or have an incorrect aquifer designation. Some of the sampling methods being used could result in poor-quality data. Some older wells are badly corroded, obstructed, or damaged and may not yield useable samples. Saltwater in some of the canals is in close proximity to coastal well fields. In some instances, saltwater occasionally occurs upstream from coastal salinity control structures. These factors lead to an incomplete understanding of the extent and threat of saltwater intrusion in southwest Florida. A proposed plan to improve the saltwater intrusion monitoring network in the South Florida Water Management District’s Big Cypress Basin describes improvements in (1) network management, (2) quality assurance, (3) documentation, (4) training, and (5) data accessibility. The plan describes improvements to hydrostratigraphic and geospatial network coverage that can be accomplished using additional monitoring, surface geophysical surveys, and borehole geophysical logging. Sampling methods and improvements to monitoring well design are described in detail. Geochemical analyses

  15. Optimization of CO2 Storage in Saline Aquifers Using Water-Alternating Gas (WAG) Scheme - Case Study for Utsira Formation (United States)

    Agarwal, R. K.; Zhang, Z.; Zhu, C.


    For optimization of CO2 storage and reduced CO2 plume migration in saline aquifers, a genetic algorithm (GA) based optimizer has been developed which is combined with the DOE multi-phase flow and heat transfer numerical simulation code TOUGH2. Designated as GA-TOUGH2, this combined solver/optimizer has been verified by performing optimization studies on a number of model problems and comparing the results with brute-force optimization which requires a large number of simulations. Using GA-TOUGH2, an innovative reservoir engineering technique known as water-alternating-gas (WAG) injection has been investigated to determine the optimal WAG operation for enhanced CO2 storage capacity. The topmost layer (layer # 9) of Utsira formation at Sleipner Project, Norway is considered as a case study. A cylindrical domain, which possesses identical characteristics of the detailed 3D Utsira Layer #9 model except for the absence of 3D topography, was used. Topographical details are known to be important in determining the CO2 migration at Sleipner, and are considered in our companion model for history match of the CO2 plume migration at Sleipner. However, simplification on topography here, without compromising accuracy, is necessary to analyze the effectiveness of WAG operation on CO2 migration without incurring excessive computational cost. Selected WAG operation then can be simulated with full topography details later. We consider a cylindrical domain with thickness of 35 m with horizontal flat caprock. All hydrogeological properties are retained from the detailed 3D Utsira Layer #9 model, the most important being the horizontal-to-vertical permeability ratio of 10. Constant Gas Injection (CGI) operation with nine-year average CO2 injection rate of 2.7 kg/s is considered as the baseline case for comparison. The 30-day, 15-day, and 5-day WAG cycle durations are considered for the WAG optimization design. Our computations show that for the simplified Utsira Layer #9 model, the

  16. Imaging cross fault multiphase flow using time resolved high pressure-temperature synchrotron fluid tomography: implications for the geological storage of carbon dioxide within sandstone saline aquifers (United States)

    Seers, Thomas; Andrew, Matthew; Bijeljic, Branko; Blunt, Martin; Dobson, Kate; Hodgetts, David; Lee, Peter; Menke, Hannah; Singh, Kamaljit; Parsons, Aaron


    Applied shear stresses within high porosity granular rocks result in characteristic deformation responses (rigid grain reorganisation, dilation, isovolumetric strain, grain fracturing and/or crushing) emanating from elevated stress concentrations at grain contacts. The strain localisation features produced by these processes are generically termed as microfaults (also shear bands), which occur as narrow tabular regions of disaggregated, rotated and/or crushed grains. Because the textural priors that favour microfault formation make their host rocks (esp. porous sandstones) conducive to the storage of geo-fluids, such structures are often abundant features within hydrocarbon reservoirs, aquifers and potential sites of CO2 storage (i.e. sandstone saline aquifers). The porosity collapse which accompanies microfault formation typically results in localised permeability reduction, often encompassing several orders of magnitude. Given that permeability is the key physical parameter that governs fluid circulation in the upper crust, this petrophysical degradation implicates microfaults as being flow impeding structures which may act as major baffles and/or barriers to fluid flow within the subsurface. Such features therefore have the potential to negatively impact upon hydrocarbon production or CO2 injection, making their petrophysical characterisation of considerable interest. Despite their significance, little is known about the pore-scale processes involved in fluid trapping and transfer within microfaults, particularly in the presence of multiphase flow analogous to oil accumulation, production and CO2 injection. With respect to the geological storage of CO2 within sandstone saline aquifers it has been proposed that even fault rocks with relatively low phyllosilicate content or minimal quartz cementation may act as major baffles or barriers to migrating CO2 plume. Alternatively, as ubiquitous intra-reservoir heterogeneities, micro-faults also have the potential to

  17. Hydrochemical assessment of freshening saline groundwater using multiple end-members mixing modeling: A study of Red River delta aquifer, Vietnam (United States)

    Kim, Ji-Hyun; Kim, Kyoung-Ho; Thao, Nguyen Thi; Batsaikhan, Bayartungalag; Yun, Seong-Taek


    In this study, we evaluated the water quality status (especially, salinity problems) and hydrogeochemical processes of an alluvial aquifer in a floodplain of the Red River delta, Vietnam, based on the hydrochemical and isotopic data of groundwater samples (n = 23) from the Kien Xuong district of the Thai Binh province. Following the historical inundation by paleo-seawater during coastal progradation, the aquifer has been undergone progressive freshening and land reclamation to enable settlements and farming. The hydrochemical data of water samples showed a broad hydrochemical change, from Na-Cl through Na-HCO3 to Ca-HCO3 types, suggesting that groundwater was overall evolved through the freshening process accompanying cation exchange. The principal component analysis (PCA) of the hydrochemical data indicates the occurrence of three major hydrogeochemical processes occurring in an aquifer, namely: 1) progressive freshening of remaining paleo-seawater, 2) water-rock interaction (i.e., dissolution of silicates), and 3) redox process including sulfate reduction, as indicated by heavy sulfur and oxygen isotope compositions of sulfate. To quantitatively assess the hydrogeochemical processes, the end-member mixing analysis (EMMA) and the forward mixing modeling using PHREEQC code were conducted. The EMMA results show that the hydrochemical model with the two-dimensional mixing space composed of PC 1 and PC 2 best explains the mixing in the study area; therefore, we consider that the groundwater chemistry mainly evolved by mixing among three end-members (i.e., paleo-seawater, infiltrating rain, and the K-rich groundwater). The distinct depletion of sulfate in groundwater, likely due to bacterial sulfate reduction, can also be explained by EMMA. The evaluation of mass balances using geochemical modeling supports the explanation that the freshening process accompanying direct cation exchange occurs through mixing among three end-members involving the K-rich groundwater. This

  18. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers (United States)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György


    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios

  19. Long-Term Managed Aquifer Recharge in a Saline-Water Aquifer as a Critical Component of an Integrated Water Scheme in Southwestern Florida, USA

    Directory of Open Access Journals (Sweden)

    Thomas M. Missimer


    Full Text Available Managed Aquifer Recharge (MAR systems can be used within the context of integrated water management to create solutions to multiple objectives. Southwestern Florida is faced with severe environmental problems associated with the wet season discharge of excessive quantities of surface water containing high concentrations of nutrients into the Caloosahatchee River Estuary and a future water supply shortage. A 150,000 m3/day MAR system is proposed as an economic solution to solve part of the environmental and water supply issues. Groundwater modeling has demonstrated that the injection of about 150,000 m3/day into the Avon Park High Permeable Zone will result in the creation of a 1000 m wide plume of fresh and brackish-water (due to mixing extending across the water short area over a 10-year period. The operational cost of the MAR injection system would be less than $0.106/m3 and the environmental benefits would alone more than cover this cost in the long term. In addition, the future unit water supply cost to the consumer would be reduced from $1 to $1.25/m3 to $0.45 to $0.65/m3.

  20. Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. (United States)

    Lerm, Stephanie; Westphal, Anke; Miethling-Graff, Rona; Alawi, Mashal; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke


    The microbial diversity of a deep saline aquifer used for geothermal heat storage in the North German Basin was investigated. Genetic fingerprinting analyses revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of bacteria and sulfate reducing bacteria (SRB) in cold fluids compared with warm fluids. The operation-dependent temperature increase at the warm well probably enhanced organic matter availability, favoring the growth of fermentative bacteria and SRB in the topside facility after the reduction of fluid temperature. In the cold well, SRB predominated and probably accounted for corrosion damage to the submersible well pump and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favored growth of hydrogenotrophic SRB. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability.

  1. Statistical analysis of major ion and trace element geochemistry of water, 1986-2006, at seven wells transecting the freshwater/saline-water interface of the Edwards Aquifer, San Antonio, Texas (United States)

    Mahler, Barbara J.


    This report by the U.S. Geological Survey, in cooperation with the San Antonio Water System, describes the results of a statistical analysis of major ion and trace element geochemistry of water at seven wells transecting the freshwater/saline-water interface of the Edwards aquifer in San Antonio, Texas, either over time or in response to variations in hydrologic conditions. The data used in this report were collected during 1986–2006. The seven monitoring wells are screened at different depths in the aquifer at three sites that form a generally north-to-south transect. The three wells of the southern site and the deeper of the two middle-site wells are open to the freshwater/saline-water transition zone, which contains saline water. The shallower well of the middle site and the two wells of the northern site are open to the freshwater zone.

  2. Characteristics of streams and aquifers and processes affecting the salinity of water in the upper Colorado River basin, Texas (United States)

    Slade, R.M.; Buszka, P.M.


    The upper Colorado River and some of its tributaries between Lake J.B. Thomas and O.H. Ivie Reservoir contain saline water (defined as water having dissolved-solids concentrations greater than 1,000 milligrams per liter). Dissolved-solids loads at nine streamflow water-quality stations increased from 1986 to 1988. The largest increases were in Beals Creek and in the Colorado River downstream from Beals Creek as a result of outflow of saline water from Natural Dam Salt Lake. The outflow contained 654,000 tons of dissolved solids and had a mean dissolved-solids concentration of 7,900 milligrams per liter. This amount represents about 51 percent of the dissolved-solids load to E.V. Spence Reservoir during 1986-88.

  3. Microbial composition in a deep saline aquifer in the North German Basin -microbiologically induced corrosion and mineral precipitation affecting geothermal plant operation and the effects of plant downtime (United States)

    Lerm, Stephanie; Westphal, Anke; Miethling-Graff, Rona; Alawi, Mashal; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke


    The microbial composition in fluids of a deep saline geothermal used aquifer in the North German Basin was characterized over a period of five years. The genetic fingerprinting techniques PCR-SSCP and PCR-DGGE revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of Bacteria and sulfate reducing bacteria (SRB) in cold fluids compared to warm fluids. Predominating SRB in the cold well probably accounted for corrosion damage to the submersible well pump, and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to a lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favoured growth of hydrogenotrophic SRB. Plant downtime significantly influenced the microbial biocenosis in fluids. Samples taken after plant restart gave indications about the processes occurring downhole during those phases. High DNA concentrations in fluids at the beginning of the restart process with a decreasing trend over time indicated a higher abundance of microbes during plant downtime compared to regular plant operation. It is likely that a gradual drop in temperature as well as stagnant conditions favoured the growth of microbes and maturation of biofilms at the casing and in pores of the reservoir rock in the near wellbore area. Furthermore, it became obvious that the microorganisms were more associated to particles then free-living. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability. Those processes may favourably occur during plant downtime due to enhanced

  4. Origin of the groundwater salinity and geochemical processes in detrital and carbonate aquifers: Case of Chougafiya basin (Central Tunisia) (United States)

    Farid, Intissar; Zouari, Kamel; Rigane, Adel; Beji, Ridha


    Comprehensive investigations of groundwaters were performed in the detrital and carbonate aquifers of the Chougafiya basin, central Tunisia. In the present review, hydrochemistry and isotopic tools were combined to get an insight into the processes controlling mineralization, recharge conditions, flow pattern of groundwater and C chemistry in the investigated hydrological system. Analysis of the dissolved constituents revealed that several processes controlled the observed chemical composition: (i) the dissolution of evaporitic minerals, (ii) cation exchange reactions, (iii) sulfate reduction under anaerobic conditions, (iv) incongruent dissolution of carbonate minerals (calcite, dolomite) coupled with gypsum dissolution and calcite precipitation, and (v) silicates weathering. Data inferred from 18O and deuterium isotopes in groundwater samples indicated recharge with modern rainfall. Water characterized by lower δ18O and δ2H values is interpreted as recharged by non-evaporated rainfall originating from Mediterranean and Atlantic air masses. However, water with relatively enriched δ18O and δ2H contents is thought to reflect the occurrence of an evaporation process related to the long term practice of flood irrigation. The radiogenic (3H) isotope data provided insight into the presence of two recharge periods in the investigated groundwaters. Waters with 3H contents of 1 TU clearly suggested the occurrence of a contemporaneous recharge probably during the last two decades. Carbon isotopes provided some insights into the timescales of groundwater flow, but mainly revealed that main sources of C are active in the system. These are likely: dissolved biogenic CO2, carbonate dissolution and incongruent reaction of the carbonate matrix. Mean residence times were determined after correction of the initial activities for dead C from the rock matrix and suggest ages ranging from the present day to the Holocene in both Upper Cretaceous and Mio-pliocene groundwaters.

  5. Effect of irrigation water salinity and sodicity and water table position on water table chemistry beneath Atriplex lentiformis and Hordeum marinum

    Energy Technology Data Exchange (ETDEWEB)

    Browning, L.S.; Bauder, J.W.; Phelps, S.D. [Montana State University, Bozeman, MT (United States)


    Coal bed methane (CBM) extraction in Montana and Wyoming's Powder River Basin (PRB) produces large quantities of modestly saline-sodic water. This study assessed effects of irrigation water quality and water table position on water chemistry of closed columns, simulating a perched or a shallow water table. The experiment assessed the potential salt loading in areas where shallow or perched water tables prevent leaching or where artificial drainage is not possible. Water tables were established in sand filled PVC columns at 0.38, 0.76, and1.14 m below the surface, after which columns were planted to one of three species, two halophytic Atriplex spp. and Hordeum marinum Huds. (maritime barley), a glycophyte. As results for the two Atriplex ssp. did not differ much, only results from Atriplex lentiformis (Torn) S. Wats. (big saltbush) and H. marinum are presented. Irrigation water representing one of two irrigation sources was used: Powder River (PR) (electrolytic conductivity (EC) = 0.19 Sm{sup -1}, sodium adsorption ratio (SAR) = 3.5) or CBM water (EC = 0.35 Sm-1, SAR = 10.5). Continuous irrigation with CBM and PR water led to salt loading over time, the extent being proportional to the salinity and sodicity of applied water. Water in columns planted to A. lentiformis with water tables maintained at 0.38 m depth had greater EC and SAR values than those with 0.76 and 1.14 m water table positions. Elevated EC and SAR values most likely reflect the shallow rooted nature of A. lentiformis, which resulted in enhanced ET with the water table close to the soil surface.

  6. Salinization and Saline Environments (United States)

    Vengosh, A.


    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  7. Borehole geophysical, fluid, and hydraulic properties within and surrounding the freshwater/saline-water transition zone, San Antonio segment of the Edwards aquifer, south-central Texas, 2010-11 (United States)

    Thomas, Jonathan V.; Stanton, Gregory P.; Lambert, Rebecca B.


    The freshwater zone of the San Antonio segment of the Edwards aquifer is used by residents of San Antonio and numerous other rapidly growing communities in south-central Texas as their primary water supply source. This freshwater zone is bounded to the south and southeast by a saline-water zone with an intermediate zone transitioning from freshwater to saline water, the transition zone. As demands on this water supply increase, there is concern that the transition zone could potentially move, resulting in more saline water in current supply wells. Since 1985, the U.S. Geological Survey (USGS), San Antonio Water System (SAWS), and other Federal and State agencies have conducted studies to better understand the transition zone.

  8. Contribution of hydrochemical and geoelectrical approaches to investigate salinization process and seawater intrusion in the coastal aquifers of Chaouia, Morocco (United States)

    Najib, Saliha; Fadili, Ahmed; Mehdi, Khalid; Riss, Joëlle; Makan, Abdelhadi


    This study aims to identify groundwater salinization origin and to determine seawater intrusion extension toward the inland in Chaouia, Morocco. To reach these objectives, firstly, 46 groundwater samples were analyzed for major chemical elements during January 2012 and, secondly, 10 electrical resistivity tomography (ERT) profiles were performed perpendicularly to the coastal fringe. Statistical analysis provided the distinction between three Clusters reflecting different hydrochemical processes. Cluster I and Cluster II-a showed a high water electrical conductivity (EC) (from 2.3 to 11.2 mS/cm) with the dominance of Na+ (668 mg/L on average) and Cl- (1735 mg/L on average) ions as a consequence of seawater intrusion. However, Cluster II-b presented low ECs (from 0.5 to 1.7 mS/cm) and Ca2 + (99.6 mg/L on average) and HCO32 - (235.2 mg/L on average) ions dominance. Water chemistry in these wells was controlled by water-rock interaction, cation exchange, and anthropogenic activities. The Hydrochemical Facies Evolution Diagram highlighted the succession of different water facies developed between intrusion and freshening phases. The formation of Na-HCO3 facies, which characterizes the last facies of freshening phase, followed the succession of Na-Cl, MixNa-MixCl, MixCa-MixCl, MixCa-MixHCO3, and Na-HCO3. In contrast, Na-Cl facies formation, which characterizes the last facies of intrusion phase, followed the evolution of Ca-HCO3, Ca-MixHCO3, Ca-MixCl, MixCa-MixCl, MixCa-Cl, and Na-Cl. Moreover, the obtained ERT results allowed determining the extent of different hydrochemical facies and provided more details about seawater intrusion extension. The conductive level assigned to seawater contamination showed a resistivity less than 36 Ω.m, which remains limited to 3000 m from the ocean, where Na-Cl water type dominates. The seawater intrusion depth varied between 5 and 40 m from the surface. Overall, this original study in Chaouia region demonstrated the effectiveness of

  9. Contribution of hydrochemical and geoelectrical approaches to investigate salinization process and seawater intrusion in the coastal aquifers of Chaouia, Morocco. (United States)

    Najib, Saliha; Fadili, Ahmed; Mehdi, Khalid; Riss, Joëlle; Makan, Abdelhadi


    This study aims to identify groundwater salinization origin and to determine seawater intrusion extension toward the inland in Chaouia, Morocco. To reach these objectives, firstly, 46 groundwater samples were analyzed for major chemical elements during January 2012 and, secondly, 10 electrical resistivity tomography (ERT) profiles were performed perpendicularly to the coastal fringe. Statistical analysis provided the distinction between three Clusters reflecting different hydrochemical processes. Cluster I and Cluster II-a showed a high water electrical conductivity (EC) (from 2.3 to 11.2mS/cm) with the dominance of Na(+) (668mg/L on average) and Cl(-) (1735mg/L on average) ions as a consequence of seawater intrusion. However, Cluster II-b presented low ECs (from 0.5 to 1.7mS/cm) and Ca(2+) (99.6mg/L on average) and HCO3(2-) (235.2mg/L on average) ions dominance. Water chemistry in these wells was controlled by water-rock interaction, cation exchange, and anthropogenic activities. The Hydrochemical Facies Evolution Diagram highlighted the succession of different water facies developed between intrusion and freshening phases. The formation of Na-HCO3 facies, which characterizes the last facies of freshening phase, followed the succession of Na-Cl, MixNa-MixCl, MixCa-MixCl, MixCa-MixHCO3, and Na-HCO3. In contrast, Na-Cl facies formation, which characterizes the last facies of intrusion phase, followed the evolution of Ca-HCO3, Ca-MixHCO3, Ca-MixCl, MixCa-MixCl, MixCa-Cl, and Na-Cl. Moreover, the obtained ERT results allowed determining the extent of different hydrochemical facies and provided more details about seawater intrusion extension. The conductive level assigned to seawater contamination showed a resistivity less than 36Ω.m, which remains limited to 3000m from the ocean, where Na-Cl water type dominates. The seawater intrusion depth varied between 5 and 40m from the surface. Overall, this original study in Chaouia region demonstrated the effectiveness of

  10. Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA (United States)

    Kharaka, Yousif K.; Thordsen, James J.; Hovorka, Susan D.; Nance, H. Seay; Cole, David R.; Phelps, Tommy J.; Knauss, Kevin G.


    Sedimentary basins in general, and deep saline aquifers in particular, are being investigated as possible repositories for large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick "C" sandstone unit of the Frio Formation, a regional aquifer in the US Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na–Ca–Cl type brine with ∼93,000 mg/L TDS at saturation with CH4 at reservoir conditions; gas analyses showed that CH4 comprised ∼95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5–5.7), pronounced increases in alkalinity (100–3000 mg/L as HCO3) and in Fe (30–1100 mg/L), a slug of very high DOC values, and significant shifts in the isotopic compositions of H2O, DIC, and CH4. These data, coupled with geochemical modeling, indicate corrosion of pipe and well casing as well as rapid dissolution of minerals, especially calcite and iron oxyhydroxides, both caused by lowered pH (initially ∼3.0 at subsurface conditions) of the brine in contact with supercritical CO2.These geochemical parameters, together with perfluorocarbon tracer gases (PFTs), were used to monitor migration of the injected CO2 into the overlying Frio “B”, composed of a 4-m-thick sandstone and separated from the “C” by ∼15 m of shale and siltstone beds. Results obtained from the Frio “B” 6 months after injection gave chemical and isotopic markers that show significant CO2 (2.9% compared with 0.3% CO2 in dissolved gas) migration into the “B” sandstone. Results of samples collected 15 months after injection, however, are ambiguous, and can be interpreted to show no additional injected CO2 in the “B” sandstone

  11. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Polygon regions depicting saline areas within the Floridan aquifer system (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  12. Identification of the mechanisms and origin of salinization of groundwaters in coastal aquifers by means of isotopic techniques; Identificacion de los mecanismos y del orgien de la salinizacion del agua subterranea en acuiferos costeros mdiante tecnicas isotopicas

    Energy Technology Data Exchange (ETDEWEB)

    Araguas, L. J.; Quejido, A. J.


    To study the origin of salinity and the mechanisms operating in coastal aquifers, a set of tools is available to determine the essential aspects of the hydrogeological behaviour of the system. these tools are based on the integrated use of hydrochemical parameters (major constituents and trace elements) and isotopic parameters (oxygen, hydrogen, sulfur, carbon, strontium and boron). In addition to the active intrusion of seawater, salinization in coastal areas may be influenced by various human activities that accelerate the degradation of water quality, such as concentrated pumping, intensive farming techniques with return of irrigation water, or reuse of urban and industrial waste water. Characterization of the dominant processes and mechanisms is required for suitable management of the resource and implementation of corrective measures. (Author)

  13. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida (United States)

    Bellino, Jason C.; Spechler, Rick M.


    section near River Mile 8. Salinity increases of up to 4.0 parts per thousand (ppt) were indicated by the model incorporating hydrogeologic conceptualizations with both a semiconfining bed over the limestone unit and a preferential flow layer within the limestone along the cross section near River Mile 8. Simulated increases in salinity greater than 0.2 ppt in this area were generally limited to portions of the limestone unit within about 75 feet of the channel on the north side of the river. The potential for saltwater to move from the river channel to the surficial aquifer system is limited, but may be present in areas where the head gradient from the aquifer to the river is small or negative and the salinity of the river is sufficient to induce density-driven advective flow into the aquifer. In some areas, simulated increases in salinity were exacerbated by the presence of laterally extensive semiconfining beds in combination with a high-conductivity preferential flow zone in the limestone unit of the surficial aquifer system and an upgradient source of saline water, such as beneath the salt marshes near Fanning Island. The volume of groundwater pumped in these areas is estimated to be low; therefore, saltwater intrusion will not substantially affect regional water supply, although users of the surficial aquifer system east of Dames Point along the northern shore of the river could be affected. Proposed dredging operations pose no risk to salinization of the Floridan aquifer system; in the study area, the intermediate confining unit ranges in thickness from more than 300 to about 500 feet and provides sufficient hydraulic separation between the surficial and Floridan aquifer systems.

  14. Numerical simulation methods applied to injection and storage of CO{sub 2} in saline aquifers; Metodos de simulacion numerica aplicados a la inyeccion y almacenamiento de CO{sub 2} en formaciones salinas

    Energy Technology Data Exchange (ETDEWEB)

    Arjona Garcia-Borreguero, J.; Rodriguez Pons-Esparver, R.; Iglesias Lopez, A.


    One of the Climate Change mitigation proposals suggested by the IPCC (Intergovernmental Panel on Climate Change) in its Synthesis Report 2007 involves the launch of applications for capturing and storing carbon dioxide, existing three different geological structures suitable for gas storage: oil and gas depleted reservoirs, useless coal layers and deep saline structures. In case of deep saline structures, the main problem to prepare a study of CO{sub 2} storage is the difficulty of obtaining geological data for some selected structure with characteristics that could be suitable for injection and gas storage. According to this situation, the solution to analyze the feasibility of a storage project in a geological structure will need numerical simulation from a 3D terrain model. Numerical methods allow the simulation of the carbon dioxide filling in saline structures from a well, used to inject gas with a particular flow. This paper presents a methodology to address the modeling and simulation process of CO{sub 2} injection into deep saline aquifers. (Author)

  15. Stepped-wedge cluster-randomised controlled trial to assess the cardiovascular health effects of a managed aquifer recharge initiative to reduce drinking water salinity in southwest coastal Bangladesh: study design and rationale. (United States)

    Naser, Abu Mohd; Unicomb, Leanne; Doza, Solaiman; Ahmed, Kazi Matin; Rahman, Mahbubur; Uddin, Mohammad Nasir; Quraishi, Shamshad B; Selim, Shahjada; Shamsudduha, Mohammad; Burgess, William; Chang, Howard H; Gribble, Matthew O; Clasen, Thomas F; Luby, Stephen P


    Saltwater intrusion and salinisation have contributed to drinking water scarcity in many coastal regions globally, leading to dependence on alternative sources for water supply. In southwest coastal Bangladesh, communities have few options but to drink brackish groundwater which has been associated with high blood pressure among the adult population, and pre-eclampsia and gestational hypertension among pregnant women. Managed aquifer recharge (MAR), the purposeful recharge of surface water or rainwater to aquifers to bring hydrological equilibrium, is a potential solution for salinity problem in southwest coastal Bangladesh by creating a freshwater lens within the brackish aquifer. Our study aims to evaluate whether consumption of MAR water improves human health, particularly by reducing blood pressure among communities in coastal Bangladesh. The study employs a stepped-wedge cluster-randomised controlled community trial design in 16 communities over five monthly visits. During each visit, we will collect data on participants' source of drinking and cooking water and measure the salinity level and electrical conductivity of household stored water. At each visit, we will also measure the blood pressure of participants ≥20 years of age and pregnant women and collect urine samples for urinary sodium and protein measurements. We will use generalised linear mixed models to determine the association of access to MAR water on blood pressure of the participants. The study protocol has been reviewed and approved by the Institutional Review Boards of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b). Informed written consent will be taken from all the participants. This study is funded by Wellcome Trust, UK. The study findings will be disseminated to the government partners, at research conferences and in peer-reviewed journals. NCT02746003; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the

  16. Development of Science-Based Permitting Guidance for Geological Sequestration of CO2 in Deep Saline Aquifers Based on Modeling and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Philippe Nicot; Renaud Bouroullec; Hugo Castellanos; Susan Hovorka; Srivatsan Lakshminarasimhan; Jeffrey Paine


    Underground carbon storage may become one of the solutions to address global warming. However, to have an impact, carbon storage must be done at a much larger scale than current CO{sub 2} injection operations for enhanced oil recovery. It must also include injection into saline aquifers. An important characteristic of CO{sub 2} is its strong buoyancy--storage must be guaranteed to be sufficiently permanent to satisfy the very reason that CO{sub 2} is injected. This long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even if the U.S. has a relatively well-developed regulatory framework to handle carbon storage, especially in the operational short term. This report proposes a hierarchical approach to permitting in which the State/Federal Government is responsible for developing regional assessments, ranking potential sites (''General Permit'') and lessening the applicant's burden if the general area of the chosen site has been ranked more favorably. The general permit would involve determining in the regional sense structural (closed structures), stratigraphic (heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the long-term fate of geologically sequestered CO{sub 2}. The state-sponsored regional studies and the subsequent local study performed by the applicant will address the long-term risk of the particular site. It is felt that a performance-based approach rather than a prescriptive approach is the most appropriate framework in which to address public concerns. However, operational issues for each well (equivalent to the current underground injection control-UIC-program) could follow regulations currently in place. Area ranking will include an understanding of trapping modes. Capillary (due to residual saturation) and structural (due to local geological configuration) trappings are two of the four mechanisms (the other two are solubility and mineral trappings

  17. Petrophysical laboratory invertigations of carbon dioxide storage in a subsurface saline aquifer in Ketzin/Germany within the scope of CO2SINK (United States)

    Zemke, K.; Kummmerow, J.; Wandrey, M.; Co2SINK Group


    Since June of 2008 carbon dioxide has been injected into a saline aquifer at the Ketzin test site [Würdemann et al., this volume]. The food grade CO2 is injected into a sandstone zone of the Stuttgart formation at ca. 650 m depth at 35°C reservoir temperature and 62 bar reservoir pressure. With the injection of CO2 into the geological formation, chemical and physical reservoir characteristics are changed depending on pressure, temperature, fluid chemistry and rock composition. Fluid-rock interaction could comprise dissolution of non-resistant minerals in CO2-bearing pore fluids, cementing of the pore space by precipitating substances from the pore fluid, drying and disintegration of clay minerals and thus influence of the composition and activities of the deep biosphere. To testing the injection behaviour of CO2 in water saturated rock and to evaluate the geophysical signature depending on the thermodynamic conditions, flow experiments with water and CO2 have been performed on cores of the Stuttgart formation from different locations including new wells of ketzin test site. The studied core material is an unconsolidated fine-grained sandstone with porosity values from 15 to 32 %. Permeability, electrical resistivity, and sonic wave velocities and their changes with pressure, saturation and time have been studied under simulated in situ conditions. The flow experiments conducted over several weeks with brine and CO2 showed no significant changes of resistivity and velocity and a slightly decreasing permeability. Pore fluid analysis showed mobilization of clay and some other components. A main objective of the CO2Sink laboratory program is the assessment of the effect of long-term CO2 exposure on reservoir rocks to predict the long-term behaviour of geological CO2 storage. For this CO2 exposure experiments reservoir rock samples were exposed to CO2 saturated reservoir fluid in corrosion-resistant high pressure vessels under in situ temperature and pressure

  18. Brine/CO2 Interfacial Properties and Effects on CO2 Storage in Deep Saline Aquifers Propriétés interfaciales saumure/CO2 et effets sur le stockage du CO2 dans des aquifères salins profonds

    Directory of Open Access Journals (Sweden)

    Chalbaud C.


    Full Text Available It has been long recognized that interfacial interactions (interfacial tension, wettability, capillarity and interfacial mass transfer govern fluid distribution and behaviour in porous media. Therefore the interfacial interactions between CO2, brine and reservoir oil and/or gas have an important influence on the effectiveness of any CO2 storage operation. There is a lack of experimental data related to interfacial properties for all the geological storage options (oil & gas reservoirs, coalbeds, deep saline aquifers. In the case of deep saline aquifers, there is a gap in data and knowledge of brine-CO2 interfacial properties at storage conditions. More specifically, experimental interfacial tension values and experimental tests in porous media are necessary to better understand the wettability evolution as a function of thermodynamic conditions and it’s effects on fluid flow in the porous media. In this paper, a complete set of experimental values of brine-CO2 Interfaciale Tension (IFT at pressure, temperature and salt concentration conditions representative of those of a CO2 storage operation. A correlation is derived from experimental data published in a companion paper [Chalbaud C., Robin M., Lombard J.-M., Egermann P., Bertin H. (2009 Interfacial Tension Measurements and Wettability Evaluation for Geological CO2 Storage, Adv. Water Resour. 32, 1, 1-109] to model IFT values. This paper pays particular attention to coreflooding experiments showing that the CO2 partially wets the surface in a Intermediate-Wet (IW or Oil-Wet (OW limestone rock. This wetting behavior of CO2 is coherent with observations at the pore scale in glass micromodels and presents a negative impact on the storage capacity of a given site. Il est admis depuis longtemps que les propriétés interfaciales (tension interfaciale, mouillabilité, capillarité et transfert de masse régissent la distribution et le comportement des fluides au sein des milieux poreux. Par cons

  19. Hydrology of the southeastern Coastal Plain aquifer system in South Carolina and parts of Georgia and North Carolina (United States)

    Aucott, Walter R.


    The wedge of sediments present beneath the Coastal Plain of South Carolina and adjacent parts of Georgia and North Carolina consists of sand, silt, clay, and limestone. These strata have been subdivided into six regional aquifers: the surficial aquifer, the Floridan aquifer system, the Tertiary sand aquifer, the Black Creek aquifer, the Middendorf aquifer, and the Cape Fear aquifer. Intervening confining units separate the aquifers, except for the Floridan aquifer system and the Tertiary sand aquifer, which together function as a single hydrologic unit.

  20. Hydrologic factors controlling groundwater salinity in northwestern ...

    Indian Academy of Sciences (India)

    The types and ages of the main aquifers in this area are the ... Pleistocene age. The aquifers in the area are recharged by seasonal rainfall of the order of 150 mm/year. The relationship of groundwater salinity against the absolute water ... concept, where the water salinity attains its maximum and minimum limits respectively.


    Directory of Open Access Journals (Sweden)

    Riccardo Petrini


    Full Text Available O, H, B and Sr isotopes were identified from surface-waters, ground-waters and waters percolating in soils at the Pialassa Baiona lagoon and nearby inland areas. The preliminary data demonstrate the occurrence of both conservative mixtures between seawater and freshwaters and cation exchange at the salt/fresh water interface during the intrusion. The O and H isotopes indicate that the freshwater component in the binary mixing had the isotopic features of the rainwater from Apennine catchments. Coupled O-H-B isotopes also show that the major contribution of the moving seawater was confined to the deeper aquifers and some of the soil waters. The Sr isotopes highlight the role of cation exchanges when seawater flushes freshwater aquifers, and allow the recognition of the different components of the solute. Deviations from these processes as revealed by B isotopes are interpreted as the evidence of possible anthropogenic inputs.

  2. Alluvial Aquifer (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  3. Seasonal changes in water quality of the lower ogallala aquifer (United States)

    The Ogallala Aquifer extends beneath eight states in the Great Plains region of North America. It stretches from Texas to South Dakota and is among the largest aquifers in the world. In Texas, extraction of water, primarily for cropland irrigation, far exceeds recharge resulting in a significant dec...

  4. Modeling groundwater levels on the Calera Aquifer Region in Central Mexico using ModFLow. (United States)

    A conceptual model for the Calera Aquifer has been created to represent the aquifer system beneath the Calera Aquifer Region (CAR) in the State of Zacatecas, Mexico. The CAR area was uniformly partitioned into a 500 X 500 m grid generating a high resolution model that represented the natural boundar...

  5. Effluent salinity of pipe drains and tube-wells : a case study from the Indus plain

    NARCIS (Netherlands)

    Kelleners, T.J.


    Keywords: anisotropy, aquifer, desalinization, effluent salinity, groundwater, irrigation, salt-water upconing, soil salinity, stream-function, subsurface drainage

    Irrigated agriculture in arid and semi-arid zones often suffers from waterlogging and salinity problems.

  6. Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir To Evaluate Regional CO2 Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W. Lynn [University Of Kansas Center For Research, Inc. Lawrence, KS (United States); Rush, Jason [University Of Kansas Center For Research, Inc. Lawrence, KS (United States); Raney, Jennifer [University Of Kansas Center For Research, Inc. Lawrence, KS (United States)


    1. Drilled, cored, and logged three wells to the basement and collecting more than 2,700 ft of conventional core; obtained 20 mi2 of multicomponent 3D seismic imaging and merged and reprocessed more than 125 mi2 of existing 3D seismic data for use in modeling CO2- EOR oil recovery and CO2 storage in five oil fields in southern Kansas. 2. Determined the technical feasibility of injecting and sequestering CO2 in a set of four depleted oil reservoirs in the Cutter, Pleasant Prairie South, Eubank, and Shuck fields in southwest Kansas; of concurrently recovering oil from those fields; and of quantifying the volumes of CO2 sequestered and oil recovered during the process. 3. Formed a consortium of six oil operating companies, five of which own and operate the four fields. The consortium became part of the Southwest Kansas CO2-EOR Initiative for the purpose of sharing data, knowledge, and interest in understanding the potential for CO2-EOR in Kansas. 4. Built a regional well database covering 30,000 mi2 and containing stratigraphic tops from ~90,000 wells; correlated 30 major stratigraphic horizons; digitized key wells, including wireline logs and sample logs; and analyzed more than 3,000 drill stem tests to establish that fluid levels in deep aquifers below the Permian evaporites are not connected to the surface and therefore pressures are not hydrostatic. Connectivity with the surface aquifers is lacking because shale aquitards and impermeable evaporite layers consist of both halite and anhydrite. 5. Developed extensive web applications and an interactive mapping system that do the following: a. Facilitate access to a wide array of data obtained in the study, including core descriptions and analyses, sample logs, digital (LAS) well logs, seismic data, gravity and magnetics maps, structural and stratigraphic maps, inferred fault traces, earthquakes, Class I and II disposal wells, and

  7. Kalundborg case study, a feasibility study of CO{sub 2} storage in onshore saline aquifers. CO2STORE[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Michael; Bech, N.; Bidstrup, T.; Christensen, Niels Peter; Vangkilde-Pedersen, T. [GEUS (Denmark); Biede, O. [ENERGI E2 (Denmark)


    The Danish case-study of the CO2STORE project comprises the potential future capture and underground storage of CO{sub 2} from two point sources. These are the coal fired power plant Asnaesvaerket and the Statoil refinery both located in the city of Kalundborg, Denmark. Initial mapping of the storage structure was conducted as part of the EU funded research project GESTCO that was concluded in 2003. The study identified a large underground structure forming a potential, future storage site 15 km to the northeast of the city. Porous sandstones filled with saline water at a depth of approximately 1.500 m form the reservoir. The structure covers approximately 160 km{sup 2} and a preliminary calculation suggests a storage capacity of nearly 900 million tonnes of CO2 equal to more than 150 years of CO{sub 2} emissions from the two point sources. In the Kalundborg case-study, a fictive capture and storage scenario will be formulated and modelled. The scenario is based on experiences learned through the SACS and GESTCO projects. Detailed geological modelling, reservoir simulation, reservoir and cap rock characterisation and risk assessment will be important issues for the case-study. The Geological Survey of Denmark and Greenland (GEUS) is project leader for the Kalundborg case-study. Information on CO{sub 2} emissions from the point sources and technical and economical input for the three scenarios is provided by the industrial partners; ENERGI E2 and Statoil ASA. The scenario is designed only for this case study and does not reflect the strategic plans of ENERGI E2 nor Statoil ASA. Geochemical simulation and modelling studies on reservoir and cap rock were performed at Bureau de Recherches Geologiques et Minieres (BRGM) in France. The CO2STORE project is performed within the European Community supported 5th Framework Programme. (au)

  8. Ozark Aquifer (United States)

    Kansas Data Access and Support Center — These digital maps contain information on the altitude of the base and top, the extent, and the potentiometric surface of the Ozark aquifer in Kansas. The Ozark...

  9. Hydrogeology and geochemistry of aquifers underlying the San Lorenzo and San Leandro areas of the East Bay Plain, Alameda County, California (United States)

    Izbicki, John A.; Borchers, James W.; Leighton, David A.; Kulongoski, Justin T.; Fields, Latoya; Galloway, Devin L.; Michel, Robert L.


    The East Bay Plain, on the densely populated eastern shore of San Francisco Bay, contains an upper aquifer system to depths of 250 feet below land surface and an underlying lower aquifer system to depths of more than 650 feet. Injection and recovery of imported water has been proposed for deep aquifers at two sites within the lower aquifer system. Successful operation requires that the injected water be isolated from surface sources of poor-quality water during storage and recovery. Hydraulic, geochemical, and isotopic data were used to evaluate the isolation of deeper aquifers. Ground-water responses to tidal changes in the Bay suggest that thick clay layers present within these deposits effectively isolate the deeper aquifers in the northern part of the study area from overlying surficial deposits. These data also suggest that the areal extent of the shallow and deep aquifers beneath the Bay may be limited in the northern part of the study area. Despite its apparent hydraulic isolation, the lower aquifer system may be connected to the overlying upper aquifer system through the corroded and failed casings of abandoned wells. Water-level measurements in observation wells and downward flow measured in selected wells during nonpumped conditions suggest that water may flow through wells from the upper aquifer system into the lower aquifer system during nonpumped conditions. The chemistry of water from wells in the East Bay Plain ranges from fresh to saline; salinity is greater than seawater in shallow estuarine deposits near the Bay. Water from wells completed in the lower aquifer system has higher pH, higher sodium, chloride, and manganese concentrations, and lower calcium concentrations and alkalinity than does water from wells completed in the overlying upper aquifer system. Ground-water recharge temperatures derived from noble-gas data indicate that highly focused recharge processes from infiltration of winter streamflow and more diffuse recharge processes from

  10. Potential for saltwater intrusion into the lower Tamiami aquifer near Bonita Springs, southwestern Florida (United States)

    Shoemaker, W. Barclay; Edwards, K. Michelle


    A study was conducted to examine the potential for saltwater intrusion into the lower Tamiami aquifer beneath Bonita Springs in southwestern Florida. Field data were collected, and constant- and variable-density ground-water flow simulations were performed that: (1) spatially quantified modern and seasonal stresses, (2) identified potential mechanisms of saltwater intrusion, and (3) estimated the potential extent of saltwater intrusion for the area of concern. MODFLOW and the inverse modeling routine UCODE were used to spatially quantify modern and seasonal stresses by calibrating a constant-density ground-water flow model to field data collected in 1996. The model was calibrated by assuming hydraulic conductivity parameters were accurate and by estimating unmonitored ground-water pumpage and potential evapotranspiration with UCODE. Uncertainty in these estimated parameters was quantified with 95-percent confidence intervals. These confidence intervals indicate more uncertainty (or less reliability) in the estimates of unmonitored ground-water pumpage than estimates of pan-evaporation multipliers, because of the nature and distribution of observations used during calibration. Comparison of simulated water levels, streamflows, and net recharge with field data suggests the model is a good representation of field conditions. Potential mechanisms of saltwater intrusion into the lower Tamiami aquifer include: (1) lateral inland movement of the freshwater-saltwater interface from the southwestern coast of Florida; (2) upward leakage from deeper saline water-bearing zones through natural upwelling and upconing, both of which could occur as diffuse upward flow through semiconfining layers, conduit flow through karst features, or pipe flow through leaky artesian wells; (3) downward leakage of saltwater from surface-water channels; and (4) movement of unflushed pockets of relict seawater. Of the many potential mechanisms of saltwater intrusion, field data and variable

  11. Lithologic and physicochemical properties and hydraulics of flow in and near the freshwater/saline-water transition zone, San Antonio segment of the Edwards aquifer, south-central Texas, based on water-level and borehole geophysical log data, 1999-2007 (United States)

    Lambert, Rebecca B.; Hunt, Andrew G.; Stanton, Gregory P.; Nyman, Michael B.


    The freshwater zone of the San Antonio segment of the Edwards aquifer in south-central Texas (hereinafter, the Edwards aquifer) is bounded to the south and southeast by a zone of transition from freshwater to saline water (hereinafter, the transition zone). The boundary between the two zones is the freshwater/saline-water interface (hereinafter, the interface), defined as the 1,000-milligrams per liter dissolved solids concentration threshold. This report presents the findings of a study, done by the U.S. Geological Survey in cooperation with the San Antonio Water System, to obtain lithologic properties (rock properties associated with known stratigraphic units) and physicochemical properties (fluid conductivity and temperature) and to analyze the hydraulics of flow in and near the transition zone of the Edwards aquifer on the basis of water-level and borehole geophysical log data collected from 15 monitoring wells in four transects during 1999-2007. No identifiable relation between conductivity values from geophysical logs in monitoring wells in all transects and equivalent freshwater heads in the wells at the times the logs were run is evident; and no identifiable relation between conductivity values and vertical flow in the boreholes concurrent with the times the logs were run is evident. The direction of the lateral equivalent freshwater head gradient and thus the potential lateral flow at the interface in the vicinity of the East Uvalde transect fluctuates between into and out of the freshwater zone, depending on recharge and withdrawals. Whether the prevailing direction on average is into or out of the freshwater zone is not clearly indicated. Equivalent freshwater head data do not indicate a prevailing direction of the lateral gradient at the interface in the vicinity of the Tri-County transect. The prevailing direction on average of the lateral gradient and thus potential lateral flow at the interface in the vicinity of the Kyle transect likely is from the

  12. Beneath our Feet (United States)

    Vernon, Ron


    How much do you know about the rocks beneath your feet--the basic materials of our planet? Their variety and beauty is astounding, especially when viewed through the microscope, where crystals of different minerals and in various arrangements are revealed in exquisite detail. While surface rocks seem so solid, they flow deep inside the earth, and, in this spectacular book, you'll see what rocks that have flowed actually look like. Eminent geologist Ron Vernon reveals the incredible beauty and variety of earth rocks, both under and on the surface. Through breathtaking photographs he captures rocks formed by heating and melting inside the earth, rocks ejected from volcanoes, rocks formed by erosion on the earth's surface, and extraterrestrial rocks that have crashed into our planet. These stunning images are accompanied by clear, nontechnical explanations of the processes underlying the creation of rocks and minerals. No other current book so cogently explains the nature and origin of rocks for nonscientists. Beneath Our Feet: The Rocks of Planet Earth is destined to be a must-have purchase for a wide-ranging audience from professional scientists to amateur rock collectors--indeed anyone interested in natural history.

  13. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Polygon regions depicting saline areas of the Oldsmar permeable zone (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  14. Disposal of carbon dioxide in aquifers in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Winter, E.M.; Bergman, P.D.


    Deep saline aquifers were investigated as potential disposal sites for CO{sub 2}. The capacity of deep aquifers for CO{sub 2} disposal in the U.S. is highly uncertain. A rough estimate, derived from global estimates, is 5,500 Gt of CO{sub 2}. Saline aquifers underlie the regions in the U.S. where most utility power plants are situated. Therefore, approximately 65 percent of CO{sub 2} from power plants could possibly be injected directly into deep saline aquifers below these plants, without the need for long pipelines.

  15. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Zabala, M.E., E-mail: [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires (Argentina); Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina); Manzano, M., E-mail: [Escuela de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas, Universidad Politécnica de Cartagena, P° de Alfonso XIII 52, E-30203 Cartagena (Spain); Vives, L., E-mail: [Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina)


    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO{sub 3}-Ca type, in the middle basin it is HCO{sub 3}-Na, and in the lower basin it is ClSO{sub 4}–NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO{sub 2}, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The

  16. Prototyping and Testing a New Volumetric Curvature Tool for Modeling Reservoir Compartments and Leakage Pathways in the Arbuckle Saline Aquifer: Reducing Uncertainty in CO2 Storage and Permanence

    Energy Technology Data Exchange (ETDEWEB)

    Rush, Jason [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States); Holubnyak, Yevhen [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States); Watney, Willard [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States)


    This DOE-funded project evaluates the utility of seismic volumetric curvature (VC) for predicting stratal and structural architecture diagnostic of paleokarst reservoirs. Of special interest are applications geared toward carbon capture, utilization, and storage (CCUS). VC has been championed for identifying faults (offset <¼ λ) that cannot be imaged by conventional 3-D seismic attributes such as coherence. The objective of this research was to evaluate VC-techniques for reducing uncertainties in reservoir compartmentalization studies and seal risk assessments especially for saline aquifers. A 2000-ft horizontal lateral was purposefully drilled across VC-imaged lineaments—interpreted to record a fractured and a fault-bounded doline—to physically confirm their presence. The 15-mi² study area is located in southeastern Bemis-Shutts Field, which is situated along the crest of the Central Kansas Uplift (CKU) in Ellis County, Kansas. The uppermost Arbuckle (200+ ft) has extensive paleokarst including collapsed paleocaverns and dolines related to exceedingly prolonged pre-Simpson (Sauk–Tippecanoe) and/or pre-Pennsylvanian subaerial exposure. A lateral borehole was successfully drilled across the full extent (~1100 ft) of a VC-inferred paleokarst doline. Triple combo (GR-neutron/density-resistivity), full-wave sonic, and borehole micro-imager logs were successfully run to TD on drill-pipe. Results from the formation evaluation reveal breccias (e.g., crackle, mosaic, chaotic), fractures, faults, vugs (1-6"), and unaffected host strata consistent with the pre-spud interpretation. Well-rounded pebbles were also observed on the image log. VC-inferred lineaments coincide with 20–80-ft wide intervals of high GR values (100+ API), matrix-rich breccias, and faults. To further demonstrate their utility, VC attributes are integrated into a geocellular modeling workflow: 1) to constrain the structural model; 2) to generate facies probability grids, and; 3) to collocate

  17. Indicators: Salinity (United States)

    Salinity is the dissolved salt content of a body of water. Excess salinity, due to evaporation, water withdrawal, wastewater discharge, and other sources, is a chemical sterssor that can be toxic for aquatic environments.

  18. Summary of ground-water hydrology of the Cambrian-Ordovician aquifer system in the northern Midwest, United States: A in Regional aquifer system analysis (United States)

    Young, H.L.


    The Cambrian-Ordovician aquifer system contains very productive aquifers throughout an area of about 161,000 square miles in the northern Midwest. The aquifer system is used extensively for industrial and rural water supplies and is the primary source of water for many municipalities in most of its area of occurrence, except in Indiana, central and southern Illinois, and western Iowa, where the aquifer system contains saline water. About 680 million gallons per day was withdrawn from drilled wells in the aquifer system in 1980.

  19. The High Plains Aquifer, USA: Groundwater development and sustainability (United States)

    Dennehy, K.F.; Litke, D.W.; McMahon, P.B.


    The High Plains Aquifer, located in the United States, is one of the largest freshwater aquifers in the world and is threatened by continued decline in water levels and deteriorating water quality. Understanding the physical and cultural features of this area is essential to assessing the factors that affect this groundwater resource. About 27% of the irrigated land in the United States overlies this aquifer, which yields about 30% of the nation's groundwater used for irrigation of crops including wheat, corn, sorghum, cotton and alfalfa. In addition, the aquifer provides drinking water to 82% of the 2.3 million people who live within the aquifer boundary. The High Plains Aquifer has been significantly impacted by human activities. Groundwater withdrawals from the aquifer exceed recharge in many areas, resulting in substantial declines in groundwater level. Residents once believed that the aquifer was an unlimited resource of high-quality water, but they now face the prospect that much of the water may be gone in the near future. Also, agricultural chemicals are affecting the groundwater quality. Increasing concentrations of nitrate and salinity can first impair the use of the water for public supply and then affect its suitability for irrigation. A variety of technical and institutional measures are currently being planned and implemented across the aquifer area in an attempt to sustain this groundwater resource for future generations. However, because groundwater withdrawals remain high and water quality impairments are becoming more commonplace, the sustainability of the High Plains Aquifer is uncertain.

  20. Submarine springs and coastal karst aquifers: A review (United States)

    Fleury, Perrine; Bakalowicz, Michel; de Marsily, Ghislain


    SummaryThis article reports on current knowledge of coastal karst aquifers, in which conduit flow is dominant, and its aim is to characterise the functioning of these systems which are closely linked to the sea. First, earlier and recent studies of these aquifers are discussed. On the basis of their findings, it can be shown that two essential mechanisms are involved in the functioning of these systems, i.e., aquifer discharge through submarine springs and saline intrusion through conduits open to the sea. Then, the conditions that give rise to these aquifers are described and particular emphasis is placed on the influence of deep karstification when the sea level falls. The base-level variations are attributed to the glaciations or, in the specific case of the Mediterranean, to the salinity crisis in the Messinian period. It is this inherited structure, sometimes containing very deep conduits below sea level, that today conditions the aquifer flow. The flow in the conduits open to the sea depends on the hydraulic head gradient between the aquifer and the sea and is therefore a function of the water density and head losses in the aquifer. This survey of coastal karst aquifers has revealed some common characteristics that show the development and/or functional capacity of their karstic drainage networks. A classification of such systems into three categories is proposed with the aim of assisting in the decision-making concerning potential exploitation of water resources in coastal regions.

  1. Spreading and dissolution of CO2 in horizontal aquifers: theory and experiments (United States)

    MacMinn, C. W.; Neufeld, J. A.; Hesse, M. A.; Huppert, H. E.


    Injection of carbon dioxide into saline aquifers is widely regarded as a promising tool for reducing atmospheric CO2 emissions. An accurate assessment of the post-injection spreading and migration of the CO2 is essential for estimates of storage security, but many of the physical processes controlling CO2 migration are poorly understood. CO2 is buoyant and mobile relative to groundwater at reservoir conditions. This is undesirable because the presence of a pre-existing well or fracture, or the activation of a fault, could lead to leakage into shallower formations. It is well known that the dissolution of CO2 into groundwater increases the density of the groundwater, resulting in convective currents that greatly enhance CO2 dissolution. Once dissolved, the CO2 is considered to be securely stored within the subsurface. Recent numerical and experimental work has led to a greatly improved understanding of the resulting rate of CO2 dissolution. Here, we use analog experiments and simple theoretical models to study dissolution from a plume of CO2 as it spreads upward against the caprock in an aquifer of finite thickness. We show that the interaction between spreading, dissolution, and the finite thickness of the aquifer has a strong influence on the ultimate distribution of the CO2. Experimental results are in good agreement with an existing, unconfined model when dissolution is not limited by the buildup of dissolved CO2 in the aquifer. When the buildup of dissolved CO2 becomes important, experiments show that the dissolved CO2 itself spreads along the bottom of the aquifer as a gravity current. We propose a new confined model that accounts for the spreading of both the free-phase and the dissolved CO2. This model successfully reproduces the characteristic linear retreat of the plume in the confined regime. Buoyant spreading of analog fluids in a tank packed with glass beads (3~mm diameter). Sequences (left: (a)--(d); right: (e)--(f)) are at approximately 0, 8, 34 and

  2. Potential methane reservoirs beneath Antarctica

    NARCIS (Netherlands)

    Wadham, J.L.; Arndt, S.|info:eu-repo/dai/nl/304835706; Tulaczyk, S.; Stibal, M.; Tranter, M.; Telling, J.; Lis, G.P.; Lawson, E.; Ridgwell, A.; Dubnick, A.; Sharp, M.J.; Anesio, A.M.; Butler, C.E.H.


    Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been

  3. Hydrogeology, distribution, and volume of saline groundwater in the southern midcontinent and adjacent areas of the United States (United States)

    Osborn, Noël I.; Smith, S. Jerrod; Seger, Christian H.


    The hydrogeology, distribution, and volume of saline water in 22 aquifers in the southern midcontinent of the United States were evaluated to provide information about saline groundwater resources that may be used to reduce dependency on freshwater resources. Those aquifers underlie six States in the southern midcontinent—Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas—and adjacent areas including all or parts of Alabama, Colorado, Florida, Illinois, Kentucky, Mississippi, Nebraska, New Mexico, South Dakota, Tennessee, and Wyoming and some offshore areas of the Gulf of Mexico. Saline waters of the aquifers were evaluated by defining salinity zones; digitizing data, primarily from the Regional Aquifer-System Analysis Program of the U.S. Geological Survey; and computing the volume of saline water in storage. The distribution of saline groundwater in the southern midcontinent is substantially affected by the hydrogeology and groundwater-flow systems of the aquifers. Many of the aquifers in the southern midcontinent are underlain by one or more aquifers, resulting in vertically stacked aquifers containing groundwaters of varying salinity. Saline groundwater is affected by past and present hydrogeologic conditions. Spatial variation of groundwater salinity in the southern midcontinent is controlled primarily by locations of recharge and discharge areas, groundwater-flow paths and residence time, mixing of freshwater and saline water, and interactions with aquifer rocks and sediments. The volume calculations made for the evaluated aquifers in the southern midcontinent indicate that about 39,900 million acre-feet (acre-ft) of saline water is in storage. About 21,600 million acre-ft of the water in storage is slightly to moderately saline (1,000–10,000 milligrams per liter [mg/L] dissolved solids), and about 18,300 million acre-ft is very saline (10,000–35,000 mg/L dissolved solids). The largest volumes of saline water are in the coastal lowlands (about

  4. Hydrologic factors controlling groundwater salinity in northwestern ...

    Indian Academy of Sciences (India)

    The aim of this article is to assess the main factors influencing salinity of groundwater in the coastal area between El Dabaa and Sidi Barani, Egypt. The types and ages of the main aquifers in this area are the fractured limestone of Middle Miocene, the calcareous sandstone of Pliocene and the Oolitic Limestone of ...

  5. The idol beneath the altar. (United States)

    Clemens, Norman A


    Drawing on the imagery of a Mayan idol hidden beneath the altar of a Catholic mission church imposed on a Mayan city by Spanish conquerors, the author discusses the role of deeply rooted core beliefs that are not always evident on the surface-and the observation that, in clinical practice, things are not always as they seem. Psychotherapists may unconsciously be seen as invading cultural enemies.

  6. Salinity Energy. (United States)

    Schmitt, Walter R.


    Discussed are the costs of deriving energy from the earth's natural reserves of salt. Argues that, as fossil fuel supplies become more depleted in the future, the environmental advantages of salinity power may prove to warrant its exploitation. (TW)

  7. Water quality considerations on the rise as the use of managed aquifer recharge systems widens

    NARCIS (Netherlands)

    Hartog, Niels; Stuijfzand, Pieter


    Managed Aquifer Recharge (MAR) is a promising method of increasing water availability in water stressed areas by subsurface infiltration and storage, to overcome periods of drought, and to stabilize or even reverse salinization of coastal aquifers. Moreover, MAR could be a key technique in making

  8. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation (United States)

    Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.


    Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.

  9. Biscayne aquifer, southeast Florida (United States)

    Klein, Howard; Hull, John E.


    Peak daily pumpage from the highly permeable, unconfined Biscayne aquifer for public water-supply systems in southeast Florida in 1975 was about 500 million gallons. Another 165 million gallons was withdrawn daily for irrigation. Recharge to the aquifer is primarily by local rainfall. Discharge is by evapotranspiration, canal drainage, coastal seepage, and pumping. Pollutants can enter the aquifer by direct infiltration from land surface or controlled canals, septic-tank and other drainfields, drainage wells, and solid-waste dumps. Most of the pollutants are concentrated in the upper 20 to 30 feet of the aquifer; public supply wells generally range in depth from about 75 to 150 feet. Dilution, dispersion, and adsorption tend to reduce the concentrations. Seasonal heavy rainfall and canal discharge accelerate ground-water circulation, thereby tending to dilute and flush upper zones of the aquifer. The ultimate fate of pollutants in the aquifer is the ocean, although some may be adsorbed by the aquifer materials en route to the ocean, and some are diverted to pumping wells. (Woodard-USGS)

  10. Transient slab flattening beneath Colombia (United States)

    Wagner, L. S.; Jaramillo, J. S.; Ramírez-Hoyos, L. F.; Monsalve, G.; Cardona, A.; Becker, T. W.


    Subduction of the Nazca and Caribbean Plates beneath northwestern Colombia is seen in two distinct Wadati Benioff Zones, one associated with a flat slab to the north and one associated with normal subduction south of 5.5°N. The normal subduction region is characterized by an active arc, whereas the flat slab region has no known Holocene volcanism. We analyze volcanic patterns over the past 14 Ma to show that in the mid-Miocene a continuous arc extended up to 7°N, indicating normal subduction of the Nazca Plate all along Colombia's Pacific margin. However, by 6 Ma, we find a complete cessation of this arc north of 3°N, indicating the presence of a far more laterally extensive flat slab than at present. Volcanism did not resume between 3°N and 6°N until after 4 Ma, consistent with lateral tearing and resteepening of the southern portion of the Colombian flat slab at that time.

  11. Continental crust beneath southeast Iceland (United States)

    Torsvik, Trond H.; Amundsen, Hans E. F.; Trønnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjørn


    The magmatic activity (0–16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland—and especially the Öræfajökull volcano—is characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of Sr–Nd–Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2–6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  12. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer and intermediate aquifer system in southwest Florida (United States)

    Sacks, Laura A.; Tihansky, Ann B.


    In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer

  13. Coupled Large Scale Hydromechanical Modelling for Caprock Failure Risk Assessment of CO2 Storage in Deep Saline Aquifers Analyse hydromécanique à grande échelle pour l’évaluation du risque de fracturation de la couverture de stockage du CO2 dans les aquifères profonds

    Directory of Open Access Journals (Sweden)

    Rohmer J.


    Full Text Available This work presents a numerical strategy of large scale hydromechanical simulations to assess the risk of damage in caprock formations during a CO2 injection process. The proposed methodology is based on the development of a sequential coupling between a multiphase fluid flow (TOUGH2 and a hydromechanical calculation code (Code_Aster that enables us to perform coupled hydromechanical simulation at a regional scale. The likelihood of different caprock damage mechanisms can then be evaluated based on the results of the coupled simulations. A scenario based approach is proposed to take into account the effect of the uncertainty of model parameters on damage likelihood. The developed methodology is applied for the caprock failure analysis of deep aquifer of the Dogger formation in the context of the Paris basin multilayered geological system as a demonstration example. The simulation is carried out at a regional scale (100 km considering an industrial mass injection rate of CO2 of 10 Mt/y. The assessment of the stress state after 10 years of injection is conducted through the developed sequential coupling. Two failure mechanisms have been taken into account, namely the tensile fracturing and the shear slip reactivation of pre-existing fractures. To deal with the large uncertainties due to sparse data on the layer formations, a scenariobased strategy is undertaken. It consists in defining a first reference modelling scenario considering the mean values of the hydromechanical properties for each layer. A sensitivity analysis is then carried out and shows the importance of both the initial stress state and the reservoir hydraulic properties on the caprock failure tendency. On this basis, a second scenario denoted “critical” is defined so that the most influential model parameters are taken in their worst configuration. None of these failure criteria is activated for the considered conditions. At a phenomenological level, this study points out three

  14. Application of nitrate and water isotopes to assessment of groundwater quality beneath dairy farms in California (United States)

    Young, M. B.; Harter, T.; Kendall, C.; Silva, S. R.


    In California’s Central Valley, nitrate contamination of drinking water wells is a significant concern, and there are multiple potential sources of nitrate in this area including septic discharge, synthetic and manure fertilizers, and concentrated animal feeding operations. Dairies represent the majority of animal feeding operations in California, and have been shown to be potential sources of nitrate, salinity, dissolved organic carbon, and pathogens to groundwater. Within individual dairies, different land use areas including barns and freestalls, corrals, liquid waste lagoons, and fields for forage crops (often fertilized with animal waste, synthetic fertilizer, or both), each of which may have different impacts on the groundwater. In this study, groundwater samples were collected from two dairies in the San Joaquin Valley, where the water table is fairly shallow, and from five dairies in the Tulare Lake Basin, where the water table is much deeper. In each dairy, nitrate isotopes, water isotopes, nutrient concentrations, and other chemical and physical parameters were measured in monitoring wells located within different land use areas of the dairies. Across all sampled dairy wells, δ15N-NO3 ranged from +3.2 to +49.4‰, and δ18O-NO3 ranged from -3.1 to +19.2‰. Mean nitrate concentrations, δ15N-NO3, and δ18O-NO3 were significantly higher in the northern (San Joaquin Valley) dairy wells in comparison to the southern (Tulare Lake Basin) dairy wells. No consistent differences in nitrate isotopic compositions were found between the different land use areas, and large spatial variability in both nitrate concentrations and nitrate isotopic composition was observed within most of the individual dairies. These results emphasize the challenges associated with monitoring groundwater beneath dairies due to high spatial heterogeneity in the aquifer and groundwater constituents. At four of the seven dairies, δ18O and δ2H of the ground water in wells located

  15. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.


    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  16. Characteristics of Point Recharge in Karst Aquifers

    Directory of Open Access Journals (Sweden)

    Nara Somaratne


    Full Text Available Karstic groundwater basins are characterized by both point and diffuse recharge. This paper describes the hydrologic characteristics of point recharge and their influence on recharge estimation for four groundwater basins. Point recharge is highly transient and may occur in relatively short-time periods, yet is capable of recharging a large volume of water, even from a single extreme rainfall event. Preferential groundwater flows are observed in karst aquifers with local fresher water pockets of low salinity that develop around point recharge sources. Measurable fresh water plumes develop only when a large quantity of surface water enters the aquifer as a point recharge. In fresh water plumes, the difference in chloride concentrations in diffuse and point recharge zones decreases as the plumes become enriched through mixing. The relative contributions to total recharge from point sources using the measured gap between groundwater and rainwater chloride in the chloride vs. δ18O plot is not necessarily indicative of sinkholes not directly recharging the aquifer. In karst aquifers, recharge estimation methods based on groundwater age distribution; average annual rainfall and basin average chloride in the conventional chloride mass balance (CMB method are questionable due to theoretical limitations and key assumptions of these methods not being met. In point recharge dominant groundwater basins, application of: watertable fluctuation, numerical groundwater modelling, Darcy flow calculation or water budget methods are more suitable for recharge estimation as they are independent of the particular mode of recharge. The duality of the recharge mechanism in karst aquifers suggests that modification to the CMB method may be required to include both point and diffuse recharge components.

  17. EPA Sole Source Aquifers (United States)

    U.S. Environmental Protection Agency — Information on sole source aquifers (SSAs) is widely used in assessments under the National Environmental Policy Act and at the state and local level. A national...

  18. Identifying aquifer type in fractured rock aquifers using harmonic analysis. (United States)

    Rahi, Khayyun A; Halihan, Todd


    Determining aquifer type, unconfined, semi-confined, or confined, by drilling or performing pumping tests has inherent problems (i.e., cost and complex field issues) while sometimes yielding inconclusive results. An improved method to cost-effectively determine aquifer type would be beneficial for hydraulic mapping of complex aquifer systems like fractured rock aquifers. Earth tides are known to influence water levels in wells penetrating confined aquifers or unconfined thick, low-porosity aquifers. Water-level fluctuations in wells tapping confined and unconfined aquifers are also influenced by changes in barometric pressure. Harmonic analyses of water-level fluctuations of a thick (~1000 m) carbonate aquifer located in south-central Oklahoma (Arbuckle-Simpson aquifer) were utilized in nine wells to identify aquifer type by evaluating the influence of earth tides and barometric-pressure variations using signal identification. On the basis of the results, portions of the aquifer responded hydraulically as each type of aquifer even though there was no significant variation in lithostratigraphy. The aquifer type was depth dependent with confined conditions becoming more prevalent with depth. The results demonstrate that harmonic analysis is an accurate and low-cost method to determine aquifer type. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  19. Modeling Carbon Dioxide Storage in the Basal Aquifer of Canada (United States)

    Huang, X.; Bandilla, K.; Celia, M. A.; Bachu, S.; Rebscher, D.; Zhou, Q.; Birkholzer, J. T.


    Reducing anthropogenic carbon dioxide (CO2) emissions into the atmosphere is a key challenge for society. Geological CO2 storage in deep saline aquifers is one of the most promising solutions to decrease carbon emissions. One such deep saline aquifer targeted for industrial-scale CO2 injection is the Basal Aquifer of Prairie Region in Canada and Northern Plains in the US. The aquifer stretches across three provinces (Alberta, Saskatchewan and Manitoba) and three states (Montana, North and South Dakota), and covers approximately 1,320,000 km2 (Figure 1). A large number of stationary CO2 sources lie within the foot print of the aquifer, and several CO2 injection projects are in the planning stage. In order for CO2 sequestration to be successful, the injected CO2 needs to stay isolated from the atmosphere for many centuries. Mathematical models are useful tools to assess the fate of both the injected CO2 and the resident brine. These models vary in complexity from fully three-dimensional multi-phase numerical reservoir simulators to simple semi-analytical solutions. In this presentation we compare a cascade of models ranging from single-phase semi-analytic solutions to multi-phase numerical simulators to determine the ability of each of these approaches to predict the pressure response in the injection formation. The majority of the models in this study are based on vertically-integrated governing equations; such models are computationally efficient, allow for reduced data input, and are broadly consistent with the flow physics. The petro-physical parameters and geometries used in this study are based on the geology of the Canadian section of the Basal Aquifer. Approximately ten injection sites are included in the model, with locations and injection rates based on planned injection operations. The predicted areas of review of the injection operations are used as a comparison metric among the different simulation approaches. Areal extent of the Basal Aquifer (*Source

  20. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer. (United States)

    Gray, Cassie J; Engel, Annette S


    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface.

  1. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA (United States)

    Brown, C.J.; Misut, P.E.


    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water

  2. Practically Saline

    Directory of Open Access Journals (Sweden)

    Jonathan Schroeder MD


    Full Text Available Introduction. In December 2014, the Food and Drug Administration issued a recall of all Wallcur simulation products due to reports of their use in clinical practice. We present a case of septic shock and multiorgan failure after the accidental intravenous infusion of a nonsterile Wallcur simulation product. Case. The patient presented with symptoms of rigors and dyspnea occurring immediately after infusion of Wallcur Practi-0.9% saline. Initial laboratory evidence was consistent with severe septic shock and multiorgan dysfunction. His initial lactic acid level was 9 mmol/L (reference range = 0.5-2.2, and he had evidence of acute kidney injury and markers of disseminated intravascular coagulation. All 4 blood culture bottles isolated multidrug-resistant Empedobacter brevis. The patient recovered from his illness and was discharged with ciprofloxacin therapy per susceptibilities. Discussion. This patient represents the first described case of severe septic shock associated with the infusion of a Wallcur simulation product. Intravenous inoculation of a nonsterile fluid is rare and exposes the patient to unusual environmental organisms, toxins, or unsafe fluid characteristics such as tonicity. During course of treatment, we identified the possible culprit to be a multidrug-resistant isolate of Empedobacter brevis. We also discuss the systemic failures that led to this outbreak.

  3. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.; Macdonald, Q.C.; Schubert, S.E.


    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changes in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.

  4. Ground-water resources and simulation of flow in aquifers containing freshwater and seawater, Island County, Washington (United States)

    Sapik, D.B.; Bortleson, Gilbert C.; Drost, B.W.; Jones, M.A.; Prych, E.A.


    Aquifers in Island County, Washington, that are intruded by seawater from Puget Sound contain chloride concentrations that exceed 100 mg/L. Chloride concentrations exceeded 100 mg/L in 24 % of the wells that were drilled below sea level and sampled in August 1981, but most of the chloride concentrations did not exceed 1,000 mg/L. Groundwater occurs in glacial deposits that have a maximum thickness of 3,000 ft; the deposits were divided into five aquifers and five confining units. Four overlapping digital models were calibrated, using time-averaged data, to simulate three-dimensional steady flow of fresh groundwater in multiple aquifers containing freshwater and seawater separated by a sharp interface. Model simulations indicate that most of the recharge is discharged from aquifers C and D as springs below sea levels, and only a small fraction of the recharge moves downward below aquifer C. Simulations also indicate that aquifers beneath the islands are not recharged by groundwater that moves from the mainland through aquifers beneath Puget Sound except in the area of northeast Camano Island. Between Whidbey and Camano Islands, the freshwater-seawater interface intersects the bottom of Puget Sound and prevents movement of fresh groundwater between the two islands. (USGS)

  5. Pressure generation beneath a new thermoplastic cast. (United States)

    Mohler, L R; Pedowitz, R A; Byrne, T P; Gershuni, D H


    A new cast immobilizer that is heat-shrunk to conform to an injured extremity was examined. The purpose of these studies was to compare pressures beneath the thermoplastic cast with those beneath fiberglass casts on a laboratory model and on the forearms of human volunteers. Pressures measured beneath fiberglass casts on metal cylinders averaged 36 mm Hg. Thermoplastic casts on the smaller cylinder that allowed 42% shrinkage produced a mean pressure of 25 mm Hg; those placed on the larger cylinder that allowed 17% shrinkage produced a mean pressure of 39 mm Hg. Pressures measured on the forearms of healthy volunteers averaged 22 mm Hg beneath fiberglass casts and 31 mm Hg beneath the thermoplastic casts. These pressures were considerably less than pressures that have been shown to occlude the microcirculation of the skin. Acute compartment syndromes result from swelling within a limited space and remain a serious concern clinically when swelling is anticipated under any type of constraining cast. The results of these studies indicate that the new cast should not produce a greater risk of circulatory compromise to the limb than previously used fiberglass materials.

  6. Phreatophytes under stress: transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment (United States)

    Glenn, Edward P.; Nagler, Pamela L.; Morino, Kiyomi; Hultine, Kevin


    Background and aims: We sought to understand the environmental constraints on an arid-zone riparian phreatophtye, saltcedar (Tamarix ramosissima and related species and hybrids), growing over a brackish aquifer along the Colorado River in the western U.S. Depth to groundwater, meteorological factors, salinity and soil hydraulic properties were compared at stress and non-stressed sites that differed in salinity of the aquifer, soil properties and water use characteristics, to identify the factors depressing water use at the stress site.

  7. Physical model simulations of seawater intrusion in unconfined aquifer

    Directory of Open Access Journals (Sweden)

    Tanapol Sriapai


    Full Text Available The objective of this study is to simulate the seawater intrusion into unconfined aquifer near shoreline and to assessthe effectiveness of its controlling methods by using scaled-down physical models. The intrusion controlled methods studiedhere include fresh water injection, saltwater extraction, and subsurface barrier. The results indicate that under natural dynamicequilibrium between the recharge of fresh water and the intrusion well agree with the Ghyben-Herzberg mathematical solution.Fresh water pumping from the aquifer notably move the fresh-salt water interface toward the pumping well, depending on thepumping rates and the head differences (h between the aquifer recharge and the salt water level. The fresh water injectionmethod is more favorable than the salt water extraction and subsurface barrier method. The fresh water injection rate of about10% of the usage rate can effectively push the interface toward the shoreline, and keeping the pumping well free of salinity.

  8. Metagenomic Assessment of a Dynamic Microbial Population from Subseafloor Aquifer Fluids in the Cold, Oxygenated Crust (United States)

    Tully, B. J.; Heidelberg, J. F.; Kraft, B.; Girguis, P. R.; Huber, J. A.


    The oceanic crust contains the largest aquifer on Earth with a volume approximately 2% of the global ocean. Ongoing research at the North Pond (NP) site, west of the Mid-Atlantic Ridge, provides an environment representative of oxygenated crustal aquifers beneath oligotrophic surface waters. Using subseafloor CORK observatories for multiple sampling depths beneath the seafloor, crustal fluids were sampled along the predicted aquifer fluid flow path over a two-year period. DNA was extracted and sequenced for metagenomic analysis from 22 crustal fluid samples, along with the overlying bottom. At broad taxonomic groupings, the aquifer system is highly dynamic over time and space, with shifts in dominant taxa and "blooms" of transient groups that appear at discreet time points and sample depths. We were able to reconstruct 194 high-quality, low-contamination bacterial and archaeal metagenomic-assembled genomes (MAGs) with estimated completeness >50% (429 MAGs >20% complete). Environmental genomes were assigned to phylogenies from the major bacterial phyla, putative novel groups, and poorly sampled phylogenetic groups, including the Marinimicrobia, Candidate Phyla Radiation, and Planctomycetes. Biogeochemically relevant processes were assigned to MAGs, including denitrification, dissimilatory sulfur and hydrogen cycling, and carbon fixation. Collectively, the oxic NP aquifer system represents a diverse, dynamic microbial habitat with the metabolic potential to impact multiple globally relevant biogeochemical cycles, including nitrogen, sulfur, and carbon.

  9. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Polygon regions depicting saline areas within low-permeability rocks near base of the Oldsmar permeable zone (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  10. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lance Prothro


    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  11. Magmatic underplating beneath the Rajmahal Traps: Gravity ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The early Cretaceous thermal perturbation beneath the eastern continental margin of the Indian shield resulted in the eruption of the Rajmahal Traps. To understand the impact of the magmatic process that originated in the deep mantle on the lower crustal level of the eastern Indian shield and adjoining Bengal basin the ...

  12. Thickness of the surficial aquifer, Delmarva Peninsula, Maryland and Delaware (United States)

    Denver, Judith M.; Nardi, Mark R.


    ). Stream incision through the surficial aquifer into older fine-textured sediments is more common in the northern part of the Peninsula where confined aquifers and their confining beds subcrop beneath the surficial aquifer. The potential for nitrate transport is greatest where relatively coarse sediments of the unconfined surficial aquifer (such as sand and gravel), are present beneath uplands and streams. Where these sediments are truncated and the streambed is incised into underlying fine-textured sediments, the potential for nitrate transport is much less and typically limited to stream-bank seeps that flow across the floodplain. In parts of south-central Maryland and southern Delaware the surficial aquifer sediments are complex with surficial sandy sediments generally less than 20 ft thick (indicated as 19 ft on the map). They include the Parsonsburg Sand and some surficial sandy facies of the Omar Fm. underlain by predominantly fine-textured sediments of the Walston Silt and Omar Fm. (Denney and others, 1979; Owens and Denney, 1979). Even though the surficial aquifer is relatively thin in this area, extensive ditching of flat poorly drained farmland allows seasonal transport of nitrate from groundwater to streams when the water table is above the base of the ditches (Lindsey and others, 2003). Geologic units of the Coastal Lowlands that surround the Peninsula are relatively thin in many areas and are primarily composed of fine-grained estuarine deposits with some coarse-textured sediments, in particular remnant beach-ridge and dune deposits (Ator and others, 2005). The Kent Island Fm. (Owens and Denney, 1986), which is part of the Coastal Lowlands on the western side of the Peninsula, has predominantly fine-grained sediments and is not included in the surficial aquifer in Maryland, as defined by Bachman and Wilson (1984); the surficial aquifer is shown to have 0 ft thickness on the map in the area mapped as Kent Island Fm. Also shown on the map as 0 ft thickness are

  13. Selected Well Data Used in Determining Ground-Water Availability in the North and South Carolina Atlantic Coastal Plain Aquifer Systems (United States)


    lesser amounts of marine limestone that range in age from Jurassic to post-Miocene (Winner and Coble, 1996). The Fall Line marks the approximate...near Aiken; Cahill (1982) described the hydrology of the low-level radioactive solid-waste burial site near Barnwell; Park (1985) described the...aquifers in the Grand Strand; Dale and Park (1999) studied the irrigation-supply potential of the shallow aquifer beneath Hilton Head Island; and

  14. Revisiting a classification scheme for U.S.-Mexico alluvial basin-fill aquifers. (United States)

    Hibbs, Barry J; Darling, Bruce K


    Intermontane basins in the Trans-Pecos region of westernmost Texas and northern Chihuahua, Mexico, are target areas for disposal of interstate municipal sludge and have been identified as possible disposal sites for low-level radioactive waste. Understanding ground water movement within and between these basins is needed to assess potential contaminant fate and movement. Four associated basin aquifers are evaluated and classified; the Red Light Draw Aquifer, the Northwest Eagle Flat Aquifer, the Southeast Eagle Flat Aquifer, and the El Cuervo Aquifer. Encompassed on all but one side by mountains and local divides, the Red Light Draw Aquifer has the Rio Grande as an outlet for both surface drainage and ground water discharge. The river juxtaposed against its southern edge, the basin is classified as a topographically open, through-flowing basin. The Northwest Eagle Flat Aquifer is classified as a topographically closed and drained basin because surface drainage is to the interior of the basin and ground water discharge occurs by interbasin ground water flow. Mountains and ground water divides encompass this basin aquifer on all sides; yet, depth to ground water in the interior of the basin is commonly >500 feet. Negligible ground water discharge within the basin indicates that ground water discharges from the basin by vertical flow and underflow to a surrounding basin or basins. The most likely mode of discharge is by vertical, cross-formational flow to underlying Permian rocks that are more porous and permeable and subsequent flow along regional flowpaths beneath local ground water divides. The Southeast Eagle Flat Aquifer is classified as a topographically open and drained basin because surface drainage and ground water discharge are to the adjacent Wildhorse Flat area. Opposite the Eagle Flat and Red Light Draw aquifers is the El Cuervo Aquifer of northern Chihuahua, Mexico. The El Cuervo Aquifer has interior drainage to Laguna El Cuervo, which is a phreatic

  15. Aquifer test at well SMW-1 near Moenkopi, Arizona (United States)

    Carruth, Rob; Bills, Donald J.


    The Hopi villages of Lower Moencopi and Upper Moenkopi are on the Hopi Indian Reservation south of Tuba City in northern Arizona. These adjacent Hopi villages, located west and north of the confluence of Pasture Canyon Wash and Moenkopi Wash, are dependent on groundwater withdrawals from three wells that penetrate the N aquifer and from two springs that discharge from the N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and is composed of thick beds of sandstone between less permeable layers of siltstone and mudstone. The fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells; however, the aquifer is moderately productive at yields generally less than 25 gallons per minute in the study area. In recent years, the water level has declined in the three public-supply wells and the flow from the springs has decreased, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. In addition to the challenge imposed by declining groundwater levels, the water-supply wells and springs are located about 2 miles downgradient from the Tuba City Landfill site where studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are higher than regional concentrations in the N aquifer. In August 2008, the U.S. Geological Survey, in cooperation with the Hopi Tribe, conducted an aquifer test on well SMW-1, designed to help the Hopi Tribe determine the potential yield and water quality of the N aquifer south of Moenkopi Wash as a possible source of additional water supply. Well SMW-1 was drilled south of Moenkopi Wash to a depth of 760 feet below land surface before being backfilled and cased to about 300 feet. The well penetrates, in descending order, the Navajo Sandstone and the Kayenta Formation, both units of the N aquifer. The pre-test water level in the well was 99.15 feet below land

  16. Efficiency of joint use of MRS and VES to characterize coastal aquifer in Myanmar (United States)

    Vouillamoz, J. M.; Chatenoux, B.; Mathieu, F.; Baltassat, J. M.; Legchenko, A.


    The productivity and the water quality of coastal aquifers can be highly heterogeneous in a complex environment. The characterization of these aquifers can be improved by hydrogeological and complementary geophysical surveys. Such an integrated approach is developed in a non-consolidated coastal aquifer in Myanmar (previously named Burma). A preliminary hydrogeological survey is conducted to know better the targeted aquifers. Then, 25 sites are selected to characterize aquifers through borehole drillings and pumping tests implementation. In the same sites, magnetic resonance soundings (MRS) and vertical electrical soundings (VES) are carried out. Geophysical results are compared to hydrogeological data, and geophysical parameters are used to characterize aquifers using conversion equations. Finally, combining the analysis of technical and economical impacts of geophysics, a methodology is proposed to characterize non-consolidated coastal aquifers. Depth and thickness of saturated zone is determined by means of MRS in 68% of the sites (evaluated with 34 soundings). The average accuracy of confined storativity estimated with MRS is ± 6% (evaluated over 7 pumping tests) whereas the average accuracy of transmissivity estimation with MRS is ± 45% (evaluated using 15 pumping tests). To reduce uncertainty in VES interpretation, the aquifer geometry estimated with MRS is used as a fixed parameter in VES inversion. The accuracy of groundwater electrical conductivity evaluation from 15 VES is enough to estimate the risk of water salinity. In addition, the maximum depth of penetration of the MRS depends on the rocks' electrical resistivity and is between 20 and 80 m at the study area.

  17. Hydrogeophysical methods for analyzing aquifer storage and recovery systems. (United States)

    Minsley, Burke J; Ajo-Franklin, Jonathan; Mukhopadhyay, Amitabha; Morgan, Frank Dale


    Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site-specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity ∼500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time-domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  18. Flow and geochemistry of groundwater beneath a back-barrier lagoon: The subterranean estuary at Chincoteague Bay, Maryland, USA (United States)

    Bratton, J.F.; Böhlke, J.K.; Krantz, D.E.; Tobias, C.R.


    To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8??m thick extending more than 1700??m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50??years in both fresh and brackish waters as deep as 23??m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.

  19. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5 (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.


    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  20. Investigation of groundwater recirculation for the removal of RDX from the Pantex Plant perched aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Woods, A.L. [ed.; Barnes, D.L. [Amarillo National Resource Center for Plutonium, TX (United States); Boles, K.M.; Charbeneau, R.J. [Univ. of Texas, Austin, TX (United States); Black, S.; Rainwater, K. [Texas Tech Univ., Lubbock, TX (United States). Water Resources Center


    The Pantex Plant near Amarillo, Texas, is a US Department of Energy (DOE) facility that has been in operation since 1942. Past and present operations at Pantex include the creation of chemical high explosives components for nuclear weapons and assembly and disassembly of nuclear weapons. The Pantex Plant is underlain by the Ogallala aquifer, which in this area, consists of the main water-bearing unit and a perched water zone. These are separated by a fine-grained zone of low permeability. Multiple contaminant plumes containing high explosive (HE) compounds have been detected in the perched aquifer beneath the plant. The occurrence of these contaminants is the result of past waste disposal practices at the facility. RDX is an HE compound, which has been detected in the groundwater of the perched aquifer at significant concentrations. A pilot-scale, dual-phase extraction treatment system has been installed at one location at the plant, east of Zone 12, to test the effectiveness of such a system on the removal of these contaminants from the subsurface. A tracer test using a conservative tracer, bromide (Br), was conducted at the treatment site in 1996. In addition to the bromide, RDX and water elevations in the aquifer were monitored. Using data from the tracer test and other relevant data from the investigations at Pantex, flow and contaminant transport in the perched aquifer were simulated with groundwater models. The flow was modeled using MODFLOW and the transport of contaminants in the aqueous phase was modeled using MT3D. Modeling the perched aquifer had been conducted to characterize the flow in the perched aquifer; estimate RDX retardation in the perched aquifer; and evaluate the use of groundwater re-circulation to enhance the extraction of RDX from the perched aquifer.

  1. Capturing the flow beneath water waves. (United States)

    Nachbin, A; Ribeiro-Junior, R


    Recently, the authors presented two numerical studies for capturing the flow structure beneath water waves (Nachbin and Ribeiro-Junior 2014 Disc. Cont. Dyn. Syst. A 34 , 3135-3153 (doi:10.3934/dcds.2014.34.3135); Ribeiro-Junior et al. 2017 J. Fluid Mech. 812 , 792-814 (doi:10.1017/jfm.2016.820)). Closed orbits for irrotational waves with an opposing current and stagnation points for rotational waves were some of the issues addressed. This paper summarizes the numerical strategies adopted for capturing the flow beneath irrotational and rotational water waves. It also presents new preliminary results for particle trajectories, due to irrotational waves, in the presence of a bottom topography.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).

  2. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    DEFF Research Database (Denmark)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.


    Liquid water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground penet...

  3. The Ocean Boundary Layer beneath Hurricane Frances (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.


    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  4. EPA Region 1 Sole Source Aquifers (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  5. High Temperature Aquifer Storage (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas


    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  6. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization: 2. Seepage of saltwater through semi-confining layers (United States)

    Rubin, H.; Buddemeier, R.W.


    This paper presents a generalized basic study that addresses practical needs for an understanding of the major mechanisms involved in the mineralization of groundwater in the Great Bend Prairie aquifer in south- central Kansas. This Quaternary alluvial aquifer and associated surface waters are subject to contamination by saltwater, which in some areas seeps from the deeper Permian bedrock formation into the overlying freshwater aquifer through semiconfining layers. A simplified conceptual model is adopted. It incorporates the freshwater aquifer whose bottom is comprised of a semiconfining layer through which a hydrologically minor but geochemically important saline water discharge seeps into the aquifer. A hierarchy of approximate approaches is considered to analyze the mineralization processes taking place in the aquifer. The recently developed top specified boundary layer (TSBL) approach is very convenient to use for the initial characterization of these processes, and is further adapted to characterization of head-driven seepage through semi-confining layers. TSBL calculations indicate that the seeping saline water may create two distinct new zones in the aquifer: (1) a completely saline zone (CSZ) adjacent to the semiconfining bottom of the aquifer, and (2) a transition zone (TZ) which develops between the CSZ and the freshwater zone. Some possible scenarios associated with the various mineralization patterns are analyzed and discussed.

  7. Groundwater management options in North district of Delhi, India: A groundwater surplus region in over-exploited aquifers

    Directory of Open Access Journals (Sweden)

    Shashank Shekhar


    New hydrological insights in the region: Three distinct hydrogeological domains are identified with subtle differences in groundwater occurrence. Insights are obtained in stream–aquifer interaction and baseflow to the Yamuna River is quantified. The salinity enrichment in groundwater has been attributed to water logging in clay rich formations under semi arid condition. The viability of limited dewatering of shallow aquifers and its replenishment by enhanced recharge from surface runoff and flood waters during the monsoon period have been established.

  8. Specific yield, High Plains aquifer (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents specific-yield ranges in the High Plains aquifer of the United States. The High Plains aquifer underlies 112.6 million acres (176,000...

  9. Potential hydrologic effects of ground-water withdrawals from the Dakota Aquifer, southwestern Kansas (United States)

    Watts, Kenneth R.


    , similar to water in the High Plains aquifer, in the subcrop area. However, in areas distant from the subcrop, water in the Dakota aquifer is a sodium bicarbonate type water with dissolved-solids concentrations in excess of 500 milligrams per liter. In some parts of the study area, water from the Dakota presents high to very high salinity and sodium hazards to crops and soil when it is used for irrigation. The Cheyenne aquifer locally contains mineralized water, as indicated by the response of resistivity curves on geophysical logs. Hydrographs of wells completed in the Dakota aquifer indicate that the Dakota and High Plains aquifers are hydraulically connected in and near subcrop areas. Locally, the Dakota aquifer has converted from confined to unconfined conditions as a result of declining water levels due to pumpage from the Dakota aquifer and as the result of depletion of the High Plains aquifer in subcrop areas. Gradual declines in the potentiometric surface of the Dakota aquifer have occurred since the onset of pumpage in the 1960's; however, water levels in some wells have risen during the late 1970's. A digital computer model of three-dimensional groundwater flow was developed to simulate hydrologic conditions of a five-layer hydrologic system for 1975-82 conditions. The major components of the simulated 1975-82 water budget were well discharge from the High Plains aquifer and loss of ground water from storage in the High Plains aquifer. Although downward leakage from the High Plains aquifer in the study area represented only 18,000 acre-feet of the 1,365,000 acre-feet discharged from the High Plains aquifer during 1982, it was a major source of inflow to the Dakota aquifer. Changes in storage in the Dakota aquifer in the study area during 1982 were about 5,000 acre-feet. A baseline projection was made using 1982 simulated hydraulic heads from the calibrated model and 1982 rates of pumpage from both the High Plains and the Dakota aquifer

  10. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics


    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  11. Mapping crustal thinning beneath the Eastern Pyrenees (United States)

    Diaz, Jordi; Chevrot, Sebastien; Verges, Jaume; Sylvander, Matthieu; Ruiz, Mario; Antonio-Vigil, Amanda


    The eastern termination of the Pyrenees is a complex region marked by two large tectonic events, the building of the Pyrenees during the Alpine orogeny and the Neogene extensional processes associated to the rotation of the Sardinia-Corsica block and the opening of the Valencia Trough. This complex tectonic history has left major imprints in crustal structures. Previous studies based on gravity data and active seismic profiles have documented a crustal thinning from 40-45 km about 80 km to the west of the Mediterranean coastline to less than 25 km beneath the eastern termination of the Pyrenees. To progress in the knowledge of the geometry of this transition, two passive seismic profiles have been acquired from mid 2015 to late 2016 within the OROGEN project, an academic-industrial collaboration between CNRS-Total-BRGM and CSIC. Up to 38 broad-band stations were deployed along two orthogonal lines, with an interstation spacing close to 10 km. First results of receiver function migration on the E-W profile suggest a smooth Moho thinning smoothly from 40 km beneath the western termination of the line to 23 km close to the coastline. The NNE-SSW profile shows a clearly defined Moho beneath Iberia, slightly deepening from 32 to 35 km northwards, a 28-30 km thick crust underneath the North Pyrenean Front Thrust and a complex geometry in the Axial Zone. Data from natural events located in the Gulf of Roses and near the intersecting point of the profiles have been recorded along the lines, hence allowing to produce wide angle reflection/refraction profiles providing additional constraints on the geometry of the crust/mantle boundary in the Eastern Pyrenees. These new results will be integrated with the available geophysical and geologic information for a more accurate geodynamical interpretation of the results. (Additional founding by the MISTERIOS project, CGL2013-48601-C2-1-R)

  12. Alluvial aquifers in the Mzingwane catchment: Their distribution, properties, current usage and potential expansion (United States)

    Moyce, William; Mangeya, Pride; Owen, Richard; Love, David

    The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the

  13. Tracing aquifer-surface water and aquifer-aquifer interactions using a multi-tracer approach (United States)

    Demuth, Myriam; Stumpp, Christine


    Conserving a good groundwater quality is a major challenge because of its importance as a reservoir for drinking water. Influxes from surface water, especially input of nitrate, can deteriorate groundwater quality. The objective of our project was to i) investigate aquifer-surface water interactions and ii) trace aquifer-aquifer interactions concerning the separation between three porous aquifers. The investigation area is located in Bavaria, Southern Germany and contains three aquifers A-C (quaternary sediment) that were described as three separated flow systems to date. Two rivers 1 -2 drain the investigation area. The sampling campaign (Apr-Oct 2012) included three sampling locations along the streams, six wells in aquifer A and three wells each in aquifers B and C. The water samples were analyzed for concentration of anions (Cl-, SO42-, NO3-), cations (Na+, K+, Mg2+, Ca2+), electrical conductivity, water temperature, pH, oxygen and stable isotopes of water (^18O, ^2H), which were used as environmental tracers. Our results showed that only one out of three groundwater wells close to river 1 indicated river water infiltration into the groundwater due to elevated concentration of sulfate and depleted concentration of calcium and magnesium compared to the rest of the aquifer. The water chemistry of all other groundwater wells at river 1 and all sites at river 2 did not show any similarity with river water. By that, we assume that no river water infiltrated into groundwater but we cannot exclude groundwater infiltration into the rivers. Contrary to prior knowledge assumptions, aquifer-aquifer interaction took place in all three monitored aquifers. The results of stable isotopes of water and ions indicated that aquifers B and C are constantly connected to aquifer A at certain sites. The monitoring of groundwater and river water sites in the investigation area points to a heterogeneous groundwater flow regime particularly in aquifer A. Regarding the conservation of a

  14. Hydrologic assessment of the shallow groundwater flow system beneath the Shinnecock Nation tribal lands, Suffolk County, New York (United States)

    Noll, Michael L.; Rivera, Simonette L.; Busciolano, Ronald J.


    Defining the distribution and flow of shallow groundwater beneath the Shinnecock Nation tribal lands in Suffolk County, New York, is a crucial first step in identifying sources of potential contamination to the surficial aquifer and coastal ecosystems. The surficial or water table aquifer beneath the tribal lands is the primary source of potable water supply for at least 6 percent of the households on the tribal lands. Oyster fisheries and other marine ecosystems are critical to the livelihood of many residents living on the tribal lands, but are susceptible to contamination from groundwater entering the embayment from the surficial aquifer. Contamination of the surficial aquifer from flooding during intense coastal storms, nutrient loading from fertilizers, and septic effluent have been identified as potential sources of human and ecological health concerns on tribal lands.The U.S. Geological Survey (USGS) facilitated the installation of 17 water table wells on and adjacent to the tribal lands during March 2014. These wells were combined with other existing wells to create a 32-well water table monitoring network that was used to assess local hydrologic conditions. Survey-grade, global-navigation-satellite systems provided centimeter-level accuracy for positioning wellhead surveys. Water levels were measured by the USGS during May (spring) and November (fall) 2014 to evaluate seasonal effects on the water table. Water level measurements were made at high and low tide during May 2014 to identify potential effects on the water table caused by changes in tidal stage (tidal flux) in Shinnecock Bay. Water level contour maps indicate that the surficial aquifer is recharged by precipitation and upgradient groundwater flow that moves from the recharge zone located generally beneath Sunrise Highway, to the discharge zone beneath the tribal lands, and eventually discharges into the embayment, tidal creeks, and estuaries that bound the tribal lands to the east, south, and

  15. Multidisciplinary approach to identify aquifer-peatland connectivity (United States)

    Larocque, Marie; Pellerin, Stéphanie; Cloutier, Vincent; Ferlatte, Miryane; Munger, Julie; Quillet, Anne; Paniconi, Claudio


    In southern Quebec (Canada), wetlands sustain increasing pressures from agriculture, urban development, and peat exploitation. To protect both groundwater and ecosystems, it is important to be able to identify how, where, and to what extent shallow aquifers and wetlands are connected. This study focuses on peatlands which are especially abundant in Quebec. The objective of this research was to better understand aquifer-peatland connectivity and to identify easily measured indicators of this connectivity. Geomorphology, hydrogeochemistry, and vegetation were selected as key indicators of connectivity. Twelve peatland transects were instrumented and monitored in the Abitibi (slope peatlands associated with eskers) and Centre-du-Quebec (depression peatlands) regions of Quebec (Canada). Geomorphology, geology, water levels, water chemistry, and vegetation species were identified/measured on all transects. Flow conditions were simulated numerically on two typical transects. Results show that a majority of peatland transects receives groundwater from a shallow aquifer. In slope peatlands, groundwater flows through the organic deposits towards the peatland center. In depression peatlands, groundwater flows only 100-200 m within the peatland before being redirected through surface routes towards the outlet. Flow modeling and sensitivity analysis have identified that the thickness and hydraulic conductivity of permeable deposits close to the peatland and beneath the organic deposits influence flow directions within the peatland. Geochemical data have confirmed the usefulness of total dissolved solids (TDS) exceeding 14 mg/L as an indicator of the presence of groundwater within the peatland. Vegetation surveys have allowed the identification of species and groups of species that occur mostly when groundwater is present, for instance Carex limosa and Sphagnum russowii. Geomorphological conditions (slope or depression peatland), TDS, and vegetation can be measured

  16. Salinity Influence on Interfacial Area, Wettability, and NAPL Recovery (United States)

    Zhong, L.; Valenta, M. M.


    Wettability, the tendency of rock or sediment particle surfaces to be preferentially wet by one fluid phase, has a strong influence on the distribution and flow of immiscible fluids in oil reservoirs or aquifers. The efficiency of oil and non-aqueous phase liquid (NAPL) recovery processes and the displacement and production of oil/NAPL by fluids injected into the reservoir or aquifer depend on the wetting properties of the rock/sediment particle surfaces. Effects of salinity on wettability and residual oil saturation during water flooding are of particular interest in the petroleum industry with some reservoirs. It was indicated that the residual oil saturation may be reduced significantly by flooding with low salinity water instead of seawater or brine. This observation may be also true in NAPL recovery from contaminated aquifers. NAPL recovery enhancement may be achieved by manipulating the salinity of the remedial fluid. Two sets of 8 core-flooding column experiments have been completed, using decane and Alaska North Slope (ANS) crude oil as surrogate NAPLs. Unconsolidated sand packs were used as representative porous media. NAPL removal was conducted by flushing column at residual NAPL saturation using water with salinity ranging from 0% to 8% wt of NaCl. The NAPL-water interfacial area (anw, cm-1) was measured and used as an indicator for the wettability characteristics of the packed sand. Sodium Dodecyl Benzene Sulfonate (SDBS) was used as an interfacial partitioning tracer and Pentafluoro Benzoic acid (PFBA) was used as a non-reactive and non-partitioning tracer. NAPL was imbibed into an initially water saturated column, using positive displacement methods. NAPL was then flushed out using water at certain salinity. When the column attained a residual NAPL saturation after each water flushing displacement, the partitioning and conservative tracer experiments were conducted separately, to characterize the specific NAPL-water interfacial areas, and the

  17. Tracing thermal aquifers of El Chichón volcano-hydrothermal system (México) with 87Sr/ 86Sr, Ca/Sr and REE (United States)

    Peiffer, L.; Taran, Y. A.; Lounejeva, E.; Solís-Pichardo, G.; Rouwet, D.; Bernard-Romero, R. A.


    The volcano-hydrothermal system of El Chichón volcano, Chiapas, Mexico, is characterized by numerous thermal manifestations including an acid lake, steam vents and boiling springs in the crater and acid and neutral hot springs and steaming ground on the flanks. Previous research on major element chemistry reveals that thermal waters of El Chichón can be divided in two groups: (1) neutral waters discharging in the crater and southern slopes of the volcano with chloride content ranging from 1500 to 2200 mg/l and (2) acid-to-neutral waters with Cl up to 12,000 mg/l discharging at the western slopes. Our work supports the concept that each group of waters is derived from a separate aquifer (Aq. 1 and Aq. 2). In this study we apply Sr isotopes, Ca/Sr ratios and REE abundances along with the major and trace element water chemistry in order to discriminate and characterize these two aquifers. Waters derived from Aq. 1 are characterized by 87Sr/ 86Sr ratios ranging from 0.70407 to 0.70419, while Sr concentrations range from 0.1 to 4 mg/l and Ca/Sr weight ratios from 90 to 180, close to average values for the erupted rocks. Waters derived from Aq. 2 have 87Sr/ 86Sr between 0.70531 and 0.70542, high Sr concentrations up to 80 mg/l, and Ca/Sr ratio of 17-28. Aquifer 1 is most probably shallow, composed of volcanic rocks and situated beneath the crater, within the volcano edifice. Aquifer 2 may be situated at greater depth in sedimentary rocks and by some way connected to the regional oil-gas field brines. The relative water output (l/s) from both aquifers can be estimated as Aq. 1/Aq. 2-30. Both aquifers are not distinguishable by their REE patterns. The total concentration of REE, however, strongly depends on the acidity. All neutral waters including high-salinity waters from Aq. 2 have very low total REE concentrations (< 0.6 μg/l) and are characterized by a depletion in LREE relative to El Chichón volcanic rock, while acid waters from the crater lake (Aq. 1) and acid

  18. Contrasting definitions for the term `karst aquifer' (United States)

    Worthington, Stephen R. H.; Jeannin, Pierre-Yves; Alexander, E. Calvin; Davies, Gareth J.; Schindel, Geary M.


    It is generally considered that karst aquifers have distinctly different properties from other bedrock aquifers. A search of the literature found five definitions that have been proposed to differentiate karst aquifers from non-karstic aquifers. The five definitions are based upon the presence of solution channel networks, hydraulic conductivities >10-6 m/s, karst landscapes, channels with turbulent flow, and caves. The percentage of unconfined carbonate aquifers that would classify as `karst' ranges from 50%.

  19. Stressed aquifers in the Lower Segura basin and the Vinalopó basin in Easter Spain

    Directory of Open Access Journals (Sweden)

    Andrés Sahuquillo


    Full Text Available The carbonate aquifers of the Lower Segura Basin and the Vinalopó basin, along with some other granular aquifers are being exploited well above its average recharge for almost half a century. That causes a continuous decline of groundwater levels in most of the region, up to 5m/year in some cases and more than 300m from their initial situation in some areas, thus increasing the cost of groundwater pumping. The drop in levels produced the drying of springs and wetlands and increased salinity in some areas caused by the presence of saline formations. Against these problems is the increase in wealth created by the availability of water since the beginning of the intense exploitation of aquifers. The Water Framework Directive requires that aquifers being by 2015 in good quantitative and qualitative conditions, which is not possible, and neither would be delaying this date several decades. Simple analyses indicate that even eliminating pumping; groundwater would take between 100 and 1000years to recover. Several methods have been used for determining groundwater recharge and mathematical models that reproduce aquifer’s behaviour and could be used as valid tools for its management. The role that aquifers can play in the water resource management is discussed.

  20. The significance of geochemistry and microbiology on reducing aquifer permeability during air sparging

    Energy Technology Data Exchange (ETDEWEB)

    Peramaki, M.P. [Leggette, Brashears and Graham, Inc., St. Paul, MN (United States)


    Air sparging is an in-situ, saturated-zone treatment technology that is commonly considered for the remediation of sites contaminated with volatile organic compounds (VOCs). The technology involves injecting air into a contaminated aquifer at a position beneath the deepest portion of the impacted area. As the air passes through an aquifer, it volatilizes VOCs that exist in interstitial spaces as nonaqueous-phase liquid (NAPL), have been dissolved in ground water and have adsorbed to saturated soil. The contaminants are transferred to the vadose zone, via air channels, where vapors are collected by a soil-vapor extraction system for treatment. Air sparging also oxygenates the aquifer, which can enhance the biodegradation of aerobically-degradable contaminants. The injection of air into ground water can have major effects on the geochemistry of an aquifer. Ground-water sample analyses and detailed monitoring of pilot-scale tests yield significant insight into the geochemical changes that occur in an aquifer subjected to air sparging. Anaerobic (reducing) conditions are rapidly changed to aerobic (oxidizing) conditions, as evidenced by changes in redox potential, dissolved iron concentration and groundwater conductivity. The pH and temperature of ground water adjacent to the air sparging well also rises, sometimes as much as two standard pH units and 15 degrees Celsius, respectively.

  1. GPR Phase Response to Fracture Saline Tracers (United States)

    Tsoflias, G. P.; Becker, M.


    Flow in fractured rock is highly heterogeneous and difficult to predict. Groundwater, geothermal and hydrocarbon resource development requires knowledge of fracture fluid flow properties. Geophysical methods such as seismic, electrical and electromagnetic, have been used to image fracture systems. Ground penetrating radar (GPR) has been shown to image fractures and monitor saline tracers in groundwater aquifers. Previous studies have considered primarily the amplitude response of GPR signals. In this work we examine the phase response of GPR in a series of controlled field experiments spanning over a decade. We compare field observations to analytical models and FDTD numerical simulations of the phase response of GPR signals to saline tracers in fractures. We show that changes in the electrical conductivity of fracture fluid cause predictable and detectable phase changes in reflected and transmitted GPR signals through fractures. Lower frequency signals (MHz range) show greater sensitivity to fluid electrical conductivity changes, while being relatively insensitive to fracture aperture. Phase changes over time (time lapse) are used to image channeled flow through discrete fractures and to monitor tracer breakthrough. Although GPR is used extensively in near-surface groundwater investigations, deployment in boreholes can allow adaptation of the technology to monitor saline tracers in hydrocarbon and geothermal systems.

  2. Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes (United States)

    Afanasyev, Andrey; Blundy, Jon; Melnik, Oleg; Sparks, Steve


    Many active or dormant volcanoes show regions of high electrical conductivity at depths of a few kilometres beneath the edifice. We explore the possibility that these regions represent lenses of high-salinity brine separated from a single-phase magmatic fluid containing H2O and NaCl. Since chloride-bearing fluids are highly conductive and have an exceptional capacity to transport metals, these regions can be an indication of an active hydrothermal ore-formation beneath volcanoes. To investigate this possibility we have performed hydrodynamic simulations of magma degassing into permeable rock. In our models the magma source is located at 7 km depth and the fluid salinity approximates that expected for fluids released from typical arc magmas. Our model differs from previous models of a similar process because it is (a) axisymmetric and (b) includes a static high-permeability pathway that links the magma source to the surface. This pathway simulates the presence of a volcanic conduit and/or plexus of feeder dykes that are typical of most volcanic systems. The presence of the conduit leads to a number of important hydrodynamic consequences, not observed in previous models. Importantly, we show that an annular brine lens capped by crystallised halite is likely to form above an actively degassing sub-volcanic magma body and can persist for more than 250 kyr after degassing ceases. Parametric analysis shows that brine lenses are more prevalent when the fluid is released at temperatures above the wet granite solidus, when magmatic fluid salinity is high, and when the high-permeability pathway is narrow. The calculated depth, form and electrical conductivity of our modelled system shares many features with published magnetotelluric images of volcano subsurfaces. The formation and persistence of sub-volcanic brine lenses has implications for geothermal systems and hydrothermal ore formation, although these features are not explored in the presented model.

  3. Salinity and water quality

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.


    The impact of salinity on greenhouse grown crops, especially when grown in substrate systems, differs from the impact of salinity on crops grown under field conditions. The most striking difference between greenhouse and field conditions is the overall much higher concentrations of nutrients in

  4. Bioremediation of RDX in the vadose zone beneath the Pantex Plant

    Energy Technology Data Exchange (ETDEWEB)

    Shull, T.L.; Speitel, G.E. Jr.; McKinney, D.C. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering


    The presence of dissolved high explosives (HE), in particular RDX and HMX, is well documented in the perched aquifer beneath the Pantex Plant, but the distribution of HE in the vadose zone has not yet been well defined. Although current remediation activities focus on the contamination in the perched aquifer, eventually regulatory concern is likely to turn to the residual contamination in the vadose zone. Sources of HE include the infiltration of past wastewater discharges from several HE-processing facilities through the ditch drainage system and leachate from former Landfill 3. With limited existing data on the HE distribution in the vadose zone and without preventive action, it must be assumed that residual HE could be leached into infiltrating water, providing a continuing supply of contamination to the perched aquifer. The purpose of this project was to more closely examine the fate and transport of HE in the vadose zone through mathematical modeling and laboratory experimentation. In particular, this report focuses on biodegradation as one possible fate of HE. Biodegradation of RDX in the vadose zone was studied because it is both present in highest concentration and is likely to be of the greatest regulatory concern. This study had several objectives: determine if indigenous soil organisms are capable of RDX biodegradation; determine the impact of electron acceptor availability and nutrient addition on RDX biodegradation; determine the extent of RDX mineralization (i.e., conversion to inorganic carbon) during biodegradation; and estimate the kinetics of RDX biodegradation to provide information for mathematical modeling of fate and transport.

  5. Global assessment of coastal aquifer state and its vulnerability respect to Sea Water Intrusion. Application to several Mediterranean Coastal Aquifers. (United States)

    Baena, Leticia; Pulido-Velazquez, David; Renau-Pruñonosa, Arianna; Morell, Ignacio


    In this research we propose a method for a global assessment of coastal aquifer state and its vulnerability to Sea Water Intrusion (SWI). It is based on two indices, the MART index, which summarize the global significance of the SWI phenomenon, and the L_GALDIT for a lumped assessment of the vulnerability to SWI. Both of them can be useful as a tool to assess coastal groundwater bodies in risk of not achieving good status in accordance with the Water Framework Directive (WFD, 2000) and to identify possible management alternative to reduce existing impacts. They can be obtained even from a reduced number of data (in the MART case only depend on the geometry and available aquifer state data) with simple calculations, which have been implemented in a general GIS tool that can be easily applied to other case studies. The MART index in an aquifer is related with the total mass of chloride in the aquifer due to sea water intrusion and can be obtained by simple linear operations of volume and concentrations that can be deduced from a schematic conceptual cross-section approach (orthogonal to the shore line) defined to summarize the intrusion volume in the aquifer. At a certain historical time, this representative aquifer cross-section can be defined in a systhematic way from the aquifer geometry, the specific yield, and the hydraulic head and chloride concentration fields that can be deduced from the available information by using appropriate interpolation methods. Following the proposed procedure we will finally obtain a summary of the historical significance of the SWI in an aquifer at different spatial resolution: 3D salinity concentration maps, 2D representative conceptual cross-section of intrusion and the MART lumped significance index. The historical evolution of the MART can be employed to perform a global assessment of the resilience and trends of global significance of the SWI in an aquifer. It can be useful to compare the significance of intrusion problems in

  6. Bubble streams rising beneath an inclined surface (United States)

    Bird, James; Brasz, Frederik; Kim, Dayoung; Menesses, Mark; Belden, Jesse


    Bubbles released beneath a submerged inclined surface can tumble along the wall as they rise, dragging the surrounding fluid with them. This effect has recently regained attention as a method to mitigate biofouling in marine environment, such as a ship hull. It appears that the efficacy of this approach may be related to the velocity of the rising bubbles and the extent that they spread laterally as they rise. Yet, it is unclear how bubble stream rise velocity and lateral migration depend on bubble size, flow rate, and inclination angle. Here we perform systematic experiments to quantify these relationships for both individual bubble trajectories and ensemble average statistics. Research supported by the Office of Naval Research under Grant Number award N00014-16-1-3000.

  7. Salinity in rose production

    Directory of Open Access Journals (Sweden)

    Michele Reis


    Full Text Available The rose is one of the most important ornamental plants in the world. However, the cultivation systems used for roses often impose salt stress. Saline conditions occur naturally in some regions or by human activity in others with use of low quality water or excessive fertilizer application. In general, roses are considered sensitive to salinity. However, tolerance levels can be different among roses species and cultivars. Therefore, studies are needed that take into account characteristics of each species and how the exposure to salinity occurs. Management of water and nutrients can be important tools for mitigating the effects of high salt concentrations. Also, advances in biotechnology can be used for a better understanding of the physiological responses to salinity and to develop more salt tolerant rose cultivars. Thus, this paper aims to review the progress made and future prospects of salinity tolerance in commercial rose production.

  8. Remote sensing of salinity (United States)

    Thomann, G. C.


    The complex dielectric constant of sea water is a function of salinity at 21 cm wavelength, and sea water salinity can be determined by a measurement of emissivity at 21 cm along with a measurement of thermodynamic temperature. Three aircraft and one helicopter experiments using two different 21 cm radiometers were conducted under different salinity and temperature conditions. Single or multiple ground truth measurements were used to calibrate the data in each experiment. It is inferred from these experiments that accuracies of 1 to 2%/OO are possible with a single surface calibration point necessary only every two hours if the following conditions are met--water temperatures above 20 C, salinities above 10%/OO, and level plane flight. More frequent calibration, constraint of the aircraft's orientation to the same as it was during calibration, and two point calibration (at a high and low salinity level) rather than single point calibration may give even better accuracies in some instances.

  9. Different effects of temperature and salinity on permeability reduction by fines migration in Berea sandstone

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Kjøller, Claus; Riis, Jacob Fabricius


    Hot water injection into geothermal aquifers is considered in order to store energy seasonally. Berea sandstone is often used as a reference formation to study mechanisms that affect permeability in reservoir sandstones. Both heating of the pore fluid and reduction of the pore fluid salinity can...

  10. Detecting slab structure beneath the Mediterranean (United States)

    Miller, Meghan S.; Sun, Daoyuan; Piana Agostinetti, Nicola


    The presence of subducted slabs in the Mediterranean has been well documented with seismic tomography, however, these images, which are produced by smoothed, damped inversions, underestimate the sharpness of the structures. The position and extent of the slabs and the presence possible tears or gaps in the subducted lithosphere are still debated, yet the shape and location these structures are important for kinematic reconstructions and evolution of the entire subduction zone system. Extensive distribution of broadband seismic instrumentation in the Mediterranean (Italian National Seismic Network in Italy and the NSF-PICASSO project in Spain and Morocco) has allowed us to use alternative methodologies to detect the position of the slabs and slab tears beneath the Central and Western Mediterranean. Using S receiver functions we are able to identify S-to-p conversions from the bottom of the subducted slab and a lack of these signals where there are gaps or tears in the slab. We also analyze broadband waveforms for changes in P wave coda from deep (> 300 km depth) local earthquakes. The waveform records for stations in southern Italy and around the Betic-Rif show large amplitude, high frequency (f > 5 Hz) late arrivals with long coda after relatively low-frequency onset. High frequency arrivals are the strongest from events whose raypaths travel within the slab to the stations where they are recorded allowing for mapping of where the subducted material is located within the upper mantle. These two methods, along with inferring the slab position from fast P-wave velocity perturbations in tomography and intermediate depth seismicity, provide additional geophysical evidence to aid in interpretation of the complex, segmented slab structure beneath the Mediterranean.

  11. Shear wave anisotropy beneath the Tibetan Plateau (United States)

    McNamara, Daniel E.; Owens, Thomas J.; Silver, Paul G.; Wu, Frances T.


    Eleven broadband digital seismic stations were deployed across the central Tibetan Plateau in the first extensive passive-source experiment attempted within the Tibetan Plateau. One year of recording resulted in 186 event-station pairs which we analyze to determine the characteristics of shear wave splitting in the upper mantle beneath the array. Measurements of the fast polarization direction (phi) and delay time (delta-t) for SKS and direct S arrivals reveal systematic variations along the north-south oriented array. In the north central region of the plateau, very large delay times are observed at three stations, the largest of which is BUDO with delta-t = 2.4 s. However, at TUNL, which is off the northern edge of the plateau and 110 km from BUDO, and at sites in the south central plateau, delta-t decreases by nearly a factor of 3. We also observe a systematic rotation of phi from about 45 deg (NE) to 90 deg (E-W) from south to north along the array. A previously identified zone of inefficient Sn propagation correlates well with our region of large delta-t observations. The large delay times suggest that a relatively high number of anisotropic crystals are preferentially alligned within the mantle-lid, beneath the north central portion of the Tibetan Plateau. In most cases, fast polarization directions appear to be parallel to surface geologic features suggesting as much as 200 km of the upper mantle has been involved in the collisional deformation that has produced the Tibetan Plateau.

  12. Identification of palaeo-seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Río de la Plata littoral (Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, L., E-mail: [Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata - UNLP, Calle 64 y Diag. 113, 1900 La Plata, Buenos Aires (Argentina); Carol, E. [Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata - UNLP, Calle 64 y Diag. 113, 1900 La Plata, Buenos Aires (Argentina); Kruse, E. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cátedra de Hidrología General de la Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), Calle 64 #3, 1900 La Plata, Buenos Aires (Argentina)


    The hydrochemistry of minor elements and traces such as bromide, lithium, strontium, uranium and selenium, together with the chemical analysis of major ions, has been used in the study of salinization process. This process occurs in a semi-confined aquifer that corresponds to a Pliocene–Pleistocene fluvial environment. The semi-confined aquifer is located in the littoral of the cities of Ensenada and Berisso, in the region of the middle Río de la Plata estuary, Argentina. Groundwater salinization was detected in the semi-confined aquifer in the coastal plain area, with salt contents that increase from the loess plain towards the river. The content of major ions that predominate in sea water (Cl{sup −}, Na{sup +} and Mg{sup 2+}), as well as the Cl{sup −}/Br{sup −} and U vs. Cl{sup −} ratios, demonstrates that such salinization is related to sea water, which shows no correspondence with estuary water. In the salinized area, Li, Sr and Se enrichments occur, and are used as tracers of the average time that a substance remains in solution in sea water in the aquifer. The study of such minor ions together with the geological evolution of the area made it possible to recognize that the salt water in the semi-confined aquifer corresponds to a palaeo-intrusion of sea water associated with the Pleistocene–Holocene ingressions caused by the climate changes occurring during the Quaternary. - Highlights: • The semi-confined aquifer in a sector of the Río de la Plata estuary is salinized. • Saline content is higher in the aquifer than in the estuary. • Minor elements indicate the occurrence of palaeo-seawater intrusion. • Palaeo-seawater intrusion may be associated with interglacial fluctuations.

  13. Dynamic perennial firn aquifer on an Arctic glacier (United States)

    Christianson, Knut; Kohler, Jack; Alley, Richard B.; Nuth, Christopher; Pelt, Ward J. J.


    Ice-penetrating radar and GPS observations reveal a perennial firn aquifer (PFA) on a Svalbard ice field, similar to those recently discovered in southeastern Greenland. A bright, widespread radar reflector separates relatively dry and water-saturated firn. This surface, the phreatic firn water table, is deeper beneath local surface elevation maxima, shallower in surface lows, and steeper where the surface is steep. The reflector crosscuts snow stratigraphy; we use the apparent deflection of accumulation layers due to the higher dielectric permittivity below the water table to infer that the firn pore space becomes progressively more saturated as depth increases. Our observations indicate that PFAs respond rapidly (subannually) to surface forcing, and are capable of providing significant input to the englacial hydrology system.

  14. The Impact of Integrated Aquifer Storage and Recovery and Brackish Water Reverse Osmosis (ASRRO on a Coastal Groundwater System

    Directory of Open Access Journals (Sweden)

    Steven Eugenius Marijnus Ros


    Full Text Available Aquifer storage and recovery (ASR of local, freshwater surpluses is a potential solution for freshwater supply in coastal areas, as is brackish water reverse osmosis (BWRO of relatively shallow groundwater in combination with deeper membrane concentrate disposal. A more sustainable and reliable freshwater supply may be achieved by combining both techniques in one ASRRO system using multiple partially penetrating wells (MPPW. The impact of widespread use of ASRRO on a coastal groundwater system was limited based on regional groundwater modelling but it was shown that ASRRO decreased the average chloride concentration with respect to the autonomous scenario and the use of BWRO. ASRRO was successful in mitigating the local negative impact (saltwater plume formation caused by the deep disposal of membrane concentrate during BWRO. The positive impacts of ASRRO with respect to BWRO were observed in the aquifer targeted for ASR and brackish water abstraction (Aquifer 1, but foremost in the deeper aquifer targeted for membrane concentrate disposal (Aquifer 2. The formation of a horizontal freshwater barrier was found at the top of both aquifers, reducing saline seepage. The disposal of relatively fresh concentrate in Aquifer 2 led to brackish water outflow towards the sea. The net abstraction in Aquifer 1 enforced saltwater intrusion, especially when BWRO was applied. The conclusion of this study is that ASRRO can provide a sustainable alternative for BWRO.

  15. A detailed look beneath the surface: Evidence of a surface reconstruction beneath a capping layer

    Energy Technology Data Exchange (ETDEWEB)

    Krull, D., E-mail: [Lehrstuhl für Experimentelle Physik I and DELTA, Dortmund University of Technology, Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Tesch, M.F. [University of Applied Sciences Münster, Stegerwaldstr. 39, 48565 Steinfurt (Germany); Schönbohm, F.; Lühr, T.; Keutner, C.; Berges, U. [Lehrstuhl für Experimentelle Physik I and DELTA, Dortmund University of Technology, Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Mertins, H.-Ch. [University of Applied Sciences Münster, Stegerwaldstr. 39, 48565 Steinfurt (Germany); Westphal, C. [Lehrstuhl für Experimentelle Physik I and DELTA, Dortmund University of Technology, Otto-Hahn-Str. 4, 44221 Dortmund (Germany)


    Highlights: • Demonstration of a detailed look into internal interface structures. • Close-up view to an internal surface beneath a capping layer. • Resolving of inter-diffusion layers. • Imaging of phase-transition (local layers). • Demonstration of achieving magnetic information of an interlayer. - Abstract: Many physical effects are strongly depending on the composition of the interfaces between separating layers. Hence, the knowledge of the interfacial characteristics such as structure, chemical bonds, or magnetic properties of the corresponding materials is essential for an understanding and optimization of these effects. This study reports on a combined magnetic and structural analysis using X-ray photoelectron diffraction (XPD) and transverse magneto-optical Kerr effect (T-MOKE). The information depth of these methods is demonstrated by investigating the uppermost GaAs(001) layer beneath a Fe-film and the interfacial regimes of Fe/GaAs(001) beneath an MgO capping layer. Iron was prepared on a clean GaAs(001) surface and a GaAs(001)-(4 × 2)-reconstructed surface. Beneath the Fe-film, the (4 × 2)-reconstruction is not lifted, which is clearly shown by the diffraction pattern of the GaAs(4 × 2)-Fe surface. It is shown that Fe inter-diffusion, resulting in an amorphous interface, is almost prevented by the Ga-rich reconstruction. The magneto-optical measurements with T-MOKE clearly demonstrated the Fe-interlayer in a ferromagnetic state. We find no evidence for magnetic properties neither within the signal of the GaAs-substrate nor the MgO-film.

  16. Tidal Influence on Behaviour of a Coastal Aquifer Adjacent to a Low-Relief Estuary (United States)

    Mao, X.; Enot, P.; Barry, D. A.; Li, L.; Binley, A.


    Tide-induced groundwater flow will influence the degree of salt-water intrusion and contaminant transport in an unconfined coastal aquifer. However, the magnitude of such influence is uncertain, especially for a mildly sloping beach. Here a costal aquifer adjacent to a low-relief estuary at Ardeer (Scotland) is investigated both with field monitoring and numerical modelling, in order to ascertain the tidal influence on the groundwater dynamics, salt water intrusion, and chemical migration to the estuary. A field survey and aquifer monitoring were carried out to acquire data on the aquifer geology, water table fluctuations and salinity distributions. The observed groundwater fluctuations were asymmetric and skewed in time. Analysis revealed that the semi-diurnal fluctuations were not efficiently filtered out in the area near the beach, although their magnitude decreased greatly further inland. The measured salinity distributions indicated that salt-water intrusion occurred both in the bottom part of the estuary and near the beach surface. A numerical model (SEAWAT) was used to simulate flow processes in the cross-section perpendicular to the estuary. Results show that the simulated groundwater table fluctuation was in good agreement with the collected data. The case with a vertical beach (an extreme condition opposite to a low-relief beach) was also simulated for the purpose of comparison. It was found that tidal fluctuations affected significantly the hydrodynamics in the aquifer. Especially for the mildly sloping beach, a circulation cell was formed below the beach when the groundwater was retreating to the estuary, a feature that did not appear in the vertical beach case. Within the aquifer, the asymmetry in water table fluctuations was captured by the simulation with the mildly sloping beach, but was less obvious in the vertical beach simulation. Comparison of the predicted salinity distributions in the aquifers shows that the mild beach slope enhanced salt

  17. A detailed look beneath the surface: Evidence of a surface reconstruction beneath a capping layer (United States)

    Krull, D.; Tesch, M. F.; Schönbohm, F.; Lühr, T.; Keutner, C.; Berges, U.; Mertins, H.-Ch.; Westphal, C.


    Many physical effects are strongly depending on the composition of the interfaces between separating layers. Hence, the knowledge of the interfacial characteristics such as structure, chemical bonds, or magnetic properties of the corresponding materials is essential for an understanding and optimization of these effects. This study reports on a combined magnetic and structural analysis using X-ray photoelectron diffraction (XPD) and transverse magneto-optical Kerr effect (T-MOKE). The information depth of these methods is demonstrated by investigating the uppermost GaAs(001) layer beneath a Fe-film and the interfacial regimes of Fe/GaAs(001) beneath an MgO capping layer. Iron was prepared on a clean GaAs(001) surface and a GaAs(001)-(4 × 2)-reconstructed surface. Beneath the Fe-film, the (4 × 2)-reconstruction is not lifted, which is clearly shown by the diffraction pattern of the GaAs(4 × 2)-Fe surface. It is shown that Fe inter-diffusion, resulting in an amorphous interface, is almost prevented by the Ga-rich reconstruction. The magneto-optical measurements with T-MOKE clearly demonstrated the Fe-interlayer in a ferromagnetic state. We find no evidence for magnetic properties neither within the signal of the GaAs-substrate nor the MgO-film.

  18. Heterogeneity and Stream-Aquifer Interaction in an Unconsolidated Aquifer (United States)

    McElwee, C. D.; Healey, J. M.


    In north central Kansas the Republican River and its associated alluvial sediments are important regional surface and groundwater supplies. A test site, adjacent to the Republican River, has been established within the porous alluvial sediments to study stream-aquifer interaction and aquifer heterogeneity. This is potentially important research for understanding how to maintain a desired stream flow in the presence of withdrawals from the stream and the aquifer. The site installation consists of seven observation wells located along a line perpendicular to the river channel and centered about a productive irrigation well. In addition to water level data, several geophysical techniques (direct push electrical conductivity, ground penetrating radar, and shallow seismic methods) have been used at this site to characterize the aquifer. The results of the geophysical methods are reported in another paper at this meeting. Water level data collected over a two-week period shows two consecutive irrigation cycles. Each cycle consists of two days of intensive pumping followed by five days of recovery. Several significant elements of stream-aquifer systems can be seen in the data. The water level data demonstrates a regional water level decline in the alluvium that mimics stream gage data located up and down stream from the site, thereby confirming stream-aquifer interaction. Most of the observation wells located symmetrically around the irrigation well show the normal asymmetry expected for a river acting as a specified head boundary. However, heterogeneity causes one pair of symmetric wells to behave differently. Hydraulic data analysis with an automated program (SuprPumpII) demonstrates a degree of heterogeneity within the alluvial sediments not evident from descriptive geologic drilling logs or geophysical logs. A time-drawdown plot of a symmetric pair of observation wells, 310W and 310E, shows an atypical response of the aquifer during early pumping times due to

  19. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge. (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali


    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  20. The occurrence and behavior of radium in saline formation water of the U.S. Gulf Coast region. (United States)

    Kraemer, T.F.; Reid, D.F.


    Ra was measured in deep saline formation waters produced from a variety of US Gulf Coast subsurface environments, including oil and gas reservoirs, and water-producing geopressured aquifers. A strong positive correlation was found between formation-water salinity and Ra activity, resulting from the interaction of formation water with aquifer matrix. Ra isotopes enter the fluid phase after being produced by the decay of parent elements U and Th on and within the solid matrix. The processes believed to be primarily responsible for transfering Ra from matrix to formation water are chemical leaching and alpha -particle recoil. Factors controlling the observed salinity-Ra relationship may be one or a combination of the following: 1) ion exchange; 2) increased solubility of matrix silica surrounding Ra atoms, coupled with a salinity-controlled rate of re-equilibration of silica between solution and quartz grains; and 3) the equilibration of Ra in solution with detrital baryte within the aquifer. No difference was found in the brine-Ra relation in water produced from oil or gas wells and water produced from wells penetrating only water-bearing aquifers, although the relation was more highly correlated for water-bearing aquifers than hydrocarbon-containing reservoirs.-P.Br.

  1. Early warning of freshwater salinization due to upward brine displacement by species transport simulations combined with a hydrochemical genesis model (United States)

    Langer, Maria; Kühn, Michael


    Shallow groundwater resources could be possibly affected by intruding brines, which are displaced along hydraulically conductive faults as result of subsurface activities like CO2 injection. To avoid salinization of potable freshwater aquifers an early detection of intruding saline water is necessary, especially in regions where an initial geogenic salinization already exists. Our study is based on work of Tillner et al. [1] and Langer et al. [2] who investigated the influence of permeable fault systems on brine displacement for the prospective storage site Beeskow-Birkholz in the Northeast German Basin. With a 3D regional scale model considering the deep groundwater system, they demonstrated that the existence of hydraulically conductive faults is not necessarily an exclusion criterion for potential injection sites, because salinization of shallower aquifers strongly depends on the effective damage zone volume, the initial salinity distribution and overlying reservoirs [2], while permeability of fault zones does not influence salinization of shallower aquifers significantly [1]. Here we extracted a 2D cross section regarding the upper 220 m of the study area mainly represented by shallow freshwater aquifers, but also considering an initial geogenic salinization [3]. We took flow rates of the intruding brines from the previous studies [2] and implemented species transport simulations with the program code SHEMAT [4]. Results are investigated and interpreted with the hydrochemical genesis model GEBAH [5] which has been already applied as early warning of saltwater intrusions into freshwater aquifers and surface water [6]. GEBAH allows a categorization of groundwater by the ion ratios of the dissolved components and offers a first indicative determination for an existence and the intensity of saline water intrusion in shallow groundwater aquifer, independent of the concentration of the solution. With our model we investigated the migration of saline water through a

  2. Microgravity methods for characterization of groundwater-storage changes and aquifer properties in the karstic Madison aquifer in the Black Hills of South Dakota, 2009-12 (United States)

    Koth, Karl R.; Long, Andrew J.


    A study of groundwater storage in the karstic Madison aquifer in the Black Hills of South Dakota using microgravity methods was conducted by the U.S. Geological Survey in cooperation with West Dakota Water Development District, South Dakota Department of Environment and Natural Resources, and Lawrence County. Microgravity measurements from 2009 to 2012 were used to investigate groundwater-storage changes and effective porosity in unconfined areas of the Madison aquifer. Time-lapse microgravity surveys that use portable high-sensitivity absolute and relative gravimeters indicated temporal-gravity changes as a result of changing groundwater mass. These extremely precise measurements of gravity required characterization and removal of internal instrumental and external environmental effects on gravity from the raw data. The corrected data allowed groundwater-storage volume to be quantified with an accuracy of about plus or minus 0.5 foot of water per unit area of aquifer. Quantification of groundwater-storage change, coupled with water-level data from observation wells located near the focus areas, also was used to calculate the effective porosity at specific altitudes directly beneath gravity stations. Gravity stations were established on bedrock outcrops in three separate focus areas for this study. The first area, the Spring Canyon focus area, is located to the south of Rapid City with one gravity station on the rim of Spring Canyon near the area where Spring Creek sinks into the Madison aquifer. The second area, the Doty focus area, is located on outcrops of the Madison Limestone and Minnelusa Formation to the northwest of Rapid City, and consists of nine gravity stations. The third area, the Limestone Plateau focus area, consists of a single gravity station in the northwestern Black Hills located on an outcrop of the Madison Limestone. An absolute-gravity station, used to tie relative-gravity survey data together, was established on a relatively impermeable

  3. Data-driven models of groundwater salinization in coastal plains (United States)

    Felisa, G.; Ciriello, V.; Antonellini, M.; Di Federico, V.; Tartakovsky, D. M.


    Salinization of shallow coastal aquifers is particularly critical for ecosystems and agricultural activities. Management of such aquifers is an open challenge, because predictive models, on which science-based decisions are to be made, often fail to capture the complexity of relevant natural and anthropogenic processes. Complicating matters further is the sparsity of hydrologic and geochemical data that are required to parameterize spatially distributed models of flow and transport. These limitations often undermine the veracity of modeling predictions and raise the question of their utility. As an alternative, we employ data-driven statistical approaches to investigate the underlying mechanisms of groundwater salinization in low coastal plains. A time-series analysis and auto-regressive moving average models allow us to establish dynamic relations between key hydrogeological variables of interest. The approach is applied to the data collected at the phreatic coastal aquifer of Ravenna, Italy. We show that, even in absence of long time series, this approach succeeds in capturing the behavior of this complex system, and provides the basis for making predictions and decisions.

  4. Investigating Late Cenozoic Mantle Dynamics beneath Yellowstone (United States)

    Zhou, Q.; Liu, L.


    Recent tomography models (Sigloch, 2011; Schmandt & Lin, 2014) reveal unprecedented details of the mantle structure beneath the United States (U.S.). Prominent slow seismic anomalies below Yellowstone, traditionally interpreted as due to a mantle plume, are restricted to depths either shallower than 200 km or between 500 and 1000 km, but a continuation to greater depth is missing. Compared to fast seismic anomalies, which are usually interpreted as slabs or delaminated lithosphere, origin of deep slow seismic anomalies, especially those in the vicinity of subduction zones, is more enigmatic. As a consequence, both the dynamics and evolution of these slow anomalies remain poorly understood. To investigate the origin and evolution of the Yellowstone slow anomaly during the past 20 Myr, we construct a 4D inverse mantle convection model with a hybrid data assimilation scheme. On the one hand, we use the adjoint method to recover the past evolution of mantle seismic structures beyond the subduction zones. On the other hand, we use a high-resolution forward model to simulate the subduction of the oceanic (i.e., Farallon) plate. During the adjoint iterations, features from these two approaches are blended together at a depth of ~200 km below the subduction zone. In practice, we convert fast and slow seismic anomalies to effective positive and negative density heterogeneities. Our preliminary results indicate that at 20 Ma, the present-day shallow slow anomalies beneath the western U.S. were located inside the oceanic asthenosphere, which subsequently entered the mantle wedge, through the segmented Farallon slab. The eastward encroachment of the slow anomaly largely followed the Yellowstone hotspot track migration. The present deep mantle Yellowstone slow anomaly originated at shallower depths (i.e. transition zone), and was then translated down to the lower mantle accompanying the sinking fast anomalies. The temporal evolution of the slow anomalies suggests that the deep

  5. Investigation of Firn Aquifer Structure in Southeastern Greenland Using Active Source Seismology (United States)

    Montgomery, Lynn N.; Schmerr, Nicholas; Burdick, Scott; Forster, Richard R.; Koenig, Lora; Legchenko, Anatoly; Ligtenberg, Stefan; Miège, Clément; Miller, Olivia L.; Solomon, D. Kip


    In spring of 2011, a perennial storage of water was observed in the firn of the southeastern Greenland ice sheet, a region of both high snow accumulation and high melt. This aquifer is created through percolation of surface meltwater downward through the firn, saturating the pore space above the ice-firn transition. The aquifer may play a significant role in sea level rise through storage or draining freshwater into the ocean. We carried out a series of active source seismic experiments using continuously refracted P-waves and inverted the first P-arrivals using a transdimensional Bayesian approach where the depth, velocity, and number of layers are allowed to vary to identify the seismic velocities associated with the base of the aquifer. When our seismic approach is combined with a radar sounding of the water table situated at the top of the firn aquifer, we are able to quantify the volume of water present. In our study region, the base of the aquifer lies on average 27.7±2.9 m beneath the surface, with an average thickness of 11.5±5.5 m. Using a Wyllie average for porosity, we found the aquifer has an average water content of 16±8%, with considerable variation in water storage capacity along the studied east-west flow line, 40 km upstream of the Helheim glacier terminus. Between 2015 and 2016, we observed a 1-2 km uphill expansion of the aquifer system, with a site dry in summer 2015 exhibiting a water content of 530 kg m-2 in summer 2016. We estimate the volume of water stored in the aquifer across the entire region upstream of Helheim glacier to be 4.7±3.1 Gt, approximately 3% of the total water stored in firn aquifers across the Greenland ice sheet. Elucidating the volume of water stored within these recently discovered aquifers is vital for determining the hydrological structure and stability of the southeastern Greenland ice sheet.

  6. Coupled flow and salinity transport modelling in semi-arid environments

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Held, R.J.; Zimmermann, S.


    Numerical groundwater modelling is used as the base for sound aquifer system analysis and water resources assessment. In many cases, particularly in semi-arid and arid regions, groundwater flow is intricately linked to salinity transport. A case in point is the Shashe River Valley in Botswana....... A freshwater aquifer located around an ephemeral stream is depleted by the combined effect of transpiration and pumping. Quantitative system analysis reveals that the amount of water taken by transpiration is far more than the quantities pumped for water supply. Furthermore, the salinity distribution...... in and around Shashe River Valley as well as its temporal dynamics can be satisfactorily reproduced if the transpiration is modelled as a function of groundwater salinity. The location and dynamics of the saltwater–freshwater interface are highly sensitive to the parameterization of evaporative...

  7. Numerical modeling of regional ground-water flow in the deep-basin brine aquifer of the Palo Duro Basin, Texas Panhandle

    Energy Technology Data Exchange (ETDEWEB)

    Wirojanagud, P.; Kreitler, C.W.; Smith, D.A.


    Bedded Permian-age evaporite sequences in the Palo Duro Basin are being considered for a permanent nuclear waste repository by the U.S. Department of Energy. The purpose of this modeling study is to provide an understanding of regional ground-water flow in the formations beneath the Permian evaporite section. From this understanding, more detailed, smaller scale studies can be designed. This study is also intended to provide a better understanding of the boundary conditions and permeabilities of the aquifer and aquitard system as well as provide estimates of ground-water travel times across the basin. Numerical simulations were made of the Wolfcamp aquifer modeled as a single layer and of the entire Deep-Basin Brine aquifer system, including the Wolfcamp aquifer, modeled as a single layer.

  8. Turbulence beneath finite amplitude water waves

    Energy Technology Data Exchange (ETDEWEB)

    Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)


    Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)

  9. Channelization of plumes beneath ice shelves

    KAUST Repository

    Dallaston, M. C.


    © 2015 Cambridge University Press. We study a simplified model of ice-ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.

  10. Saturated thickness, High Plains aquifer, 2009 (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents the saturated thickness of the High Plains aquifer of the United States, 2009, in feet. The High Plains aquifer underlies...

  11. Can the Adoption of Desalination Technology Lead to Aquifer Preservation? A Case Study of a Sociotechnical Water System in Baja California Sur, Mexico


    Jamie McEvoy


    There is growing concern about the sustainability of groundwater supplies worldwide. In many regions, desalination—the conversion of saline water to freshwater—is viewed as a way to increase water supplies and reduce pressure on overdrawn aquifers. Using data from reports, articles, interviews, a survey, and a focus group, this paper examines if, and how, the adoption of desalination technology can lead to aquifer preservation in Baja California Sur (BCS), Mexico. The paper outlines existing ...

  12. Ground water recharge to the aquifers of northern San Luis Valley, Colorado: A remote sensing investigation (United States)

    Lee, K. (Principal Investigator); Huntley, D.


    The author has identified the following significant results. Ground water recharge to the aquifers of San Luis Valley west of San Luis Creek was primarily from ground water flow in the volcanic aquifers of the San Juan Mountains. The high permeability and anisotropic nature of the volcanic rocks resulted in very little contrast in flow conditions between the San Juan Mountains and San Luis Valley. Ground water recharge to aquifers of eastern San Luis Valley was primarily from stream seepage into the upper reaches of the alluvial fans at the base of the Sangre de Cristo Mountains. The use of photography and thermal infrared imagery resulted in a savings of time and increase in accuracy in regional hydrogeologic studies. Volcanic rocks exhibited the same spectral reflectance curve as sedimentary rocks, with only the absolute magnitude of reflectance varying. Both saline soils and vegetation were used to estimate general ground water depths.

  13. Improved aquifer characterization and the optimization of the design of brackish groundwater desalination systems

    KAUST Repository

    Malivaa, Robert G.


    Many water scarce regions possess brackish-water resources that can be desalted to provide alternative water supplies. Brackish groundwater desalination by reverse osmosis (RO) is less expensive than seawater systems because of reduced energy and pretreatment requirements and lesser volumes of concentrate that require disposal. Development of brackish groundwater wellfields include the same hydraulic issues that affect conventional freshwater wellfields. Managing well interference and prevention of adverse impacts such as land subsidence are important concerns. RO systems are designed to treat water whose composition falls within a system-specific envelope of salinities and ion concentrations. A fundamental requirement for the design of brackish groundwater RO systems is prediction of the produced water chemistry at both the start of pumping and after 10-20 years of operation. Density-dependent solute-transport modeling is thus an integral component of the design of brackish groundwater RO systems. The accuracy of groundwater models is dependent upon the quality of the hydrogeological data upon which they are based. Key elements of the aquifer characterization are the determination of the three-dimensional distribution of salinity within the aquifer and the evaluation of aquifer heterogeneity with respect to hydraulic conductivity. It is necessary to know from where in a pumped aquifer (or aquifer zone) water is being produced and the contribution of vertical flow to the produced water. Unexpected, excessive vertical migration (up-coning) of waters that are more saline has adversely impacted some RO systems because the salinity of the water delivered to the system exceeded the system design parameters. Improved aquifer characterization is possible using advanced geophysical techniques, which can, in turn, lead to more accurate solute-transport models. Advanced borehole geophysical logs, such as nuclear magnetic resonance, were run as part of the exploratory test

  14. Karst Aquifer Recharge: A Case History of over Simplification from the Uley South Basin, South Australia

    Directory of Open Access Journals (Sweden)

    Nara Somaratne


    Full Text Available The article “Karst aquifer recharge: Comments on ‘Characteristics of Point Recharge in Karst Aquifers’, by Adrian D. Werner, 2014, Water 6, doi:10.3390/w6123727” provides misrepresentation in some parts of Somaratne [1]. The description of Uley South Quaternary Limestone (QL as unconsolidated or poorly consolidated aeolianite sediments with the presence of well-mixed groundwater in Uley South [2] appears unsubstantiated. Examination of 98 lithological descriptions with corresponding drillers’ logs show only two wells containing bands of unconsolidated sediments. In Uley South basin, about 70% of salinity profiles obtained by electrical conductivity (EC logging from monitoring wells show stratification. The central and north central areas of the basin receive leakage from the Tertiary Sand (TS aquifer thereby influencing QL groundwater characteristics, such as chemistry, age and isotope composition. The presence of conduit pathways is evident in salinity profiles taken away from TS water affected areas. Pumping tests derived aquifer parameters show strong heterogeneity, a typical characteristic of karst aquifers. Uley South QL aquifer recharge is derived from three sources; diffuse recharge, point recharge from sinkholes and continuous leakage of TS water. This limits application of recharge estimation methods, such as the conventional chloride mass balance (CMB as the basic premise of the CMB is violated. The conventional CMB is not suitable for accounting chloride mass balance in groundwater systems displaying extreme range of chloride concentrations and complex mixing [3]. Over simplification of karst aquifer systems to suit application of the conventional CMB or 1-D unsaturated modelling as described in Werner [2], is not suitable use of these recharge estimation methods.

  15. Status of groundwater levels and storage volume in the Equus Beds aquifer near Wichita, Kansas, 2012 to 2014 (United States)

    Hansen, Cristi V.; Whisnant, Joshua A.; Lanning-Rush, Jennifer L.


    Development of the Wichita well field in the Equus Beds aquifer in southwest Harvey County and northwest Sedgwick County began in the 1940s to supply water to the city of Wichita. The decline of water levels in the Equus Beds aquifer was noted soon after the development of the Wichita well field began. Development of irrigation wells began in the 1960s. City and agricultural withdrawals led to substantial water-level declines. Water-level declines likely enhanced movement of brines from past oil and gas activities near Burrton, Kansas, as well as natural saline water from the Arkansas River into the Wichita well field area. Large chloride concentrations may limit use, or require the treatment of water from the well field for irrigation or public supply. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program to ensure an adequate water supply for the city through 2050 and manage effectively the part of the Equus Beds aquifer Wichita uses. The Integrated Local Water Supply Program uses several strategies to do this, including the Equus Beds Aquifer Storage and Recovery project. The purpose of the Aquifer Storage and Recovery project is to store water in the aquifer for later recovery, and help protect the aquifer from encroachment of a known oil-field-brine plume near Burrton and saline water from the Arkansas River. Since 1940, the U.S. Geological Survey, in cooperation with the city of Wichita, has monitored changes in the Equus Beds aquifer as part of Wichita’s effort to manage this resource effectively.

  16. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain (United States)

    Larsen, Flemming; Tran, Long Vu; van Hoang, Hoan; Tran, Luu Thi; Christiansen, Anders Vest; Pham, Nhan Quy


    Salty and brackish groundwater has been observed at least 100 km inland in some aquifers contained within Quaternary delta plains. This phenomenon limits access to fresh groundwater resources, particularly in the densely populated deltas of Southeast Asia. However, the causes of inland salinity are unclear. Here we present borehole and geophysical data that show that in the Red River delta plain of Vietnam, salty and brackish groundwater primarily occurs in incised valleys that were formed during sea-level lowstands during the Pleistocene. During the mid-Holocene, these valleys were filled with fine-grained marine deposits containing trapped seawater. We conduct groundwater flow simulations that show that the age, thickness, and permeability of the marine sediments are the primary controls on the leaching of salty porewater into the freshwater aquifer. We find that salty groundwater originating from this trapped seawater is still present in Holocene-aged sediments with low permeability, and affects groundwater salinity in adjacent aquifers. In contrast, trapped seawater from all Pleistocene-aged sediments has been leached. We identify a number of brackish to saline delta aquifers elsewhere in Asia and throughout the world that have a similar sedimentary history, and thus are likely to be influenced by this leaching process.

  17. Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ya [Department of Earth Sciences, The University of Hong Kong, Hong Kong (China); Jiao, Jiu Jimmy, E-mail: [Department of Earth Sciences, The University of Hong Kong, Hong Kong (China); Cherry, John A. [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Lee, Chun Ming [Department of Earth Sciences, The University of Hong Kong, Hong Kong (China)


    Aquitards are capable of generating and preserving large amounts of chemicals. The release of the chemicals from the aquitards poses a potential contamination risk to groundwater that may be used as a drinking water source. This work aimed to identify the contribution of hydrogeochemical processes in the aquitards to groundwater hydrochemistry in the underlying confined basal aquifer by studying the coastal Quaternary aquifer–aquitard system of the Pearl River Delta, China. The system was submerged by paleo-seawater in the early Holocene and mainly receives infiltration of precipitation at present, as indicated by investigations on stable isotopes (δ{sup 2}H, δ{sup 18}O), water chemistry (SO{sub 4}{sup 2−} and Cl{sup −}) and salinity. Significant correlations between total dissolved solids in the basal aquifer and the thickness of the overlying aquitard further suggested the contribution of the aquitard to the groundwater hydrochemistry in the aquifer. Significant correlations between the chloride concentrations in aquitard porewater and that in groundwater in the aquifer, and between the thickness of the aquitard and the chloride concentrations in groundwater indicated the strong influence of the aquitard on the chloride in the aquifer. This is probably because the low-permeability aquitard is capable of preserving the paleo-seawater in the aquifer and releasing the salinity from the aquitard down to the aquifer via downward flow or diffusion. Isotopic and geochemical studies revealed that the aquitard is also responsible for generating and preserving large amounts of naturally occurring ammonium. Analysis between the concentrations of ammonium in groundwater in the basal aquifer and the total available ammonium in aquitard sediments suggested that the former is significantly controlled by the latter. - Highlights: • Aquitard porewater components are similar to that of groundwater in the aquifer. • Influence of the aquitard on Cl{sup

  18. A method for conducting simultaneous convergent tracer tests in multilayered aquifers. (United States)

    Greswell, Richard B; Durand, Véronique; Aller, Maria F; Riley, Michael S; Tellam, John H


    Forced gradient tracer tests between two boreholes can be used to study contaminant transport processes at the small field scale or investigate the transport properties of an aquifer. Full depth tests, in which tracer samples are collected just from the discharge of the abstraction borehole, often give rise to breakthrough curves with multiple peaks that are usually attributed to different flow paths through the aquifer that can rarely be identified from the test results alone. Tests in selected levels of the aquifer, such as those between packer-isolated sections of the boreholes, are time consuming, expensive; and the identification of major transport pathways is not guaranteed. We present a method for simultaneously conducting multiple tracer tests covering the full depth of the boreholes, in which tracer sampling and monitoring is carried out by a novel multilevel sampling system allowing high frequency and cumulative sampling options. The method is applied to a tracer test using fluorescein conducted in the multilayered sandstone aquifer beneath the city of Birmingham, UK, producing six well-defined tracer breakthrough curves. © 2013, National Ground Water Association.

  19. Glacial recharge, salinisation and anthropogenic contamination in the coastal aquifers of Recife (Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Chatton, E., E-mail: [Géosciences Rennes, Université Rennes 1-CNRS, UMR 6118, adress: 263 av du général Leclerc, Campus de Beaulieu, bat 15, 35042 Rennes Cedex (France); Aquilina, L., E-mail: [Géosciences Rennes, Université Rennes 1-CNRS, UMR 6118, adress: 263 av du général Leclerc, Campus de Beaulieu, bat 15, 35042 Rennes Cedex (France); Pételet-Giraud, E., E-mail: [Bureau de Recherches Géologiques et Minières (BRGM), adress: 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2 (France); Cary, L., E-mail: [Bureau de Recherches Géologiques et Minières (BRGM), adress: 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2 (France); Bertrand, G., E-mail: [Instituto de Geociências, CEPAS (Groundwater Research Center), University of São Paulo, adress: Rua do lago 562, 05508-080 Sao Paulo (Brazil); Labasque, T., E-mail: [Géosciences Rennes, Université Rennes 1-CNRS, UMR 6118, adress: 263 av du général Leclerc, Campus de Beaulieu, bat 15, 35042 Rennes Cedex (France); and others


    Implying large residence times and complex water origins deep coastal aquifers are of particular interest as they are remarkable markers of climate, water use and land use changes. Over the last decades, the Metropolitan Region of Recife (Brazil) went through extensive environmental changes increasing the pressure on water resources and giving rise to numerous environmental consequences on the coastal groundwater systems. We analysed the groundwater of the deep aquifers Cabo and Beberibe that are increasingly exploited. The processes potentially affecting groundwater residence times and flow paths have been studied using a multi-tracer approach (CFCs, SF6, noble gases, 14C, 2H and 18O). The main findings of these investigations show that: (1) Groundwaters of the Cabo and Beberibe aquifers have long residence times and were recharged about 20,000 years ago. (2) Within these old groundwaters we can find palaeo-climate evidences from the last glacial period at the tropics with lower temperatures and dryer conditions than the present climate. (3) Recently, the natural slow dynamic of these groundwater systems was significantly affected by mixing processes with contaminated modern groundwater coming from the shallow unconfined Boa Viagem aquifer. (4) The large exploitation of these aquifers leads to a modification of the flow directions and causes the intrusion through palaeo-channels of saline water probably coming from the Capibaribe River and from the last transgression episodes. These observations indicate that the current exploitation of the Cabo and Beberibe aquifers is unsustainable regarding the long renewal times of these groundwater systems as well as their ongoing contamination and salinisation. The groundwater cycle being much slower than the human development rhythm, it is essential to integrate the magnitude and rapidity of anthropogenic impacts on this extremely slow cycle to the water management concepts. - Highlights: • Study of anthropogenic impacts

  20. Point shapefile containing valid YSI 600 XLM multi-parameter sonde data (temperature, conductivity, and salinity) in Indian River Bay, Delaware, collected on U.S. Geological Survey Field Activity 2010-006-FA in April 2010 (YSI_MERGE.SHP, Geographic, WGS 84) (United States)

    U.S. Geological Survey, Department of the Interior — A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was...

  1. Temperature, conductivity and salinity data collected with a YSI 600 XLM multi-parameter sonde in Indian River Bay, Delaware, from April 12 to April 15, 2010 on U.S. Geological Survey Cruise 2010-006-FA (IndianRivBayYSI.xls) (United States)

    U.S. Geological Survey, Department of the Interior — A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was...

  2. Imaging voids beneath bridge bent using electrical resistivity tomography. (United States)


    Five electrical resistivity tomography (ERT) profiles and borehole control were acquired beneath two bridges on the bank of the : Gasconade River in order to determine extension of the underground water-filled openings in rock encountered during a dr...

  3. Electrical conductivity beneath the volcanoes of the NW Argentinian Puna

    National Research Council Canada - National Science Library

    Lezaeta, Pamela; Brasse, Heinrich


    ...., in the eastern Puna and backarc zone. The 2‐D conductivity models show a conductive zone beneath the eastern Puna shoshonitic volcanoes and nearby Tuzgle volcano, which reaches from the upper crust to the upper mantle...

  4. Potentiometric Surface of the Ozark Aquifer near Springfield, Missouri, 2006-07 (United States)

    Richards, Joseph M.; Mugel, Douglas N.


    INTRODUCTION A study of the water resources of the Springfield, Missouri, area in the 1970s determined that a cone of depression, formed by ground-water pumping, had developed in the Ozark aquifer beneath the city (Emmett and others, 1978). Continued ground-water usage in the 1970s and 1980s caused concern that ground-water resources would not be sufficient to meet the future needs of Springfield, Missouri, during periods of drought. As a result, a ground-water flow model of the Springfield area was developed by the U. S. Geological Survey (USGS) to assess the future role of ground water as a water source for the area (Imes, 1989). Results of the USGS model led to a decision by the City Utilities of Springfield to primarily rely on surface water from Stockton Lake as a source of city drinking water. Municipal and industrial ground-water usage continues in Springfield, but at lower rates than previously experienced (Jim Vandike, Missouri Department of Natural Resources, written commun., 2007). Rapid growth in the area has caused commercial, industrial, and domestic water use to increase. Population growth has been especially rapid in Nixa, Ozark, and Republic, and water use in the vicinity of these cities has grown an estimated 39 percent since 1990 (Dintelmann and others, 2006). Unlike Springfield, ground water is the primary source of water for these cities. The increased stress on the Ozark aquifer, the primary aquifer in the study area, has raised new concerns about possible further water-level declines in the areas of increased ground-water use. Although there continues to be new development in the Ozark aquifer, since 1987 no new water-supply wells that produce water from the Springfield Plateau aquifer have been allowed to be constructed in most of Greene and northern Christian counties (Jim Vandike, Missouri Department of Natural Resources, written commun., 2007). There is concern that if the potentiometric surface of the Ozark aquifer continues to decline

  5. Where is the hot rock and where is the ground water – Using CSAMT to map beneath and around Mount St. Helens (United States)

    Wynn, Jeff; Mosbrucker, Adam; Pierce, Herbert; Spicer, Kurt R.


    We have observed several new features in recent controlled-source audio-frequency magnetotelluric (CSAMT) soundings on and around Mount St. Helens, Washington State, USA. We have identified the approximate location of a strong electrical conductor at the edges of and beneath the 2004–08 dome. We interpret this conductor to be hot brine at the hot-intrusive-cold-rock interface. This contact can be found within 50 meters of the receiver station on Spine 5, which extruded between April and July of 2005. We have also mapped separate regional and glacier-dome aquifers, which lie one atop the other, out to considerable distances from the volcano.

  6. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York (United States)

    Heisig, Paul M.


    The hydrogeology of the valley-fill aquifer system and surrounding watershed areas was investigated within a 23-mile long, fault-controlled valley in eastern Orange County, New York. Glacial deposits form a divide within the valley that is drained to the north by Woodbury Creek and is drained to the south by the Ramapo River. Surficial geology, extent and saturated thickness of sand and gravel aquifers, extent of confining units, bedrock-surface elevation beneath valleys, major lineaments, and the locations of wells for which records are available were delineated on an interactive map.

  7. The leaky aquifer function revisited

    NARCIS (Netherlands)

    N.M. Temme (Nico)


    textabstractThis papers discusses the leaky aquifer function considered in a recent paper by Frank Harris in the Journal of Computational and Applied Mathematics (2008). We describe properties of an integral representing this function and give details on how to compute this function with a single

  8. Simulation of Groundwater Flow in the Coastal Plain Aquifer System of Virginia (United States)

    Heywood, Charles E.; Pope, Jason P.


    The groundwater model documented in this report simulates the transient evolution of water levels in the aquifers and confining units of the Virginia Coastal Plain and adjacent portions of Maryland and North Carolina since 1890. Groundwater withdrawals have lowered water levels in Virginia Coastal Plain aquifers and have resulted in drawdown in the Potomac aquifer exceeding 200 feet in some areas. The discovery of the Chesapeake Bay impact crater and a revised conceptualization of the Potomac aquifer are two major changes to the hydrogeologic framework that have been incorporated into the groundwater model. The spatial scale of the model was selected on the basis of the primary function of the model of assessing the regional water-level responses of the confined aquifers beneath the Coastal Plain. The local horizontal groundwater flow through the surficial aquifer is not intended to be accurately simulated. Representation of recharge, evapotranspiration, and interaction with surface-water features, such as major rivers, lakes, the Chesapeake Bay, and the Atlantic Ocean, enable simulation of shallow flow-system details that influence locations of recharge to and discharge from the deeper confined flow system. The increased density of groundwater associated with the transition from fresh to salty groundwater near the Atlantic Ocean affects regional groundwater flow and was simulated with the Variable Density Flow Process of SEAWAT (a U.S. Geological Survey program for simulation of three-dimensional variable-density groundwater flow and transport). The groundwater density distribution was generated by a separate 108,000-year simulation of Pleistocene freshwater flushing around the Chesapeake Bay impact crater during transient sea-level changes. Specified-flux boundaries simulate increasing groundwater underflow out of the model domain into Maryland and minor underflow from the Piedmont Province into the model domain. Reported withdrawals accounted for approximately

  9. N-Acetylcysteine plus Saline Hydration versus Saline Hydration

    African Journals Online (AJOL)

    ) in patients undergoing coronary angiography pretreated with N-acetylcysteine NAC plus saline hydration or saline hydration alone and to determine the association between various risk factors and RCIN. Methods: Patients were ...

  10. A Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer) (United States)

    Motevalli, Alireza; Moradi, Hamid Reza; Javadi, Saman


    Aquifer salinization has recently increased significantly due to human activity and has caused irreparable environmental and economic effects. In this research, a new method is proposed for modeling the vulnerability to salinity for the Ghaemshahr-juybar aquifer. Specifically, the GALDIT (Sea water intrusion) and TAWLBIC (Saltwater up-coning) indices were combined to produce a map of vulnerability (Comprehensive Salinity Index or CSI) to seawater intrusion of a region near the coast and saltwater up-coning away from the coast, respectively. Single parameter and removal layer sensitivity analysis were performed in order to identify the sensitive parameters and achieve optimal weights (through the single-parameter method) of contributing factors in all three methods. The three optimized methods produced were GALDIT-Opt, TAWLBIC-Opt and CSI-Opt. To assess the accuracy of the original maps and optimal ones, the Pearson correlation was used. Results indicated that the Pearson correlation of the optimized GALDIT, TAWLBIC and CSI model was better than GALDIT, TAWLBIC and CSI. The results show that the increase in correlation between EC (Electrical Conductivity), TDS (Total Dissolved Solids) and SAR (Sodium Adsorption Ratio) from the GALDIT model to the CSI-Opt model from values of 0.64, 0.56 and 0.68 has improved to values of 0.81, 0.88 and 0.91, respectively. The highest concentration of EC, with a value of 7050 μs/cm, is sampled in the areas of the east and northwest of the Ghaemshahr-juybar aquifer, which are classified in the CSI-Opt model as high and very high vulnerability levels. The highest concentration of TDS and SAR has been found in the east, northwest and northeast of the Ghaemshahr-juybar aquifer with a value of 4724 ppm for TDS and 14 mg/l for SAR that have been modeled in the CSI-Opt index as highly vulnerable areas. Eventually, CSI mapping can be used as an efficient tool in prioritizing in terms of the vulnerability to aquifer salinity, carrying out

  11. under salinity stress

    African Journals Online (AJOL)

    ajl yemi


    Nov 14, 2011 ... (2002) reported that K and Zn deficiencies in the plant were mainly induced by soil salinity. Zhang et al. (2011) investigated the effects of applying different concentra- tions of the macronutrients K+, Ca2+ and Mg2+ on the responses of contrasting rice (O. sativa L.) genotypes under salt stress. A solution ...

  12. Hydrogeological investigation of shallow aquifers in an arid data-scarce coastal region (El Daba'a, northwestern Egypt) (United States)

    Yousif, Mohamed; van Geldern, Robert; Bubenzer, Olaf


    Hydrogeological investigations in arid regions are particularly important to support sustainable development. The study area, El Daba'a in northwestern Egypt, faces scarce water resources as a result of reported climate change that particularly affects the southern Mediterranean coast and increases stress on the local groundwater reserves. This change in climate affects the area in terms of drought, over-pumping and unregulated exploration of groundwater for irrigation purposes. The hydrogeological investigation is based on a multidisciplinary data-layer analysis that includes geomorphology, geology, slope, drainage lines, soil type, structural lineaments, subsurface data, stable isotopes, and chemical analyses. The study area contains Pleistocene and middle Miocene marine limestone aquifers. Based on lithology and microfacies analysis, the middle Miocene aquifer is subdivided into two water-bearing zones. The area is affected by sets of faults and anticline folds, and these structures are associated with fractures and joints that increase permeability and facilitate the recharge of groundwater. Stable isotope data indicate that groundwater of both the Pleistocene and middle Miocene aquifers is recharged by modern precipitation. The high salinity values observed in some groundwater wells that tap both aquifers could be attributed to leaching and dissolution processes of marine salts from the aquifers' marine limestone matrix. In addition, human activities can also contribute to an increase in groundwater salinity. A future water exploration strategy, based on the results from the multidisciplinary data-layer analysis, is proposed for the area. The derived scientific approach is transferable to other arid coastal areas with comparable conditions.

  13. Major disruption of D'' beneath Alaska: D'' Beneath Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daoyuan [Laboratory of Seismology and Physics of Earth' s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei Anhui China; National Geophysics Observatory at Mengcheng, Anhui China; Helmberger, Don [Seismological Laboratory, California Institute of Technology, Caltech, Pasadena California USA; Miller, Meghan S. [Department of Earth Sciences, University of Southern California, Los Angeles California USA; Jackson, Jennifer M. [Seismological Laboratory, California Institute of Technology, Caltech, Pasadena California USA


    D'' represents one of the most dramatic thermal and compositional layers within our planet. In particular, global tomographic models display relatively fast patches at the base of the mantle along the circum-Pacific which are generally attributed to slab debris. Such distinct patches interact with the bridgmanite (Br) to post-bridgmanite (PBr) phase boundary to generate particularly strong heterogeneity at their edges. Most seismic observations for the D'' come from the lower mantle S wave triplication (Scd). Here we exploit the USArray waveform data to examine one of these sharp transitions in structure beneath Alaska. From west to east beneath Alaska, we observed three different characteristics in D'': (1) the western region with a strong Scd, requiring a sharp δVs = 2.5% increase; (2) the middle region with no clear Scd phases, indicating a lack of D'' (or thin Br-PBr layer); and (3) the eastern region with strong Scd phase, requiring a gradient increase in δVs. To explain such strong lateral variation in the velocity structure, chemical variations must be involved. We suggest that the western region represents relatively normal mantle. In contrast, the eastern region is influenced by a relic slab that has subducted down to the lowermost mantle. In the middle region, we infer an upwelling structure that disrupts the Br-PBr phase boundary. Such an interpretation is based upon a distinct pattern of travel time delays, waveform distortions, and amplitude patterns that reveal a circular-shaped anomaly about 5° across which can be modeled synthetically as a plume-like structure rising about 400 km high with a shear velocity reduction of ~5%, similar to geodynamic modeling predictions of upwellings.

  14. Hydrogeologic Heterogeneity Enhances the Transfer of Salt Toward the High-Quality Deep Aquifers of the Western San Joaquin Valley (CA, USA) (United States)

    Henri, C. V.; Harter, T.; Zhang, H.


    Increasing anthropogenic and drought stresses lead salinity to be of serious concern within regard to with the sustainability of regional groundwater quality. Agricultural basins of the Central Valley, CA (USA) are, and will continue to be, impacted by salinity issues in the coming future decades and or centuries. The aquifer system below the Western San Joaquin Valley is characterized by a shallow unconfined aquifer with high salinity overlying high quality semi-confined and deeper confined aquifers. A key challenge in the area is to predict if, when and how water traveling from the the low-quality shallow groundwater will reach and degrade the deeper semi-confined and confined aquifers. Previous studies, accounting for a simplified description of the aquifer hydraulic properties in their flow model, concluded that saline shallow groundwater would need 200-400 years to reach the semi-confined aquifer and 250-600 years to impact the deeper confined aquifer. However, well known heterogeneities in aquifer hydraulic properties significantly impact contaminant transport due to preferential flow paths and increased dispersion. Our study aims to (1) better understand the impact of heterogeneous hydraulic properties on the distribution of travel times from non-point source contamination, and (2) reassess the temporal scale of salt transfer into the deeper aquifers of the Western San Joaquin Valley. A detailed non-stationary geostatistical model was developed to describe the spatial variability of hydrofacies in great detail at the basin scale. The hydraulic properties corresponding to each hydrofacies are then calibrated in order to reproduce water fluxes previously modeled and calibrated. Subsequently, we use the random-walk particle tracking method to simulate the advective-dispersive transport of salt throughout the study area from a non-point source zone represented by the entire top layer of the model. The flux concentrations of solute crossing a series of monitoring

  15. On aquifer thicknesses and geological complexity affecting fresh/salt groundwater distribution (United States)

    Zamrsky, Daniel; Oude Essink, Gualbert; Bierkens, Marc


    Large coastal populations will face serious issues associated with global sea level rise in the near future. Among those are increased risk of coastal flooding and upconing of old saline groundwater caused by expected regional groundwater overexploitation initiated by growing urbanization. With predictions of rising sea level by 60-100cm by 2100 and a recent study suggesting even much larger changes than previously thought, it is essential to conduct a study to identify the most threatened coastal aquifers worldwide. Previous global studies dealing with salt water intrusion into coastal aquifers only considered homogenous geological conditions. However, literature and local data show a higher degree of heterogeneity. In our study, we consider possible geological scenarios and their impact on the fresh/salt groundwater distribution. The focus is on coastal aquifers that consist of unconsolidated sediments formed during the recent geological times and are underlain by a consolidated bedrock formation. Aquifer thickness and inland extent are the two most important parameters that determine the vulnerability of the coastal aquifer to salt water intrusion. To estimate these two parameters, a method using the latest global geological and elevation datasets is presented. By combining these inputs, we can estimate the slope of a bedrock formation that underlies a coastal aquifer consisting of unconsolidated sediments. Our estimated thicknesses are compared to a validation dataset of open source boreholes and literature information collected over numerous locations worldwide. While our results show that using our method to estimate coastal aquifer (made of unconsolidated sediments) thickness leads to satisfying results, it remains challenging to obtain information about the type of the sediments (gravel, sand, clay) themselves on such a scale. Therefore, we constructed a substantial set of 2D vertical variable-density groundwater flow models perpendicular to the shoreline

  16. Geochemical detection of carbon dioxide in dilute aquifers

    Directory of Open Access Journals (Sweden)

    Aines Roger


    Full Text Available Abstract Background Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 103 to 2 × 106 t/yr (0.63 to 1250 t/m2/yr to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. Results For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux ≥ 104 t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase

  17. The control of saline groundwater

    NARCIS (Netherlands)

    Talsma, T.


    A study was made of the effect of the watertable, water-conducting properties of the soil, climatic factors and groundwater salinity on the salinization of soils in the Murrumbidgee Irrigation Areas, Australia.

    Average daily capillary flow rates were calculated from measured salinization (by

  18. Numerical studies of CO2 and brine leakage into a shallow aquifer through an open wellbore (United States)

    Wang, Jingrui; Hu, Litang; Pan, Lehua; Zhang, Keni


    Industrial-scale geological storage of CO2 in saline aquifers may cause CO2 and brine leakage from abandoned wells into shallow fresh aquifers. This leakage problem involves the flow dynamics in both the wellbore and the storage reservoir. T2Well/ECO2N, a coupled wellbore-reservoir flow simulator, was used to analyze CO2 and brine leakage under different conditions with a hypothetical simulation model in water-CO2-brine systems. Parametric studies on CO2 and brine leakage, including the salinity, excess pore pressure (EPP) and initially dissolved CO2 mass fraction, are conducted to understand the mechanism of CO2 migration. The results show that brine leakage rates increase proportionally with EPP and inversely with the salinity when EPP varies from 0.5 to 1.5 MPa; however, there is no CO2 leakage into the shallow freshwater aquifer if EPP is less than 0.5 MPa. The dissolved CO2 mass fraction shows an important influence on the CO2 plume, as part of the dissolved CO2 becomes a free phase. Scenario simulation shows that the gas lifting effect will significantly increase the brine leakage rate into the shallow freshwater aquifer under the scenario of 3.89% dissolved CO2 mass fraction. The equivalent porous media (EPM) approach used to model the wellbore flow has been evaluated and results show that the EPM approach could either under- or over-estimate brine leakage rates under most scenarios. The discrepancies become more significant if a free CO2 phase evolves. Therefore, a model that can correctly describe the complex flow dynamics in the wellbore is necessary for investigating the leakage problems.

  19. Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital aquifer boundaries for the High Plains aquifer in western Oklahoma. This area encompasses the panhandle counties of Cimarron,...

  20. Digital data sets that describe aquifer characteristics of the Elk City aquifer in western Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant recharge values for the Elk City aquifer in western Oklahoma. The aquifer covers an area of approximately...

  1. The nature of subslab slow velocity anomalies beneath South America (United States)

    Portner, Daniel Evan; Beck, Susan; Zandt, George; Scire, Alissa


    Slow seismic velocity anomalies are commonly imaged beneath subducting slabs in tomographic studies, yet a unifying explanation for their distribution has not been agreed upon. In South America two such anomalies have been imaged associated with subduction of the Nazca Ridge in Peru and the Juan Fernández Ridge in Chile. Here we present new seismic images of the subslab slow velocity anomaly beneath Chile, which give a unique view of the nature of such anomalies. Slow seismic velocities within a large hole in the subducted Nazca slab connect with a subslab slow anomaly that appears correlated with the extent of the subducted Juan Fernández Ridge. The hole in the slab may allow the subslab material to rise into the mantle wedge, revealing the positive buoyancy of the slow material. We propose a new model for subslab slow velocity anomalies beneath the Nazca slab related to the entrainment of hot spot material.

  2. Using geochemical investigations for determining the interaction between groundwater and saline water in arid areas: case of the Wadi Ouazzi basin (Morocco

    Directory of Open Access Journals (Sweden)

    R. El Moukhayar


    Full Text Available The characteristics of the Essaouira basin water resources are a semi-arid climate, which is severely impacted by the climate (quantity and quality. Considering the importance of the Essaouira aquifer in the groundwater supply of the region, a study was conducted in order to understand groundwater evolution in this aquifer. The Essaouira aquifer is a coastal aquifer located on the Atlantic coastline of southern Morocco, corresponding to a sedimentary basin with an area of nearly 200 km2. The control of the fluid exchange and the influence of mixing zones between the groundwater and saline water was investigated by sampling from 20 wells, drillings and sources belonging to the Plio-Quaternary and Turonian aquifers. It is hypothesized that groundwater major ions chemistry can be employed to determine the interaction between the groundwater and saline water (coastal aquifers. Groundwater samples examined for electric conductivity and temperature showed that waters belonging to the Plio-Quaternary and Turonian aquifers present very variable electric conductivities, from 900 μs/cm to 3880 μs/cm. Despite this variability, they are from the same family and are characterized by sodium-chloride facies. However, a good correlation exists between the electrical conductivity and chloride and sodium contents. The lower electrical conductivities are situated in the North quarter immediately to the south of the Wadi Ouazzi.

  3. Simulated effects of groundwater withdrawals from aquifers in Ocean County and vicinity, New Jersey (United States)

    Cauller, Stephen J.; Voronin, Lois M.; Chepiga, Mary M.


    Township), and in Ship Bottom Borough have particle travel times from 140 to 12,000 years and flow paths that originated under Barnegat Bay or the Atlantic Ocean from the simulation of average maximum-allocation withdrawal conditions.Travel time along flow paths to wells screened in the Rio Grande water-bearing zone and the Atlantic City 800-foot sand from recharge to discharge point ranged from nearly 530 years to greater than 3.73 million years from the simulation of average 2000–03 withdrawal conditions. Particle tracking indicated that most wells screened in these aquifers derived a large part of their recharge from the Oswego River Basin, with a small portion of flow originating either beneath Barnegat Bay or to the east beneath the Atlantic Ocean. Travel time along flow paths that start beneath either Barnegat Bay or the Atlantic Ocean ranged from 2,300 to approximately 134,000 years from the simulation of average maximum-allocation withdrawal conditions."

  4. Salinization process and coastal groundwater quality in Chaouia, Morocco (United States)

    Najib, Saliha; Fadili, Ahmed; Mehdi, Khalid; Riss, Joëlle; Makan, Abdelhadi; Guessir, Hakima


    The coastal aquifer system of Chaouia is recognized as one of the most important aquifers in Morocco that is affected by salinization in the coastal fringe. The purpose of this study is to highlight the origin of salinization by sampling and analyzing groundwater from 44 wells for major elements. This study was carried out in May 2011. The results indicate that, in the central and downstream parts, the dominant facies are Mg2+, Na+ and Cl-, while Ca2+ and HCO3- dominate in the upstream zones. Ion exchange processes, under seawater intrusion, control the concentration of ions such as calcium, magnesium and sodium. Moreover, groundwater is oversaturated with respect to carbonate minerals (calcite and dolomite), and under-saturated with respect to evaporate minerals (gypsum, halite). The contribution of dissolved halite and gypsum in the groundwater mineralization is revealed by their positive correlation between (Na + Cl) and (Ca + SO4), respectively. Furthermore, the comparison of the hydrochemical results to drinking water quality standards by World Health Organization (2008) shows that more than a half of the water sampled is not suitable for drinking purposes, especially with respect to high levels of EC, TDS, Cl- and NO3-. In addition, high mineralization is found to be a consequence of seawater intrusion and anthropogenic activities.

  5. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford


    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in

  6. Groundwater Remediation in a Floodplain Aquifer at Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dave [Navarro Research and Engineering; Miller, David [Navarro Research and Engineering; Kautsky, Mark [U. S. Department of Energy, Office of Legacy Management; Dander, David [Navarro Research and Engineering; Nofchissey, Joni [Navajo Nation Division of Natural Resources


    A uranium- and vanadium-ore-processing mill operated from 1954 to 1968 within the Navajo Nation near Shiprock, New Mexico. By September 1986, all tailings and structures on the former mill property were encapsulated in a disposal cell built on top of two existing tailings piles on the Shiprock site (the site) [1]. Local groundwater was contaminated by multiple inorganic constituents as a result of the milling operations. The U.S. Department of Energy (DOE) took over management of the site in 1978 as part of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The DOE Office of Legacy Management currently manages ongoing activities at the former mill facility, including groundwater remediation. Remediation activities are designed primarily to reduce the concentrations and total plume mass of the mill-related contaminants sulfate, uranium, and nitrate. In addition to contaminating groundwater in alluvial and bedrock sediments directly below the mill site, ore processing led to contamination of a nearby floodplain bordering the San Juan River. Groundwater in a shallow alluvial aquifer beneath the floodplain is strongly influenced by the morphology of the river channel as well as changing flows in the river, which provides drainage for regional runoff from the San Juan Mountains of Colorado. As part of a recent study of the floodplain hydrology, a revised conceptual model was developed for the alluvial aquifer along with an updated status of contaminant plumes that have been impacted by more than 10 years of groundwater pumping for site remediation purposes. Several findings from the recent study will be discussed here.

  7. Methane and Dissolved Organic Carbon Sustain an Ecosystem within a Density Stratified Coastal Aquifer of the Yucatan Peninsula, Mexico. Evidence for a Subterranean Microbial Loop? (United States)

    Brankovits, David; Pohlman, John W.; Niemann, Helge; Leigh, Mary Beth; Casso, Michael; Alvarez Noguera, Fernando; Lehmann, Moritz F.; Iliffe, Thomas M.


    In coastal karst terrains, anchialine caves that meander in density stratified aquifers provide an exceptional opportunity for scientists to study in situ biogeochemical processes within the groundwater. The Caribbean coast of Mexico's Yucatan Peninsula contains over 1000 km of mapped cave passages, the densest known accumulation of anchialine caves in the world. A decades-old study based on the simple observation of 13C-depleted biomass in the cave-adapted fauna suggested biogeochemical processes related to methane-linked carbon cycling and/or other chemoautotrophic pathways as a source of energy and carbon. In this study, we utilized cave diving and a novel sampling device (the Octopipi) to obtain cm-scale water column profiles of methane, DOC and DIC concentrations and stable carbon isotope ratios to identify the energy sources and microbial processes that sustain life in these subterranean estuaries. High concentrations (up to 9522 nM) low-δ13C (as low as -67.5 permil) methane near the ceiling of the cave (in the fresh water section of the stratified water column) and evidence for methane oxidation in the brackish water portion of the water column suggest methane availability and consumption. Profiles obtained by the Octopipi demonstrate that virtually all of the methane (˜99%) is oxidized at the interface of anoxic freshwater and hypoxic brackish water masses. The high-methane water mass near the ceiling also contained elevated concentrations of DOC (851 μM) that displayed comparatively high δ13C (-27.8 to -28.2 permil), suggesting terrestrial organic matter input from the overlying soils. Low-methane brackish and saline water was characterized by lower DOC concentration (15 to 97 μM), yet with similar δ13C (-25.9 to -27.2 permil), suggesting significant terrestrial organic matter consumption or removal with increasing depth, from fresh to saline water, within the water column. The presence of 13C-depleted fatty acids (e.g., C16:1ω7c with δ13C

  8. Modeling radium distribution in coastal aquifers during sea level changes: The Dead Sea case (United States)

    Kiro, Yael; Yechieli, Yoseph; Voss, Clifford I.; Starinsky, Abraham; Weinstein, Yishai


    We present a new approach to studying the behavior of radium isotopes in a coastal aquifer. In order to simulate radium isotope distributions in the dynamic flow field of the Dead Sea aquifer, a multi-species density dependent flow model (SUTRA-MS) was used. Field data show that the activity of 226Ra decreases from 140 to 60 dpm/L upon entering the aquifer from the Dead Sea, and then further decreases linearly due to mixing with Ra-poor fresh water. On the other hand, an increase is observed in the activity of the shorter-lived isotopes (up to 52 dpm/L 224Ra and 31 dpm/L 223Ra), which are relatively low in Dead Sea water (up to 2.5 dpm/L 224Ra and 0.5 dpm/L 223Ra). The activities of the short lived radium isotopes also decrease with decreasing salinity, which is due to the effect of salinity on the adsorption of radium. The relationship between 224Ra and salinity suggests that the adsorption partition coefficient (K) is linearly related to salinity. Simulations of the steady-state conditions, show that the distance where equilibrium activity is attained for each radium isotope is affected by the isotope half-life, K and the groundwater velocity, resulting in a longer distance for the long-lived radium isotopes. K affects the radium distribution in transient conditions, especially that of the long-lived radium isotopes. The transient conditions in the Dead Sea system, with a 1 m/yr lake level drop, together with the radium field data, constrains K to be relatively low (226Ra cannot be explained by adsorption, and it is better explained by removal via coprecipitation, probably with barite or celestine.

  9. Application of groundwater residence time tracers and broad screening for micro-organic contaminants in the Indo-Gangetic aquifer system (United States)

    Lapworth, Dan; Das, Prerona; Mukherjee, Abhijit; Petersen, Jade; Gooddy, Daren; Krishan, Gopal


    Groundwater abstracted from aquifers underlying urban centres across India provide a vital source of domestic water. Abstraction from municipal and private supplies is considerable and growing rapidly with ever increasing demand for water from expanding urban populations. This trend is set to continue. The vulnerability of deeper aquifers (typically >100 m below ground) used for domestic water to contamination migration from often heavily contaminated shallow aquifer systems has not been studies in detail in India. This paper focusses on the occurrence of micro-organic contaminants within sedimentary aquifers beneath urban centres which are intensively pumped for drinking water and domestic use. New preliminary results from a detailed case study undertaken across Varanasi, a city with an estimated population of ca. 1.5 million in Uttar Pradesh. Micro -organic groundwater quality status and evolution with depth is investigated through selection of paired shallow and deep sites across the city. These results are considered within the context of paired groundwater residence time tracers within the top 150m within the sedimentary aquifer system. Groundwater emerging contaminant results are compared with surface water quality from the Ganges which is also used for drinking water supply. Broad screening for >800 micro-organic compounds was undertaken. Age dating tools were employed to constrain and inform a conceptual model of groundwater recharge and contaminant evolution within the sedimentary aquifer system.

  10. Effects of salinity on leaf breakdown: Dryland salinity versus salinity from a coalmine. (United States)

    Sauer, Felix G; Bundschuh, Mirco; Zubrod, Jochen P; Schäfer, Ralf B; Thompson, Kristie; Kefford, Ben J


    Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50μS/cm to 11,000μS/cm) and coalmine-induced (100μS/cm to 2400μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  11. Geomechanical effects of CO2 storage in depleted gas reservoirs in the Netherlands: Inferences from feasibility studies and comparison with aquifer storage

    NARCIS (Netherlands)

    Orlic, B.


    In this paper, the geomechanical impact of large-scale carbon dioxide (CO2) storage in depleted Dutch gas fields is compared with the impact of CO2 storage in saline aquifers. The geomechanical behaviour of four potential CO2 storage sites is examined using flow and geomechanical simulations. Many

  12. Salinity of deep groundwater in California: Water quantity, quality, and protection


    Kang, Mary; Jackson, Robert B.


    Groundwater withdrawals are increasing across the United States, particularly in California, which faces a growing population and prolonged drought. Deep groundwater aquifers provide an alternative source of fresh and saline water that can be useable with desalination and/or treatment. In the Central Valley alone, fresh groundwater volumes can be increased almost threefold, and useable groundwater volumes can be increased fourfold if we extend depths to 3,000 m. However, some of these deep gr...

  13. Spatial distribution of groundwater salinity at Pergamino: arrecifes zone (Buenos Aires Province, Argentina)


    Sainato, Claudia M.; Losinno, Beatriz N.


    The application of irrigation at the NE of Buenos Aires Province, Argentina, demands the knowledge of groundwater features, in particular salinity, in order to avoid unsuccessful drillings and to prevent from deterioration of soils. Some previous large scale studies have shown the presence of salty groundwater at different depths at close sites, and well information is scarce. The scope of this work is to determine the depth and thickness of the aquifers of the zone and to obtain the spatial ...

  14. Source and mobility of Rare Earth Elements in a sedimentary aquifer system: Aquitaine basin (Southern France) (United States)

    Negrel, P. J.; Petelet-Giraud, E.; Millot, R.; Malcuit, E.


    , middle Eocene, and late Eocene. One important feature, in these confined systems isolated from anthropogenic influence, is the range in salinities by a factor of 10, from 250 mg/L up to 2.5 g/L. The ΣREE, in the range 2-54 ng/L, with a dependence on salinity when expressed in % HCO3 or SO4, reflect the carbonate or evaporite source of REEs. The UCC normalized-REE patterns show a large variability as exemplified by the REE flat patterns-low SREE associated with salinity controlled by HCO3. In the present work, the REEs are investigated in terms of saturation indices, speciation modelling, REE patterns in order to recognize the aquifer type hosting groundwater and decipher the origin of the salinity of the groundwater as some part of the aquifer display in the groundwater concentration of chemical element exceeding the drinking water standard (SO4, F...). Such high concentrations of naturally-occurring substances (e.g. unaffected by human activities) can have negative impacts on groundwater thresholds and deciphering their origin by means of geochemical tools like REE is a remaining challenge.

  15. Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand (United States)

    Lawrence, A. R.; Gooddy, D. C.; Kanatharana, P.; Meesilp, W.; Ramnarong, V.


    Many cities and towns in South and Southeast Asia are unsewered, and urban wastewaters are often discharged either directly to the ground or to surface-water canals and channels. This practice can result in widespread contamination of the shallow groundwater. In Hat Yai, southern Thailand, seepage of urban wastewaters has produced substantial deterioration in the quality of the shallow groundwater directly beneath the city. For this reason, the majority of the potable water supply is obtained from groundwater in deeper semi-confined aquifers 30-50 m below the surface. However, downward leakage of shallow groundwater from beneath the city is a significant component of recharge to the deeper aquifer, which has long-term implications for water quality. Results from cored boreholes and shallow nested piezometers are presented. The combination of high organic content of the urban recharge and the shallow depth to the water table has produced strongly reducing conditions in the upper layer and the mobilisation of arsenic. A simple analytical model shows that time scales for downward leakage, from the surface through the upper aquitard to the semi-confined aquifer, are of the order of several decades. Résumé. De nombreuses villes du sud et du sud-est de l'Asie ne possèdent pas de réseaux d'égouts et les eaux usées domestiques s'écoulent souvent directement sur le sol ou dans des canaux et des cours d'eau de surface. Ces pratiques peuvent provoquer une contamination dispersée de la nappe phréatique. A Hat Yai (sud de la Thaïlande), les infiltrations d'eaux usées domestiques sont responsables d'une détérioration notable de la qualité de la nappe phréatique directement sous la ville. Pour cette raison, la majorité de l'eau potable est prélevée dans des aquifères semi-captifs plus profonds, situés entre 30 et 50 m sous la surface. Cependant, une drainance à partir de la nappe phréatique sous la ville constitue une composante significative de la recharge

  16. Digital data sets that describe aquifer characteristics of the Tillman terrace and alluvial aquifer in southwestern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital aquifer boundaries for the Tillman terrace and alluvial aquifer in southwestern Oklahoma. The Tillman terrace aquifer encompasses...

  17. Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized aquifer boundaries for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer is an important source of water...

  18. Variable-density numerical modeling of seawater intrusion in coastal aquifer with well-developed conduits (United States)

    Xu, Z.; Hu, B. X.


    Karst aquifer is an important drinking water supply for nearly 25% of the world's population. Well-developed subground conduit systems usually can be found in a well-developed karst aquifer, as a dual permeability system. Hydraulic characteristics of non-laminar flow in conduits could be significantly different from darcian flow in porous medium; therefore, hybrid model and different governing equations are necessary in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion has been observed and studied for several decades, also become a worldwidely problem due to groundwater over-pumping and rising sea level. The density difference between freshwater and seawater is recognized as the major factor governing the movements of two fluids in coastal aquifer. Several models have been developed to simulate groundwater flow in karst aquifer, but hardly describe seawater intrusion through the conduits without coupling variable density flow and solute transport. In this study, a numerical SEAWAT model has been developed to simulate variable density flow and transport in heterogeneous karst aquifer. High-density seawater is verified to intrude further inland through high permeability conduit network rather than porous medium. The numerical model also predicts the effect of different cases on seawater intrusion in coastal karst aquifer, such as rising sea level, tide stages and freshwater discharge effects. A series of local and global uncertainty analysis have been taken to evaluate the sensitivity of hydraulic conductivity, porosity, groundwater pumping, sea level, salinity and dispersivity. Heterogeneous conduit and porous medium hydraulic characteristics play an important role in groundwater flow and solute transport simulation. Meanwhile, another hybrid model VDFST-CFP model is currently under development to couple turbulent conduit flow and variable density groundwater flow in porous media, which provides a new method and better description in

  19. Restoration of Wadi Aquifers by Artificial Recharge with Treated Waste Water

    KAUST Repository

    Missimer, Thomas M.


    Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country\\'s treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  20. Large sedimentary aquifer systems functioning. Constraints by classical isotopic and chemical tools, and REE in the Eocene sand aquifer, SW France (United States)

    Petelet-Giraud, E.; Negrel, P. J.; Millot, R.; Guerrot, C.; Brenot, A.; Malcuit, E.


    continuous decrease of water levels in the IMS aquifer for instance constitute major indicators to be taken into account for water management at the aquifer system scale. Major elements variability was interpreted in terms of water-rock interactions in these confined systems isolated from anthropogenic influence, with the main role played by evaporites on the water salinity (up to 2.5 g.L-1). Rare Earth Elements (REE) were also analysed in some groundwater samples, resulting in a large variability of UCC normalized-REE patterns, ΣREE ranging from 1.9 to 50.6 µg.L-1, with no dependence on TDS. For instance, interaction with carbonates delivers REE flat patterns and highest ΣREE. The REE patterns and control by key parameters are investigated in order to test REE as a potential supplementary geochemical tracer to recognize the aquifer type hosting groundwater.

  1. Saltwater wedge variation in a non-anthropogenic coastal karst aquifer influenced by a strong tidal range (Burren, Ireland) (United States)

    Perriquet, Marie; Leonardi, Véronique; Henry, Tiernan; Jourde, Hervé


    Spatial and temporal changes in saltwater wedges in coastal karst aquifers are still poorly understood, largely due to complex mixing processes in these heterogeneous environments, but also due to anthropogenic forcing such as pumping, which commonly affect natural variations in wedges. The purpose of this study was first to characterize the hydrodynamic functioning of a karst aquifer in an oceanic temperate climate with little anthropogenic pressure but strongly influenced by a high tidal range and second, to evaluate the extent and movements of a saltwater wedge influenced by both the tide and the natural recharge of the aquifer. Variations in specific conductivity combined with water chemistry results from six boreholes and two lakes located in the Bell Harbour catchment (western Ireland) enabled us to assess the extent of the intrusion of the saltwater wedge into the aquifer as a function of both karst recharge and tidal movements at high/low and neap/spring tidal cycles. The marked spatial disparity of the saltwater wedge was analysed as a function of both the hydrodynamic and the structural properties of the karst aquifer. Results showed that the extent of the saltwater wedge depended not only on the intrinsic properties of the aquifer but also on the relative influence of the recharge and the tide on groundwater levels, which have opposite effects. Recharge in the Burren area throughout the year is large enough to prevent saltwater intruding more than about one kilometre from the shore. A strong tidal amplitude seems to be the motor of sudden saltwater intrusion observed in the aquifer near the shore while the position of the groundwater level seems to influence the intensity of the salinity increase. Competition between recharge and the tide thus controls the seawater inputs, hence explaining temporal and spatial changes in the saltwater wedge in this coastal karst aquifer.

  2. Groundwater chemical characterization of a Rio de Janeiro coastal aquifer, SE - Brazil (United States)

    Silva-Filho, Emmanoel V.; Sobral Barcellos, Renato G.; Emblanch, Christophe; Blavoux, Bernard; Sella, Silvia Maria; Daniel, Michel; Simler, Roland; Wasserman, Julio Cesar


    Although the inhabitants of the studied area have been complaining of increasing salinity of the water and lowered water table, indicating reduction of groundwater quality, no scientific studies had been carried out to understand the degradation processes. In the present work, a geochemical characterization of the coastal aquifer from the Oceanic Region of Niterói, Rio de Janeiro, Southeast Brazil, was carried out, using hydrogeochemical and isotopic (δ 18O) data, correlation matrices and factor analysis. Based on the hydrochemistry, the groundwater was classified into three types: Group 1 (53%) belongs to Na-Ca-Cl-HCO 3 facies, Group 2 (20%) belongs to Na-Ca-Cl-SO 4 facies and Group 3 (27%) belongs to an intermediate Na-Mg-Ca-HCO 3-Cl-SO 4 facies. The water geochemical evolution, from crystalline (bicarbonate facies) to a sedimentary aquifer (sulfate facies) seem to be controlled by environmental characteristics. The descriptive statistics and isotopic tracers indicate that the increasing salinity in the shallow coastal aquifer is caused by domestic wastewater and not by marine water encroachment.

  3. Project Skippy explores the lithosphere and mantle beneath Australia

    NARCIS (Netherlands)

    Hilst, R.D. van der; Kennett, Brian; Christie, Doug; Grant, John


    A new project is probing the seismic structure of the lithosphere and mantle beneath Australia. The Skippy Project, named after the bush kangaroo, exploits Australia's regional seismicity and makes use of recent advances in digital recording technology to collect three-component broadband

  4. Deep structure beneath Lake Ontario: Crustal-scale Grenville subdivisions (United States)

    Forsyth, D. A.; Milkereit, B.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.


    Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.

  5. Living and Working Beneath the Sea – Next Approach

    Directory of Open Access Journals (Sweden)

    Rowiński Lech


    Full Text Available The idea of living beneath the sea is very new if compared with millennia of shipping activity. In fact, ocean surface was considered mainly as medium suitable for transport of persons and goods as well as aggression and robbery. More practical attempts to live “on” the water surface are limited to well protected internal waters.

  6. Simulation of Wave-Plus-Current Scour beneath Submarine Pipelines

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu


    A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed and suspen...

  7. Mantle transition zone discontinuities beneath the Tien Shan (United States)

    Yu, Youqiang; Zhao, Dapeng; Lei, Jianshe


    To better understand geodynamic processes of intracontinental mountain building, we conduct a systematic investigation of the mantle transition zone (MTZ) beneath the Tien Shan and its surrounding areas using a receiver function method under non-plane wave front assumption. The resulting apparent depths of the 410 km (d410) and 660 km (d660) discontinuities and the MTZ thickness display significant lateral variations. Both the central Tien Shan and the Pamir Plateau are characterized by a thick MTZ, which can be well explained by the existence of lithospheric segments resulted from possible break-off of the subducted slab or lithosphere delamination. A thin MTZ and an obviously depressed d410, which may be induced by asthenosphere upwelling associated with the dropping lithospheric segment, are revealed beneath the Kazakh Shield. Seismic evidence is obtained for the potential existence of lower mantle upwelling beneath the Tarim Basin based on the observed thin MTZ and relatively significant uplift of d660. The subduction of the Kazakh Shield and Tarim lithosphere driven by the India-Eurasia collision possibly plays an essential role in the formation and evolution of the Tien Shan orogenic belt, and the lower mantle upwelling revealed beneath the Tarim Basin may promote the uplift of the Tien Shan by softening the upper mantle.

  8. Deep long-period earthquakes beneath Washington and Oregon volcanoes (United States)

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.


    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  9. Stuck Schools Revisited: Beneath the Averages. K-12 Policy (United States)

    Ushomirsky, Natasha


    "Stuck Schools Revisited: Beneath the Averages" shows why a national focus on turning around the lowest performing schools, while needed, is not enough to raise achievement and close gaps. The report analyzes student achievement data from Maryland and Indiana, which reflect the outcomes seen in other states. The results confirm a…

  10. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonathan J., E-mail: [Vermont Geological Survey, 1 National Life Drive, Main 2, Montpelier, VT 05620 (United States); Comstock, Jeff [Vermont Agency of Agriculture, 116 State Street, Montpelier, VT 05620 (United States); Ryan, Peter [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States); Heindel, Craig [Waite-Heindel Environmental Management, 7 Kilburn Street, Suite 301, Burlington, VT 05401 (United States); Koenigsberger, Stephan [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States)


    In 2000, elevated nitrate concentrations ranging from 12 to 34 mg/L NO{sub 3}−N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed “little/no”, “moderate”, and “large” change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO{sub 3} (manure deposited in a ravine) was exhausted and NO{sub 3} dropped from 34 mg/L to < 10 mg/L after ~ 10 years; however, persistence of NO{sub 3} in the 3 to 8 mg/L range (background) reflects the long term flux of nitrates from nutrients applied to the farm fields surrounding the ravine over the years predating and including this study. Inferred groundwater flow rates from the waste ravine to either moderate change wells in basin 2 or to the shallow bedrock zone beneath the large change wells are 0.05 m/day, well within published bedrock aquifer flow rates. Enrichment of {sup 15}N and {sup 18}O in nitrate is consistent with lithotrophic denitrification of NO{sub 3} in the presence of dissolved Mn and Fe. Once the ravine point-source was removed, denitrification and dilution collectively were responsible for the down-gradient decrease of nitrate in this bedrock aquifer. Denitrification was most influential when NO{sub 3}−N was > 10 mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. - Highlights: • Bedrock wells contaminated

  11. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    Aquifers developed in the different rocks are mainly due to secondary processes such as weathering, fracturing and karstification. The degree of variations in the groundwater productivity is mainly linked with the variations in the effect of these processes in the respective rock. Hydrodynamic analyses of the aquifers reveal ...

  12. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated over- draft conditions and ... negative impact on groundwater quality emerges due to overdraft conditions and reduced recharge with the areal extent of ... aquifers are well addressed with the use of MOD-. FLOW (Chen and ...

  13. Geohydrology of the Cerro Prieto geothermal aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, J.; de la Pena L, A.


    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  14. The Sparta Aquifer: A Sustainable Water Resource? (United States)

    McKee, Paul W.; Hays, Phillip D.


    Introduction The Sparta aquifer is an aquifer of regional importance within the Mississippi embayment aquifer system. It consists of varying amounts of unconsolidated sand, inter-stratified with silt and clay lenses within the Sparta Sand of the Claiborne Group. It extends from south Texas, north into Louisiana, Arkansas, and Tennessee, and eastward into Mississippi and Alabama (fig. 1). On both the west and east sides of the Mississippi embayment, the Sparta aquifer is exposed at the surface (outcrops) and is locally unconfined; it becomes confined as it dips toward the axis of the embayment, (generally corresponding with the Mississippi River) and southward toward the Gulf of Mexico where it is deeply buried in the subsurface (Hosman, 1968). Generalized ground-water flow in the Sparta aquifer is from the outcrop areas to the axis (center) of the embayment (fig. 2). In Arkansas, the Sparta aquifer outcrops parallel to the Fall Line at the western extreme of the Mississippi embayment (the Fall Line is a line dividing the mountainous highlands of Arkansas from the lowland area); and the formation dips from its outcrop area to the southeast. The Sparta aquifer supplies water for municipalities, industries such as paper production, and to a lesser degree, irrigation of agricultural crops (fig. 3). This report highlights hydrologic conditions of the aquifer in Arkansas County as an example of how water use is affecting water levels.

  15. Overview of the Ogallala Aquifer Program (United States)

    Irrigation increased markedly on the Southern High Plains during the second half of the 20th century, drawing water primarily from the Ogallala Aquifer. During this time, irrigation sustained regional farm incomes and rural economies. Withdrawals from the aquifer, however, have exceeded recharge, re...

  16. Groundwater Quality and Quantity in a Coastal Aquifer Under High Human Pressure: Understand the Aquifer Functioning and the Social Perception of Water Use for a Better Water Management. Example of Recife (PE, Brazil) (United States)

    Petelet-Giraud, E.; Cary, L.; Bertrand, G.; Alves, L. M.; Cary, P.; Giglio-Jacquemot, A.; Aquilina, L.; Hirata, R.; Montenegro, S.; Aurouet, A.; Franzen, M.; Chatton, E.


    The Recife Metropolitan Region is a typical "hot spot" illustrating the problems of southern countries on water issues inducing high pressures on water resources both on quantity and quality in the context of global social and environmental changes. This study is based on an interdisciplinary approach, coupling "hard" geosciences together with "soft" social sciences with the aim to study the human impact on coastal aquifers in a context of overexploitation to improve the existing water management tools. By revisiting the geological and hydrogeological conceptual models, field campaigns of groundwater and surface water sampling and analysis, and of interviews of different actors on the theme of water supply and management in Recife Metropolitan Region, the main results can be summarized as follows: (1) The recharge of the deep strategic confined aquifers is very limited resulting in water level decrease (up to -90m in 25y) due to overexploitation. (2) Groundwater residence time in these deep aquifers is over 10,000 years. (3) The natural upward flux of these confined aquifers is observed inland, but is reversed in the heavily populated areas along the coast leading to mixing with modern groundwater coming from the shallow aquifers. (4) Groundwater salinization is inherited from the Pleistocene marine transgression, only partly diluted by the recharge through the mangroves during the subsequent regression phase. Today, leakage from surficial aquifers induces local salinization. (5) Local climatic scenarios predict a reduction of rainfall volume of 20% together with an increase of sea level (18-59cm by 2100). (5) The Public authorities tend to deny the difficulties that people, especially those in precarious situation, are confronted with regarding water, especially in times of drought. The COQUEIRAL research project is financially supported by ANR (ANR-11-CEPL-012); FACEPE (APQ-0077-3.07/11); FAPESP (2011/50553-0

  17. Thin lithosphere-asthenosphere boundary beneath Eastern Indian craton (United States)

    Shalivahan; Bhattacharya, Bimalendu B.; Rao, N. V. Chalapathi; Maurya, V. P.


    The lithosphere-asthenosphere boundary (LAB) separates the hard and rigid outer layer of the earth (lithosphere) and the weaker, hotter, and deeper part of the upper mantle (asthenosphere) and plays a pivotal role in plate tectonics. However, its definitive detection, especially beneath the cratons, is proving elusive. One of the geophysical tools used to map the LAB beneath the cratons is through magnetotelluric (MT) observations. The resistivity at boundary falls in the range of 5-25 Ω-m and can be explained by the presence of a small amount of water in the asthenosphere, possibly inducing partial melt. Here, we report thickness of the LAB in one of the oldest dated ancient cratons of India-Eastern Indian Craton (EIC) of ~ 3.3 Gyr, from MT studies. The two prominent phase-sensitive strike directions, one each for crust and mantle, and the presence of resistive continental lower crust act as a window to mantle in resolving deeper electrical conductivity structures beneath EIC. Our results show that the LAB beneath the EIC is at 95 km. The region is interesting as the electrical properties of the crust and mantle and the Moho depth are similar to those of the Slave Craton, Canada (~ 4.0 Gyr) but the depth of the LAB beneath the EIC is half that of the Slave craton. As cratonic signatures, depicted by ultrapotassic rocks from Gondwana coal fields close to EIC, are preserved at least till early Cretaceous (117 Ma) it is likely that Himalayan orogeny could have played a major role in delamination of the lithospheric roots of the EIC in addition to attendant seismicity.

  18. Three-dimensional shallow velocity structure beneath Taal Volcano, Philippines (United States)

    You, Shuei-Huei; Konstantinou, Konstantinos I.; Gung, Yuancheng; Lin, Cheng-Horng


    Based on its numerous historical explosive eruptions and high potential hazards to nearby population of millions, Taal Volcano is one of the most dangerous "Decade Volcanoes" in the world. To provide better investigation on local seismicity and seismic structure beneath Taal Volcano, we deployed a temporary seismic network consisting of eight stations from March 2008 to March 2010. In the preliminary data processing stage, three periods showing linear time-drifting of internal clock were clearly identified from noise-derived empirical Green's functions. The time-drifting errors were corrected prior to further data analyses. By using VELEST, 2274 local earthquakes were manually picked and located. Two major earthquake groups are noticed, with one lying beneath the western shore of Taal Lake showing a linear feature, and the other spreading around the eastern flank of Taal Volcano Island at shallower depths. We performed seismic tomography to image the 3D structure beneath Taal Volcano using the LOTOS algorithm. Some interesting features are revealed from the tomographic results, including a solidified magma conduit below the northwestern corner of Taal Volcano Island, indicated by high Vp, Vs, and low Vp/Vs ratio, and a large potential hydrothermal reservoir beneath the center of Taal Volcano Island, suggested by low Vs and high Vp/Vs ratio. Furthermore, combining earthquake distributions and tomographic images, we suggest potential existence of a hydrothermal reservoir beneath the southwestern corner of Taal Lake, and a fluid conduit extending to the northwest. These seismic features have never been proposed in previous studies, implying that new hydrothermal activity might be formed in places away from the historical craters on Taal Volcano Island.

  19. Modelling the Crust beneath the Kashmir valley in Northwestern Himalaya (United States)

    Mir, R. R.; Parvez, I. A.; Gaur, V. K.; A.; Chandra, R.; Romshoo, S. A.


    We investigate the crustal structure beneath five broadband seismic stations in the NW-SE trendingoval shaped Kashmir valley sandwiched between the Zanskar and the Pir Panjal ranges of thenorthwestern Himalaya. Three of these sites were located along the southwestern edge of the valley andthe other two adjoined the southeastern. Receiver Functions (RFs) at these sites were calculated usingthe iterative time domain deconvolution method and jointly inverted with surface wave dispersiondata to estimate the shear wave velocity structure beneath each station. To further test the results ofinversion, we applied forward modelling by dividing the crust beneath each station into 4-6homogeneous, isotropic layers. Moho depths were separately calculated at different piercing pointsfrom the inversion of only a few stacked receiver functions of high quality around each piercing point.These uncertainties were further reduced to ±2 km by trial forward modelling as Moho depths werevaried over a range of ±6 km in steps of 2 km and the synthetic receiver functions matched with theinverted ones. The final values were also found to be close to those independently estimated using theH-K stacks. The Moho depths on the eastern edge of the valley and at piercing points in itssouthwestern half are close to 55 km, but increase to about 58 km on the eastern edge, suggesting thathere, as in the central and Nepal Himalaya, the Indian plate dips northeastwards beneath the Himalaya.We also calculated the Vp/Vs ratio beneath these 5 stations which were found to lie between 1.7 and1.76, yielding a Poisson's ratio of ~0.25 which is characteristic of a felsic composition.

  20. The interaction of two major old water bodies and its implication for the exploitation of groundwater in the multiple aquifer system of the central and northern Negev, Israel (United States)

    Kronfeld, J.; Rosenthal, E.; Weinberger, G.; Flexer, A.; Berkowitz, B.


    In the Beer Sheva region of the Negev desert, the only significant fresh groundwater is contained within the Judea Group carbonate aquifer. It is found that this aquifer holds two distinctly different old water bodies. One such groundwater body has evolved in equilibrium with the carbonate aquifer rocks after being recharged during the Holocene in the Hebron Mountains north of the study area. At present, modern recharge, as denoted by the tritium and radiocarbon contents, is very minor. A subtle 'piston effect' generated by contemporary replenishment is discussed in representative hydrographs in Beer Sheva wells. Another groundwater body identified in the Judea Group aquifer derives from the underlying Kurnub Group aquifer. The regional artesian Kurnub Group aquifer (Nubian Sandstone) contains an older and brackish groundwater body which has been recharged in Sinai during Pleistocene pluvials. Faulting in the Beer Sheva region facilitated hydrologic contact between the two aquifers. Exploitation of the Judea Group has released confining pressures and resulted in the intrusion of Kurnub Group water into the overlying Judea Group carbonate aquifer. This process is most significant in those wells drilled close to major faults where salinity increases with pumping. The intruding water originating from the Kurnub Group sandstone aquifer has not yet equilibrated chemically with the carbonate host. The low pH and high temperatures that have been encountered indicate continuing and very recent intrusion. In the Beer Sheva area, in the absence of direct significant modern recharge (as determined from tritium and 14C values), all waters should be considered as paleowaters that are being mined. A complete revision of the hydrologic concept by which the multiple aquifer system can be exploited is required, to take into account the fact that the fresh Judea Group groundwater is actually an old (Holocene) water body intruded by brackish and older (Pleistocene) water along fault

  1. Salinity tolerance in halophytes. (United States)

    Flowers, Timothy J; Colmer, Timothy D


    Halophytes, plants that survive to reproduce in environments where the salt concentration is around 200 mm NaCl or more, constitute about 1% of the world's flora. Some halophytes show optimal growth in saline conditions; others grow optimally in the absence of salt. However, the tolerance of all halophytes to salinity relies on controlled uptake and compartmentalization of Na+, K+ and Cl- and the synthesis of organic 'compatible' solutes, even where salt glands are operative. Although there is evidence that different species may utilize different transporters in their accumulation of Na+, in general little is known of the proteins and regulatory networks involved. Consequently, it is not yet possible to assign molecular mechanisms to apparent differences in rates of Na+ and Cl- uptake, in root-to-shoot transport (xylem loading and retrieval), or in net selectivity for K+ over Na+. At the cellular level, H+-ATPases in the plasma membrane and tonoplast, as well as the tonoplast H+-PPiase, provide the trans-membrane proton motive force used by various secondary transporters. The widespread occurrence, taxonomically, of halophytes and the general paucity of information on the molecular regulation of tolerance mechanisms persuade us that research should be concentrated on a number of 'model' species that are representative of the various mechanisms that might be involved in tolerance.

  2. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C


    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  3. Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA (United States)

    Scanlon, Bridget R.; Nicot, J.-P.; Reedy, R.C.; Kurtzman, D.; Mukherjee, A.; Nordstrom, D. Kirk


    High groundwater As concentrations in oxidizing systems are generally associated with As adsorption onto hydrous metal (Al, Fe or Mn) oxides and mobilization with increased pH. The objective of this study was to evaluate the distribution, sources and mobilization mechanisms of As in the Southern High Plains (SHP) aquifer, Texas, relative to those in other semiarid, oxidizing systems. Elevated groundwater As levels are widespread in the southern part of the SHP (SHP-S) aquifer, with 47% of wells exceeding the current EPA maximum contaminant level (MCL) of 10 μg/L (range 0.3–164 μg/L), whereas As levels are much lower in the north (SHP-N: 9% ⩾ As MCL of 10 μg/L; range 0.2–43 μg/L). The sharp contrast in As levels between the north and south coincides with a change in total dissolved solids (TDS) from 395 mg/L (median north) to 885 mg/L (median south). Arsenic is present as arsenate (As V) in this oxidizing system and is correlated with groundwater TDS (Spearman’s ρ = 0.57). The most likely current source of As is sorbed As onto hydrous metal oxides based on correlations between As and other oxyanion-forming elements (V, ρ = 0.88; Se, ρ = 0.54; B, ρ = 0.51 and Mo, ρ = 0.46). This source is similar to that in other oxidizing systems and constitutes a secondary source; the most likely primary source being volcanic ashes in the SHP aquifer or original source rocks in the Rockies, based on co-occurrence of As and F (ρ = 0.56), oxyanion-forming elements and SiO2 (ρ = 0.41), which are found in volcanic ashes. High groundwater As concentrations in some semiarid oxidizing systems are related to high evaporation. Although correlation of As with TDS in the SHP aquifer may suggest evaporative concentration, unenriched stable isotopes (δ2H: −65 to −27; δ18O: −9.1 to −4.2) in the SHP aquifer do not support evaporation. High TDS in the SHP aquifer is most likely related to upward movement of saline water from the underlying

  4. Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks

    Directory of Open Access Journals (Sweden)

    Z. Xu


    Full Text Available Long-distance seawater intrusion has been widely observed through the subsurface conduit system in coastal karst aquifers as a source of groundwater contaminant. In this study, seawater intrusion in a dual-permeability karst aquifer with conduit networks is studied by the two-dimensional density-dependent flow and transport SEAWAT model. Local and global sensitivity analyses are used to evaluate the impacts of boundary conditions and hydrological characteristics on modeling seawater intrusion in a karst aquifer, including hydraulic conductivity, effective porosity, specific storage, and dispersivity of the conduit network and of the porous medium. The local sensitivity analysis evaluates the parameters' sensitivities for modeling seawater intrusion, specifically in the Woodville Karst Plain (WKP. A more comprehensive interpretation of parameter sensitivities, including the nonlinear relationship between simulations and parameters, and/or parameter interactions, is addressed in the global sensitivity analysis. The conduit parameters and boundary conditions are important to the simulations in the porous medium because of the dynamical exchanges between the two systems. The sensitivity study indicates that salinity and head simulations in the karst features, such as the conduit system and submarine springs, are critical for understanding seawater intrusion in a coastal karst aquifer. The evaluation of hydraulic conductivity sensitivity in the continuum SEAWAT model may be biased since the conduit flow velocity is not accurately calculated by Darcy's equation as a function of head difference and hydraulic conductivity. In addition, dispersivity is no longer an important parameter in an advection-dominated karst aquifer with a conduit system, compared to the sensitivity results in a porous medium aquifer. In the end, the extents of seawater intrusion are quantitatively evaluated and measured under different scenarios with the variabilities of

  5. Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks (United States)

    Xu, Zexuan; Hu, Bill X.; Ye, Ming


    Long-distance seawater intrusion has been widely observed through the subsurface conduit system in coastal karst aquifers as a source of groundwater contaminant. In this study, seawater intrusion in a dual-permeability karst aquifer with conduit networks is studied by the two-dimensional density-dependent flow and transport SEAWAT model. Local and global sensitivity analyses are used to evaluate the impacts of boundary conditions and hydrological characteristics on modeling seawater intrusion in a karst aquifer, including hydraulic conductivity, effective porosity, specific storage, and dispersivity of the conduit network and of the porous medium. The local sensitivity analysis evaluates the parameters' sensitivities for modeling seawater intrusion, specifically in the Woodville Karst Plain (WKP). A more comprehensive interpretation of parameter sensitivities, including the nonlinear relationship between simulations and parameters, and/or parameter interactions, is addressed in the global sensitivity analysis. The conduit parameters and boundary conditions are important to the simulations in the porous medium because of the dynamical exchanges between the two systems. The sensitivity study indicates that salinity and head simulations in the karst features, such as the conduit system and submarine springs, are critical for understanding seawater intrusion in a coastal karst aquifer. The evaluation of hydraulic conductivity sensitivity in the continuum SEAWAT model may be biased since the conduit flow velocity is not accurately calculated by Darcy's equation as a function of head difference and hydraulic conductivity. In addition, dispersivity is no longer an important parameter in an advection-dominated karst aquifer with a conduit system, compared to the sensitivity results in a porous medium aquifer. In the end, the extents of seawater intrusion are quantitatively evaluated and measured under different scenarios with the variabilities of important parameters

  6. Aquifer Vulnerability maps and climate change (United States)

    Ducci, Daniela; Sellerino, Mariangela


    The aquifer vulnerability maps to contamination are used worldwide by environmental agencies and water-resource managers with the aim of preserving the water resources and of evaluating the most suitable areas where to locate new settlements. In the parametric methods, more used to assess the groundwater contamination vulnerability, e.g. the DRASTIC and the AVI methods, an important role is played by the protective capacity of cover layers to the introduction and transport of contaminants into the aquifer. Therefore, these methods point out the importance of the "Depth to water" parameter, which represents, where the aquifer is unconfined, the depth of the piezometric level and, where the aquifer is confined, the top of the aquifer. This parameter is rarely variable in confined aquifers and in deep unconfined aquifers, as karst aquifers, where the piezometric oscillations are low, compared with the depth of the water table. On the contrary, in shallow aquifers of flat areas, where in addition a large number of human activities are practiced and the contamination risk is high, the piezometric level varies suddenly with the rainfall, and it is very sensitive to drought periods and climatic changes. This affects noticeably the "Depth to water" parameter and consequently the vulnerability maps (e.g. 3 m of piezometric lowering can produce a change in the DRASTIC index from 10 to 7…). To validate this hypothesis, the DRASTC and AVI methods have been applied on a shallow aquifer located in a flat area in Campania (Italy,) considering data corresponding to an average rainfall period and to a drought period.

  7. Economics of Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Robert G. Maliva


    Full Text Available Managed aquifer recharge (MAR technologies can provide a variety of water resources management benefits by increasing the volume of stored water and improving water quality through natural aquifer treatment processes. Implementation of MAR is often hampered by the absence of a clear economic case for the investment to construct and operate the systems. Economic feasibility can be evaluated using cost benefit analysis (CBA, with the challenge of monetizing benefits. The value of water stored or treated by MAR systems can be evaluated by direct and indirect measures of willingness to pay including market price, alternative cost, value marginal product, damage cost avoided, and contingent value methods. CBAs need to incorporate potential risks and uncertainties, such as failure to meet performance objectives. MAR projects involving high value uses, such as potable supply, tend to be economically feasible provided that local hydrogeologic conditions are favorable. They need to have low construction and operational costs for lesser value uses, such as some irrigation. Such systems should therefore be financed by project beneficiaries, but dichotomies may exist between beneficiaries and payers. Hence, MAR projects in developing countries may be economically viable, but external support is often required because of limited local financial resources.

  8. Assessment of nonpoint-source contamination of the High Plains Aquifer in south-central Kansas, 1987 (United States)

    Helgesen, John O.; Stullken, Lloyd E.; Rutledge, A.T.


    Ground-water quality was assessed in a 5,000-square-mile area of the High Plains aquifer in south-central Kansas that is susceptible to nonpoint-source contamination from agricultural and petroleum-production activities. Of particular interest was the presence of agricultural chemicals and petroleum-derived hydrocarbons that might have been associated with brines that formerly were disposed into unlined ponds. Random sampling of ground water was done within a framework of discrete land-use areas (irrigated cropland, petroleum-production land containing former brine-disposal ponds, and undeveloped rangeland) of 3-10 square miles. Although true baseline water-quality conditions probably are rare, in this region they are represented most closely by ground water in areas of undeveloped rangeland. The sampling design enabled statistical hypothesis testing, using nonparametric procedures, of the effects of land use, unsaturated-zone lithology, and type of well sampled. Results indicate that regional ground-water quality has been affected by prevailing land-use activities, as shown by increased concentrations of several inorganic constituents. Ground water beneath irrigated cropland was characterized by significantly larger concentrations of hardness, alkalinity, calcium, magnesium, potassium, fluofide, and nitrite plus nitrate than was water beneath undeveloped rangeland. Few nondegraded pesticides were detected in the aquifer, probably because of degradation and sorption. Atrazine was the most common, but only in small concentrations. round water beneath petroleum-production land was characterized by significantly larger concentrations of hardness, alkalinity, dissolved solids, sodium, and chloride than was water beneath undeveloped rangeland. Nonpoint-source contamination by oil-derived hydrocarbons was not discernible. The occurrences of trace organic compounds were similar between petroleum-production land and undeveloped rangeland, which indicates a natural origin

  9. Decadal variations in groundwater quality: A legacy from nitrate leaching and denitrification by pyrite in a sandy aquifer (United States)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke; Müller, Sascha; Leskelä, Jari; Engesgaard, Peter


    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content of water in the oxidized zone of the aquifer nearly halved, following implementation of action plans to reduce N leaching from agriculture. However, due to denitrification by pyrite oxidation in the aquifer, a plume of sulfate-rich water migrates through the aquifer as a legacy of the historical NO3 loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing into the pristine groundwater residing deeper in the aquifer. Reactant-to-product ratios across reaction fronts are altered by dispersive mixing and transience in reactant input functions. Modelling therefore allowed a direct comparison of observed and simulated ratios of concentrations of NO3 (reactant) in the oxidized zone to those of SO4 (product) in the reduced zone, which aided a stoichiometric assessment of the mechanisms of denitrification. Denitrification by pyrite in the Rabis Creek aquifer results in oxidation of S-1 and Fe2+ in pyrite to S6+ in dissolved SO4 and Fe3+ in Fe-oxide. Neither precipitation of elemental sulfur (S0), nor of jarosite, was supported by observations, and adsorption of sulfate was also dismissed.

  10. Agricultural Use of Groundwater and Management Initiatives in the Maghreb: Challenges and Opportunities for Sustainable Aquifer Exploitation


    Faysse, Nicolas; Hartani, Tarik; Frija, Aymen; Tazekrit, Idir; Zairi, Choukri; Challouf, Azza


    International audience; The rapid development of groundwater use for irrigation in the Maghreb has resulted in significant agricultural growth, but in many regions, such development has become unsustainable because of aquifer overexploitation or water and soil salinization. The paper examines groundwater use and management in Morocco, Algeria and Tunisia based on a study of national institutional and policy mechanisms and nine local case studies. Farmers address the problem of decreasing bore...

  11. Comparison of measurements and theory for backscatter from bare and snow-covered saline ice (United States)

    Bredow, Jonathan W.; Gogineni, Sivaprasad


    C-band radar backscatter measurements were made on artificially grown sea ice during the winters of 1987-1988 and 1988-1989. These measurements were made on smooth, rough, and snow-covered saline ice. The measured sigma-deg(theta) of smooth saline ice (rms height less than 0.05 cm) disagreed with small perturbation method (SPM) surface scattering predictions. Using physical parameters of the ice in a simple layer model, it us shown that this discrepancy can be explained by scattering from beneath the surface. A thin (7-cm) dry snow cover had a significant influence on backscatter from the smooth ice sheet. This influence was due to scattering from particles within the snow, and can be predicted by a commonly used empirical layer model for snow. The results of backscatter measurements of a moderately rough saline ice sheet were found to agree with SPM predictions.

  12. Assessing controls on perched saturated zones beneath the Idaho Nuclear Technology and Engineering Center, Idaho (United States)

    Mirus, Benjamin B.; Perkins, Kim S.; Nimmo, John R.


    Waste byproducts associated with operations at the Idaho Nuclear Technology and Engineering Center (INTEC) have the potential to contaminate the eastern Snake River Plain (ESRP) aquifer. Recharge to the ESRP aquifer is controlled largely by the alternating stratigraphy of fractured volcanic rocks and sedimentary interbeds within the overlying vadose zone and by the availability of water at the surface. Beneath the INTEC facilities, localized zones of saturation perched on the sedimentary interbeds are of particular concern because they may facilitate accelerated transport of contaminants. The sources and timing of natural and anthropogenic recharge to the perched zones are poorly understood. Simple approaches for quantitative characterization of this complex, variably saturated flow system are needed to assess potential scenarios for contaminant transport under alternative remediation strategies. During 2009-2011, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, employed data analysis and numerical simulations with a recently developed model of preferential flow to evaluate the sources and quantity of recharge to the perched zones. Piezometer, tensiometer, temperature, precipitation, and stream-discharge data were analyzed, with particular focus on the possibility of contributions to the perched zones from snowmelt and flow in the neighboring Big Lost River (BLR). Analysis of the timing and magnitude of subsurface dynamics indicate that streamflow provides local recharge to the shallow, intermediate, and deep perched saturated zones within 150 m of the BLR; at greater distances from the BLR the influence of streamflow on recharge is unclear. Perched water-level dynamics in most wells analyzed are consistent with findings from previous geochemical analyses, which suggest that a combination of annual snowmelt and anthropogenic sources (for example, leaky pipes and drainage ditches) contribute to recharge of shallow and

  13. Calcite raft geochemistry as a hydrological proxy for Holocene aquifer conditions in Hoyo Negro and Ich Balam (Sac Actun Cave System), Quintana Roo, Mexico (United States)

    Kovacs, Shawn E.; Reinhardt, Eduard G.; Chatters, James C.; Rissolo, Dominique; Schwarcz, Henry P.; Collins, Shawn V.; Kim, Sang-Tae; Nava Blank, Alberto; Luna Erreguerena, Pilar


    Two cores from calcite rafts deposits located in Cenote Ich Balam and Hoyo Negro were dated and analyzed for 87Sr/86Sr, δ18O, δ13C, Sr/Ca and Cl/Ca. The geochemical records show changing aquifer salinity spanning the last ∼ 8.5 cal kyrs BP and interrelationships with Holocene climate trends (wet and dry periods). During the wet mid-Holocene, the salinity of the meteoric Water Mass (WM; at 7.8-8.3 cal kyrs BP) was relatively high at 1.5-2.7 ppt and then became less saline (1.0-1.5 ppt) during the last ∼ 7000 yrs as climate became progressively drier. High salinity of the meteoric WM during the wet mid-Holocene is attributed to increased turbulent mixing between the meteoric and underlying marine WM. Increased precipitation, in terms of amount, frequency, and intensity (e.g. hurricanes) causes higher flow of meteoric water towards the coast and mixing at the halocline, a phenomenon recorded with recent instrumental monitoring of the aquifer. Conversely, during dry periods reduced precipitation and flow in the meteoric WM would result in lower salinity. Karst properties and Holocene sea-level rise also seem to have an effect on the aquifer. When the regionally extensive network of shallow cave passages (∼ 10-12 m water depth) are flooded at ∼ 8000 cal yrs BP, there is a rapid shift in salinity. This study demonstrates that calcite raft deposits can be used as paleo-environmental recorders documenting the effects of sea level and climate change on aquifer condition.

  14. Basement and alluvial aquifers of Malawi: An overview of ...

    African Journals Online (AJOL)

    This paper highlights the quality of groundwater in basement and alluvial aquifers of Malawi through literature assessment. Groundwater in these aquifers serves about 60% of Malawian population. Alluvial aquifers yield high groundwater in excess of 10 L/s and more mineralized than basement aquifers. The values from ...

  15. Simulation of seawater intrusion in coastal aquifers: Some typical ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    seawater intrusion phenomenon in coastal aquifers within a management model, and. (iii) motivate the future formulation of ... simulation model was applied to an aquifer system and the aquifer responses were analysed. These aquifer responses are ..... CPU time required for a single steady state simulation, on the average, ...

  16. 3D magnetotelluric characterization of the geothermal anomaly in the Llucmajor aquifer system (Majorca, Spain) (United States)

    Arango, C.; Marcuello, A.; Ledo, J.; Queralt, P.


    In the Llucmajor aquifer system (Majorca Island, Spain) some geothermal evidences have appeared. This phenomenon is not isolated to Majorca and it is present in other areas, where it can be associated with structural conditions, especially to the extensional event suffered by the island after the Alpine Orogeny. However, the origin of this anomaly in Llucmajor is not well known, and there is no surface geological evidence of these structural conditions. With the aim of delineating the geoelectrical structure of the zone and identifying the geological structure that allows the presence of this anomaly, an audiomagnetotelluric (AMT) survey was carried out. The AMT data was processed using a Wavelet Transform-based scheme. Dimensionality analysis indicates that the geoelectrical structure is mainly 3D. The 3D model was obtained by trial and error forward modeling, taking accounting of the responses from the determinant of the impedance tensor. The model shows a vertical resistivity distribution with three horizons associated with different units: on the top, a shallow high resistive media related to an unconfined shallow aquifer; in the middle, a conductive layer related to the aquitard, and below it, another resistive media related to the confined deeper aquifer. The intermediate horizon shows a sudden thinning beneath the thermal anomalous zone that can be identified as a weakness zone (fault or fracture) connecting both aquifers. An exploratory well was drilled after the AMT survey and reached almost 700 m in depth. This allowed correlating the resistivity distribution of the 3D model with data logging and lithology obtained from the well, showing a proper agreement between them.

  17. Contributions of groundwater conditions to soil and water salinization (United States)

    Salama, Ramsis B.; Otto, Claus J.; Fitzpatrick, Robert W.

    Salinization is the process whereby the concentration of dissolved salts in water and soil is increased due to natural or human-induced processes. Water is lost through one or any combination of four main mechanisms: evaporation, evapotranspiration, hydrolysis, and leakage between aquifers. Salinity increases from catchment divides to the valley floors and in the direction of groundwater flow. Salinization is explained by two main chemical models developed by the authors: weathering and deposition. These models are in agreement with the weathering and depositional geological processes that have formed soils and overburden in the catchments. Five soil-change processes in arid and semi-arid climates are associated with waterlogging and water. In all represented cases, groundwater is the main geological agent for transmitting, accumulating, and discharging salt. At a small catchment scale in South and Western Australia, water is lost through evapotranspiration and hydrolysis. Saline groundwater flows along the beds of the streams and is accumulated in paleochannels, which act as a salt repository, and finally discharges in lakes, where most of the saline groundwater is concentrated. In the hummocky terrains of the Northern Great Plains Region, Canada and USA, the localized recharge and discharge scenarios cause salinization to occur mainly in depressions, in conjunction with the formation of saline soils and seepages. On a regional scale within closed basins, this process can create playas or saline lakes. In the continental aquifers of the rift basins of Sudan, salinity increases along the groundwater flow path and forms a saline zone at the distal end. The saline zone in each rift forms a closed ridge, which coincides with the closed trough of the groundwater-level map. The saline body or bodies were formed by evaporation coupled with alkaline-earth carbonate precipitation and dissolution of capillary salts. Résumé La salinisation est le processus par lequel la

  18. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia (United States)

    Gordon, Debbie W.; Gonthier, Gerard


    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  19. Stochastic modeling of soil salinity

    NARCIS (Netherlands)

    Suweis, S.; Rinaldo, A.; Zee, van der S.E.A.T.M.; Daly, E.; Maritan, A.


    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The long term probability density functions of salt mass and

  20. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio


    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  1. Estimated withdrawals from principal aquifers in the United States, 2000 (United States)

    Maupin, Molly A.; Barber, Nancy L.


    Fresh ground-water withdrawals from 66 principal aquifers in the United States were estimated for irrigation, public-supply, and self-supplied industrial water uses for the year 2000. Total ground-water withdrawals were 76,500 million gallons per day, or 85,800 thousand acre-feet per year for these three uses. Irrigation used the largest amount of ground water, 56,900 million gallons per day, followed by public supply with 16,000 million gallons per day, and self-supplied industrial with 3,570 million gallons per day. These three water uses represented 92 percent of the fresh groundwater withdrawals for all uses in the United States, the remaining 8 percent included self-supplied domestic, aquaculture, livestock, mining, and thermoelectric power uses. Aquifer withdrawals were categorized by five lithologic groups: unconsolidated and semiconsolidated sand and gravel aquifers, carbonate-rock aquifers, igneous and metamorphic-rock aquifers, sandstone aquifers, and sandstone and carbonate-rock aquifers. Withdrawals from aquifers that were not included in one of the 66 principal aquifers were reported in an “Other” aquifers group. The largest withdrawals in the United States were from unconsolidated and semiconsolidated sand and gravel aquifers, which accounted for 80 percent of total withdrawals from all aquifers. Carbonate-rock aquifers provided 8 percent of the withdrawals, and igneous and metamorphic-rock aquifers, 6 percent. Withdrawals from sandstone aquifers, from sandstone and carbonate-rock aquifers, and from the “Other” aquifers category each constituted about 2 percent of the total withdrawals reported.Fifty-five percent of the total withdrawals for irrigation, public-supply, and self-supplied industrial water uses were provided by the High Plains aquifer, California Central Valley aquifer system, the Mississippi River Valley alluvial aquifer, and the Basin and Range basin-fill aquifers. These aquifers provided most of the withdrawals for irrigation

  2. Crawling beneath the free surface: Water snail locomotion


    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric


    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being g...

  3. Structures of Active Blind Thrusts Beneath Tokyo Metropolitan Area (United States)

    Ishiyama, T.; Sato, H.; Kato, N.; Nakayama, T.; Iwasaki, T.; Abe, S.


    We show structural models of active blind thrust faults beneath Tokyo metropolitan area, based on actively deforming landforms, Quaternary stratigraphy, and deep to shallow high-resolution seismic reflection data tied with these stratigraphic constraints, resolving seismic hazards from otherwise elusive active structures beneath highly urbanized areas. At the leading edge of the subducting Philippine Sea plate beneath the Kanto region, most significant active structures are recognized as folding and/or faulting of late Pleistocene and Holocene fluvial and marine deposits. Newly obtained seismic reflection profile and reprocessed sections indicate that these active structures are surface manifestations of emergent splay thrust faults extending from a subduction megathrust that generated the A.D.1923 Kanto earthquake (M7.9). Much slower rates of slip along these structures (~ 4.2 mm/yr) than slip deficits (~ 30 mm/yr) indicate that slip partitioning might have occurred between the subduction megathrust and splay faults. In contrast to these megathrust-related structures, steeply dipping blind thrusts are distributed beneath the Kanto plain underlain by several thousand meters thick Neogene forearc basin and shallow marine to terrestrial sediments (Kazusa and Shimousa Group). Deep seismic reflection profiles corroborate that these blind thrusts are reactivated normal faults originally formed due to early to middle Miocene extensional tectonics. While rates of slip along these structures are commonly slow (~0.1 mm/yr) based on offsets of late Pleistocene terrace deposits, their proximity to the metropolitan area urges more intense efforts to identify their potential seismic hazards including locations, sizes, rates of slip, and geometries of blind thrusts.

  4. Slow upper mantle beneath Southern Norway from surface waves (United States)

    Weidle, C.; Maupin, V.


    A recent regional surface wave tomography for Northern Europe revealed unprecedented images of the upper mantle beneath the (Tertiary) North Atlantic and the bordering Fennoscandian craton of Archean-Proterozoic age. With respect to the circum-Atlantic regions of uplift, no common mantle pattern supporting the uplift of these regions is observed. The western boundary of the thick cratonic lithosphere follows the trend of the continental margin offshore northern Norway (i.e. the northern Scandes are underlain by thick lithosphere) whereas further south the boundary of the craton is located further east beneath southwestern Sweden. SV shear wave velocities beneath southern Norway are 10% slower than ak135 (at 70-115 km depth) and these low-velocities are clearly connected to the North Atlantic low-velocity regime through a ~ 400 km wide "channel". The low-velocity anomaly beneath Southern Norway coincides in geometry roughly with the dome-like high topography of the southern Scandes and may thus have a non-negligible contribution to the isostatic balance of the region. The amplitude and depth-distribution of this anomaly are due to be further constrained by new data that were acquired during the MAGNUS experiment in 2006-2008. The temporary seismic network, consisting of 40 broadband seismometers covers to a large extent the location of the anomaly as imaged by the regional tomography. This enables us to get unique control on the tomographic model at improved lateral and vertical resolution. Preliminary analysis of surface wave phase velocities yields an average 1-D shear wave velocity profile for southern Norway as a first step to constrain the presence and depth extent of this low-velocity anomaly.

  5. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves (United States)

    Quirchmayr, Ronald


    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  6. The extent of continental crust beneath the Seychelles (United States)

    Hammond, J. O. S.; Kendall, J.-M.; Collier, J. S.; Rümpker, G.


    The granitic islands of the Seychelles Plateau have long been recognised to overlie continental crust, isolated from Madagascar and India during the formation of the Indian Ocean. However, to date the extent of continental crust beneath the Seychelles region remains unknown. This is particularly true beneath the Mascarene Basin between the Seychelles Plateau and Madagascar and beneath the Amirante Arc. Constraining the size and shape of the Seychelles continental fragment is needed for accurate plate reconstructions of the breakup of Gondwana and has implications for the processes of continental breakup in general. Here we present new estimates of crustal thickness and VP/VS from H-κ stacking of receiver functions from a year long deployment of seismic stations across the Seychelles covering the topographic plateau, the Amirante Ridge and the northern Mascarene Basin. These results, combined with gravity modelling of historical ship track data, confirm that continental crust is present beneath the Seychelles Plateau. This is ˜30-33 km thick, but with a relatively high velocity lower crustal layer. This layer thins southwards from ˜10 km to ˜1 km over a distance of ˜50 km, which is consistent with the Seychelles being at the edge of the Deccan plume prior to its separation from India. In contrast, the majority of the Seychelles Islands away from the topographic plateau show no direct evidence for continental crust. The exception to this is the island of Desroche on the northern Amirante Ridge, where thicker low density crust, consistent with a block of continental material is present. We suggest that the northern Amirantes are likely continental in nature and that small fragments of continental material are a common feature of plume affected continental breakup.

  7. Tomographic Inversion for Shear Velocity Beneath the North American Plate (United States)

    Grand, Stephen P.


    A tomographic back projection scheme has been applied to S and SS travel times to invert for shear velocity below the North American plate. The data range in distance from 8° to 80°, and a total of 3923 arrival times were used. First arrivals were measured directly off the seismograms, while the arrival times of later arrivals were found by a waveform correlation technique using synthetic seismograms. The starting model was laterally heterogeneous in the upper 400 km to account for the first-order differences in ray paths already known. The model was divided into blocks with horizontal dimensions of 500 km by 500 km and varying vertical thicknesses. Good resolution was obtained for structure from just below the crust to about 1700 km depth in the mantle. In the upper mantle a high-velocity root was found directly beneath the Canadian shield to about 400 km depth with the Superior province having the highest velocity and deepest root. The east coast of the United States was found to have intermediate velocities from 100 to 350 km depth and the western United States the slowest velocities at these depths. Below 400 km depth the most significant structure found is a slab-shaped high-velocity anomaly from the eastern Carribean to the northern United States. Beneath the Carribean this anomaly is almost vertical and extends from about 700 km to 1700 km depth. Further to the north, the anomaly dips to the east with high velocities at 700 km depth in the central United States and high velocities below 1100 km depth beneath the east coast. The anomaly is about 1% in magnitude. This lower-mantle anomaly may be associated with past subduction of the Farallon plate beneath North America.

  8. Lithospheric radial anisotropy beneath the Gulf of Mexico (United States)

    Chu, Risheng; Ko, Justin Yen-Ting; Wei, Shengji; Zhan, Zhongwen; Helmberger, Don


    The Lithosphere-Asthenosphere Boundary (LAB), where a layer of low viscosity asthenosphere decouples with the upper plate motion, plays an essential role in plate tectonics. Most dynamic modeling assumes that the shear velocity can be used as a surrogate for viscosity which provides key information about mantle flow. Here, we derive a shear velocity model for the LAB structure beneath the Gulf of Mexico allowing a detailed comparison with that beneath the Pacific (PAC) and Atlantic (ATL). Our study takes advantage of the USArray data from the March 25th, 2013 Guatemala earthquake at a depth of 200 km. Such data is unique in that we can observe a direct upward traveling lid arrival which remains the first arrival ahead of the triplications beyond 18°. This extra feature in conjunction with upper-mantle triplication sampling allows good depth control of the LAB and a new upper-mantle seismic model ATM, a modification of ATL, to be developed. ATM has a prominent low velocity zone similar to the structure beneath the western Atlantic. The model contains strong radial anisotropy in the lid where VSH is about 6% faster than VSV. This anisotropic feature ends at the bottom of the lithosphere at about the depth of 175 km in contrast to the Pacific where it extends to over 300 km. Another important feature of ATM is the weaker velocity gradient from the depth of 175 to 350 km compared to Pacific models, which may be related to differences in mantle flow.

  9. Why are there few seedlings beneath the myrmecophyte Triplaris americana? (United States)

    Larrea-Alcázar, Daniel M.; Simonetti, Javier A.


    We compared the relative importance of chemical alellopathy, pruning behaviour of resident ants and other non-related agents to ant-plant mutualism for seedling establishment beneath Triplaris americana L. (Polygonaceae), a myrmecophyte plant. We also included a preliminary analysis of effects of fragmentation on these ecological processes. Seeds and seedlings of Theobroma cacao L. (Sterculiaceae) were used as the target species in all experiments. Leaf-tissue extracts of the myrmecophyte plant did not inhibit germination of cacao seeds. Resident Pseudomyrmex triplarinus Weddell (Pseudomyrmecinae) ants did not remove seeds under the canopy of their host plants. The main seed consumer was the leaf-cutting ant Atta sexdens L. (Myrmicinae). Leaves of cacao seedlings were partially or totally pruned by Pseudomyrmex ants mainly in forest fragments studied. We offer evidence pointing to the possibility that the absence of seedlings beneath Triplaris may result from effects of both ant species. We discuss the benefits of pruning behaviour for the resident ant colony and the effects of ant-ant interactions on seedling establishment beneath this ant-plant system.

  10. Simulating Physical Processes and Economic Behavior in Saline, Irrigated Agriculture: Model Development (United States)

    Lefkoff, L. Jeff; Gorelick, Steven M.


    A model of an irrigated, saline stream-aquifer system is constructed to simulate economic, agronomic, and hydrologic processes. The model is applied to a section of the Arkansas Valley in southeastern Colorado and is used to examine the effect of crop-mixing strategies on long-term profits. Mixing in excess of crop rotation requirements provides an index of farmers' willingness to exchange some profit for a reduction in the risk of short-term loss. The model contains three components. The economic component simulates water use decisions that maximize annual profit for each farm. The hydrologic component simulates salt transport by employing regression equations that predict changes in groundwater salinity as a function of hydrologic conditions and water use decisions. The agronomic component approximates changes in corn and alfalfa production in response to the depth and salinity of irrigation applications. Results from the entire economic-hydrologic-agronomic model are consistent with the few historical observations available for the site.

  11. Offshore Stratigraphic Controls on Salt-Water Intrusion in Los Angeles Area Coastal Aquifers (United States)

    Edwards, B. D.; Ponti, D. J.; Ehman, K. D.; Tinsley, J. C.; Reichard, E. G.


    River as part of a broad channel complex. Salt water migrates up the Gaspur channel and into the underlying Gage aquifer that is comprised mostly of shallow marine and tidal sands, silts, and clays. Beneath the Gage, the Pleistocene San Pedro Formation consists of an aggradational set of marine-deltaic sands that thicken offshore and develop clinoform beds infilling the Palos Verdes basin. How these units are connected hydraulically controls the flow of salt water. We are incorporating the offshore seismic and onshore core data in a regional groundwater flow simulation model for the Los Angeles basin and in a transport model emphasizing salt-water intrusion.

  12. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    Energy Technology Data Exchange (ETDEWEB)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C


    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common

  13. Stochastic Modeling of Soil Salinity (United States)

    Suweis, Samir; Rinaldo, Andrea; van der Zee, Sjoerd E. A. T. M.; Maritan, Amos; Porporato, Amilcare


    Large areas of cultivated land worldwide are affected by soil salinity. Estimates report that 10% of arable land in over 100 countries, and nine million km2 are salt affected, especially in arid and semi-arid regions. High salinity causes both ion specific and osmotic stress effects, with important consequences for plant production and quality. Salt accumulation in the root zone may be due to natural factors (primary salinization) or due to irrigation (secondary salinization). Simple (e.g., vertically averaged over the soil depth) coupled soil moisture and salt balance equations have been used in the past. Despite their approximations, these models have the advantage of parsimony, thus allowing a direct analysis of the interplay of the main processes. They also provide the ideal starting point to include external, random hydro-climatic fluctuations in the analysis of long-term salinization trends. We propose a minimalist stochastic model of primary soil salinity, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The long term probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equation to a stochastic differential equation driven by multiplicative Poisson noise. The novel analytical solutions provide insight on the interplay of the main soil, plant and climate parameters responsible for long-term soil salinization. In fact, soil salinity statistics are obtained as a function of climate, soil and vegetation parameters. These, in turn, can be combined with soil moisture statistics to obtain a full characterization of soil salt concentrations and the ensuing risk of primary salinization. In particular, the solutions show the existence of two quite distinct regimes, the first one where the mean salt mass remains nearly constant with increasing rainfall frequency, and the

  14. Variable-density effects on the worth of pressure data for characterizing aquifer permeability (United States)

    Yoon, Seonkyoo; Kang, Peter; Williams, John


    We investigate variable-density effects on the worth of pressure data for estimating aquifer permeability. In variable-density flow and transport in porous media, the pressure distribution is transient even without changes in boundary conditions because the variable-density gradient itself can induce gravity currents. This means that the transient pressure distribution is implicitly coupled with additional information from the variable-density gradient, and consequently the data can be more informative than in density invariant cases for aquifer characterization. To systematically investigate the informativeness of the transient pressure data, we analyze the performance of permeability characterization employing the pressure data under various levels of variable-density effects. The variable-density effects can be controlled by a mixed convection ratio, which is a ratio between two characteristic convections: free convection due to a density gradient and forced convection due to a hydraulic gradient. A 2D density-dependent flow and transport model is established to simulate a coastal aquifer system where density flow occurs due to density difference between saline seawater and fresh water. An ensemble Kalman filter (EnKF) with convariance localization and inflation is used to sequentially estimate heterogeneous aquifer permeability fields by conditioning on real-time pressure head data. The performance of the permeability estimation is analyzed in terms of accuracy of estimated permeability fields, and predictability of arrival times of breakthrough curves in a push-pull setting. The analysis shows that the accuracy and predictability of the inverse estimation can be most improved when the free convection is balanced with the forced convection, which corresponds to the mixed convection ratio being one. This demonstrates that the pressure data is most informative for characterizing aquifer permeability fields when the two characteristic convections are balanced.

  15. Understanding the nature of mantle upwelling beneath East-Africa (United States)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham


    The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km indicating deep multiple sources of upwelling that converge in broader low-velocity bodies along the rift axis at shallow

  16. Modelling density-dependent flow and solute transport at the Lake Tutchewop saline disposal complex, Victoria (United States)

    Simmons, Craig T.; Narayan, Kumar A.


    Intercepted saline groundwaters and drainage effluent from irrigation are commonly stored in both natural and artificial saline disposal basins throughout the Murray-Darling Basin of Australia. Their continued use as wastewater evaporation sites requires an understanding of existing groundwater dynamics. The useful of individual basins, their sustainability and possible environmental impacts remain largely unknown. In this work, the movement of salt to the underlying groundwater system from Lake Tutchewop, a saline disposal complex in north-central Victoria, was modelled in cross-section. Due to the salinity contrast between the hypersaline basin waters and the regional groundwater, it was necessary to simulate density-dependent flow behaviour. Under certain conditions, these density-stratified systems may become unstable leading to the onset of convective behaviour, which greatly increases the movement of salt from the basin to the groundwater system. Modelled concentration profiles in the aquifer system and calculated seepage rates from the basin show that Lake Tutchewop is stable under its present operating regime. The downward movement of salt is mainly controlled by diffusion and dispersion. The calibrated model was used to assess the impact of several management scenarios using time-dependent boundary conditions for lake salinity and water levels. The influence of heterogeneous basin linings on ensuing salt flux rates is examined, and results show that increased solute transport will occur under such conditions. A sensitivity analysis performed on governing variables showed that salt fluxes were most sensitive to lake salinity levels. A solute Rayleigh number defined in terms of basin salinity and hydrogeologic parameters is seen to be an effective tool for predicting the long term behaviour of such saline disposal basins. The models and concepts developed in this work may find application in the design and management of saline disposal complexes.

  17. Geology, hydrology, and results of tracer testing in the Galena-Platteville aquifer at a waste-disposal site near Byron, Illinois (United States)

    Kay, Robert T.; Yeskis, Douglas J.; Prinos, Scott T.; Morrow, William S.; Vendl, Mark


    A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency of the geohydrology of the dolomite bedrock at a waste-disposal site near Byron, Illinois. The study was designed to identify and characterize the flow pathways through the bedrock aquifer beneath the site. The geologic units of concern at the site are the Glenwood Formation of the Ancell Group, and the Platteville and Galena Groups. These deposits compose the Galena-Platteville aquifer and the underlying Harmony Hill Shale semiconfining unit. The Galena-Platteville aquifer is an unconfined aquifer. Geophysical logging, water levels, and aquifer-test data indicate the presence of interconnected, hydraulically active fractures in the middle of the Galena-Platteville aquifer (the upper flow pathway), and a second set of hydraulically active fractures (the lower flow pathway). The lower flow pathway may be present through much of the site. Few hydraulically active fractures are present in the upper part of the aquifer near the center of the site, but appear to be more numerous in the upper part of the aquifer in the western and northeastern parts of the site. Water-level data obtained during the tracer test indicate that pumping effects were present near the pumped wells. Pumping effects may have been present at several wells located along directions of identified fracture orientation from the pumped well. The upper part of the aquifer did not appear to be hydraulically well connected to the flow pathways supplying water to the pumped well. Large background changes in water levels obscured the effects of pumping and prevented calculation of aquifer properties. The velocity of the bromide tracer through the lower flow pathway under the hydraulic gradient resulting from the pumping was about 152 feet per day. Solution of the Darcy velocity equation results in a calculated effective porosity for this interval of 3.5 percent, indicating hydraulic interconnection between the

  18. Steam Injection For Soil And Aquifer Remediation (United States)

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by...

  19. Aquifer vulnerability for Colorado and New Mexico (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey Data Series provides raster data representing an estimate of aquifer vulnerability calculated for each 30-meter raster cell. Depth to...

  20. Optical tool for salinity detection by remote sensing spectroscopy: application on Oran watershed, Algeria (United States)

    Abdellatif, Dehni; Mourad, Lounis


    Soil salinity is a complex problem that affects groundwater aquifers and agricultural lands in the semiarid regions. Remote sensing and spectroscopy database systems provide accuracy for salinity autodetection and dynamical delineation. Salinity detection techniques using polychromatic wavebands by field geocomputation and experimental data are time consuming and expensive. This paper presents an automated spectral detection and identification of salt minerals using a monochromatic waveband concept from multispectral bands-Landsat 8 Operational Land Imager (OLI) and Thermal InfraRed Sensor (TIRS) and spectroscopy United States Geological Survey database. For detecting mineral salts related to electrolytes, such as electronical and vibrational transitions, an integrated approach of salinity detection related to the optical monochromatic concept has been addressed. The purpose of this paper is to discriminate waveband intrinsic spectral similarity using the Beer-Lambert and Van 't Hoff laws for spectral curve extraction such as transmittance, reflectance, absorbance, land surface temperature, molar concentration, and osmotic pressure. These parameters are primordial for hydrodynamic salinity modeling and continuity identification using chemical and physical approaches. The established regression fitted models have been addressed for salt spectroscopy validation for suitable calibration and validation. Furthermore, our analytical tool is conducted for better decision interface using spectral salinity detection and identification in the Oran watershed, Algeria.

  1. High salinity wastewater treatment. (United States)

    Linarić, M; Markić, M; Sipos, L


    The shock effect, survival and ability of activated sludge to acclimatize to wastewater containing different concentrations of NaCl and Na2SO4 were investigated under laboratory conditions. To accomplish this, the potential penetration of a sewage system by seawater as a consequence of storm surge flooding was simulated. The experiments were conducted using activated sludge taken from the aeration tank of a communal wastewater treatment plant and adding different concentrations up to 40 g/L of NaCl and 4.33 g/L of Na2SO4. The effects of salinity on the activated sludge were monitored for 5 weeks based on the values of pH, dissolved oxygen, total suspended solids, volatile suspended solids, sludge volume, sludge volume index, electrokinetic potential, respirometric measurements and enzymatic activity. The addition of salt sharply reduced or completely inhibited the microbial activity in activated sludge. When salt concentrations were below 10 g/L NaCl, microorganisms were able to acclimatize in several weeks and achieve the same initial activity as in raw sludge samples. When the salt concentration was above 30 g/L NaCl, the acclimatization process was very slow or impossible.

  2. Estimated Withdrawals from Stream-Valley Aquifers and Refined Estimated Withdrawals from Selected Aquifers in the United States, 2000 (United States)

    Sargent, B. Pierre; Maupin, Molly A.; Hinkle, Stephen R.


    The U.S. Geological Survey National Water Use Information Program compiles estimates of fresh ground-water withdrawals in the United States on a 5-year interval. In the year-2000 compilation, withdrawals were reported from principal aquifers and aquifer systems including two general aquifers - Alluvial and Other aquifers. Withdrawals from a widespread aquifer group - stream-valley aquifers - were not specifically identified in the year-2000 compilation, but they are important sources of ground water. Stream-valley aquifers are alluvial aquifers located in the valley of major streams and rivers. Stream-valley aquifers are long but narrow aquifers that are in direct hydraulic connection with associated streams and limited in extent compared to most principal aquifers. Based in large part on information published in U.S. Geological Survey reports, preliminary analysis of withdrawal data and hydrogeologic and surface-water information indicated areas in the United States where possible stream-valley aquifers were located. Further assessment focused on 24 states and the Commonwealth of Puerto Rico. Withdrawals reported from Alluvial aquifers in 16 states and withdrawals reported from Other aquifers in 6 states and the Commonwealth of Puerto Rico were investigated. Two additional States - Arkansas and New Jersey - were investigated because withdrawals reported from other principal aquifers in these two States may be from stream-valley aquifers. Withdrawals from stream-valley aquifers were identified in 20 States and were about 1,560 Mgal/d (million gallons per day), a rate comparable to withdrawals from the 10 most productive principal aquifers in the United States. Of the 1,560 Mgal/d of withdrawals attributed to stream-valley aquifers, 1,240 Mgal/d were disaggregated from Alluvial aquifers, 150 Mgal/d from glacial sand and gravel aquifers, 116 Mgal/d from Other aquifers, 28.1 Mgal/d from Pennsylvanian aquifers, and 24.9 Mgal/d from the Mississippi River Valley alluvial

  3. NOAA Average Annual Salinity (3-Zone) (United States)

    California Department of Resources — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  4. The soil-water flow system beneath a cotton field in arid north-west China, serviced by mulched drip irrigation using brackish water (United States)

    Li, Xianwen; Jin, Menggui; Huang, Jinou; Yuan, Jingjing


    A field experiment was carried out in southern Xinjiang, China, to reveal soil-water flow pattern beneath a combined plastic-mulch (film) and drip-irrigation system using brackish water. The soil-water flow system (SWFS) was characterized from soil surface to the water table based on observed spatio-temporal distribution of total soil-water potential, water content and electric conductivity. Root suction provided a strong inner sink. The results indicated that SWFS determined the soil salinity and moisture distribution. Drip-irrigation events could leach excess salts from the root zone and provide soil conditions with a tolerable salinity level that supports the growth of cotton. High-salinity strips were formed along the wetting front and at the bare soil surface. Hydrogeology conditions, irrigation regime, climate, plant growth and use of mulch would affect potential sources and sinks, boundary conditions and the size of the SWFS. At depth 0-60 cm, the soil salinity at the end of the irrigation season was 1.9 times that at the beginning. Beneath the mulch cover, the soil-water content in the `wide rows' zone (55 cm between the two rows with no drip line) was higher than that in the `narrow rows' zone (15 cm between the two rows with a drip line) due to the strong root-water uptake. The downward water flow below the divergent curved surface of zero flux before irrigation, and the water-table fluctuation with irrigation events, indicated that excessive irrigation occurred.

  5. Aquifers of the Denver Basin, Colorado (United States)

    Topper, R.


    Development of the Denver Basin for water supply has been ongoing since the late 1800s. The Denver Basin aquifer system consists of the water-yielding strata of Tertiary and Cretaceous sedimentary rocks within four overlying formations. The four statutory aquifers contained in these formations are named the Dawson, Denver, Arapahoe, and Laramie-Fox Hills. For water rights administrative purposes, the outcrop/subcrop of the Laramie-Fox Hills aquifer defines the margins of the Basin. Initial estimates of the total recoverable groundwater reserves in storage, under this 6700-mi2 area, were 295 million acre-ft. Recent geologic evidence indicates that the aquifers are very heterogeneous and their composition varies significantly with distance from the source area of the sediments. As a result, available recoverable reserves may be one-third less than previously estimated. There is no legal protection for pressure levels in the aquifer, and water managers are becoming increasingly concerned about the rapid water level declines (30 ft/yr). Approximately 33,700 wells of record have been completed in the sedimentary rock aquifers of the Denver Basin for municipal, industrial, agricultural, and domestic uses.

  6. The Dammam aquifer in Bahrain - Hydrochemical characterization and alternatives for management of groundwater quality (United States)

    Zubari, Waleed K.

    Over-ion of the Dammam aquifer, the principal aquifer in Bahrain, by the agricultural and domestic sectors, has led to its salinization by adjacent brackish and saline water bodies. A hydrochemical study identified the locations of the sources of aquifer salinization and delineated their areas of influence. The investigation indicates that the aquifer water quality is significantly modified as groundwater flows from the northwestern parts of Bahrain, where the aquifer receives its water by lateral underflow from eastern Saudi Arabia, to the southern and southeastern parts. Four types of salinization of the aquifer are identified: brackish-water up-flow from the underlying brackish-water zones in north-central, western, and eastern regions; seawater intrusion in the eastern region; intrusion of sabkha water in the southwestern region; and irrigation return flow in a local area in the western region. Four alternatives for the management of groundwater quality that are available to the water authorities in Bahrain are discussed and their priority areas are proposed, based on the type and extent of each salinization source, in addition to groundwater use in that area. The effectiveness of the proposed management options in controlling the degradation of water quality in the Dammam aquifer should be evaluated using simulation modeling. Résumé La surexploitation de l'aquifère de Damman, principal aquifère de Bahreïn, du fait des besoins agricoles et domestiques, a conduit à sa salinisation à partir d'eaux voisines saumâtres et salées. Une étude hydrochimique a identifié les origines de la salinisation de l'aquifère et a délimité leurs zones d'influence. Les recherches montrent que la qualité de l'eau souterraine est modifiée de façon significative pour les écoulements souterrains dirigés vers les secteurs sud et sud-est et provenant de la région nord-ouest de Bahreïn, là où l'aquifère est alimenté latéralement à partir de l'Arabie Saoudite

  7. Influence of Triassic deposits on water quality of some karstic aquifers to the south of Alicante (Spain

    Directory of Open Access Journals (Sweden)

    Andreu, J.M.


    Full Text Available Overexploitation of the aquifers of the Middle Vinalopó (SE Spain has led to problems which, in many cases, are associated with groundwater salinization. The increase in salinity is considered to be due to the dissolution of mineral salts in the Triassic Keuper facies. Geophysical logging of various boreholes in three aquifers in this region confirms the presence of more mineralized waters at depth. The evidence suggests that the phenomenon of salinization results from mixing of these deep waters with more shallow ones. The fall in the ratio of freshwater to saltwater as overexploitation continues and the aquifer is emptied could explain the increased mineralization that has been observed at many boreholes that penetrate these aquifers.

    La fuerte presión sometida a los acuíferos del Medio Vinalopó (SE España ha originado problemas de sobreexplotación, los cuales van asociados en un gran número de casos a la salinización del agua. El aumento de salinidad ha sido interpretado como debido a la disolución de sales provenientes de los materiales triásicos del Keuper. La testificación geofísica de diversos sondeos de tres acuíferos de esta región ha permitido constatar la presencia de aguas más mineralizadas en profundidad. Por tanto, todo indica que el fenómeno de la salinización se debe a la mezcla del agua más superficial con la profunda. La disminución de la relación agua dulce-agua salada, a medida que progresa la sobreexplotación y el vaciado del acuífero, podría explicar el aumento de la mineralización que han experimentado numerosas captaciones de estos acuíferos.

  8. Seawater intrusion in karstic, coastal aquifers: Current challenges and future scenarios in the Taranto area (southern Italy). (United States)

    De Filippis, Giovanna; Foglia, Laura; Giudici, Mauro; Mehl, Steffen; Margiotta, Stefano; Negri, Sergio Luigi


    Mediterranean areas are characterized by complex hydrogeological systems, where management of freshwater resources, mostly stored in karstic, coastal aquifers, is necessary and requires the application of numerical tools to detect and prevent deterioration of groundwater, mostly caused by overexploitation. In the Taranto area (southern Italy), the deep, karstic aquifer is the only source of freshwater and satisfies the main human activities. Preserving quantity and quality of this system through management policies is so necessary and such task can be addressed through modeling tools which take into account human impacts and the effects of climate changes. A variable-density flow model was developed with SEAWAT to depict the "current" status of the saltwater intrusion, namely the status simulated over an average hydrogeological year. Considering the goals of this analysis and the scale at which the model was built, the equivalent porous medium approach was adopted to represent the deep aquifer. The effects that different flow boundary conditions along the coast have on the transport model were assessed. Furthermore, salinity stratification occurs within a strip spreading between 4km and 7km from the coast in the deep aquifer. The model predicts a similar phenomenon for some submarine freshwater springs and modeling outcomes were positively compared with measurements found in the literature. Two scenarios were simulated to assess the effects of decreased rainfall and increased pumping on saline intrusion. Major differences in the concentration field with respect to the "current" status were found where the hydraulic conductivity of the deep aquifer is higher and such differences are higher when Dirichlet flow boundary conditions are assigned. Furthermore, the Dirichlet boundary condition along the coast for transport modeling influences the concentration field in different scenarios at shallow depths; as such, concentration values simulated under stressed conditions

  9. Stable groundwater quality in deep aquifers of Southern Bangladesh: The case against sustainable abstraction

    Energy Technology Data Exchange (ETDEWEB)

    Ravenscroft, P., E-mail: [UNICEF, BSL Office Complex, Minto Road, Dhaka 1000 (Bangladesh); McArthur, J.M.; Hoque, M.A. [Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom)


    In forty six wells > 150 m deep, from across the arsenic-polluted area of south-central Bangladesh, groundwater composition remained unchanged between 1998 and 2011. No evidence of deteriorating water quality was found in terms of arsenic, iron, manganese, boron, barium or salinity over this period of 13 years. These deep tubewells have achieved operating lives of more than 20 years with minimal institutional support. These findings confirm that tubewells tapping the deep aquifers in the Bengal Basin provide a safe, popular, and economic, means of arsenic mitigation and are likely to do so for decades to come. Nevertheless, concerns remain about the sustainability of a resource that could serve as a source of As-safe water to mitigate As-pollution in shallower aquifers in an area where tens of millions of people are exposed to dangerous levels of arsenic in well water. The conjunction of the stable composition in deep groundwater and the severe adverse health effects of arsenic in shallow groundwater lead us to challenge the notion that strong sustainability principles should be applied to the management of deep aquifer abstraction in Bangladesh is, the notion that the deep groundwater resource should be preserved for future generations by protecting it from adverse impacts, probably of a minor nature, that could occur after a long time and might not happen at all. Instead, we advocate an ethical approach to development of the deep aquifer, based on adaptive abstraction management, which allows possibly unsustainable exploitation now in order to alleviate crippling disease and death from arsenic today while also benefiting future generations by improving the health, education and economy of living children. - Highlights: • Tens of millions of people in Bangladesh are affected by arsenic pollution of groundwater. • Deep wells in potentially non-renewable aquifers are the dominant form of mitigation. • Water quality in these aquifers has remained stable for 13

  10. Groundwater salinity patterns along the coast of the Western Netherlands and the application of cone penetration tests (United States)

    Pauw, P. S.; Groen, J.; Groen, M. M. A.; van der Made, K. J.; Stuyfzand, P. J.; Post, V. E. A.


    Submarine groundwater discharge is an important part of the hydrological cycle, but remains under-investigated for confined aquifers with no surface outcrop at the beach. This paper considers the offshore directed flow of fresh groundwater in the unconfined and confined aquifers along the coast of the Western Netherlands. Salinity patterns based on hydrological, geological, and geophysical field data are presented in five shore-normal hydrogeological cross-sections, extending from the beach to 4 km inland. The offshore continuation of the fresh groundwater is discussed using analytical models and cone penetration tests (CPTs) performed at the beach. All CPTs taken around the low water line of the intertidal zone reveal that changes from saline to fresh groundwater are always associated with a low-permeable layer. Such a low-permeable layer, which can be as thin as a few decimetres, may form the confining layer between the unconfined and confined aquifers, or can occur within of the unconfined aquifer. Due to its high vertical resolution, a CPT is an effective method to detect these variations in salinity and lithology. At each of the investigated locations, freshwater was present in the confined aquifer. Assuming that this fresh groundwater is part of an active flow system, the submarine freshwater tongue is estimated to extend at least a few hundred meters offshore, based on analytical model calculations. Hydrochemical data from an old offshore borehole, however, suggest this may be an underestimate and that the submarine freshwater tongue originates from former times when the coastline was located further westward than nowadays.

  11. Quantifying the fate of agricultural nitrogen in an unconfined aquifer: Stream-based observations at three measurement scales (United States)

    Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip; Solder, John E.; Kimball, Briant A.; Mitasova, Helena; Birgand, François


    We compared three stream-based sampling methods to study the fate of nitrate in groundwater in a coastal plain watershed: point measurements beneath the streambed, seepage blankets (novel seepage-meter design), and reach mass-balance. The methods gave similar mean groundwater seepage rates into the stream (0.3-0.6 m/d) during two 3-4 day field campaigns despite an order of magnitude difference in stream discharge between the campaigns. At low flow, estimates of flow-weighted mean nitrate concentrations in groundwater discharge ([NO3-]FWM) and nitrate flux from groundwater to the stream decreased with increasing degree of channel influence and measurement scale, i.e., [NO3-]FWM was 654, 561, and 451 µM for point, blanket, and reach mass-balance sampling, respectively. At high flow the trend was reversed, likely because reach mass-balance captured inputs from shallow transient high-nitrate flow paths while point and blanket measurements did not. Point sampling may be better suited to estimating aquifer discharge of nitrate, while reach mass-balance reflects full nitrate inputs into the channel (which at high flow may be more than aquifer discharge due to transient flow paths, and at low flow may be less than aquifer discharge due to channel-based nitrate removal). Modeling dissolved N2 from streambed samples suggested (1) about half of groundwater nitrate was denitrified prior to discharge from the aquifer, and (2) both extent of denitrification and initial nitrate concentration in groundwater (700-1300 µM) were related to land use, suggesting these forms of streambed sampling for groundwater can reveal watershed spatial relations relevant to nitrate contamination and fate in the aquifer.

  12. Quantifying an aquifer nitrate budget and future nitrate discharge using field data from streambeds and well nests (United States)

    Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip; Farrell, Kathleen M.; Mitasova, Helena


    Novel groundwater sampling (age, flux, and nitrate) carried out beneath a streambed and in wells was used to estimate (1) the current rate of change of nitrate storage, dSNO3/dt, in a contaminated unconfined aquifer, and (2) future [NO3-]FWM (the flow-weighted mean nitrate concentration in groundwater discharge) and fNO3 (the nitrate flux from aquifer to stream). Estimates of dSNO3/dt suggested that at the time of sampling (2013) the nitrate storage in the aquifer was decreasing at an annual rate (mean = -9 mmol/m2yr) equal to about one-tenth the rate of nitrate input by recharge. This is consistent with data showing a slow decrease in the [NO3-] of groundwater recharge in recent years. Regarding future [NO3-]FWM and fNO3, predictions based on well data show an immediate decrease that becomes more rapid after ˜5 years before leveling out in the early 2040s. Predictions based on streambed data generally show an increase in future [NO3-]FWM and fNO3 until the late 2020s, followed by a decrease before leveling out in the 2040s. Differences show the potential value of using information directly from the groundwater—surface water interface to quantify the future impact of groundwater nitrate on surface water quality. The choice of denitrification kinetics was similarly important; compared to zero-order kinetics, a first-order rate law levels out estimates of future [NO3-]FWM and fNO3 (lower peak, higher minimum) as legacy nitrate is flushed from the aquifer. Major fundamental questions about nonpoint-source aquifer contamination can be answered without a complex numerical model or long-term monitoring program.

  13. Water-chemistry and chloride fluctuations in the Upper Floridan Aquifer in the Port Royal Sound area, South Carolina, 1917-93 (United States)

    Landmeyer, J.E.; Belval, D.L.


    Withdrawal of water from the Upper Floridan aquifer south of Port Royal Sound in Beaufort and Jasper Counties, South Carolina, has lowered water levels and reversed the hydraulic gradient beneath Hilton Head Island, South Carolina. Ground water that had previously discharged at the Sound is now being deflected southwest, toward withdrawals located near the city of Savannah, Georgia, and the island of Hilton Head. The reversal of this hydraulic gradient and the decline of water levels have caused saltwater in the Upper Floridan aquifer north of Port Royal Sound to begin moving southwest, toward water-supply wells for the town of Hilton Head and toward industries pumping ground water near Savannah. Analytical results from ground-water samples collected from wells in the Upper Floridan aquifer beneath and adjacent to Port Royal Sound show two plumes in the aquifer with chloride concentrations above the drinking- water standard. One plume of high chloride concentration extends slightly south of the theoretical predevelopment location of the steady- state freshwater-saltwater interface as indicated by numerical modeling. The other plume is present beneath the town of Port Royal, where the upper confining unit above the Upper Floridan aquifer is thin or absent. In these areas, the decline in water levels caused by ground-water withdrawals may have made it possible for water from tidal creeks to enter the Upper Floridan aquifer. Many wells completed in the upper permeable zone of the Upper Floridan aquifer show a distinct specific- conductance profile. One non-producing, monitoring well on Hilton Head Island (BFT-1810) was selected to depict a worst-case scenario to examine the short- and long-term water-chemistry and chloride fluctuations in the aquifer. Specific conductance was monitored at depths of 170, 190, and 200 feet below the top of the well casing. The specific conductance measured in 1987 ranged from approximately 450 microsiemens per centimeter near the top of

  14. World Ocean Atlas 2005, Salinity (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  15. Optical sensor for seawater salinity. (United States)

    Huber, C; Klimant, I; Krause, C; Werner, T; Mayr, T; Wolfbeis, O S


    An optical sensor for the measurement of salinity in seawater has been developed. It is based on a chloride-quenchable fluorescent probe (lucigenin) immobilized on a Nafion film. Two approaches for measuring salinity via chloride concentration are presented. In the first, a change in salinity corresponds to a change in the fluorescence intensity of lucigenin. In the second, the fluorescence intensity information is converted into a phase angle information by adding an inert phosphorescent reference luminophore (a ruthenium complex entrapped in poly(acrylonitrile) beads). Under these conditions, the chloride-dependent fluorescence intensity of lucigenin can be converted into a chloride-dependent fluorescence phase shift which serves as the analytical information. This scheme is referred to as dual lifetime referencing (DLR). The sensor was used to determine the salinity in seawater and brackish water of the North Sea.

  16. Stochastic Modeling of Soil Salinity

    CERN Document Server

    Suweis, S; Van der Zee, S E A T M; Daly, E; Maritan, A; Porporato, A; 10.1029/2010GL042495


    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The long term probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equation to a single stochastic differential equation driven by multiplicative Poisson noise. The novel analytical solutions provide insight on the interplay of the main soil, plant and climate parameters responsible for long-term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in long-term soil salinization trend...

  17. NOAA NOS SOS, EXPERIMENTAL - Salinity (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have salinity data. *These services are for testing and evaluation use...

  18. Final Report (BMWi Project No.: 02 E 10971): Joint project: Retention of radionuclides relevant for final disposal in natural clay rock and saline systems - Subproject 2: Geochemical behavior and transport of radionuclides in saline systems in the prese

    Energy Technology Data Exchange (ETDEWEB)

    Schmeide, Katja [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Fritsch, Katharina [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Lippold, Holger [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Poetsch, Maria [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Kulenkampff, Johannes [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Lippmann-Pipke, Johanna [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Jordan, Norbert [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Joseph, Claudia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Moll, Henry [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Cherkouk, Andrea [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Bader, Miriam [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology


    The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide – organics – clay – aquifer. For this, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol kg-1) and the background electrolyte (NaCl, CaCl2, MgCl2).

  19. Groundwater studies: principal aquifer surveys (United States)

    Burow, Karen R.; Belitz, Kenneth


    In 1991, the U.S. Congress established the National Water-Quality Assessment (NAWQA) program within the U.S. Geological Survey (USGS) to develop nationally consistent long-term datasets and provide information about the quality of the Nation’s streams and groundwater. The USGS uses objective and reliable data, water-quality models, and systematic scientific studies to assess current water-quality conditions, to identify changes in water quality over time, and to determine how natural factors and human activities affect the quality of streams and groundwater. NAWQA is the only non-regulatory Federal program to perform these types of studies; participation is voluntary. In the third decade (Cycle 3) of the NAWQA program (2013–2023), the USGS will evaluate the quality and availability of groundwater for drinking supply, improve our understanding of where and why water quality is degraded, and assess how groundwater quality could respond to changes in climate and land use. These goals will be addressed through the implementation of a new monitoring component in Cycle 3: Principal Aquifer Surveys.

  20. A Broad Depressed 410-km Discontinuity beneath Northeast Asia (United States)

    Li, J.; Guo, G.; WANG, X.


    The topography of the upper mantle discontinuities is important for good understanding of the thermal structure, composition of the mantle, and scales of mantle circulation as well. We applied both receiver function analysis and multiple-ScS reverberations to seismic waveforms recorded by stations beneath land and ocean, respectively. We obtained a complete image of the upper mantle discontinuities beneath northeast Asia, covering from the Okhotsk Sea, far east Russia, Japan Sea and northeast China. Results with different resolutions from different methods are compared in detail, and the comparison shows that long-period ScS reverberation signals is effective in extracting the robust features of the upper mantle discontinuities. Through the integrated depth undulation map covering both sea and land, we detected an obvious depression of the 410-km discontinuity with value 8-25 km, anticorrelated with a wide range of depressed 660-km discontinuity. The depression of the 660 can be explained by the temperature anomaly associated to the subducting Pacific slab. The landward extension of the depressed 410, however, is of large scale with a lateral range of at least 800-1000 km. Mechanism invoking chemical heterogeneity in the mantle transition zone was explored to explain the observation. We speculate that the broadly depressed 410 beneath west Japan Sea, part of Okhotsk Sea, and northeast China might be caused by high water content at the top of the mantle transition zone. The significant trench rollback motion of the subducting Pacific slab from the Miocene might explain the widespread distribution of the depression of the 410. The west edge of observed depressed 410-km discontinuity might pin the initial location where the Pacific subducting slab had been furthest before the occurrence of trench retreating.

  1. Mantle structure beneath the Alboran Sea from shear wave splitting (United States)

    Alpert, L. A.; Becker, T. W.; Miller, M. S.; Allam, A. A.


    New seismological investigations in the Alboran domain of the western Mediterranean, as part of the PICASSO experiment, support geodynamic models which constrain the mantle structure beneath the Alboran Sea. We evaluate global circulation models in the context of seismic anistropy as inferred from SKS/SKKS splitting observations. Using instantaneous velocity fields from 3-D flow models with variable mantle density based on several tomography and seismicity based models, we calculate the predicted anisotropy, fast polarization direction (FPD), and delay times in order to explain the complex tectonic and geologic history of the Alboran Sea region. Slab rollback, delamination, and convective removal processes have been invoked to explain the synorogenic extension in the Alboran and recently published splitting measurements show north-east trending FPD across the Iberian margin with a rotation to the southeast that follows the curve of the Gibraltar arc, suggested by the authors as supporting west-directed slab rollback. Our new measurements from 39 stations substantiate the measurements in southern Spain, but we find a striking, nearly 90 degree rotation in azimuth and reduced delay times across the High Atlas Mountains in northern Morocco. These splitting patterns define three distinct regions we attempt to predict with our geodynamic models. Here, we test several differently-oriented subduction, slab break-off, and delamination scenarios. Our preliminary results show that density models which include a curved, northeast trending slab predict the east-northeast oriented measurements along the Iberian margin. Imposing a drip structure beneath the Alboran Sea also predicts these orientations. In order to predict the rotation of the FPD we find in Morocco, however, most models require a stiff keel beneath the African craton.

  2. Saline waters and soil quality

    Directory of Open Access Journals (Sweden)

    Carmelo Dazzi

    Full Text Available The processes of secondary salinization due to anthropic actions are considered one of the most important environmental emergencies owing to their level of dangerousness. The soils of the dry areas of the Mediterranean basin are particularly prone to these processes. In such environments, it is imperative to resort to irrigation that allow for the reduction of risks due to soil moisture deficit and for the stabilization of yields. Frequently, saline waters are used that cause a lowering of the soil quality. If on one hand the presence of salts can benefit the soils mainly improving soil structure, on the other high levels of salts produce negative effects on soils and crops.When sodium prevails problems of soil quality can rise such as structure degradation, low hydraulic conductivity, soil sealing. The processes of secondary soil salinization due to the use of saline waters for irrigation are particularly evident in our Country among others. In Italy, saline soils are mainly distributed in long strips of the coastal belt of the Tyrrhenian sea and Adriatic sea, in the coastal belt of Apulia, Basilicata and Sardinia and in wide areas of Sicily. It is not possible to suggest general actions to combat soil salinization because we must take into consideration that in the relationship soil-water two different quality concept interact: one linked to the soils, the other to the waters.

  3. Saline waters and soil quality

    Directory of Open Access Journals (Sweden)

    Carmelo Dazzi


    Full Text Available The processes of secondary salinization due to anthropic actions are considered one of the most important environmental emergencies owing to their level of dangerousness. The soils of the dry areas of the Mediterranean basin are particularly prone to these processes. In such environments, it is imperative to resort to irrigation that allow for the reduction of risks due to soil moisture deficit and for the stabilization of yields. Frequently, saline waters are used that cause a lowering of the soil quality. If on one hand the presence of salts can benefit the soils mainly improving soil structure, on the other high levels of salts produce negative effects on soils and crops.When sodium prevails problems of soil quality can rise such as structure degradation, low hydraulic conductivity, soil sealing. The processes of secondary soil salinization due to the use of saline waters for irrigation are particularly evident in our Country among others. In Italy, saline soils are mainly distributed in long strips of the coastal belt of the Tyrrhenian sea and Adriatic sea, in the coastal belt of Apulia, Basilicata and Sardinia and in wide areas of Sicily. It is not possible to suggest general actions to combat soil salinization because we must take into consideration that in the relationship soil-water two different quality concept interact: one linked to the soils, the other to the waters.

  4. The ionospheric heating beneath the magnetospheric cleft revisited

    Directory of Open Access Journals (Sweden)

    G. W. Prölss


    Full Text Available A prominent peak in the electron temperature of the topside ionosphere is observed beneath the magnetospheric cleft. The present study uses DE-2 data obtained in the Northern Winter Hemisphere to investigate this phenomenon. First, the dependence of the location and magnitude of the temperature peak on the magnetic activity is determined. Next, using a superposed epoch analysis, the mean latitudinal profile of the temperature enhancement is derived. The results of the present study are compared primarily with those obtained by Titheridge (1976, but also with more recent observations and theoretical predictions.

  5. The structure of the crust and uppermost mantle beneath Madagascar (United States)

    Andriampenomanana, Fenitra; Nyblade, Andrew A.; Wysession, Michael E.; Durrheim, Raymond J.; Tilmann, Frederik; Julià, Jordi; Pratt, Martin J.; Rambolamanana, Gérard; Aleqabi, Ghassan; Shore, Patrick J.; Rakotondraibe, Tsiriandrimanana


    The lithosphere of Madagascar was initially amalgamated during the Pan-African events in the Neoproterozoic. It has subsequently been reshaped by extensional processes associated with the separation from Africa and India in the Jurassic and Cretaceous, respectively, and been subjected to several magmatic events in the late Cretaceous and the Cenozoic. In this study, the crust and uppermost mantle have been investigated to gain insights into the present-day structure and tectonic evolution of Madagascar. We analysed receiver functions, computed from data recorded on 37 broad-band seismic stations, using the H-κ stacking method and a joint inversion with Rayleigh-wave phase-velocity measurements. The thickness of the Malagasy crust ranges between 18 and 46 km. It is generally thick beneath the spine of mountains in the centre part (up to 46 km thick) and decreases in thickness towards the edges of the island. The shallowest Moho is found beneath the western sedimentary basins (18 km thick), which formed during both the Permo-Triassic Karro rifting in Gondwana and the Jurassic rifting of Madagascar from eastern Africa. The crust below the sedimentary basin thickens towards the north and east, reflecting the progressive development of the basins. In contrast, in the east there was no major rifting episode. Instead, the slight thinning of the crust along the east coast (31-36 km thick) may have been caused by crustal uplift and erosion when Madagascar moved over the Marion hotspot and India broke away from it. The parameters describing the crustal structure of Archean and Proterozoic terranes, including average thickness (40 km versus 35 km), Poisson's ratio (0.25 versus 0.26), average shear-wave velocity (both 3.7 km s-1), and thickness of mafic lower crust (7 km versus 4 km), show weak evidence of secular variation. The uppermost mantle beneath Madagascar is generally characterized by shear-wave velocities typical of stable lithosphere (∼4.5 km s-1). However

  6. 40 CFR 230.25 - Salinity gradients. (United States)


    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity... fresh or salt water may change existing salinity gradients. For example, partial blocking of the...

  7. Hydrogeology of the stratified-drift aquifers in the Cayuta Creek and Catatonk Creek valleys in parts of Tompkins, Schuyler, Chemung, and Tioga Counties, New York (United States)

    Miller, Todd S.; Pitman, Lacey M.


    Creek stratified-drift aquifers is predominantly from the valley walls toward the main streams in the valleys. The groundwater discharges from the aquifer system to the main-stem streams in the valleys. Locally, the direction of groundwater flow is radially away from groundwater mounds that have formed beneath upland tributaries that typically lose water where they flow on alluvial fans in the valleys. In some places, groundwater that would normally flow toward streams is intercepted by pumping wells.

  8. Implications of rate-limited mass transfer for aquifer storage and recovery (United States)

    Culkin, Sean L.; Singha, Kamini; Day-Lewis, Frederick D.


    Pressure to decrease reliance on surface water storage has led to increased interest in aquifer storage and recovery (ASR) systems. Recovery efficiency, which is the ratio of the volume of recovered water that meets a predefined standard to total volume of injected fluid, is a common criterion of ASR viability. Recovery efficiency can be degraded by a number of physical and geochemical processes, including rate-limited mass transfer (RLMT), which describes the exchange of solutes between mobile and immobile pore fluids. RLMT may control transport behavior that cannot be explained by advection and dispersion. We present data from a pilot-scale ASR study in Charleston, South Carolina, and develop a three-dimensional finite-difference model to evaluate the impact of RLMT processes on ASR efficiency. The modeling shows that RLMT can explain a rebound in salinity during fresh water storage in a brackish aquifer. Multicycle model results show low efficiencies over one to three ASR cycles due to RLMT degrading water quality during storage; efficiencies can evolve and improve markedly, however, over multiple cycles, even exceeding efficiencies generated by advection-dispersion only models. For an idealized ASR model where RLMT is active, our simulations show a discrete range of diffusive length scales over which the viability of ASR schemes in brackish aquifers would be hindered.

  9. Saline nasal irrigation for upper respiratory conditions. (United States)

    Rabago, David; Zgierska, Aleksandra


    Saline nasal irrigation is an adjunctive therapy for upper respiratory conditions that bathes the nasal cavity with spray or liquid saline. Nasal irrigation with liquid saline is used to manage symptoms associated with chronic rhinosinusitis. Less conclusive evidence supports the use of spray and liquid saline nasal irrigation to manage symptoms of mild to moderate allergic rhinitis and acute upper respiratory tract infections. Consensus guidelines recommend saline nasal irrigation as a treatment for a variety of other conditions, including rhinitis of pregnancy and acute rhinosinusitis. Saline nasal irrigation appears safe, with no reported serious adverse events. Minor adverse effects can be avoided with technique modification and salinity adjustment.

  10. Groundwater dynamics in a coastal aquifer: combined effects of tides and beach morphology (United States)

    Zhang, Y.; Li, L.; Erler, D.


    The interaction between fresh groundwater and seawater, driven by oceanic oscillations and the inland hydraulic head gradient, has been shown to affect the pore water characteristics, which in turn influence the fate of contaminants in coastal aquifers. We show here that beach morphology interacting with the tidal force can also modulate nearshore groundwater flow and solute transport. Detailed field investigations were combined with numerical simulations to examine the groundwater dynamics in a carbonate-sandy intertidal aquifer on the tropical island of Rarotonga, Cook Islands. Groundwater salinity values revealed different salinity distributions under conditions of different beach profiles, inland heads and tidal signals. Fresh groundwater was also found to discharge around an intertidal beach slope break (located in the middle region of intertidal zone). This suggests that the interplay of beach morphology and tidal forcing may play an important role in groundwater flow and solute transport near the shore. The numerical models enabled quantitatively analysis of the effects of beach morphology on groundwater circulations and solute pathway. We found that (1) the groundwater discharge location is largely controlled by beach morphology in connection with the tidal force; (2) under particular conditions, the groundwater flow pattern is very sensitive to the beach slope breaks. In particular, the beach slope break combined with the tidal oscillation can induce local circulation cells. These results further demonstrate the complexity of nearshore groundwater systems and have implications for future studies of nutrients transport and transformations associated with SGD.

  11. Chemical characteristics of water in the surficial aquifer system, Broward County, Florida (United States)

    Howie, Barbara


    Water quality data was collected in 1981 and 1982 during the drilling of test holes at 27 sites throughout Broward County, Florida. Determinations were made for the following physical properties and chemical constituents: pH, alkalinity, specific conductance, major ions, selected nutrients and dissolved iron, aluminum, and manganese. Determinations for the trace elements-arsenic, barium, cadmium, chromium, lead, zinc, selenium, and mercury-were made at 14 wells. Water in the surficial aquifer system between the coastal ridge and the conservation areas is potable and usually is a calcium bicarbonate type for the first 140 ft or more below land surface. Between depths of 140 and 230 ft, groundwater generally grades into a mixed-ion water type. In some areas, diluted seawater occurs beneath the mixed water zone. Dissolved iron concentrations between the coastal ridge and the conservation areas are variable but generally exceed 1,000 micrograms/L. Beneath the conservation areas and the western edge of Broward County, groundwater in the first 100 ft below land surface generally is either a calcium bicarbonate type or a mixed-ion type. At depths between 100 and 200 ft, diluted residual seawater occurs, except along the far western edge of the county. Residual seawater is least diluted in the north. Dissolved iron concentrations generally are between 300 and 1 ,000 micrograms/L but increase to the east of the conservation areas. Other findings of the investigation include: (1) groundwater in some areas west of the coastal ridge probably would be suitable for most domestic, agricultural, and industrial uses if it were treated for carbonate hardness; (2) groundwater in much of Broward County is chemically altered by natural softening and magnesium enrichment (natural softening increases to the west and is very pronounced beneath the far western edge of the county); and (3) there is evidence of mineralized water from the conservation areas mixing with groundwater east of the

  12. Saltwater intrusion in the Floridan aquifer system near downtown Brunswick, Georgia, 1957–2015 (United States)

    Cherry, Gregory S.; Peck, Michael


    IntroductionThe Floridan aquifer system (FAS) consists of the Upper Floridan aquifer (UFA), an intervening confining unit of highly variable properties, and the Lower Floridan aquifer (LFA). The UFA and LFA are primarily composed of Paleocene- to Oligocene-age carbonate rocks that include, locally, Upper Cretaceous rocks. The FAS extends from coastal areas in southeastern South Carolina and continues southward and westward across the coastal plain of Georgia and Alabama, and underlies all of Florida. The thickness of the FAS varies from less than 100 feet (ft) in aquifer outcrop areas of South Carolina to about 1,700 ft near the city of Brunswick, Georgia.Locally, in southeastern Georgia and the Brunswick– Glynn County area, the UFA consists of an upper water-bearing zone (UWBZ) and a lower water-bearing zone (LWBZ), as identified by Wait and Gregg (1973), with aquifer test data indicating the upper zone has higher productivity than the lower zone. Near the city of Brunswick, the LFA is composed of two permeable zones: an early middle Eocene-age upper permeable zone (UPZ) and a highly permeable lower zone of limestone (LPZ) of Paleocene and Late Cretaceous age that includes a deeply buried, cavernous, saline water-bearing unit known as the Fernandina permeable zone. Maslia and Prowell (1990) inferred the presence of major northeast–southwest trending faults through the downtown Brunswick area based on structural analysis of geophysical data, northeastward elongation of the potentiometric surface of the UFA, and breaches in the local confining unit that influence the area of chloride contamination. Pronounced horizontal and vertical hydraulic head gradients, caused by pumping in the UFA, allow saline water from the FPZ to migrate upward into the UFA through this system of faults and conduits.Saltwater was first detected in the FAS in wells completed in the UFA near the southern part of the city of Brunswick in late 1957. By the 1970s, a plume of groundwater

  13. Conditions in the deeper parts of the hot spring systems of Yellowstone National Park, Wyoming. [Proposed aquifer at depth of 2 to 4 km. , at 340 to 370/sup 0/C, and containing about 1,000 ppM NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Truesdell, A.H.; Fournier, R.O.


    It is suggested that beneath Yellowstone thermal systems there is a large aquifer at a depth of 2 to 4 kilometers which contains a relatively homogeneous body of water at 340 to 370/sup 0/C containing about 1,000 ppM NaCl. This aquifer may be controlled entirely or in part by solution or fracture permeability that transects rock types. Water flows upwards from the deep aquifer along available fractures, losing steam in the process, and into more shallow aquifers that in turn feed the geyser and hot spring systems. In these shallow systems, it is diluted, reacts with rocks and fluids, and loses more steam to produce the varied hot spring waters of the Park. The deposition of silica at the bottom of the system and increased convection at near-critical temperatures will limit the maximum temperatures and depth of circulation of dilute high temperature thermal waters such as those of Yellowstone.

  14. Complex seismic anisotropy and mantle dynamics beneath Turkey (United States)

    Lemnifi, Awad A.; Elshaafi, Abdelsalam; Karaoğlu, Özgür; Salah, Mohamed K.; Aouad, Nassib; Reed, Cory A.; Yu, Youqiang


    Seismic anisotropy is an unambiguous property of the deep Earth that is often detected through shear wave splitting (SWS) and anisotropic receiver function (RF) techniques, which are then used to infer the lithospheric and asthenospheric deformational structure. The Anatolian plate and its associated Mediterranean, Eurasian, and Arabian plate boundaries represent the consequences of a variety of convergent and transform tectonic regimes; these boundaries are thus well-suited for studying seismic anisotropy related to subduction, orogenic, and strike-slip processes. We apply a joint SWS and RF analysis to identify the magnitude and orientation of deformation associated with lithosphere-asthenosphere coupling beneath the Anatolian plate system as well as intra-plate fossil fabrics resulting from ancient and ongoing collision. SWS analysis reveals the existence of complex anisotropic fabrics beneath the Anatolian region, where the upper-layer fast orientations are either parallel to strike-slip faults or orthogonal to reverse faults. Strongly oriented NE-SW lower-layer fast orientations suggest that they originate from slab-modulated flow in the mantle wedge overlying the northward-subducting African plate. The results of the RF analysis show that the fast orientations are spatially variable but are generally consistent with crustal fabrics developed mostly through intensive faulting and are possibly associated with sub-vertical lower crustal shear zones.

  15. Pervasive upper mantle melting beneath the western US (United States)

    Hier-Majumder, Saswata; Tauzin, Benoit


    We report from converted seismic waves, a pervasive seismically anomalous layer above the transition zone beneath the western US. The layer, characterized by an average shear wave speed reduction of 1.6%, spans over an area of ∼ 1.8 ×106 km2 with thicknesses varying between 25 and 70 km. The location of the layer correlates with the present location of a segment of the Farallon plate. This spatial correlation and the sharp seismic signal atop of the layer indicate that the layer is caused by compositional heterogeneity. Analysis of the seismic signature reveals that the compositional heterogeneity can be ascribed to a small volume of partial melt (0.5 ± 0.2 vol% on average). This article presents the first high resolution map of the melt present within the layer. Despite spatial variations in temperature, the calculated melt volume fraction correlates strongly with the amplitude of P-S conversion throughout the region. Comparing the values of temperature calculated from the seismic signal with available petrological constraints, we infer that melting in the layer is caused by release of volatiles from the subducted Farallon slab. This partially molten zone beneath the western US can sequester at least 1.2 ×1017 kg of volatiles, and can act as a large regional reservoir of volatile species such as H or C.

  16. Azimuthal anisotropy in the D″ layer beneath the Caribbean (United States)

    Maupin, ValéRie; Garnero, Edward J.; Lay, Thorne; Fouch, Matthew J.


    The lowermost mantle beneath Central America has anisotropic seismic velocity structure manifested in shear wave splitting of signals from South American earthquakes recorded at North American broadband recording stations. Prior studies of deep mantle anisotropy in this region have characterized the structure as having vertical transverse isotropy (VTI), which is sufficient to explain a general trend of early tangential (SH) component arrivals. However, VTI models cannot quantitatively match systematic waveform complexities in the onset of many of the shear waves that graze this region. After accounting for splitting effects of upper mantle anisotropy beneath the recording stations, we model the corrected waveform data using full wave theory for mantle velocity models with an anisotropic D″ layer. This is the first attempt to quantitatively model a large data set including azimuthal anisotropy in D″. The models include transverse isotropy with either a vertical or tilted symmetry axis, the latter resulting in azimuthal anisotropy. For some initial shear wave polarizations, tilted transverse isotropy (TTI) produces small, reversed polarity arrivals on the SV components at the arrival time of SH, consistent with the data. Geographical variations in the azimuth of the TTI symmetry axis are indicated by the data. The lack of azimuthal coverage prevents unique resolution of the TTI orientation and also precludes distinguishing between TTI and other azimuthal anisotropy structures such as that predicted for lattice preferred orientation of minerals. Nonetheless, our modeling demonstrates the need for laterally varying anisotropic structure of more complex form than VTI for this region.

  17. Electromagnetic Mapping of Electrical Conductivity Beneath the Columbia Basalts

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H. Frank; Shoham, Yoram; Hoversten, G. Michael; Torres-Verdin, Carlos


    Sedimentary rocks beneath the Columbia River Basalt Group are recognized as having potential for oil and gas production, but the overlying layered basalts effectively mask seismic reflections from the underlying sediments. Four electromagnetic (EM) methods have been applied on profiles crossing Boylston Ridge, a typical east-west trending anticline of the Yakima Fold Belt, in an attempt to map the resistivity interface between the basalts and the sediments and to map variations in structure and resistivity within the sediments. The EM surveys detected strong variations in resistivity within the basalts, and in particular the continuous magnetotelluric array profiling (EMAP) revealed resistivity lows beneath the surface anticlines. These low resistivity zones probably coincide with fracturing in the core of the anticlines and they appear to correlate well with similar zones of low seismic velocity observed on a nearby seismic profile. The controlled-source EM surveys (in-loop transient, long-offset transient, and variable-offset frequency-domain) were designed in anticipation of relatively uniform high resistivity basalts, and were found to have been seriously distorted by the intrabasalt conductors discovered in the field. In particular, the resistivity sections derived from 1D inversions were found to be inconsistent and misleading. The EMAP survey provided the most information about the subsurface resistivity distribution, and was certainly the most cost-effective. However, both controlled-source and EMAP surveys call for accurate 2D or 3D inversion to accommodate the geological objectives of this project. [References: 18

  18. Electromagnetic mapping of electrical conductivity beneath the Columbia basalts

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H.F.; Hoversten, G.M [Lawrence Berkeley Lab., CA (United States); Shoham, Y. [Shell Development Corp., Houston, TX (United States); Torres-Verdin, C. [Schlumberger-Doll Research, Ridgefield, CT (United States)


    Sedimentary rocks beneath the Columbia River Basalt Group are recognized as having potential for oil and gas production, but the overlying layered basalts effectively mask seismic reflections from the underlying sediments. Four electromagnetic (EM) methods have been applied on profiles crossing Boylston Ridge, a typical east-west trending anticline of the Yakima Fold Belt, in an attempt to map the resistivity interface between the basalts and the sediments and to map variations in structure and resistivity within the sediments. The EM surveys detected strong variations in resistivity within the basalts, and in particular the continuous magnetotelluric array profiling (EMAP) revealed resistivity lows beneath the surface anticlines. These low resistivity zones probably coincide with fracturing in the core of the anticlines and they appear to correlate well with similar zones of low seismic velocity observed on a nearby seismic profile. The controlled-source EM surveys (in-loop transient, long-offset transient, and variable-offset frequency-domain) were designed in anticipation of relatively uniform high resistivity basalts, and were found to have been seriously distorted by the intrabasalt conductors discovered in the field. In particular, the resistivity sections derived from 1D inversions were found to be inconsistent and misleading. The EMAP survey provided the most information about the subsurface resistivity distribution, and was certainly the most cost-effective. However, both controlled-source and EMAP surveys call for accurate 2D or 3D inversion to accommodate the geological objectives of this project.

  19. Groundwater vulnerability mapping of Qatar aquifers (United States)

    Baalousha, Husam Musa


    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  20. Assessing the groundwater salinization in closed hydrologic basins due to overdraft (United States)

    Guo, Z.; Pauloo, R.; Fogg, G. E.


    Population growth and the expansion of agriculture, coupled with climate uncertainties, have accelerated groundwater pumping and overdraft in alluvial aquifers worldwide. In many agricultural basins, the low rate of replenishment is far exceeded by the rate of groundwater pumping in overdrafted aquifers, which results in the substantial water table declines and in effect contributes to the formation of a "closed" basin. In fact, even modest amounts of groundwater system drawdown that do not produce what is construed as overdraft, can result in most of the groundwater discharge occurring as evapotranspiration via irrigation practices, converting the basin to a closed groundwater basin. Moreover, in past decades, extreme weather conditions (i.e., severe drought in California for the past five years) have resulted in substantially reduced surface water storage. This increases demand for groundwater to supplement low surface water supplies, and consequently, drives groundwater overdraft, and hence, groundwater salinization. In these newly closed basins, just as in other naturally closed basins such as Death Valley and the Great Salt Lake, groundwater salinity must increase not only due to evaporation, but also due to rock water interactions in the groundwater system, and lack of a natural outlet for the groundwater. In this study, the water balance and salt balance in closed basins of the Central Valley, California are computed. Groundwater degradation under the current overdraft conditions is further investigated using simple models that are developed by upscaling more complex and heterogeneous transport models. The focus of this study is to determine the applicability of these simple models to represent regional transport without explicitly including the large-scale heterogeneity inherent in the more complex models. Groundwater salinization processes, including salt accumulation caused by evapotranspiration of applied irrigation water and rock

  1. Numerical simulation of the effect of groundwater salinity on artificial freezing wall in coastal area (United States)

    Hu, Rui; Liu, Quan


    During the engineering projects with artificial ground freezing (AFG) techniques in coastal area, the freezing effect is affected by groundwater salinity. Based on the theories of artificially frozen soil and heat transfer in porous material, and with the assumption that only the variations of total dissolved solids (TDS) impact on freezing point and thermal conductivity, a numerical model of an AFG project in a saline aquifer was established and validated by comparing the simulated temperature field with the calculated temperature based on the analytic solution of rupak (reference) for single-pipe freezing temperature field T. The formation and development of freezing wall were simulated with various TDS. The results showed that the variety of TDS caused the larger temperature difference near the frozen front. With increasing TDS in the saline aquifer (1 35g/L), the average thickness of freezing wall decreased linearly and the total formation time of the freezing wall increased linearly. Compared with of the scenario of fresh-water (<1g/L), the average thickness of frozen wall decreased by 6% and the total formation time of the freezing wall increased by 8% with each increasing TDS of 7g/L. Key words: total dissolved solids, freezing point, thermal conductivity, freezing wall, numerical simulation Reference D.J.Pringel, H.Eicken, H.J.Trodahl, etc. Thermal conductivity of landfast Antarctic and Arctic sea ice[J]. Journal of Geophysical Research, 2007, 112: 1-13. Lukas U.Arenson, Dave C.Sego. The effect of salinity on the freezing of coarse- grained sand[J]. Canadian Geotechnical Journal, 2006, 43: 325-337. Hui Bing, Wei Ma. Laboratory investigation of the freezing point of saline soil[J]. Cold Regions Science and Technology, 2011, 67: 79-88.

  2. Numerical modeling of CO2 mineralisation during storage in deep saline aquifers

    NARCIS (Netherlands)

    Ranganathan, P.; Van Hemert, P.; Rudolph, S.J.; Zitha, P.L.J.


    Simulations are performed to evaluate the feasibility of a potential site within the Rotliegend sandstone formation in the Dutch subsurface at a depth of around 3000 m for CO2 sequestration using the numerical simulator CMG-GEM. Three CO2 storage trapping mechanisms are studied: (1) mobility

  3. Experimental design applications for modeling and assessing carbon dioxide sequestration in saline aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John [Fusion Petroleum Technologies Inc., Houston, TX (United States)


    This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interacting parameters in the development and operation of anthropogenic CO2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort and project funding was expended to determine the limitations of both the commercial simulator and the Lawrence Berkeley National Laboratory (LBNL) R&D simulator, TOUGHREACT available to the project. A simplified layer cake model approximating the volume of the RMOTC targeted reservoirs was defined with 1-3 minerals eventually modeled with limited success. Modeling reactive transport in porous media requires significant computational power. In this project, up to 24 processors were used to model a limited mineral set of 1-3 minerals. In addition, geomechanical aspects of injecting CO2 into closed, semi-open, and open systems in various well completion methods was simulated. Enhanced Oil Recovery (EOR) as a storage method was not modeled. A robust and stable simulation dataset or base case was developed and used to create a master dataset with embedded instructions for input to the ED/RSM software. Little success was achieved toward the objective of the project using the commercial simulator or the LBNL simulator versions available during the time of this project. Several hundred realizations were run with the commercial simulator and ED/RSM software, most having convergence problems and terminating prematurely. A proxy model for full field CO2 injection sequestration utilization and storage was not capable of being developed with software available for this project. Though the chemistry is reasonably known and understood, based on the amount of effort and huge computational time required, predicting CO2 sequestration storage capacity in geologic formations to within the program goals of ±30% proved unsuccessful.

  4. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, W Brent


    The overall goal of the project was to bridge the gap between our knowledge of small-scale geochemical reaction rates and reaction rates meaningful for modeling transport at core scales. The working hypothesis was that reaction rates, determined from laboratory measurements based upon reactions typically conducted in well mixed batch reactors using pulverized reactive media may be significantly changed in in situ porous media flow due to rock microstructure heterogeneity. Specifically we hypothesized that, generally, reactive mineral surfaces are not uniformly accessible to reactive fluids due to the random deposition of mineral grains and to the variation in flow rates within a pore network. Expected bulk reaction rates would therefore have to be correctly up-scaled to reflect such heterogeneity. The specific objective was to develop a computational tool that integrates existing measurement capabilities with pore-scale network models of fluid flow and reactive transport. The existing measurement capabilities to be integrated consisted of (a) pore space morphology, (b) rock mineralogy, and (c) geochemical reaction rates. The objective was accomplished by: (1) characterizing sedimentary sandstone rock morphology using X-ray computed microtomography, (2) mapping rock mineralogy using back-scattered electron microscopy (BSE), X-ray dispersive spectroscopy (EDX) and CMT, (3) characterizing pore-accessible reactive mineral surface area, and (4) creating network models to model acidic CO{sub 2} saturated brine injection into the sandstone rock samples.

  5. Thermo-Hydro-Mechanical Impacts of Carbon Dioxide (CO2) Injection in Deep Saline Aquifers


    Vilarrasa, Víctor


    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria Civil Los procesos termo-hidro-mecánicos relacionados con el almacenamiento geológico de carbono deben ser entendidos y cuantificados para demostrar a la opinión pública de que la inyección de dióxido de carbono (CO2) es segura. Esta Tesis tiene como objetivo mejorar dicho conocimiento mediante el desarrollo de métodos para: (1) evaluar la evolución tanto de la geometría de la pluma de CO2 como de la presión de ...

  6. Geological sequestration of carbon dioxide in deep saline aquifers: coupled flow-mechanical considerations


    Rathnaweera, Tharaka Dilanka


    Global warming is an extremely crucial challenge for 21st century researchers and numerous climate change policies and mitigation options have been initiated throughout the world during the last few decades. After much research on these approaches to mitigate global climate change, CO2 sequestration has been identified as the only technology which can reduce CO2 emissions on a significant scale from fossil fuel power plants and other industrial processes like steel, cement and chemical produc...

  7. Salinization in a stratified aquifer induced by heat transfer from well casings

    NARCIS (Netherlands)

    van Lopik, J.H.; Hartog, N.; Zaadnoordijk, Willem Jan; Cirkel, D. Gijsbert; Raoof, A.


    The temperature inside wells used for gas, oil and geothermal energy production, as well as steam injection, is in general significantly higher than the groundwater temperature at shallower depths. While heat loss from these hot wells is known to occur, the extent to which this heat loss may result

  8. The Potential for Triggered Seismicity Associated With Geologic Sequestration of CO2 in Saline Aquifers (Invited) (United States)

    Zoback, M. D.


    It is well known that for geologic sequestration of CO2 to play a significant role in greenhouse gas reduction it must operate at enormous scale. (Pacala and Socolow, Science 2004) pointed to a number options that could lead, by mid-century, to stabilization of CO2 in the atmosphere at about 550 ppm (roughly twice pre-industrial levels). For geologic sequestration of CO2 to play a significant role in a global strategy for greenhouse gas reduction, it must account for about a billion tons of carbon per year - about the same mass as total annual global oil production. A number of reports have addressed the expense associated with such an undertaking. In addition to the high capital and operating costs associated with equipping thousands of industrial plants with CO2 separation and capture equipment (coal burning power plants, refineries, cement plants, etc.), the transport, injection and long-term monitoring costs associated with large scale CO2 sequestration are formidable. Beyond economics, there is a potentially serious geological issue that threatens the viability of large scale CO2 sequestration which may not be technically solvable, at any cost - the likelihood that injection of enormous volumes of CO2 into the subsurface will trigger intraplate earthquakes. A number of lines of evidence indicate that to first-order, the Earth's brittle crust, even in intraplate regions, is in a state of frictional failure equilibrium. Earthquakes occur almost everywhere in intraplate areas around the world in response to regional plate-driving forces. At any given intraplate site, expected natural earthquakes that might be small enough and infrequent enough that it is safe for critical facilities such as nuclear power plants to operate for periods on the order of 50-100 years. Because there have been so many documented cases where fluid injection has disturbed the frictional-equilibrium of the crust and triggered earthquakes almost always relatively small. While the seismic waves from such earthquakes might not directly threaten the public, small earthquakes at depth could threaten the integrity of a CO2 repositories, expected to store CO2 for periods of hundreds to thousands of years.

  9. Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico (United States)

    González-Herrera, Roger; Sánchez-y-Pinto, Ismael; Gamboa-Vargas, José


    The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity. Résumé. Le modèle conceptuel classique de l'aquifère karstique libre de la péninsule du Yucatan (Mexique) consiste en une lentille d'eau douce flottant sur une eau salée plus dense qui pénètre à plus de 40 km à l'intérieur des terres. La transmissivité de l'aquifère est très élevée, en sorte que le gradient hydraulique est très faible, compris entre 7 et 10 mm/km dans la plus grande partie du nord de la péninsule. Le modèle AQUIFER a été utilisé pour explorer les écoulements souterrains régionaux dans cet

  10. An assessment of upper ocean salinity content from the Ocean Reanalyses Inter-comparison Project (ORA-IP) (United States)

    Shi, L.; Alves, O.; Wedd, R.; Balmaseda, M. A.; Chang, Y.; Chepurin, G.; Ferry, N.; Fujii, Y.; Gaillard, F.; Good, S. A.; Guinehut, S.; Haines, K.; Hernandez, F.; Lee, T.; Palmer, M.; Peterson, K. A.; Masuda, S.; Storto, A.; Toyoda, T.; Valdivieso, M.; Vernieres, G.; Wang, X.; Yin, Y.


    Many institutions worldwide have developed ocean reanalyses systems (ORAs) utilizing a variety of ocean models and assimilation techniques. However, the quality of salinity reanalyses arising from the various ORAs has not yet been comprehensively assessed. In this study, we assess the upper ocean salinity content (depth-averaged over 0-700 m) from 14 ORAs and 3 objective ocean analysis systems (OOAs) as part of the Ocean Reanalyses Intercomparison Project. Our results show that the best agreement between estimates of salinity from different ORAs is obtained in the tropical Pacific, likely due to relatively abundant atmospheric and oceanic observations in this region. The largest disagreement in salinity reanalyses is in the Southern Ocean along the Antarctic circumpolar current as a consequence of the sparseness of both atmospheric and oceanic observations in this region. The West Pacific warm pool is the largest region where the signal to noise ratio of reanalysed salinity anomalies is >1. Therefore, the current salinity reanalyses in the tropical Pacific Ocean may be more reliable than those in the Southern Ocean and regions along the western boundary currents. Moreover, we found that the assimilation of salinity in ocean regions with relatively strong ocean fronts is still a common problem as seen in most ORAs. The impact of the Argo data on the salinity reanalyses is visible, especially within the upper 500 m, where the interannual variability is large. The increasing trend in global-averaged salinity anomalies can only be found within the top 0-300 m layer, but with quite large diversity among different ORAs. Beneath the 300 m depth, the global-averaged salinity anomalies from most ORAs switch their trends from a slightly growing trend before 2002 to a decreasing trend after 2002. The rapid switch in the trend is most likely an artefact of the dramatic change in the observing system due to the implementation of Argo.

  11. Water-level change, High Plains aquifer, 2005 to 2009 (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 2005 to 2009, in feet. The High Plains aquifer underlies...

  12. Aquifers of Alluvial and Glacial Origin - Direct Download (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the alluvial and glacial aquifers north of the southern-most line of glaciation. Aquifers are shown in the States of Maine,...

  13. Water-level change, High Plains aquifer, 1980 to 1995 (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 1980 to 1995, in feet. The High Plains aquifer underlies...

  14. Water-level change, High Plains aquifer, 1995 to 2000 (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 1995 to 2000, in feet. The High Plains aquifer underlies...

  15. Water-level change, High Plains aquifer, 2000 to 2005 (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 2000 to 2005, in feet. The High Plains aquifer underlies...

  16. Aquifer diffusivity of the Ohio River alluvial aquifer by the flood-wave response method (United States)

    Zehner, Harold H.; Grubb, Hayes F.


    Aquifer diffusivity (T/S) was calculated for 10 sites in the alluvial aquifer adjacent to the Ohio River by observing the response of the aquifer to a flood wave in the river. The calculated type curves matched the observed aquifer response reasonably well at eight of the 10 sites. The diffusivities ranged from 0.4 ft2 sec-1 to 10.3 ft2 sec-1 and were generally in agreement with diffusivity values calculated from pump-test methods at two of the sites. Interference from pumping 1/2 mile upstream from one site and localized aquifer inhomogeneity at another site precluded calculation of diffusivity. Determining the shape of the ground-water recession curve may be difficult, but it can be done satisfactorily by collecting water-level data during an extended period of ground-water discharge and transposing the average recession curve to the flood period being analyzed. The flood-wave response method for estimating aquifer diffusivity provides a relatively inexpensivetechnique for obtaining a significant part of the data needed to predict the aquifer's response to river and pumping stresses.

  17. Water-Level Conditions in Selected Confined Aquifers of the New Jersey and Delaware Coastal Plain, 2003 (United States)

    dePaul, Vincent T.; Rosman, Robert; Lacombe, Pierre J.


    The Coastal Plain aquifers of New Jersey provide an important source of water for more than 2 million people. Steadily increasing withdrawals from the late 1800s to the early 1990s resulted in declining water levels and the formation of regional cones of depression. In addition to decreasing water supplies, declining water levels in the confined aquifers have led to reversals in natural hydraulic gradients that have, in some areas, induced the flow of saline water from surface-water bodies and adjacent aquifers to freshwater aquifers. In 1978, the U.S. Geological Survey began mapping the potentiometric surfaces of the major confined aquifers of New Jersey every 5 years in order to provide a regional assessment of ground-water conditions in multiple Coastal Plain aquifers concurrently. In 1988, mapping of selected potentiometric surfaces was extended into Delaware. During the fall of 2003, water levels measured in 967 wells in New Jersey, Pennsylvania, northeastern Delaware, and northwestern Maryland were used estimate the potentiometric surface of the principal confined aquifers in the Coastal Plain of New Jersey and five equivalent aquifers in Delaware. Potentiometric-surface maps and hydrogeologic sections were prepared for the confined Cohansey aquifer of Cape May County, the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, the Vincentown aquifer, and the Englishtown aquifer system in New Jersey, as well as for the Piney Point aquifer, the Wenonah-Mount Laurel aquifer, and the Upper Potomac-Raritan-Magothy, the Middle and undifferentiated Potomac-Raritan-Magothy, and the Lower Potomac-Raritan-Magothy aquifers in New Jersey and their equivalents in Delaware. From 1998 to 2003, water levels in many Coastal Plain aquifers in New Jersey remained stable or had recovered, but in some areas, water levels continued to decline as a result of pumping. In the Cohansey aquifer in Cape May County, water levels near the center of the cone of depression

  18. The Oligocene aquifer system in Mississippi (United States)

    Gandl, L.A.


    The Oligocene aquifer system in Mississippi consists of limestone and marl members of the Vicksburg Group, and the underlying Forest Hill Sand. The aquifer system crops out in a band 5 to 10 miles wide, that trends southeast across the State from the Warren-Yazoo County line to northeastern Wayne County. In the northwest part of the area, the formations dip to the southwest at 12 feet per mile. At the southeastern end of the outcrop, the dip is 42 feet per mile. The average dip for the entire area is 30 feet per mile. The aquifers are of primary importance for domestic and farm use. Total withdrawal in 1977 was about 1.4 million gallons per day. Since 1963 water levels have declined an average of between 0.05 and 2 feet per year. Water quality is generally good although in some places there are objectionably high concentrations of iron and color. (Woodard-USGS)

  19. Groundwater Mounding in Non-uniform Aquifers with Implications for Managed Aquifer Recharge (United States)

    Zlotnik, V. A.; Noel, P.; Kacimov, A. R.; Al Maktoumi, A. K.


    Many areas of the world (e.g. the Middle East and North Africa countries) are deficient in observation networks and hydrogeological data needed for Managed Aquifer Recharge (MAR) design. Therefore, diagnostic analytical approaches are appropriate for feasibility studies of MAR. It was found that the common assumption of aquifer thickness uniformity often does not hold, especially in mountainous watersheds. However, the only practical result available for non-uniform aquifers was developed for well hydraulics applications (point sinks or sources) by Hantush (1962), while the recharge zones may cover large areas on the scale of kilometers, such as temporarily filled impoundments (natural and engineered reservoirs in wadis, depressions, trenches, etc.) or perennial streams accepting massive treated wastewater discharge. To address these important, but overlooked MAR problems in sloping aquifers, a set of new closed-form analytical solutions for water table elevations were obtained. Interestingly, the 2D groundwater flow equation acquires the advection-dispersion equation form in these cases. The quadratures in closed-form solutions obtained by the Green's function method converge rapidly. These models account for both shapes and orientations of sources with respect to the direction of the aquifer base gradient. Qualitatively, solutions in sloping aquifers have an important trait: the mounding is limited in time and space, unlike in aquifers with a horizontal base. Aquifers with the greater slopes have the lesser potential of waterlogging from the rising water table and different storage characteristics (height and volume of locally stored water). Computational aspects of these solutions for MAR analyses are illustrated by example utilizing regional aquifer properties near Az Zarqa River, Jordan. (This study was supported by a grant from USAID-FABRI, project contract: AID-OAA-TO-11-00049, Subcontract: 1001624 -12S-19745).

  20. Preliminary model of the pre-Tertiary basement rocks beneath Yucca Flat, Nevada Test Site, Nevada, based on analysis of gravity and magnetic data (United States)

    Phelps, Geoffrey A.; McKee, Edwin H.; Sweetkind, D.; Langenheim, V.E.


    The Environmental Restoration Program of the U.S. Department of Energy, Nevada Operations Office, was developed to investigate the possible consequences to the environment of 40 years of nuclear testing on the Nevada Test Site. The majority of the tests were detonated underground, introducing contaminants into the ground-water system (Laczniak and others, 1996). An understanding of the ground-water flow paths is necessary to evaluate the extent of ground-water contamination. This report provides information specific to Yucca Flat on the Nevada Test Site. Critical to understanding the ground-water flow beneath Yucca Flat is an understanding of the subsurface geology, particularly the structure and distribution of the pre-Tertiary rocks, which comprise both the major regional aquifer and aquitard sequences (Winograd and Thordarson, 1975; Laczniak and others, 1996). Because the pre-Tertiary rocks are not exposed at the surface of Yucca Flat their distribution must be determined through well logs and less direct geophysical methods such as potential field studies. In previous studies (Phelps and others, 1999; Phelps and Mckee, 1999) developed a model of the basement surface of the Paleozoic rocks beneath Yucca Flat and a series of normal faults that create topographic relief on the basement surface. In this study the basement rocks and structure of Yucca Flat are examined in more detail using the basement gravity anomaly derived from the isostatic gravity inversion model of Phelps and others (1999) and high-resolution magnetic data, as part of an effort to gain a better understanding of the Paleozoic rocks beneath Yucca Flat in support of groundwater modeling.

  1. Analysis of data from test-well sites along the downdip limit of freshwater in the Edwards Aquifer, San Antonio, Texas, 1985-87 (United States)

    Groschen, G.E.


    Many researchers have studied the downdip limit of freshwater in the Edwards aquifer or various aspects of the saline-water zone and its relation to the freshwater zone. These studies were summarized and used to synthesize a consistent hydrologic and geochemical framework from which to interpret data from field studies. The concept derived from the previous work on the downdip limit of the freshwater zone is that fresh recharge water entered the aquifer and developed a vast flow system controlled by barrier faults. Some recharge water flows into the saline-water zone rather than toward major freshwater discharge points. The water that enters the salinewater zone continues to dissolve gypsum and dolomite, and calcite precipitates out of the water. This process of dedolomitization has helped to develop the large secondary porosity of the freshwater zone as the downdip limit of the freshwater zone progressively moved downdip in recent geologic time.

  2. Aquifer thermal energy storage. International symposium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)



    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  3. Impact of saline water sources on hypertension and cardiovascular disease risk in coastal Bangladesh (United States)

    Butler, Adrian; Hoque, Mohammad; Mathewson, Eleanor; Ahmed, Kazi; Rahman, Moshuir; Vineis, Paolo; Scheelbeek, Pauline


    Southern Bangladesh is periodically affected by tropical cyclone induced storm surges. Such events can result in the inundation of large areas of the coastal plain by sea water. Over time these episodic influxes of saline water have led to the build-up of a high of salinities (e.g. > 1,000 mg/l) in the shallow (up to ca. 150 m depth) groundwater. Owing to the highly saline groundwater, local communities have developed alternative surface water sources by constructing artificial drinking water ponds, which collect monsoonal rainwater. These have far greater storage than traditional rainwater harvesting systems, which typically use 40 litre storage containers that are quickly depleted during the dry season. Unfortunately, the ponds can also become salinised during storm surge events, the impacts of which can last for a number of years. A combined hydrological and epidemiological research programme over the past two years has been undertaken to understand the potential health risks associated with these saline water sources, as excessive intake of sodium can lead to hypertension and an increased risk of cardiovascular disease (such as stroke and heart attack). An important aspect of the selected research sites was the variety of drinking water sources available. These included the presence of managed aquifer recharge sites where monsoonal rainwater is stored in near-surface (semi-)confined aquifers for abstraction during the dry season. This provided an opportunity for the effects of interventions with lower salinity sources to be assessed. Adjusting for confounding factors such as age, gender and diet, the results show a significant association between salinity and blood pressure. Furthermore, the results also showed such impacts are reversible. In order to evaluate the costs and benefits of such interventions, a water salinity - dose impact model is being developed to assess the effectiveness of alternative drinking water sources, such as enhanced rainwater

  4. Cold water aquifer storage. [air conditioning (United States)

    Reddell, D. L.; Davison, R. R.; Harris, W. B.


    A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered.

  5. EPA Region 6 Sole Source Aquifers in Louisiana, Geographic NAD83, EPA (1996) [sole_source_aquifers_LA_EPA_1996 (United States)

    Louisiana Geographic Information Center — Polygon layer of EPA Region 6 sole source aquifers in Louisiana. The sole source aquifers represented are Chicot and Southern Hills in Louisiana/Mississippi.

  6. Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized water-level elevation contours for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer is an important...

  7. Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant hydraulic conductivity values for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer...

  8. Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant recharge values for the Vamoosa-Ada aquifer, in east-central Oklahoma. The Vamoosa-Ada aquifer is an...

  9. Predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area (United States)

    U.S. Geological Survey, Department of the Interior — This product "Predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area" is a 1:250,000-scale vector dataset...

  10. Slab melting and magma formation beneath the southern Cascade arc (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.


    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  11. Seismic tomography reveals magma chamber location beneath Uturuncu volcano (Bolivia) (United States)

    Kukarina, Ekaterina; West, Michael; Koulakov, Ivan


    Uturuncu volcano belongs to the Altiplano-Puna Volcanic Complex in the central Andes, the product of an ignimbrite ''flare-up''. The region has been the site of large-scale silicic magmatism since 10 Ma, producing 10 major eruptive calderas and edifices, some of which are multiple-eruption resurgent complexes as large as the Yellowstone or Long Valley caldera. Satellite measurements show that the hill has been rising more than half an inch a year for almost 20 years, suggesting that the Uturuncu volcano, which has erupted last time more than 300,000 years ago, is steadily inflating, which makes it fertile ground for study. In 2009 an international multidisciplinary team formed a project called PLUTONS to study Uturuncu. Under this project a 100 km wide seismic network was set around the volcano by seismologists from University of Alaska Fairbanks. Local seismicity is well distributed and provides constraints on the shallow crust. Ray paths from earthquakes in the subducting slab complement this with steep ray paths that sample the deeper crust. Together the shallow and deep earthquakes provide strong 3D coverage of Uturuncu and the surrounding region. To study the deformation source beneath the volcano we performed simultaneous tomographic inversion for the Vp and Vs anomalies and source locations, using the non-linear passive source tomographic code, LOTOS. We estimated both P and S wave velocity structures beneath the entire Uturuncu volcano by using arrival times of P and S waves from more than 600 events registered by 33 stations. To show the reliability of the results, we performed a number of different tests, including checkerboard synthetic tests and tests with odd/even data. Obtained Vp/Vs ratio distribution shows increased values beneath the south Uturuncu, at a depth of about 15 km. We suggest the high ratio anomaly is caused by partial melt, presented in expanding magma chamber, responsible for the volcano inflation. The resulting Vp, Vs and the ratio

  12. Lower Crustal and Moho Reflections Beneath Mount St. Helens (United States)

    Levander, A.; Kiser, E.; Zelt, C. A.; Creager, K.; Ulberg, C. W.; Schmandt, B.; Hansen, S. M.; Abers, G. A.


    The multi-disciplinary project iMUSH (imaging Magma Under St. Helens) was designed to illuminate the magmatic system beneath Mount St Helens (MSH) from the subducting Juan de Fuca slab to the surface using seismic, magnetotelluric, and petrologic data. The iMUSH active source experiment consisted of 23 large shots and 6000 seismograph locations. Included in the active-source seismic experiment were 2 dense linear profiles striking NW-SE and NE-SW, each with over 1000 receivers ( 150 m spacing) and 8 shots. Using the 1D average velocity model around MSH determined from travel-time analysis (Kiser et al., 2016, Geology), we have common-midpoint stacked STA/LTA envelope functions from all of the data along the NW-SE profile. A number of bright reflection events in the CMP section show remarkably good correspondence with abrupt velocity changes that were imaged in the 2D travel-time analysis in the mid to lower crust and at the Moho: Reflections appear at 20-25 km depth at the tops of two lower crustal high velocity (Vp > 7.5 km/s) bodies. One of these high velocity bodies is directly beneath MSH. The other is 40 km SE of MSH, under the Indian Heaven volcanic field, a basaltic field last active 9 ka. We have interpreted the high velocity bodies as cumulates from Quaternary or Tertiary volcanism. Separating the two high Vp bodies is a lower velocity column (Vp ≤ 6.5 km/s) dipping to the SE from the midcrust to the Moho. In the CMP section, the Moho reflection is bright under the region of low velocity and dims beneath both of the high velocity lower crustal bodies. Seismicity associated with the 1980 eruption extended from the summit to 20 km depth, stopping just above the bright reflection at the top of the MSH high Vp body. Deep long period events under MSH, often associated with motion of magmatic fluids, cluster at 20-30 km depth along the southeastern edge of the same reflection. This leads us to suggest that lower crustal magmas migrate along the southeastern

  13. Managed Aquifer Recharge of Surplus Desalinated Seawater: a MARSOL Case Study from Israel (United States)

    Kurtzman, Daniel; Ganot, Yonatan; Russak, Ammos; Nitzan, Ido; Bernstein, Anat; Katz, Yoram; Guttman, Yossi


    MARSOL is an EU-funded project on demonstrating managed aquifer recharge (MAR) as a solution to water scarcity and drought. Among other activities in MARSOL, 7 demo-sites in Mediterranean countries were chosen for research and demonstration of different types of MAR (e.g. soil aquifer treatment, river infiltration basins etc.). One of these demo sites is the Menashe infiltration basin (Israel) in which MAR of surplus desalinated sea water is demonstrated, monitored and investigated in the last year. Different operational circumstances create periods in which water from the Hadera seawater desalination plant cannot be distributed through the national water carrier to consumers. A solution was set in MAR of this water through sandy infiltration ponds to the Israeli coastal aquifer which is consisted mainly from calcareous sandstone. Hydrological and geochemical aspects are of interest in this MAR operation due to the high discharge rates of low-salinity chlorinated water to the infiltration pond. Monitoring of operational events, laboratory experiments, controlled field-experiments and modelling are carried out aiming at clarifying the following issues: infiltration rates - spatial and temporal variability; recharge and withdrawal operation; disinfection by-products due to infiltration of chlorinated water; changes in hydraulic properties due to dissolution/precipitation processes; and using MAR of desalinated water as a remineralization treatment. We will present some results concerning these aspects concentrating on the last one. Observations show that desalinated water dissolve carbonates relatively fast in the unsaturated zone and shallow groundwater of the infiltration site. This process which increases significantly the water's alkalinity also enriches the water with magnesium which its deficiency in desalinated seawater is an unsolved concern. Further increase in calcium and magnesium concentration requires flow in the aquifer through the calcareous

  14. Chemical evolution of groundwater in the Wilcox aquifer of the northern Gulf Coastal Plain, USA (United States)

    Haile, Estifanos; Fryar, Alan E.


    The Wilcox aquifer is a major groundwater resource in the northern Gulf Coastal Plain (lower Mississippi Valley) of the USA, yet the processes controlling water chemistry in this clastic aquifer have received relatively little attention. The current study combines analyses of solutes and stable isotopes in groundwater, petrography of core samples, and geochemical modeling to identify plausible reactions along a regional flow path ˜300 km long. The hydrochemical facies evolves from Ca-HCO3 upgradient to Na-HCO3 downgradient, with a sequential zonation of terminal electron-accepting processes from Fe(III) reduction through SO4 2- reduction to methanogenesis. In particular, decreasing SO4 2- and increasing δ34S of SO4 2- along the flow path, as well as observations of authigenic pyrite in core samples, provide evidence of SO4 2- reduction. Values of δ13C in groundwater suggest that dissolved inorganic carbon is contributed both by oxidation of sedimentary organic matter and calcite dissolution. Inverse modeling identified multiple plausible sets of reactions between sampled wells, which typically involved cation exchange, pyrite precipitation, CH2O oxidation, and dissolution of amorphous Fe(OH)3, calcite, or siderite. These reactions are consistent with processes identified in previous studies of Atlantic Coastal Plain aquifers. Contrasts in groundwater chemistry between the Wilcox and the underlying McNairy and overlying Claiborne aquifers indicate that confining units are relatively effective in limiting cross-formational flow, but localized cross-formational mixing could occur via fault zones. Consequently, increased pumping in the vicinity of fault zones could facilitate upward movement of saline water into the Wilcox.

  15. Seawater intrusion in fractured coastal aquifers: A preliminary numerical investigation using a fractured Henry problem (United States)

    Sebben, Megan L.; Werner, Adrian D.; Graf, Thomas


    Despite that fractured coastal aquifers are widespread, the influence of fracture characteristics on seawater intrusion (SWI) has not been explored in previous studies. This research uses numerical modelling in a first step towards understanding the influence of fracture orientation, location and density on the extent of seawater and accompanying patterns of groundwater discharge in an idealised coastal aquifer. Specifically, aquifers containing single fractures or networks of regularly spaced fractures are studied using modified forms of the Henry SWI benchmark problem. The applicability of equivalent porous media (EPM) models for representing simple fracture networks in steady-state simulations of SWI is tested. The results indicate that the influence of fractures on SWI is likely to be mixed, ranging from enhancement to reduction in seawater extent and the width of the mixing zone. For the conceptual models considered here, vertical fractures in contact with the seawater wedge increase the width of the mixing zone, whereas vertical fractures inland of the wedge have minimal impact on the seawater distribution. Horizontal fractures in the lower part of the aquifer force the wedge seaward, whereas horizontal fractures located within the zone of freshwater discharge enhance the wedge. Inclined fractures roughly parallel to the seawater-freshwater interface increase the landward extent of seawater and fractures perpendicular to the interface inhibit the wedge. The results show that EPM models are likely inadequate for inferring salinity distributions in most of the fractured cases, although the EPM approach may be suitable for orthogonal fracture networks if fracture density is high and appropriate dispersivity values can be determined.

  16. An updated water balance for the Grootfontein aquifer near Mahikeng

    African Journals Online (AJOL)

    The Grootfontein Aquifer, part of the important North West dolomite aquifers, supplies about 20% of Mahikeng's domestic water needs. Over-abstraction caused the large natural spring draining the aquifer to disappear in 1981, and groundwater levels have since fallen nearly 30 m in the vicinity of the former spring. Analysis ...

  17. Hydrodynamic characterization of the Paleocene aquifer in the ...

    African Journals Online (AJOL)

    The intense exploitation of shallow aquifers in the coastal basin of Togo provokes a rapid depletion of these reservoirs. The confined paleocene aquifer represents potential reserves that are yet little exploited. This paper presents the hydrodynamic characterization of this aquifer. Piezometric data established from 80 wells ...

  18. Groundwater modeling of the Calera Aquifer region in Central Mexico (United States)

    The Calera Aquifer is the main source of water for irrigated agriculture, industrial, and drinking water purposes in the Calera Aquifer Region (CAR) in the state of Zacatecas, Mexico. Irrigated agriculture accounts for 80% of the total groundwater extracted from the Calera Aquifer. In recent years, ...

  19. Comparison of groundwater flow in Southern California coastal aquifers (United States)

    Hanson, Randall T.; Izbicki, John A.; Reichard, Eric G.; Edwards, Brian D.; Land, Michael; Martin, Peter


    Development of the coastal aquifer systems of Southern California has resulted in overdraft, changes in streamflow, seawater intrusion, land subsidence, increased vertical flow between aquifers, and a redirection of regional flow toward pumping centers. These water-management challenges can be more effectively addressed by incorporating new understanding of the geologic, hydrologic, and geochemical setting of these aquifers.

  20. Review: The Yucatán Peninsula karst aquifer, Mexico

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Gondwe, Bibi Ruth Neuman; Charvet, Guillaume


    The Yucatán Peninsula karst aquifer is one of the most extensive and spectacular karst aquifer systems on the planet. This transboundary aquifer system extends over an area of approximately 165,000 km2 in México, Guatemala and Belize. The Triassic to Holocene Yucatán limestone platform is located...

  1. Hydrogeochemical evolution and potability evaluation of saline ...

    Indian Academy of Sciences (India)

    However, the aquifer system displays an even distribution of strong and weak acids for both the monsoonal regimes. Thehydrogeochemistry is controlled by aquifer lithology with a general occurrence of ion exchange and acid–base reaction processes across the study area. Spatial disposition of major cations indicates ...

  2. Hydrogeologic framework and hydrologic conditions of the Piney Point aquifer in Virginia (United States)

    McFarland, E. Randolph


    The Piney Point aquifer in Virginia is newly described and delineated as being composed of six geologic units, in a study conducted by the U.S. Geological Survey in cooperation with the Virginia Department of Environmental Quality (VA DEQ). The eastward-dipping geologic units include, in stratigraphically ascending order, thesand of the Nanjemoy Formation Woodstock Member,interbedded limestone and sand of the Piney Point Formation,silty and clayey sand of the Gosport Formation equivalent sediments,silty sand of the Oligocene-age sediments,silty fine-grained sand of the Old Church Formation, andsilty sand of the Calvert Formation, Newport News unit and basal Plum Point Member.Identification of geologic units is based on typical sediment lithologies of geologic formations. Fine-grained sediments that compose confining units positioned immediately above and below the Piney Point aquifer are also described.The Piney Point aquifer is one of several confined aquifers within the Virginia Coastal Plain and includes a highly porous and solution-channeled indurated limestone within the Piney Point Formation from which withdrawals are made. The limestone is relatively continuous laterally across central parts of the Northern Neck, Middle Peninsula, and York-James Peninsula. Other geologic units are of variable extent. The configurations of most of the geologic units are further affected by newly identified faults that are aligned radially from the Chesapeake Bay impact crater and create constrictions or barriers to groundwater flow. Some geologic units are also truncated beneath the lower Rappahannock River by a resurge channel associated with the impact crater.Groundwater withdrawals from the Piney Point aquifer increased from approximately 1 million gallons per day (Mgal/d) during 1900 to 7.35 Mgal/d during 2004. As a result, a water-level cone of depression in James City and northern York Counties was estimated to be as low as 70 feet (ft) below the National Geodetic

  3. Hydrogeologic characteristics and water quality of a confined sand unit in the surficial aquifer system, Hunter Army Airfield, Chatham County, Georgia (United States)

    Gonthier, Gerard


    An 80-foot-deep well (36Q397, U.S. Geological Survey site identification 320146081073701) was constructed at Hunter Army Airfield to assess the potential of using the surficial aquifer system as a water source to irrigate a ballfield complex. A 300-foot-deep test hole was drilled beneath the ballfield complex to characterize the lithology and water-bearing characteristics of sediments above the Upper Floridan aquifer. The test hole was then completed as well 36Q397 open to a 19-foot-thick shallow, confined sand unit contained within the surficial aquifer system. A single-well, 24-hour aquifer test was performed by pumping well 36Q397 at a rate of 50 gallons per minute during July 13-14, 2011, to characterize the hydrologic properties of the shallow, confined sand unit. Two pumping events prior to the aquifer test affected water levels. Drawdown during all three pumping events and residual drawdown during recovery periods were simulated using the Theis formula on multiple changes in discharge rate. Simulated drawdown and residual drawdown match well with measured drawdown and residual drawdown using values of horizontal hydraulic conductivity and specific storage, which are typical for a confined sand aquifer. Based on the hydrologic parameters used to match simulated drawdown and residual drawdown to measured drawdown and residual drawdown, the transmissivity of the sand was determined to be about 400 feet squared per day. The horizontal hydraulic conductivity of the sand was determined to be about 20 feet per day. Analysis of a water-quality sample indicated that the water is suitable for irrigation. Sample analysis indicated a calcium-carbonate type water having a total dissolved solids concentration of 39 milligrams per liter. Specific conductance and concentrations of all analyzed constituents were below those that would be a concern for irrigation, and were below primary and secondary water-quality criteria levels.

  4. Aquifer susceptibility in Virginia, 1998-2000 (United States)

    Nelms, David L.; Harlow, George E.; Plummer, L. Niel; Busenberg, Eurybiades


    The U.S. Geological Survey (USGS), in cooperation with the Virginia Department of Health, sampled water from 171 wells and springs across the Commonwealth of Virginia between 1998 and 2000 as part of the Virginia Aquifer Susceptibility study. Most of the sites sampled are public water supplies that are part of the comprehensive Source Water Assessment Program for the Commonwealth. The fundamental premise of the study was that the identification of young waters (less than 50 years) by multiple environmental tracers could be used as a guide for classifying aquifers in terms of susceptibility to contamination from near-surface sources. Environmental tracers, including chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium (3H), and tritium/helium-3 (3H/3He), and carbon isotopes (14C and d13C) were used to determine the age of water discharging from wells and springs. Concentrations of CFCs greater than 5 picograms per kilogram and 3H concentrations greater than 0.6 tritium unit were used as thresholds to indicate that parts of the aquifer sampled have a component of young water and are, therefore, susceptible to near-surface contamination. Concentrations of CFCs exceeded the susceptibility threshold in 22 percent of the wells and in one spring sampled in the Coastal Plain regional aquifer systems. About 74 percent of the samples from wells with the top of the first water zone less than 100 feet below land surface exceeded the threshold values, and water supplies developed in the upper 100 feet of the Coastal Plain are considered to be susceptible to contamination from near-surface sources. The maximum depth to the top of the screened interval for wells that contained CFCs was less than 150 feet. Wells completed in the deep confined aquifers in the Coastal Plain generally contain water older than 1,000 years, as indicated by carbon-14 dating, and are not considered to be susceptible to contamination under natural conditions. All of the water samples from wells

  5. Nonuniform subduction of the Indian crust beneath the Himalayas. (United States)

    Guo, Xiaoyu; Li, Wenhui; Gao, Rui; Xu, Xiao; Li, Hongqiang; Huang, Xingfu; Ye, Zhuo; Lu, Zhanwu; Klemperer, Simon L


    Himalayan tectonic activity is triggered by downward penetration of the Indian plate beneath the Asian plate. The subsurface geometry of this interaction has not been fully investigated. This study presents novel constraints on this geometry provided by two newly obtained, deep seismic reflection profiles. The profiles cover 100- and 60-km transects across the Yarlung-Zangbo suture of the Himalaya-Tibet orogen at c. 88°E. Both profiles show a crustal-scale outline of the subducting Indian crust. This outline clearly shows Indian understhrusting southern Tibet, but only to a limited degree. When combined with a third seismic reflection profile of the western Himalayas, the new profiles reveal progressive, eastward steepening and shortening in the horizontal advance of the subducting Indian crust.

  6. Gravimetric imaging of partially molten bodies beneath the Bolivian Altiplano (United States)

    del Potro, R.; Diez, M.; Gottsmann, J.; Camacho, A. J.; Sunagua, M.


    The presence of partial melt in the Earth's crust causes a decrease in density, and hence a density contrast, that generates a potential field anomaly. Gravimetric techniques can quantify such an anomaly and invert its signature to produce a subsurface density distribution model, from which images of anomalous density bodies can be isolated. Here, we present a 3D gravimetric image of four deep-rooted negative density bodies in the Central Volcanic Zone of the Andes in southern Bolivia, which we interpret to contain partial melt. The underlying gravimetric data were obtained by the combination of 143 new with 60 existing observation from previous regional surveys. The survey covers an area of ~5000 km2 that comprises the Central Andean Bouguer anomaly minima of about -450 μGal. After standard data reduction, the local residual gravity signal was inverted using a priori determined plausible density contrasts (±50 to ±300 kg m-3). The inversion routine builds a subsurface model (defined by the 3D aggregation of parallel-piped cells) based on a controlled 'growth' process of anomalous density bodies by means of an exploratory approach. Non-uniqueness is addressed by favouring solutions that balance minimum residuals and minimum number of anomalous bodies with minimum anomalous mass. Within the range of assumed density contrasts, all inversion models show the presence of the deep-rooted low-density bodies, providing a significant confidence level to the inversion results. Our favoured 3D model of the anomalous bodies is obtained from a negative density contrast of 150 kg m-3 that corresponds to bodies appear to connect the Altiplano-Puna Magma Body (AMPB) at ~20 km depth, to shallower (~5 km) pre-eruption levels beneath the Altiplano-Puna Volcanic Complex (APVC). One of the bodies is located beneath a large on-going ground uplift centred at Uturuncu volcano and the modelled ground deformation source lies within the gravimetrically imaged body of partial melt.

  7. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of a digitized polygon of a constant recharge value for the Enid isolated terrace aquifer in northwestern Oklahoma. The Enid isolated terrace...

  8. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant hydraulic conductivity values for the Enid isolated terrace aquifer in northwestern Oklahoma. The Enid...

  9. Digital data sets that describe aquifer characteristics of the Rush Springs aquifer in western Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized water-level elevation contours for the Rush Springs aquifer in western Oklahoma. This area encompasses all or part of Blaine,...

  10. Digital data sets that describe aquifer characteristics of the Antlers aquifer in southeastern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized water-level elevation contours for the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age Antlers Sandstone is an...

  11. Digital data sets that describe aquifer characteristics of the Antlers aquifer in southeastern Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant recharge values for the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age Antlers Sandstone...

  12. Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of constant recharge rates for the High Plains aquifer in Oklahoma. This area encompasses the panhandle counties of...

  13. Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of constant hydraulic conductivity values for the High Plains aquifer in Oklahoma. This area encompasses the panhandle...

  14. Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized water-level elevation contours for the High Plains aquifer in western Oklahoma. This area encompasses the panhandle counties of...

  15. Aquifer Boundary of the Wood River Valley Aquifer System, South-Central Idaho (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains the boundary of the Wood River Valley aquifer system as modified and expanded from that defined by Skinner and others (2007): It has been...

  16. Digital data sets that describe aquifer characteristics of the Rush Springs aquifer in western Oklahoma (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant hydraulic conductivity values for the Rush Springs aquifer in western Oklahoma. This area encompasses all or...

  17. State Aquifer Recharge Atlas Plates, Geographic NAD83, LDEQ (1999) [aquifer_recharge_potential_LDEQ_1988 (United States)

    Louisiana Geographic Information Center — This is a polygon dataset depicting the boundaries of aquifer systems in the state of Louisiana and adjacent areas of Texas, Arkansas and a portion of Mississippi....

  18. Hydrogeochemical Analysis of an Overexploited Aquifer In Bangladesh Toward Managed Aquifer Recharge Project Implementation (United States)

    Rahman, M. A.; Wiegand, B. A.; Pervin, M.; Sauter, M.


    In most parts of the upper Dupitila aquifer (Dhaka City, Bangladesh) the average groundwater depletion reaches 2-3 m/year due to increasing water demands of the growing population. To counteract overexploitation of the aquifer, a more sustainable water management is required. The analysis of the local water resources system suggests that Managed Aquifer Recharge (MAR) would help to restore groundwater resources to strengthen water supply of Dhaka City, e.g., by using collected urban monsoon runoff and excess surface water from rivers. To assess possible effects of surface water or rainwater injection on groundwater quality, a comprehensive hydrogeochemical survey of the Dupitila aquifer is required. This paper presents hydrogeochemical data to document the current status of groundwater quality and to evaluate potential groundwater pollution by mobilization of hazardous chemicals as a result of changes in the hydrochemical equilibria. We performed a comprehensive review of available secondary data sources and will present new results from hydrochemical and Sr isotope investigations of water samples that were conducted within this study. Currently, groundwater quality in the upper Dupitila aquifer is characterized by variations in the electrical conductivity in the range of 200 to 1100 μS/cm, which may indicate some anthropogenic contamination by leakage from waste disposal including the sewage network and from surface water infiltration into the groundwater aquifer. Dissolved oxygen concentrations range from 1.0 to 4.9 mg/L (average 2.5 mg/L) in the upper Dupitila aquifer, while the lower Dupilita aquifer shows dissolved oxygen concentrations in the range 0 to 0.7 mg/L. Concentrations of major ions show some variation primarily due to a sedimentologically/mineralogically heterogeneous aquifer composition (sand, gravel, clay horizons), but may also be affected by anthropogenic processes. The groundwater composition is predominated by Ca-Mg-HCO3 and saturation values

  19. Ecological assessment of water quality in relation to hydrogeology in a shallow urban aquifer: Somesul Mic River aquifer (North-Western, Romania) (United States)

    Iepure, Sanda; Marin, Constantin; Fekete, Alexandru; Rajka, Geza; Brad, Traian; Samsudean, Cristian


    The River Basin Management Plan is the main instrument for the implementation of the Water Framework Directive (2000/60/CE), one of its main requirements being the evaluation and quantification of human impacts on aquatic environments including the groundwater or groundwater dependent ecosystems. The Someş-Tisa basin is the largest hydrographical basin in NW Romania (22,380 km2), containing 15 Quaternary detrital groundwater bodies prone to intensive agricultural and urban industrial use. So far, no studies have addressed the groundwater fauna assemblages and their ecological response to human disturbances and aquifer contamination. Here we investigate a Quaternary shallow detrital aquifer (nitrates. We conducted a survey in seven monitoring boreholes (1-8 m beneath the surface) through the Quaternary porrous aquifer of the Somesul Mic River on a 10 km long longitudinal transect. Hydrologic and geologic variables (rainfall amount, drainage network density, aquifer and drainage elevation, transmisivity and aquifer porosity) were extracted from previous works and Pearson correlations were calculated for paired variables. Water and faunal sampling was performed on a seasonal basis at one pristine and six impacted sites during 2013. Invertebrates were sampled with a submersible pump by extracting a volume of 50-100 l of water and filtering through a 63 microns planktonic net. Subsequently, 2 l of water was extracted after pumping for compositional analyses of major constituents, trace elements (by ICP-MS) and nutrients. The results of water geochemical analyses indicate a significant pollutant charge of groundwater with Mn (max. 29.26 μg/l), Ni (16.55 μg/l), Fe (509.74 μg/l), As (3.87 μg/l), Se (5.07 μg/l), sulphates (549.9 μg/l) and nitrates (95.4 mg/l) downstream from industrial and agricultural lands. Only seven taxa, dominated by crustaceans, were found within the stygofaunal communities. Copepod stygoxene species (i.e., Megacyclops viridis Jurine, 1820

  20. Determining Salinity by Simple Means. (United States)

    Schlenker, Richard M.

    This paper describes the construction and use of a simple salinometer. The salinometer is composed, mainly, of a milliammeter and a battery and uses the measurement of current flow to determine the salinity of water. A complete list of materials is given, as are details of construction and operation of the equipment. The use of the salinometer in…

  1. Hydrochemical characterization of groundwater aquifer using ...

    African Journals Online (AJOL)

    Hydrochemical data analysis revealed four sources of solutes. The processes responsible for their enrichment include: chemical weathering, leaching of the overlying sediments, domestic activities, climatic condition and the flow pattern of the aquifer. The factors have contributed to the changes of the groundwater chemistry ...

  2. Biogeochemical aspects of aquifer thermal energy storage

    NARCIS (Netherlands)

    Brons, H.J.


    During the process of aquifer thermal energy storage the in situ temperature of the groundwater- sediment system may fluctuate significantly. As a result the groundwater characteristics can be considerably affected by a variety of chemical, biogeochemical and microbiological

  3. Aquifer restoration: state of the art

    National Research Council Canada - National Science Library

    Knox, Robert C; Knox, R. C


    ... of chemicals or waste materials, improper underground injection of liquid wastes, and placement of septic tank systems in hydrologically and geologically unsuitable locations. Incidents of aquifer pollution from man's waste disposal activities have been discovered with increasing regularity. At the same time, demands for groundwater usage have been inc...

  4. Hydrogeochemical analysis for Tasuj plain aquifer, Iran

    Indian Academy of Sciences (India)

    However, hierarchical cluster analysis (HCA) identified five water types in the groundwater samples because HCA was able to analyze ... ture, industry and public uses. This study focuses on the Tasuj plain aquifer, one of the ... rectly by cluster analysis (Lambrakis et al. 2004;. Singh et al. 2004). In summary, multivariate sta-.

  5. 40 CFR 147.102 - Aquifer exemptions. (United States)


    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aquifer exemptions. 147.102 Section 147.102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...) Granite Point. (ii) McArthur River Field. (iii) Middle Ground Shoal Field. (iv) Trading Bay Field. (3) The...

  6. Managing the unseen: Langebaan Road Aquifer System

    African Journals Online (AJOL)

    Managing the unseen: Langebaan Road Aquifer System. JA du Plessis*. Department of Civil Engineering, University of Stellenbosch, P/Bag X1, MATIELAND, 7602, South Africa. Abstract. The effective management of groundwater resources is a critical aspect to ensure sustainability. The paper discusses the structures ...

  7. Geoelectric investigation of the aquifer characteristics and ...

    African Journals Online (AJOL)

    Subsurface geo-electrical survey using the electrical resistivity (VES) method and drillers logs were carried out in Kwale, Ndokwa West Local Government Area of Delta State in order to investigate the aquifer characteristics and ground water potential of the subsurface formations. Nineteen vertical electrical soundings were ...

  8. Managing environmental problems in Cuban karstic aquifers (United States)

    León, Leslie Molerio; Parise, Mario


    The Cuban archipelago hosts some of the most typical karst features in the Caribbean, and has very important and high-quality resources of karst water. Carbonate rocks cover about 70% of the country area, with a great variety of karst features, and outstanding exokarstic landforms such as the cone karst; in addition, many caves are regarded as cultural and historical sites. Protection of the karst hydric resources is therefore essential. In karst, the intrinsic vulnerability of the environment makes it highly susceptible to pollution, which may result in dramatic consequences for both the quality of karst water and the amount of water available. Many anthropogenic activities produce negative changes in the karst aquifers, in some cases with unrecoverable effects. In Cuba, five main sources of pollution to karst aquifers have been identified: sea water intrusion, agricultural practices, waste disposal, industrial activity, and mining and oil production. Due to the narrow and elongated configuration of the main island, wide portions of the territory are mostly affected by seawater intrusion problems, exacerbated by the concentration of both population and human activities in the largest towns located along, or very close to, the coasts. Seawater intrusion, however, is not the only source of pollution for Cuban karst aquifers. The other aforementioned sources are important, and may locally prevail (e.g. pollution resulting from sugar cane factories). Considerations on the management of karst aquifers and a brief description of the water quality monitoring system of Cuban inland waters are also provided.


    Directory of Open Access Journals (Sweden)

    Yameli Aguilar


    Full Text Available Karstic systems occupy nearly 20% of the surface of the earth and are inhabited by numerous human communities. Karstic aquifers are the most exposed to pollution from human activities. Pollution of karstic aquifers is a severe environmental problem worldwide.  In order to face the vulnerability of karstic aquifers to pollution, researchers have created a diversity of study approaches and models, each one having their own strengths and weaknesses depending on the discipline from which they were originated, thus requiring a thorough discussion within the required multidisciplinary character. The objective of this article was to analyze the theoretical and methodological approaches applied to the pollution of karstic aquifers. The European hydrogeological, land evaluation, hydropedological and a geographic approach were analyzed. The relevance of a geomorphological analysis as a cartographic basis for the analysis of vulnerability and risks were emphasized. From the analysis of models, approaches and methodologies discussed the following recommendation is made: to form an interdisciplinary work team, to elaborate a conceptual model according to the site and the working scale and to e, apply and validate the model.

  10. Aquifer characterization and groundwater potential assessment of ...

    African Journals Online (AJOL)

    ... integrated electrical resistivity and borehole lithologic logs with a view to characterizing the aquifer and assessing the groundwater potential. One hundred and four Vertical Electrical Soundings (VES) were quantitatively interpreted using the partial curve matching technique and computer assisted 1-D forward modeling.

  11. Artificial recharge of surface water to aquifer


    Čechová, Tereza


    Artificial recharge of surface water to aquifer Tereza Čechová, Geotechnologie Abstract: The bachelor thesis is devoted to groundwater recharge. The source of groundwater is infiltration of atmospheric precipitation. The study deals with the use of controlled artificial recharge in the Czech Republic and the other countries in the Word.

  12. Hydrochemistry and energy storage in aquifers

    NARCIS (Netherlands)

    Andersson, O.; Appelo, C.A.J.; Brons, H.J.; Dufour, F.C.; Griffioen, J.; Jenne, E.A.; Lyklema, J.W.; Mourik, G.J. van; Snijders, A.L.; Willemsen, A.; Zehnder, A.J.B.


    This volume of the series Proceedings and Information of the TNO Committee on Hydrological Research (CHO-TNO) contains the contributions as presented on the 48th technical meeting of the CHO-TNO, "Hydrochemistry and energy storage in aquifers". During this symposium recent results have been

  13. Transport of nonlinearly biodegradable contaminants in aquifers

    NARCIS (Netherlands)

    Keijzer, H.


    This thesis deals with the transport behavior of nonlinearly biodegradable contaminants in aquifers. Such transport occurs during in situ bioremediation which is based on the injection of an electron acceptor or electron donor. The main interests in this thesis are the

  14. Geohydrology and simulated effects of withdrawals on the Miocene aquifer system in the Mississippi Gulf Coast area (United States)

    Sumner, D.M.; Wasson, B.E.; Kalkhoff, S.J.


    Intense development of the Miocene aquifer system for water supplies along the Mississippi Gulf Coast has resulted in large water level declines that have altered the groundwater flow pattern in the area. Water levels in some Miocene aquifers have declined about 2 ft/year since 1940; declines exceed 100 ft (80 ft sea level) in large areas along the coast. Water levels in the surficial aquifer system, generally less than 20 ft below land surface, have not declined. The Miocene and younger interbedded and lenticular sands and clays crop out in southern Mississippi and dip to the south and southwest. These sediments have large vertical variations in head and locally respond to stresses as separate aquifers. Freshwater recharge to the Miocene aquifer system primarily is from rainfall on the surficial aquifers. The water generally moves to the south and southeast along the bedding planes toward the Mississippi Gulf Coast where the water is either withdrawn by wells, discharges to the ocean, or gradually percolates upward into overlying aquifers. Drawdowns caused by large groundwater withdrawals along the coast probably have resulted in the gradual movement of the saltwater toward the pumping centers. In parts of the Miocene aquifer system commonly used for water supplies, the water generally is a sodium bicarbonate type. Increasing chloride concentrations in a few wells indicate that saline water is migrating into parts of all layers in the Pascagoula area. A quasi three-dimensional numerical model of the groundwater flow system was constructed and calibrated on the basis of the both pre- and post-development conditions. The effects of an expected 1.5% annual increase in groundwater withdrawals during the period 1985-2005 were evaluated by the flow model. Additional water level declines expected by the year 2005 in response to estimated pumpage are as follows: Gulfport, 135 ft in layer 4; Biloxi-Gulfport area, 100 ft in layer 5 and 50 ft in layer 3; Pascagoula area, 40

  15. Evidence for Aquifer-scale Autotrophic Denitrification via Pyrite Oxidation in the Lincolnshire Limestone Aquifer, England (United States)

    Bottrell, S. H.; Tellam, J. H.; Moncaster, S. J.


    Migration and attenuation of agrocemical nitrate pollution in the Lincolnshire Limestone aquifer of eastern England have been examined in the light of the results of a groundwater sulphate sulphur isotope investigation. This has allowed the distinction of different sources of sulphate and their relative importance in different parts of the aquifer. The principal sources are 34S-depleted inputs, derived from the oxidation of pyrite within both the aquifer matrix material and the overlying mudstone deposits, and 34S-enriched anthropogenic inputs which are derived from acid rain fallout augmented by agrochemicals. Groundwaters sampled over the outcrop zone of the aquifer have sulphate \\delta34S dominated by contemporary acid rain inputs in the recharge waters. A downdip decrease in the 34S content of groundwater sulphate over the unconfined and shallow confined areas of the aquifer is indicative of a progressive increase in the significance of pyrite-derived sulphate in the system. The contribution of sulphate from pyrite oxidation is large, greater than can be accounted for by dissolved O2. The additional component corresponds to that which would be expected from reduction of nitrate using pyrite as the electron donor. We suggest that this mechanism is responsible for denitrification in the aquifer, but that it will be ultimately limited by pyrite availability near fissure surfaces where the reaction takes place.

  16. Inter-relationship between shallow and deep aquifers under the influence of deep groundwater exploitation in the North China Plain (United States)

    Han, Dongmei; Cao, Guoliang; Love, Andrew J.


    In the North China Plain (NCP), the interaction between shallow and deep groundwater flow systems enhanced by groundwater extraction has been investigated using multi-isotopic and chemical tracers for understanding the mechanism of salt water transport, which has long been one of the major regional environmental hydrogeological problems in NCP. Information about the problem will be determined using multiple lines of evidence, including field surveys of drilling and water sampling, as well as laboratory experiments and physical and numerical simulations. A conceptual model of groundwater flow system along WE cross-section from piedmont area to coastal region (Shijiazhuang-Hengshui-Cangzhou) has been developed and verified by geochemical modeling. A combined hydrogeochemical and isotopic investigation using ion relationships such as Cl/Br ratios, and environment isotopes (δ 18O, δ 2H, δ 34SSO4-δ 18OSO4, δ 15NNO_3-δ 18ONO_3, δ 13C and 87Sr/86Sr) was reviewed and carried for determining the sources of aquifer recharge, the origin of solutes and the mixing processes in groundwater flow system under the anthropogenic pumping and pollution. Results indicate that hydrochemistry of groundwater is characterized by mixing between end-members coming directly from Piedmont recharge areas, saline groundwater formed during geohistorical transgression in the shallow aquifers of central plain, and to groundwater circulating in a deeply buried Quaternary sediments. We also reviewed the groundwater age (tritium contents, 14C ages, 3H-3He ages, basin-scale flow modeling ages of groundwater) to recognize the local distributed recharge in this strongly exploited aquifer system. Finally, combined with the 1-D Cl transport modeling for the pore water of clay-rich aquitard, we reveal that salt transport in the aquitard is primarily controlled by vertical diffusion on million years' time scale, and the observed the salinized groundwater in deep aquifer may be caused by passing

  17. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: Evidence from groundwater isotopes, and environmental significance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Currell, Matthew, E-mail: [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Cendón, Dioni I. [Australian Nuclear Science and Technology Organisation, Kirrawee (Australia); Connected Water Initiative, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney (Australia)


    A multi-layered coastal aquifer in southeast Australia was assessed using environmental isotopes, to identify the origins of salinity and its links to palaeo-environmental setting. Spatial distribution of groundwater salinity (electrical conductivity values ranging from 0.395 to 56.1 mS/cm) was examined along the coastline along with geological, isotopic and chemical data. This allowed assessment of different salinity sources and emplacement mechanisms. Molar chloride/bromide ratios range from 619 to 1070 (621 to 705 in samples with EC > 15 mS/cm), indicating salts are predominantly marine. Two distinct vertical salinity profiles were observed, one with increasing salinity with depth and another with saline shallow water overlying fresh groundwater. The saline shallow groundwater (EC = 45.4 to 55.7 mS/cm) has somewhat marine-like stable isotope ratios (δ{sup 18}O = − 2.4 to − 1.9 ‰) and radiocarbon activities indicative of middle Holocene emplacement (47.4 to 60.4 pMC). This overlies fresher groundwater with late Pleistocene radiocarbon ages and meteoric stable isotopes (δ{sup 18}O = − 5.5 to − 4.6‰). The configuration suggests surface inundation of the upper sediments by marine water during the mid-Holocene (c. 2–8 kyr BP), when sea level was 1–2 m above today's level. Profiles of chloride, stable isotopes, and radiocarbon indicate mixing between this pre-modern marine water and fresh meteoric groundwater to varying degrees around the coastline. Mixing calculations using chloride and stable isotopes show that in addition to fresh-marine water mixing, some salinity is derived from transpiration by halophytic vegetation (e.g. mangroves). The δ{sup 13}C ratios in saline water (− 17.6 to − 18.4‰) also have vegetation/organic matter signatures, consistent with emplacement by surface inundation and extensive interaction between vegetation and recharging groundwater. Saline shallow groundwater is preserved only in areas where low

  18. Bulk Moisture and Salinity Sensor (United States)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John


    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  19. Geologic and hydrogeologic frameworks of the Biscayne aquifer in central Miami-Dade County, Florida (United States)

    Wacker, Michael A.; Cunningham, Kevin J.; Williams, John H.


    related vugs, or irregular vugs. Flow zones with a mean hydraulic conductivity of 2,600 feet per day are present within the middle semiconfining unit, but none of the flow zones are continuous across the study area. The lower Biscayne aquifer flow unit comprises a group of flow zones in the lower part of the aquifer. These flow zones are present in the lower part of the Fort Thompson Formation and in some cases within the limestone or sandstone or both in the uppermost part of the Pinecrest Sand Member of the Tamiami Formation. The mean hydraulic conductivity of major flow zones within the lower Biscayne aquifer flow unit is 5,900 feet per day, and the mean value for minor flow zones is 2,900 feet per day. A semiconfining unit is present beneath the Biscayne aquifer. The boundary between the two hydrologic units is at the top or near the top of the Pinecrest Sand Member of the Tamiami Formation. The lower semiconfining unit has a hydraulic conductivity of less than 350 feet per day. The most productive zones of groundwater flow within the two Biscayne aquifer flow units have a characteristic pore system dominated by stratiform megaporosity related to selective dissolution of an Ophiomorpha-dominated ichnofabric. In the upper flow unit, decimeter-scale vertical solution pipes that are common in some areas of the SCWF study area contribute to high vertical permeability compared to that in areas without the pipes. Cross-hole flowmeter data collected from the SCWF test coreholes show that the distribution of vuggy porosity, matrix porosity, and permeability within the Biscayne aquifer of the SCWF is highly heterogeneous and anisotropic. Groundwater withdrawals from production well fields in southeastern Florida may be inducing recharge of the Biscayne aquifer from canals near the well fields that are used for water-management functions, such as flood control and well-field pumping. The SCWF was chosen as a location within Miami-Dade County to study the potential for such

  20. Hydrogeology - AQUIFER_SYSTEMS_BEDROCK_IDNR_IN: Bedrock Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:500,000, Polygon Shapefile) (United States)

    NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_BEDROCK_IDNR_IN is a polygon shapefile that shows bedrock aquifer systems of the State of Indiana. The source scale of the map depicting the aquifers...

  1. Digital map of aquifer boundary for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set consists of aquifer boundaries for the High Plains aquifer in the central United States. The High Plains aquifer extends from south of 32...

  2. Digital Map Of Base of Aquifer for High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital base of aquifer elevation contours for the High Plains aquifer in the central United States. The High Plains aquifer extends from...

  3. Arsenic release during managed aquifer recharge (MAR) (United States)

    Pichler, T.; Lazareva, O.; Druschel, G.


    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  4. Upper mantle thermal variations beneath the Transantarctic Mountains inferred from teleseismic S-wave attenuation (United States)

    Lawrence, Jesse F.; Wiens, Douglas A.; Nyblade, Andrew A.; Anandakrishan, Sridhar; Shore, Patrick J.; Voigt, Donald


    This study examines teleseismic S-wave attenuation variations between the Ross Sea in West Antarctica and Vostok Subglacial Highlands in East Antarctica. These analyses indicate that δt* is ~1 second greater beneath the Ross Sea than East Antarctica, with the transition occurring beneath the Transantarctic Mountains. While the structure is non-unique, low attenuation beneath East Antarctica is consistent with thick subcontinental lithosphere (>=250 km) and negligible asthenosphere. In contrast, the Ross Sea possesses a thin lithosphere underlain by thick, highly anelastic asthenosphere. Independent temperature estimates from velocity and quality factor indicate that the mantle is 200-400°C colder beneath East Antarctica than the Ross Sea between 80 and 220 km depth. The temperature variation beneath the Transantarctic Mountains may have assisted in the asymmetric uplift of the mountains. Attenuation and velocity anomalies within East Antarctica may delineate regions of elevated temperature, representing recently modified sections between older lithospheric blocks.

  5. The extent of seawater circulation in the aquifer and its role in elemental mass balances: A lesson from the Dead Sea (United States)

    Kiro, Yael; Weinstein, Yishai; Starinsky, Abraham; Yechieli, Yoseph


    This paper shows for the first time a field-based estimation of the volume of dispersive density-driven long-term seawater circulation in coastal aquifers, which is crucial to the understanding of water-rock interaction and to the assessment of its potential impact on elemental mass balances in the sea. The Dead Sea is an ideal place for studying this type of circulation due to the absence of tides and the accessibility of the shallow fresh-saline transition zone. The unique antithetical behavior of 226Ra and 228Ra during seawater circulation in the Dead Sea aquifer, where 228Ra is added and 226Ra is removed, provides a robust new method for quantifying aquifer circulation. Here we estimate water circulation through the Dead Sea aquifer to be 400 million m3/yr (˜2.5 million m3/yr per 1 km of shoreline), which is ˜20% of the fresh water inflow prior to the 1960s. This large volume can affect trace element concentrations in the Dead Sea, e.g. it is a sink for 226Ra, Ba and U and a source for 228Ra and Fe. These results suggest that dispersive density-driven seawater circulation in aquifers may play an important role in mass balances in other lacustrine and oceanic settings.

  6. Hydrochemistry and stable isotopes (δ18O and δ2H) tools applied to the study of karst aquifers in southern mediterranean basin (Teboursouk area, NW Tunisia) (United States)

    Ayadi, Yosra; Mokadem, Naziha; Besser, Houda; Khelifi, Faten; Harabi, Samia; Hamad,