WorldWideScience

Sample records for salicylic acid-elicited catharanthus

  1. Hydrogen Peroxide Is Involved in Salicylic Acid-Elicited Rosmarinic Acid Production in Salvia miltiorrhiza Cell Cultures

    Directory of Open Access Journals (Sweden)

    Wenfang Hao

    2014-01-01

    Full Text Available Salicylic acid (SA is an elicitor to induce the biosynthesis of secondary metabolites in plant cells. Hydrogen peroxide (H2O2 plays an important role as a key signaling molecule in response to various stimuli and is involved in the accumulation of secondary metabolites. However, the relationship between them is unclear and their synergetic functions on accumulation of secondary metabolites are unknown. In this paper, the roles of SA and H2O2 in rosmarinic acid (RA production in Salvia miltiorrhiza cell cultures were investigated. The results showed that SA significantly enhanced H2O2 production, phenylalanine ammonia-lyase (PAL activity, and RA accumulation. Exogenous H2O2 could also promote PAL activity and enhance RA production. If H2O2 production was inhibited by NADPH oxidase inhibitor (IMD or scavenged by quencher (DMTU, RA accumulation would be blocked. These results indicated that H2O2 is secondary messenger for signal transduction, which can be induced by SA, significantly and promotes RA accumulation.

  2. Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae).

    Science.gov (United States)

    Zaheer, Mohd; Reddy, Vudem Dashavantha; Giri, Charu Chandra

    2016-07-01

    Daidzin (7-O-glucoside of daidzein) has several pharmacological benefits in herbal remedy, as antioxidant and shown antidipsotropic activity. Hairy root culture of Psoralea corylifolia L. was developed for biomass and enhanced daidzin production using signalling compounds such as jasmonic acid (JA) and acetyl salicylic acid (ASA). Best response of 2.8-fold daidzin (5.09% DW) with 1 μM JA treatment after second week and 7.3-fold (3.43% DW) with 10 μM JA elicitation after 10th week was obtained from hairy roots compared to untreated control. ASA at 10 μM promoted 1.7-fold increase in daidzin (1.49% DW) content after seventh week compared to control (0.83% DW). Addition of 25 μM ASA resulted in 1.44% DW daidzin (1.5-fold increase) with 0.91% DW in control after fifth week and 1.44% DW daidzin (2.3-fold increase) after eighth week when compared to untreated control (0.62% DW). Reduced biomass with increased daidzin content was facilitated by elicited hairy root cultures.

  3. Salicylic acid alters antioxidant and phenolics metabolism in Catharanthus roseus grown under salinity stress.

    Science.gov (United States)

    Misra, Neelam; Misra, Rahul; Mariam, Ajiboye; Yusuf, Kafayat; Yusuf, Lateefat

    2014-01-01

    Salicylic acid (SA) acts as a potential non-enzymatic antioxidant and a plant growth regulator, which plays a major role in regulating various plant physiological mechanisms. The effects of salicylic acid (SA; 0.05 mM) on physiological parameters, antioxidative capacity and phenolic metabolism, lignin, alkaloid accumulation in salt stressed Catharanthus roseus were investigated. Catharanthus roseus seeds were grown for two months in a glass house at 27-30°C in sunlight, and then divided into four different groups and transplanted with each group with the following solutions for one month: group I (non-saline control), group II, 100 mM NaCl, group III, 0.05 mM SA, group IV, 100 mM NaCl+0.05 mM SA and to determine the physiological parameters (DW, FW, WC), chlorophyll contents, carotenoid contents, lipid peroxidation, phenolics, lignin, alkaloid and enzymatic assays in each leaf pairs and roots. SA exhibited growth-promoting property, which correlated with the increase of dry weight, water content, photosynthetic pigments and soluble proteins. SA has additive effect on the significant increase in phenylalanine ammonia-lyase (PAL) activity, which is followed by an increase in total soluble phenolics and lignin contents in all leaf pairs and root of C. roseus. SA enhances malondialdehyde content in all leaf pairs and root. The antioxidant enzymes (catalase, glutathione reductase, glutathione-S-tranferase, superoxide dismutase, peroxidase) as well as alkaloid accumulation increased in all treatments over that of non-saline control but the magnitude of increase was found more in root. Further, the magnitude of increase of alkaloid accumulation was significantly higher in 100 mM NaCl, but highly significant was found in presence of 0.05 mM SA and intermediate in presence of both 0.05 mM SA+100 mM NaCl. We concluded that applied SA to salt stress, antioxidant and phenolic metabolism, and alkaloid accumulation were significantly altered and the extent of alteration varied

  4. Effects of Salicylic acid and Humic acid on Vegetative Indices of Periwinkle (Catharanthus roseusL.

    Directory of Open Access Journals (Sweden)

    E. Chamani

    2016-07-01

    Full Text Available Introduction: Vinca flower (Catharanthus roseus L. is one of the most important medicinal plants of Apocynaceae (31, 27. Tropical plant native to a height of 30 to 35 centimeters (9 and a perennial shrub which is grown in cold areas for one year (27.One of the plants in the world today as a medicinal plant used the periwinkle plant. Among the 130 indole – terpenoids alkaloids which have been identified in the plant periwinkle vinca alkaloids vincristine and vinblastin are the most important component is used to treat a variety of cancers. Including therapies that are used for a variety of cancer, chemotherapy to help Vinca alkaloids collection (including vincristine and…. Vinblastin as effective member of this category, due to the low percentage of venom and effects at very low doses, is widely used today. These materials are generally formed as inhibitors of mitotic spindle in dividing cells have been identified. Vinblastin with these structural changes in connection kinotokor - microtubules and centrosomes in a dividing cell, the mitotic spindle stop (45.Salicylic acid belongs to a group of phenolic compounds found in plants, and today is widely regarded as a hormone-like substance. These classes of compounds act as growth regulators. Humic substances are natural organic compounds that contain 50 to 90% of organic matter, peat, charcoal, rotten food and non-living organic materials are aquatic and terrestrial ecosystems (2. Materials and Methods: In this experiment, vinca F2 seeds in the mixed 4: 1 perlite and peat moss to the planting trays were sown. The seedlings at the 6-leaf stage were transfered to the main pot (pot height 30 and 25 cm diameter The pots bed soil mix consisting of 2 parts soil to one part sand and one part peat moss (v / v were used and after the establishment of seedlings in pots every two weeks with. Salicylic acid and humic acid concentrations 0 (control, 10, 100, 500 and 1000 mg were treated as a foliar spray

  5. Salicylic acid restrains nickel toxicity, improves antioxidant defence system and enhances the production of anticancer alkaloids in Catharanthus roseus (L.).

    Science.gov (United States)

    Idrees, Mohd; Naeem, M; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2013-05-15

    Salicylic acid (SA) has been reported to ameliorate various stresses in plants. In order to explore the role of SA under nickel (Ni) stress, thirty-days old plants of periwinkle (Catharanthus roseus L.) were supplied with eight treatments comprising basal application of Ni (0, 50, 100 and 150 mg kg(-1)) and foliar application of SA (0 and 10(-5)M) under net house conditions. Ni application significantly reduced the growth attributes including plant height, leaf-area index and fresh and dry weights of shoot and root. Increasing Ni concentration led to a gradual decrease in photosynthetic parameters and activities of nitrate reductase and carbonic anhydrase. The plants, undergoing Ni stress, exhibited a significant increase in the activity of superoxide dismutase, catalase and peroxidase together with an increase in electrolyte leakage and proline content. Total alkaloid content was also declined in Ni-treated plants. Foliar application of SA (10(-5)M) reduced the deleterious effects of Ni on plant growth, accelerating the restoration of growth processes. SA also improved the total alkaloid content under normal as well as adverse conditions. Foliar spray of SA significantly improved the content of anticancer alkaloids vincristine (by 22.2%) and vinblastine (by 50.0%) in plants treated with 150 mg kg(-1) of Ni. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Retrobiosynthetic study of salicylic acid in Catharanthus roseus cell suspension cultures

    NARCIS (Netherlands)

    Mustafa, Natali Rianika

    2007-01-01

    Salicylic acid (SA) is an important signal compound in systemic acquired resistance in plants. The level of this C6C1 compound in plants increases after a pathogenic attack. There are two biosynthetic pathways of SA, the phenylalanine pathway, which is thought to occur in plants, and the

  7. Expression Analysis of Phenylalanine Ammonia Lyase Gene and Rosmarinic Acid Production in Salvia officinalis and Salvia virgata Shoots Under Salicylic Acid Elicitation.

    Science.gov (United States)

    Ejtahed, Roghayeh Sadat; Radjabian, Tayebeh; Hoseini Tafreshi, Sayed Ali

    2015-08-01

    Partial fragments of phenylalanine ammonia lyase (PAL) genes were cloned and characterized from Salvia officinalis (SoPAL) and Salvia virgata (SvPAL). Different concentrations (250 and 500 μM) of exogenous salicylic acid (SA) were used when correlation between PAL expression and rosmarinic acid (RA) accumulation was compared. The results showed that the deduced cDNA sequences of the partial genes had high similarities with those of known PAL gene from other plant species. Semi-quantitative reverse transcription PCR (RT-PCR) analysis revealed that exogenous application of SA led to up-regulating of the PAL expression. Further analysis showed that in S. virgata, at higher concentration of SA, higher accumulation of RA was achieved, while in S. officinalis, the higher RA accumulation was observed at lower concentration of SA. It was concluded that there was no positive correlation between the intensity of PAL transcription and the RA accumulation in the studied species. Therefore, despite of the increase in transcription rate of the PAL at the higher concentration of SA, the lower amounts of RA were accumulated in the case of S. officinalis. Consequently, the hypothesis that PAL is the rate-determining step in RA biosynthesis is not always valid and probably some other unknown factors participate in the synthesis of phenolics.

  8. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    Science.gov (United States)

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  9. Enhancement of Anti-Inflammatory Activity of Aloe vera Adventitious Root Extracts through the Alteration of Primary and Secondary Metabolites via Salicylic Acid Elicitation

    Science.gov (United States)

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10–11 and 5–13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment. PMID:24358188

  10. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    Directory of Open Access Journals (Sweden)

    Yun Sun Lee

    Full Text Available Aloe vera (Asphodeloideae is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  11. (Catharanthus roseus) tissue culture

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    . Agric. Biol. Chem. 51: 1311-1317. Krueger RJ, Carew DP (1982) Production of vindolin in root regenration of Catharanthus roseus, Planta Med, 45: 56-60. Loyola-Vargas VM, Mendez-Zeel M, Monforte-Gonzalez M, Miranda-.

  12. Induced mutation to monocotyledony in periwinkle, Catharanthus ...

    Indian Academy of Sciences (India)

    Unknown

    A recessive EMS-induced mutation inherited in Mendelian fashion caused monocotyledonous embryo formation and seed germination on high salt medium in Catharanthus roseus. Availability during embryo development of exoge- nously supplied cytokinin kinetin suppressed the mutant phenotype. These observations ...

  13. 2-Bromophenyl Salicylate

    Directory of Open Access Journals (Sweden)

    Karelle S. Aiken

    2012-12-01

    Full Text Available 2-Bromophenyl salicylate is synthesized from 2-benzyloxybenzoic acid in two steps. The final compound has been characterized by IR, 1H-NMR, 13C-NMR and HRMS. The melting point for 2-bromophenyl salicylate is provided.

  14. Salicylic Acid Topical

    Science.gov (United States)

    ... product less often. Talk to your doctor or check the package label for more information.Apply a small amount of the salicylic acid product ... in salicylic acid products. Ask your pharmacist or check the package label for a list of the ingredients.do not apply any of the following products to the skin ...

  15. The Catharanthus alkaloids: pharmacognosy and biotechnology.

    Science.gov (United States)

    van Der Heijden, Robert; Jacobs, Denise I; Snoeijer, Wim; Hallard, Didier; Verpoorte, Robert

    2004-03-01

    The Catharanthus (or Vinca) alkaloids comprise a group of about 130 terpenoid indole alkaloids. Vinblastine is now marketed for more than 40 years as an anticancer drug and became a true lead compound for drug development. Due to the pharmaceutical importance and the low content in the plant of vinblastine and the related alkaloid vincristine, Catharanthus roseus became one of the best-studied medicinal plants. Consequently it developed as a model system for biotechnological studies on plant secondary metabolism. The aim of this review is to acquaint a broader audience with the recent progress in this research and with its exciting perspectives. The pharmacognostical aspects of the Catharanthus alkaloids cover botanical (including some historical), phytochemical and analytical data. An up-to-date view on the biosynthesis of the alkaloids is given. The pharmacological aspects of these alkaloids and their semi-synthetic derivatives are only discussed briefly. The biotechnological part focuses on alternative production systems for these alkaloids, for example by in vitro culture of C. roseus cells. Subsequently it will be discussed to what extent the alkaloid biosynthetic pathway can be manipulated genetically ("metabolic engineering"), aiming at higher production levels of the alkaloids. Another approach is to produce the alkaloids (or their precursors) in other organisms such as yeast. Despite the availability of only a limited number of biosynthetic genes, the research on C. roseus has already led to a broad scientific spin-off. It is clear that many interesting results can be expected when more genes become available.

  16. Jasmonate-responsive transcriptional regulation in Catharanthus roseus

    NARCIS (Netherlands)

    Zhang, Hongtao

    2008-01-01

    Plants produce a variety of secondary metabolites. In Catharanthus roseus, several have pharmaceutical applications, including the monomeric alkaloids serpentine and ajmalicine, which are used as a tranquillizer and to reduce hypertension, respectively, and the dimeric alkaloids vincristine and

  17. Monoterpenoid Indole Alkaloids from Catharanthus roseus Cultivated in Yunnan.

    Science.gov (United States)

    Wang, Bei; Liu, Lu; Chen, Ying-ying; Li, Qiong; Li, Dan; Liu, Va-ping; Luo, Xiao-dong

    2015-12-01

    A new monoterpenoid indole alkaloid, 15,20-dehydro-3α-(2-oxopropyl) coronaridine (1), along with sixteen analogues (2-17) were isolated from the leaves of Catharanthus roseus cultivated in Yunnan. The new alkaloid was elucidated on the basis of extensive spectroscopic analysis, and the known alkaloids were identified by comparison with the reported spectroscopic data. Among them, alkaloid 16 was isolated from Catharanthus for the first time.

  18. Discovery and reconstitution of the secoiridoid pathway of Catharanthus roseus

    NARCIS (Netherlands)

    Dong, L.

    2014-01-01

      Terpene indole alkaloids (TIAs) are important plant-produced secondary metabolites for humans, because of their anti-cancer properties. The production of TIAs still fully relies on extraction from medicinal plants like Catharanthus roseus, which only contains extreme low amounts of these

  19. Metabolomic characteristics of Catharanthus roseus plants in time and space

    NARCIS (Netherlands)

    Qifang, Pan; Qifang, Pan

    2014-01-01

    The thesis aims at combining metabolomics with other methods to investigate the regulation of the TIA biosynthesis and how this is connected with other pathways and the plant’s physiology and development. It reviews the biosynthesis studies of Catharanthus roseus. An HPLC method is described for

  20. Salicylate toxicity model of tinnitus

    Directory of Open Access Journals (Sweden)

    Daniel eStolzberg

    2012-04-01

    Full Text Available Salicylate, the active component of the common drug aspirin, has mild analgesic, antipyretic, and anti-inflammatory effects at moderate doses. At higher doses, however, salicylate temporarily induces moderate hearing loss and the perception of a high-pitch ringing in humans and animals. This phantom perception of sound known as tinnitus is qualitatively similar to the persistent subjective tinnitus induced by high-level noise exposure, ototoxic drugs or aging which affects ~14% of the general population. For over a quarter century, auditory scientists have used the salicylate toxicity model to investigate candidate biochemical and neurophysiological mechanisms underlying phantom sound perception. In this review, we summarize some of the intriguing biochemical and physiological effects associated with salicylate-induced tinnitus, some of which occur in the periphery and others in the central nervous system. The relevance and general utility of the salicylate toxicity model in understanding phantom sound perception in general are discussed.

  1. Salicylate absorption from a bismuth subsalicylate preparation.

    Science.gov (United States)

    Feldman, S; Chen, S L; Pickering, L K; Cleary, T G; Ericsson, C D; Hulse, M

    1981-06-01

    The active ingredient in Pepto-Bismol (PB) (Norwich-Eaton), a common antidiarrheal, is bismuth subsalicylate. The absorption of salicylate after oral PB was studied in six fasted men. Plasma concentrations of total salicylate and the urinary excretion profile of salicylate were determined as a function of time and dose. After 60 ml PB, 500.1 +/- 33.6 mg (mean +/- SD) salicylate were recovered in urine, representing 95.0 +/- 6.4% of salicylic acid equivalents in 60 ml of the formulation. Peak plasma salicylate levels were reached 0.5 to 3 hr after ingestion and averaged 40.1 +/- 17.3 micrograms/ml. Absorption of salicylate was also essentially complete after 15- and 30-ml doses of the antidiarrheal preparation, and a linear relationship between dose and recovery of salicylate in the urine was found. Salicylate kinetics was nonlinear after a multiple-dose regimen of 60 ml every 6 hr for five doses.

  2. 21 CFR 556.590 - Salicylic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salicylic acid. 556.590 Section 556.590 Food and... Residues of New Animal Drugs § 556.590 Salicylic acid. A tolerance of zero is established for residues of salicylic acid in milk from dairy animals. ...

  3. Protection against salicylate ototoxicity by zinc.

    Science.gov (United States)

    Günther, T; Rebentisch, E; Vormann, J

    1989-03-01

    One day after oral application of 700 mg (5.5 mmol)/kg salicylic acid given as Na salicylate, hearing thresholds in rats, measured by acoustically evoked responses at 10 and 20 kHz, were increased. Salicylate-induced hearing loss was completely prevented by simultaneous s.c. injection of 6 mg (92 mumol)/kg Zn, whereas simultaneous s.c. injection of 1.5 mmol/kg MgCl2 had no effect. Simultaneous s.c. injection of 100 mg (152 mumol)/kg desferrioxamine had only a minor beneficial effect indicating that salicylate-induced Fe accumulation plays no significant role in salicylate ototoxicity.

  4. Rhizobacterial salicylate production provokes headaches

    NARCIS (Netherlands)

    Bakker, Peter|info:eu-repo/dai/nl/074744623; Ran, L.X.; Mercado-Blanco, J.

    2014-01-01

    Background Salicylic acid (SA) is produced in significant amounts by certain plant growth promoting rhizosphere bacteria, and some of these rhizobacteria have the ability to induce systemic resistance against diseases in plants. Exogenous application of SA to plants has long been known to lead to

  5. Catharanthus mosaic virus: A potyvirus from a gymnosperm, Welwitschia mirabilis.

    Science.gov (United States)

    Koh, Shu Hui; Li, Hua; Admiraal, Ryan; Jones, Michael G K; Wylie, Stephen J

    2015-05-04

    A virus from a symptomatic plant of the gymnosperm Welwitschia mirabilis Hook. growing as an ornamental plant in a domestic garden in Western Australia was inoculated to a plant of Nicotiana benthamiana where it established a systemic infection. The complete genome sequence of 9636 nucleotides was determined using high-throughput and Sanger sequencing technologies. The genome sequence shared greatest identity (83% nucleotides and 91% amino acids) with available partial sequences of catharanthus mosaic virus, indicating that the new isolate belonged to that taxon. Analysis of the phylogeny of the complete virus sequence placed it in a monotypic group in the genus Potyvirus. This is the first record of a virus from W. mirabilis, the first complete genome sequence of catharanthus mosaic virus determined, and the first record from Australia. This finding illustrates the risk to natural and managed systems posed by the international trade in live plants and propagules, which enables viruses to establish in new regions and infect new hosts. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  6. Synthesis of Ethyl Salicylate Using Household Chemicals

    Science.gov (United States)

    Solomon, Sally; Hur, Chinhyu; Lee, Alan; Smith, Kurt

    1996-02-01

    Ethyl salicylate is synthesized, isolated, and characterized in a three-step process using simple equipment and household chemicals. First, acetylsalicylic acid is extracted from aspirin tablets with isopropyl alcohol, then hydrolyzed to salicylic acid with muriatic acid, and finally, the salicylic acid is esterified using ethanol and a boric acid catalyst. The experiment can be directed towards high school or university level students who have sufficient background in organic chemistry to recognize the structures and reactions that are involved.

  7. Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L.

    Science.gov (United States)

    Deepthi, S; Satheeshkumar, K

    2017-01-01

    Ophiorrhiza mungos is a herbaceous medicinal plant which contains a quinoline alkaloid, camptothecin (CPT), an anticancer compound. A high-yielding cell line, O. mungos cell line-3 (OMC3) was selected from cell suspension cultures of O. mungos using cell aggregate cloning method and established cell suspension culture. OMC3 cell suspension produced significantly high biomass (9.25 ± 1.3 g/flask fresh weight (FW)) and CPT yield (0.095 ± 0.002 mg g(-1) dry weight (DW)) compared with the original cell suspension. Inoculum size of OMC3 cell suspension culture was optimised as 14 g L(-1). Media optimisation has shown that 5 % (w/v) sucrose and an increased ammonium/nitrate concentration of 40/20 mM favoured CPT production, whereas 3 % (w/v) sucrose, an ammonium/nitrate concentration of 20/40 mM and 1.25 mM of phosphate favoured biomass accumulation. Jasmonic acid, chitin and salicylic acid was used to elicit CPT production in the original cell suspension culture and achieved significantly high CPT production with jasmonic acid (JA) elicitation. Further, OMC3 cell suspension culture was elicited with JA (50 μM) and obtained 1.12 ± 0.08 mg g(-1) DW CPT and 9.52 ± 1.4 g/flask FW (190.4 g L(-1) FW). The combination of cell line selection and elicitation has produced 18.66-fold increases in CPT production together with significantly high biomass yield. The study is helpful in the scale-up studies of O. mungos cell suspension culture in suitable bioreactor systems for the production of CPT.

  8. Effect of thermal power plant emissions on Catharanthus roseus L

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.M.; Pandey, V.; Shukla, J.; Singh, N.; Yunus, M.; Singh, S.N.; Ahmad, K.J. (National Botanical Research Institute, Lucknow (India))

    1990-06-01

    Most of the industrialized nations depend largely on the combustion of fossil fuels for their energy requirements. During the past few years in India quite a few thermal power plants have been commissioned to cater to the increasing energy requirements. As most of the power plants are coal-fired, a complex mixture of several pollutants is released in the atmosphere on the combustion of coal. Leaves by virtue of their unique position on plants and their functions, experience the maximum brunt of exposure and undergo certain changes in form, structure and function with the changes in surrounding environs, and such modifications are likely to serve as markers of environmental pollution. The present paper deals with the long term exposure effects of thermal power plant emissions on Catharanthus roseus L. - a common perennial shrub, with glossy leaves and white, mauve or pink colored flowers and of great medicinal value is grown as an ornamental plant all over the country.

  9. The seco-iridoid pathway from Catharanthus roseus.

    Science.gov (United States)

    Miettinen, Karel; Dong, Lemeng; Navrot, Nicolas; Schneider, Thomas; Burlat, Vincent; Pollier, Jacob; Woittiez, Lotte; van der Krol, Sander; Lugan, Raphaël; Ilc, Tina; Verpoorte, Robert; Oksman-Caldentey, Kirsi-Marja; Martinoia, Enrico; Bouwmeester, Harro; Goossens, Alain; Memelink, Johan; Werck-Reichhart, Danièle

    2014-04-07

    The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications.

  10. Wet oxidation of salicylic acid solutions.

    Science.gov (United States)

    Collado, Sergio; Garrido, Laura; Laca, Adriana; Diaz, Mario

    2010-11-15

    Salicylic acid is a frequent pollutant in several industrial wastewaters. Uncatalyzed wet air oxidation, which is a promising technique for the treatment of phenolic effluents, has not been analyzed yet for the removal of salicylic acid. The effect of different conditions of pH (1.3-12.3), pressure (1.0-4.1 MPa), temperature (413-443 K), and initial concentrations (1.45-14.50 mM) on the wet oxidation of salicylate/salicylic acid solutions have here been investigated. The pH value of the reaction media was found to be a key parameter for the rate of the oxidation process with an optimum at pH 3.1, when the concentrations of salicylic acid and salicylate were similar. The oxidation reaction followed pseudofirst-order kinetics with respect to salicylic acid and 0.82 order with respect to dissolved oxygen. Additionally, the evolution of the color during the wet oxidation was analyzed and discussed in relation with the formation of intermediate compounds. Then, a reaction pathway for the noncatalytic wet oxidation of the salicylic acid was proposed.

  11. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis.

    Science.gov (United States)

    Liu, Jia; Liu, Yang; Wang, Yu; Zhang, Zhong-Hua; Zu, Yuan-Gang; Efferth, Thomas; Tang, Zhong-Hua

    2016-01-01

    Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenolic metabolism. The combinational actions of ethylene and MeJA effectively promoted the total phenolic compounds, especially the C6C1 compounds (such as salicylic acid, benzoic acid) and C6C3 ones (such as cinnamic acid, sinapic acid). In contrast, the C6C3C6 compounds displayed a notably inhibitory trend in this case. Subsequently, the gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 5 gene tags and the accumulation profiles of 41 metabolite peaks. Generally, we provide an insight into the controlling mode of ethylene-MeJA combination on phenolic metabolism in C. roseus leaves.

  12. The absorption of bismuth and salicylate from oral doses of Pepto-Bismol (bismuth salicylate).

    Science.gov (United States)

    Nwokolo, C U; Mistry, P; Pounder, R E

    1990-04-01

    Plasma bismuth and plasma salicylate concentrations were measured before and after three 30-ml oral doses of bismuth salicylate (Pepto-Bismol liquid) in 10 fasting healthy subjects. From 0 to 120 min following the first dose of bismuth salicylate, the plasma bismuth concentration was less than 1 ng/ml. The peak median plasma bismuth concentration was at +240 min (1.7 ng/ml; range 0.8-5.3 ng/ml). Salicylate appeared in the plasma of all subjects at +30 min, and it reached a peak at +120 min (median 61 mg/L; range 46-104 mg/L). The study demonstrates that, despite rapid and substantial absorption of salicylate, there is negligible absorption of bismuth into the bloodstream from standard oral doses of bismuth salicylate.

  13. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  14. Catharanthus roseus (L. G. Don - plant regeneration and alkaloids content

    Directory of Open Access Journals (Sweden)

    Mirosława Furmanowa

    2014-01-01

    Full Text Available We describe here a regeneration of plantlets of Catharanthus roseus (L. G. Don from shoot tips and axillary buds. Shoot tips were excised from 7-day-old seedlings and were incubated in solid Nitsch and Nitsch (NN medium supplemented with kinetin, benzyladenine (BA, indole-3-butyric acid (IBA and β-indolylacetic acid (IAA in various combinations. After two months in culture, regenerated rooted plantlets were cut and transferred to a new medium; the explants contained shoot tips or axillary buds. Four passages were done. We obtained about 200 rooting plantlets from one seedling. Then the plantlets were transferred to the soil and they grew under a foil tent. After five months of vegetation they were collected, dried and weighed. Chemical investigations of leaves of these plants were done. The vindoline and catharanthine were dominant alkaloids in the juvenile stage of plants (before blooming. Total amount of alkaloids, equal 2.95%, was gravimetrically determined in leaves of plants, after 4th passage, regenerated in vitro on NN medium supplemented with kinetin and IBA.

  15. Hypoglycemic Activity of Aqueous Extracts from Catharanthus roseus

    Science.gov (United States)

    Vega-Ávila, Elisa; Cano-Velasco, José Luis; Alarcón-Aguilar, Francisco J.; Fajardo Ortíz, María del Carmen; Almanza-Pérez, Julio César; Román-Ramos, Rubén

    2012-01-01

    Introduction. Catharanthus roseus (L.) is used in some countries to treat diabetes. The aim of this study was to evaluate the hypoglycemic activity of extracts from the flower, leaf, stem, and root in normal and alloxan-induced diabetic mice. Methods. Roots, leaves, flowers, and stems were separated to obtain organic and aqueous extracts. The blood glucose lowering activity of these extracts was determinate in healthy and alloxan-induced (75 mg/Kg) diabetic mice, after intraperitoneal administration (250 mg/Kg body weight). Blood samples were obtained and blood glucose levels were analyzed employing a glucometer. The data were statistically compared by ANOVA. The most active extract was fractioned. Phytochemical screen and chromatographic studies were also done. Results. The aqueous extracts from C. roseus reduced the blood glucose of both healthy and diabetic mice. The aqueous stem extract (250 mg/Kg) and its alkaloid-free fraction (300 mg/Kg) significantly (P < 0.05) reduced blood glucose in diabetic mice by 52.90 and 51.21%. Their hypoglycemic activity was comparable to tolbutamide (58.1%, P < 0.05). Conclusions. The best hypoglycemic activity was presented for the aqueous extracts and by alkaloid-free stem aqueous fraction. This fraction is formed by three polyphenols compounds. PMID:23056144

  16. Hypoglycemic Activity of Aqueous Extracts from Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Elisa Vega-Ávila

    2012-01-01

    Full Text Available Introduction. Catharanthus roseus (L. is used in some countries to treat diabetes. The aim of this study was to evaluate the hypoglycemic activity of extracts from the flower, leaf, stem, and root in normal and alloxan-induced diabetic mice. Methods. Roots, leaves, flowers, and stems were separated to obtain organic and aqueous extracts. The blood glucose lowering activity of these extracts was determinate in healthy and alloxan-induced (75 mg/Kg diabetic mice, after intraperitoneal administration (250 mg/Kg body weight. Blood samples were obtained and blood glucose levels were analyzed employing a glucometer. The data were statistically compared by ANOVA. The most active extract was fractioned. Phytochemical screen and chromatographic studies were also done. Results. The aqueous extracts from C. roseus reduced the blood glucose of both healthy and diabetic mice. The aqueous stem extract (250 mg/Kg and its alkaloid-free fraction (300 mg/Kg significantly ( reduced blood glucose in diabetic mice by 52.90 and 51.21%. Their hypoglycemic activity was comparable to tolbutamide (58.1%, . Conclusions. The best hypoglycemic activity was presented for the aqueous extracts and by alkaloid-free stem aqueous fraction. This fraction is formed by three polyphenols compounds.

  17. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus.

    Science.gov (United States)

    Zhu, Xiaoxuan; Zeng, Xinyi; Sun, Chao; Chen, Shilin

    2014-09-01

    Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recent advances in the biosynthetic pathway of terpenoid indole alkaloids (TIAs) in C. roseus, and the identification and characterization of the corresponding enzymes involved in this pathway. Strictosidine is the central intermediate in the biosynthesis of different TIAs, which is formed by the condensation of secologanin and tryptamine. Secologanin is derived from terpenoid (isoprenoid) biosynthetic pathway, while tryptamine is derived from indole biosynthetic pathway. Then various specific end products are produced by different routes during downstream process. Although many genes and corresponding enzymes have been characterized in this pathway, our knowledge on the whole TIA biosynthetic pathway still remains largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an important prerequisite to understand the regulation of the TIA biosynthesis in the medicinal plant and to produce valuable TIAs by synthetic biological technology.

  18. Progress in NMR-based metabolomics of Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Qifang PAN,Jingya ZHAO,Yuliang WANG,Kexuan TANG

    2015-09-01

    Full Text Available Metabolomics has been rapidly developed as an important field in plant sciences and natural products chemistry. As the only natural source for a diversity of monoterpenoid indole alkaloids (MIAs, especially the low-abundance antitumor agents vinblastine and vincristine, Catharanthus roseus is highly valued and has been studied extensively as a model for medicinal plants improvement. Due to multistep enzymatic biosynthesis and complex regulation, genetic modification in the MIA pathway has resulted in complicated changes of both secondary and primary metabolism in C. roseus, affecting not only the MIA pathway but also other pathways. Research at the metabolic level is necessary to increase knowledge on the genetic regulation of the whole metabolic network connected to MIA biosynthesis. Nuclear magnetic resonance (NMR is a very suitable and powerful complementary technique for the identification and quantification of metabolites in the plant matrix. NMR-based metabolomics has been used in studies of C. roseus for pathway elucidation, understanding stress responses, classification among different cultivars, safety and quality controls of transgenic plants, cross talk between pathways, and diversion of carbon fluxes, with the aim of fully unravelling MIA biosynthesis, its regulation and the function of the alkaloids in the plant from a systems biology point of view.

  19. Physiological responses of suspension cultures of Catharanthus roseus to aluminum: changes in polyamines and inorganic ions

    Science.gov (United States)

    Xinhua Zhou; Rakesh Minocha; Subhash C. Minocha

    1995-01-01

    The effects of aluminum (Al) treatment on polyamines were studied using suspension cultures of Madagascar periwinkle [Catharanthus roseus (L.) G. Don]. The addition of A1 (0.2, 0.5, 1.0 mM) to the suspension cultures caused a significant increase in putrescine within 24h only in freshly transferred cells. By contrast, Al treatment reduced putrescine...

  20. First report of Tomato chlorotic spot virus on Annual Vinca (Catharanthus roseus) in the United States

    Science.gov (United States)

    Tomato chlorotic spot virus was identified in the ornamental crop Catharanthus roseus (commonly known as vinca) in south Florida, the first report of this virus naturally infecting this species. Genetic diversity of the virus was characterized. This report provides an overview of this emerging vir...

  1. Regulation of DNA synthesis and cell division by polyamines in Catharanthus roseus suspension cultures

    Science.gov (United States)

    R. Minocha; S.C. Minocha; A. Komamine; W.C. Shortle

    1991-01-01

    Various inhibitors of polyamine biosynthesis were used to study the role of polyamines in DNA synthesis and cell division in suspension cultures of Catharanthus roseus (L) G. Don. Arginine decarboxylase (ADC; EC 4.1.1.19) was the major enzyme responsible for putrescine production. DL α-difluoromethylarginine inhibited ADC activity, cellular...

  2. The effects of Catharanthus roseus (l) g. don 1838 aqueous leaf ...

    African Journals Online (AJOL)

    Plant and phytochemical products continue to play an important role in medicine. In this study, the toxicological potentials of the aqueous leaf extract of Catharanthus roseus G. Don 1838 in rabbits were determined. The rabbits were placed in three groups with four rabbits in each group. The control group, a second group ...

  3. Salicylates, nitric oxide, malaria, and Reye's syndrome.

    Science.gov (United States)

    Clark, I; Whitten, R; Molyneux, M; Taylor, T

    2001-02-24

    Reye's syndrome virtually disappeared from much of the world after the use of salicylate in febrile children was successfully discouraged. This severe sepsis-like disease was thought to be caused by a hypersensitivity to salicylates in children with mild viral infections, although no mechanism consistent with this proposal was ever established. Salicylate toxicity in African children has been noted to have many clinical features in common with severe falciparum malaria, including acidosis, altered consciousness, convulsions, and hypoglycaemia. Salicylates are widely available in various formulations in many African countries, and are commonly used for initial treatment of the symptoms that malaria shares with other diseases. There is now experimental evidence that salicylate increases and prolongs the activity of key elements along the signalling pathway through which interferon gamma generates inducible nitric oxide synthase (iNOS), and we have shown that iNOS is strongly expressed in fatal malaria and other acute fevers in African children. We further propose that, in areas where salicyaltes are still used to treat the symptoms of febrile illnesses in children, this mechanism could exacerbate potentially serious infectious diseases, including falciparum malaria. In contrast, the absence of salicylate use in children in some Pacific islands could contribute to the milder outcome of falciparum malaria than is observed in Africa. Widespread expression of iNOS has also been seen in the tissues of a patient with fatal clinically defined Reye's syndrome. This finding suggests that Reye's syndrome can be mediated through salicylate enhancement of iNOS expression, the initial trigger in this instance usually being a viral infection.

  4. Slowly developing drought stress increases photosynthetic acclimation of Catharanthus roseus.

    Science.gov (United States)

    Kim, Jongyun; van Iersel, Marc W

    2011-10-01

    Our understanding of plant responses to drought has improved over the decades. However, the importance of the rate of drought imposition on the response is still poorly understood. To test the importance of the rate at which drought stress develops, whole-plant photosynthesis (P(net) ), respiration (R(dark) ), daily carbon gain (DCG), daily evapotranspiration (DET) and water use efficiency (WUE) of vinca (Catharanthus roseus), subjected to different drought imposition rates, were investigated. We controlled the rate at which the substrate dried out with an automated irrigation system that allowed pot weight to decrease gradually throughout the drying period. Fast, intermediate and slow drying treatments reached their final pot weight [500 g, substrate water content (θ) ≈ 0.10 m³ m(-3) ] after 3.1, 6.6 and 10 days, respectively. Although all drying treatments decreased P(net) and R(dark) , slow drying reduced P(net) and R(dark) less than fast drying. At a θ < 0.10 m³ m(-3) , DCG and DET in the slow drying treatment were reduced by ≈50%, whereas DCG and DET in the fast drying treatment were reduced by 85 and 70% at a θ of 0.16 m(3) m(-3) . Plants exposed to slow drought imposition maintained a high WUE, even at θ < 0.10 m³ m(-3) . Overall, physiological responses to low θ were less severe in plants subjected to slow drying as compared with fast drying, even though the final θ was lower for plants exposed to slow drying. This suggests that the rate at which drought stress develops has important implications for the level of acclimation that occurs. Copyright © Physiologia Plantarum 2011.

  5. Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus.

    Science.gov (United States)

    Guirimand, Grégory; Guihur, Anthony; Poutrain, Pierre; Héricourt, François; Mahroug, Samira; St-Pierre, Benoit; Burlat, Vincent; Courdavault, Vincent

    2011-04-15

    Vindoline constitutes the main terpenoid indole alkaloid accumulated in leaves of Catharanthus roseus, and four genes involved in its biosynthesis have been identified. However, the spatial organization of the tabersonine-to-vindoline biosynthetic pathway is still incomplete. To pursue the characterization of this six-step conversion, we illustrated, with in situ hybridization, that the transcripts of the second biosynthetic enzyme, 16-hydroxytabersonine 16-O-methyltransferase (16OMT), are specifically localized to the aerial organ epidermis. At the subcellular level, by combining GFP imaging, bimolecular fluorescence complementation assays and yeast two-hybrid analysis, we established that the first biosynthetic enzyme, tabersonine 16-hydroxylase (T16H), is anchored to the ER as a monomer via a putative N-terminal helix that we cloned using a PCR approach. We also showed that 16OMT homodimerizes in the cytoplasm, allowing its exclusion from the nucleus and thus facilitating the uptake of T16H conversion product, although no T16H/16OMT interactions occur. Moreover, the two last biosynthetic enzymes, desacetoxyvindoline-4-hydroxylase (D4H) and deacetylvindoline-4-O-acetyltransferase (DAT), were shown to operate as monomers that reside in the nucleocytoplasmic compartment following passive diffusion to the nucleus allowed by the protein size. No D4H/DAT interactions were detected, suggesting the absence of metabolic channeling in the vindoline biosynthetic pathway. Finally, these results highlight the importance of the inter- and intracellular translocations of intermediates during the vindoline biosynthesis and their potential regulatory role. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS

    Directory of Open Access Journals (Sweden)

    Zhi-hong Huang

    2015-01-01

    Full Text Available Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA and graphitized carbon blacks (GCB, the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  7. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS.

    Science.gov (United States)

    Huang, Zhi-Hong; Wang, Zhi-Li; Shi, Bao-Lin; Wei, Dong; Chen, Jian-Xin; Wang, Su-Li; Gao, Bao-Jia

    2015-01-01

    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  8. Characterization of a new potyvirus causing mosaic and flower variegation in Catharanthus roseus in Brazil

    Directory of Open Access Journals (Sweden)

    Sheila Conceição Maciel

    2011-12-01

    Full Text Available Catharanthus roseus is a perennial, evergreen herb in the family Apocynaceae, which is used as ornamental and for popular medicine to treat a wide assortment of human diseases. This paper describes a new potyvirus found causing mosaic symptom, foliar malformation and flower variegation in C. roseus. Of 28 test-plants inoculated mechanically with this potyvirus, only C. roseus and Nicotiana benthamiana developed systemic mosaic, whereas Chenopodium amaranticolor and C. quinoa exhibited chlorotic local lesions. The virus was transmitted by Aphis gossypii and Myzus nicotianae. When the nucleotide sequence of the CP gene (768nt was compared with other members of the Potyviridae family, the highest identities varied from 67 to 76 %. For the 3' UTR (286nt, identities varied from 16.8 to 28.6 %. The name Catharanthus mosaic virus (CatMV is proposed for this new potyvirus.

  9. Analysis of Several Popular Cultivars of Madagascar Periwinkle (Catharanthus roseus (L. G. Don. using Biochemical Markers

    Directory of Open Access Journals (Sweden)

    Owk ANIEL KUMAR

    2013-12-01

    Full Text Available Band designs of esterase (EST, peroxidase (PO and polyphenol oxidase (PPO isozymes in several selected cultivars of Catharanthus roseus by using native polyacrylamide gel electrophoresis (PAGE were investigated in this study. It was confirmed that cultivar differences in isozyme polymorphism can be revealed by applied electrophoretic patterns. Three isozyme systems produced a total of 16 bands with polymorphism ranged from 66.6-100%. Considering the patterns of isozyme variations in the five cultivars of Catharanthus roseus, it is evident that the cultivar ‘First kiss coral’ displayed crimson red petal with large white eye’ displayed demarked profiles of EST, PO and PPO isozymes than other cultivars. This is the first report on isozyme polymorphism in members of the Cathanarathus roseus (L. G. Don.

  10. Salicylic acid-independent plant defence pathways

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are

  11. Salicylic acid electrooxidation. A surface film formation

    Energy Technology Data Exchange (ETDEWEB)

    Baturova, M.D.; Vedenjapin, A.; Baturova, M.M. [N.D. Zelinsky Inst. of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Weichgrebe, D.; Danilova, E.; Rosenwinkel, K.H. [Univ. of Hannover, Inst. of Water Quality and Waste Management Hannover (Germany); Skundin, A. [A.N. Frumkin Inst. of Electrochemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2003-07-01

    A possibility to use electrochemical treatment for salicylic acid (SA) removal from waste water was studied. It was found that SA can be oxidized at platinum anode with formation of harmless products. Features of anodic process, in particular, formation of solid film on anode surface as well as properties of the film were investigated. (orig.)

  12. Cyclopia and maternal ingestion of salicylates.

    Science.gov (United States)

    Agapitos, M; Georgiou-Theodoropoulou, M; Koutselinis, A; Papacharalampus, N

    1986-01-01

    Salicylates are teratogens in animals, but their teratogenicity in man remains controverted. The possibility that massive oral intake in the first 3 months of pregnancy may induce malformations has not been eliminated. We report a second case of cyclopia associated with daily maternal ingestion of up to 4 g of acetylsalicylic acid in the first trimester.

  13. The Synthesis of Methyl Salicylate: Amine Diazotization.

    Science.gov (United States)

    Zanger, Murray; McKee, James R.

    1988-01-01

    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  14. The Enhancement of Catharanthine Content in Catharanthus roseus Callus Culture Treated with Naphtalene Acetic Acid

    Directory of Open Access Journals (Sweden)

    DINGSE PANDIANGAN

    2006-09-01

    Full Text Available The research aim was to examine the enhancement of catharanthine content in Catharanthus roseus callus culture added with different concentration of Naphtalene Acetic Acid (NAA. NAA treatment produced callus that formed hairy roots. Fresh and dry weight of callus increased as the increasing of NAA concentration. The catharanthine content of C. roseus callus culture was increased by adding NAA as well. The highest catharanthine content was found in 2.5 ppm NAA added callus.

  15. [Identification and expression analysis of WRKY transcription factors in medicinal plant Catharanthus roseus].

    Science.gov (United States)

    Yang, Zhirong; Wang, Xingchun; Xue, Jin'ai; Meng, Lingzhi; Li, Runzhi

    2013-06-01

    WRKY transcription factors, one of the largest families of transcriptional regulators in plants, involve in multiple life activities including plant growth and development as well as stress responses. However, little is known about the types and functions of WRKY transcription factors in Catharanthus roseus, an important medicinal plant. In this study, we identified 47 CrWRKY transcriptional factors from 26 009 proteins in Catharanthus roseus, and classified them into three distinct groups (G1, G2 and G3) according to the structure of WRKY domain and evolution of the protein family. The expression profiling showed that these CrWRKY genes expressed in a tissue/organ specific manner. The 47 CrWRKY genes were clustered into three types of expression patterns. The first type includes the CrWRKYs highly expressed in flowers and the protoplast treated with methy jasmonate (MeJA) or yeast extraction (YE). The second type contains the CrWRKYs highly expressed in stem and hairy root. The third type represents the CrWRKYs highly expressed in root, stem, leaf, seedling and the hairy root treated by MeJA. Real time quantitative PCR was employed to further identify the expression patterns of the 16 selected CrWRKY genes in various organs, the MeJA-treated protoplasts and hairy roots of Catharanthus roseus, and similar results were obtained. Notably, the expresion of more than 1/3 CrWRKY genes were regulated by MeJA or YE, indicating that these CrWRKYs are likely involed in the signalling webs which modulate the biosynthesis of terpenoid indole alkaloid and plant responses to various stresses. The present results provide a framework for functional identification of the CrWRKYs and understanding of the regulation network of terpenoid indole alkaloid biosynthesis in Catharanthus roseus.

  16. Salicylate degradation by the fungal plant pathogen Sclerotinia sclerotiorum.

    Science.gov (United States)

    Penn, Cory D; Daniel, Steven L

    2013-08-01

    The fungal plant pathogen Sclerotinia sclerotiorum was studied to determine its ability to degrade salicylate, an important defense-signaling molecule in plants. S. sclerotiorum D-E7 was grown at 25 °C in an undefined medium (50 ml) containing minerals, 0.1% soytone, 50 mM MES buffer (pH 6.5), 25 mM glucose, and 1 mM salicylate. Glucose, oxalate, and salicylate concentrations were monitored by HPLC. S. sclerotiorum D-E7 was found to be active in salicylate degradation. However, salicylate alone was not growth supportive and, at higher levels (10 mM), inhibited glucose-dependent growth. Biomass formation (130 mg [dry wt] of mycelium per 50 ml of undefined medium), oxalate concentrations (~10 mM), and culture acidification (final culture pH approximated 5) were essentially the same in cultures grown with or without salicylate (1 mM). Time-course analyses revealed that salicylate degradation and glucose consumption were complete after 7 days of incubation and was concomitant with growth. Trace amounts of catechol, a known intermediate of salicylate metabolism, were detected during salicylate degradation. Overall, these results indicated that S. sclerotiorum has the ability to degrade salicylate and that the presence of low levels of salicylate did not affect growth or oxalate production by S. sclerotiorum.

  17. Comparison of hypotensive and hypolipidemic effects of Catharanthus roseus leaves extract with atenolol on adrenaline induced hypertensive rats.

    Science.gov (United States)

    Ara, Naznin; Rashid, Mamunur; Amran, Md Shah

    2009-07-01

    The leaves extract of Catharanthus roseus was investigated for hypotensive and hypolipidemic effects in adrenaline-induced hypertensive rats (AIHR) and compared with those of Atenolol in a crossover design. The pharmacologically Active components responsible for hypotensive activities were isolated from plant using bioassay guided purification approach and the structure of the compounds was proposed by spectroscopic methods. Catharanthus roseus leaves extract and commercial drug Atenolol were administered through intraperitoneal (i.p) route for one week. Different biochemical parameters such as heart weight, blood glucose level, serum cholesterol level, serum triglyceride level, body weight and the relationships between them were measured. Catharanthus roseus leaves extract at a dose of 30 mg/155+/-15 gm of body weight was injected in rat at every morning during the treatment period. The dose of Atenolol was determined according to its pharmacokinetic parameters. Clinically effective plasma concentration as a hypotensive drug was obtained after the injection of 0.1 mg/155+/-15 gm of body weight of the drug. The Catharanthus roseus leaves extract made significant changes in each cardiovascular parameter after investigation. Catharanthus roseus leaves extract treated animals have shown the hypotensive effects. Hypotensive effects were also shown by Atenolol.

  18. Interaction Effects of Arbuscular Mycorrhizal Fungi and Different Phosphate Levels on Growth Performance of Catharanthus roseus Linn.

    Directory of Open Access Journals (Sweden)

    Mohd AYOOB

    2011-08-01

    Full Text Available Catharanthus roseus L. (Apocynaceae, a valuable medicinal plant with potential therapeutic value was inoculated with AM fungi Glomus fasciculatum under three different phosphate conditions. Catharanthus roseus plants raised in presence of the AM fungi showed increased growth in terms of (shoot length, root length, leaf number, fresh weight and dry weight. Total chlorophyll content and phosphate content of the shoot was found to be significantly higher in AM inoculated plants as compared to non AM Catharanthus plants. The activities of phosphatase enzymes were found to be increased in AM inoculated plants as compared to non AM plants. Root colonization percent was significantly higher in AM inoculated plants at zero and at all three phosphate levels after 60, 90 and 120 days of AM inoculation, but decreased at third phosphate level after 120 days of AM inoculation. The study suggests that Catharanthus roseus is dependent on the mycorrhizal fungi to a large extent for its growth and survival and also shows the potential of AM fungi Glomus fasciculatum in increasing growth and biomass of Catharanthus roseus L.

  19. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling.

    Science.gov (United States)

    Schluttenhofer, Craig; Pattanaik, Sitakanta; Patra, Barunava; Yuan, Ling

    2014-06-20

    To combat infection to biotic stress plants elicit the biosynthesis of numerous natural products, many of which are valuable pharmaceutical compounds. Jasmonate is a central regulator of defense response to pathogens and accumulation of specialized metabolites. Catharanthus roseus produces a large number of terpenoid indole alkaloids (TIAs) and is an excellent model for understanding the regulation of this class of valuable compounds. Recent work illustrates a possible role for the Catharanthus WRKY transcription factors (TFs) in regulating TIA biosynthesis. In Arabidopsis and other plants, the WRKY TF family is also shown to play important role in controlling tolerance to biotic and abiotic stresses, as well as secondary metabolism. Here, we describe the WRKY TF families in response to jasmonate in Arabidopsis and Catharanthus. Publically available Arabidopsis microarrays revealed at least 30% (22 of 72) of WRKY TFs respond to jasmonate treatments. Microarray analysis identified at least six jasmonate responsive Arabidopsis WRKY genes (AtWRKY7, AtWRKY20, AtWRKY26, AtWRKY45, AtWRKY48, and AtWRKY72) that have not been previously reported. The Catharanthus WRKY TF family is comprised of at least 48 members. Phylogenetic clustering reveals 11 group I, 32 group II, and 5 group III WRKY TFs. Furthermore, we found that at least 25% (12 of 48) were jasmonate responsive, and 75% (9 of 12) of the jasmonate responsive CrWRKYs are orthologs of AtWRKYs known to be regulated by jasmonate. Overall, the CrWRKY family, ascertained from transcriptome sequences, contains approximately 75% of the number of WRKYs found in other sequenced asterid species (pepper, tomato, potato, and bladderwort). Microarray and transcriptomic data indicate that expression of WRKY TFs in Arabidopsis and Catharanthus are under tight spatio-temporal and developmental control, and potentially have a significant role in jasmonate signaling. Profiling of CrWRKY expression in response to jasmonate treatment

  20. Promoting the Synthesis of Ethanol and Butanol by Salicylic Acid

    OpenAIRE

    Jinxin Zou; Lei Wang; Peijun Ji

    2017-01-01

    Multiwalled carbon nanotubes (MWCNTs) were functionalized with salicylic acid (SA). The copper-cobalt catalyst was impregnated on the SA functionalized MWCNTs (SA-MWCNTs). The catalyst copper-cobalt/SA-MWCNTs was used to catalyze the synthesis of alcohols from synthesis gas. Salicylic acid can promote the synthesis of ethanol and butanol from synthesis gas, thus reducing the synthesis of methanol. This work demonstrated that salicylic acid not only can be used to functionalize carbon nanotube...

  1. Evaluation of hypolipidemic activity of leaf juice of Catharanthus roseus (Linn.) G. Donn. in guinea pigs.

    Science.gov (United States)

    Patel, Yogesh; Vadgama, Vishalkumar; Baxi, Seema; Chandrabhanu; Tripathi, B

    2011-01-01

    Our aim of the study was to evaluate the hypolipidemic activity of leaf juice of Catharanthus roseus (Linn.) G. Donn. in guinea pigs. Adult guinea pigs of either sex were divided into seven groups: group 1 - normal diet; group 2 - high fat diet; group 3 and 4 - normal diet plus leaf juice of Catharanthus roseus (Linn.) G. Donn. in the dose of 0.5 and 1 mL/kg, respectively; group 5 and 6- high fat diet with leaf juice of Catharanthus roseus (Linn.) G. Donn. in the dose of 0.5 and 1 mL/kg, respectively; group 7 - high fat diet plus atorvastatin (3 mg/kg). Above diet treatment was given for six weeks and drug was given during last three weeks. Serum lipid profile (total cholesterol, triglycerides, LDL-c, VLDL-c, HDL-c) was performed in each group of animals before and at the end of six weeks. Histological study of aorta, liver and kidney was done in group 1, 2, 6 and 7 and blood cell count was done in animals that were treated juice of C. roseus (Linn.) G. Donn. before and after juice administration. Simultaneous administration of leaf juice of C. roseus (Linn.) G. Donn. in the dose of 0.5 mL/kg prevents the rise of serum lipid parameters and decreases the fatty changes in the tissue induced by high fat diet, whereas in the dose of 1 mL/kg not only counteracts the elevation, but also significantly (p roseus (Linn.) G. Donn. possesses significant lipid lowering and anti atherosclerotic activity.

  2. EFFECT OF AUXIN AND CYTOKININ ON VINCRISTINE PRODUCTION BY CALLUS CULTURES OF CATHARANTHUS ROSEUS L. (APOCYNACEAE)

    OpenAIRE

    Chinnamadasamy Kalidass; Veerabahu Ramasamy Mohan; Arjunan Daniel

    2009-01-01

    Callus cultures of Catharanthus roseus L. were established to verify whether they produce vincristine as the intact plant. Different growth regulator combinations were applied to Murashige and Skoog (MS) medium to influence the level of production of vincristine. The effects of various combinations (0.5 µM to 3.0 µM) of auxin and cytokinin on the growth and accumulation of vincristine were investigated. MS medium supplemented with 2,4-Dichlorophenoxy acetic acid (2,4-D) 1.0 µM and 6-furfur...

  3. ‘Candidatus Phytoplasma hispanicum’, a novel taxon associated with Mexican periwinkle virescence disease of Catharanthus roseus

    Science.gov (United States)

    Mexican periwinkle virescence (MPV) phytoplasma was originally discovered in diseased plants of Madagascar periwinkle (Catharanthus roseus) in Yucatán, Mexico. On the basis of results from RFLP analysis of PCR-amplified 16S rRNA gene sequences, strain MPV was previously classified as the first know...

  4. Salicylate poisoning in children: report of three cases | Musumba ...

    African Journals Online (AJOL)

    To raise clinicians' awareness of chronic (therapeutic) salicylate poisoning as a common cause of admission in paediatric patients presenting to hospital with respiratory distress (a clinical manifestation of metabolic acidosis) and a history of 'over the counter' treatment with salicylate (Aspirin). We present two complex cases ...

  5. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Background: Salicylic acid (SA) acts as a potential non-enzymatic antioxidant and a plant growth regulator, which plays a major role in regulating various plant physiological mechanisms. The effects of salicylic acid (SA; 0.05 mM) on physiological parameters, antioxidative capacity and phenolic metabolism, lignin, alkaloid ...

  6. Pola Produksi Ajmalisin dari Kultur Agregat Sel Catharanthus roseus (L. G. Don. dalam Bioreaktor Airlift

    Directory of Open Access Journals (Sweden)

    RIZKITA RACHMI ESYANTI

    2006-12-01

    Full Text Available A research has been conducted to optimize the rate of aeration and initial weight of cell aggregates in the production of ajmalicine in Catharanthus roseus cell culture in airlift bioreactor. Catharanthus roseus culture were grown in Zenk medium with the addition of 2.50 × 10−6 M naphthalene acetic acid (NAA and 10−5 M benzyl amino purine (BAP. Cell aggregates were sub-cultured two times before transferring 20 and 30 g/fw of cell aggregates into bioreactor, respectively, and aerated with the rate of 0.25 l min−1 and 0.34 l min−1, respectively. The pattern of ajmalicine production in bioreactor were observed in every three days within 24 days. Qualitative and quantitative analysis were conducted using HPLC connected to Cromatopac CL-7A Plus. The results showed that the cell aggregates and medium contain ajmalicine. The highest concentration was obtained in combination of 30 g/fw and 0.34 l min−1 aeration compare to 20 g/fw – 0.25 l min−1, 20 g/fw – 0.34 l min−1, as well as 30 g/fw – 0.25 l min−1. The highest ajmalicine content in cell aggregates was obtained on the 12 days (79.23 µg g−1 whilst in medium was obtained in the 18th days (981.15 µg l−1.

  7. Differential induction of meristematic stem cells of Catharanthus roseus and their characterization.

    Science.gov (United States)

    Moon, So Hyun; Venkatesh, Jelli; Yu, Jae-Woong; Park, Se Won

    2015-11-01

    Plant cell culture technology has been introduced for the mass production of the many useful components. A variety of plant-derived compounds is being used in various fields, such as pharmaceuticals, foods, and cosmetics. Plant cell cultures are believed to be derived from the dedifferentiation process. In the present study, an undifferentiated cambial meristematic cell (CMCs) of Catharanthus is isolated using histological and genetic methods, and compared with dedifferentiation-derived callus (DDCs) cultures. Furthermore, differential culture conditions for both DDCs- and CMCs-derived cell lines were established. A suitable media for the increased accumulation of terpenoid indole alkaloids (TIAs) was also standardized. Compared with DDCs, CMCs showed marked accumulation of TIAs in cell lines grown on media with 1.5 mg·mL(-1) of NAA and 0.5 mg·mL(-1) of kinetin. CMCs-derived cultures of Catharanthus, as a source of key anticancer drugs (viblastine and vincristine), would overcome the obstacles usually associated with the production of natural metabolites through the use of DDCs. Cell culture systems that are derived from CMCs may also provide a cost-effective and eco-friendly basis for the sustainable production of a number of important plant natural products. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  8. Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production.

    Science.gov (United States)

    Sun, Jiayi; Peebles, Christie A M

    2016-09-01

    Catharanthus roseus produces many pharmaceutically important terpenoid indole alkaloids (TIAs) such as vinblastine, vincristine, ajmalicine, and serpentine. Past metabolic engineering efforts have pointed to the tight regulation of the TIA pathway and to multiple rate-limiting reactions. Transcriptional regulator ORCA3 (octadecanoid responsive Catharanthus AP2-domain protein), activated by jasmonic acid, plays a central role in regulating the TIA pathway. In this study, overexpressing ORCA3 under the control of a glucocorticoid-inducible promoter in C. roseus hairy roots resulted in no change in the total amount of TIAs measured. RT-qPCR results showed that ORCA3 overexpression triggered the upregulation of transcripts of most of the known TIA pathway genes. One notable exception was the decrease in strictosidine glucosidase (SGD) transcripts. These results corresponded to previously published results. In this study, ORCA3 and SGD were both engineered in hairy roots under the control of a glucocorticoid-inducible promoter. Co-overexpression of ORCA3 and SGD resulted in a significant (p < 0.05) increase in serpentine by 44 %, ajmalicine by 32 %, catharanthine by 38 %, tabersonine by 40 %, lochnericine by 60 % and hörhammericine by 56 % . The total alkaloid pool was increased significantly by 47 %. Thus, combining overexpression of a positive regulator and a pathway gene which is not controlled by this regulator provided a way to enhance alkaloid production.

  9. Quantitative and qualitative responses of Catharanthus roseus to salinity and biofertilizer

    Directory of Open Access Journals (Sweden)

    Antônia L. R. Neves

    Full Text Available ABSTRACT The development of agriculture in the northeastern semi-arid region depends, at least in part, on the correct exploitation and efficient use of natural resources. The objective of this study was to evaluate the effects of the use of saline water on morphophysiological responses and sensory analysis of ‘Boa noite’ plants (Catharanthus roseus in soil fertilized with bovine biofertilizer. A completely randomized design was used in the split plot arrangement, the plots being formed by the five irrigation water salinity levels (0.5, 2.5, 5.0, 7.5 and 10 dS m-1, and the subplots by two frequencies of application of the 150 mL pot-1 of liquid bovine biofertilizer (divided into one and five times, with five replicates. The analysed variables were: leaf gas exchange relative chlorophyll index, biometry, dry matter (leaf, stems, flowers and roots and sensory analysis (general appearance and buyers’ preference. Quantitative (growth and physiological and qualitative (sensory analysis responses show that Catharanthus roseus plants can be produced using saline water at the level of 2.5 dS m-1, and the plants of this treatment were preferred by the judges in sensory analysis. Biofertilizer application frequency did not attenuate the effects of salinity. Therefore, the liquid bovine biofertilizer can be applied all at once, reducing costs.

  10. Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats

    Directory of Open Access Journals (Sweden)

    Pinto Pereira Lexley

    2006-12-01

    Full Text Available Abstract Background Catharanthus roseus L (C. roseus has been used to treat a wide assortment of diseases including diabetes. The objective of our study was to evaluate the antimicrobial and wound healing activity of the flower extract of Catharanthus in rats. Methods Wound healing activity was determined in rats, after administration (100 mg kg-1 day-1 of the ethanol extract of C. roseus flower, using excision, incision and dead space wounds models. The animals were divided into two groups of 6 each in all the models. In the excision model, group 1 animals were topically treated with carboxymethyl cellulose as placebo control and group 2 received topical application of the ethanol extract of C. roseus at a dose of 100 mg/kg body weight/day. In an incision and dead space model group 1 animals were given normal saline and group 2 received the extract orally at a dose of 100 mg kg-1 day-1. Healing was assessed by the rate of wound contraction, period of epithelization, tensile strength (skin breaking strength, granulation tissue weight, and hydoxyproline content. Antimicrobial activity of the flower extract against four microorganisms was also assessed Results The extract of C. roseus significantly increased the wound breaking strength in the incision wound model compared with controls (P Pseudomonas aeruginosa and Staphylococcus aureus demonstrated sensitivity to C. roseus Conclusion Increased wound contraction and tensile strength, augmented hydroxyproline content along with antimicrobial activity support the use of C. roseus in the topical management of wound healing.

  11. Simultaneous quantitative determination of five alkaloids in Catharanthus roseus by HPLC-ESI-MS/MS.

    Science.gov (United States)

    Zhang, Lin; Gai, Qing-Hui; Zu, Yuan-Gang; Yang, Lei; Ma, Yu-Liang; Liu, Yang

    2014-10-01

    To establish a method to simultaneously determine the main five alkaloids of Catharanthus roseus for trace samples, a high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) analysis method was developed. The five Catharanthus alkaloids, vinblastine, vincristine, vinleurosine, vindoline, and catharanthine were chromatographically separated on a C18 HPLC column. The mobile phase was methanol-15 nmol·L(-1) ammonium acetate containing 0.02% formic acid (65 : 35, V/V). The quantification of these alkaloids was based on the Multiple Reaction Monitoring (MRM) mode. This method was validated, and the results achieved the aims of the study. The intra- and inter-day precision and accuracy of the five alkaloids were within 1.2%-11.5% (RSD%) and -10.9%-10.5% (RE%). The recovery rates of the five alkaloids of samples were from 79.9% to 91.5%. The five analytes were stable at room temperature for 2 h, at 4 °C for 12 h, and at -20 °C for two weeks. The developed method was applied successfully to determine the content of the five alkaloids in three plant parts of three batches of C. roseus with a minute amount collected from three regions of China. The HPLC-ESI-MS/MS method can be used for the simultaneous determination of five important alkaloids in trace C. roseus samples. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  12. Antidiabetic and Antioxidant Properties of Alkaloids from Catharanthus roseus (L. G. Don

    Directory of Open Access Journals (Sweden)

    Won Fen Wong

    2013-08-01

    Full Text Available Catharanthus roseus (L. G. Don is a herbal plant traditionally used by local populations in India, South Africa, China and Malaysia to treat diabetes. The present study reports the in vitro antioxidant and antidiabetic activities of the major alkaloids isolated from Catharanthus roseus (L. G. Don leaves extract. Four alkaloids—vindoline I, vindolidine II, vindolicine III and vindolinine IV—were isolated and identified from the dichloromethane extract (DE of this plant’s leaves. DE and compounds I–III were not cytotoxic towards pancreatic β-TC6 cells at the highest dosage tested (25.0 µg/mL. All four alkaloids induced relatively high glucose uptake in pancreatic β-TC6 or myoblast C2C12 cells, with III showing the highest activity. In addition, compounds II–IV demonstrated good protein tyrosine phosphatase-1B (PTP-1B inhibition activity, implying their therapeutic potential against type 2 diabetes. III showed the highest antioxidant potential in ORAC and DPPH assays and it also alleviated H2O2-induced oxidative damage in β-TC6 cells at 12.5 µg/mL and 25.0 µg/mL.

  13. An protocol for genetic transformation of Catharanthus roseus by Agrobacterium rhizogenes A4.

    Science.gov (United States)

    Zhou, Mei-Liang; Zhu, Xue-Mei; Shao, Ji-Rong; Wu, Yan-Min; Tang, Yi-Xiong

    2012-04-01

    Catharanthus roseus (L.) G. Don is a plant species known for its production of a variety of terpenoid indole alkaloids, many of which have pharmacological activities. Catharanthine can be chemically coupled to the abundant leaf alkaloid vindoline to form the valuable anticancer drug vinblastine. To study and extract catharanthine and other metabolites from C. roseus, a technique was developed for producing hairy root cultures. In this study, the Agrobacterium rhizogenes A4 was induced in the hairy roots from leaf explants, and the concentration of antibiotics (100 mg/L kanamycin) was elucidated for selection after transformation. The polymerase chain reaction amplification of rol genes results revealed that transgenic hairy roots contained rol genes from the root induced (Ri)-plasmid. Catharanthine from C. roseus hairy roots was separated and analyzed using high-performance liquid chromatography. Over-expression of CrOrca3 (octadecanoid-responsive Catharanthus AP2/ERF domain), and cytohistochemical staining methods were used to validate transgenic hairy roots from C. roseus. Hairy root culture of C. roseus is a valuable approach for future efforts in the metabolic engineering of terpenoid indole alkaloids in plants.

  14. Glycolic Acid 15% Plus Salicylic Acid 2%

    Science.gov (United States)

    Sánchez-Blanco, Elena

    2011-01-01

    Background: Facial flat warts are a contagious viral disease that can cause disturbing cosmetic problems. Topical glycolic acid has been reported to be effective in dermatological treatment depending on the exfoliant capacity, but has not often been reported to be effective in the treatment of facial flat warts. Objective: The aim of this paper was to evaluate the efficacy and safety of glycolic acid 15% topical gel plus salicylic acid 2% in the treatment of recalcitrant facial flat warts. Methods: A total of 20 consecutive patients 7 to 16 years of age with recalcitrant facial flat warts were enrolled in this study. Patients having warts by the eye and lip regions were excluded from the study. A fine layer of face gel was applied to the treatment area once daily. Most of the participants had tried different treatments with no success. Assessments for the response and the occurrence of side effects were performed every two weeks at Weeks 2, 4, 6, and 8. Results: All the patients were clinically cured within eight weeks. Seven patients cleared in four weeks, and 13 patients cleared in eight weeks. No noticeable adverse events were related to the skin. Conclusion: Topical gel of glycolic acid 15% plus salicylic acid 2% is safe and effective when applied to facial flat warts once daily until clearance and may be considered as first-line treatment. PMID:21938272

  15. Medicated oils and severe salicylate poisoning: quantifying the risk based on methyl salicylate content and bottle size.

    Science.gov (United States)

    Chan, T Y

    1996-04-01

    In Hong Kong, medicated oils containing methyl salicylate account for 48% of acute salicylate poisoning cases treated in the general medical ward of the Prince of Wales Hospital. To quantify better the risk to average persons who have intentionally ingested these medicated oils, the methyl salicylate content and bottle size of 7 commonly available formulations were examined. Koong Yick Hung Far Oil had the highest methyl salicylate content (67%) and was available only in 60-ml bottles. If the entire bottle of this product were ingested, the equivalent of 184 adult 300-mg aspirin tablets would have been swallowed. Accidental ingestions of as little as 6 ml of Koong Yick Hung Far Oil by a child can be fatal. Six other products contained 15-40% methyl salicylate and their biggest bottle sizes range from 28-57 ml. Among medicated oils commonly found in Hong Kong, Koong Yick Hung Far Oil poses the greatest threat for severe salicylate poisoning if swallowed because of its high salicylate content and its availability in 60-ml bottles. The threat from medicated oils can probably be reduced by restricting their bottle size and methyl salicylate concentration. Physicians and clinical toxicologists should appreciate the toxic potential of these products.

  16. Synthesis, acute toxicity and anti-inflammatory effect of bornyl salicylate, a salicylic acid derivative.

    Science.gov (United States)

    Vasconcelos, Renata Marcia Costa; Leite, Fagner Carvalho; Leite, Jacqueline Alves; Rodrigues Mascarenhas, Sandra; Rodrigues, Luis Cezar; Piuvezam, Marcia Regina

    2012-12-01

    Bornyl salicylate (BS) is a salicylic derivative, obtained by sterification of salicylic acid and monoterpene (-)-borneol, and its topical use in inflammatory diseases was described in the early 20th century. It is also known that borneol presents neuroprotective, genoprotective and analgesic properties. The purpose of this study was to evaluate BS in experimental models of acute inflammation. The toxicity of BS was analyzed by measuring water and food intake, weight, mortality and weight of main organs. To assess its anti-inflammatory effect, BS-treated mice were challenged with carrageenan, prostaglandin E2 (PGE2), bradikynin (BK) or histamine (HIS)-induced paw edema, zymosan-induced peritonitis and vascular permeability induced by acetic acid. Nitric oxide (NO) production was analyzed in peritoneal macrophage cultures. There was no sign of acute toxicity of BS in male and female mice. Furthermore, treatment with BS was significantly (p acetic acid were also reduced in BS-treated animals. In vitro, BS (10 µg/mL) reduced NO production in LPS-stimulated macrophages. These data suggest that BS has an anti-inflammatory effect, which is related, at least in part, with decrease of mediators as PGE2, NO and pro-inflammatory cytokines. However, further studies should be done to explore its potential as an anti-inflammatory drug.

  17. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    Science.gov (United States)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2014-04-01

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV-vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved.

  18. Salicylate toxicity from ingestion of traditional massage oil.

    Science.gov (United States)

    Muniandy, Rajesh Kumar; Sinnathamby, Vellan

    2012-08-24

    A 16-month-old child developed a brief generalised tonic-clonic fitting episode and vomiting at home, after accidental ingestion of traditional massage oil. As the patient presented with clinical features of salicylate toxicity, appropriate management was instituted. He was admitted to the intensive care unit for multiorgan support. The child was discharged well 1 week after the incident. Methyl-salicylate is a common component of massage oils which are used for topical treatment of joint and muscular pains. However, these massage oils may be toxic when taken orally. Early recognition of the salicylate toxicity is very important in producing a good patient outcome.

  19. Synthesis and antifungal activity of new salicylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Wodnicka Alicja

    2017-03-01

    Full Text Available A simple one-step procedure for synthesis of 1-methoxy-1-oxoalkan-2-yl salicylates and 1-methoxy-1-oxoalkan-2-yl 2-[(1-methoxy-1-oxoalkan-2-yloxy]benzoates by reaction of salicylic acid with several methyl 2-bromoalkanoates was developed. The reactions were carried out in N,N-dimethylformamide (DMF in the presence of anhydrous potassium carbonate. Conditions for regioselective synthesis of target compounds were established. The developed procedure could be easily applied in the industrial production process. The new salicylic acid derivatives were obtained with satisfactory yields and were characterized by MS and 1H NMR spectra. The fungicidal activity of the prepared compounds was tested in vitro against seven species of plant pathogenic fungi. The best results were observed for 1-methoxy-1-oxoalkan-2-yl salicylates which showed moderate or good activity against Botrytis cinerea and Rhizoctonia solani.

  20. Spectroscopic structural studies of salicylic acid, salicylamide and aspirin

    Science.gov (United States)

    El-Shahawy, Anwar S.

    The electronic absorption spectra of the salicylic acid and the salicylamide molecules have been studied using SCF—CL calculations. The singlet and the triplet electronic transition energies have been calculated. The state functions of eight excited states for these molecules have been calculated in addition to the oscillator strengths, charge densities, ionization potentials and electron affinities. Our calculations lead to the presence of salicylic acid and salicylamide in the β-forms in which the carboxylic hydroxyl group or the amino group is directed toward the enolic hydroxyl group. The salicylic acid and the salicylamide molecules have the Cs point group symmetry, but the aspirin molecule has the C1 point group symmetry, in which the acetyl group does not lie in the plane of the salicylic acid molecule.

  1. How salicylic acid takes transcriptional control over jasmonic acid signaling

    National Research Council Canada - National Science Library

    Caarls, Lotte|info:eu-repo/dai/nl/371746213; Pieterse, Corné M J|info:eu-repo/dai/nl/113115113; van Wees, Saskia C M|info:eu-repo/dai/nl/185445373

    2015-01-01

    Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA...

  2. Development of a kinetic metabolic model: application to Catharanthus roseus hairy root

    Science.gov (United States)

    Leduc, M.; Tikhomiroff, C.; Cloutier, M.; Perrier, M.

    2006-01-01

    A kinetic metabolic model describing Catharanthus roseus hairy root growth and nutrition was developed. The metabolic network includes glycolysis, pentose-phosphate pathway, TCA cycle and the catabolic reactions leading to cell building blocks such as amino acids, organic acids, organic phosphates, lipids and structural hexoses. The central primary metabolic network was taken at pseudo-steady state and metabolic flux analysis technique allowed reducing from 31 metabolic fluxes to 20 independent pathways. Hairy root specific growth rate was described as a function of intracellular concentration in cell building blocks. Intracellular transport and accumulation kinetics for major nutrients were included. The model uses intracellular nutrients as well as energy shuttles to describe metabolic regulation. Model calibration was performed using experimental data obtained from batch and medium exchange liquid cultures of C. roseus hairy root using a minimal medium in Petri dish. The model is efficient in estimating the growth rate. PMID:16453114

  3. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    Energy Technology Data Exchange (ETDEWEB)

    Ashihara, Hiroshi; Sagishima, Kyoko; Kubota, Kaoru (Ochanomizu Univ., Tokyo (Japan))

    1989-04-01

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using (U-{sup 14}C)glucose and (U-{sup 14}C)fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase.

  4. Assessment of genetic diversity in a highly valuable medicinal plant Catharanthus roseus using molecular markers

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Shaw

    2009-01-01

    Full Text Available Genetic diversity was evaluated among 14 cultivars of Catharanthus roseus using RAPD and ISSR markers.The RAPD primers resulted in the amplification of 56 bands, among which 46 (82% bands were polymorphic Four ISSRprimers amplified 31 loci out of which 17 were polymorphic and 14 are monomorphic. The Jaccard's similarity derived fromthe combined marker system showed that the varieties First Kiss Coral and Cooler Orchid were the most closely relatedcultivars, with 98% similarity. In the dendrogram constructed on the basis of both RAPD and ISSR data two clear clusterswere obtained. The smaller cluster included C. roseus Cv Blue Pearl and C. roseus Cv. Patricia White and the larger clusterwas subdivided into two sub clusters with C. roseus Cv. First Kiss Polka Dot isolated from the rest of the cultivars. This maybe useful for breeding for improved quality.

  5. 'Candidatus Phytoplasma hispanicum', a novel taxon associated with Mexican periwinkle virescence disease of Catharanthus roseus.

    Science.gov (United States)

    Davis, Robert E; Harrison, Nigel A; Zhao, Yan; Wei, Wei; Dally, Ellen L

    2016-09-01

    Mexican periwinkle virescence (MPV) phytoplasma was originally discovered in diseased plants of Madagascar periwinkle (Catharanthus roseus) in Yucatán, Mexico. On the basis of results from RFLP analysis of PCR-amplified 16S rRNA gene sequences, strain MPV was previously classified as the first known member of phytoplasma group 16SrXIII, and a new subgroup (16SrXIII-A) was established to accommodate MPV phytoplasma. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain MPV represents a lineage distinct from previously described 'CandidatusPhytoplasma' species. Nucleotide sequence alignments revealed that strain MPV shared less than 97.5 % 16S rRNA gene sequence similarity with all previously described 'Ca.Phytoplasma' species. Based on unique properties of the DNA, we propose recognition of Mexican periwinkle virescence phytoplasma strain MPV as representative of a novel taxon, 'CandidatusPhytoplasma hispanicum'.

  6. Transcription factors regulating uspA genes in Catharanthus roseus.

    Science.gov (United States)

    Bahieldin, Ahmed; Atef, Ahmed; Shokry, Ahmed M; Al-Karim, Saleh; Al Attas, Sanaa G; Gadallah, Nour O; Edris, Sherif; Al-Kordy, Magdy A; Hassan, Sabah M; Abo-Aba, Salah; El-Domyati, Fotouh M

    2017-01-01

    RNA-Seq of the Catharanthus roseus SRA database was done in order to detect putative universal stress proteins (USPs) and their possible controlling factors. Previous analysis indicated the existence and characterization of uspA-like genes. In silico analysis of RNA-Seq database in several plant tissues revealed the possible functions and regulations of some uspA-like transcripts whose transcription factors (TFs) that might drive their expression were detected. BLAST indicated the existence of TF superfamilies erf (ethylene-responsive TF), bHLH (basic helix-loop-helix) and WRKY that might regulate several uspA-like genes. This data was proven via semi-quantitative RT-PCR in four plant tissues. Several of these transcription factor superfamilies are known for their action in the plant defense against biotic and abiotic stresses. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  7. Endophytic filamentous fungi from a Catharanthus roseus: Identification and its hydrolytic enzymes

    Directory of Open Access Journals (Sweden)

    Farah Wahida Ayob

    2016-05-01

    Full Text Available This paper reported on the various filamentous fungi strains that were isolated from a wild grown Catharanthus roseus. Based on the morphological characteristics and molecular technique through a Polymerase Chain Reaction and DNA sequencing method using internal transcribed spacer (ITS, these fungi had been identified as a Colletotrichum sp., Macrophomina phaseolina, Nigrospora sphaerica and Fusarium solani. The ultrastructures of spores and hyphae were observed under a Scanning Electron Microscope. The hydrolytic enzyme test showed that all strains were positive in secreting cellulase. Colletotrichum sp. and F. solani strains also gave a positive result for amylase while only F. solani was capable to secrete protease. These fungi were putatively classified as endophytic fungi since they produced extracellular enzymes that allow them to penetrate plant cell walls and colonize with symbiotic properties.

  8. Generous hosts: What makes Madagascar periwinkle (Catharanthus roseus) the perfect experimental host plant for fastidious bacteria?

    Science.gov (United States)

    Killiny, Nabil

    2016-12-01

    Although much attention has been paid to the metabolism and biosynthesis of monoterpene alkaloids in Catharanthus roseus, its value as an experimental host for a variety of agriculturally and economically important phytopathogenic bacteria warrants further study. In the present study, we evaluated the chemical composition of the phloem and xylem saps of C. roseus to infer the nutritional requirements of phloem- and xylem-limited phytopathogens. Periwinkle phloem sap consisted of a rich mixture of sugars, organic acids, amino acids, amines, fatty acids, sugar acids and sugar alcohols while xylem contained similar compounds in lesser concentrations. Plant sap analysis may lead to a better understanding of the biology of fastidious Mollicutes and their complex nutritional requirements, and to successful culture of phytoplasmas and other uncultured phloem-restricted bacteria such as Candidatus Liberibacter asiaticus, the causal agent of huanglongbing in citrus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles.

    Science.gov (United States)

    Mukunthan, K S; Elumalai, E K; Patel, Trupti N; Murty, V Ramachandra

    2011-08-01

    To develop a simple rapid procedure for bioreduction of silver nanoparticles (AgNPs) using aqueous leaves extracts of Catharanthus roseus (C. roseus). Characterization were determined by using UV-Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. SEM showed the formation of silver nanoparticles with an average size of 67 nm to 48 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centered cubic geometry. C. roseus demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag(+) to Ag(0)). This study provides evidence for developing large scale commercial production of value-added products for biomedical/nanotechnology-based industries.

  10. Morphogenetic and chemical stability of long-term maintained Agrobacterium-mediated transgenic Catharanthus roseus plants.

    Science.gov (United States)

    Verma, Priyanka; Sharma, Abhishek; Khan, Shamshad Ahmad; Mathur, Ajay Kumar; Shanker, Karuna

    2015-01-01

    Transgenic Catharanthus roseus plants (transgenic Dhawal [DT] and transgenic Nirmal [NT]) obtained from the Agrobacterium tumefaciens and Agrobacterium rhizognenes-mediated transformations, respectively, have been maintained in vitro for 5 years. Plants were studied at regular intervals for various parameters such as plant height, leaf size, multiplication rate, alkaloid profile and presence of marker genes. DT plant gradually lost the GUS gene expression and it was not detected in the fifth year while NT plant demonstrated the presence of genes rolA, rolB and rolC even in the fifth year, indicating the more stable nature of Ri transgene. Vindoline content in the DT was two times more than in non-transformed control plants. Alkaloid and tryptophan profiles were almost constant during the 5 years. The cluster analysis revealed that the DT plant is more close to the control Nirmal plant followed by NT plant.

  11. Syntheses and pyrolytic studies of salicylate derivatives of ...

    African Journals Online (AJOL)

    New salicylate derivatives of heteronucleic-μ-oxoisopropoxide [SnO2AlB(OPri)4] have been synthesized by the thermal condensation of μ-oxoisopropoxide and methyl/ethyl/phenyl/phenyl ethyl salicylates in different molar ratios (1:1-1:2) yielding the compounds of the type [SnO2AlB(OPri)4-n(RSAL)n] (where n is 1-2 and ...

  12. Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects.

    Science.gov (United States)

    Rajagopal, Thangavel; Jemimah, Irudayaraj Anto Amal; Ponmanickam, Ponnirul; Ayyanar, Muniappan

    2015-11-01

    Phytosynthesis of silver nanoparticles has attracted considerable attention due to their biocompatibility, low toxicity, cost-effectiveness and being a novel method has an eco-friendly approach. Biological activity of root extracts as well as synthesized silver nanoparticles of Catharanthus roseus were evaluated against larvae of Aedes aegyptiand Culex quinquefasciatus. The structure and proportion of the synthesized nanoparticles was defined by exploitation ultraviolet spectrophotometry, X-ray diffraction, fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy and scanning electron microscopy methods. Reduction of silver ions occurred when silver nitrate solution was treated with aqueous root extract at 60°C. Synthesized silver nanoparticles (AgNPs) were confirmed by analyzing the excitation of surface plasmon resonance (SPR) using UV-vis spectrophotometer at 423 nm. FTIR showed aliphatic amines and alkanes corresponding peaks to be presence of responsible compounds to produced nanoparticles in the reaction mixture. Spherical shaped and crystalline nature of particles was recorded under XRD analysis. Presence of silver metal and 35-55nm sized particles were recorded using EDAX and SEM respectively. Larvicidal activitywas observed after24 hrs of exposure to root extracts and synthesized silver nanoparticles. The highest larval mortality was observed in synthesized silver nanopartiucles against Aedes aegypti (LC50= 2.01 ± 0.34; LC90= 5.29 ± 0.07 at 5.0 mg(-1) concentration) and Culex quinquefasciatus (LC50= 1.18 ± 0.15; LC90= 2.55 ± 0.76 at 3.5 to 5.0 mgl(-1) concentration) respectively. The present study provides evidence that synthesized silver nanoparticles of Catharanthus roseus offer potential source for larvicidal activity againstthe larvae of both dengue and filariasis vectors.

  13. Optimizing the transient Fast Agro-mediated Seedling Transformation (FAST) method in Catharanthus roseus seedlings.

    Science.gov (United States)

    Weaver, Jessica; Goklany, Sheba; Rizvi, Noreen; Cram, Erin J; Lee-Parsons, Carolyn W T

    2014-01-01

    An Agro-mediated transformation method has been adapted in Catharanthus roseus seedlings for transient overexpression. Our results suggest that Agro-mediated methods may induce defense-related genes, which should be considered in its application. The Fast Agro-mediated Seedling Transformation (FAST) method, which involves the co-cultivation and transient transformation of young seedlings with Agrobacterium, was adapted and optimized in Catharanthus roseus. We investigated the optimal conditions for Gus expression by varying the Agrobacterium density (OD600 = 0.29 and 0.50), A. rhizogenes strain (15834 and R1000), and co-cultivation time in liquid (2, 12, or 24 h) followed by incubation time on solid media (1 or 2 days). Transformation efficiency was assessed quantitatively in terms of average GUS intensity per cotyledon surface area and percentage of cotyledons transformed. GUS staining was observed in 100% of cotyledons co-cultivated with A. rhizogenes (OD600 = 0.50) co-transformed with the Mas promoter-driven Gus and pSoup helper plasmids, in the presence of 0.01% v/v Silwet L-77 for 24 h in liquid followed by 2-days on solid media. In addition, we observed that co-cultivation with Agrobacterium strongly induced Zct1 and Orca3, two transcription factors known to regulate defense-related alkaloid biosynthesis in C. roseus. Homologous transcription factors regulate defense responses in many plant species. Therefore, possible induction of defense-related genes by Agro-mediated transformation should be a consideration in experimental design.

  14. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis

    OpenAIRE

    Pandey, Shiv S.; Sucheta Singh; C. S. Vivek Babu; Karuna Shanker; Srivastava, N. K.; Shukla, Ashutosh K.; Alok Kalra

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229?403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and st...

  15. Direct regeneration of Periwinkle (Catharanthus roseus) via node explants culture and different combinations of plant growth regulators

    OpenAIRE

    M. Talebi; F. Etesam; B.E. Sayed-Tabatabaei; Gh. Khaksar

    2012-01-01

    Periwinkle (Catharanthus roseus L., Apocynaceae) contains more than 130 different terpenoid indole alkaloids (TIAs), of which two dimeric alkaloids, Vinblastine and Vincristine, have antineoplastic activity and are useful in treatment of various cancers. Specific production of some alkaloids in differentiated tissues such as leaf and stem led to use direct regeneration of explants in order to increase the production of these important alkaloids in the plant. In this research, 30 combinations ...

  16. Salicylic acid signaling in disease resistance.

    Science.gov (United States)

    Kumar, Dhirendra

    2014-11-01

    Salicylic acid (SA) is a key plant hormone that mediates host responses against microbial pathogens. Identification and characterization of SA-interacting/binding proteins is a topic which has always excited scientists studying microbial defense response in plants. It is likely that discovery of a true receptor for SA may greatly advance understanding of this important signaling pathway. SABP2 with its high affinity for SA was previously considered to be a SA receptor. Despite a great deal work we may still not have true a receptor for SA. It is also entirely possible that there may be more than one receptor for SA. This scenario is more likely given the diverse role of SA in various physiological processes in plants including, modulation of opening and closing of stomatal aperture, flowering, seedling germination, thermotolerance, photosynthesis, and drought tolerance. Recent identification of NPR3, NPR4 and NPR1 as potential SA receptors and α-ketoglutarate dehydrogenase (KGDHE2), several glutathione S transferases (GSTF) such as SA binding proteins have generated more interest in this field. Some of these SA binding proteins may have direct/indirect role in plant processes other than pathogen defense signaling. Development and use of new techniques with higher specificity to identify SA-interacting proteins have shown great promise and have resulted in the identification of several new SA interactors. This review focuses on SA interaction/binding proteins identified so far and their likely role in mediating plant defenses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor.

    Science.gov (United States)

    Muñoz, Raul; Köllner, Claudia; Guieysse, Benoit; Mattiasson, Bo

    2004-09-20

    A consortium consisting of a Chlorella sorokiniana strain and a Ralstonia basilensis strain was able to carry out sodium salicylate biodegradation in a continuous stirred tank reactor (CSTR) using exclusively photosynthetic oxygenation. Salicylate biodegradation depended on algal activity, which itself was a function of microalgal concentration, light intensity, and temperature. Biomass recirculation improved the photobioreactor performance by up to 44% but the results showed the existence of an optimal biomass concentration above which dark respiration started to occur and the process efficiency started to decline. The salicylate removal efficiency increased by a factor of 3 when illumination was increased from 50-300 microE/m2.s. In addition, the removal rate of sodium salicylate was shown to be temperature-dependent, increasing from 14 to 27 mg/l.h when the temperature was raised from 26.5 to 31.5 degrees C. Under optimized conditions (300 microE/m2.s, 30 degrees C, 1 g sodium salicylate/l in the feed and biomass recirculation) sodium salicylate was removed at a maximum constant rate of 87 mg/l.h, corresponding to an estimated oxygenation capacity of 77 mg O2/l.h (based on a BOD value of 0.88 g O2/g sodium salicylate for the tested bacterium), which is in the range of the oxygen transfer capacity of large-scale mechanical surface aerators. Thus, although higher degradation rates were attained in the control reactor, the photobioreactor is a cost-efficient process which reduces the cost of aeration and prevents volatilization problems associated with the degradation of toxic volatile organic compounds under aerobic conditions. Copyright 2004 Wiley Periodicals, Inc.

  18. [Prevalence of intolerance to salicylates in patients with nasal polyposis].

    Science.gov (United States)

    Castilla-Rodríguez, Jaisel Luz; Vargas-Camaño, María Eugenia; Rodríguez-Briceño, Rodrigo Alberto; Galicia-Tapia, Jorge; Castrejón-Vázquez, María Isabel

    2015-01-01

    Salicylates intolerance is related to alteration in the metabolism of arachidonic acid leading to increased leukotrienes. The condition may be manifested with respiratory, skin or systemic symptoms or associated with sinonasal polyposis. Salicylates are present in anti-inflammatory drugs, cosmetics products and food. To determine the prevalence of salicylates intolerance in patients with sinonasal polyposis presenting to Clinical Immunology and Allergy and Otolaryngology Service, CMN 20 Noviembre, Mexico City. An observational, descriptive, cross sectional study included patients with sinonasal polyposis. The sample size was 49 patients, and variables were compared using STATISTICA 8.0. The prevalence of sinonasal polyposis was 4% of the study group, predominantly in females; only 24% of the population had an ideal weight, the salicylates intolerance prevalence was 53%, and the Samter triad was 31%. Sinonasal polyposis has an inflammatory disease pattern. Its pathophysiology is not yet fully established and in this study was related to obesity and persistent sinusitis. The most feared complication recurrence is associated with salicylates intolerance. The study found a slight increase of recurrence in the group of intolerance, with no statistically significant difference, possibly related to the sample size.

  19. Preventive Effect of Salicylate and Pyridoxamine on Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Tarek Kamal Abouzed

    2016-01-01

    Full Text Available Objective. Diabetic nephropathy is a life-threatening complication in patients with long-standing diabetes. Hemodynamic, inflammatory, and metabolic factors are considered as developmental factors for diabetic nephropathy. In this study, we evaluated whether pharmacological interventions with salicylate, compared to pyridoxamine, could prevent diabetic nephropathy in mice. Methods. Male mice overexpressing inducible nitric oxide synthase in pancreatic β-cells were employed as a diabetic model. Salicylate (3 g/kg diet or pyridoxamine (1 g/L drinking water; ~200 mg/kg/day was given for 16 weeks to assess the development of diabetic nephropathy. Treatment with long-acting insulin (Levemir 2 units/kg twice a day was used as a control. Results. Although higher blood glucose levels were not significantly affected by pyridoxamine, early to late stage indices of nephropathy were attenuated, including kidney enlargement, albuminuria, and increased serum creatinine, glomerulosclerosis, and inflammatory and profibrotic gene expressions. Salicylate showed beneficial effects on diabetic nephropathy similar to those of pyridoxamine, which include lowering blood glucose levels and inhibiting macrophage infiltration into the kidneys. Attenuation of macrophage infiltration into the kidneys and upregulation of antiglycating enzyme glyoxalase 1 gene expression were found only in the salicylate treatment group. Conclusions. Treatment with salicylate and pyridoxamine could prevent the development of diabetic nephropathy in mice and, therefore, would be a potentially useful therapeutic strategy against kidney problems in patients with diabetes.

  20. Salicylate and mitochondrial monoamine oxidase function in Reye's syndrome.

    Science.gov (United States)

    Faraj, B A; Caplan, D; Lolies, P; Buchanan, C

    1987-06-01

    The main objective of this investigation was to study the effect of salicylate on platelet mitochondrial monoamine oxidase (MAO) activity isolated from blood of two patients with Reye's syndrome. Comparative studies were made with hospitalized children without Reye's syndrome (n = 27) and healthy children (n = 19) serving as controls. Platelet MAO was measured by a radioenzymatic technique with [14C]tyramine as a substrate. The results of this study showed that salicylate (1.0 mM) caused an appreciable inhibition of the platelet MAO activity of patients with Reye's syndrome at the onset of the illness. This was demonstrated by a greater than 50% reduction in enzyme maximum velocity (Vmax) value. The salicylate MAO-inhibitory effect was maintained throughout the duration of the illness. Salicylate had only a minimal MAO-inhibitory effect on platelets isolated from blood of recovered Reye's syndrome patients, healthy controls, and non-Reye's hospitalized children, and no apparent effect on enzyme Vmax values. These preliminary findings suggest that salicylate-induced mitochondrial injury may affect MAO function in children with Reye's syndrome.

  1. Salicylate Intoxication in an Infant: A Case Report.

    Science.gov (United States)

    Espírito Santo, Rita; Vaz, Sara; Jalles, Filipa; Boto, Leonor; Abecasis, Francisco

    2017-11-27

    In children, the most common cause of an elevated anion gap (AG) with ketonemia, ketonuria, hyperglycemia, and glycosuria is diabetic ketoacidosis. However, when the clinical history is not clear, other causes must be considered. A 9-month-old girl was transferred to our pediatric intensive care unit (PICU) because of severe metabolic acidosis. On admission, she presented with Kussmaul breathing, tachycardia, irritability, and fever. Blood gasses revealed metabolic acidosis with superimposed respiratory alkalosis and elevated AG. Fluid replacement and bicarbonate for urine alkalinization were started. Ketonemia, acidic urine with glycosuria, ketonuria, and high blood glucose prompted an insulin infusion. Measurement of plasma salicylate confirmed toxic levels. When confronted, the parents admitted to accidentally preparing the child's bottle with water containing salicylic acid 1000 mg. Although the incidence of salicylate intoxication has declined, it remains an important cause of pediatric morbidity and mortality.

  2. Transparent plastic scintillators for neutron detection based on lithium salicylate

    Energy Technology Data Exchange (ETDEWEB)

    Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-01-01

    Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported herein. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Reduction in light yield and pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.

  3. Determination of acetylsalicylic acid and salicylic acid in foods, using HPLC with fluorescence detection.

    NARCIS (Netherlands)

    Venema, D.P.; Hollman, P.C.H.; Janssen, P.L.T.M.K.; Katan, M.B.

    1996-01-01

    We developed a specific and sensitive HPLC method with fluorescence detection for the determination of free acetylsalicylic acid, free salicylic acid, and free salicylic acid plus salicylic acid after alkaline hydrolysis (free-plus-bound) in foods. Acetylsalicylic acid was detected after postcolumn

  4. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus

    Science.gov (United States)

    Liscombe, David K.; O’Connor, Sarah E.

    2011-01-01

    The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by Madagascar periwinkle (Catharanthus roseus) plants. Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003–0.01% yields. Metabolic engineering efforts to improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. We have developed a VIGS method to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro. PMID:21802100

  5. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  6. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus

    Science.gov (United States)

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S.

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  7. Differential network analysis reveals evolutionary complexity in secondary metabolism of Rauvolfia serpentina over Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Shivalika Pathania

    2016-08-01

    Full Text Available Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Towards these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These mechanisms may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of Rauvolfia serpentina, and key genes that contribute towards diversification of specific metabolites.

  8. Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit.

    Science.gov (United States)

    Jaleel, C Abdul; Manivannan, P; Kishorekumar, A; Sankar, B; Gopi, R; Somasundaram, R; Panneerselvam, R

    2007-10-01

    Catharanthus roseus (L.) G. Don plants were grown in different water regimes in order to study the drought induced osmotic stress and proline (PRO) metabolism, antioxidative enzyme activities and indole alkaloid accumulation. The plants under pot culture were subjected to 10, 15 and 20 days interval drought (DID) stress from 30 days after sowing (DAS) and regular irrigation was kept as control. The plants were uprooted on 41DAS (10DID), 46DAS (15DID) and 51DAS (20DID). The drought stressed plants showed increased aminoacid (AA), glycine betaine (GB) and PRO contents and decreased proline oxidase (PROX) and increased gamma-glutamyl kinase (gamma-GK) activities when compared to control. The antioxidative enzymes like peroxidase (POX) and polyphenol oxidase (PPO) increased to a significant level in drought stressed plants when compared to control. The drought stressed C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to well-watered control plants. Our results suggest that the cultivation of medicinal plants like C. roseus in water deficit areas would increase its PRO metabolism, osmoregulation, defense system and the level of active principles.

  9. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities

    Science.gov (United States)

    Ponarulselvam, S; Panneerselvam, C; Murugan, K; Aarthi, N; Kalimuthu, K; Thangamani, S

    2012-01-01

    Objective To develop a novel approach for the green synthesis of silver nanoparticles using aqueous leaves extracts of Catharanthus roseus (C. roseus) Linn. G. Don which has been proven active against malaria parasite Plasmodium falciparum (P. falciparum). Methods Characterizations were determined by using ultraviolet-visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 35–55 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centred cubic structure of the bulk silver with the broad peaks at 32.4, 46.4 and 28.0. Conclusions It can be concluded that the leaves of C. roseus can be good source for synthesis of silver nanoparticle which shows antiplasmodial activity against P. falciparum. The important outcome of the study will be the development of value added products from medicinal plants C. roseus for biomedical and nanotechnology based industries. PMID:23569974

  10. Radiation Processed Carrageenan Improves Plant Growth, Physiological Activities, and Alkaloids Production in Catharanthus roseus L.

    Directory of Open Access Journals (Sweden)

    M. Naeem

    2015-01-01

    Full Text Available Catharanthus roseus (L. G. Don (Apocynaceae is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. Commercially important antineoplastic alkaloids, namely, vinblastine and vincristine, are mainly present in the leaves of C. roseus. Gamma-rays irradiated carrageenan (ICR has been proven as plant growth promoting substance for a number of medicinal and agricultural plants. Considering the importance of ICR as a promoter of plant growth and alkaloids production in C. roseus, a pot experiment was carried out to explore the effect of ICR on the plant growth, physiological activities, and production of anticancer alkaloids in C. roseus at 120 and 150 days after planting (DAP. Foliar application of ICR (at 0, 20, 40, 60, 80, and 100 mg L−1 significantly improved the performance of C. roseus. 80 mg L−1 of ICR enhanced the leaf yield by 29.2 and 35.4% and the herbage yield by 32.5 and 37.4% at 120 and 150 DAP, respectively, over the control. The spray of ICR at 80 mg L−1 increased the yield of vinblastine by 64.3 and 65.0% and of vincristine by 75.5 and 77.0% at 120 and 150 DAP, respectively, as compared to the control.

  11. Study of the effect of nickel heavy metals on some physiological parameters of Catharanthus roseus.

    Science.gov (United States)

    Arefifard, Matin; Mahdieh, Majid; Amirjani, Mohammadreza

    2014-01-01

    Plants, in their life cycle, are usually exposed to various kinds of non-biological stresses including heavy metals. One of these heavy metals is nickel which affects many physiological processes of plants. Studies have shown that the changes in planting conditions can affect the qualitative and quantitative features of Catharanthus roseus; therefore, creating stressful conditions (e.g. NiCl2) can be an effective way to investigate the changes. In this research, we investigated the effect of 0, 2.5, 5, 10, 25 and 50 mM concentrations of NiCl2 on the degree of catalase enzyme activity, amount of proline aggregation and photosynthetic parameters on seeds of pink variety of C. roseus. The results indicated that the degree of catalase enzyme activity and the amount of proline aggregation increased in plants which were exposed to NiCl2 treatments, especially in high concentrations, while the total protein decreased. The stress of Ni also affected photosynthetic parameters, and decreased the amount of pigments, as well as the efficiency of photosystem II.

  12. Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors.

    Science.gov (United States)

    Carqueijeiro, I; Masini, E; Foureau, E; Sepúlveda, L J; Marais, E; Lanoue, A; Besseau, S; Papon, N; Clastre, M; Dugé de Bernonville, T; Glévarec, G; Atehortùa, L; Oudin, A; Courdavault, V

    2015-11-01

    Catharanthus roseus constitutes the unique source of several valuable monoterpenoid indole alkaloids, including the antineoplastics vinblastine and vincristine. These alkaloids result from a complex biosynthetic pathway encompassing between 30 and 50 enzymatic steps whose characterisation is still underway. The most recent identifications of genes from this pathway relied on a tobacco rattle virus-based virus-induced gene silencing (VIGS) approach, involving an Agrobacterium-mediated inoculation of plasmids encoding the two genomic components of the virus. As an alternative, we developed a biolistic-mediated approach of inoculation of virus-encoding plasmids that can be easily performed by a simple bombardment of young C. roseus plants. After optimisation of the transformation conditions, we showed that this approach efficiently silenced the phytoene desaturase gene, leading to strong and reproducible photobleaching of leaves. This biolistic transformation was also used to silence a previously characterised gene from the alkaloid biosynthetic pathway, encoding iridoid oxidase. Plant bombardment caused down-regulation of the targeted gene (70%), accompanied by a correlated decreased in MIA biosynthesis (45-90%), similar to results obtained via agro-transformation. Thus, the biolistic-based VIGS approach developed for C. roseus appears suitable for gene function elucidation and can readily be used instead of the Agrobacterium-based approach, e.g. when difficulties arise with agro-inoculations or when Agrobacterium-free procedures are required to avoid plant defence responses. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health.

    Science.gov (United States)

    Almagro, Lorena; Fernández-Pérez, Francisco; Pedreño, Maria Angeles

    2015-02-12

    Catharanthus roseus is a medicinal plant belonging to the family Apocynaceae which produces terpenoid indole alkaloids (TIAs) of high medicinal importance. Indeed, a number of activities like antidiabetic, bactericide and antihypertensive are linked to C. roseus. Nevertheless, the high added value of this plant is based on its enormous pharmaceutical interest, producing more than 130 TIAs, some of which exhibit strong pharmacological activities. The most striking biological activity investigated has been the antitumour effect of dimeric alkaloids such as anhydrovinblastine, vinblastine and vincristine which are already in pre-, clinical or in use. The great pharmacological importance of these indole alkaloids, contrasts with the small amounts of them found in this plant, making their extraction a very expensive process. To overcome this problem, researches have looked for alternative sources and strategies to produce them in higher amounts. In this sense, intensive research on the biosynthesis of TIAs and the regulation of their pathways has been developed with the aim to increase by biotechnological approaches, the production of these high added value compounds. This review is focused on the different strategies which improve TIA production, and in the analysis of the beneficial effects that these compounds exert on human health.

  14. Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling.

    Science.gov (United States)

    Verma, Mohit; Ghangal, Rajesh; Sharma, Raghvendra; Sinha, Alok K; Jain, Mukesh

    2014-01-01

    The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes) involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root) of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO) analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats) and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals.

  15. Binary Stress Induces an Increase in Indole Alkaloid Biosynthesis in Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Wei eZhu

    2015-07-01

    Full Text Available Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abundance of proteins related to tricarboxylic acid cycle and cell wall was largely increased; while, that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased. Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of indole alkaloid was two-fold more abundant in treated group compared to that in control. In addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic pathway indicated an up-regulation in their transcription in C. roseus under UV-B irradiation. These results suggest that binary stress might negatively affect the process of photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears to be responsive to binary stress.

  16. Catharanthus roseus mitogen-activated protein kinase 3 confers UV and heat tolerance to Saccharomyces cerevisiae.

    Science.gov (United States)

    Raina, Susheel Kumar; Wankhede, Dhammaprakash Pandhari; Sinha, Alok Krishna

    2013-01-01

    Catharanthus roseus is an important source of pharmaceutically important Monoterpenoid Indole Alkaloids (MIAs). Accumulation of many of the MIAs is induced in response to abiotic stresses such as wound, ultra violet (UV) irradiations, etc. Recently, we have demonstrated a possible role of CrMPK3, a C. roseus mitogen-activated protein kinase in stress-induced accumulation of a few MIAs. Here, we extend our findings using Saccharomyces cerevisiae to investigate the role of CrMPK3 in giving tolerance to abiotic stresses. Yeast cells transformed with CrMPK3 was found to show enhanced tolerance to UV and heat stress. Comparison of CrMPK3 and SLT2, a MAPK from yeast shows high-sequence identity particularly at conserved domains. Additionally, heat stress is also shown to activate a 43 kDa MAP kinase, possibly CrMPK3 in C. roseus leaves. These findings indicate the role of CrMPK3 in stress-induced MIA accumulation as well as in stress tolerance.

  17. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities.

    Science.gov (United States)

    Ponarulselvam, S; Panneerselvam, C; Murugan, K; Aarthi, N; Kalimuthu, K; Thangamani, S

    2012-07-01

    To develop a novel approach for the green synthesis of silver nanoparticles using aqueous leaves extracts of Catharanthus roseus (C. roseus) Linn. G. Don which has been proven active against malaria parasite Plasmodium falciparum (P. falciparum). Characterizations were determined by using ultraviolet-visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. SEM showed the formation of silver nanoparticles with an average size of 35-55 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centred cubic structure of the bulk silver with the broad peaks at 32.4, 46.4 and 28.0. It can be concluded that the leaves of C. roseus can be good source for synthesis of silver nanoparticle which shows antiplasmodial activity against P. falciparum. The important outcome of the study will be the development of value added products from medicinal plants C. roseus for biomedical and nanotechnology based industries.

  18. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus

    Science.gov (United States)

    Yu, Fang; De Luca, Vincenzo

    2013-01-01

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine–vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface. PMID:24019465

  19. Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling.

    Directory of Open Access Journals (Sweden)

    Mohit Verma

    Full Text Available The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals.

  20. PHOTOCHEMICAL INVESTIGATION OF VINBLASTINE IN 43 CULTIVARS OF CATHARANTHUS ROSEUS L.

    Directory of Open Access Journals (Sweden)

    S.E AJADI

    2000-12-01

    Full Text Available Background. Vinblastine is one of the alkaloids extracted from Catharanthus roseus L. which is used for the treatment of Hodgkin's disease, lymphoma, and leukemia in children. In spite of the progresses in the synthesis of many drugs, synthesis of vinblastine is not feasible and it has been extracted from plant so far. In this study we used a screening method to facilitate selection for the best cultivar with a higher yield. Methods. The leaves of the 43 cultivars of C. roseus L was freeze dried and vinblastine was extracted with trifluroacetic acid 0.06% in water. The extraction was analysed by HPLC, using a gradient solvent system. Results and Discussion. The results of this study indicates that the amount of vinblastine is variable in different cultivars. The concentration of vinblastine in cultivar NO. 41 [C. roseus L (G. DON] is 5.1 times mare than the means of vinblastine in all cultivars. The cultivar No. 23 [C. roseus L (Pacifica Punch] has the minimum concentration of this alkaloid.

  1. Characterization of 10-hydroxygeraniol dehydrogenase from Catharanthus roseus reveals cascaded enzymatic activity in iridoid biosynthesis.

    Science.gov (United States)

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V

    2015-02-05

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)(+) dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP(+) yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis.

  2. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus

    Science.gov (United States)

    Zhu, Wei; Yang, Bingxian; Komatsu, Setsuko; Lu, Xiaoping; Li, Ximin; Tian, Jingkui

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abundance of proteins related to tricarboxylic acid cycle and cell wall was largely increased; while, that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased. Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of indole alkaloid was two-fold more abundant in treated group compared to the control. In addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic pathway indicated an up-regulation in their transcription in C. roseus under UV-B irradiation. These results suggest that binary stress might negatively affect the process of photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears to be responsive to binary stress. PMID:26284098

  3. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus.

    Science.gov (United States)

    Liscombe, David K; O'Connor, Sarah E

    2011-11-01

    The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by the Madagascar periwinkle (Catharanthus roseus). Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003-0.01% yields. Metabolic engineering efforts to either improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. A VIGS method was developed herein to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Indole Alkaloids from Catharanthus roseus: Bioproduction and Their Effect on Human Health

    Directory of Open Access Journals (Sweden)

    Lorena Almagro

    2015-02-01

    Full Text Available Catharanthus roseus is a medicinal plant belonging to the family Apocynaceae which produces terpenoid indole alkaloids (TIAs of high medicinal importance. Indeed, a number of activities like antidiabetic, bactericide and antihypertensive are linked to C. roseus. Nevertheless, the high added value of this plant is based on its enormous pharmaceutical interest, producing more than 130 TIAs, some of which exhibit strong pharmacological activities. The most striking biological activity investigated has been the antitumour effect of dimeric alkaloids such as anhydrovinblastine, vinblastine and vincristine which are already in pre-, clinical or in use. The great pharmacological importance of these indole alkaloids, contrasts with the small amounts of them found in this plant, making their extraction a very expensive process. To overcome this problem, researches have looked for alternative sources and strategies to produce them in higher amounts. In this sense, intensive research on the biosynthesis of TIAs and the regulation of their pathways has been developed with the aim to increase by biotechnological approaches, the production of these high added value compounds. This review is focused on the different strategies which improve TIA production, and in the analysis of the beneficial effects that these compounds exert on human health.

  5. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae).

    Science.gov (United States)

    Tiong, Soon Huat; Looi, Chung Yeng; Arya, Aditya; Wong, Won Fen; Hazni, Hazrina; Mustafa, Mohd Rais; Awang, Khalijah

    2015-04-01

    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. EFFECT OF AUXIN AND CYTOKININ ON VINCRISTINE PRODUCTION BY CALLUS CULTURES OF CATHARANTHUS ROSEUS L. (APOCYNACEAE

    Directory of Open Access Journals (Sweden)

    Chinnamadasamy Kalidass

    2009-11-01

    Full Text Available Callus cultures of Catharanthus roseus L. were established to verify whether they produce vincristine as the intact plant. Different growth regulator combinations were applied to Murashige and Skoog (MS medium to influence the level of production of vincristine. The effects of various combinations (0.5 µM to 3.0 µM of auxin and cytokinin on the growth and accumulation of vincristine were investigated. MS medium supplemented with 2,4-Dichlorophenoxy acetic acid (2,4-D 1.0 µM and 6-furfurylaminopurine (Kinetin 1.0 µM was used to support the growth of callus cultures and the maximum amount of dry biomass (598.04 mg was produced after seven weeks of culture. High performance liquid chromatographic (HPLC analysis of methanol extracts from callus cultures of C. roseus revealed that the cultures produced vincristine. The concentrations of the growth regulators alpha-naphthalene acetic acid (NAA and kinetin played a critical role in the production of vincristine.

  7. Biochemical and Ultrastructural Changes in Sida cordifolia L. and Catharanthus roseus L. to Auto Pollution.

    Science.gov (United States)

    Verma, Vijeta; Chandra, Neelam

    2014-01-01

    Auto pollution is the by-product of our mechanized mobility, which adversely affects both plant and human life. However, plants growing in the urban locations provide a great respite to us from the brunt of auto pollution by absorbing the pollutants at their foliar surface. Foliar surface configuration and biochemical changes in plant species, namely, Sida cordifolia L. and Catharanthus roseus L. grown at roadside (polluted site 1, Talkatora; polluted site 2, Charbagh) in Lucknow city and in the garden of the university campus, which has been taken as reference site, were investigated. It was observed that air pollution caused by auto exhaust showed marked alterations in photosynthetic pigments (chlorophyll, carotenoid, and phaeophytin), and relative water content was reduced while antioxidative enzymes like catalase and peroxidase were found to be enhanced. The changes in the foliar configuration reveal marked alteration in epidermal traits, with decreased number of stomata, stomatal indices, and epidermal cells per unit area, while length and breadth of stomata and epidermal cells were found to be increased in leaves samples wich can be used as biomarkers of auto pollution.

  8. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    Science.gov (United States)

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation

    Science.gov (United States)

    Kalaiselvi, Aasaithambi; Roopan, Selvaraj Mohana; Madhumitha, Gunabalan; Ramalingam, C.; Elango, Ganesh

    2015-01-01

    The potential effect of Catharanthus roseus leaf extract for the formation of palladium nanoparticles and its application on dye degradation was discussed. The efficiency of C.roseus leaves are used as a bio-material for the first time as reducing agent. Synthesized palladium nanoparticles were supported by UV-vis spectrometry, XRD, FT-IR and TEM analysis. The secondary metabolites which are responsible for the formation of nanoparticles were identified by GC-MS. The results showed that effect of time was directly related to synthesized nanoparticles and functional groups has a critical role in reducing the metal ions and stabilizing the palladium nanoparticles in an eco-friendly process.

  10. INCORPORATION OF SALICYLATES INTO POLY(L-LACTIDE)

    NARCIS (Netherlands)

    SUPER, H; GRIJPMA, DW; PENNINGS, AJ

    Recent studies have indicated that complications like swelling and inflammation of the surrounding tissue may occur in the late stage of the in vivo degradation of semi-crystalline PLLA bone fixation devices. Incorporation of an anti-inflammatory drug, like a salicylate, in the poly(L-lactide) chain

  11. Studies on effects of salicylic acid and thiourea on biochemical ...

    African Journals Online (AJOL)

    Drought is a problem of water deficit in the soil. It causes restrictions of wheat plants growth and productivity. In the present approach, we explored new methods for drought managment. Wheat grains were presoaked in ~1 mmol salicylic acid (SA). Wheat was left to grow with 40% soil water holding capacity in pots until ...

  12. Does foliar application of salicylic acid protects nitrate reductase and ...

    African Journals Online (AJOL)

    SAM

    2014-06-04

    Jun 4, 2014 ... preserving the activity of NR but was still less than the reference control regardless the cultivar used. Key words: Nitrate ..... Planta. 208:175-180. Khan W, Prithiviraj B, Smith D (2003). Photosynthetic response of corn and soybean to foliar application of salicylates. J. Plant Physiol. 160:485-492. Khodary ...

  13. The Italian contributions to the history of salicylates

    Directory of Open Access Journals (Sweden)

    Giampiero Pasero

    2011-09-01

    Full Text Available It is well-known that the modern history of salicylates began in 1899 when the compound acetylsalicylic acid was registered and introduced commercially as “aspirin” by the Bayer Company of Germany. As a matter of fact, however, remedies made from willow bark had been used to treat fever and rheumatic complaints at least since 1763, when Edward Stone described their efficacy against malarian fever. A number of Italian scientists made significant contributions during the long period of research leading up to the synthesis of acetylsalicylic acid and its widespread use in rheumatic diseases. In this paper we will review the contributions of some of these researchers, beginning with Bartolomeo Rigatelli, who in 1824 used a willow bark extract as a therapeutic agent, denominating it “salino amarissimo antifebbrile” (very bitter antipyretic salt. In the same year, Francesco Fontana described this natural compound, giving it the name “salicina” (salicin. Two other Italian chemists added considerably to current knowledge of the salicylates: Raffaele Piria in 1838, while working as a research fellow in Paris, extracted the chemical compound salicylic acid, and Cesare Bertagnini in 1855 published a detailed description of the classic adverse event associated with salicylate overdoses – tinnitus – which he studied by deliberately ingesting excessive doses himself. Bertagnini and above all Piria also played conspicuous roles in the history of Italy during the period of the Italian Risorgimento, participating as volunteers in the crucial battle of Curtatone and Montanara during the first Italian War of Independence.

  14. Effects of salicylic acid on morphological and physiological ...

    African Journals Online (AJOL)

    To evaluate the effect of different levels of salicylic acid (SA) on yield and some morphological and physiological characteristics of sweet corn hybrids under water stress, this study was conducted in 2015 using split plots in the base of randomized complete block design with three replications. Treatments were included ...

  15. Water-induced quenching of salicylic anion fluorescence

    NARCIS (Netherlands)

    Joshi, H.C.; Gooijer, C.; van der Zwan, G.

    2002-01-01

    Salicylic anion absorption and emission are studied in a variety of solvents and solvent mixtures. The large Stokes shift observed for this anion is taken to be indicative of a rapid excited state proton transfer reaction to its keto form. The changes in the Stokes shift in the various solvents can

  16. Does foliar application of salicylic acid protects nitrate reductase and ...

    African Journals Online (AJOL)

    The present study was conducted to assess whether exogenous applied salicylic acid (SA) as a foliar spray could ameliorate the adverse effects of virus infection in two maize cultivars (maize cv. sabaini and maize cv. Nab El-gamal). The plants were grown under normal field conditions for two weeks in sand clay soil, and ...

  17. 21 CFR 862.3830 - Salicylate test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Salicylate test system. 862.3830 Section 862.3830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...

  18. Dermal morphological changes following salicylic acid peeling and microdermabrasion.

    Science.gov (United States)

    Abdel-Motaleb, Amira A; Abu-Dief, Eman E; Hussein, Mahmoud Ra

    2017-12-01

    Microdermabrasion and chemical peeling are popular, inexpensive, and safe methods for treatment of some skin disorders and to rejuvenate skin. To study the alterations of the dermal connective tissue following salicylic acid peeling and microdermabrasion. Twenty patients were participated in our study. All participants underwent facial salicylic acid 30% peel or microdermabrasion (10 cases in each group) weekly for 6 weeks. Punch biopsies were obtained from the clinically normal skin of the right postauricular region 1 week before treatment (control group). Other punch skin biopsies were obtained 1 week after the end of the treatments from the left postauricular area. This region was treated in a similar way to the adjacent lesional skin (treated group). We used routine histological techniques (H&E stain), special stains (Masson trichrome and orcein stains), and image analyzer to study the alterations of the dermal connective tissues. Our study demonstrates variations in the morphological changes between the control and the treated groups, and between chemical peels and microdermabrasion. Both salicylic acid 30% and microdermabrasion were associated with thickened epidermal layer, shallow dermal papillae, dense collagen, and elastic fibers. There was a significant increase among those treated sites vs control regarding epidermal thickness and collagen thickness. Also, there was a highly statistically significant increase among those treated with salicylic acid vs microdermabrasion regarding the epidermal, collagen, and elastin thickness. Both methods stimulate the repair process. The mechanisms underlying these variations are open for further investigations. © 2017 Wiley Periodicals, Inc.

  19. Effect Of Sodium Salicylate Iontophoresis In The Management Of ...

    African Journals Online (AJOL)

    Effect Of Sodium Salicylate Iontophoresis In The Management Of Hip Pain In Patients With Sickle Cell Disease. ... Nigerian Quarterly Journal of Hospital Medicine ... It is becoming popular as an alternative to oral and injection delivery system because it is non-invasive, non-traumatic, and painless and also because of its ...

  20. Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid.

    Science.gov (United States)

    Peña, M A; Escalera, B; Reíllo, A; Sánchez, A B; Bustamante, P

    2009-03-01

    The solubility of phenacetin, salicylic acid, and probenecid in ethanol-water and ethanol-ethyl acetate mixtures at several temperatures (15-40 degrees C) was measured. The solubility profiles are related to medium polarity changes. The apparent thermodynamic magnitudes and enthalpy-entropy relationships are related to the cosolvent action. Salicylic acid and probenecid show a single peak against the solubility parameter delta(1) of both solvent mixtures, at 40% (delta(1) = 21.70 MPa(1/2)) and 30% (delta(1) = 20.91 MPa(1/2)) ethanol in ethyl acetate, respectively. Phenacetin displays two peaks at 60% ethanol in ethyl acetate (23.30 MPa(1/2)) and 90% ethanol in water (delta(1) = 28.64 MPa(1/2)). The apparent enthalpies of solution display a maximum at 30% (phenacetin and salicylic acid) and 40% (probenecid) ethanol in water, respectively. Two different mechanisms, entropy at low ethanol ratios, and enthalpy at high ethanol ratios control the solubility enhancement in the aqueous mixture. In the nonaqueous mixture (ethanol-ethyl acetate) enthalpy is the driving force throughout the whole solvent composition for salicylic acid and phenacetin. For probenecid, the dominant mechanism shifts from entropy to enthalpy as the ethanol in ethyl acetate concentration increases. The enthalpy-entropy compensation plots corroborate the different mechanisms involved in the solubility enhancement by cosolvents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Evaluation of Some Starches as Disintegrants in Sodium Salicylate ...

    African Journals Online (AJOL)

    The disintegrant properties of official maize and potato starches and locally produced cassava starch in sodium salicylate tablet formulations were studied. The disintegrants were added intragranularly in each batch. Concentration range of 5 % to 15 % w/w of each disintegrant was used. In vitro dissolution profile, uniformity ...

  2. [Reye's syndrome--a severe complication of salicylate therapy].

    Science.gov (United States)

    Vengerovskiĭ, A I; Baturina, N O; Saratikov, A S

    2000-01-01

    Clinical and experimental data are reviewed on the Reye's syndrome--a heavy complication accompanying the therapy of viral infections in children by salicylates. Disorders in the bioenergetics of fatty acid oxidation and ammonia utilization are considered in the context of clinical manifestations of the Reye's syndrome.

  3. Effects of salicylic acid on monoterpene production and antioxidant ...

    African Journals Online (AJOL)

    Salicylic acid (SA) plays important roles in plant defense responses. However, little is available about its effects on monoterpene responses. Therefore, monoterpene contents and antioxidant systems were measured three days after foliar application of SA with different concentrations in Houttuynia cordata. SA at low ...

  4. Impact of salicylic acid on antioxidants, biomass and osmotic ...

    African Journals Online (AJOL)

    USER

    2013-08-14

    Aug 14, 2013 ... Key words: Antioxidants, growth, salicylic acid, water stress. INTRODUCTION ... Prolonged water stress affects virtually all metabolic processes and often results in severe reductions in plant productivity and death of plants. The effect of .... increases the conservation of water in tomato and ama- ranth during ...

  5. Salicylic acid pretreatment reduces chilling injury of cactus pear fruit ...

    African Journals Online (AJOL)

    loook

    2012-03-22

    Mar 22, 2012 ... Effect of pre-storage salicylic acid, calcium chloride and 2 .... variety were harvested on 17 July, 2011 from uniform plants growing in a commercial ... index was calculated using the following formula: CI = ∑ (value of hedonic ...

  6. Therapeutic Efficacy of Methyl Salicylate Phonophoresis in the ...

    African Journals Online (AJOL)

    Result: The difference in the severity of pain before and after treatment was statistically significant(P < 0.05). 13(93%) subjects were pain free and fit for discharge after about two-half weeks of treatment. Conclusion: The study has demonstrated the efficacy of methyl salicylate phonophoresis in the management of ...

  7. Influence of Salicylic Acid on the Antimicrobial Potential of Stevia ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of salicylic acid (SA) on the antimicrobial profile of Stevia leaf extracts against soybean seed-borne pathogens. Methods: Stevia seeds were planted in a greenhouse and SA foliar applied after six weeks on the whole plant at concentrations of 0 and 0.1 g L-1. The extracts of the plant leaf ...

  8. Evaluation of the antifungal properties of nystatin-salicylic acid ...

    African Journals Online (AJOL)

    The in vitro antifungal activity of nystatin-salicylic acid combinations against clinical isolates of Candida albicans was investigated separately using the overlay inoculum susceptibility disc, the decimal assay for additively (DDA) and the rate of time kill methods. The minimum inhibitory concentrations (MIC) of the individual ...

  9. How salicylic acid takes transcriptional control over jasmonic acid signaling

    NARCIS (Netherlands)

    Caarls, Lotte; Pieterse, Corné M J; van Wees, Saskia C M

    2015-01-01

    Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between

  10. Evaluation of the Nutritive and Organoleptic Values of Food Products Developed by Incorporated Catharanthus roseus (Sadabahar Fresh Leaves Explore Their Hypoglycemic Potential

    Directory of Open Access Journals (Sweden)

    Gita Bisla

    2014-01-01

    Full Text Available Diabetes becomes a real problem of public health in developing countries, where its prevalence is increasing steadily. Diabetes mellitus can be found in almost every population in the world. Since the Ayurvedic practice started in India, plants are being used in the cure of diseases. Although the Catharanthus roseus have been used for their alleged health benefits and avail their hypoglycemic effect, used as medicine by diabetics. Medicinal plants have rarely been incorporated in food preparations. To fill these lacunae, food products were prepared by using Catharanthus roseus (Sadabahar fresh leaves with hypoglycemic properties. Commonly consumed recipes in India are prepared for diabetic patients and were developed at different levels at 3 g, 4 g, and 6 g per serving. Food product development and their acceptability appraisal through organoleptic evaluation were carried out by semitrained panel comprising 15 trained panelists from the department of Food Science and Nutrition, Banasthali University. Seven products were developed by incorporating Catharanthus roseus fresh leaves. Nine point hedonic scale was used as a medium to know about the product acceptability at various variances. All products are moderately acceptable at different concentrations except product fare “6 g” which was more acceptable than the standard. Among the three variations of incorporating the Catharanthus roseus (Sadabahar Leaves, 3 g variation is more acceptable than other variations.

  11. Effects of aluminum on DNA synthesis, cellular polyamines, polyamine biosynthetic enzymes and inorganic ions in cell suspension cultures of a woody plant, Catharanthus roseus

    Science.gov (United States)

    Rakesh Minocha; Subhash C. Minocha; Stephanie L. Long; Walter C. Shortle

    1992-01-01

    Increased aluminum (Al) solubility in soil waters due to acid precipitation has aroused considerable interest in the problem of Al toxicity in plants. In the present study, an in vitro suspension culture system of Catharanthus roseus (L.) G. Don was used to analyze the effects of aluminum on several biochemical processes in these cells. The aliphatic...

  12. Evaluation of the nutritive and organoleptic values of food products developed by incorporated Catharanthus roseus (Sadabahar) fresh leaves explore their hypoglycemic potential.

    Science.gov (United States)

    Bisla, Gita; Choudhary, Shailza; Chaudhary, Vijeta

    2014-01-01

    Diabetes becomes a real problem of public health in developing countries, where its prevalence is increasing steadily. Diabetes mellitus can be found in almost every population in the world. Since the Ayurvedic practice started in India, plants are being used in the cure of diseases. Although the Catharanthus roseus have been used for their alleged health benefits and avail their hypoglycemic effect, used as medicine by diabetics. Medicinal plants have rarely been incorporated in food preparations. To fill these lacunae, food products were prepared by using Catharanthus roseus (Sadabahar) fresh leaves with hypoglycemic properties. Commonly consumed recipes in India are prepared for diabetic patients and were developed at different levels at 3 g, 4 g, and 6 g per serving. Food product development and their acceptability appraisal through organoleptic evaluation were carried out by semitrained panel comprising 15 trained panelists from the department of Food Science and Nutrition, Banasthali University. Seven products were developed by incorporating Catharanthus roseus fresh leaves. Nine point hedonic scale was used as a medium to know about the product acceptability at various variances. All products are moderately acceptable at different concentrations except product fare "6 g" which was more acceptable than the standard. Among the three variations of incorporating the Catharanthus roseus (Sadabahar) Leaves, 3 g variation is more acceptable than other variations.

  13. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  14. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate.

    Science.gov (United States)

    Tieman, Denise; Zeigler, Michelle; Schmelz, Eric; Taylor, Mark G; Rushing, Sarah; Jones, Jeffrey B; Klee, Harry J

    2010-04-01

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-methyltransferases. In order to elaborate the mechanism of MeSA synthesis in tomato, we screened a set of O-methyltransferases for activity against multiple substrates. An enzyme that specifically catalyzes methylation of SA, SlSAMT, as well as enzymes that act upon jasmonic acid and indole-3-acetic acid were identified. Analyses of transgenic over- and under-producing lines validated the function of SlSAMT in vivo. The SlSAMT gene was mapped to a position near the bottom of chromosome 9. Analysis of MeSA emissions from an introgression population derived from a cross with Solanum pennellii revealed a quantitative trait locus (QTL) linked to higher fruit methyl salicylate emissions. The higher MeSA emissions associate with significantly higher SpSAMT expression, consistent with SAMT gene expression being rate limiting for ripening-associated MeSA emissions. Transgenic plants that constitutively over-produce MeSA exhibited only slightly delayed symptom development following infection with the disease-causing bacterial pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). Unexpectedly, pathogen-challenged leaves accumulated significantly higher levels of SA as well as glycosylated forms of SA and MeSA, indicating a disruption in control of the SA-related metabolite pool. Taken together, the results indicate that SlSAMT is critical for methyl salicylate synthesis and methyl salicylate, in turn, likely has an important role in controlling SA synthesis.

  15. Terpenoid indole alkaloid production by Catharanthus roseus hairy roots induced by Agrobacterium tumefaciens harboring rol ABC genes.

    Science.gov (United States)

    Hong, Seung-Beom; Peebles, Christie A M; Shanks, Jacqueline V; San, Ka-Yiu; Gibson, Susan I

    2006-02-05

    We have established Catharanthus roseus hairy root cultures transgenic for the rol ABC genes from T(L)-DNA of the agropine-type Agrobacterium rhizogenes strain A4. The rol ABC hairy root lines exhibit a wild-type hairy root syndrome in terms of growth and morphology on solid medium. However, they differ from wild-type hairy root lines in that they more frequently have excellent adaptability to liquid medium and do not appear to form calli during cultivation. Moreover, they do not produce detectable levels of mannopine and agropine which, in contrast, are often synthesized abundantly in wild-type hairy root lines. The absence of these opines does not appear to cause the rol ABC lines to have higher levels of terpenoid indole alkaloids than wild-type hairy root lines. Unlike wild-type lines, rol ABC lines produce very similar levels of total alkaloids despite wide variations in individual alkaloid contents. This work demonstrates that the three genes rol ABC are sufficient to induce high-quality hairy roots in Catharanthus roseus. (c) 2005 Wiley Periodicals, Inc.

  16. Alterations in lipid peroxidation, electrolyte leakage, and proline metabolism in Catharanthus roseus under treatment with triadimefon, a systemic fungicide.

    Science.gov (United States)

    Jaleel, Cheruth Abdul; Gopi, Ragupathi; Panneerselvam, Rajaram

    2007-12-01

    Triadimefon (TDM), a systemic fungicide with non-traditional plant-growth regulator properties, was administered to Catharanthus roseus (L.) G. Don. plants in order to determine its effects on oxidative injury in terms of H2O2 content, lipid peroxidation (LPO), electrolyte leakage (EL), protein and amino acid contents, as well as proline metabolism. The LPO, estimated as thiobarbituric acid-reactive substances (TBARS), decreased under TDM treatment. It was found that H2O2 and EL were reduced under TDM treatment when compared to control. TDM treatment caused a significant increase in the protein and amino acid contents. Glycine betaine (GB) and proline (PRO) significantly accumulated in C. roseus under stress arisen from fungicide applications. Proline oxidase (PROX) activities reduce the PRO content and gamma-glutamyl kinase (gamma-GK) accelerates the synthesis of PRO. Under TDM treatment, the activity of PROX decreased and the gamma-GK activity increased. From our results, it is suggested that fungicide triadimefon causes activation of metabolic processes in the medicinal plant Catharanthus roseus. These findings are of great significance for the cultivation of this medicinal plant, as it was previously reported that TDM causes an enhancement of antioxidant metabolism and ajmalicine production in C. roseus.

  17. A Novel AP2/ERF Transcription Factor CR1 Regulates the Accumulation of Vindoline and Serpentine in Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Jiaqi Liu

    2017-12-01

    Full Text Available As one type of the most important alkaloids in the world, terpenoid indole alkaloids (TIAs show a wide range of pharmaceutical activities that are beneficial for clinical treatments. Catharanthus roseus produces approximately 130 identified TIAs and is considered to be a model plant to study TIA biosynthesis. In order to increase the production of high medical value metabolites whose yields are extremely low in C. roseus, genetic engineering combined with transcriptional regulation has been applied in recent years. By using bioinformatics which is based on RNA sequencing (RNA-seq data from methyl jasmonate (MeJA-treated C. roseus as well as phylogenetic analysis, the present work aims to screen candidate genes that may be involved in the regulation of TIA biosynthesis, resulting in a novel AP2/ERF transcription factor, CR1 (Catharanthus roseus 1. Subsequently, virus-induced gene silencing (VIGS of CR1 was carried out to identify the involvement of CR1 in the accumulations of several TIAs and quantitative real-time PCR (qRT-PCR was then applied to detect the expression levels of 7 genes in the related biosynthetic pathway in silenced plants. The results show that all the 7 genes were upregulated in CR1-silenced plants. Furthermore, metabolite analyses indicate that silencing CR1 could increase the accumulations of vindoline and serpentine in C. roseus. These results suggest a novel negative regulator which may be involved in the TIAs biosynthetic pathway.

  18. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis.

    Science.gov (United States)

    Pandey, Shiv S; Singh, Sucheta; Babu, C S Vivek; Shanker, Karuna; Srivastava, N K; Shukla, Ashutosh K; Kalra, Alok

    2016-05-25

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229-403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant.

  19. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis

    Science.gov (United States)

    Pandey, Shiv S.; Singh, Sucheta; Babu, C. S. Vivek; Shanker, Karuna; Srivastava, N. K.; Shukla, Ashutosh K.; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  20. Yeast extract elicitation increases vinblastine and vincristine yield in protoplast derived tissues and plantlets in Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Mehpara Maqsood

    Full Text Available Abstract Catharanthus roseus (L. G. Don, Apocynaceae, is an immensely important medicinal plant, produces a variety of anticancerous compounds. The yield of two most investigated alkaloids vinblastine and vincristine is unfortunately very low. A vast array of technologies including elicitation have recently been used to enrich Catharanthus alkaloid in culture. Yeast extract is a biotic elicitor, the polysaccharide and the peptide moiety have been recognized as a signalling element in enriching secondary metabolites. In this study, the yeast extract elicitation on vinblastine and vincristine was studied in various protoplast derived tissues and plantlets. Four different yeast extract treatments (T1 = 0.5 g/l, T2 = 1.0 g/l, T3 = 1.5 g/l and T4 = 2.0 g/l were prepared and used. The alkaloid was quantified and a comparative account of yield were presented by the use of High performance thin layer chromatography. The yeast extract amendment in medium improved vinblastine and vincristine yield in cultivating tissues, maximum being in germinating embryos and in in vitro raised leaf. The highest yield was in T3 (1.5 mg/l in which 22.74% vinblastine and 48.49% vincristine enrichment was noted in germinating embryos; the enhancement was however, treatment-specific. Antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase activities were investigated as addition of yeast extract caused cellular stress and had enriched level of alkaloids.

  1. A Novel AP2/ERF Transcription Factor CR1 Regulates the Accumulation of Vindoline and Serpentine in Catharanthus roseus.

    Science.gov (United States)

    Liu, Jiaqi; Gao, Fangyuan; Ren, Juansheng; Lu, Xianjun; Ren, Guangjun; Wang, Rui

    2017-01-01

    As one type of the most important alkaloids in the world, terpenoid indole alkaloids (TIAs) show a wide range of pharmaceutical activities that are beneficial for clinical treatments. Catharanthus roseus produces approximately 130 identified TIAs and is considered to be a model plant to study TIA biosynthesis. In order to increase the production of high medical value metabolites whose yields are extremely low in C. roseus, genetic engineering combined with transcriptional regulation has been applied in recent years. By using bioinformatics which is based on RNA sequencing (RNA-seq) data from methyl jasmonate (MeJA)-treated C. roseus as well as phylogenetic analysis, the present work aims to screen candidate genes that may be involved in the regulation of TIA biosynthesis, resulting in a novel AP2/ERF transcription factor, CR1 (Catharanthus roseus 1). Subsequently, virus-induced gene silencing (VIGS) of CR1 was carried out to identify the involvement of CR1 in the accumulations of several TIAs and quantitative real-time PCR (qRT-PCR) was then applied to detect the expression levels of 7 genes in the related biosynthetic pathway in silenced plants. The results show that all the 7 genes were upregulated in CR1-silenced plants. Furthermore, metabolite analyses indicate that silencing CR1 could increase the accumulations of vindoline and serpentine in C. roseus. These results suggest a novel negative regulator which may be involved in the TIAs biosynthetic pathway.

  2. Production Pattern of Ajmalicine in Catharanthus roseus (L. G. Don. Cell Aggregates Culture in the Airlift Bioreactor

    Directory of Open Access Journals (Sweden)

    RIZKITA RACHMI ESYANTI

    2006-12-01

    Full Text Available A research has been conducted to optimize the rate of aeration and initial weight of cell aggregates in the production of ajmalicine in Catharanthus roseus cell culture in airlift bioreactor. Catharanthus roseus culture were grown in Zenk medium with the addition of 2.50 x 10-6 M naphthalene acetic acid (NAA and 10-5 M benzyl amino purine (BAP. Cell aggregates were sub-cultured two times before transferring 20 and 30 g/fw of cell aggregates into bioreactor, respectively, and aerated with the rate of 0.25 l min-1 and 0.34 l min-1, respectively. The pattern of ajmalicine production in bioreactor were observed in every three days within 24 days. Qualitative and quantitative analysis were conducted using HPLC connected to Cromatopac CL-7A Plus. The results showed that the cell aggregates and medium contain ajmalicine. The highest concentration was obtained in combination of 30 g/fw and 0.34 l min-1 aeration compare to 20 g/fw - 0.25 l min-1, 20 g/fw - 0.34 l min-1, as well as 30 g/fw – 0.25 l min-1. The highest ajmalicine content in cell aggregates was obtained on the 12 days (79.23 µg g-1 whilst in medium was obtained in the 18th days (981.15 µg l-1.

  3. Identification of Flavonoids (Quercetin, Gallic acid and Rutin from Catharanthus roseus Plant Parts using Deep Eutectic Solvent

    Directory of Open Access Journals (Sweden)

    Asma Nisar

    2017-02-01

    Full Text Available Green technology is the most important topic in the pharmaceutical field because it reduces the cost of medicines and minimizes the environmental impact of the field and is better for human health and safety. Green chemistry emphasizes that the solvent should be nontoxic, safe, cheap, green, readily available, recyclable, and biodegradable. Deep eutectic solvents, a new type of green solvent, have some renowned properties—for instance, high thermal stability, low vapor pressure, low cost, biodegradability, and high viscosity. In this study, deep eutectic solvents made up of choline chloride-glycerol (1:2 were used for the extraction and isolation of flavonoid (rutin, gallic acid, and quercetin from Catharanthus roseus plant parts, flower petal, leaves, stem, and root. The amounts of rutin and quercetin in flower petal are 29.46 and 6.51%, respectively, whereas, rutin, gallic acid, and quercetin amounts in leaves are 25.16, 8.57, and 10.47%, respectively. In stem the amounts of rutin, gallic acid, and quercetin are 13.02, 5.89, and 7.47%, respectively. In root, only quercetin has been obtained that is 13.49%. The HPLC is an analytical method, which was found to be an excellent technique for determination of rutin, gallic acid, and quercetin using deep eutectic solvent extraction from plant parts of Catharanthus roseus.

  4. Evaluation of phytoremediation of petroleum hydrocarbon and heavy metals with using Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Mehri Askary Mehrabadi

    2014-08-01

    Full Text Available Crude oil pollution is an inevitable worldwide phenomenon in oil producing and consuming areas that stems from human error, accidental discharge and other sources. The aim of this study was to evaluate the phytoremediation potential of vinca in petroleum-polluted soil. The experiment was laid out as a completely randomized design in 3 replications with different concentrations of crude oil (0, 0.5, 1, 2, 3 and 4 % V/W in pot planting stage. At the end of the 70-day period, soil samples were analyzed for total hydrocarbons removal. Contents of pb, zn and Ni were measured by atomic absorption from the soils and the leaves. Statistical analysis of data were performed on the basis of duncan’s test and by using of SPSS16 software. In concentrations higher than 3 % no growth was observed. The growth parameters such as stem length, stem fresh and dry matter decreased progressively from 0.5-3 % crude oil in soil. The results showed heavy metal accumulation in plant leaves and reduction of them in the soil. Heavy metals containing zinc, lead and nickel in plant increased in different concentration of crude oil. Total hydrocarbons and heavy metals containing zinc, lead and nickel reduced were in planted contaminated soil. This study showed that Periwinkle was able to grow and survive in low concentrations of oil and reduced pollutants in the soil. Based upon these results, Catharanthus roseus can be used as phytoremediator of petroleum-contaminated soil in low concentrations.

  5. CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data.

    Science.gov (United States)

    Van Moerkercke, Alex; Fabris, Michele; Pollier, Jacob; Baart, Gino J E; Rombauts, Stephane; Hasnain, Ghulam; Rischer, Heiko; Memelink, Johan; Oksman-Caldentey, Kirsi-Marja; Goossens, Alain

    2013-05-01

    The medicinal plant Madagascar periwinkle (Catharanthus roseus) synthesizes numerous terpenoid indole alkaloids (TIAs), such as the anticancer drugs vinblastine and vincristine. The TIA pathway operates in a complex metabolic network that steers plant growth and survival. Pathway databases and metabolic networks reconstructed from 'omics' sequence data can help to discover missing enzymes, study metabolic pathway evolution and, ultimately, engineer metabolic pathways. To date, such databases have mainly been built for model plant species with sequenced genomes. Although genome sequence data are not available for most medicinal plant species, next-generation sequencing is now extensively employed to create comprehensive medicinal plant transcriptome sequence resources. Here we report on the construction of CathaCyc, a detailed metabolic pathway database, from C. roseus RNA-Seq data sets. CathaCyc (version 1.0) contains 390 pathways with 1,347 assigned enzymes and spans primary and secondary metabolism. Curation of the pathways linked with the synthesis of TIAs and triterpenoids, their primary metabolic precursors, and their elicitors, the jasmonate hormones, demonstrated that RNA-Seq resources are suitable for the construction of pathway databases. CathaCyc is accessible online (http://www.cathacyc.org) and offers a range of tools for the visualization and analysis of metabolic networks and 'omics' data. Overlay with expression data from publicly available RNA-Seq resources demonstrated that two well-characterized C. roseus terpenoid pathways, those of TIAs and triterpenoids, are subject to distinct regulation by both developmental and environmental cues. We anticipate that databases such as CathaCyc will become key to the study and exploitation of the metabolism of medicinal plants.

  6. Selection and validation of reference genes for transcript normalization in gene expression studies in Catharanthus roseus.

    Science.gov (United States)

    Pollier, Jacob; Vanden Bossche, Robin; Rischer, Heiko; Goossens, Alain

    2014-10-01

    Quantitative Real-Time PCR (qPCR), a sensitive and commonly used technique for gene expression analysis, requires stably expressed reference genes for normalization of gene expression. Up to now, only one reference gene for qPCR analysis, corresponding to 40S Ribosomal protein S9 (RPS9), was available for the medicinal plant Catharanthus roseus, the only source of the commercial anticancer drugs vinblastine and vincristine. Here, we screened for additional reference genes for this plant species by mining C. roseus RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana and qualified as superior reference genes for this model plant species. Based on this, eight candidate C. roseus reference genes were identified and, together with RPS9, evaluated by performing qPCR on a series of different C. roseus explants and tissue cultures. NormFinder, geNorm and BestKeeper analyses of the resulting qPCR data revealed that the orthologs of At2g28390 (SAND family protein, SAND), At2g32170 (N2227-like family protein, N2227) and At4g26410 (Expressed protein, EXP) had the highest expression stability across the different C. roseus samples and are superior as reference genes as compared to the traditionally used RPS9. Analysis of publicly available C. roseus RNA-Seq data confirmed the expression stability of SAND and N2227, underscoring their value as reference genes for C. roseus qPCR analysis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Synergistic and cytotoxic action of indole alkaloids produced from elicited cell cultures of Catharanthus roseus.

    Science.gov (United States)

    Fernández-Pérez, Francisco; Almagro, Lorena; Pedreño, Maria A; Gómez Ros, Laura V

    2013-03-01

    Catharanthus roseus (L.) G. Don (Apocynaceae) is a medicinal plant that produces more than 130 alkaloids, with special attention given to the production of the anti-hypertensive monomeric indole alkaloids, serpentine and ajmalicine, and the antitumor dimeric alkaloids, vinblastine and vincristine. This study evaluated the cytotoxic activity of the indole alkaloid-enriched bioactive extract obtained from suspension cultured-cells of C. roseus elicited with methyl jasmonate (MJ) and cyclodextrins (CDs) in three cell lines: JURKAT E.6 human lymphocytic leukemia, THP-1 human monocytic leukemia and BL 1395 non-tumor human B-cell line. An indole alkaloid-enriched bioactive extract was obtained from C. roseus cell cultures elicited with MJ and CDs. The indole alkaloids were identified using an HPLC-diode array system coupled to a time-of-flight mass spectrometer using electrospray ionization (ESI) source. The cytotoxic assays were made using the colorimetric assay 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-S-[(phenylamino)carbonyl]-2 tetrazolium hydroxide (XTT). Four indole alkaloids were identified (catharanthine, ajmalicine, tabersonine and lochnericine) but only catharanthine and ajmalicine were quantified. The concentration of the indole alkaloid-enriched bioactive extract that inhibited cell growth by 50% was 211 and 210 ng/mL for the JURKAT E.6 and THP-1 cell lines, respectively. The results confirm that the powerful antitumor activity of this indole alkaloid-enriched bioactive extract is not due to the effect of a single compound but depends on the synergistic action of the four compounds identified.

  8. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus.

    Science.gov (United States)

    Huang, Lili; Li, Jia; Ye, Hechun; Li, Changfu; Wang, Hong; Liu, Benye; Zhang, Yansheng

    2012-11-01

    Catharanthus roseus is an important medicinal plant and the sole commercial source of monoterpenoid indole alkaloids (MIA), anticancer compounds. Recently, triterpenoids like ursolic acid and oleanolic acid have also been found in considerable amounts in C. roseus leaf cuticular wax layer. These simple pentacyclic triterpenoids exhibit various pharmacological activities such as anti-inflammatory, anti-tumor and anti-microbial properties. Using the EST collection from C. roseus leaf epidermome ( http://www.ncbi.nlm.nih.gov/dbEST ), we have successfully isolated a cDNA (CrAS) encoding 2,3-oxidosqualene cyclase (OSC) and a cDNA (CrAO) encoding amyrin C-28 oxidase from the leaves of C. roseus. The functions of CrAS and CrAO were analyzed in yeast (Saccharomyces cerevisiae) systems. CrAS was characterized as a novel multifunctional OSC producing α- and β-amyrin in a ratio of 2.5:1, whereas CrAO was a multifunctional C-28 oxidase converting α-amyrin, β-amyrin and lupeol to ursolic-, oleanolic- and betulinic acids, respectively, via a successive oxidation at the C-28 position of the substrates. In yeast co-expressing CrAO and CrAS, ursolic- and oleanolic acids were detected in the yeast cell extracts, while the yeast cells co-expressing CrAO and AtLUP1 from Arabidopsis thaliana produced betulinic acid. Both CrAS and CrAO genes show a high expression level in the leaf, which was consistent with the accumulation patterns of ursolic- and oleanolic acids in C. roseus. These results suggest that CrAS and CrAO are involved in the pentacyclic triterpene biosynthesis in C. roseus.

  9. Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L.

    Directory of Open Access Journals (Sweden)

    M. Naeem

    2015-10-01

    Full Text Available Catharanthus roseus (L. G. Don (Family Apocynaceae is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. The anticancerous alkaloids, viz. vinblastine and vincristine, are mainly present in the leaves of C. roseus. High demand and low yield of these alkaloids in the plant has led to explore the alternative means for their production. Gamma irradiated sodium alginate (ISA has proved as a plant growth promoting substance for various medicinal and agricultural crops. A pot culture experiment was carried out to explore the effect of ISA on plant growth, physiological activities and production of anticancer alkaloids (vinblastine and vincristine in C. roseus at 120 and 150 days after planting (DAP. Foliar application of ISA (0, 20, 40, 60, 80 and 100 mg L−1 significantly improved the performance of C. roseus. 80 mg L−1 of ISA enhanced the leaf-yield by 25.3 and 30.2% and the herbage-yield by 29.4 and 34.4% at 120 and 150 DAP, respectively, as compared to the control. The spray treatment of ISA at 80 mg L−1 improved the yield of vinblastine by 66.7 and 71.4% and of vincristine by 67.6 and 75.6% at 120 and 150 DAP, respectively, in comparison to the control. As compared to control, the application of ISA at 80 mg L−1 resulted in the maximum swell in the content and yield of vindoline, increasing them by 18.9 and 20.8% and by 81.8 and 87.2% at 120 and 150 DAP, respectively.

  10. [Endophytic bacterial community analysis of Catharanthus roseus and its association with huanglongbing pathogen].

    Science.gov (United States)

    Li, Jia; Wang, Zhongkang; Xie, Pan; Wu, Dong; Yin, Youping

    2012-04-04

    To analyze the microbial diversity in healthy and HLB-affected Catharanthus roseus under manual-grafting conditions and to find the association between the endophytic bacteria and the HLB pathogen. The endophytic bacterial communities were delineated by using the traditional culturable approach and cultivation-independent techniques based on 16S rRNA gene. The endophytic bacteria were isolated from surface-sterilized C. roseus midribs of leaves and phloem of stems and roots by plating and restriction fragment length polymorphism (RFLP). By anaerobic culture, we obtained 67 strains that were identified 29 genus by GenBank. Curtobacterium sp. , Erwinia sp., Bacillus cereus and Brevundimonas sp. , Bacillus sp. were the dominant bacterial population in diseased and healthy C. roseus. However, Staphylococcus equorum was the common dominant isolate in both C. roseus. We picked 188 and 182 positive clones in 16S rDNA libraries of diseased and healthy C. roseus that were respectively restricted by the HaeIII, MspI, RsaI restriction endonuclease. Based on the similarity of the RFLP banding profiles in diseased and healthy C. roseus, we obtained 16, 23 OTUs (Operational Taxonomic Units, OTUs) respectively. In addition to Candidatus Liberibacter asiaticus, Candidatus Liberibacter sp. was the dominant bacterial population only in diseased C. roseus. With the infection of 'Ca. L. asiaticus', the diversity in diseased C. roseus decreased. The endophytic bacteria isolated from diseased and healthy C. roseus are abundant and have remarkable differences in the composition and function, suggesting that its endophytic bacteria might be inhibited by the HLB pathogen.

  11. Transcriptional Regulation and Transport of Terpenoid Indole Alkaloid in Catharanthus roseus: Exploration of New Research Directions.

    Science.gov (United States)

    Liu, Jiaqi; Cai, Junjun; Wang, Rui; Yang, Shihai

    2016-12-28

    As one of the model medicinal plants for exploration of biochemical pathways and molecular biological questions on complex metabolic pathways, Catharanthus roseus synthesizes more than 100 terpenoid indole alkaloids (TIAs) used for clinical treatment of various diseases and for new drug discovery. Given that extensive studies have revealed the major metabolic pathways and the spatial-temporal biosynthesis of TIA in C. roseus plant, little is known about subcellular and inter-cellular trafficking or long-distance transport of TIA end products or intermediates, as well as their regulation. While these transport processes are indispensable for multi-organelle, -tissue and -cell biosynthesis, storage and their functions, great efforts have been made to explore these dynamic cellular processes. Progress has been made in past decades on transcriptional regulation of TIA biosynthesis by transcription factors as either activators or repressors; recent studies also revealed several transporters involved in subcellular and inter-cellular TIA trafficking. However, many details and the regulatory network for controlling the tissue-or cell-specific biosynthesis, transport and storage of serpentine and ajmalicine in root, catharanthine in leaf and root, vindoline specifically in leaf and vinblastine and vincristine only in green leaf and their biosynthetic intermediates remain to be determined. This review is to summarize the progress made in biosynthesis, transcriptional regulation and transport of TIAs. Based on analysis of organelle, tissue and cell-type specific biosynthesis and progresses in transport and trafficking of similar natural products, the transporters that might be involved in transport of TIAs and their synthetic intermediates are discussed; according to transcriptome analysis and bioinformatic approaches, the transcription factors that might be involved in TIA biosynthesis are analyzed. Further discussion is made on a broad context of transcriptional and

  12. Molecular cloning and characterisation of two calmodulin isoforms of the Madagascar periwinkle Catharanthus roseus.

    Science.gov (United States)

    Poutrain, P; Guirimand, G; Mahroug, S; Burlat, V; Melin, C; Ginis, O; Oudin, A; Giglioli-Guivarc'h, N; Pichon, O; Courdavault, V

    2011-01-01

    Involvement of Ca(2+) signalling in regulation of the biosynthesis of monoterpene indole alkaloids (MIA) in Catharanthus roseus has been extensively studied in recent years, albeit no protein of this signalling pathway has been isolated. Using a PCR strategy, two C. roseus cDNAs encoding distinct calmodulin (CAM) isoforms were cloned and named CAM1 and CAM2. The deduced 149 amino acid sequences possess four Ca(2+) binding domains and exhibit a close identity with Arabidopsis CAM isoforms (>91%). The ability of CAM1 and CAM2 to bind Ca(2+) was demonstrated following expression of the corresponding recombinant proteins. Furthermore, transient expression of CAM1-GFP and CAM2-GFP in C. roseus cells showed a typical nucleo-cytoplasm localisation of both CAMs, in agreement with the wide distribution of CAM target proteins. Using RNA blot analysis, we showed that CAM1 and CAM2 genes had a broad pattern of expression in C. roseus organs and are constitutively expressed during a C. roseus cell culture cycle, with a slight inhibitory effect of auxin for CAM1. Using RNA in situ hybridisation, we also detected CAM1 and CAM2 mRNA in the vascular bundle region of young seedling cotyledons. Finally, using specific inhibitors, we also showed that CAMs are required for MIA biosynthesis in C. roseus cells by acting on regulation of expression of genes encoding enzymes that catalyse early steps of MIA biosynthesis, such as 1-deoxy-d-xylulose 5-phosphate reductoisomerase and geraniol 10-hydroxylase. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Transcriptional Regulation and Transport of Terpenoid Indole Alkaloid in Catharanthus roseus: Exploration of New Research Directions

    Directory of Open Access Journals (Sweden)

    Jiaqi Liu

    2016-12-01

    Full Text Available As one of the model medicinal plants for exploration of biochemical pathways and molecular biological questions on complex metabolic pathways, Catharanthus roseus synthesizes more than 100 terpenoid indole alkaloids (TIAs used for clinical treatment of various diseases and for new drug discovery. Given that extensive studies have revealed the major metabolic pathways and the spatial-temporal biosynthesis of TIA in C. roseus plant, little is known about subcellular and inter-cellular trafficking or long-distance transport of TIA end products or intermediates, as well as their regulation. While these transport processes are indispensable for multi-organelle, -tissue and -cell biosynthesis, storage and their functions, great efforts have been made to explore these dynamic cellular processes. Progress has been made in past decades on transcriptional regulation of TIA biosynthesis by transcription factors as either activators or repressors; recent studies also revealed several transporters involved in subcellular and inter-cellular TIA trafficking. However, many details and the regulatory network for controlling the tissue-or cell-specific biosynthesis, transport and storage of serpentine and ajmalicine in root, catharanthine in leaf and root, vindoline specifically in leaf and vinblastine and vincristine only in green leaf and their biosynthetic intermediates remain to be determined. This review is to summarize the progress made in biosynthesis, transcriptional regulation and transport of TIAs. Based on analysis of organelle, tissue and cell-type specific biosynthesis and progresses in transport and trafficking of similar natural products, the transporters that might be involved in transport of TIAs and their synthetic intermediates are discussed; according to transcriptome analysis and bioinformatic approaches, the transcription factors that might be involved in TIA biosynthesis are analyzed. Further discussion is made on a broad context of

  14. Effects of mercury (II) species on cell suspension cultures of catharanthus roseus

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L. (Hangzhou Univ. (China)); Cullen, W.R. (Univ. of British Columbia, Vancouver, British Columbia (Canada))

    1994-11-01

    Mercury has received considerable attention because of its high toxicity. Widespread contamination with mercury poses severe environmental problems despite our extensive knowledge of its toxicity in living systems. It is generally accepted that the toxicity of mercury is related to its oxidation states and species, the organic forms being more toxic than the inorganic forms. In the aquatic environment, the toxicity of mercury depends on the aqueous speciation of the mercuric ion (Hg[sup 2+]). Because of the complex coordination chemistry of mercury in aqueous systems, the nature of the Hg[sup 2+] species present in aquatic environments is influenced greatly by water chemistry (e. g, pH, inorganic ion composition, and dissolved organics). Consequently, the influence of environmental factors on the aqueous speciation of mercury has been the focus of much attention. However, there is very little information available regarding the effects of the species and speciation on Hg (II) toxicity in plant-tissue cultures. Catharanthus roseus (C. roseus), commonly called the Madagascar Periwinkle, is a member of the alkaloid rich family Apocynaceae. The present investigation was concerned with the toxicity of mercury on the growth of C. roseus cell suspension cultures as influenced by mercury (II) species and speciation. The specific objectives of the study were to (a) study the effects of mercury species on the growth of C. roseus cultures from the point of view of environmental biology and toxicology; (b) evaluate the effects of selenate, selenite and selected ligands such as chloride, 1-cysteine in the media on the acute toxicity of mercuric oxide; (c) determine the impact of the initial pH of the culture media on the toxicities of mercuric compounds; (d) discuss the dependence of the toxicity on the chemical species and speciation of Hg (II). 11 refs., 7 figs., 2 tabs.

  15. Simultaneous determination of salicylic acid and salicylamide in biological fluids

    Science.gov (United States)

    Murillo Pulgarín, J. A.; Alañón Molina, A.; Sánchez-Ferrer Robles, I.

    2011-09-01

    A new methodology for the simultaneous determination of salicylic acid and salicylamide in biological fluids is proposed. The strong overlapping of the fluorescence spectra of both analytes makes impossible the conventional fluorimetric determination. For that reason, the use of fluorescence decay curves to resolve mixtures of analytes is proposed; this is a novel technique that provides the benefits in selectivity and sensitivity of the fluorescence decay curves. In order to assess the goodness of the proposed method, a prediction set of synthetic samples were analyzed obtaining recuperation percentages between 98.2 and 104.6%. Finally, a study of the detection limits was done using a new criterion resulting in values for the detection limits of 8.2 and 11.6 μg L -1 for salicylic acid and salicylamide respectively. The validity of the method was tested in human serum and human urine spiked with aliquots of the analytes. Recoveries obtained were 96.2 and 94.5% for salicylic acid and salicylamide respectively.

  16. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato.

    Science.gov (United States)

    Mandal, Sudhamoy; Mallick, Nirupama; Mitra, Adinpunya

    2009-07-01

    We demonstrated that exogenous application of 200 microM salicylic acid through root feeding and foliar spray could induce resistance against Fusarium oxysporum f. sp. Lycopersici (Fol) in tomato. Endogenous accumulation of free salicylic acid in tomato roots was detected by HPLC and identification was confirmed by LC-MS/MS analysis. At 168h of salicylic acid treatment through roots, the endogenous salicylic acid level in the roots increased to 1477ngg(-1) FW which was 10 times higher than control plants. Similarly, the salicylic acid content was 1001ngg(-1) FW at 168h of treatment by foliar spray, which was 8.7 times higher than control plants. The activities of phenylalanine ammonia lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7) were 5.9 and 4.7 times higher, respectively than the control plants at 168h of salicylic acid feeding through the roots. The increase in PAL and POD activities was 3.7 and 3.3 times higher, respectively at 168h of salicylic acid treatments through foliar spray than control plants. The salicylic acid-treated tomato plants challenged with Fol exhibited significantly reduced vascular browning and leaf yellowing wilting. The mycelial growth of Fol was not significantly affected by salicylic acid. Significant increase in basal level of salicylic acid in noninoculated plants indicated that tomato root system might have the capacity to assimilate and distribute salicylic acid throughout the plant. The results indicated that the induced resistance observed in tomato against Fol might be a case of salicylic acid-dependent systemic acquired resistance.

  17. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid

    Directory of Open Access Journals (Sweden)

    Bronze-Uhle ES

    2016-12-01

    Full Text Available ES Bronze-Uhle,1 BC Costa,1 VF Ximenes,2 PN Lisboa-Filho1 1Department of Physics, São Paulo State University (Unesp, School of Sciences, Bauru, São Paulo, Brazil; 2Department of Chemistry, São Paulo State University (Unesp, School of Sciences, Bauru, São Paulo, Brazil Abstract: Bovine serum albumin (BSA is highly water soluble and binds drugs or inorganic substances noncovalently for their effective delivery to various affected areas of the body. Due to the well-defined structure of the protein, containing charged amino acids, albumin nanoparticles (NPs may allow electrostatic adsorption of negatively or positively charged molecules, such that substantial amounts of drug can be incorporated within the particle, due to different albumin-binding sites. During the synthesis procedure, pH changes significantly. This variation modifies the net charge on the surface of the protein, varying the size and behavior of NPs as the drug delivery system. In this study, the synthesis of BSA NPs, by a desolvation process, was studied with salicylic acid (SA as the active agent. SA and salicylates are components of various plants and have been used for medication with anti-inflammatory, antibacterial, and antifungal properties. However, when administered orally to adults (usual dose provided by the manufacturer, there is 50% decomposition of salicylates. Thus, there has been a search for some time to develop new systems to improve the bioavailability of SA and salicylates in the human body. Taking this into account, during synthesis, the pH was varied (5.4, 7.4, and 9 to evaluate its influence on the size and release of SA of the formed NPs. The samples were analyzed using field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, zeta potential, and dynamic light scattering. Through fluorescence, it was possible to analyze the release of SA in vitro in phosphate-buffered saline solution. The results of

  18. Genome-wide identification and analysis of Catharanthus roseus RLK1-like kinases in rice.

    Science.gov (United States)

    Nguyen, Quynh-Nga; Lee, Yang-Seok; Cho, Lae-Hyeon; Jeong, Hee-Jeong; An, Gynheung; Jung, Ki-Hong

    2015-03-01

    A genome-wide survey of Catharanthus roseus receptor-like kinase1-like kinases (CrRLK1Ls) in rice revealed that the pattern of expression by some CrRLK1Ls is controlled by drought or circadian rhythms. This is probably accomplished through the functioning of Gigantea ( OsGI ). Such findings provide a novel angle for using CrRLK1Ls to study the drought-stress response and circadian regulation. The 17 CrRLK1L members of a novel RLK family have been identified in Arabidopsis. Each carries a putative extracellular carbohydrate-binding malectin-like domain. However, their roles in rice, a widely consumed staple food, are not well understood. To investigate the functions of CrRLK1Ls in rice, we utilized phylogenomics data obtained through anatomical and diurnal meta-expression analyses. This information was integrated with a large set of public microarray data within the context of the rice CrRLK1L family phylogenic tree. Chromosomal locations indicated that 3 of 16 genes were tandem-duplicated, suggesting possible functional redundancy within this family. However, integrated diurnal expression showed functional divergence between two of three genes, i.e., peak expression was detected during the day for OsCrRLK1L2, but during the night for OsCrRLK1L3. We found it interesting that OsCrRLK1L2 expression was repressed in osgigantea (osgi) mutants, which suggests that it could function downstream of OsGI. Network analysis associated with OsCrRLK1L2 and OsGI suggested a novel circadian regulation mechanism mediated by OsGI. In addition, two of five OsCrRLK1Ls preferentially expressed in the roots were stimulated by drought, suggesting a potential role for this family in water-use efficiency. This preliminary identification of CrRLK1Ls and study of their expression in rice will facilitate further functional classifications and applications in plant production.

  19. Development of efficient catharanthus roseus regeneration and transformation system using agrobacterium tumefaciens and hypocotyls as explants

    Directory of Open Access Journals (Sweden)

    Wang Quan

    2012-06-01

    Full Text Available Abstract Background As a valuable medicinal plant, Madagascar periwinkle (Catharanthus roseus produces many terpenoid indole alkaloids (TIAs, such as vindoline, ajamlicine, serpentine, catharanthine, vinblastine and vincristine et al. Some of them are important components of drugs treating cancer and hypertension. However, the yields of these TIAs are low in wild-type plants, and the total chemical synthesis is impractical in large scale due to high-cost and their complicated structures. The recent development of metabolic engineering strategy offers a promising solution. In order to improve the production of TIAs in C. roseus, the establishment of an efficient genetic transformation method is required. Results To develop a genetic transformation method for C. roseus, Agrobacterium tumefaciens strain EHA105 was employed which harbors a binary vector pCAMBIA2301 containing a report β-glucuronidase (GUS gene and a selectable marker neomycin phosphotransferase II gene (NTPII. The influential factors were investigated systematically and the optimal transformation condition was achieved using hypocotyls as explants, including the sonication treatment of 10 min with 80 W, A. tumefaciens infection of 30 min and co-cultivation of 2 d in 1/2 MS medium containing 100 μM acetosyringone. With a series of selection in callus, shoot and root inducing kanamycin-containing resistance media, we successfully obtained stable transgenic regeneration plants. The expression of GUS gene was confirmed by histochemistry, polymerase chain reaction, and genomic southern blot analysis. To prove the efficiency of the established genetic transformation system, the rate-limiting gene in TIAs biosynthetic pathway, DAT, which encodes deacetylvindoline-4-O-acetyltransferase, was transferred into C. roseus using this established system and 9 independent transgenic plants were obtained. The results of metabolite analysis using high performance liquid chromatography (HPLC

  20. Development of efficient Catharanthus roseus regeneration and transformation system using agrobacterium tumefaciens and hypocotyls as explants.

    Science.gov (United States)

    Wang, Quan; Xing, Shihai; Pan, Qifang; Yuan, Fang; Zhao, Jingya; Tian, Yuesheng; Chen, Yu; Wang, Guofeng; Tang, Kexuan

    2012-06-29

    As a valuable medicinal plant, Madagascar periwinkle (Catharanthus roseus) produces many terpenoid indole alkaloids (TIAs), such as vindoline, ajamlicine, serpentine, catharanthine, vinblastine and vincristine et al. Some of them are important components of drugs treating cancer and hypertension. However, the yields of these TIAs are low in wild-type plants, and the total chemical synthesis is impractical in large scale due to high-cost and their complicated structures. The recent development of metabolic engineering strategy offers a promising solution. In order to improve the production of TIAs in C. roseus, the establishment of an efficient genetic transformation method is required. To develop a genetic transformation method for C. roseus, Agrobacterium tumefaciens strain EHA105 was employed which harbors a binary vector pCAMBIA2301 containing a report β-glucuronidase (GUS) gene and a selectable marker neomycin phosphotransferase II gene (NTPII). The influential factors were investigated systematically and the optimal transformation condition was achieved using hypocotyls as explants, including the sonication treatment of 10 min with 80 W, A. tumefaciens infection of 30 min and co-cultivation of 2 d in 1/2 MS medium containing 100 μM acetosyringone. With a series of selection in callus, shoot and root inducing kanamycin-containing resistance media, we successfully obtained stable transgenic regeneration plants. The expression of GUS gene was confirmed by histochemistry, polymerase chain reaction, and genomic southern blot analysis. To prove the efficiency of the established genetic transformation system, the rate-limiting gene in TIAs biosynthetic pathway, DAT, which encodes deacetylvindoline-4-O-acetyltransferase, was transferred into C. roseus using this established system and 9 independent transgenic plants were obtained. The results of metabolite analysis using high performance liquid chromatography (HPLC) showed that overexpression of DAT

  1. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    Science.gov (United States)

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs

    Science.gov (United States)

    Karthikeyan, B.; Jaleel, C.A.; Gopi, R.; Deiveekasundaram, M.

    2007-01-01

    An experiment was conducted on Catharanthus roseus to study the effect of seed treatments with native diazotrophs on its seedling growth and antioxidant enzyme activities. The treatments had significant influence on various seedling parameters. There is no significant influence on dry matter production with the diazotrophs, Azospirillum and Azotobacter. However, the vital seedling parameters such as germination percentage and vigour index were improved. Azotobacter treatment influenced maximum of 50% germination, whereas Azospirillum and Azotobacter were on par with C. roseus with respect to their vigour index. There was significant difference in the population of total diazotrophs. Azospirillum and Azotobacter between rhizosphere and non-rhizosphere soils of C. roseus had the same trend and were observed at various locations of the study. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased to a significant extent due to the treatment with diazotrophs. PMID:17610323

  3. A novel terpenoid indole alkaloid derived from catharanthine via biotransformation by suspension-cultured cells of Catharanthus roseus.

    Science.gov (United States)

    He, Shuijie; Zhu, Jianhua; Zi, Jiachen; Zhou, Pengfei; Liang, Jincai; Yu, Rongmin

    2015-12-01

    Although catharanthine (1) is well known as a biosynthetic precursor of the anticancer alkaloid, vinblastine, its alternative metabolic pathways are unclear. Biotransformation of 1 by suspension-cultured cells of Catharanthus roseus gave a new oxidative-cleavage product (2). The structure of 2 was determined as 3-hydroxy-4-imino-catharanthine by spectroscopic methods. Maximum conversion (9.75 %) of 2 was observed after 120 h adding 6 mg of 1/100 ml to 12-day-old suspension-cultured cells of C. roseus. Furthermore, qRT-PCR experiment was performed to reveal the effect of 1 on the expression of the genes in the biosynthetic pathway of TIA 1 up-regulated the transcript level of D4H whilst down-regulating the transcript levels of G10H, LAMT, GES, and IRS. A new metabolite of catharanthine, 3-hydroxy-4-imino-catharanthine, is reported.

  4. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits

    Directory of Open Access Journals (Sweden)

    Lodagala Srinivas D

    2003-09-01

    Full Text Available Abstract Background The leaf juice or water decoction of Catharanthus roseus L. (Apocyanaceae is used as a folk medicine for the treatment of diabetes all over the world. In the present investigation, the leaf juice of C. roseus has been evaluated for its hypoglycemic activity in normal and alloxan-induced diabetic rabbits. Methods The blood glucose lowering activity of the leaf juice was studied in normal and alloxan-induced (100 mg/kg, i.v. diabetic rabbits, after oral administration at doses of 0.5, 0.75 and 1.0 ml/kg body weight. Blood samples were collected from the marginal ear vein before and also at 4, 6, 8, 10, 12, 16, 18, 20 & 24 h after drug administration and blood glucose was analyzed by Nelson-Somogyi's method using a visible spectrophotometer. The data was compared statistically by using Student's t-test. Results The leaf juice of C. roseus produced dose-dependent reduction in blood glucose of both normal and diabetic rabbits and comparable with that of the standard drug, glibenclamide. The results indicate a prolonged action in reduction of blood glucose by C. roseus and the mode of action of the active compound(s of C. roseus is probably mediated through enhance secretion of insulin from the β-cells of Langerhans or through extrapancreatic mechanism. Conclusions The present study clearly indicated a significant antidiabetic activity with the leaf juice of Catharanthus roseus and supports the traditional usage of the fresh leaves by Ayurvedic physicians for the control of diabetes.

  5. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots.

    Science.gov (United States)

    Benyammi, Roukia; Paris, Cédric; Khelifi-Slaoui, Majda; Zaoui, Djamila; Belabbassi, Ouarda; Bakiri, Nouara; Meriem Aci, Myassa; Harfi, Boualem; Malik, Sonia; Makhzoum, Abdullah; Desobry, Stéphane; Khelifi, Lakhdar

    2016-10-01

    Context Catharanthus roseus (L.) G. Don (Apocynaceae) is still one of the most important sources of terpene indole alkaloids including anticancer and hypertensive drugs as vincristine and vinblastine. These final compounds have complex pathway and many enzymes are involved in their biosynthesis. Indeed, ajmalicine and catharanthine are important precursors their increase can lead to enhance levels of molecules of interest. Objective This study aims at selecting the highest yield of hairy root line(s) and at identifying best times for further treatments. We study kinetics growth and alkaloids (ajmalicine and catharanthine) accumulation of three selected hairy root lines during the culture cycle in order to determine the relationship between biomass production and alkaloids accumulation. Materials and methods Comparative analysis has been carried out on three selected lines of Catharanthus roseus hairy roots (LP10, LP21 and L54) for their kinetics of growth and the accumulation of ajamalicine and catharanthine, throughout a 35-day culture cycle. The methanolic extract for each line in different times during culture cycle is analyzed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Results Maximum accumulation of the alkaloids is recorded for LP10 line in which the peak of ajmalicine and catharanthine accumulation reached to 3.8 and 4.3 mg/g dry weight (DW), respectively. This increase coincides with an exponential growth phase. Discussion and conclusion Our results suggest that the evolution of accumulation of ajmalicine and catharanthine are positively correlated with the development of the biomass growth. Significantly, for LP10 line the most promising line to continue optimizing the production of TIAs. Additionally, the end of exponential phase remains the best period for elicitor stimuli.

  6. Artemisinic Acid Serves as a Novel ORCA3 Inducer to Enhance Biosynthesis of Terpenoid Indole Alkaloids in Catharanthus roseus Cambial Meristematic Cells.

    Science.gov (United States)

    Wang, Mingxuan; Zi, Jiachen; Zhu, Jianhua; Chen, Shan; Wang, Pu; Song, Liyan; Yu, Rongmin

    2016-06-01

    To investigate the effect of artemisinic acid (AA) on improving the production of terpenoid indole alkaloids (TIAs) of Catharanthus roseus cambial meristematic cells (CMCs), feeding AA to C. roseus CMCs caused 2.35-fold and 2.51-fold increases in the production of vindoline and catharanthine, respectively, compared with those of the untreated CMCs. qRT-PCR experiments showed that AA resulted in a 1.36-8.52 fold increase in the transcript levels of several related genes, including octadecanoid-derivative responsive Catharanthus AP2-domain protein 3 (ORCA3), tryptophan decarboxylase (TDC), strictosidine synthase (STR) and desacetoxyvindoline 4-hydroxylase (D4H). However, no effect was observed on the concentration of either jasmonic acid (JA), or the octadecanoid-pathway inhibitors block TIA accumulation caused by AA. The results indicated that AA might serve as a novel ORCA3 inducer to manipulate biosynthesis of TIAs in C. roseus CMCs via an unknown mechanism.

  7. Indirect regeneration from in vitro leaf tissue of periwinkle (Catharanthus roseus L.) in response to different treatments of plant growth regulators

    OpenAIRE

    B.E. Sayed-Tabatabaei; F. Eatesam; M. Talebi

    2012-01-01

    Periwinkle (Catharanthus roseus L.) belongs to the Apocynaceae family and accumulates more than 130 terpenoid indole alkaloids (TIAs), of which two dimeric alkaloids Vinblastine and Vincristine have antineoplastic activity and are useful for treatment of various cancers. Therefore, the production of these drugs has been emphasized in plant tissue culture. In this research, 25 treatments of plant growth regulators to produce callus from leaf explants and seven treatments for regeneration of ca...

  8. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium complex (generic). 721.10089 Section 721.10089 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical...

  9. Influence of salicylic acid on in vitro propagation and salt tolerance ...

    African Journals Online (AJOL)

    Influence of salicylic acid on in vitro propagation and salt tolerance in Hibiscus acetosella and Hibiscus moscheutos (cv 'Luna Red'). HF Sakhanokho, RY Kelley. Abstract. Salicylic acid (SA) has been reported to improve in vitro regeneration as well as induce abiotic stress tolerance in plants. The effects of varying SA ...

  10. Dietary non-nutrients and haemostasis in humans : effects of salicylates, flavonoids and ginger

    NARCIS (Netherlands)

    Janssen, P.L.T.M.K.

    1997-01-01

    In this thesis we studied the content of acetylsalicylate and total salicylates in foods, and we studied the effects of the dietary non-nutrients salicylates and flavonoids and of certain foods on haemostatic parameters in humans.

    Acetylsalicylic acid -aspirin- irreversibly inhibits

  11. Role of mycorrhizal fungi and salicylic acid in salinity tolerance of ...

    African Journals Online (AJOL)

    Salinity is one of the common agricultural and biological problems. Most researchers showed that inoculation of plants with mycorrhizal fungi and using salicylic acid increase tolerance of plants due to salinity. In this study, the effect of mycorrhizal fungi, including Glomus mosseae, Glomus intraradices, and salicylic acid (0.2 ...

  12. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells.

    Science.gov (United States)

    Takanaga, H; Tamai, I; Tsuji, A

    1994-07-01

    The transport of monocarboxylic acid drugs such as salicylic acid was examined in the human colon adenocarcinoma cell line, Caco-2 cells that possess intestinal epithelia-like properties. [14C]Salicylic acid transport was pH-dependent and appeared to follow the pH-partition hypothesis. However, 10 mM unlabelled salicylic acid significantly reduced the permeability coefficient of [14C]salicylic acid. Kinetic analysis of the concentration dependence of the permeation rate of salicylic acid across Caco-2 cells showed both saturable (Kt = 5.28 +/- 0.72 mM Jmax = 36.6 +/- 3.54 nmol min-1 (mg protein)-1) and nonsaturable (kd = 0.37 +/- 0.08 microL min-1 (mg protein)-1) processes. The permeation rate of [14C]salicylic acid was competitively inhibited by both acetic acid and benzoic acid, which were demonstrated in our previous studies to be transported in the carrier-mediated-transport mechanism which is responsible for monocarboxylic acids. Furthermore, certain monocarboxylic acids significantly inhibited [14C]salicylic acid transport, whereas salicylamide and dicarboxylic acids such as succinic acid did not. From these results, it was concluded that the transcellular transport of [14C]salicylic acid across Caco-2 cells is by the pH-dependent and carrier-mediated transport mechanism specific for monocarboxylic acids.

  13. Kinetic model of mitochondrial Krebs cycle: unraveling the mechanism of salicylate hepatotoxic effects.

    Science.gov (United States)

    Mogilevskaya, Ekaterina; Demin, Oleg; Goryanin, Igor

    2006-10-01

    This paper studies the effect of salicylate on the energy metabolism of mitochondria using in silico simulations. A kinetic model of the mitochondrial Krebs cycle is constructed using information on the individual enzymes. Model parameters for the rate equations are estimated using in vitro experimental data from the literature. Enzyme concentrations are determined from data on respiration in mitochondrial suspensions containing glutamate and malate. It is shown that inhibition in succinate dehydrogenase and alpha-ketoglutarate dehydrogenase by salicylate contributes substantially to the cumulative inhibition of the Krebs cycle by salicylates. Uncoupling of oxidative phosphorylation has little effect and coenzyme A consumption in salicylates transformation processes has an insignificant effect on the rate of substrate oxidation in the Krebs cycle. It is found that the salicylate-inhibited Krebs cycle flux can be increased by flux redirection through addition of external glutamate and malate, and depletion in external alpha-ketoglutarate and glycine concentrations.

  14. Percutaneous Absorption of Salicylic Acid after Administration of Trolamine Salicylate Cream in Rats with Transcutol® and Eucalyptus Oil Pre-Treated Skin

    Directory of Open Access Journals (Sweden)

    Paniz Sajjadi

    2013-08-01

    Full Text Available Purpose: This study was conducted to assess the effect of skin pre-treatment with Transcutol® and eucalyptus oil on systemic absorption of topical trolamine salicylate in rat. Methods: Pharmacokinetic parameters of salicylic acid following administration of trolamine salicylate on rat skin pre-treated with either Transcutol® or eucalyptus oil were determined using both non-compartmental and non-linear mixed effect modeling approaches and compared with those of control group. Results: Median (% of interquartile range/median of salicylic acid AUC0-8hr (ng/mL/hr values in Transcutol® or eucalyptus oil treated rats were 2522(139% and 58976(141%, respectively as compared to the 3023(327% of the control group. Skin pre-treatment with eucalyptus oil could significantly decrease extravascular volume of distribution (V/F and elimination rate constant (k of salicylic acid. Conclusion: Unlike Transcutol®, eucalyptus oil lead to enhanced transdermal absorption of trolamine salicylate through rat skin.

  15. Glycosylation of capsaicinoids with Panax ginseng stimulated by salicylic acid.

    Science.gov (United States)

    Katsuragi, H; Shimoda, Kei; Ohiro, Azusa; Hamada, Hiroki

    2010-12-01

    The efficient production of β-glycosides of capsaicin and 8-nordihydrocapsaicin by cultured cells of Panax ginseng is reported. Capsaicin 4-O-(6-O-β-D-xylopyranosyl)-β-D-glucopyranoside (β-primeveroside, 12%) together with capsaicin 4-O-β-D-glucoside (6%) was isolated from the cell suspension of P. ginseng after one week of incubation with capsaicin. On the other hand, 8-nordihydrocapsaicin was glycosylated to 8-nordihydrocapsaicin 4-O-β-D-glucoside (5%) and 8-nordihydrocapsaicin 4-O-β-primeveroside (9%) by P. ginseng. Pretreatment of the cultured cells with salicylic acid greatly enhanced the glucosylation activity toward capsaicinoids. When 500 μM of salicylic acid was added to the cultures prior to the addition of substrate, capsaicin was converted into capsaicin 4-O-β-D-glucoside (17%) and capsaicin β-primeveroside (21%) and 8-nordihydrocapsaicin was glycosylated to 8-nordihydrocapsaicin 4-O-β-D-glucoside (16%) and 8-nordihydrocapsaicin β-primeveroside (15%).

  16. Paracetamol and salicylic acid removal from contaminated water by microalgae.

    Science.gov (United States)

    Escapa, C; Coimbra, R N; Paniagua, S; García, A I; Otero, M

    2017-12-01

    The biomass growth, pharmaceutical removal and light conversion efficiency of Chlorella sorokiniana under the presence of paracetamol (PC) and salicylic acid (SaC) were assessed and compared at two different concentrations of these pharmaceuticals (I: 25 mg l-1, II: 250 mg l-1). Microalgae were resistant to these concentrations and, moreover, their growth was significantly stimulated (p ≤ 0.05) under these drugs (biomass concentration increased above 33% PCI, 35% SaCI, 13% PCII and 45% SaCII, as compared with the respective positive controls). At the steady state of the semicontinuous culture, C. sorokiniana showed removal efficiencies above 41% and 69% for PCI and PCII, respectively; and above 93% and 98% for SaCI and SaCII, respectively. Under an irradiance of 370 μE m-2 s-1, higher quantum yields were reached by microalgae under the presence of drugs, either at dose I or II, than by the respective positive controls. These results point to C. sorokiniana as a robust strain for the bioremediation of paracetamol and salicylic acid concentrated wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Silica-titania xerogel for solid phase spectrophotometric determination of salicylate and its derivatives in biological liquids and pharmaceuticals.

    Science.gov (United States)

    Morosanova, Maria A; Morosanova, Elena I

    2015-01-01

    Salicylic acid and its derivatives are widely used drugs with potential toxicity. The main areas of salicylate derivatives determination are biological liquids and pharmaceuticals analysis. Silica-titania xerogel has been used for solid phase spectrophotometric determination of various salicylate derivatives (salicylate, salicylamide, methylsalicylate). The reaction conditions influence on the interaction of salicylate derivatives with silica-titania xerogels has been investigated; the characteristics of titanium(IV)-salicylate derivatives complexes in solid phase have been described. The simple solid phase spectrophotometric procedures are based on the formation of xerogel incorporated titanium(IV) colored complexes with salicylate derivatives. A linear response has been observed in the following concentration ranges 0.1-5, 0.5-10 and 0.05-4.7 mM for salicylate, salicylamide, and methylsalicylate, respectively. The proposed procedures have been applied to the analysis of human urine, synthetic serum, and pharmaceuticals. The simple solid phase spectrophotometric procedures of salicylate derivatives determination based on the new sensor materials have been proposed for biological liquids and pharmaceuticals analysis. Graphical abstractComplexation of titanium (IV), incorporated in silica-titania xerogels (Si-Ti), with salicylate derivatives (L) resulting in yellow-colored xerogels (Si-Ti/Ln) has been proposed for salicylate derivatives determination in biological liquids and pharmaceuticals.

  18. Induction of apoptosis in human leukemia cells through an intrinsic pathway by cathachunine, a unique alkaloid isolated from Catharanthus roseus.

    Science.gov (United States)

    Wang, Xiao-Dong; Li, Chen-Yang; Jiang, Miao-Miao; Li, Dong; Wen, Ping; Song, Xun; Chen, Jun-Da; Guo, Li-Xuan; Hu, Xiao-Peng; Li, Guo-Qiang; Zhang, Jian; Wang, Chun-Hua; He, Zhen-Dan

    2016-06-01

    Catharanthus roseus (L.) G. Don consists of a range of dimeric indole alkaloids with significant antitumor activities. These alkaloids have been found to possess apoptosis-inducing activity against tumor cells in vitro and in vivo mediated by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, in which DNA damage and mitochondrial dysfunction play important roles. In this study, a unique bisindole alkaloid named cathachunine, along with five known dimeric indole alkaloids, was obtained from C. roseus and investigated in vitro. The aim of this study was to investigate the antitumor activity of isolated alkaloids and the mechanism through which cathachunine exerts its antitumor effect. Cell growth inhibition was assessed by WST-1 and lactate dehydrogenase (LDH) assays in HL60, K562 leukemia cells and EA.hy926 umbilical vein cells. Induction of apoptosis in HL60 cells was confirmed by observation of nuclear morphology, a caspase-3 activity assay and annexin V-fluorescein isothiocyanate/propidium iodide (FITC/PI) double staining. The intrinsic apoptotic pathway induced by cathachunine was evidenced by B-cell lymphoma 2/Bcl-2-associated X protein (Bcl-2/Bax) dysregulation, loss of mitochondrial membrane potential, translocation of cytochrome c, and cleavage of caspase-3 and poly-ADP ribose polymerase (PARP). Reactive oxygen species (ROS) production after cathachunine treatment was determined by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Cell cycle arrest of the S phase was also observed in HL60 cells after cathachunine treatment. The WST-1 and LDH assays showed that Catharanthus alkaloids were cytotoxic toward human leukemia cells to a greater extent than toward normal human endothelial cells, and the anti-proliferation and pro-apoptosis abilities of cathachunine were much more potent than other previously reported alkaloids. The induction of apoptosis by cathachunine occurred through an

  19. Enhanced ototoxicity of gentamicin and salicylate caused by Mg deficiency and Zn deficiency.

    Science.gov (United States)

    Günther, T; Rebentisch, E; Vormann, J; König, M; Ising, H

    1988-06-01

    In rats, Mg deficiency caused a moderate hearing loss, measured by means of evoked potentials at 10 and 20 kHz, which was repaired after refeeding a normal diet. Application of 700 mg/kg salicylic acid or injection of 5 x 100 mg/kg gentamicin also caused a reversible hearing loss in normally fed rats. Treatment of Zn-deficient rats with salicylic acid produced a stronger although reversible hearing loss than in normally fed salicylate-treated rats. Treatment of Mg-deficient rats with gentamicin induced a strong hearing loss that was nearly complete and irreversible in 9 of 25 rats.

  20. Salicylate Toxicity from Genital Exposure to a Methylsalicylate-Containing Rubefacient

    Science.gov (United States)

    Thompson, Trevonne M.; Toerne, Theodore; Erickson, Timothy B.

    2016-01-01

    Methylsalicylate-containing rubefacients have been reported to cause salicylate poisoning after ingestion, topical application to abnormal skin, and inappropriate topical application to normal skin. Many over-the-counter products contain methylsalicylate. Topical salicylates rarely produce systemic toxicity when used appropriately; however, methylsaliclyate can be absorbed through intact skin. Scrotal skin can have up to 40-fold greater absorption compared to other dermal regions. We report a unique case of salicylate poisoning resulting from the use of a methylsalicylate-containing rubefacient to facilitate masturbation in a male teenager. Saliclyate toxicity has not previously been reported from the genital exposure to methylsaliclyate. PMID:26973745

  1. Salicylate Toxicity from Genital Exposure to a Methylsalicylate-Containing Rubefacient.

    Science.gov (United States)

    Thompson, Trevonne M; Toerne, Theodore; Erickson, Timothy B

    2016-03-01

    Methylsalicylate-containing rubefacients have been reported to cause salicylate poisoning after ingestion, topical application to abnormal skin, and inappropriate topical application to normal skin. Many over-the-counter products contain methylsalicylate. Topical salicylates rarely produce systemic toxicity when used appropriately; however, methylsaliclyate can be absorbed through intact skin. Scrotal skin can have up to 40-fold greater absorption compared to other dermal regions. We report a unique case of salicylate poisoning resulting from the use of a methylsalicylate-containing rubefacient to facilitate masturbation in a male teenager. Saliclyate toxicity has not previously been reported from the genital exposure to methylsaliclyate.

  2. Crystal structure of 2,5-dimethylanilinium salicylate

    Directory of Open Access Journals (Sweden)

    A. Mani

    2015-09-01

    Full Text Available The title molecular salt, C8H12N+·C7H5O3− arose from the proton-transfer reaction between 2,5-xylidine and salicylic acid. In the anion, the dihedral angle between the planes of the aromatic ring and the –CO2− group is 11.08 (8°; this near planarity is consolidated by an intramolecular O—H...O hydrogen bond. In the crystal, the components are connected by N—H...O hydrogen bonds, with all three O atoms in the anion acting as acceptors; the result is a [100] chain. The structure also features weak C—H...O bonds and aromatic π–π stacking [centroid-to-centroid distance = 3.7416 (10 Å] interactions, which lead to a three-dimensional network.

  3. Indomethacin and salicylate decrease epinephrine-induced glycogenolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Ganguli, S.; Artal, R.; Sperling, M.A.

    1985-02-01

    Epinephrine (E) produces an immediate (0-30 minutes) rise in hepatic glucose production (Ra), largely due to activation of glycogenolysis; thereafter, E-stimulated gluconeogenesis becomes the major factor maintaining glucose production. To investigate the possible role of arachidonic acid metabolites on Ra during E stimulation, the authors infused E in trained conscious dogs before and during administration of two inhibitors of arachidonic acid metabolism, indomethacin (INDO) and salicylate (S). On separate days, experimental animals were treated with both oral and IV INDO and oral acetylsalicylic acid and IV sodium salicylate. Ra and glucose utilization (Rd), both in mg x kg-1 min-1, were calculated by isotope dilution using 3-/sup 3/H-glucose. After achieving steady state specific activity, control (C) and experimental animals (n . 6 per group) received E (0.1 ug x kg-1 min-1) for 150 minutes, raising plasma levels to approximately 1500 pg/mL in each group. In C, plasma glucose (G; mg/dL) rose by 17 +/- 5 at 10 minutes and 19 +/- 3 at 20 minutes due to an initial spike in Ra (2.7 +/- 0.2 to 4.9 +/- 0.5; P less than 0.01) at 10 minutes. INDO and S treatment attenuated this initial (10-20 minutes) rise in G (P less than 0.05) due to a lower stimulated Ra at 10 minutes (3.3 +/- 0.1 with INDO; 3.0 +/- 0.5 with S; P less than 0.05). After 20 minutes Ra was not different in the 3 groups; no overall differences in Rd, glucose clearance, or plasma insulin levels occurred with INDO or S treatment.

  4. A polymorphic (GA/CT)n- SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don

    Science.gov (United States)

    Kumar, Santosh; Bhatia, Sabhyata

    2016-01-01

    Simple Sequence Repeats (SSRs) of polypurine-polypyrimidine type motifs occur very frequently in the 5′ flanks of genes in plants and have recently been implicated to have a role in regulation of gene expression. In this study, 2 accessions of Catharanthus roseus having (CT)8 and (CT)21 varying motifs in the 5′UTR of Tryptophan decarboxylase (Tdc) gene, were investigated for its role in regulation of gene expression. Extensive Tdc gene expression analysis in the 2 accessions was carried out both at the level of transcription and translation. Transcript abundance was estimated using Northern analysis and qRT-PCR, whereas the rate of Tdc gene transcription was assessed using in-situ nuclear run-on transcription assay. Translation status of Tdc gene was monitored by quantification of polysome associated Tdc mRNA using qRT-PCR. These observations were validated through transient expression analysis using the fusion construct [CaM35S:(CT)8–21:GUS]. Our study demonstrated that not only does the length of (CT)n -SSRs influences the promoter activity, but the presence of SSRs per se in the 5′-UTR significantly enhances the level of gene expression. We termed this phenomenon as “microsatellite mediated enhancement” (MME) of gene expression. Results presented here will provide leads for engineering plants with enhanced amounts of medicinally important alkaloids. PMID:27623355

  5. A Simplified Procedure for Indole Alkaloid Extraction from Catharanthus roseus Combined with a Semi-synthetic Production Process for Vinblastine

    Directory of Open Access Journals (Sweden)

    Marja-Liisa Riekkola

    2007-07-01

    Full Text Available Dried leaves of Catharanthus roseus were extracted with aqueous acidic 0.1 M solution of HCl. Alkaloid-embonate complexes were obtained as precipitates by treating the extract with an alkaline (NaOH solution of embonic acid (4,4-methylene-bis-3-hydroxynaphtalenecarboxylic acid. The precipitate mainly consisted of catharanthine and vindoline embonates and it was directly used as the starting material for a semi-synthesis of the anti-cancer bisindole alkaloid vinblastine. The coupling reaction involved oxidation of catharanthine in aqueous acidic medium by singlet oxygen (1O2, continuously produced in situ by the reaction between H2O2 with NaClO. An excess of NaBH4 was used for the reduction step. Analysis of the reaction mixture indicated a maximum yield of 20% for vinblastine at pH 8.3, based on the initial amount of catharanthine concentration. Direct-injection electrospray ionization mass spectrometry in positive ion mode was used for the identification of vinblastine. The mass spectra of vinblastine were dominated by the corresponding protonated molecular ion [M+H]+ at m/z 811 and the characteristic fragment ions matched with those of the standard compound.

  6. A novel cytochrome P450 gene from Catharanthus roseus cell line C20hi: cloning and characterization of expression

    Directory of Open Access Journals (Sweden)

    Lihong He

    2012-06-01

    Full Text Available An expressed sequence tag (EST obtained from a subtractive-suppression hybridization cDNA library constructed using Catharanthus roseus cell line C20hi and its parental cell line C20D was used to clone a full-length cytochrome P450 cDNA of cyp71d1. The encoded polypeptide contained 507 amino acids with 39–56% identity to other CYP71D subfamily members at the amino acid level. Expression characteristics of cyp71d1 were determined using semi-quantitative RT-PCR. The cyp71d1 transcript was expressed in all three cell lines with the highest level in the cell line C20hi. In the mature C. roseus plant, the cyp71d1 cDNA was highly expressed in petals, roots and stems, but very weakly expressed in young leaves. Its transcription level increased with the development of flowers. 2,4-D could down-regulate the transcription of cyp71d1, as did KT, but only to a minor degree. Neither light nor yeast elicitor could induce the transcription of cyp71d1.

  7. Proliferation and ajmalicine biosynthesis of Catharanthus roseus (L). G. Don adventitious roots in self-built temporary immersion system

    Science.gov (United States)

    Phuc, Vo Thanh; Trung, Nguyen Minh; Thien, Huynh Tri; Tien, Le Thi Thuy

    2017-09-01

    Periwinkle (Catharanthus roseus (L.) G. Don) is a medicinal plant containing about 130 types of alkaloids that have important pharmacological effects. Ajmalicine in periwinkle root is an antihypertensive drug used in treatment of high blood pressure. Adventitious roots obtained from periwinkle leaves of in vitro shoots grew well in quarter-strength MS medium supplemented with 0.3 mg/l IBA and 20 g/l sucrose. Dark condition was more suitable for root growth than light. However, callus formation also took place in addition to the growth of adventitious roots. Temporary immersion system was applied in the culture of adventitious roots in order to reduce the callus growth rate formed in shake flask cultures. The highest growth index of roots was achieved using the system with 5-min immersion every 45 min (1.676 ± 0.041). The roots cultured in this system grew well without callus formation. Ajmalicine content was highest in the roots cultured with 5-min immersion every 180 min (950 μg/g dry weight).

  8. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    Science.gov (United States)

    Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress. PMID:24734252

  9. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    Science.gov (United States)

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport.

    Science.gov (United States)

    Carqueijeiro, Inês; Noronha, Henrique; Duarte, Patrícia; Gerós, Hernâni; Sottomayor, Mariana

    2013-07-01

    Catharanthus roseus is one of the most studied medicinal plants due to the interest in their dimeric terpenoid indole alkaloids (TIAs) vinblastine and vincristine, which are used in cancer chemotherapy. These TIAs are produced in very low levels in the leaves of the plant from the monomeric precursors vindoline and catharanthine and, although TIA biosynthesis is reasonably well understood, much less is known about TIA membrane transport mechanisms. However, such knowledge is extremely important to understand TIA metabolic fluxes and to develop strategies aimed at increasing TIA production. In this study, the vacuolar transport mechanism of the main TIAs accumulated in C. roseus leaves, vindoline, catharanthine, and α-3',4'-anhydrovinblastine, was characterized using a tonoplast vesicle system. Vindoline uptake was ATP dependent, and this transport activity was strongly inhibited by NH4(+) and carbonyl cyanide m-chlorophenyl hydrazine and was insensitive to the ATP-binding cassette (ABC) transporter inhibitor vanadate. Spectrofluorimetry assays with a pH-sensitive fluorescent probe showed that vindoline and other TIAs indeed were able to dissipate an H(+) gradient preestablished across the tonoplast by either vacuolar H(+)-ATPase or vacuolar H(+)-pyrophosphatase. The initial rates of H(+) gradient dissipation followed Michaelis-Menten kinetics, suggesting the involvement of mediated transport, and this activity was species and alkaloid specific. Altogether, our results strongly support that TIAs are actively taken up by C. roseus mesophyll vacuoles through a specific H(+) antiport system and not by an ion-trap mechanism or ABC transporters.

  11. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus.

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    Full Text Available Endophytic fungi reside in a symbiotic fashion inside their host plants, mimic their chemistry and interestingly, produce the same natural products as their hosts and are thus being screened for the production of valuable compounds like taxol, camptothecin, podophyllotoxin, etc. Vinblastine and vincristine are excellent anti-cancer drugs but their current production using plants is non-abundant and expensive. In order to make these drugs readily available to the patients at affordable prices, we isolated the endophytic fungi from Catharanthus roseus plant and found a fungus AA-CRL-6 which produces vinblastine and vincristine in appreciable amounts. These drugs were purified by TLC and HPLC and characterized using UV-Vis spectroscopy, ESI-MS, MS/MS and (1H NMR. One liter of culture filtrate yielded 76 µg and 67 µg of vinblastine and vincristine respectively. This endophytic fungal strain was identified as Fusarium oxysporum based upon its cultural and morphological characteristics and internal transcribed spacer (ITS sequence analysis.

  12. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    Directory of Open Access Journals (Sweden)

    Noreen F Rizvi

    Full Text Available The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs, including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs with the plant hormone, methyl jasmonate (MJ, while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM. However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str, illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.

  13. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS.

    Science.gov (United States)

    Yamamoto, Kotaro; Takahashi, Katsutoshi; Mizuno, Hajime; Anegawa, Aya; Ishizaki, Kimitsune; Fukaki, Hidehiro; Ohnishi, Miwa; Yamazaki, Mami; Masujima, Tsutomu; Mimura, Tetsuro

    2016-04-05

    Catharanthus roseus (L.) G. Don is a medicinal plant well known for producing antitumor drugs such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). The TIA metabolic pathway in C. roseus has been extensively studied. However, the localization of TIA intermediates at the cellular level has not been demonstrated directly. In the present study, the metabolic pathway of TIA in C. roseus was studied with two forefront metabolomic techniques, that is, Imaging mass spectrometry (MS) and live Single-cell MS, to elucidate cell-specific TIA localization in the stem tissue. Imaging MS indicated that most TIAs localize in the idioblast and laticifer cells, which emit blue fluorescence under UV excitation. Single-cell MS was applied to four different kinds of cells [idioblast (specialized parenchyma cell), laticifer, parenchyma, and epidermal cells] in the stem longitudinal section. Principal component analysis of Imaging MS and Single-cell MS spectra of these cells showed that similar alkaloids accumulate in both idioblast cell and laticifer cell. From MS/MS analysis of Single-cell MS spectra, catharanthine, ajmalicine, and strictosidine were found in both cell types in C. roseus stem tissue, where serpentine was also accumulated. Based on these data, we discuss the significance of TIA synthesis and accumulation in the idioblast and laticifer cells of C. roseus stem tissue.

  14. PERKEMBANGAN LATISIFER PADA KULTUR KALUS CATHARANTHUS ROSEUS (L G. DON YANG DIINDUKSI DENGAN KOMBINASI ZAT PENGATUR TUMBUH KINETIN + NAA

    Directory of Open Access Journals (Sweden)

    NI NYOMAN DARSINI

    2011-12-01

    Full Text Available The development of laticifer on callus culture of Catharanthus roseus (L G Don in Zenk medium supplemented with combination of plant growth regulator kinetin + NAA was studied. The explants were taken from the second folium from shoot apex. Development of laticifer was observed using descriptive analysis method for callus anatomy and percentage of laticifer was observed during 4–14 weeks of callus development. The percentage of laticifer was determined by counting the average number of the laticifer and the average number of surrounding cells in every optical field of few under light microscope. The results showed that early development of laticifer which was induced with plant regulator growth kinetin + NAA was found in the 9 weeks old callus. The laticifer has specific characteristics i.e. thicker cell wall and longer cell than sorounding cell. Elongated laticifer was observed at 12 weeks old callus. The highest percentage of laticifer on callus C. roseus induced with combination of kinetin and NAA was found in 12 weeks old callus i.e. 0,12%. At 13 and 14 weeks old callus, the anatomy of laticifer was similar to that at 12 weeks old callus, but the percentage was lower.

  15. Vacuolar Transport of the Medicinal Alkaloids from Catharanthus roseus Is Mediated by a Proton-Driven Antiport1[W

    Science.gov (United States)

    Carqueijeiro, Inês; Noronha, Henrique; Duarte, Patrícia; Gerós, Hernâni; Sottomayor, Mariana

    2013-01-01

    Catharanthus roseus is one of the most studied medicinal plants due to the interest in their dimeric terpenoid indole alkaloids (TIAs) vinblastine and vincristine, which are used in cancer chemotherapy. These TIAs are produced in very low levels in the leaves of the plant from the monomeric precursors vindoline and catharanthine and, although TIA biosynthesis is reasonably well understood, much less is known about TIA membrane transport mechanisms. However, such knowledge is extremely important to understand TIA metabolic fluxes and to develop strategies aimed at increasing TIA production. In this study, the vacuolar transport mechanism of the main TIAs accumulated in C. roseus leaves, vindoline, catharanthine, and α-3′,4′-anhydrovinblastine, was characterized using a tonoplast vesicle system. Vindoline uptake was ATP dependent, and this transport activity was strongly inhibited by NH4+ and carbonyl cyanide m-chlorophenyl hydrazine and was insensitive to the ATP-binding cassette (ABC) transporter inhibitor vanadate. Spectrofluorimetry assays with a pH-sensitive fluorescent probe showed that vindoline and other TIAs indeed were able to dissipate an H+ gradient preestablished across the tonoplast by either vacuolar H+-ATPase or vacuolar H+-pyrophosphatase. The initial rates of H+ gradient dissipation followed Michaelis-Menten kinetics, suggesting the involvement of mediated transport, and this activity was species and alkaloid specific. Altogether, our results strongly support that TIAs are actively taken up by C. roseus mesophyll vacuoles through a specific H+ antiport system and not by an ion-trap mechanism or ABC transporters. PMID:23686419

  16. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    Science.gov (United States)

    Rizvi, Noreen F; Weaver, Jessica D; Cram, Erin J; Lee-Parsons, Carolyn W T

    2016-01-01

    The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.

  17. Correspondence between flowers and leaves in terpenoid indole alkaloid metabolism of the phytoplasma-infected Catharanthus roseus plants.

    Science.gov (United States)

    Srivastava, Suchi; Pandey, Richa; Kumar, Sushil; Nautiyal, Chandra Shekhar

    2014-11-01

    Several plants of Catharanthus roseus cv 'leafless inflorescence (lli)' showing phenotype of phytoplasma infection were observed for symptoms of early flowering, virescence, phyllody, and apical clustering of branches. Symptomatic plants were studied for the presence/absence and identity of phytoplasma in flowers. Transcription levels of several genes involved in plants' metabolism and development, accumulation of pharmaceutically important terpenoid indole alkaloids in flowers and leaves and variation in the root-associated microbial flora were examined. The expression profile of 12 genes studied was semi-quantitatively similar in control leaves and phytoplasma-infected leaves and flowers, in agreement with the symptoms of virescence and phyllody in phytoplasma-infected plants. The flowers of phytoplasma-infected plants possessed the TIA profile of leaves and accumulated catharanthine, vindoline, and vincristine and vinblastine in higher concentrations than leaves. The roots of the infected plants displayed lower microbial diversity than those of normal plants. In conclusion, phytoplasma affected the biology of C. roseus lli plants multifariously, it reduced the differences between the metabolite accumulates of the leaves and flowers and restrict the microbial diversity of rhizosphere.

  18. Bioaktivitas Ekstrak Daun Tapakdara (Catharanthus roseus terhadap Kadar Kreatinin dan Kadar Ureum Darah Tikus Putih (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    Ni Luh Gede Merry Cintya Laksmi

    2014-08-01

    Full Text Available The aim of the study was to evaluate the bioactivity of the Tapakdara leaf extract (Catharanthus roseus on the creatinine and blood urea levels in rat (Rattus norvegicus. Tweenty four male rats (250-260 gram body weight were devided into three goups, with 8 animals in each group. Group 1 as a control group that was geven placebo, the group 2 was treated with 100 mg/kg body weight of leaf extract orally and the group 3 was treated with 100 mg/kg body weight of leaf extract orally.   The animals were treated during 8 days after one week adaptation period. The examination of ceratinin and Blood Urea Nitrogen (BUN were done in the last day of treatment. The result of the study indicated that the creatinin level of rats treated with 100 and 200 mg/kg BW was high significantly higher (p<0.01 than control group, however the creatinin level was in range of normal value. The level of Blood Urea Nitrogen of rats were treated with leaf extract of Tapakdara 100-200 mg/kg BW was significantly hihger (p<0.05 than control group, it was also in normal value.

  19. Ornamental Exterior versus Therapeutic Interior of Madagascar Periwinkle (Catharanthus roseus: The Two Faces of a Versatile Herb

    Directory of Open Access Journals (Sweden)

    Naghmeh Nejat

    2015-01-01

    Full Text Available Catharanthus roseus (L. known as Madagascar periwinkle (MP is a legendary medicinal plant mostly because of possessing two invaluable antitumor terpenoid indole alkaloids (TIAs, vincristine and vinblastine. The plant has also high aesthetic value as an evergreen ornamental that yields prolific blooms of splendid colors. The plant possesses yet another unique characteristic as an amiable experimental host for the maintenance of the smallest bacteria found on earth, the phytoplasmas and spiroplasmas, and serves as a model for their study. Botanical information with respect to synonyms, vernacular names, cultivars, floral morphology, and reproduction adds to understanding of the plant while the geography and ecology of periwinkle illustrate the organism’s ubiquity. Good agronomic practices ensure generous propagation of healthy plants that serve as a source of bioactive compounds and multitudinous horticultural applications. The correlation between genetic diversity, variants, and TIA production exists. MP is afflicted with a whole range of diseases that have to be properly managed. The ethnobotanical significance of MP is exemplified by its international usage as a traditional remedy for abundant ailments and not only for cancer. TIAs are present only in micro quantities in the plant and are highly poisonous per se rendering a challenge for researchers to increase yield and reduce toxicity.

  20. Still stable after 11 years: A Catharanthus roseus Hairy root line maintains inducible expression of anthranilate synthase.

    Science.gov (United States)

    Sun, Jiayi; Ma, Li; San, Ka-Yiu; Peebles, Christie A M

    2017-01-01

    Hairy root cultures generated using Agrobacterium rhizogenes are an extensively investigated system for the overproduction of various secondary metabolite based pharmaceuticals and chemicals. This study demonstrated a transgenic Catharanthus roseus hairy root line carrying a feedback-insensitive anthranilate synthase (AS) maintained chemical and genetic stability for 11 years. The AS gene was originally inserted in the hairy root genome under the control of a glucocorticoid inducible promoter. After 11 years continuous maintenance of this hairy root line, genomic PCR of the ASA gene showed the presence of ASA gene in the genome. The mRNA level of AS was induced to 52-fold after feeding the inducer as compared to the uninduced control. The AS enzyme activity was 18.4 nmol/(min*mg) in the induced roots as compared to 2.1 nmol/(min*mg) in the control. In addition, the changes in terpenoid indole alkaloid concentrations after overexpressing AS were tracked over 11 years. The major alkaloid levels in induced and control roots at 11 years are comparable with the metabolite levels at 5 years. This study demonstrates the long term genetic and biochemical stability of hairy root lines, which has important implications for industrial scale applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:66-69, 2017. © 2016 American Institute of Chemical Engineers.

  1. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures.

    Science.gov (United States)

    Chen, Qian; Chen, Zunwei; Lu, Li; Jin, Haihong; Sun, Lina; Yu, Qin; Xu, Hongke; Yang, Fengxia; Fu, Mengna; Li, Shengchao; Wang, Huizhong; Xu, Maojun

    2013-01-01

    Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor-induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up-regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90-induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor-induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up-regulation of Str and Tdc. ABA-induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO-induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90-induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90-induced catharanthine biosynthesis of C. roseus cells. © 2013 American Institute of Chemical Engineers.

  2. Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses

    Science.gov (United States)

    Dugé de Bernonville, Thomas; Carqueijeiro, Inês; Lanoue, Arnaud; Lafontaine, Florent; Sánchez Bel, Paloma; Liesecke, Franziska; Musset, Karine; Oudin, Audrey; Glévarec, Gaëlle; Pichon, Olivier; Besseau, Sébastien; Clastre, Marc; St-Pierre, Benoit; Flors, Victor; Maury, Stéphane; Huguet, Elisabeth; O’Connor, Sarah E.; Courdavault, Vincent

    2017-01-01

    Plants deploy distinct secondary metabolisms to cope with environment pressure and to face bio-aggressors notably through the production of biologically active alkaloids. This metabolism-type is particularly elaborated in Catharanthus roseus that synthesizes more than a hundred different monoterpene indole alkaloids (MIAs). While the characterization of their biosynthetic pathway now reaches completion, still little is known about the role of MIAs during biotic attacks. As a consequence, we developed a new plant/herbivore interaction system by challenging C. roseus leaves with Manduca sexta larvae. Transcriptomic and metabolic analyses demonstrated that C. roseus respond to folivory by both local and systemic processes relying on the activation of specific gene sets and biosynthesis of distinct MIAs following jasmonate production. While a huge local accumulation of strictosidine was monitored in attacked leaves that could repel caterpillars through its protein reticulation properties, newly developed leaves displayed an increased biosynthesis of the toxic strictosidine-derived MIAs, vindoline and catharanthine, produced by up-regulation of MIA biosynthetic genes. In this context, leaf consumption resulted in a rapid death of caterpillars that could be linked to the MIA dimerization observed in intestinal tracts. Furthermore, this study also highlights the overall transcriptomic control of the plant defense processes occurring during herbivory. PMID:28094274

  3. Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb.

    Science.gov (United States)

    Nejat, Naghmeh; Valdiani, Alireza; Cahill, David; Tan, Yee-How; Maziah, Mahmood; Abiri, Rambod

    2015-01-01

    Catharanthus roseus (L.) known as Madagascar periwinkle (MP) is a legendary medicinal plant mostly because of possessing two invaluable antitumor terpenoid indole alkaloids (TIAs), vincristine and vinblastine. The plant has also high aesthetic value as an evergreen ornamental that yields prolific blooms of splendid colors. The plant possesses yet another unique characteristic as an amiable experimental host for the maintenance of the smallest bacteria found on earth, the phytoplasmas and spiroplasmas, and serves as a model for their study. Botanical information with respect to synonyms, vernacular names, cultivars, floral morphology, and reproduction adds to understanding of the plant while the geography and ecology of periwinkle illustrate the organism's ubiquity. Good agronomic practices ensure generous propagation of healthy plants that serve as a source of bioactive compounds and multitudinous horticultural applications. The correlation between genetic diversity, variants, and TIA production exists. MP is afflicted with a whole range of diseases that have to be properly managed. The ethnobotanical significance of MP is exemplified by its international usage as a traditional remedy for abundant ailments and not only for cancer. TIAs are present only in micro quantities in the plant and are highly poisonous per se rendering a challenge for researchers to increase yield and reduce toxicity.

  4. Adaptation of lettuce mosaic virus to Catharanthus roseus involves mutations in the central domain of the VPg.

    Science.gov (United States)

    Svanella-Dumas, Laurence; Verdin, Eric; Faure, Chantal; German-Retana, Sylvie; Gognalons, Patrick; Danet, Jean Luc; Marais, Armelle; Candresse, Thierry

    2014-05-01

    An isolate of Lettuce mosaic virus (LMV, a Potyvirus) infecting Madagascar periwinckle (Catharanthus roseus) was identified and characterized by Illumina deep sequencing. LMV-Cr has no close affinities to previously sequenced LMV isolates and represents a novel, divergent LMV clade. Inoculation experiments with other representative LMV isolates showed that they are unable to infect C. roseus, which was not known to be a host for LMV. However, three C. roseus variants of one of these isolates, LMV-AF199, could be selected and partially or completely sequenced. These variants are characterized by the accumulation of mutations affecting the C-terminal part of the cylindrical inclusion (CI) helicase and the central part of the VPg. In particular, a serine to proline mutation at amino acid 143 of the VPg was observed in all three independently selected variants and is also present in the LMV-Cr isolate, making it a prime candidate as a host-range determinant. Other mutations at VPg positions 65 and 144 could also contribute to the ability to infect C. roseus. Inoculation experiments involving a recombinant LMV expressing a permissive lettuce eukaryotic translation initiation factor 4E (eIF4E) suggest that eIF4E does not contribute to the interaction of most LMV isolates with C. roseus.

  5. Enzyme Inhibitors Cause Multiple Effects on Accumulation of Monoterpene Indole Alkaloids in Catharanthus Roseus Cambial Meristematic Cell Cultures.

    Science.gov (United States)

    Pengfei, Zhou; Jianhua, Zhu; Rongmin, Yu; Jiachen, Zi

    2017-01-01

    Enzyme inhibitors have been used for the clarification of biosynthesis of natural products. Catharanthus roseus cambial meristematic cell (CMC) culture has been established and proved to be a better monoterpeneindole alkaloid (MIA) producer than C. roseus dedifferentiated cell (DDC) culture. However, little is known about the inter-relationship of the MIA-biosynthetic genes with respect to their transcription. To clarify effects of alteration of one gene transcription on transcript levels of another genes in MIA-biosynthetic pathway, and how the accumulation of MIAs in CMCs are influenced by the alteration of their biosynthetic gene transcript levels. 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitor lovastatin and 1-deoxy-D-xylulose 5-phosphate synthase (DXS) inhibitor clomazone were fed to C. roseus CMC cultures. The contents of MIAs were qualified by High Performance Liquid Chromatography and the transcript levels of the relevant genes were measured by qRT-PCR. Lovastatin improved the accumulation of MIAs via increasing the transcription of their biosynthetic genes encoding DXS1, tryptonphan decarboxylase (TDC), loganic acid methyltransferase (LAMT), strictosidine synthase (STR), desacetoxyvindoline-4-hydroxylase (D4H) and ORCA3 (a jasmonate-responsive transcriptional regulator), whereas clomazone reduced the contents of MIAs and the mRNA levels of the corresponding genes. The biosynthesis of MIAs in C. roseus is is manipulated via a complex mechanism, the knowledge of which paves the way for rationally tuning metabolic flux to improve MIA production in C. roseus CMCs.

  6. Larvicidal efficacy of Catharanthus roseus Linn. (Family: Apocynaceae) leaf extract and bacterial insecticide Bacillus thuringiensis against Anopheles stephensi Liston.

    Science.gov (United States)

    Panneerselvam, Chellasamy; Murugan, Kadarkarai; Kovendan, Kalimuthu; Kumar, Palanisamy Mahesh; Ponarulselvam, Sekar; Amerasan, Duraisamy; Subramaniam, Jayapal; Hwang, Jiang-Shiou

    2013-11-01

    To explore the larvicidal activity of Catharanthus roseus (C. roseus) leaf extract and Bacillus thuringiensis (B. thuringiensis) against the malarial vector Anopheles stephensi (An. stephensi), when being used alone or together. The larvicidal activity was assayed at various concentrations under the laboratory and field conditions. The LC50 and LC90 values of the C. roseus leaf extract were determined by probit analysis. The plant extract showed larvicidal effects after 24 h of exposure; however, the highest larval mortality was found in the petroleum ether extract of C. roseus against the first to fourth instars larvae with LC50=3.34, 4.48, 5.90 and 8.17 g/L, respectively; B. thuringiensis against the first to fourth instars larvae with LC50=1.72, 1.93, 2.17 and 2.42 g/L, respectively; and the combined treatment with LC50=2.18, 2.41, 2.76 and 3.22 g/L, respectively. No mortality was observed in the control. The petroleum ether extract of C. roseus extract and B. thuringiensis have potential to be used as ideal eco-friendly agents for the control of An. stephensi in vector control programs. The combined treatment with this plant crude extract and bacterial toxin has better larvicidal efficacy against An. stephensi. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  7. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates

    DEFF Research Database (Denmark)

    Cheng, Hong; Liang, Ran; Han, Rui-Min

    2014-01-01

    by the anion of salicylic acid with 2.2 × 10 L mol s, but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced......The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k = 3.2 × 10 L mol s in 9:1 v/v chloroform-methanol at 23 °C, less efficiently...... rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations....

  8. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects

    NARCIS (Netherlands)

    Swain, S.; Roy, S.; Shah, J.; Wees, S.C.M. van; Pieterse, C.M.J.; Nandi, A.K.

    2011-01-01

    Arabidopsis genotypes with a hyperactive salicylic acidmediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article,

  9. Chlorogenic acids biosynthesis in Centella asiatica cells is not stimulated by salicylic acid manipulation

    CSIR Research Space (South Africa)

    Ncube, EN

    2016-07-01

    Full Text Available Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been...

  10. Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats.

    Science.gov (United States)

    Song, Yu; Liu, Junxiu; Ma, Furong; Mao, Lanqun

    2016-12-01

    Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.

  11. Simultaneous determination of acetylsalicylic and salicylic acids by first derivative spectrometry in pharmaceutical preparations

    Science.gov (United States)

    Rogić, Dunja

    1993-03-01

    A multicomponent first derivative UV spectrometric procedure for determination of acetylsalicylic acid (aspirin) and salicylic acid in the solution containing 1 % (w/v) of citric acid in some pharmaceutical preparations is presented. The method is based on the use of the first derivative minimum spectrometric measurements at 286 nm for aspirin and at 318 nm for salicylic acid. Four kinds of cmmercial Aspirin tablets were assayed without a long pretreatment of the pharmaceuticals from the tablet additives. Beer's law is obeyed from 13.62-68.1 μg ml -1 of aspirin and from 2.723-13.616 μg ml -1 of salicylic acid. Detection limits at the 0.05 level of significance were calculated to be 1.24 and 0.25 μg ml -1 with relative standard deviations of 1.09 % and 1.2 % of aspirin and salicylic acid, respectively.

  12. Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization

    Science.gov (United States)

    Evans, P. Andrew; Huang, Mu-Hua; Lawler, Michael J.; Maroto, Sergio

    2012-08-01

    Antibiotics play a significant role in human health because of their ability to treat life-threatening bacterial infections. The growing problems with antibiotic resistance have made the development of new antibiotics a World Health Organization priority. Marinomycin A is a member of a new class of bis-salicylate-containing polyene macrodiolides, which have potent antibiotic activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Herein, we describe a triply convergent synthesis of this agent using the salicylate as a novel molecular switch for the chemoselective construction of the macrodiolide. This strategy raises new questions regarding the biosynthetic role of the salicylate and its potential impact on the mechanism of action of these types of agents. For instance, in contrast to penicillin, which enhances the electrophilicity of the cyclic amide through ring strain, salicylates reduce the electrophilicity of the aryl ester through an intramolecular resonance-assisted hydrogen bond to provide an amide surrogate.

  13. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates.

    Science.gov (United States)

    Cheng, Hong; Liang, Ran; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H

    2014-02-01

    The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k2 = 3.2 × 10(9) L mol(-1) s(-1) in 9 : 1 v/v chloroform-methanol at 23 °C, less efficiently by the anion of salicylic acid with 2.2 × 10(8) L mol(-1) s(-1), but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations.

  14. Large scale in-silico identification and characterization of simple sequence repeats (SSRs) from de novo assembled transcriptome of Catharanthus roseus (L.) G. Don.

    Science.gov (United States)

    Kumar, Santosh; Shah, Niraj; Garg, Vanika; Bhatia, Sabhyata

    2014-06-01

    Transcriptomic data of C. roseus offering ample sequence resources for providing better insights into gene diversity: large resource of genic SSR markers to accelerate genomic studies and breeding in Catharanthus . Next-generation sequencing is an efficient system for generating high-throughput complete transcripts/genes and developing molecular markers. We present here the transcriptome sequencing of a 26-day-old Catharanthus roseus seedling tissue using Illumina GAIIX platform that resulted in a total of 3.37 Gb of nucleotide sequence data comprising 29,964,104 reads which were de novo assembled into 26,581 unigenes. Based on similarity searches 58 % of the unigenes were annotated of which 13,580 unique transcripts were assigned 5016 gene ontology terms. Further, 7,687 of the unigenes were found to have Cluster of Orthologous Group classifications, and 4,006 were assigned to 289 Kyoto Encyclopedia of Genes and Genome pathways. Also, 5,221 (19.64 %) of transcripts were distributed to 81 known transcription factor (TF) families. In-silico analysis of the transcriptome resulted in identification of 11,004 SSRs in 26.62 % transcripts from which 2,520 SSR markers were designed which exhibited a non-random pattern of distribution. The most abundant was the trinucleotide repeats (AAG/CTT) followed by the dinucleotide repeats (AG/CT). Location specific analysis of SSRs revealed that SSRs were preferentially associated with the 5'-UTRs with a predicted role in regulation of gene expression. A PCR validation of a set of 48 primers revealed 97.9 % successful amplification, and 76.6 % of them showed polymorphism across different Catharanthus species as well as accessions of C. roseus. In summary, this study will provide an insight into understanding the seedling development and resources for novel gene discovery and SSR development for utilization in marker-assisted selective breeding in C. roseus.

  15. Control of Diplodia pinea and D. scrobiculata in Pinus halepensis by 5-chloro-salicylic acid

    Directory of Open Access Journals (Sweden)

    A. Moret

    2007-08-01

    Full Text Available Diplodia pinea (syn. Sphaeropsis sapinea and D. scrobiculata are destructive pathogens of conifer species in many parts of the world. The sensitivity of these fungi to externally applied 5-chloro-salicylic acid on Pinus halepensis was studied. Trees treated with 2 mM 5-chloro-salicylic acid were more resistant to the fungi than untreated trees. After 15 days of treatment shoot dieback affected 30% of trees inoculated with D. pinea, compared to 60% of untreated trees. D. scrobiculata caused shoot dieback in 30% of untreated trees but only in 20% of trees pretreated with 5-chloro-salicylic acid. The controls never developed tip blight. The direct effect of 5-chloro-salicylic acid on the mycelial growth of D. pinea and D. scrobiculata was tested in vitro using PDA amended with 5-chloro-salicylic acid at five concentrations (0.2, 1, 2, 2.5, and 3.0 mM. The radial growth of colonies was measured after 48 and 72 h of incubation at 24°C. After 48 h, 5-chloro-salicylic acid significantly inhibited mycelial growth of D. pinea at 3mM, although there was no longer any significant difference in growth rates after 72 h of incubation. D. scrobiculata was slightly more sensitive to 5-chloro-salicylic acid than D. pinea. After 48 h, significant differences were observed in the mean colony diameter of D. scrobiculata when directly exposed to 5-chloro-salicylic acid at dilutions from 0 to 3 mM. After 72 h, however, mycelial growth was reduced significantly only at the highest concentrations (2; 2.5 and 3 mM (P-value <0.05.

  16. Some biochemical reactions of strawberry plants to infection with Botrytis cinerea and salicylic acid treatment

    Directory of Open Access Journals (Sweden)

    Urszula Małolepsza

    2013-12-01

    Full Text Available The reactions of strawberry plants to infection with B. cinerea and treatment with salicylic acid has been studied. Infection of leaves with B. cinerea resulted in early increases in active oxygen species generation, superoxide dismutase and peroxidase activities and phenolic compounds content. Some increases of the above reactions were noticed in plants treated with salicylic acid but not in the plants treated with SA and then later infected with B. cinerea.

  17. Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characterization of Biofield Treated Salicylic Acid and Sparfloxacin

    OpenAIRE

    Trivedi, Mahendra Kumar; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal

    2017-01-01

    Salicylic acid is a naturally occurring derivative of benzoic acid, and widely used in organic synthesis and as a plant hormone. Sparfloxacin is fluorinated quinolone antibiotic having broad spectrum antimicrobial property. The present study was aimed to evaluate the impact of biofield treatment on spectral properties of salicylic acid and sparfloxacin using FT-IR and UV-Vis spectroscopic techniques. The study was carried out in two groups, one was set to control, and another was subjected to...

  18. Spherical crystallization: direct spherical agglomeration of salicylic Acid crystals during crystallization.

    Science.gov (United States)

    Kawashima, Y; Okumura, M; Takenaka, H

    1982-06-04

    Direct spherical agglomeration of salicylic acid crystals during crystallization is described. The needle-like salicylic acid crystals simultaneously form and agglomerate in a mixture of three partially miscible liquids, such as water, ethanol, and chloroform, with agitation. The agglomerates can be made directly into tablets because of their excellent flowability. Spherical crystallization could eliminate the usual separate agglomeration step after crystallization and may be adaptable to other pharmaceutical and chemical systems.

  19. Characterization of rhizobacteria associated to maize crop in IAA, siderophores and salicylic acid metabolite production

    OpenAIRE

    Annia Hernández; Narovis Rives; Alberto Caballero; Ana N. Hernández; Mayra Heydrich

    2007-01-01

    It has been demonstrated that rhizobacteria are able to produce metabolites having agricultural interest, including salicylic acid, the siderophores and phytohormones. Indol acetic acid (IAA) is the most well-known and studied auxin, playing a governing role in culture growth. The object of this work was to characterise rhizobacteria associated with the maize crop in terms of producing IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia and Pseudomonas fluorescens strains p...

  20. Dust loadings on some common plants near Lucknow city. [Acacia melanoxylon, Bauhinia malabarica, Bougain-villea glabra, Calotropis procera, Catharanthus roseus, Eucalyptus globulus, Ipomoea fistulosa and Peltophorum pterocarpum

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, M.; Dwivedi, A.K.; Kulshreshtha, K.; Ahmad, K.J.

    1985-01-01

    Eight plant species - Acacia melanoxylon, Bauhinia malabarica, Bougain-villea glabra, Calotropis procera, Catharanthus roseus, Eucalyptus globulus, Ipomoea fistulosa and Peltophorum pterocarpum - were collected from a newly established suburb colony of Lucknow city, where the major pollutant is dust, to study the dust cleansing efficiency of the plant canopy and also to establish the correlation between the leaf morphological characteristics and their dust trapping potential. The dust load, in milligrams per square centimeter of leaf surface, was measured and related to foliar epidermal and cuticular characteristics, and morphological features.

  1. EFFECTS OF SALICYLIC ACID ON SEEDLING GROWTH AND NITROGEN METABOLISM IN CUCUMBER (CUCUMIS SATIVUS L.

    Directory of Open Access Journals (Sweden)

    Singh Pramod Kumar

    2010-09-01

    Full Text Available Salicylic acid is involved in the regulation of metabolic activity and defense mechanism in plants under various stress conditions. Present study was conducted to determine the effects of salicylic acid (10 to 500 μM on seedling growth, development and nitrogen use efficiency in cucumber (Cucumis sativus L. plants with or without nitrogen nutrient. Salicylic acid increased contents of chlorophyll, total non-structural carbohydrate and total nitrogen, as well as nitrate assimilation through the induction of nitrate reductase (EC 1.6.6.1 activity in isolated cucumber cotyledons. Accumulation of salicylic acid was two-fold higher in cotyledons without nitrate supply in comparison to that with nitrate supply. Further 50 μM of SA induced enhancement in seed germination and growth characteristics. However higher salicylic acid concentrations inhibited above physiological characteristics. Results show that, field application of salicylic acid need optimum physiological concentration (e.g., 50 μM to increase nitrogen use efficiency particularly during germination and seedling growth.

  2. Sombreamento de plantas de Catharanthus roseus (L. G. Don 'Pacifica White' por malhas coloridas: desenvolvimento vegetativo Shading of 'Pacifica White' Catharanthus roseus (L. G. Don plants with colored nets: vegetative development

    Directory of Open Access Journals (Sweden)

    Anderson Adriano Martins Melo

    2009-04-01

    Full Text Available As malhas coloridas têm sido utilizadas para manipular o desenvolvimento vegetativo, melhorando a utilização da radiação solar por plantas ornamentais. Objetivou-se, neste trabalho estudar o efeito da redução de 50% da radiação fotossinteticamente ativa sobre o crescimento vegetativo de plantas de Catharanthus roseus (L. G. Don, por meio de malhas azul e vermelha e malha preta, em comparação com plantas crescidas na ausência de sombreamento (pleno sol. As plantas foram obtidas a partir de sementes e tratadas por 180 dias. Foram avaliados o ganho de biomassa e a distribuição de matéria seca nas plantas, o conteúdo de pigmentos foliares (clorofilas e carotenóides e de nitrogênio foliar. A malha vermelha provocou um aumento de matéria seca total e de área foliar das plantas em comparação com as malhas azul, preta e ao tratamento a pleno sol, porém, exceto em relação a esse tratamento, a malha vermelha causou menor conteúdo de nitrogênio e pigmentos foliares. A maior relação raiz/parte aérea e relação clorofila a/b, menores razões de área foliar e de massa foliar das plantas crescidas a pleno sol em relação às plantas sombreadas indicam um efeito mais proeminente da irradiância mais alta do que da alteração do espectro de luz. O sombreamento altera significativamente a distribuição de matéria seca e o uso de malhas de diferentes cores modifica o conteúdo de pigmentos fotossintéticos dessa espécie.Colored shade nets have been used to manipulate the vegetative development, improving the utilization of solar radiation by ornamental plants. This work aimed to study the effect of 50% reduction of PAR on vegetative growth of plants of Catharanthus roseus (L. G. Don, using blue and red nets, and black net, in comparison to plants growing under full sunlight (lack of shading. The plants were obtained from seeds and treated for 180 days. Biomass increment and distribution, pigment content (chlorophylls and

  3. Effects of salicylic acid foliar application on germination, growth and antioxidant potential of basil (Ocimum basilicum L.)

    OpenAIRE

    Karalija, Erna; Parić, Adisa

    2018-01-01

    Salicylic acid is one of endogenous plant growth regulators that plays a key role in many physiological processes. The present study analysed the effect of different concentrations (0, 0.01, 0.1, ad 1.0 mM) of salicylic acid on morphological parameters, photosynthetic pigments, protein, proline, total carbohydrates, and secondary metabolites content as well as peroxidase activity. One month after sowing seedlings were replanted in new pots, and salicylic acid was applied in form of a foliar s...

  4. Salicylic acid interferes with GFP fluorescence in vivo.

    Science.gov (United States)

    de Jonge, Jennifer; Hofius, Daniel; Hennig, Lars

    2017-03-01

    Fluorescent proteins have become essential tools for cell biologists. They are routinely used by plant biologists for protein and promoter fusions to infer protein localization, tissue-specific expression and protein abundance. When studying the effects of biotic stress on chromatin, we unexpectedly observed a decrease in GFP signal intensity upon salicylic acid (SA) treatment in Arabidopsis lines expressing histone H1-GFP fusions. This GFP signal decrease was dependent on SA concentration. The effect was not specific to the linker histone H1-GFP fusion but was also observed for the nucleosomal histone H2A-GFP fusion. This result prompted us to investigate a collection of fusion proteins, which included different promoters, subcellular localizations and fluorophores. In all cases, fluorescence signals declined strongly or disappeared after SA application. No changes were detected in GFP-fusion protein abundance when fluorescence signals were lost indicating that SA does not interfere with protein stability but GFP fluorescence. In vitro experiments showed that SA caused GFP fluorescence reduction only in vivo but not in vitro, suggesting that SA requires cellular components to cause fluorescence reduction. Together, we conclude that SA can interfere with the fluorescence of various GFP-derived reporter constructs in vivo. Assays that measure relocation or turnover of GFP-tagged proteins upon SA treatment should therefore be evaluated with caution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. TDDFT study on intramolecular hydrogen bond of photoexcited methyl salicylate.

    Science.gov (United States)

    Qu, Peng; Tian, Dongxu

    2014-01-01

    The equilibrium geometries, IR-spectra and transition mechanism of intramolecular hydrogen-bonded methyl salicylate in excited state were studied using DFT and TDDFT with 6-31++G (d, p) basis set. The length of hydrogen bond OH⋯OC is decreased from 1.73 Å in the ground state to 1.41 and 1.69 Å in the excited S1 and S3 states. The increase of bond length for HO and CO group also indicates that in excited state the hydrogen bond OH⋯OC is strengthened. IR spectra show HO and CO stretching bands are strongly redshifted by 1387 and 67 cm(-1) in the excited S1 and S3 states comparing to the ground state. The excitation energy and the absorption spectrum show the S3 state is the main excited state of the low-lying excited states. By analyzing the frontier molecular orbitals, the transition from the ground state to the excited S1 and S3 states was predicted to be the π→π∗ mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Inhibition studies of Mycobacterium tuberculosis salicylate synthase (MbtI).

    Science.gov (United States)

    Manos-Turvey, Alexandra; Bulloch, Esther M M; Rutledge, Peter J; Baker, Edward N; Lott, J Shaun; Payne, Richard J

    2010-07-05

    Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate-utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the etiological agent of tuberculosis (TB). It is therefore anticipated that inhibitors of this enzyme may serve as TB therapies with a novel mode of action. Herein we describe the first inhibition study of M. tuberculosis MbtI using a library of functionalized benzoate-based inhibitors designed to mimic the substrate (chorismate) and intermediate (isochorismate) of the MbtI-catalyzed reaction. The most potent inhibitors prepared were those designed to mimic the enzyme intermediate, isochorismate. These compounds, based on a 2,3-dihydroxybenzoate scaffold, proved to be low-micromolar inhibitors of MbtI. The most potent inhibitors in this series possessed hydrophobic enol ether side chains at C3 in place of the enol-pyruvyl side chain found in chorismate and isochorismate.

  7. Hardening of eucalyptus seedlings via salicylic acid application

    Directory of Open Access Journals (Sweden)

    Eduardo Henrique Lima Mazzuchelli

    2014-09-01

    Full Text Available The agricultural and forest productivity suffer restrictions imposed by water stress, high temperature and high solar radiation. This study aimed to evaluate the capacity of stress attenuation and growth promotion of salicylic acid (SA application in eucalyptus (E. urophylla x E. grandis hybrid seedlings under water stress. A completely randomized design, in a 3x4 factorial scheme (three water treatments: constant irrigation with daily replacement of 40% (CI40% or 100% (CI100% of evapotranspirated water, and temporary irrigation suspension with replacement of only 40% of evapotranspirated water (S40%; and four SA concentrations: 0 mg L-1, 100 mg L-1, 200 mg L-1 and 300 mg L-1, was used. Plant photosynthetic parameters and biometric features were evaluated. The stomatal limitation was higher in plants under S40% irrigation, however, the SA application reverted this result, allowing the maintenance of the photosynthetic potential. There was interaction between irrigation regimes and SA doses for number of leaves, leaf area/number of leaves ratio and shoot and root dry mass. It was concluded that the application of 200 mg L -1 of SA positively affected the growth of eucalyptus seedlings under water stress, being considered an auxiliary management technique to their hardening process.

  8. Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco

    National Research Council Canada - National Science Library

    Lowe-Power, Tiffany M; Jacobs, Jonathan M; Ailloud, Florent; Fochs, Brianna; Prior, Philippe; Allen, Caitilyn

    2016-01-01

    Plants use the signaling molecule salicylic acid (SA) to trigger defenses against diverse pathogens, including the bacterial wilt pathogen Ralstonia solanacearum SA can also inhibit microbial growth...

  9. CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids

    Directory of Open Access Journals (Sweden)

    Raina Susheel

    2012-08-01

    Full Text Available Abstract Background Mitogen activated protein kinase (MAPK cascade is an important signaling cascade that operates in stress signal transduction in plants. The biologically active monoterpenoid indole alkaloids (MIA produced in Catharanthus roseus are known to be induced under several abiotic stress conditions such as wounding, UV-B etc. However involvement of any signaling component in the accumulation of MIAs remains poorly investigated so far. Here we report isolation of a novel abiotic stress inducible Catharanthus roseus MAPK, CrMPK3 that may have role in accumulation of MIAs in response to abiotic stress. Results CrMPK3 expressed in bacterial system is an active kinase as it showed auto-phosphorylation and phosphorylation of Myelin Basic Protein. CrMPK3 though localized in cytoplasm, moves to nucleus upon wounding. Wounding, UV treatment and MeJA application on C. roseus leaves resulted in the transcript accumulation of CrMPK3 as well as activation of MAPK in C. roseus leaves. Immuno-precipitation followed by immunoblot analysis revealed that wounding, UV treatment and methyl jasmonate (MeJA activate CrMPK3. Transient over-expression of CrMPK3 in C. roseus leaf tissue showed enhanced expression of key MIA biosynthesis pathway genes and also accumulation of specific MIAs. Conclusion Results from our study suggest a possible involvement of CrMPK3 in abiotic stress signal transduction towards regulation of transcripts of key MIA biosynthetic pathway genes, regulators and accumulation of major MIAs.

  10. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics.

    Directory of Open Access Journals (Sweden)

    Qifang Pan

    Full Text Available In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain gene alone or integrated with the G10H (geraniol 10-hydroxylase gene were first introduced into C. roseus plants. Transgenic C. roseus plants overexpressing ORCA3 alone (OR lines, or co-overexpressing G10H and ORCA3 (GO lines were obtained by genetic modification. ORCA3 overexpression induced an increase of AS, TDC, STR and D4H transcripts but did not affect CRMYC2 and G10H transcription. G10H transcripts showed a significant increase under G10H and ORCA3 co-overexpression. ORCA3 and G10H overexpression significantly increased the accumulation of strictosidine, vindoline, catharanthine and ajmalicine but had limited effects on anhydrovinblastine and vinblastine levels. NMR-based metabolomics confirmed the higher accumulation of monomeric indole alkaloids in OR and GO lines. Multivariate data analysis of (1H NMR spectra showed change of amino acid, organic acid, sugar and phenylpropanoid levels in both OR and GO lines compared to the controls. The result indicated that enhancement of MIA biosynthesis by ORCA3 and G10H overexpression might affect other metabolic pathways in the plant metabolism of C. roseus.

  11. CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids.

    Science.gov (United States)

    Raina, Susheel Kumar; Wankhede, Dhammaprakash Pandhari; Jaggi, Monika; Singh, Pallavi; Jalmi, Siddhi Kashinath; Raghuram, Badmi; Sheikh, Arsheed Hussain; Sinha, Alok Krishna

    2012-08-07

    Mitogen activated protein kinase (MAPK) cascade is an important signaling cascade that operates in stress signal transduction in plants. The biologically active monoterpenoid indole alkaloids (MIA) produced in Catharanthus roseus are known to be induced under several abiotic stress conditions such as wounding, UV-B etc. However involvement of any signaling component in the accumulation of MIAs remains poorly investigated so far. Here we report isolation of a novel abiotic stress inducible Catharanthus roseus MAPK, CrMPK3 that may have role in accumulation of MIAs in response to abiotic stress. CrMPK3 expressed in bacterial system is an active kinase as it showed auto-phosphorylation and phosphorylation of Myelin Basic Protein. CrMPK3 though localized in cytoplasm, moves to nucleus upon wounding. Wounding, UV treatment and MeJA application on C. roseus leaves resulted in the transcript accumulation of CrMPK3 as well as activation of MAPK in C. roseus leaves. Immuno-precipitation followed by immunoblot analysis revealed that wounding, UV treatment and methyl jasmonate (MeJA) activate CrMPK3. Transient over-expression of CrMPK3 in C. roseus leaf tissue showed enhanced expression of key MIA biosynthesis pathway genes and also accumulation of specific MIAs. Results from our study suggest a possible involvement of CrMPK3 in abiotic stress signal transduction towards regulation of transcripts of key MIA biosynthetic pathway genes, regulators and accumulation of major MIAs.

  12. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics.

    Science.gov (United States)

    Pan, Qifang; Wang, Quan; Yuan, Fang; Xing, Shihai; Zhao, Jingya; Choi, Young Hae; Verpoorte, Robert; Tian, Yuesheng; Wang, Guofeng; Tang, Kexuan

    2012-01-01

    In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA) biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain) gene alone or integrated with the G10H (geraniol 10-hydroxylase) gene were first introduced into C. roseus plants. Transgenic C. roseus plants overexpressing ORCA3 alone (OR lines), or co-overexpressing G10H and ORCA3 (GO lines) were obtained by genetic modification. ORCA3 overexpression induced an increase of AS, TDC, STR and D4H transcripts but did not affect CRMYC2 and G10H transcription. G10H transcripts showed a significant increase under G10H and ORCA3 co-overexpression. ORCA3 and G10H overexpression significantly increased the accumulation of strictosidine, vindoline, catharanthine and ajmalicine but had limited effects on anhydrovinblastine and vinblastine levels. NMR-based metabolomics confirmed the higher accumulation of monomeric indole alkaloids in OR and GO lines. Multivariate data analysis of (1)H NMR spectra showed change of amino acid, organic acid, sugar and phenylpropanoid levels in both OR and GO lines compared to the controls. The result indicated that enhancement of MIA biosynthesis by ORCA3 and G10H overexpression might affect other metabolic pathways in the plant metabolism of C. roseus.

  13. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus.

    Science.gov (United States)

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O'Connor, Sarah E; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-06-30

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix-loop-helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures.

  14. Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus.

    Science.gov (United States)

    Jaleel, Cheruth Abdul; Manivannan, Paramasivam; Sankar, B; Kishorekumar, Ashok; Panneerselvam, Rajaram

    2007-09-01

    Catharanthus roseus (L.) G. Don. plants were grown with NaCl and CaCl2 in order to study the effect of CaCl2 on NaCl-induced oxidative stress in terms of lipid peroxidation (TBARS content), H2O2 content, osmolyte concentration, proline (PRO)-metabolizing enzymes, antioxidant enzyme activities, and indole alkaloid accumulation. The plants were treated with solutions of 80 mM NaCl, 80 mM NaCl with 5 mM CaCl2 and 5 mM CaCl2 alone. Groundwater was used for irrigation of control plants. Plants were uprooted randomly on 90 days after sowing (DAS). NaCl-stressed plants showed increased TBARS, H2O2, glycine betaine (GB) and PRO contents, decreased proline oxidase (PROX) activity, and increased gamma-glutamyl kinase (gamma-GK) activity when compared to control. Addition of CaCl2 to NaCl-stressed plants lowered the PRO concentration by increasing the level of PROX and decreasing the gamma-GK activities. Calcium ions increased the GB contents. CaCl2 appears to confer greater osmoprotection by the additive role with NaCl in GB accumulation. The antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased under salinity and further enhanced due to CaCl2 treatment. The NaCl-with-CaCl2-treated C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to NaCl-treated and untreated plants.

  15. Water deficit stress mitigation by calcium chloride in Catharanthus roseus: effects on oxidative stress, proline metabolism and indole alkaloid accumulation.

    Science.gov (United States)

    Jaleel, C Abdul; Manivannan, P; Sankar, B; Kishorekumar, A; Gopi, R; Somasundaram, R; Panneerselvam, R

    2007-10-15

    The present investigation was conducted to determine whether CaCl(2) increases Catharanthus roseus drought tolerance and if such tolerance is correlated with changes in oxidative stress, osmoregulation and indole alkaloid accumulation. C. roseus plants were grown under water deficit environments with or without CaCl(2). Drought induced oxidative stress was measured in terms of lipid peroxidation (LPO) and H(2)O(2) contents, osmolyte concentration, proline (PRO) metabolizing enzymes and indole alkaloid accumulation. The plants under pot culture were subjected to 10, 15 and 20 days interval drought (DID) stress and drought stress with 5mM CaCl(2) and 5mM CaCl(2) alone from 30 days after planting (DAP) and regular irrigation was kept as control. The plants were uprooted on 41 DAS (10 DID), 46 DAS (15 DID) and 51 DAS (20 DID). Drought stressed plants showed increased LPO, H(2)O(2), glycine betaine (GB) and PRO contents and decreased proline oxidase (PROX) activity and increased gamma-glutamyl kinase (gamma-GK) activity when compared to control. Addition of CaCl(2) to drought stressed plants lowered the PRO concentration by increasing the level of PROX and decreasing the gamma-GK activities. Calcium ions increased the GB contents. CaCl(2) appears to confer greater osmoprotection by the additive role with drought in GB accumulation. The drought with CaCl(2)-treated C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to drought stressed and well-watered plants.

  16. Investigation of the chemomarkers correlated with flower colour in different organs of Catharanthus roseus using NMR-based metabolomics.

    Science.gov (United States)

    Pan, Qifang; Dai, Yuntao; Nuringtyas, Tri Rini; Mustafa, Natali Rianika; Schulte, Anna Elisabeth; Verpoorte, Robert; Choi, Young Hae

    2014-01-01

    Flower colour is a complex phenomenon that involves a wide range of secondary metabolites of flowers, for example phenolics and carotenoids as well as co-pigments. Biosynthesis of these metabolites, though, occurs through complicated pathways in many other plant organs. The analysis of the metabolic profile of leaves, stems and roots, for example, therefore may allow the identification of chemomarkers related to the final expression of flower colour. To investigate the metabolic profile of leaves, stems, roots and flowers of Catharanthus roseus and the possible correlation with four flower colours (orange, pink, purple and red). (1) H-NMR and multivariate data analysis were used to characterise the metabolites in the organs. The results showed that flower colour is characterised by a special pattern of metabolites such as anthocyanins, flavonoids, organic acids and sugars. The leaves, stems and roots also exhibit differences in their metabolic profiles according to the flower colour. Plants with orange flowers featured a relatively high level of kaempferol analogues in all organs except roots. Red-flowered plants showed a high level of malic acid, fumaric acid and asparagine in both flowers and leaves, and purple and pink flowering plants exhibited high levels of sucrose, glucose and 2,3-dihydroxy benzoic acid. High concentrations of quercetin analogues were detected in flowers and leaves of purple-flowered plants. There is a correlation between the metabolites specifically associated to the expression of different flower colours and the metabolite profile of other plant organs and it is therefore possible to predict the flower colours by detecting specific metabolites in leaves, stems or roots. This may have interesting application in the plant breeding industry. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Vindoline Formation in Shoot Cultures of Catharanthus roseus is Synchronously Activated with Morphogenesis Through the Last Biosynthetic Step

    Science.gov (United States)

    Campos-Tamayo, Freddy; Hernández-Domínguez, Elizabeta; Vázquez-Flota, Felipe

    2008-01-01

    Background and Aims The Madagascar periwinkle (Catharanthus roseus) produces the monoterpenoid alkaloid vindoline, which requires a specialized cell organization present only in the aerial tissues. Vindoline content can be affected by photoperiod and this effect seems to be associated with the morphogenetic capacity of branches; this association formed the basis of the study reported here. Methods Vindoline-producing in vitro shoot cultures were exposed either to continuous light or a 16-h photoperiod regime. New plantlet formation and alkaloid biosynthesis were analysed throughout a culture cycle. Key Results In cultures under the photoperiod, the formation of new plantlets occurred in a more synchronized fashion as compared to those under continuous light. The accumulation of vindoline in cultures under the photoperiod occurred in co-ordination with plantlet formation, in constrast to cultures under continuous light, and coincided with a peak of activity of deacetylvindoline acetyl CoA acetyltransferase (DAT), the enzyme that catalyses the last step in vindoline biosynthesis. When new plantlet formation was blocked in cultures under the photoperiod by treatment with phytoregulators, vindoline synthesis was also reduced via an effect on DAT activity. No association between plantlet formation and other biosynthetic enzymes, such as tryptophan decarboxylase (TDC) and deacetoxyvindoline 4-hydroxylase (D4H), was found. Effects of light treatment on vindoline synthesis were not mediated by ORCA-3 proteins (which are involved in the induction of alkaloid synthesis in response to elicitation), suggesting that the presence of a different set of regulatory proteins. Conclusions The data suggest that vindoline biosynthesis is associated with morphogenesis in shoot cultures of C. roseus. PMID:18587132

  18. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus.

    Science.gov (United States)

    Besseau, Sébastien; Kellner, Franziska; Lanoue, Arnaud; Thamm, Antje M K; Salim, Vonny; Schneider, Bernd; Geu-Flores, Fernando; Höfer, René; Guirimand, Grégory; Guihur, Anthony; Oudin, Audrey; Glevarec, Gaëlle; Foureau, Emilien; Papon, Nicolas; Clastre, Marc; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; Werck-Reichhart, Danièle; Burlat, Vincent; De Luca, Vincenzo; O'Connor, Sarah E; Courdavault, Vincent

    2013-12-01

    Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis.

  19. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures

    Directory of Open Access Journals (Sweden)

    Chelliah Jayabaskaran

    2007-11-01

    Full Text Available Abstract Background Elicitations are considered to be an important strategy towards improved in vitro production of secondary metabolites. In cell cultures, biotic and abiotic elicitors have effectively stimulated the production of plant secondary metabolites. However, molecular basis of elicitor-signaling cascades leading to increased production of secondary metabolites of plant cell is largely unknown. Exposure of Catharanthus roseus cell suspension culture to low dose of UV-B irradiation was found to increase the amount of catharanthine and transcription of genes encoding tryptophan decarboxylase (Tdc and strictosidine synthase (Str. In the present study, the signaling pathway mediating UV-B-induced catharanthine accumulation in C. roseus suspension cultures were investigated. Results Here, we investigate whether cell surface receptors, medium alkalinization, Ca2+ influx, H2O2, CDPK and MAPK play required roles in UV-B signaling leading to enhanced production of catharanthine in C. roseus cell suspension cultures. C. roseus cells were pretreated with various agonists and inhibitors of known signaling components and their effects on the accumulation of Tdc and Str transcripts as well as amount of catharanthine production were investigated by various molecular biology techniques. It has been found that the catharanthine accumulation and transcription of Tdc and Str were inhibited by 3–4 fold upon pretreatment of various inhibitors like suramin, N-acetyl cysteine, inhibitors of calcium fluxes, staurosporine etc. Conclusion Our results demonstrate that cell surface receptor(s, Ca2+ influx, medium alkalinization, CDPK, H2O2 and MAPK play significant roles in UV-B signaling leading to stimulation of Tdc and Str genes and the accumulation of catharanthine in C. roseus cell suspension cultures. Based on these findings, a model for signal transduction cascade has been proposed.

  20. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus.

    Science.gov (United States)

    Han, Mei; Heppel, Simon C; Su, Tao; Bogs, Jochen; Zu, Yuangang; An, Zhigang; Rausch, Thomas

    2013-01-01

    In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA) formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a new (type I) DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS) and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR)), respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms), DXR, and hydroxymethylbutenyl diphosphate synthase (HDS) were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation.

  1. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures

    Science.gov (United States)

    Ramani, Shilpa; Chelliah, Jayabaskaran

    2007-01-01

    Background Elicitations are considered to be an important strategy towards improved in vitro production of secondary metabolites. In cell cultures, biotic and abiotic elicitors have effectively stimulated the production of plant secondary metabolites. However, molecular basis of elicitor-signaling cascades leading to increased production of secondary metabolites of plant cell is largely unknown. Exposure of Catharanthus roseus cell suspension culture to low dose of UV-B irradiation was found to increase the amount of catharanthine and transcription of genes encoding tryptophan decarboxylase (Tdc) and strictosidine synthase (Str). In the present study, the signaling pathway mediating UV-B-induced catharanthine accumulation in C. roseus suspension cultures were investigated. Results Here, we investigate whether cell surface receptors, medium alkalinization, Ca2+ influx, H2O2, CDPK and MAPK play required roles in UV-B signaling leading to enhanced production of catharanthine in C. roseus cell suspension cultures. C. roseus cells were pretreated with various agonists and inhibitors of known signaling components and their effects on the accumulation of Tdc and Str transcripts as well as amount of catharanthine production were investigated by various molecular biology techniques. It has been found that the catharanthine accumulation and transcription of Tdc and Str were inhibited by 3–4 fold upon pretreatment of various inhibitors like suramin, N-acetyl cysteine, inhibitors of calcium fluxes, staurosporine etc. Conclusion Our results demonstrate that cell surface receptor(s), Ca2+ influx, medium alkalinization, CDPK, H2O2 and MAPK play significant roles in UV-B signaling leading to stimulation of Tdc and Str genes and the accumulation of catharanthine in C. roseus cell suspension cultures. Based on these findings, a model for signal transduction cascade has been proposed. PMID:17988378

  2. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Suttipanta, Nitima; Pattanaik, Sitakanta; Kulshrestha, Manish; Patra, Barunava; Singh, Sanjay K; Yuan, Ling

    2011-12-01

    Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are an important source of natural or semisynthetic anticancer drugs. The biosynthesis of TIAs is tissue specific and induced by certain phytohormones and fungal elicitors, indicating the involvement of a complex transcriptional control network. However, the transcriptional regulation of the TIA pathway is poorly understood. Here, we describe a C. roseus WRKY transcription factor, CrWRKY1, that is preferentially expressed in roots and induced by the phytohormones jasmonate, gibberellic acid, and ethylene. The overexpression of CrWRKY1 in C. roseus hairy roots up-regulated several key TIA pathway genes, especially Tryptophan Decarboxylase (TDC), as well as the transcriptional repressors ZCT1 (for zinc-finger C. roseus transcription factor 1), ZCT2, and ZCT3. However, CrWRKY1 overexpression repressed the transcriptional activators ORCA2, ORCA3, and CrMYC2. Overexpression of a dominant-repressive form of CrWRKY1, created by fusing the SRDX repressor domain to CrWRKY1, resulted in the down-regulation of TDC and ZCTs but the up-regulation of ORCA3 and CrMYC2. CrWRKY1 bound to the W box elements of the TDC promoter in electrophoretic mobility shift, yeast one-hybrid, and C. roseus protoplast assays. Up-regulation of TDC increased TDC activity, tryptamine concentration, and resistance to 4-methyl tryptophan inhibition of CrWRKY1 hairy roots. Compared with control roots, CrWRKY1 hairy roots accumulated up to 3-fold higher levels of serpentine. The preferential expression of CrWRKY1 in roots and its interaction with transcription factors including ORCA3, CrMYC2, and ZCTs may play a key role in determining the root-specific accumulation of serpentine in C. roseus plants.

  3. Abnormalities in carbohydrate and lipid metabolisms in high-fructose dietfed insulin-resistant rats: amelioration by Catharanthus roseus treatments.

    Science.gov (United States)

    Rasineni, Karuna; Bellamkonda, Ramesh; Singareddy, Sreenivasa Reddy; Desireddy, Saralakumari

    2013-09-01

    High intake of dietary fructose has been shown to exert a number of adverse metabolic effects in humans and experimental animals. The present study was proposed to elucidate the effect of Catharanthus roseus (C. roseus) leaf powder treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats of body weight around 180 g were divided into four groups, two of these groups (groups C and C+CR) were fed with standard pellet diet and the other two groups (groups F and F+CR) were fed with high-fructose (66 %) diet. C. roseus leaf powder suspension in water (100 mg/kg body weight/day) was administered orally to group C+CR and group F+CR. At the end of a 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. roseus treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F was significantly decreased with C. roseus treatment in group F+CR. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. roseus treatment in group F+CR. In conclusion, our study demonstrates that C. roseus treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose-induced alterations in carbohydrate and lipid metabolisms. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it.

  4. Jasmonic Acid Effect on the Fatty Acid and Terpenoid Indole Alkaloid Accumulation in Cell Suspension Cultures of Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Guitele Dalia Goldhaber-Pasillas

    2014-07-01

    Full Text Available The stress response after jasmonic acid (JA treatment was studied in cell suspension cultures of Catharanthus roseus. The effect of JA on the primary and secondary metabolism was based on changes in profiles of fatty acids (FA and terpenoid indole alkaloids (TIA. According to multivariate data analyses (MVDA, three major time events were observed and characterized according to the variations of specific FA and TIA: after 0–30 min of induction FA such as C18:1, C20:0, C22:0 and C24:0 were highly induced by JA; 90–360 min after treatment was characterized by variations of C14:0 and C15:0; and 1440 min after induction JA had the largest effect on both group of metabolites were C18:1, C18:2, C18:3, C16:0, C20:0, C22:0, C24:0, catharanthine, tabersonine-like 1, serpentine, tabersonine and ajmalicine-like had the most significant variations. These results unambiguously demonstrate the profound effect of JA particularly on the accumulation of its own precursor, C18:3 and the accumulation of TIA, which can be considered as late stress response events to JA since they occurred only after 1440 min. These observations show that the early events in the JA response do not involve the de novo biosynthesis of neither its own precursor nor TIA, but is due to an already present biochemical system.

  5. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.

    Science.gov (United States)

    Rai, Avanish; Smita, Shachi S; Singh, Anup Kumar; Shanker, Karuna; Nagegowda, Dinesh A

    2013-09-01

    Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti-cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coli resulted in heteromeric enzyme with enhanced activity producing only GPP. While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MeJA) treatment of leaves significantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis.

  6. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus.

    Science.gov (United States)

    Shokeen, Bhumika; Choudhary, Shalu; Sethy, Niroj Kumar; Bhatia, Sabhyata

    2011-08-01

    Catharanthus roseus is a plant of great medicinal importance, yet inadequate knowledge of its genome structure and the unavailability of genomic resources have been major impediments in the development of improved varieties. The aims of this study were to develop co-dominant sequence-tagged microsatellite sites (STMS) and gene-targeted markers (GTMs) and utilize them for the construction of a framework intraspecific linkage map of C. roseus. For simple sequence repeat (SSR) isolation, a genomic library enriched for (GA)(n) repeats was constructed from C. roseus 'Nirmal' (CrN1). In addition, GTMs were also designed from 12 genes of the TIA (terpenoid indole alkaloid) pathway - the medicinally most significant pathway in C. roseus. An F(2) mapping population was also generated by crossing two diverse accessions of C. roseus CrN1 (Nirmal)×CrN82 (Kew). A new set of 314 STMS markers and 64 GTMs were developed in this study. A segregating F(2) mapping population consisting of 111 F(2) individuals was generated. For generating the linkage map, a set of 423 co-dominant markers (378 newly developed and 45 published earlier) were screened for polymorphism between the parental genotypes, of which 134 were identified to be polymorphic. A total of 114 markers were mapped on eight linkage groups that spanned a 632·7 cM region of the genome with an average marker distance of 5·55 cM. Further, the mechanism of hypervariability at the gene-targeted loci was investigated at the sequence level. For the first time, a large array of STMS markers and GTMs was generated in the model medicinal plant C. roseus. Moreover, the first microsatellite marker-based linkage map was described in this study. Together, these will serve as a foundation for future genomics studies related to quantitative trait loci analysis and molecular breeding in C. roseus.

  7. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP pathway enzyme expression in Catharanthus roseus.

    Directory of Open Access Journals (Sweden)

    Mei Han

    Full Text Available In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS, a new (type I DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR, respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms, DXR, and hydroxymethylbutenyl diphosphate synthase (HDS were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation.

  8. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death.

    Science.gov (United States)

    Palem, Padmini P C; Kuriakose, Gini C; Jayabaskaran, Chelliah

    2015-01-01

    Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp--CrP14, obtained from stem tissues, and Talaromyces radicus--CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus--CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus--CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l) in modified M2 medium and of vinblastine (70 μg/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns.

  9. Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of Mendelian inheritance in Catharanthus roseus.

    Science.gov (United States)

    Kumari, Renu; Yadav, Gitanjali; Sharma, Vishakha; Sharma, Vinay; Kumar, Sushil

    2013-12-01

    The 5S and 18S rDNA sequences of Catharanthus roseus cv 'Nirmal' (wild type) and its leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill) single mutants and lli egd, lli ill and egd ill double mutants were characterized. The lli, egd and ill mutants of Mendelian inheritance bore the names after their most conspicuous morphological feature(s). They had been chemically induced and isolated for their salt tolerance. The double mutants were isolated as morphological segregants from crosses between single mutants. The morphological features of the two parents accompanied salt tolerance in the double mutants. All the six mutants were hypomethylated at repeat sequences, upregulated and downregulated for many genes and carried pleiotropic alterations for several traits. Here the 5S and 18S rDNAs of C. roseus were found to be relatively low in cytosine content. Cytosines were preponderantly in CG context (53%) and almost all of them were methylated (97%). The cytosines in CHH and CHG (where H = A, T or C) contexts were largely demethylated (92%) in mutants. The demethylation was attributable to reduced expression of RDR2 and DRM2 led RNA dependant DNA methylation and CMT3 led maintenance methylation pathways. Mutants had gained some cytosines by substitution of C at T sites. These perhaps arose on account of errors in DNA replication, mediated by widespread cytosine demethylation at CHG and CHH sites. It was concluded that the regulation of cytosine ethylation mechanisms was disturbed in the mutants. ILL, EGD and LLI genes were identified as the positive regulators of other genes mediating the RdDM and CMT3 pathways, for establishment and maintenance of cytosine methylation in C. roseus.

  10. Influence of native arbuscular mycorrhizal fungi on growth, nutrition and phytochemical constituents of Catharanthus roseus (L. G. Don.

    Directory of Open Access Journals (Sweden)

    Rajendran Srinivasan

    2014-01-01

    Full Text Available Objective: To study the isolation, identification, mass production and the effect of native arbuscular mycorrhizal fungi (AM fungi on growth parameters of the Catharanthus roseus (C. roseus. Methods: A total of nine different AM fungi species such as Acaulospora scrobiculata, Acaulospora marrowae, Glomus aggregatum (G. aggregatum, Glomus fasciculatum, Glomus geosporum, Gigaspora margarita, Gigaspora nigra, Scutellospora heterogama and Scutellospora pellucida were isolated and identified from the root zone soil of C. roseus. Results: The phytochemical analyses showed high concentration of chlorophyll a (0.152±0.0140 µg/g, chlorophyll b (0.081±0.006 µg/g, total chlorophyll (0.233±0.020 µg/g, soluble sugar (0.051±0.004 µg/g, reducing sugar (0.060±0,007 µg/g, phenols (0.293±0.032 µg/g, ortho-dihydroxy phenols (0.275±0.022 µg/g, lipids (0.300±0.025 µg/g, proteins (0.063±0.003 µg/g and amino acids (1.042±0.056 µg/g in G. aggregatum inoculated C. roseus. G. aggregatum was found to perform better on growth when compared to others and phytochemical constituents of C. roseus. Conclusions: It is concluded from the present findings that the G. aggregatum and Glomus fasciculatum can be used as a potential growth promoters for the C. roseus for better yielding in the agricultural sectors.

  11. The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus.

    Science.gov (United States)

    Chang, Bowen; Yang, Lei; Cong, Weiwei; Zu, Yuangang; Tang, Zhonghua

    2014-04-01

    The effects of exogenous trehalose (Tre) on salt tolerance of pharmaceutical plant Catharanthus roseus and the physiological mechanisms were both investigated in this study. The results showed that the supplement of Tre in saline condition (250 mM NaCl) largely alleviated the inhibitory effects of salinity on plant growth, namely biomass accumulation and total leaf area per plant. In this saline condition, the decreased level of relative water content (RWC) and photosynthetic rate were also greatly rescued by exogenous Tre. This improved performance of plants under high salinity induced by Tre could be partly ascribed to its ability to decrease accumulation of sodium, and increase potassium in leaves. The exogenous Tre led to high levels of fructose, glucose, sucrose and Tre inside the salt-stressed plants during whole the three-week treatment. The major free amino acids such as proline, arginine, threonine and glutamate were also largely elevated in the first two-week course of treatment with Tre in saline solution. It was proposed here that Tre might act as signal to make the salt-stressed plants actively increase internal compatible solutes, including soluble sugars and free amino acids, to control water loss, leaf gas exchange and ionic flow at the onset of salt stress. The application of Tre in saline condition also promoted the accumulation of alkaloids. The regulatory role of Tre in improving salt tolerance was optimal with an exogenous concentration of 10 mM Tre. Larger concentrations of Tre were supra-optimum and adversely affected plant growth. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    Science.gov (United States)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-12-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 3.1, 1.0 and 4.8μgC dwg-1 h-1, respectively (dwg; dry weight of the leaves in gram). The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because they probably produce oxidation products that can condense onto the aerosol phase. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas area using a BVOC emission model. The contribution was estimated to reach 50% of the biogenic terpenoid emission in the landscapes dominated by desert willow and mesquite and 13% in the Las Vegas area. The

  13. Tinnitus as a Measure of Salicylate Toxicity in the Overdose Setting

    Directory of Open Access Journals (Sweden)

    Samlan, Scott R

    2008-08-01

    Full Text Available Introduction: The development of tinnitus and/or hearing loss (THL in patients receiving chronic salicylate therapy has been demonstrated. However, to date, little scientific data validates this relationship in the large single overdose setting.Objective: To correlate salicylate levels in patients with the subjective complaint of THL, following an acute salicylate overdose.Methods: A retrospective chart review of cases of acute salicylate toxicity and THL reported to the Illinois Poison Control Center (IPC from 2001-2002 was performed. Data abstracted included age, gender, ingestion time, salicylate levels, and arterial blood gases.Results: Ninety-nine cases of THL were reviewed and analyzed with mean age of 23.7 years (SD: 10.9, 30.3% male, and 82.2% intentional overdoses. The average dose ingested was 20.0 grams (SD:20.2 and the mean time from ingestion to medical care was 12.4 hours (SD: 11.1. The mean initial ASA level was 48.3 mg/dl (SD: 16.4 with 86.9% having initial level ≥ 30mg/dl and 40.4% ≥ 50 mg/dl. 85.9% of cases presented to the hospital with their ASA level at or past peak. The mean pH was 7.45, pO2 = 108, pCO2 = 28.0, and HCO3 = 19.9.Conclusion: In this limited study, 85.9% of patients presenting with tinnitus and/or hearing loss following a single salicylate ingestion had initial salicylate levels at or past their peak and 86.9% were in the toxic range.

  14. Effect of salicylic acid and aloe vera gel on postharvest quality of table grapes ( Vitis Vinifera

    Directory of Open Access Journals (Sweden)

    H. Peyro

    2017-06-01

    Full Text Available To investigate the effects of salicylic acid dipping and Aloe vera gel coating on shelf life and post harvest quality of table grapes (Vitis vinifera of the cultivar Shahroudi, a factorial experiment was conducted on the basis of randomized complete blocks design with three factors and three replicates in agricultural faculty of Islamic Azad University in 2014. The treatments were dipping in Salicylic acid (three levels of 0, 1 and 2 mmmol-1 for 15 minutes and coating with Aloe vera gel (four levels of 0, 10%, 15% and 20% w/v and measurement of traits in 1st day, 30th day and 60th day after treatment of berries. The results showed that the interaction effect of salicylic acid and Aloe vera gel application was significant on all of traits except for pH value in a way that the best and the minimum weight loss (0.09g was obtained by application of 2 mmol-1 Salicylic acid and 20% Aloe vera gel in 1st day after treatment. The greatest amount of total soluble solids (428.43 g.100g-1 fruit juice was found in 2 mmol-1 Salicylic acid and 15% Aloe vera gel in 60th day. The highest Catalase enzyme activity (0.0013 Ua.mg-1Pro was attained in 2 mmol-1 Salicylic acid and 15% Aloe vera gel in 30th day. These results demonstrated that treatment of grape berries by salicylic acid and Aloe vera gel had positive effect on shelf life of table grapes and their postharvest quality

  15. Direct analysis of salicylic acid, salicyl acyl glucuronide, salicyluric acid and gentisic acid in human plasma and urine by high-performance liquid chromatography.

    Science.gov (United States)

    Liu, J H; Smith, P C

    1996-01-12

    A method for the simultaneous direct determination of salicylate (SA), its labile, reactive metabolite, salicyl acyl glucuronide (SAG), and two other major metabolites, salicyluric acid and gentisic acid in plasma and urine is described. Isocratic reversed-phase high performance liquid chromatography (HPLC) employed a 15-cm C18 column using methanol-acetonitrile-25 mM acetic acid as the mobile phase, resulting in HPLC analysis time of less than 20 min. Ultraviolet detection at 310 nm permitted analysis of SAG in plasma, but did not provide sensitivity for measurement of salicyl phenol glucuronide. Plasma or urine samples are stabilized immediately upon collection by adjustment of pH to 3-4 to prevent degradation of the labile acyl glucuronide metabolite. Plasma is then deproteinated with acetonitrile, dried and reconstituted for injection, whereas urine samples are simply diluted prior to injection on HPLC. m-Hydroxybenzoic acid served as the internal standard. Recoveries from plasma were greater than 85% for all four compounds over a range of 0.2-20 micrograms/ml and linearity was observed from 0.1-200 micrograms/ml and 5-2000 micrograms/ml for SA in plasma and urine, respectively. The method was validated to 0.2 microgram/ml, thus allowing accurate measurement of SA, and three major metabolites in plasma and urine of subjects and small animals administered salicylates. The method is unique by allowing quantitation of reactive SAG in plasma at levels well below 1% that of the parent compound, SA, as is observed in patients administered salicylates.

  16. The electrochemical oxidation of salicylic acid and its derivatives on modified PbO2-electrodes

    Directory of Open Access Journals (Sweden)

    Olesia B. Shmychkova

    2017-11-01

    Full Text Available The results of the study of electrochemical oxidation of salicylic acid on PbO2-based anodes for effective wastewater treatment from organic pollutants have been summarized. Both the influence of various factors on the decomposition rate of organic substances and the influence of various modifying additives of lead dioxide anode on the process of mineralization of salicylic acid have been established. The total probable sequence of reactions to salicylic acid mineralization has been proposed. It is established that the destruction of salicylic acid in the first stage occurs through the accumulation of aromatic hydroxylation products, and during the total destruction - the destruction of the aromatic system with the formation of aliphatic compounds takes place. It is shown that the use of PbO2, deposited from methanesulfonate electrolytes and modified electrodes significantly reduces the conversion time of salicylic acid in aliphatic products compared to lead dioxide anodes obtained by traditional technology from nitrate bath. The highest degradation rate occurs at the anodes modified by bismuth. It was found that the destruction of the 5-aminosalicylic acid occurs through an intermediate oxidation of amino-group to hydroxy.

  17. Hypercapnea and Acidemia despite Hyperventilation following Endotracheal Intubation in a Case of Unknown Severe Salicylate Poisoning

    Directory of Open Access Journals (Sweden)

    Shannon M. Fernando

    2017-01-01

    Full Text Available Salicylates are common substances for deliberate self-harm. Acute salicylate toxicity is classically associated with an initial respiratory alkalosis, followed by an anion gap metabolic acidosis. The respiratory alkalosis is achieved through hyperventilation, driven by direct stimulation on the respiratory centers in the medulla and considered as a compensatory mechanism to avoid acidemia. However, in later stages of severe salicylate toxicity, patients become increasingly obtunded, with subsequent loss of airway reflexes, and therefore intubation may be necessary. Mechanical ventilation has been recommended against in acute salicylate poisoning, as it is believed to take away the compensatory hyperpnea and tachypnea. Despite the intuitive physiological basis for this recommendation, there is a paucity of evidence to support it. We describe a case of a 59-year-old male presenting with decreased level of consciousness and no known history of ingestion. He was intubated and experienced profound hypercarbia and acidemia despite mechanical ventilation with high minute ventilation and tidal volumes. This case illustrates the deleterious effects of intubation in severe salicylate toxicity.

  18. Allergic contact dermatitis from salicyl alcohol and salicylaldehyde in aspen bark (Populus tremula).

    Science.gov (United States)

    Aalto-Korte, Kristiina; Välimaa, Jarmo; Henriks-Eckerman, Maj-Len; Jolanki, Riitta

    2005-02-01

    Salicyl alcohol or 2-methylolphenol is a well-known allergen in phenol-formaldehyde resins and a strong sensitizer in guinea pigs. There is 1 previous report of allergic contact dermatitis from salicyl alcohol in aspen bark. We describe a second case with concomitant allergy to salicylaldehyde. An elk researcher who had handled leaves from various trees presented with eczema of the hands, face, flexures, trunk and extremities. Patch testing showed sensitivity to salicyl alcohol, salicylaldehyde, balsam of Peru (Myroxylon pereirae resin), aspen wood dust and an extract prepared from the bark of aspen (Populus tremula). Weaker reactions were observed to bark extracts of rowan (Sorbus aucuparia), tea-leaved willow (Salix phylicifolia) and goat willow (Salix caprea). We analysed salicyl alcohol and salicylaldehyde in the bark extracts and found the 2 chemicals in equal amounts, about 0.9 microg/mg in aspen bark and in lower concentrations in rowan and the willows. We did not find either of the chemicals in the test substance of balsam of Peru (Myroxylon pereirae). Besides salicyl alcohol, salicylaldehyde is also recommended to be used to screen for contact allergy to aspen. Both of these chemicals should be tested in forest workers in areas where aspen is growing.

  19. The Phytochemical Changes of Violet Flowers (Viola cornuta Response to Exogenous Salicylic Acid Hormone

    Directory of Open Access Journals (Sweden)

    N. Ghorbani

    2014-04-01

    Full Text Available Violet is one of the ornamental plants with a good value in landscaping and herbal medicine. Salicylic acid is a signaling agent involving in secondary metabolite production. The aim of this study was to evaluate the physiological responses of violet flowers to exogenous salicylic acid. This experiment was conducted in the greenhouse, as a completely randomized design. Salicylic acid was sprayed on violet plants in four levels as 0, 0.1, 0.7, 1.5 mM and three replications. Flower diameter, flower stem length, fresh weight and dry matter percentage of violet flower were measured as morphological parametes. In laboratory parameters like antioxidant activity and anthocyanin variation were recorded using spectrophotometery method. The quercetin and rutin values were determined by HPLC. Results showed that salicylic acid significantly affected on flower diameter, total antioxidant capacity, rutin and quercetin contents. Therefore data analysis provides that high levels of salicylic acid increased morphological parameters and improved chemical substance involving to secondary metabolism promotion. Furthermore, using different concentrations of the hormone is required, to achieve the best quality and quantity of plant biomass and it is also necessary to achieve the best traits of ornamental and medicinal value

  20. The Phytochemical Changes of Violet Flowers (Viola cornuta Response to Exogenous Salicylic Acid Hormone

    Directory of Open Access Journals (Sweden)

    N. Ghorbani

    2014-02-01

    Full Text Available Violet is one of the ornamental plants with a good value in landscaping and herbal medicine. Salicylic acid is a signaling agent involving in secondary metabolite production. The aim of this study was to evaluate the physiological responses of violet flowers to exogenous salicylic acid. This experiment was conducted in the greenhouse, as a completely randomized design. Salicylic acid was sprayed on violet plants in four levels as 0, 0.1, 0.7, 1.5 mM and three replications. Flower diameter, flower stem length, fresh weight and dry matter percentage of violet flower were measured as morphological parametes. In laboratory parameters like antioxidant activity and anthocyanin variation were recorded using spectrophotometery method. The quercetin and rutin values were determined by HPLC. Results showed that salicylic acid significantly affected on flower diameter, total antioxidant capacity, rutin and quercetin contents. Therefore data analysis provides that high levels of salicylic acid increased morphological parameters and improved chemical substance involving to secondary metabolism promotion. Furthermore, using different concentrations of the hormone is required, to achieve the best quality and quantity of plant biomass and it is also necessary to achieve the best traits of ornamental and medicinal value

  1. Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis1

    Science.gov (United States)

    Traw, M. Brian; Bergelson, Joy

    2003-01-01

    Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds. PMID:14551332

  2. Structural, Thermal, and Electrical Properties of PVA-Sodium Salicylate Solid Composite Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Noorhanim Ahad

    2012-01-01

    Full Text Available Structural, thermal, and electrical properties of solid composite polymer electrolytes based on poly (vinyl alcohol complexed with sodium salicylate were studied. The polymer electrolytes at different weight percent ratios were prepared by solution casting technique. The changes in the structures of the electrolytes were characterized by XRD, which revealed the amorphous domains of the polymer which increased with increase of sodium salicylate concentration. The complexion of the polymer electrolytes were confirmed by FTIR studies. Thermal gravimetric analysis (TGA was used to study the thermal stability of the polymer below 523 K. The decomposition decreases with increasing sodium salicylate concentration. The conductivity and dielectric properties were measured using an impedance analyzer in frequency range of 20 Hz to 1 MHz and narrow temperature range of 303 to 343 K. The conductivity increased with increase of sodium salicylate concentration and temperature. The dielectric constant and dielectric loss increased with the increase in temperature and decreased with the increase in sodium salicylate concentration.

  3. AHL-priming functions via oxylipin and salicylic acid.

    Science.gov (United States)

    Schenk, Sebastian T; Schikora, Adam

    2014-01-01

    Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant-microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection.

  4. How salicylic acid takes transcriptional control over jasmonic acid signaling.

    Science.gov (United States)

    Caarls, Lotte; Pieterse, Corné M J; Van Wees, Saskia C M

    2015-01-01

    Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.

  5. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling.

    Science.gov (United States)

    Gitau, Samuel Chege; Li, Xuelian; Zhao, Dandan; Guo, Zhenfeng; Liang, Haihai; Qian, Ming; Lv, Lifang; Li, Tianshi; Xu, Bozhi; Wang, Zhiguo; Zhang, Yong; Xu, Chaoqian; Lu, Yanjie; Du, Zhiming; Shan, Hongli; Yang, Baofeng

    2015-12-01

    Ventricular hypertrophy is a powerful and independent predictor of cardiovascular morbid events. The vascular properties of low-dose acetyl salicylic acid (aspirin) provide cardiovascular benefits through the irreversible inhibition of platelet cyclooxygenase 1; however, the possible anti-hypertrophic properties and potential mechanism of aspirin have not been investigated in detail. In this study, healthy wild-type male mice were randomly divided into three groups and subjected to transverse aortic constriction (TAC) or sham operation. The TAC-operated mice were treated with the human equivalent of low-dose aspirin (10 mg·kg(-1)·d(-1)); the remaining mice received an equal amount of phosphate buffered saline with 0.65% ethanol, which was used as a vehicle. A cardiomyocyte hypertrophy model induced by angiotensin II (10 nmol·L(-1)) was treated with the human equivalent of low (10 or 100 μmol·L(-1)) and high (1000 μmol·L(-1)) aspirin concentrations in plasma. Changes in the cardiac structure and function were assessed through echocardiography and transmission electron microscopy. Gene expression was determined through RT-PCR and western blot analysis. Results indicated that aspirin treatment abrogated the increased thickness of the left ventricular anterior and posterior walls, the swelling of mitochondria, and the increased surface area in in vivo and in vitro hypertrophy models. Aspirin also normalized the upregulated hypertrophic biomarkers, β-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP), and b-type natriuretic peptide (BNP). Aspirin efficiently reversed the upregulation of β-catenin and P-Akt expression and the TAC- or ANG II-induced downregulation of GSK-3β. Therefore, low-dose aspirin possesses significant anti-hypertrophic properties at clinically relevant concentrations for anti-thrombotic therapy. The downregulation of β-catenin and Akt may be the underlying signaling mechanism of the effects of aspirin.

  6. AHL-priming functions via oxylipin and salicylic acid

    Directory of Open Access Journals (Sweden)

    Sebastian Timo Schenk

    2015-01-01

    Full Text Available Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing (QS. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl-homoserine lactones (AHLs are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA. SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant-microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant

  7. Nitric oxide and salicylic acid signaling in plant defense

    Science.gov (United States)

    Klessig, Daniel F.; Durner, Jörg; Noad, Robert; Navarre, Duroy A.; Wendehenne, David; Kumar, Dhirendra; Zhou, Jun Ma; Shah, Jyoti; Zhang, Shuqun; Kachroo, Pradeep; Trifa, Youssef; Pontier, Dominique; Lam, Eric; Silva, Herman

    2000-01-01

    Salicylic acid (SA) plays a critical signaling role in the activation of plant defense responses after pathogen attack. We have identified several potential components of the SA signaling pathway, including (i) the H2O2-scavenging enzymes catalase and ascorbate peroxidase, (ii) a high affinity SA-binding protein (SABP2), (iii) a SA-inducible protein kinase (SIPK), (iv) NPR1, an ankyrin repeat-containing protein that exhibits limited homology to IκBα and is required for SA signaling, and (v) members of the TGA/OBF family of bZIP transcription factors. These bZIP factors physically interact with NPR1 and bind the SA-responsive element in promoters of several defense genes, such as the pathogenesis-related 1 gene (PR-1). Recent studies have demonstrated that nitric oxide (NO) is another signal that activates defense responses after pathogen attack. NO has been shown to play a critical role in the activation of innate immune and inflammatory responses in animals. Increases in NO synthase (NOS)-like activity occurred in resistant but not susceptible tobacco after infection with tobacco mosaic virus. Here we demonstrate that this increase in activity participates in PR-1 gene induction. Two signaling molecules, cGMP and cyclic ADP ribose (cADPR), which function downstream of NO in animals, also appear to mediate plant defense gene activation (e.g., PR-1). Additionally, NO may activate PR-1 expression via an NO-dependent, cADPR-independent pathway. Several targets of NO in animals, including guanylate cyclase, aconitase, and mitogen-activated protein kinases (e.g., SIPK), are also modulated by NO in plants. Thus, at least portions of NO signaling pathways appear to be shared between plants and animals. PMID:10922045

  8. How salicylic acid takes transcriptional control over jasmonic acid signaling

    Directory of Open Access Journals (Sweden)

    Lotte eCaarls

    2015-03-01

    Full Text Available Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA and jasmonic acid (JA are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.

  9. Optimization and validation of liquid chromatography and headspace-gas chromatography based methods for the quantitative determination of capsaicinoids, salicylic acid, glycol monosalicylate, methyl salicylate, ethyl salicylate, camphor and l-menthol in a topical formulation.

    Science.gov (United States)

    Pauwels, Jochen; D'Autry, Ward; Van den Bossche, Larissa; Dewever, Cédric; Forier, Michel; Vandenwaeyenberg, Stephanie; Wolfs, Kris; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2012-02-23

    Capsaicinoids, salicylic acid, methyl and ethyl salicylate, glycol monosalicylate, camphor and l-menthol are widely used in topical formulations to relieve local pain. For each separate compound or simple mixtures, quantitative analysis methods are reported. However, for a mixture containing all above mentioned active compounds, no assay methods were found. Due to the differing physicochemical characteristics, two methods were developed and optimized simultaneously. The non-volatile capsaicinoids, salicylic acid and glycol monosalicylate were analyzed with liquid chromatography following liquid-liquid extraction, whereas the volatile compounds were analyzed with static headspace-gas chromatography. For the latter method, liquid paraffin was selected as compatible dilution solvent. The optimized methods were validated in terms of specificity, linearity, accuracy and precision in a range of 80% to 120% of the expected concentrations. For both methods, peaks were well separated without interference of other compounds. Linear relationships were demonstrated with R² values higher than 0.996 for all compounds. Accuracy was assessed by performing replicate recovery experiments with spiked blank samples. Mean recovery values were all between 98% and 102%. Precision was checked at three levels: system repeatability, method precision and intermediate precision. Both methods were found to be acceptably precise at all three levels. Finally, the method was successfully applied to the analysis of some real samples (cutaneous sticks). Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Efficacy of salicylic acid in the treatment of digital dermatitis in dairy cattle

    DEFF Research Database (Denmark)

    Schultz, N.; Capion, N.

    2013-01-01

    Digital dermatitis (DD) is one of the most important causes of lameness in dairy cattle worldwide. The objective of this study was to evaluate the efficacy of salicylic acid in the treatment of the disease. A total of 201 DD lesions from 173 cows from four commercial dairy herds were evaluated...... at day 0 during routine hoof trimming and were allocated into two groups, namely, a control group given chlortetracycline spray, and a treatment group given 10 g of salicylic acid powder applied topically within a bandage. Pain, lesion size and clinical appearance (scored MO to M4) were evaluated on days...... the control group were 2.2 times more likely (P = 0.09) to have a pain score equal to 2 by day 14. The proportion of lesions getting smaller by days 14 and 34 was 2.5 times higher (P salicylic acid should be considered as an alternative...

  11. Synthesis and Characterization of Fatty Acid Conjugates of Niacin and Salicylic Acid.

    Science.gov (United States)

    Vu, Chi B; Bemis, Jean E; Benson, Ericka; Bista, Pradeep; Carney, David; Fahrner, Richard; Lee, Diana; Liu, Feng; Lonkar, Pallavi; Milne, Jill C; Nichols, Andrew J; Picarella, Dominic; Shoelson, Adam; Smith, Jesse; Ting, Amal; Wensley, Allison; Yeager, Maisy; Zimmer, Michael; Jirousek, Michael R

    2016-02-11

    This report describes the synthesis and preliminary biological characterization of novel fatty acid niacin conjugates and fatty acid salicylate conjugates. These molecular entities were created by covalently linking two bioactive molecules, either niacin or salicylic acid, to an omega-3 fatty acid. This methodology allows the simultaneous intracellular delivery of two bioactives in order to elicit a pharmacological response that could not be replicated by administering the bioactives individually or in combination. The fatty acid niacin conjugate 5 has been shown to be an inhibitor of the sterol regulatory element binding protein (SREBP), a key regulator of cholesterol metabolism proteins such as PCSK9, HMG-CoA reductase, ATP citrate lyase, and NPC1L1. On the other hand, the fatty acid salicylate conjugate 11 has been shown to have a unique anti-inflammatory profile based on its ability to modulate the NF-κB pathway through the intracellular release of the two bioactives.

  12. Salicylic acid on antioxidant activity and betacyan in production from leaves of Alternanthera tenella

    Directory of Open Access Journals (Sweden)

    Isabel Rodrigues-Brandão

    2014-10-01

    Full Text Available This research investigates effects of salicylic acid (an abiotic elicitor on the antioxidant activity and betacyan production from leaves of Alternanthera tenella cultured in vitro was evaluated. Plants were grown in a liquid MS medium and vermiculite substrate. After 35 days salicylic acid was added to the medium. Content of betacyanins, total phenols and flavonoids and non-enzymatic antioxidant capacity were determined in leaves of A. tenella after 0, 12, 36 and 48h of treatment. After 36h, concentration of betacyanins and total phenols increased. On the other hand, the increase of the treatment time caused a slight decrease in total flavonoids and reduced the DPPH free radical activity. As result the antioxidant activity of the leaves of A. tenella is promoted by salicylic acid and can be attributed to the increase in betacyanin content, which are compounds with recognized antioxidant action.

  13. Late Metabolic Acidosis Caused by Renal Tubular Acidosis in Acute Salicylate Poisoning.

    Science.gov (United States)

    Sakai, Norihiro; Hirose, Yasuo; Sato, Nobuhiro; Kondo, Daisuke; Shimada, Yuko; Hori, Yasushi

    2016-01-01

    A 16-year-old man was transferred to our emergency department seven hours after ingesting 486 aspirin tablets. His blood salicylate level was 83.7 mg/dL. He was treated with fluid resuscitation and sodium bicarbonate infusion, and his condition gradually improved, with a decline in the blood salicylate level. However, eight days after admission, he again reported nausea, a venous blood gas revealed metabolic acidosis with a normal anion gap. The blood salicylate level was undetectable, and a urinalysis showed glycosuria, proteinuria and elevated beta-2 microglobulin and n-acetyl glucosamine levels, with a normal urinary pH despite the acidosis. We diagnosed him with relapse of metabolic acidosis caused by renal tubular acidosis.

  14. Determination of free salicylic acid in chewing aspirin tablets by HPLC.

    Science.gov (United States)

    Tian, Jun; Chen, Xin-shan; Wang, Rui-dong

    2003-07-01

    To establish a HPLC method for determining the content of free salicylic acid in chewing aspirin tablets. The determination was conducted on a HPLC column (C(18), 150 mm x 4.6 mm x 5 microm) with methanol-water-glacial acetic acid (8.0 5.5 1.0) as the mobile phase and the detection wavelength of 302 nm. The calibration curve was linear within the concentration range of 2.65 to 31.77 microg/ml (r=0.999 97) of salicylic acid. The average recovery rate was 100.21% with relative standard deviation of 0.53% (n=6). HPLC is quick and accurate of determining the content of free salicylic acid for chewing aspirin tablets.

  15. [Determination of aspirin and free salicylic acid in lysinipirine injection by high performance liquid chromatography].

    Science.gov (United States)

    Dong, Yu; Zhao, Yuan-zheng; Zhang, Yi-na

    2002-05-01

    The contents of aspirin and free salicylic acid in lysinipirine injection were determined by high performance liquid chromatography (HPLC). A Hypersil BDS C18 column was used with the mobile phase of methanol-water-acetic acid (35:65:3, volume ratio) and the detection wavelength of 280 nm. The average recoveries of aspirin and salicylic acid added were 99.27% (RSD = 0.8%) and 99.61%(RSD = 1.3%), respectively. The calibration curves had good linearity in the range of 0.028 g/L -0.141 mg/L and 0.77 mg/L -3.85 mg/L, and the correlation coefficients were 0.9999 and 0.9998 for aspirin and salicylic acid respectively.

  16. [Determination of resorcinol and salicylic acid in piyanning tincture by high performance liquid chromatography].

    Science.gov (United States)

    Guo, X; Zhou, M

    1998-11-01

    A method for the simultaneous determination of resorcinol and salicylic acid in Piyanning tincture by HPLC has been proposed. Operating conditions were Hyppersil ODS column, 4.6 mm x 200 mm, V (methanol): V(water): V(acetic acid) = 50:50:0.9 mobile phase and UV detection at 285 nm. The linear ranges of the method were 0.05-0.25 g/L(r = 1.000) for resorcinol and 0.025-0.127 g/L(r = 1.000) for salicylic acid. The limits of detection were both 0.2 mg/L at a signal-to-noise of 3. The assay method was capable to resolve resorcinol and salicylic acid from their impurities.

  17. Microbial effectors target multiple steps in the salicylic acid production and signaling pathway

    Directory of Open Access Journals (Sweden)

    Shigeyuki eTanaka

    2015-05-01

    Full Text Available Microbes attempting to colonize plants are recognized through the plant immune surveillance system. This leads to a complex array of global as well as specific defense responses, which are often associated with plant cell death and subsequent arrest of the invader. The responses also entail complex changes in phytohormone signaling pathways. Among these, salicylic acid signaling is an important pathway because of its ability to trigger plant cell death. As biotrophic and hemibiotrophic pathogens need to invade living plant tissue to cause disease, they have evolved efficient strategies to downregulate salicylic acid signaling by virulence effectors, which can be proteins or secondary metabolites. Here we review the strategies prokaryotic pathogens have developed to target salicylic acid biosynthesis and signaling, and contrast this with recent insights into how plant pathogenic eukaryotic fungi and oomycetes accomplish the same goal.

  18. The Interaction Effect of Salicylic Acid and High Temperature Stress on Some Physiological Characteristics of Maize Zea mays L.(

    Directory of Open Access Journals (Sweden)

    M Attarzadeh

    2015-04-01

    Full Text Available The present study was conducted to evaluate the effects of salicylic acid and High temperature on physiological characteristics of maize (cv. SC704. In order to, a factorial experiment based on randomized complete blocks design with three replications was carried out in Research Greenhouse of Vali-e-Asr University of Rafsanjan. The factors were included pre-treatment of concentrations of salicylic acid (0, 50, 100 and 200 μM and duration of 40°C (0, 8, 16 and 24 hours. Results showed that SPAD index increased significantly in levels of 50 and 100μM salicylic acid but it was low in control and 200μM salicylic acid. In level of 50μM salicylic acid, increase in duration of heat stress was resulted in increasing content of a and ab chlorophyll. However, it was occurred conversely in level of 200 μM salicylic acid, i.e., content of a and ab was decreased. Levels of salicylic acid and duration of heat stress did not effect on Fv/Fm and content of soluble sugar. Use of 200 μM salicylic acid decreased significantly relative water content, while increase in duration of heat stress caused to increase relative water content. In addition, increase in duration of heat stress resulted in increasing leaf temperature and proline content.

  19. Salicylate Detection by Complexation with Iron(III) and Optical Absorbance Spectroscopy: An Undergraduate Quantitative Analysis Experiment

    Science.gov (United States)

    Mitchell-Koch, Jeremy T.; Reid, Kendra R.; Meyerhoff, Mark E.

    2008-01-01

    An experiment for the undergraduate quantitative analysis laboratory involving applications of visible spectrophotometry is described. Salicylate, a component found in several medications, as well as the active by-product of aspirin decomposition, is quantified. The addition of excess iron(III) to a solution of salicylate generates a deeply…

  20. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    Science.gov (United States)

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L-1 ). Salicylic acid at 0.5 mmol L-1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L-1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Second-derivative synchronous fluorescence spectroscopy for the simultaneous determination of naproxen and salicylic acid in human serum.

    Science.gov (United States)

    Konstantianos, D G; Ioannou, P C

    1996-07-01

    Second-derivative synchronous fluorescence spectrometry was used to develop a simple, rapid and sensitive spectrofluorimetric method for the simultaneous determination of naproxen and salicylic acid in human serum. The method is based on the intrinsic fluorescence of naproxen and salicylic acid in chloroform-1% acetic acid solution. A delta gamma of 130 nm was used for the direct measurement of salicylic acid in the binary mixture, whereas naproxen was determined from direct measurements at delta gamma = 60 nm and by means of a correction equation which incorporates the concentration of salicylic acid. The range of application is 0-14 mg l-1 for naproxen and 0-13 mg l-1 for salicylic acid. The detection limits for naproxen and salicylic acid are 0.003 and 0.01 mg l-1, respectively. Serum samples are extracted into chloroform-1% acetic acid solution prior to instrumental measurement. Analytical recoveries range from 97 to 105% (mean 102%) for naproxen and from 97 to 112% (mean 103%) for salicylic acid. The within-run precision (RSD) for the method for four naproxen-salicylic acid mixtures varied from 1.2 to 6.7% and the day-to-day precision for mixtures varied from 2.1 to 5.0%.

  2. Study of the transformation of two salicylates used in personal care products in chlorinated water.

    Science.gov (United States)

    de Oliveira e Sá, Mariana M; Miranda, Margarida S; da Silva, Joaquim C G Esteves

    2014-11-15

    Disinfection of swimming pool water is essential to inactivate pathogenic microorganisms. However chlorine based disinfectants, the most commonly used, are known to lead to the formation of disinfection by-products (DBPs), some of which have been associated with adverse health effects. Precursors of DBPs include the organic matter present in the water used to fill the swimming pool, human body fluids and personal care products (PCPs) used by swimmers and bathers. The increased use, in the last years, of PCPs lead to an increased concern about the fate of PCPs in swimming pool waters and potential health risks of formed DBPs. In this study, the chemical transformations of two salicylates, benzyl salicylate (BzS) and phenyl salicylate (PS), incorporated in several PCPs, in chlorinated water were investigated. High-performance liquid chromatography (HPLC) with UV-diode-array detection (HPLC-UV-DAD) was used to follow the reaction kinetics and HPLC with mass spectrometry (HPLC-MS) was used to tentatively identify the major transformation by-products. Under the experimental conditions used in this work both salicylates reacted with chlorine following pseudo-first order kinetics: rate constant k = (0.0038 ± 0.0002) min(-1) and half-life t1/2 = (182 ± 10) min for BzS and rate constant k = (0.0088 ± 0.0005) min(-1) and half-life t1/2 = (79 ± 4) min for PS (mean ± standard deviation). The reactions of the two salicylates in chlorinated water led to the formation of DBPs that were tentatively identified as mono- and dichloro- substituted compounds. Most probably they result from an electrophilic substitution of one or two hydrogen atoms in the phenolic ring of both salicylates by one or two chlorine atoms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Transport of salicylate in proximal tubule (S sub 2 segment) isolated from rabbit kidney

    Energy Technology Data Exchange (ETDEWEB)

    Schild, L.; Roch-Ramel, F. (Institut de Pharmacologie de l' Universite de Lausanne (Switzerland))

    1988-04-01

    The secretory and the reabsorptive transport of salicylate was studied in the isolated and perfused rabbit proximal tubule (S{sub 2} segment). Salicylate secretion (J{sub sal}{sup b{yields}l}) fulfilled the criteria for a carrier-mediated transport system: J{sub sal}{sup b{yields}l} was saturable, was reversibly inhibited by probenecid, and occurred against a concentration gradient. The K{sub m} and V{sub max} for this secretory transport were 80 {mu}M and 3,200 fmol{center dot}min{sup {minus}1}{center dot}mm{sup {minus}1}, respectively. At luminal pH of 7.4 and 6.6, salicylate reabsorption (J{sub sal}{sup l{yields}b}) was low. J{sub sal}{sup l{yields}b} was stimulated by increasing the bath Pco{sub 2} or by removing basolateral HCO{sub 3}{sup {minus}}; J{sub sal}{sup l{yields}b} was inhibited by ethoxyzolamide and by SITS in the bath. The results indicate that salicylate reabsorption depends on H{sup +} secretion, consistent with reabsorption by simple nonionic diffusion. When salicylate was present in the lumen only, J{sub sal}{sup l{yields}b} increased after inhibition of the secretory transport by adding ouabain or probenecid in the bath or by lowering the bath temperature. These results are compatible with luminal recycling of salicylate, and suggest the presence of a mediated secretory transporter located at the luminal membrane.

  4. Simultaneous liquid-chromatographic quantitation of salicylic acid, salicyluric acid, and gentisic acid in urine.

    Science.gov (United States)

    Cham, B E; Bochner, F; Imhoff, D M; Johns, D; Rowland, M

    1980-01-01

    We have developed a specific and sensitive method for the determination of salicylic acid, salicyluric acid, and gentisic acid in urine. Any proteins present are precipitated with methyl cyanide. After centrifugation, an aliquot of the supernate is directly injected into an octadecyl silane reversed-phase chromatographic column, then eluted with a mixture of water, butanol, acetic acid, and sodium sulfate, and quantitated at 313 nm by ultraviolet detection according to peak-height ratios (with internal standard, o-methoxybenzoic acid) or peak heights (no internal standard). The method allows estimates within 25 min. Sensitivity was 0.2 mg/L for gentisic acid, and 0.5 mg/L for both salicyluric and salicylic acid (20-micro L injection volume); response was linear with concentration to at least 2.000 g/L for salicylic acid and metabolites. Analytical recovery of salicylic acid and metabolites from urine is complete. Intra-assay precision (coefficient of variation) is 5.52% at 7.5 mg/L for salicylic acid, 5.01% at 9.33 mg/L for salicyluric acid, and 3.07% at 7.96 mg/L for gentisic acid. Interassay precision is 7.32% at 7.51 mg/L for salicylic acid, 5.52% at 8.58 mg/L for salicyluric acid, and 3.97% at 8.32 mg/L for gentisic acid. We saw no significant interference in urine from patients being treated with various drugs other than aspirin.

  5. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Directory of Open Access Journals (Sweden)

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  6. Partial reversal by beta-D-xyloside of salicylate-induced inhibition of glycosaminoglycan synthesis in articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Palmoski, M.J.; Brandt, K.D.

    1982-09-01

    While net /sup 35/S-glycosaminoglycan synthesis in normal canine articular cartilage was suppressed by 10(-3)M sodium salicylate to about 70% of the control value, addition of xyloside (10(-6)M-10(-3)M) to the salicylate-treated cultures led to a concentration-dependent increase in glycosaminoglycan synthesis, which rose to 120-237% of controls. Similar results were obtained when /sup 3/H-glucosamine was used to measure glycosaminoglycan synthesis, confirming that salicylate suppresses and xyloside stimulates net glycosaminoglycan synthesis, and not merely sulfation. Salicylate (10-3)M) did not affect the activity of xylosyl or galactosyl transferase prepared from canine knee cartilage, and net protein synthesis was unaltered by either salicylate or xyloside. The proportion of newly synthesized proteoglycans existing as aggregates when cartilage was cultured with xyloside was similar to that in controls, although the average hydrodynamic size of disaggregated proteoglycans and of sulfated glycosaminoglycans was diminished.

  7. Sugar signaling regulation by Arabidopsis SIZ1-driven sumoylation is independent of salicylic acid

    DEFF Research Database (Denmark)

    Castro, Pedro Humberto Araújo R F; Verde, Nuno; Tavares, Rui Manuel

    2018-01-01

    inefficient responses to nutrient imbalance in phosphate, nitrate and copper. Recently, we reported that siz1 also displays altered responses to exogenous sugar supplementation. The siz1 mutant is a salicylic acid (SA) accumulator, and SA may interfere with sugar-dependent responses and signaling events. Here......, we extended our previous studies to determine the importance of SA in the SIZ1 response to sugars, by introducing the bacterial salicylate hydroxylase NahG into the siz1 background. Results demonstrate that siz1 phenotypes involving delayed germination are partially dependent of SA levels, whereas...

  8. [Influence of salicylic and succinic acids on the cytophysiological reactions of wheat infected by brown rust].

    Science.gov (United States)

    Plotnikova, L Ia; Shtubeĭ, T Iu

    2009-01-01

    The influence of the salicylic and succinic acids on the cytophysiological reactions of the plants and cellular structures of the fungus were investigated using the model of common wheat Triticum aestivum L. infected by brown rust. The experiments were performed on seedlings of the isogenic line of var. Thatcher with resistant gene Lr19. The salicylic and succinic acids accelerated and enhanced to a different extent the generation of active oxygen species and synthesis of callose and phenylpropanoids by the plant cells contacting with cellular structures of avirulent and virulent fungal clones.

  9. Spectroscopic study of jet-cooled heterodimers of salicylic acid with acetic and trifluoroacetic acids

    Science.gov (United States)

    Lahmani, F.; Zehnacker-Rentien, A.

    1997-06-01

    The photophysical properties of the intermolecular hydrogen-bonded complexes of salicylic acid with acetic acid and trifluoroacetic acid have been investigated in a supersonic expansion. The fluorescence excitation spectra are characterized by a long harmonic progression upon a low frequency mode and their origin is blue-shifted with respect to that of pure salicylic acid. The emission spectra exhibit a single broad band peaking at 360 and 390 nm respectively for the complex with trifluoroacetic and acetic acids and are not dependent on the excitation wavelength. The results have been rationalized in terms of a single minimum energy curve in both the ground and excited states.

  10. Acute environmental toxicity and persistence of methyl salicylate: A chemical agent simulant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, S.W.

    1994-06-01

    The interactions of methyl salicylate with plant foliage and soils were assessed using aerosol/vapor exposure methods. Measurements of deposition velocity and residence times for soils and foliar surfaces are reported. Severe plant contact toxicity was observed at foliar mass-loading levels above 4 {mu}g/cm{sup 2} leaf; however, recovery was noted after four to fourteen days. Methyl salicylate has a short-term effect on soil dehydrogenase activity, but not phosphatase activity. Results of the earthworm bioassay indicated only minimal effects on survival.

  11. Functional Characterization of Salicylic Acid Carboxyl Methyltransferase from Camellia sinensis, Providing the Aroma Compound of Methyl Salicylate during the Withering Process of White Tea.

    Science.gov (United States)

    Deng, Wei-Wei; Wang, Rongxiu; Yang, Tianyuan; Jiang, Li'na; Zhang, Zheng-Zhu

    2017-12-20

    Methyl salicylate (MeSA) is one of the volatile organic compounds (VOCs) that releases floral scent and plays an important role in the sweet flowery aroma of tea. During the withering process for white tea producing, MeSA was generated by salicylic acid carboxyl methyltransferase (SAMT) with salicylic acid (SA), and the specific floral scent was formed. In this study, we first cloned a CsSAMT from tea leaves (GenBank accession no. MG459470) and used Escherichia coli and Saccharomyces cerevisiae to express the recombinant CsSAMT. The enzyme activity in prokaryotic and eukaryotic expression systems was identified, and the protein purification, substrate specificity, pH, and temperature optima were investigated. It was shown that CsSAMT located in the chloroplast, and the gene expression profiles were quite different in tea organs. The obtained results might give a new understanding for tea aroma formation, optimization, and regulation and have great significance for improving the specific quality of white tea.

  12. Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don.

    Science.gov (United States)

    Xing, Shi-Hai; Guo, Xin-Bo; Wang, Quan; Pan, Qi-Fang; Tian, Yue-Sheng; Liu, Pin; Zhao, Jing-Ya; Wang, Guo-Feng; Sun, Xiao-Fen; Tang, Ke-Xuan

    2011-01-01

    The tetraploid plants of Catharanthus roseus (L.) G. Don was obtained by colchicine induction from seeds explants, and the ploidy of the plants was identified by flow cytometry. The optimal treatment is 0.2% colchicine solution treated for 24 hours, and the induction rate reaches up to 30%. Comparing with morphological characteristics and growth habits between tetraploids and the control, we found that tetraploids of C. roseus had larger stoma and more branches and leaves. HPLC analysis showed tetraploidization could increase the contents of terpenoid indole alkaloids in C. roseus. Thus, tetraploidization could be used to produce higher alkaloids lines for commercial use. QRT-PCR results showed that the expression of enzymes involved in terpenoid indole alkaloids biosynthesis pathway had increased in the tetraploid plants. To our knowledge, this was the first paper to explore the secondary metabolism in autotetraploid C. roseus induced by colchicine.

  13. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Cutler, A.J.

    1986-04-01

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of /sup 14/C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 37/sup 0/C. The heat shocked protoplasts incorporated 33% more /sup 14/C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids.

  14. Induction and Flow Cytometry Identification of Tetraploids from Seed-Derived Explants through Colchicine Treatments in Catharanthus roseus (L. G. Don

    Directory of Open Access Journals (Sweden)

    Shi-Hai Xing

    2011-01-01

    Full Text Available The tetraploid plants of Catharanthus roseus (L. G. Don was obtained by colchicine induction from seeds explants, and the ploidy of the plants was identified by flow cytometry. The optimal treatment is 0.2% colchicine solution treated for 24 hours, and the induction rate reaches up to 30%. Comparing with morphological characteristics and growth habits between tetraploids and the control, we found that tetraploids of C. roseus had larger stoma and more branches and leaves. HPLC analysis showed tetraploidization could increase the contents of terpenoid indole alkaloids in C. roseus. Thus, tetraploidization could be used to produce higher alkaloids lines for commercial use. QRT-PCR results showed that the expression of enzymes involved in terpenoid indole alkaloids biosynthesis pathway had increased in the tetraploid plants. To our knowledge, this was the first paper to explore the secondary metabolism in autotetraploid C. roseus induced by colchicine.

  15. Effect of Gloriosa superba and Catharanthus roseus Extracts on IFN-γ-Induced Keratin 17 Expression in HaCaT Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Nattaporn Pattarachotanant

    2014-01-01

    Full Text Available Gloriosa superba and Catharanthus roseus are useful in traditional medicine for treatment of various skin diseases and cancer. However, their molecular effect on psoriasis has not been investigated. In this study, the effect of ethanol extracts derived from G. superba leaves and C. roseus stems on the expression of psoriatic marker, keratin 17 (K17, was investigated in human keratinocytes using biochemical and molecular experimental approaches. Both extracts could reduce the expression of K17 in a dose-dependent manner through JAK/STAT pathway as demonstrated by an observation of reduced phosphorylation of STAT3 (p-STAT3. The inhibitory activity of G. superba extract was more potent than that of C. roseus. The Pearson's correlation between K17 and cell viability was shown positive. Taken together, the extracts of G. superba and C. roseus may be developed as alternative therapies for psoriasis.

  16. Effects of Adding Vindoline and MeJA on Production of Vincristine and Vinblastine, and Transcription of their Biosynthetic Genes in the Cultured CMCs of Catharanthus roseus.

    Science.gov (United States)

    Zhang, Wenjin; Yang, Jiazeng; Zi, Jiachen; Zhu, Jianhua; Song, Liyan; Yu, Rongmin

    2015-12-01

    Vincristine and vinblastine were found by Liquid Chromatography-Mass Spectrometry (LC-MS) in Catharanthus roseuscambial meristem cells (CMCs) jointly treated with 0.25 mM vindoline and methyl jasmonate (MeJA), suggesting that C. roseus CMCs contain a complete set of the enzymes which are in response to convert vindoline into vincristine and vinblastine. Based on the facts that the transcript levels of vindoline-biosynthetic genes (STR, SGD and D4H) were up-regulated instead of being down-regulated by adding itself to the culture, and that the transcriptional factor ORCA3 was up-regulated simultaneously, we further confirmed that the transcription of STR, SGD, D4H was manipulated by ORCA3.

  17. Induction and Flow Cytometry Identification of Tetraploids from Seed-Derived Explants through Colchicine Treatments in Catharanthus roseus (L.) G. Don

    Science.gov (United States)

    Xing, Shi-Hai; Guo, Xin-Bo; Wang, Quan; Pan, Qi-Fang; Tian, Yue-Sheng; Liu, Pin; Zhao, Jing-Ya; Wang, Guo-Feng; Sun, Xiao-Fen; Tang, Ke-Xuan

    2011-01-01

    The tetraploid plants of Catharanthus roseus (L.) G. Don was obtained by colchicine induction from seeds explants, and the ploidy of the plants was identified by flow cytometry. The optimal treatment is 0.2% colchicine solution treated for 24 hours, and the induction rate reaches up to 30%. Comparing with morphological characteristics and growth habits between tetraploids and the control, we found that tetraploids of C. roseus had larger stoma and more branches and leaves. HPLC analysis showed tetraploidization could increase the contents of terpenoid indole alkaloids in C. roseus. Thus, tetraploidization could be used to produce higher alkaloids lines for commercial use. QRT-PCR results showed that the expression of enzymes involved in terpenoid indole alkaloids biosynthesis pathway had increased in the tetraploid plants. To our knowledge, this was the first paper to explore the secondary metabolism in autotetraploid C. roseus induced by colchicine. PMID:21660143

  18. Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells.

    Science.gov (United States)

    Papon, Nicolas; Bremer, Jennifer; Vansiri, Amérin; Andreu, Françoise; Rideau, Marc; Crèche, Joël

    2005-06-01

    The Madagascar periwinkle Catharanthus roseus accumulates a number of terpenoid indole alkaloids, some of which have high therapeutic interest. The biotechnological approach with cells in vitro remains an alternative to the field culture of periwinkle for the production of such compounds. We previously reported that two phytohormones, cytokinin and ethylene, remarkably enhanced the accumulation of alkaloids in periwinkle cell suspensions. In this work, we investigated the effects of these hormones on the regulation of several genes of the indole alkaloid biosynthetic pathway. We show that cytokinin and/or ethylene greatly enhanced the expression of the geraniol 10-hydroxylase gene. When given together, these hormones also increased the expression of three genes belonging to the methyl-erythritol pathway. These results make it possible to consider elements of cytokinin and ethylene signalling pathways as tools for improving terpenoid indole alkaloid production through metabolic engineering.

  19. Influence of salicylic acid pre-treatment on cadmium tolerance and ...

    African Journals Online (AJOL)

    Dose-dependent changes in cadmium (Cd) tolerance, non-protein thiol (NP-SH) production and their relationship were investigated in sixteen-day-old flax (Linum usitatissimum L.) seedlings derived from seeds pre-soaked with various salicylic acid (SA) doses and grown hydroponically under increased Cd concentrations ...

  20. Effect of Salicylic Acid on Somatic Embryogenesis and Plant Regeneration in Hedychium bousigonianum

    Science.gov (United States)

    The objective of this study was to induce somatic embryogenesis in Hedychium bousigonianum Pierre ex Gagnepain and assess the influence of salicylic acid (S) on somatic embryogenesis. Somatic embryos and subsequently regenerated plants were successfully obtained 30 days after transfer of embryogenic...

  1. Acetyl salicylic acid–ZnAl layered double hydroxide functional nanohybrid for skin care application

    CSIR Research Space (South Africa)

    Mosangi, Damodar

    2016-10-01

    Full Text Available In this study, a pharmaceutically active ingredient, acetyl salicylic acid (ASA), was intercalated into ZnAl layered double hydroxide (LDH). The LDH–ASA nanohybrid material was characterized by XRD, FTIR, SEM, ICP-MS, TEM and TGA. Successful...

  2. Effect of foliar application of salicylic acid, hydrogen peroxide and a ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 2. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. AY ZUNUN-PÉREZ T GUEVARA-FIGUEROA SN ...

  3. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways

    DEFF Research Database (Denmark)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra

    2013-01-01

    Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses...

  4. Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens

    DEFF Research Database (Denmark)

    Mur, Luis A J; Sivakumaran, Anushen; Mandon, Julien

    2012-01-01

    Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both...

  5. Salicylate prevents virus-induced type 1 diabetes in the BBDR rat.

    Directory of Open Access Journals (Sweden)

    Chaoxing Yang

    Full Text Available Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID, to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1β, IL-6, IFN-γ, IL-12, and haptoglobin (an acute phase protein in KRV+pIC treated rats. Significant elevations of IL-1β and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1β, IL-6, IFN-γ and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes.

  6. Green Synthesis of Ultraviolet Absorber 2-Ethylhexyl Salicylate: Experimental Design and Artificial Neural Network Modeling

    Directory of Open Access Journals (Sweden)

    Shang-Ming Huang

    2017-11-01

    Full Text Available 2-Ethylhexyl salicylate, an ultraviolet filter, is widely used to protect skin against sunlight-induced harmful effects in the cosmetic industry. In this study, the green synthesis of 2-ethylhexyl salicylate using immobilized lipase through a solvent-free and reduced pressure evaporation system was investigated. A Box–Behnken design was employed to develop an artificial neural network (ANN model. The parameters for an optimal architecture of an ANN were set out: a quick propagation algorithm, a hyperbolic tangent transfer function, 10,000 iterations, and six nodes within the hidden layer. The best-fitting performance of the ANN was determined by the coefficient of determination and the root-mean-square error between the correlation of predicted and experimental data, indicating that the ANN displayed excellent data-fitting properties. Finally, the experimental conditions of synthesis were well established with the optimal parameters to obtain a high conversion of 2-ethylhexyl salicylate. In conclusion, this study efficiently replaces the traditional solvents with a green process for the synthesis of 2-ethylhexyl salicylate to avoid environmental contamination, and this process is well-modeled by a methodological ANN for optimization, which might be a benefit for industrial production.

  7. THE EFFECT OF A NEW SALICYLATE SYNTHESIS PRODUCT ON BLOOD GSH VALUES IN RATS

    Directory of Open Access Journals (Sweden)

    CORINA GRĂVILĂ

    2007-05-01

    Full Text Available GSH (γ-glutamylcysteinylglycine is a sulfhydril (-SH antioxidant, antitoxin and enzyme cofactor which is an important component of the cellular detoxification of reactive oxygen species (ROS. Being water soluble it is found mainly in the cytosol and other aqueous phases of the living system and thus constitute one of the most important intracellular antioxidants (10,7,9. GSH plays a role in removing various toxic chemicals and drugs from the body. As a result glutathione levels in the body are reduced by exposure to heavy metals and the chemicals used in chemotherapy (6. Sulfanilamide was the first sulfonamide discovered in this class of antimicrobial agents and its structure is considered to contain the minimum pharmacophore. They prevent or limit bacterial multiplication. Salicylic acid (2-hydroxybenzoic acid, is the basic substance of the salicylates which are non-steroidal anti-inflammatory drugs (NSAIDs. Salicylic acid and methyl salicylate (ester (methyl 2-hydroxybenzoate are the main therapeutically used substances of this group. This study was carried out to investigate the effect of a new synthesis product in comparison with the effect of sulfanilamide on GSH values in intraperitonally injected Wistar rats.

  8. Structure and Mechanism of MbtI, the Salicylate Synthase from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Zwahlen,J.; Kolappan, S.; Zhou, R.; Kisker, C.; Tonge, P.

    2007-01-01

    MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 {angstrom} resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg{sup 2+}-dependent, and in the absence of Mg{sup 2+} MbtI has a promiscuous chorismate mutase activity similar to that of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family.

  9. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    Science.gov (United States)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  10. Preharvest treatments with salicylates enhance nutrient and antioxidant compounds in plum at harvest and after storage.

    Science.gov (United States)

    Martínez-Esplá, Alejandra; Zapata, Pedro J; Valero, Daniel; Martínez-Romero, Domingo; Díaz-Mula, Huertas M; Serrano, María

    2017-11-06

    Previous reports have addressed the effectiveness of salicylic acid (SA), acetylsalicylic acid (ASA) and methylsalicylate (MeSA) postharvest treatments on maintaining quality properties during storage in several commodities. However, there is no literature regarding the effect of preharvest treatments with salicylates on plum quality attributes (at harvest or after long-term cold storage), which was evaluated in this research. At harvest, weight, firmness, individual organic acids, sugars, phenolics, anthocyanins and total carotenoids were found at higher levels in plums from SA-, ASA- and MeSA-treated trees than in those from controls. During storage, softening, colour changes and acidity losses were delayed in treated fruits as compared to controls. In addition, organic acids and antioxidant compounds were still found at higher levels in treated than in control plums after 40 days of storage. Results show a delay in the postharvest ripening process due to salicylate treatments, which could be attributed to their effect in delaying and decreasing ethylene production. Preharvest treatment with salicylates could be a safety, eco-friendly and new tool to improve (at harvest) and maintain (during storage) plum quality and especially its content of bioactive compounds with antioxidant properties, increasing the health effects of plum consumption. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Heat shock and salicylic acid on postharvest preservation of organic strawberries

    Directory of Open Access Journals (Sweden)

    Sidiane Coltro

    2014-06-01

    Full Text Available Heat shock and salicylic acid have been studied on shelf-life extension of fruits. The benefits of these techniques have been related to their effect on inducing physiological defense responses against the oxidative stress and pathogen development. The objective of this study was to evaluate the effect of heat shock and salicylic acid on the postharvest preservation and contents of total phenolics, anthocyanins, ascorbic acid, fresh weight loss and microbiological quality of organic strawberries cv. Dover. Strawberries produced organically and stored at 5 ºC were subjected to heat shock (45 ºC ± 3 ºC for 3 h, application of salicylic acid (soaking in 2.0 mmol L-1 solution, heat shock in combination with salicylic acid and control. After treatment, the fruits were packed and stored in a climatic chamber at 5 ºC ± 2 ºC. At 1, 7 and 14 days, the experimental units were removed from refrigeration and kept at room temperature of approximately 20 ºC for two days. There was no effect of treatments on fresh weight loss, incidence of pathogens or chemical variations in strawberry fruits during the storage period. In natural conditions, organically grown strawberries remained in good condition for sale up to seven days of storage in all treatments.

  12. In vitro effects of salicylic acid, calcium and copper ions on growth ...

    African Journals Online (AJOL)

    The in vitro effects of single and combined application of calcium ion (Ca2+), copper ion (Cu2+) and salicylic acid (SA) were evaluated on growth and sporulation of Ganoderma boninense. In poison medium test, T7-(Ca+Cu+SA) showed effective control of G. boninense in-vitro with EC50 and EC90 values of ...

  13. Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens

    Science.gov (United States)

    Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

  14. Structure and mechanism of MbtI, the salicylate synthase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Zwahlen, Jacque; Kolappan, Subramaniapillai; Zhou, Rong; Kisker, Caroline; Tonge, Peter J

    2007-01-30

    MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 A resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg2+-dependent, and in the absence of Mg2+ MbtI has a promiscuous chorismate mutase activity similar to that of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family.

  15. Ethylene modulates the role of NPR1 in cross-talk between salicylate and jasmonate signaling

    NARCIS (Netherlands)

    Leon Reyes, H.A.; Spoel, S.H.; Lange, Elvira S. de; Abe, Hiroshi; Kobayashi, Masatomo; Tsuda, Shinya; Millenaar, F.F.; Welschen, R.A.M.; Ritsema, T.; Pieterse, C.M.J.

    2009-01-01

    The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play crucial roles in the signaling network that regulates induced defense responses against biotic stresses. Antagonism between SA and JA operates as a mechanism to finetune defenses that are activated in response to

  16. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis

    NARCIS (Netherlands)

    Ton, J.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2002-01-01

    Salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are each involved in the regulation of basal resistance against different pathogens. These three signals play important roles in induced resistance as well. SA is a key regulator of pathogen-induced systemic acquired resistance (SAR),

  17. 21 CFR 201.314 - Labeling of drug preparations containing salicylates.

    Science.gov (United States)

    2010-04-01

    ... reach of children [highlighted in bold type],” except that if the article is an aspirin preparation, it... aspirin, salicylamide, other salicylates, and combinations) must conspicuously bear, on a clearly contrasting background, the warning statement: “Keep out of reach of children [highlighted in bold type]. In...

  18. Synthesis and biological evaluation of new salicylate macrolactones from anacardic acids

    Energy Technology Data Exchange (ETDEWEB)

    Logrado, Lucio P.L.; Santos, Maria Lucilia dos [Brasilia Univ., DF (Brazil). Inst. de Quimica. Lab. de Isolamento e Transformacao de Moleculas Organicas]. E-mail: mlsantos@unb.br; Silveira, Damaris [Brasilia Univ., DF (Brazil). Faculdade de Ciencias da Saude; Romeiro, Luiz A.S. [Universidade Catolica de Brasilia, Taguatinga, DF (Brazil). Nucleo de Quimica Bioorganica e Medicinal; Moraes, Manoel O. de; Cavalcanti, Bruno C.; Costa-Lotufo, Leticia V.; Pessoa, Claudia do O [Ceara Univ., Fortaleza, CE (Brazil). Lab. de Oncologia Experimental

    2005-11-15

    onnection with our ongoing investigation in the search for new bioactive compounds using non-isoprenoid phenolic lipids from Anacardium occidentale as starting material, we describe the synthesis and cytotoxicity screening of some novel salicylate macrolactones prepared from anacardic acids, the major constituents of natural cashew nut-shell liquid (CNSL). (author)

  19. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda, E-mail: pal.magda@agrar.mta.hu

    2014-09-15

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  20. WRKY transcription factors involved in salicylic acid-induced defense gene expression

    NARCIS (Netherlands)

    Verk, Marcel Cristiaan van

    2010-01-01

    The salicylic acid (SA) signaling pathway triggered by attack of biotrophic pathogens leads to broad spectrum resistance against a plethora of pathogenic fungi, bacteria and viruses and is known as systemic acquired resistance (SAR). One of the hallmarks of SAR is the accumulation of PR proteins and

  1. Synthesis and characterization of Gold and Silver nano-particles using different leaf extracts namely Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method

    OpenAIRE

    Sarbjeet Singh Gujral

    2014-01-01

    Objective: synthesis of gold and silver nano-particles using leaf extracts of Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method. Method: Green approach has been utilized for the synthesis of gold and silver nano-particles. Different aqueous plant extracts has been prepared which was then utilized for the biosynthesis of gold and silver nano-particles. Estimation for the synthesis of nano-parti...

  2. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    Science.gov (United States)

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  3. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    Directory of Open Access Journals (Sweden)

    S. N. Matsunaga

    2008-12-01

    Full Text Available Biogenic volatile organic compounds (BVOC produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima, desert willow (Chilopsis linearis, mesquite (Prosopis glandulosa, mondel pine (Pinus eldarica, pinyon pine (Pinus monophylla, cottonwood (Populus deltoides, saguaro cactus (Carnegiea gigantea and yucca (Yucca baccata. The measurements focused on BVOCs with relatively high molecular weight (>C15 and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 3.1, 1.0 and 4.8μgC dwg−1 h−1, respectively (dwg; dry weight of the leaves in gram. The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS and 3,3,5-trimethylcyclohexenyl salicylate (homosalate and are known as effective ultraviolet (UV absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA because they probably produce oxidation products that can condense onto the aerosol phase. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas area using a BVOC emission model. The contribution was estimated to reach 50% of the biogenic terpenoid

  4. The aspirin metabolite salicylate enhances neuronal excitation in rat hippocampal CA1 area through reducing GABAergic inhibition.

    Science.gov (United States)

    Gong, Neng; Zhang, Min; Zhang, Xiao-Bing; Chen, Lin; Sun, Guang-Chun; Xu, Tian-Le

    2008-02-01

    Salicylate is the major metabolite and active component of aspirin (acetylsalicylic acid), which is widely used in clinical medicine for treating inflammation, pain syndromes and cardiovascular disorders. The well-known mechanism underlying salicylate's action mainly involves the inhibition of cyclooxygenase and subsequent decrease in prostaglandin production. Recent evidence suggests that salicylate also affects neuronal function through interaction with specific membrane channels/receptors. However, the effect of salicylate on synaptic and neural network function remains largely unknown. In this study, we investigated the effect of sodium salicylate on the synaptic transmission and neuronal excitation in the hippocampal CA1 area of rats, a key structure for many complex brain functions. With electrophysiological recordings in hippocampal slices, we found that sodium salicylate significantly enhanced neuronal excitation through reducing inhibitory GABAergic transmission without affecting the basal excitatory synaptic transmission. Salicylate significantly inhibited the amplitudes of both evoked and miniature inhibitory postsynaptic currents, and directly reduced gamma-aminobutyric acid type A (GABA(A)) receptor-mediated responses in cultured rat hippocampal neurons. Together, our results suggest that the widely used aspirin might impair hippocampal synaptic and neural network functions through its actions on GABAergic neurotransmission. Given the capability of aspirin to penetrate the blood-brain barrier, the present data imply that aspirin intake may cause network hyperactivity and be potentially harmful in susceptible subpopulations.

  5. Effect of salicylic acid on Concentration of nutrients, protein and antioxidant enzymes of basil under lead stress

    Directory of Open Access Journals (Sweden)

    Ali Padash

    2016-03-01

    Full Text Available Today, phenolic compounds and plant growth regulator has been proposed, to reduce the negative effects of stress. Salicylic acid is a substance that causes plant resistance to biotic and abiotic stresses. This experiment was conducted in Zabol University during 2013 as factorial randomized complete block design with 3 replications. Factors included 4 levels of lead nitrate; 0 (control, 100, 200 and 300 mg per kg of soil and foliar application of salicylic acid at 3 levels of 0, 50 and 100 ppm. Addition of lead significantly reduced concentrations of potassium, magnesium, calcium, phosphorous and nitrogen and increased concentrations of sodium, polyphenol oxidase, ascorbate peroxidase, superoxide dismutase and peroxidase. In addition, salicylic acid spraying had a significant influence on all traits, and salicylic acid spraying at 100 mL/L increased concentrations of potassium, magnesium, calcium, phosphorus, nitrogen and decreased concentrations of polyphenol oxidase, ascorbate peroxidase, superoxide dismutase and peroxidase. In this study the interaction between salicylic acid and lead on potassium, magnesium, calcium, phosphorus, nitrogen, sodium and catalase, guaiacol peroxidase and polyphenol oxidase were significant, and salicylic acid play moderating role and reducing the negative effects of lead toxicity. The results suggested salicylic acid application in basil can increase uptake of macro and micro nutrients required for plant growth and reduce the negative effects of stress lead-induced oxidative damage.

  6. Sensitive, selective detection and differentiation of salicylates and metabolites in urine by a simple HPTLC method.

    Science.gov (United States)

    Kincaid, R L; McMullin, M M; Sanders, D; Rieders, F

    1991-01-01

    We present a method for salicylates which is slightly more labor intensive than the usual manual Trinder's test, but is much more sensitive and able to identify individual drugs or metabolites. A 2-mL acidified urine aliquot is briefly extracted with 5 mL ether, and the residue from evaporating the ether under nitrogen is chromatographed on a 250-microns silica gel HPTLC plate using benzene-acetic acid-diethylether-methanol (60:9:30:5) as mobile phase and 5% aqueous ferric chloride as chromogen. The hardiness of the method is evidenced by the Rf values, which vary by no more than 3% over a four-month period. The Rf values are 0.70 for salicylic acid and diflunisal, 0.67 for aspirin and methyl salicylate, 0.60 for gentisic acid, 0.57 for p-aminosalicyclic acid, and 0.40 for salicyluric acid. Detection limits of 1 ppm or less for all the analytes compared favorably to limits of more than 20 ppm for Trinder's test. Separations and spot shapes are sufficiently good to make instrumental quantitation potentially applicable. Sensitivity is sufficient to give clearcut, positive test results 48 h after a single 80-mg dose of ASA by mouth or a 100-mg dose of methyl salicylate by skin injection with a muscle rub, and more than 96 h after a 660-mg oral aspirin dose. Thus, the test is useful for detection and a good degree of differentiation, even in patients using subtherapeutic doses of these salicylates or in those with trace residues from significantly remote full therapeutic or larger doses prior to specimen collections.

  7. Role of the mitochondrial permeability transition in salicylate toxicity to cultured rat hepatocytes: implications for the pathogenesis of Reye's syndrome.

    Science.gov (United States)

    Trost, L C; Lemasters, J J

    1997-12-01

    Aspirin is strongly implicated in the pathogenesis of Reye's syndrome, a childhood disorder characterized by hyperammonemia, microvesicular steatosis, and encephalopathy. Previously, we showed that salicylate, the active metabolite of aspirin, induces the mitochondrial permeability transition (MPT) in isolated mitochondria, as do several other chemicals implicated in Reye's-related disorders. Opening of a high conductance, cyclosporin A-sensitive pore in the mitochondrial inner membrane causes the MPT, leading to swelling, depolarization, and uncoupling of oxidative phosphorylation. The goal of this study was to characterize the role of the MPT in salicylate toxicity to cultured rat hepatocytes. Salicylate (0.3-5 mM) caused concentration-dependent cell killing. In Krebs-Ringer buffer, half-maximal cell killing occurred 150 min after 3 mM salicylate. Increasing Ca2+ enhanced salicylate lethality. Salicylate-dependent cell killing was blocked by 0.5-5 microM cyclosporin A and its nonimmunosuppresive analog, 4-methylvaline cyclosporin, implicating the MPT in the pathogenesis of cell killing. The contribution of the MPT to lethal cell injury was confirmed by laser scanning confocal microscopy, which demonstrated the redistribution of the fluorophore calcein from the cytosol into mitochondria prior to cell killing, an event blocked by cyclosporin A. Salicylate toxicity was enhanced at high extracellular Ca2+. In the range of 10-100 microM, several chemically diverse calcium antagonists blocked or reduced salicylate toxicity including verapamil, diltiazem, chlorpromazine, nifedipine, and nisoldipine. Calcium antagonists also blocked the increase of mitochondrial free Ca2+ in high Ca2+ buffer, as determined by confocal imaging of the fluorophore Rhod-2. These data with salicylate suggest that onset of the MPT may be the common pathophysiologic mechanism causing mitochondrial injury in Reye's syndrome and Reye's-related drug toxicities. Further, elevated intramitochondrial

  8. In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid.

    Science.gov (United States)

    Bica, Katharina; Rijksen, Christiaan; Nieuwenhuyzen, Mark; Rogers, Robin D

    2010-02-28

    We present an ionic liquid (IL) approach towards a dual functional liquid salt form of aspirin using different pharmaceutically active cations composed of antibacterials, analgesics, local anesthetics, and antiarrhythmic drugs in combination with acetylsalicylic acid or its metabolite salicylic acid and discuss stability of these ILs in comparison to solid salts. Several low-melting or liquid salts of salicylic acid with dual functionality and promising properties were isolated and characterized; however, although such ILs with aspirin could be prepared, they suffer from limited stability and slowly decompose into the corresponding salicylate ILs when exposed to moisture.

  9. Cryotherapy versus salicylic acid for the treatment of plantar warts (verrucae): a randomised controlled trial

    Science.gov (United States)

    Hewitt, Catherine; Hicks, Kate; Jayakody, Shalmini; Kang’ombe, Arthur Ricky; Stamuli, Eugena; Turner, Gwen; Thomas, Kim; Curran, Mike; Denby, Gary; Hashmi, Farina; McIntosh, Caroline; McLarnon, Nichola; Torgerson, David; Watt, Ian

    2011-01-01

    Objective To compare the clinical effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts. Design A multicentre, open, two arm randomised controlled trial. Setting University podiatry school clinics, NHS podiatry clinics, and primary care in England, Scotland, and Ireland. Participants 240 patients aged 12 years and over, with a plantar wart that in the opinion of the healthcare professional was suitable for treatment with both cryotherapy and salicylic acid. Interventions Cryotherapy with liquid nitrogen delivered by a healthcare professional, up to four treatments two to three weeks apart. Patient self treatment with 50% salicylic acid (Verrugon) daily up to a maximum of eight weeks. Main outcome measures Complete clearance of all plantar warts at 12 weeks. Secondary outcomes were (a) complete clearance of all plantar warts at 12 weeks controlling for age, whether the wart had been treated previously, and type of wart, (b) patient self reported clearance of plantar warts at six months, (c) time to clearance of plantar wart, (d) number of plantar warts at 12 weeks, and (e) patient satisfaction with the treatment. Results There was no evidence of a difference between the salicylic acid and cryotherapy groups in the proportions of participants with complete clearance of all plantar warts at 12 weeks (17/119 (14%) v 15/110 (14%), difference 0.65% (95% CI –8.33 to 9.63), P=0.89). The results did not change when the analysis was repeated but with adjustment for age, whether the wart had been treated previously, and type of plantar wart or for patients’ preferences at baseline. There was no evidence of a difference between the salicylic acid and cryotherapy groups in self reported clearance of plantar warts at six months (29/95 (31%) v 33/98 (34%), difference –3.15% (–16.31 to 10.02), P=0.64) or in time to clearance (hazard ratio 0.80 (95% CI 0.51 to 1.25), P=0.33). There was also no evidence of a difference in the number of plantar

  10. New insight into photo-bromination processes in saline surface waters: The case of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tamtam, Fatima; Chiron, Serge, E-mail: serge.chiron@msem.univ-montp2.fr

    2012-10-01

    It was shown, through a combination of field and laboratory observations, that salicylic acid can undergo photo-bromination reactions in sunlit saline surface waters. Laboratory-scale experiments revealed that the photochemical yields of 5-bromosalicylic acid and 3,5-dibromosalicylic acid from salicylic acid were always low (in the 4% range at most). However, this might be of concern since these compounds are potential inhibitors of the 20{alpha}-hydroxysteroid dehydrogenase enzyme, with potential implications in endocrine disruption processes. At least two mechanisms were involved simultaneously to account for the photo-generation of brominated substances. The first one might involve the formation of reactive brominated radical species (Br{center_dot}, Br{sub 2}{center_dot}{sup -}) through hydroxyl radical mediated oxidation of bromide ions. These ions reacted more selectively than hydroxyl radicals with electron-rich organic pollutants such as salicylic acid. The second one might involve the formation of hypobromous acid, through a two electron oxidation of bromine ions by peroxynitrite. This reaction was catalyzed by nitrite, since these ions play a crucial role in the formation of nitric oxide upon photolysis. This nitric oxide further reacts with superoxide radical anions to yield peroxynitrite and by ammonium through the formation of N-bromoamines, probably due to the ability of N-bromoamines to promote the aromatic bromination of phenolic compounds. Field measurements revealed the presence of salicylic acid together with 5-bromosalicylic and 3,5-dibromosalicylic acid in a brackish coastal lagoon, thus confirming the environmental significance of the proposed photochemically induced bromination pathways. -- Highlights: Black-Right-Pointing-Pointer Brominated derivatives of salicylic acid were detected in a brackish lagoon. Black-Right-Pointing-Pointer A photochemical pathway was hypothesized to account for bromination of salicylic acid. Black

  11. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; Naik, D.N.; PrabhaDevi

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid...

  12. Involvement of heat shock proteins 60 in acetyl salicylic acid radioprotection of Albino rat submandibular salivary gland

    Directory of Open Access Journals (Sweden)

    D.G. Mohamed

    2015-07-01

    Conclusion: The findings of the present study suggested the association of heat shock protein 60 overexpression with reduction of histopathological damage in acetyl salicylic acid radioproprotected rat submandibular salivary gland.

  13. Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice

    Directory of Open Access Journals (Sweden)

    Minoru Namikawa

    2017-12-01

    Full Text Available The prevalence of tinnitus is known to increase with age. The age-dependent mechanisms of tinnitus may have important implications for the development of new therapeutic treatments. High doses of salicylate can be used experimentally to induce transient tinnitus and hearing loss. Although accumulating evidence indicates that salicylate induces tinnitus by directly targeting neurons in the peripheral and central auditory systems, the precise effect of salicylate on neural networks in the auditory cortex (AC is unknown. Here, we examined salicylate-induced changes in stimulus-driven laminar responses of AC slices with salicylate superfusion in young and aged senescence-accelerated-prone (SAMP and -resistant (SAMR mice. Of the two strains, SAMP1 is known to be a more suitable model of presbycusis. We recorded stimulus-driven laminar local field potential (LFP responses at multi sites in AC slice preparations. We found that for all AC slices in the two strains, salicylate always reduced stimulus-driven LFP responses in all layers. However, for the amplitudes of the LFP responses, the two senescence-accelerated mice (SAM strains showed different laminar properties between the pre- and post-salicylate conditions, reflecting strain-related differences in local circuits. As for the relationships between auditory brainstem response (ABR thresholds and the LFP amplitude ratios in the pre- vs. post-salicylate condition, we found negative correlations in layers 2/3 and 4 for both older strains, and in layer 5 (L5 in older SAMR1. In contrast, the GABAergic agonist muscimol (MSC led to positive correlations between ABR thresholds and LFP amplitude ratios in the pre- vs. post-MSC condition in younger SAM mice from both strains. Further, in younger mice, salicylate decreased the firing rate in AC L4 pyramidal neurons. Thus, salicylate can directly reduce neural excitability of L4 pyramidal neurons and thereby influence AC neural circuit activity. That we

  14. Synthesis and characterization of mixed ligand Cu(II) complexes of salicylic acid derivatives with 2-aminobenzotiyazol derivatives

    OpenAIRE

    İlkimen, Halil; Yenikaya, Cengiz

    2018-01-01

    In thisstudy, mixed ligand transitionmetal complexes of Cu(II)have been prepared between salicylic acid derivatives [salicylic acid (H2sal) or acetylsalicylic acid (Hasal)] and 2-aminobenzothiazole derivatives[2-aminobenzothiazole (abt) or 2-amino-6-chlorobenzothiazole (Clabt) or2-amino-6-methylbenzothiazole (Meabt)]. The structures of amorphous metalcomplexes have been proposed by evaluating the data obtained from elementalanalysis, ICP-OES, FT-IR, UV-Vis, thermal analysis, magnetic suscepti...

  15. Improving the Keeping Quality and Vase Life of Cut Alstroemeria Flowers by Pre and Post-harvest Salicylic Acid Treatments

    Directory of Open Access Journals (Sweden)

    Elnaz SOLEIMANY-FARD

    2013-08-01

    Full Text Available Keeping quality and length of vase life are important factors for evaluation of cut flowers quality, for both domestic and export markets. Studding the effect of pre- and post-harvest salicylic acid applications on keeping quality and vase life of cut alstroemeria flowers during vase period is the approach taken. Aqueous solutions of salicylic acid at 0.0 (with distilled water, 1, 2 and 3 mM were sprayed to run-off (approximately 500 mL per plant, about two weeks before flowers harvest. The cut flowers were harvested in the early morning and both of cut flowers treated (sprayed and untreated were kept in vase solutions containing salicylic acid at 0.0 (with distilled water, 1, 2 and 3 mM. Sucrose at 4% was added to all treatments as a base solution. The changes in relative fresh weight, water uptake, water loss, water balance, total chlorophyll content and vase life were estimated during vase period. The results showed that the relative fresh weight, water uptake, water balance, total chlorophyll content and vase life decreased significantly while the water loss increased significantly during experiment for all treatments. A significant difference between salicylic acid and control treatments in all measured parameters is observed. During vase period, the salicylic acid treatments maintained significantly a more favourable relative fresh weight, water uptake, water balance, total chlorophyll content and supressed significantly water loss, as compared to control treatment. Also, the results showed that the using salicylic acid increased significantly the vase life cut alstroemeria flowers, over control. The highest values of measured parameters were found when plants were treated by pre + post-harvest application of salicylic acid at 3 mM. The result revealed that the quality attributes and vase life of cut alstroemeria flowers were improved by the use of salicylic acid treatment.

  16. Cyclin A2 and CDK2 as Novel Targets of Aspirin and Salicylic acid: a Potential Role in Cancer Prevention

    Science.gov (United States)

    Dachineni, Rakesh; Ai, Guoqiang; Kumar, D. Ramesh; Sadhu, Satya S.; Tummala, Hemachand; Bhat, G. Jayarama

    2015-01-01

    Data emerging from the past 10 years have consolidated the rationale for investigating the use of aspirin as a chemopreventive agent; however, the mechanisms leading to its anti-cancer effects are still being elucidated. We hypothesized that aspirin’s chemopreventive actions may involve cell cycle regulation through modulation of the levels or activity of cyclin A2/cyclin dependent kinase-2 (CDK2). In this study, HT-29 and other diverse panel of cancer cells were used to demonstrate that both aspirin and its primary metabolite, salicylic acid, decreased cyclin A2 (CCNA2) and CDK2 protein and mRNA levels. The down regulatory effect of either drugs on cyclin A2 levels was prevented by pretreatment with lactacystin, an inhibitor of proteasomes, suggesting the involvement of 26S proteasomes. In-vitro kinase assays showed that lysates from cells treated with salicylic acid had lower levels of CDK2 activity. Importantly, three independent experiments revealed that salicylic acid directly binds to CDK2. Firstly, inclusion of salicylic acid in naïve cell lysates, or in recombinant CDK2 preparations, increased the ability of the anti-CDK2 antibody to immunoprecipitate CDK2, suggesting that salicylic acid may directly bind and alter its conformation. Secondly, in 8-anilino-1-naphthalene-sulfonate (ANS)-CDK2 fluorescence assays, pre-incubation of CDK2 with salicylic acid, dose-dependently quenched the fluorescence due to ANS. Thirdly, computational analysis using molecular docking studies identified Asp145 and Lys33 as the potential sites of salicylic acid interactions with CDK2. These results demonstrate that aspirin and salicylic acid down-regulate cyclin A2/CDK2 proteins in multiple cancer cell lines, suggesting a novel target and mechanism of action in chemoprevention. Implications Biochemical and structural studies indicate that the anti-proliferative actions of aspirin are mediated through cyclin A2/CDK2. PMID:26685215

  17. Comparison of Catalysts Preyssler and Silica-Supported Nano Preyssler in the Synthesis of Acetyl Salicylic Acid

    OpenAIRE

    Nazari, H.; Ahmadpour, A.; Bamoharram, F. F.; Heravi, M. M.; Eslami, N.

    2012-01-01

    The extensive demand for cleaner environment is forcing chemical industry to use less hazardous materials. In this regard, heteropolyacids attracted considerable amount of interest due to the less toxic behavior in addition of possessing higher acidity. Heteropoly acids have been used as catalysts for the reaction of salicylic acid with acetic anhydride. The performance of different forms of heteropoly acids in the presence of acetic anhydride as acetylating agent for acetylation of salicylic...

  18. Cyclin A2 and CDK2 as Novel Targets of Aspirin and Salicylic Acid: A Potential Role in Cancer Prevention.

    Science.gov (United States)

    Dachineni, Rakesh; Ai, Guoqiang; Kumar, D Ramesh; Sadhu, Satya S; Tummala, Hemachand; Bhat, G Jayarama

    2016-03-01

    Data emerging from the past 10 years have consolidated the rationale for investigating the use of aspirin as a chemopreventive agent; however, the mechanisms leading to its anticancer effects are still being elucidated. We hypothesized that aspirin's chemopreventive actions may involve cell-cycle regulation through modulation of the levels or activity of cyclin A2/cyclin-dependent kinase-2 (CDK2). In this study, HT-29 and other diverse panel of cancer cells were used to demonstrate that both aspirin and its primary metabolite, salicylic acid, decreased cyclin A2 (CCNA2) and CDK2 protein and mRNA levels. The downregulatory effect of either drugs on cyclin A2 levels was prevented by pretreatment with lactacystin, an inhibitor of proteasomes, suggesting the involvement of 26S proteasomes. In-vitro kinase assays showed that lysates from cells treated with salicylic acid had lower levels of CDK2 activity. Importantly, three independent experiments revealed that salicylic acid directly binds to CDK2. First, inclusion of salicylic acid in naïve cell lysates, or in recombinant CDK2 preparations, increased the ability of the anti-CDK2 antibody to immunoprecipitate CDK2, suggesting that salicylic acid may directly bind and alter its conformation. Second, in 8-anilino-1-naphthalene-sulfonate (ANS)-CDK2 fluorescence assays, preincubation of CDK2 with salicylic acid dose-dependently quenched the fluorescence due to ANS. Third, computational analysis using molecular docking studies identified Asp145 and Lys33 as the potential sites of salicylic acid interactions with CDK2. These results demonstrate that aspirin and salicylic acid downregulate cyclin A2/CDK2 proteins in multiple cancer cell lines, suggesting a novel target and mechanism of action in chemoprevention. Biochemical and structural studies indicate that the antiproliferative actions of aspirin are mediated through cyclin A2/CDK2. ©2015 American Association for Cancer Research.

  19. Possible Reduction of the ٍٍEffect of Salinity on Bean (Phaseolus vulgaris with Application of Salicylic Acid

    Directory of Open Access Journals (Sweden)

    D. Khoshbakht

    2012-12-01

    Full Text Available Salinity is the most important environmental stress that reduces plants growth and yield. It has been shown that salicylic acid, as an endogenous signal, is responsible for inducing stress tolerance in plants. In this experiment, the effect of salicylic acid and sodium chloride on growth of bean (Phaseolus vulgaris was studied. When bean plants were at two-leaf stage, they were sprayed by three concentrations of salicylic acid (0, 0.5 and 1 mM. Then, plants were treated with two concentrations of sodium chloride (zero and 100 mM for 14 days. The results showed that salinity caused a significant reduction in fresh and dry weight of root and shoot, relative chlorophyll content, percentage of relative water content (RWC of leaf, stress index and significant increase in proline and soluble sugars as compared to the control treatment. Plants that were treated with both concentrations of salicylic acid showed higher fresh and dry weights. Also, application of salicylic acid in both concentrations, in saline conditions, improved the percentage of leaf RWC, amount of relative chlorophyll and chlorophyll fluorescence (Fv/Fm of leaves as compared to control plants. In summary, it was concluded that spraying of salicylic acid on bean plants could improve growth and thus resistance to salinity under saline conditions.

  20. The Impacts of Mycorrhiza and Phsphorus Along with the Use of Salicylic Acid on Maize Seed Yield

    Directory of Open Access Journals (Sweden)

    Fedra Taheri Oshtrinani

    2016-10-01

    Full Text Available The effects of biological and chemical fertilizers, along with the use of salicylic acid, on the agronomic characteristics of corn in a factorial experiment based on randomized complete block design with three replications were evaluated at the Agricultural Research Station of Boroujerd in 2011. Factors were three levels of phosphorus fertilizer (0, 100 and 150 kg ha, two levels of biological fertilizers (mycorrhizal fungi (inoculation and non- inoculation of seeds and two levels of salicylic acid (0.5 and 1 mM, respectively. The results showed that phosphorus fertilizer and mycorrhizal inoculation of seeds affected number of seed rows, seed weight, seed yield and biological yield significantly. Seed yield of plants inoculated with mycorrhiza was 8412 kg.ha-1 which is 24% higher than non-inoculated ones. The effect of salicylic acid on plant height, stem diameter, ear length, ear diameter, number of seed rows, seed weight, seed yield and biological yield and harvest index was also significant. The yield of plants with 1 mM salicylic acid treatment amounted to be 8316 kg.ha-1 which is 24% higher than none treated ones. Phosphorus and mycorrhizal interaction on the number of rows of seeds, seed weight, seed yield and biological yield were significant. Salicylic acid and phosphorus interactions and three way treatment effects were only significant on grain yield. This study showed that salicylic acid and mycorrhizal inoculation of seeds can increase seed yield by improving yield components.

  1. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis.

    Science.gov (United States)

    Liu, Tingli; Song, Tianqiao; Zhang, Xiong; Yuan, Hongbo; Su, Liming; Li, Wanlin; Xu, Jing; Liu, Shiheng; Chen, Linlin; Chen, Tianzi; Zhang, Meixiang; Gu, Lichuan; Zhang, Baolong; Dou, Daolong

    2014-08-26

    Plant diseases caused by fungi and oomycetes pose an increasing threat to food security and ecosystem health worldwide. These filamentous pathogens, while taxonomically distinct, modulate host defense responses by secreting effectors, which are typically identified based on the presence of signal peptides. Here we show that Phytophthora sojae and Verticillium dahliae secrete isochorismatases (PsIsc1 and VdIsc1, respectively) that are required for full pathogenesis. PsIsc1 and VdIsc1 can suppress salicylate-mediated innate immunity in planta and hydrolyse isochorismate in vitro. A conserved triad of catalytic residues is essential for both functions. Thus, the two proteins are isochorismatase effectors that disrupt the plant salicylate metabolism pathway by suppressing its precursor. Furthermore, these proteins lack signal peptides, but exhibit characteristics that lead to unconventional secretion. Therefore, this secretion pathway is a novel mechanism for delivering effectors and might play an important role in host-pathogen interactions.

  2. Plasma salicylate level and aspirin resistance in survivors of myocardial infarction.

    Science.gov (United States)

    Ahmed, Nabeel; Meek, John; Davies, Graham J

    2010-05-01

    To investigate the effect of aspirin on the platelets of survivors of myocardial infarction we correlated plasma salicylate level with platelet reactivity in ten patients and ten normal controls. The patients and controls were tested at the end of 2 week periods on 75, 150 and 300 mg aspirin daily by mouth. Platelet reactivity was measured, under high shear stress conditions, using cartridges containing adrenaline and adenosine diphosphate in a PFA-100 platelet function analyser. The time taken by the developing platelet aggregate to close an aperture in the collagen membrane of the cartridge, the closure time, was taken as an index of platelet reactivity. There was no difference in baseline haematocrit, platelet count or plasma vWF antigen level between the groups. There was a dose-dependent increase in closure time of the adrenaline containing cartridge in the controls (P aspirin in the patients. Furthermore, plasma salicylate level was higher in the patient group (P < 0.05).

  3. Simultaneous activation of salicylate production and fungal resistance in transgenic chrysanthemum producing caffeine

    Science.gov (United States)

    Kim, Yun-Soo; Lim, Soon; Yoda, Hiroshi; Choi, Chang-Sun; Choi, Yong-Eui

    2011-01-01

    Caffeine functions in the chemical defense against biotic attackers in a few plant species including coffee and tea. Transgenic tobacco plants that endogenously produced caffeine by expressing three N-methyltransferases involved in the caffeine biosynthesis pathway exhibited a strong resistance to pathogens and herbivores. Here we report that transgenic Chrysanthemum, which produced an equivalent level of caffeine as the tobacco plants at approximately 3 µg g−1 fresh tissues, also exhibited a resistance against grey mold fungal attack. Transcripts of PR-2 gene, a marker for pathogen response, were constitutively accumulated in mature leaves without pathogen attack. The levels of salicylic acid and its glucoside conjugate in mature leaves of the transgenic lines were found to be 2.5-fold higher than in the wild type control. It is suggested that endogenous caffeine stimulated production and/or deposition of salicylates, which possibly activated a series of defense reactions even under non-stressed conditions. PMID:21346420

  4. [Determination of sorbic acid, its salts and salicylic acid in food products of animal origin].

    Science.gov (United States)

    Tsvetkova, Ts M; Grigorova, D

    1979-01-01

    A foreign method for quantitative assay of sorbic acid and natrium sorbate in food stuff of plant origin was applied by the authors for food stuffs of animal origin. The conservant of the food stuff was isolated by water vapour distillation. Sorbic acid and natrium sorbate assay was performed on part of the distillate colorimetrically at wave length lambda--532 nm. The method proved highly sensitive (2 gammas and 94% reproduction). It can be used in conservant assay of various fish assortments, canned food, roe and some types of cheese. A qualitative method for proving the presence of salicylic acid is proposed, using water vapour distillation of the biological material. Part of the distillate produced is treated directly by 1% ferriammonium sulfate water solution. A violet tint of the solution proves the presence of salicylic acid in the product studied.

  5. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa.

    Science.gov (United States)

    Lebeis, Sarah L; Paredes, Sur Herrera; Lundberg, Derek S; Breakfield, Natalie; Gehring, Jase; McDonald, Meredith; Malfatti, Stephanie; Glavina del Rio, Tijana; Jones, Corbin D; Tringe, Susannah G; Dangl, Jeffery L

    2015-08-21

    Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome. Copyright © 2015, American Association for the Advancement of Science.

  6. Simultaneous activation of salicylate production and fungal resistance in transgenic Chrysanthemum producing caffeine.

    Science.gov (United States)

    Kim, Yun-Soo; Lim, Soon; Yoda, Hiroshi; Choi, Yong-Eui; Sano, Hiroshi

    2011-03-01

    Caffeine functions in the chemical defense against biotic attackers in a few plant species, including coffee and tea. Transgenic tobacco plants that endogenously produced caffeine by expressing three N-methyltransferases involved in the caffeine biosynthesis pathway exhibited a strong resistance to pathogens and herbivores. Here we report that transgenic Chrysanthemum, which produced an equivalent level of caffeine as the tobacco plants at approximately 3 μg g(-1) fresh tissues, also exhibited a resistance against grey mold fungal attack. Transcripts of PR-2 gene, a marker for pathogen response, were constitutively accumulated in mature leaves without pathogen attack. The levels of salicylic acid and its glucoside conjugate in mature leaves of the transgenic lines were found to be 2.5-fold higher than in the wild type control. It is suggested that endogenous caffeine stimulated production and/or deposition of salicylates, which possibly activated a series of defense reactions even under non-stressed conditions.

  7. Immunogenicity of aryl esters of salicylic or acetylsalicylic acid in guinea pigs.

    Science.gov (United States)

    Schlumberger, H D

    1975-01-01

    A variety of derivatives of acetylsalicylic and salicylic acid have been investigated for their immunogenic properties in guinea pigs including salicylsalicylic acid (SSA), acetylsalicylsalicylic acid (ASSA), disalicylide (DI), trisalicylide (TRI), acetylsalicylic acid paracetamol ester (ASPE) and acetylsalicylic acid guajacol ester (ASGE). Contact sensitivity could be elicited by the sensitizing agent, however, with acetylsalicylic acid anhydride (ASAN) a more pronounced contact reaction could consistently be observed. Systemic anaphylactic reactions elicited by intravenous injection of N-salicyloyl bovine serum albumin could only be induced by ASAN, DI, TRI and ASSA, whereas SSA, ASPE and ASGE did not induce an anaphylactic state at a comparable dose level. From these results it is anticipated that all aryl esters of acetylsalicylic or salicylic acid are immunogenic when applied intradermally, leading to a N-salicyloyl specific immune response.

  8. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis.

    Science.gov (United States)

    Rabe, Franziska; Ajami-Rashidi, Ziba; Doehlemann, Gunther; Kahmann, Regine; Djamei, Armin

    2013-07-01

    Salicylic acid (SA) is a key plant defence hormone which plays an important role in local and systemic defence responses against biotrophic pathogens like the smut fungus Ustilago maydis. Here we identified Shy1, a cytoplasmic U. maydis salicylate hydroxylase which has orthologues in the closely related smuts Ustilago hordei and Sporisorium reilianum. shy1 is transcriptionally induced during the biotrophic stages of development but not required for virulence during seedling infection. Shy1 activity is needed for growth on plates with SA as a sole carbon source. The trigger for shy1 transcriptional induction is SA, suggesting the possibility of a SA sensing mechanism in this fungus. © 2013 John Wiley & Sons Ltd.

  9. Effects of salicylic acid on growth, biochemical constituents in pepper (Capsicum annuum L.) seedlings.

    Science.gov (United States)

    Canakci, S

    2011-02-15

    In the present study, the effect of different concentrations of salicylic acid which is an endogenous organic acid in plants and which is commonly cited as a hormone, on the growth and some other parameters of pepper (Capsicum annuum L. cv.) seedlings was investigated. The solutions were applied to the roots of seedlings using hydroponic method. In general, 1.5 mM concentration of salicylic acid had a stimulating effect while 5 and 10 mM concentrations had varying degrees of inhibitive effects on the seedlings. Although 0.3 mM SA application produced prominent results in the case of all parameters, the difference was not found statistically significant. The inhibitive effect produced by high SA was found much more dominant than the stimulating effect of low SA concentrations. Thus, it was established that SA had a bidirectional physiological effect on the seedlings in a concentration-dependent manner.

  10. Functional Analogues of Salicylic Acid and Their Use in Crop Protection

    OpenAIRE

    Lydia Faize; Mohamed Faize

    2018-01-01

    Functional analogues of salicylic acid are able to activate plant defense responses and provide attractive alternatives to conventional biocidal agrochemicals. However, there are many problems that growers must consider during their use in crop protection, including incomplete disease reduction and the fitness cost for plants. High-throughput screening methods of chemical libraries allowed the identification of new compounds that do not affect plant growth, and whose mechanisms of action are ...

  11. Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum

    OpenAIRE

    Makandar, Ragiba; Nalam, Vamsi; Chaturvedi, Ratnesh; Jeannotte, Richard; Sparks, Alexis A.; Shah, Jyoti

    2010-01-01

    Fusarium graminearum is the principal causative agent of Fusarium head blight (FHB), a devastating disease of wheat and barley. This fungus can also colonize Arabidopsis thaliana. Disease resistance was enhanced in transgenic wheat and Arabidopsis plants that constitutively over-express the NONEXPRESSOR OF PR GENES 1 (NPR1) gene, which regulates salicylic acid (SA) signaling and modulates the activation of jasmonic acid (JA)-dependent defenses. Here, we provide several lines of evidence that ...

  12. Kinetic Model of Mitochondrial Krebs Cycle: Unraveling the Mechanism of Salicylate Hepatotoxic Effects

    OpenAIRE

    Mogilevskaya, Ekaterina; Demin, Oleg; Goryanin, Igor

    2006-01-01

    This paper studies the effect of salicylate on the energy metabolism of mitochondria using in silico simulations. A kinetic model of the mitochondrial Krebs cycle is constructed using information on the individual enzymes. Model parameters for the rate equations are estimated using in vitro experimental data from the literature. Enzyme concentrations are determined from data on respiration in mitochondrial suspensions containing glutamate and malate. It is shown that inhibition in succinate d...

  13. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2016-01-01

    Full Text Available Background: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. Materials and Methods: In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. Results: In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant (P < 0.001 in the course of treatment. However, it was not significant regarding the number of pustules (P = 0.09. None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients (P = 0.015. Conclusion: Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  14. Kinetic and safety assessment for salicylic acid nitration by nitric acid/acetic acid system.

    Science.gov (United States)

    Andreozzi, R; Caprio, V; Di Somma, I; Sanchirico, R

    2006-06-30

    The nitration process of salicylic acid for the production of the important intermediate 5-nitrosalicylic acid is studied from thermokinetic and safety points of view. Investigations carried out by considering, as process deviations, the loss of the thermal control point out the possibility of runaway phenomena due to the occurrence of polynitration reactions. Isothermal experiments are carried out in various conditions to assess the involved reaction network and reaction kinetics.

  15. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    OpenAIRE

    Mardjan, Muhammad Idham Darussalam; Ambarwati, Retno; Matsjeh, Sabirin; Wahyuningsih, Tutik Dwi; Haryadi, Winarto

    2012-01-01

    Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-h...

  16. Isolation of Catharanthus roseus (L.) G. Don Nuclei and Measurement of Rate of Tryptophan decarboxylase Gene Transcription Using Nuclear Run-On Transcription Assay.

    Science.gov (United States)

    Kumar, Santosh; Bhatia, Sabhyata

    2015-01-01

    An accurate assessment of transcription 'rate' is often desired to describe the promoter activity. In plants, isolation of transcriptionally active nuclei and their subsequent use in nuclear run-on assays has been challenging and therefore limit an accurate measurement of gene transcription 'rate'. Catharanthus roseus has emerged as a model medicinal plant as it exhibits an unsurpassed spectrum of chemodiversity, producing over 130 alkaloids through the terpenoid indole alkaloid (TIA) pathway and therefore serves as a 'molecular hub' to understand gene expression profiles. The protocols presented here streamline, adapt and optimize the existing methods of nuclear run-on assay for use in C. roseus. Here, we fully describe all the steps to isolate transcriptionally active nuclei from C. roseus leaves and utilize them to perform nuclear run-on transcription assay. Nuclei isolated by this method transcribed at a level consistent with their response to external stimuli, as transcription rate of TDC gene was found to be higher in response to external stimuli i.e. when seedlings were subjected to UV-B light or to methyl jasmonate (MeJA). However, the relative transcript abundance measured parallel through qRT-PCR was found to be inconsistent with the synthesis rate indicating that some post transcriptional events might have a role in transcript stability in response to stimuli. Our study provides an optimized, efficient and inexpensive method of isolation of intact nuclei and nuclear 'run-on' transcription assay to carry out in-situ measurement of gene transcription rate in Catharanthus roseus. This would be valuable in investigating the transcriptional and post transcriptional response of other TIA pathway genes in C. roseus. Isolated nuclei may also provide a resource that could be used for performing the chip assay as well as serve as the source of nuclear proteins for in-vitro EMSA studies. Moreover, nascent nuclear run-on transcript could be further subjected to RNA

  17. Isolation of Catharanthus roseus (L. G. Don Nuclei and Measurement of Rate of Tryptophan decarboxylase Gene Transcription Using Nuclear Run-On Transcription Assay.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar

    Full Text Available An accurate assessment of transcription 'rate' is often desired to describe the promoter activity. In plants, isolation of transcriptionally active nuclei and their subsequent use in nuclear run-on assays has been challenging and therefore limit an accurate measurement of gene transcription 'rate'. Catharanthus roseus has emerged as a model medicinal plant as it exhibits an unsurpassed spectrum of chemodiversity, producing over 130 alkaloids through the terpenoid indole alkaloid (TIA pathway and therefore serves as a 'molecular hub' to understand gene expression profiles.The protocols presented here streamline, adapt and optimize the existing methods of nuclear run-on assay for use in C. roseus. Here, we fully describe all the steps to isolate transcriptionally active nuclei from C. roseus leaves and utilize them to perform nuclear run-on transcription assay. Nuclei isolated by this method transcribed at a level consistent with their response to external stimuli, as transcription rate of TDC gene was found to be higher in response to external stimuli i.e. when seedlings were subjected to UV-B light or to methyl jasmonate (MeJA. However, the relative transcript abundance measured parallel through qRT-PCR was found to be inconsistent with the synthesis rate indicating that some post transcriptional events might have a role in transcript stability in response to stimuli.Our study provides an optimized, efficient and inexpensive method of isolation of intact nuclei and nuclear 'run-on' transcription assay to carry out in-situ measurement of gene transcription rate in Catharanthus roseus. This would be valuable in investigating the transcriptional and post transcriptional response of other TIA pathway genes in C. roseus. Isolated nuclei may also provide a resource that could be used for performing the chip assay as well as serve as the source of nuclear proteins for in-vitro EMSA studies. Moreover, nascent nuclear run-on transcript could be further

  18. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng

    2015-02-27

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.

  19. Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower

    Directory of Open Access Journals (Sweden)

    Moradkhani S.

    2012-11-01

    Full Text Available The ameliorative effect of salicylic acid (SA on cadmium (Cd toxicity in sunflower plants was studied by investigating plant growth and fatty acid composition. Sunflower plants in two leaves stage were exposed to CdCl2 treatment (0, 50, 100, 150 and 200 µM and then were treated with salicylic acid (0, 250 and 500 µM as foliage spraying. One week after the last salicylic acid treatment,plants were harvested and growth parameters were measured . Oil of leaf was extracted in a Soxhlet system and fatty acid composition were measured by gas chromatography (GC. Statistical analyses showed excess Cd reduced growth parameters (fresh weight and length of stems and roots, fresh weight and number of leavesand SA increased them compared with the control. Maximum reduction in these parameters was at 200 µmol Cd and 0µmol of SA. Cd caused a shift in fatty acids composition, resulting in a lower degree of their unsaturation and an increase in saturated fatty acids in sunflower leaves,whereas SA improved them. SA, particularly increased the percentage of linolenic acid and lowered that of palmitic acid by the same proportion. These results sugg membrane integrity due to lipids est that SA could be used as a potential growth regulator and a stabilizer ofprotection of cadmium-induced oxidative stress to improve plant resistance to Cd stress

  20. The effect of sodium salicylate injection on spatial learning and memory of rat

    Directory of Open Access Journals (Sweden)

    Leila Azimi

    2011-11-01

    Full Text Available Background: Cyclooxygenase (COX enzyme known as a regulatory factor in synaptic plasticity. It has been reported that synaptic plasticity is one of the mechanisms involved in learning and memory processes. In the current study peripheral injection's effects of sodium salicylate (as a non selective COX inhibitor on spatial learning and memory have been investigated.Methods: Four groups of male rats received different doses of sodium salicylate (0, 200, 300, 400 mg/kg; i.p.. Studies were performed using Morris Water Maze (MWM. Spatial learning and memory parameters were subjected to the one- and two-way analyses of variance (ANOVAs followed by Tukey’s post hoc test.Results: Data showed that intraperitoneal injection of sodium salicylate had not significant effect on spatial learning parameters (including escape latency and traveled distance to hidden platform in training days; but administration of high dose of the drug (400 mg/kg significantly increased the percentage of time that animals spent in the target quadrant in probe trial testing. Conclusion: Peripheral injection of the COX inhibitor has no significant effect on spatial learning; but potentiates spatial memory consolidation using MWM.

  1. Effects of GA3, BA, Thiamine and Ascorbic Acid on Some Morphological and Biochemical Characteristics of Periwinkle (Catharanthus roseus L.

    Directory of Open Access Journals (Sweden)

    F. Baniasadi

    2016-07-01

    Full Text Available Introduction: Catharanthus roseus (L. belongs to Apocynaceae family is an important medicinal plant and also cultivated as an ornamental plant almost throughout the tropical and subtropical areas all over the world. Recently, the uses of natural substances are considered very helpful to improve plant growth and development. Application of plant growth regulators (PGRs and vitamins are reported in many horticultural crops. Ascorbic acid is the most abundant antioxidant in plant which protects plant cells. This substance affects cell differentiation and growth. Now a day it is considered as a plant growth regulator. Thiamine or vitamin B1 is water soluble and one of the B complex vitamins. This study was conducted to investigate the effect of the ascorbic acid, thiamine, BA and GA on growth and biochemical parameters of periwinkle. Materials and Methods: The experiment was perform as a completely randomized design with 5 replications at research greenhouse of Shahid Bahonar University of Kerman in 2014.The treatments used include spraying water (control, ascorbic acid 100 mg.l-1, gibberellic acid 100 mg.l-1, thiamine 100 mg.l-1, BA 200 mg. l-1 and combinations of two, three and four of them to determine the response of plants to these substances alone or in combination of them. When the seedlings become on 6-leavs stage, the first foliar spray was carried out. In other two steps was repeated with interval of 10 days. In this study, longevity of the flower, flower diameter, the number of lateral branches, branches length, fresh and dry weight, chlorophyll content and reduced sugars were measured. Chlorophyll content and reduced sugars were measured according to method of Somogy (1952 and Lichtenthder (1987, respectively. Results and Discussion: The results showed that the effect of thiamine on the number of flowers was more pronounced than other substances. The lowest number of flowers per plant was found in plants treated with gibberellic acid

  2. MAP KINASE PHOSPHATASE1 and PROTEIN TYROSINE PHOSPHATASE1 Are Repressors of Salicylic Acid Synthesis and SNC1-Mediated Responses in Arabidopsis

    National Research Council Canada - National Science Library

    Sebastian Bartels; Jeffrey C. Anderson; Manna A. González Besteiro; Alessandro Carreri; Heribert Hirt; Antony Buchala; Jean-Pierre Métraux; Scott C. Peck; Roman Ulm

    2009-01-01

    ...) accession results in growth defects and constitutive biotic defense responses, including elevated levels of salicylic acid, camalexin, PR gene expression, and resistance to the bacterial pathogen Pseudomonas syringae...

  3. Endophytic Methylobacterium extorquens expresses a heterologous β-1,4-endoglucanase A (EglA) in Catharanthus roseus seedlings, a model host plant for Xylella fastidiosa.

    Science.gov (United States)

    Ferreira Filho, Antônio Sérgio; Quecine, Maria Carolina; Bogas, Andréa Cristina; Rossetto, Priscilla de Barros; Lima, Andre Oliveira de Souza; Lacava, Paulo Teixeira; Azevedo, João Lúcio; Araújo, Welington Luiz

    2012-04-01

    Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquens-X. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.

  4. Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus.

    Science.gov (United States)

    Sharma, Abhishek; Verma, Priyanka; Mathur, Archana; Mathur, Ajay Kumar

    2017-08-14

    Catharanthus roseus today occupies the central position in ongoing metabolic engineering efforts in medicinal plants. The entire multi-step biogenetic pathway of its very expensive anticancerous alkaloids vinblastine and vincristine is fairly very well dissected at biochemical and gene levels except the pathway steps leading to biosynthesis of monomeric alkaloid catharanthine and tabersonine. In order to enhance the plant-based productivity of these pharma molecules for the drug industry, cell and tissue cultures of C. roseus are being increasingly tested to provide their alternate production platforms. However, a rigid developmental regulation and involvement of different cell, tissues, and organelles in the synthesis of these alkaloids have restricted the utility of these cultures. Therefore, the present study was carried out with pushing the terpenoid indole alkaloid pathway metabolic flux towards dimeric alkaloids vinblastine and vincristine production by over-expressing the two upstream pathway genes tryptophan decarboxylase and strictosidine synthase at two different levels of cellular organization viz. callus and leaf tissues. The transformation experiments were carried out using Agrobacterium tumefaciens LBA1119 strain having tryptophan decarboxylase and strictosidine synthase gene cassette. The callus transformation reported a maximum of 0.027% dry wt vindoline and 0.053% dry wt catharanthine production, whereas, the transiently transformed leaves reported a maximum of 0.30% dry wt vindoline, 0.10% catharanthine, and 0.0027% dry wt vinblastine content.

  5. Phase-specific polypeptides and poly(A) sup + RNAs during the cell cycle in synchronous cultures of Catharanthus roseus cells

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Hiroaki; Komamine, Atsushi (Tohoku Univ., Sendai (Japan)); Kawakami, Naoto; Watanabe, Akira (Nagoya Univ. (Japan))

    1989-03-01

    This study shows an overall analysis of gene expression during the cell cycle in synchronous suspension cultures of Catharanthus roseus cells. First, the cellular cytoplasmic proteins were fractionated by two-dimensional gel electrophoresis and visualized by staining with silver. Seventeen polypeptides showed qualitative or quantitative changes during the cell cycle. Second, the rates of synthesis of cytoplasmic proteins were also investigated by autoradiography by labeling cells with ({sup 35}S)methionine at each phase of the cell cycle. The rates of synthesis of 13 polypeptides were found to vary during the cell cycle. The silver-stained electrophoretic pattern of proteins in the G{sub 2} phase in particular showed characteristic changes in levels of polypeptides, while the rates of synthesis of polypeptides synthesized during the G{sub 2} phase did not show such phase-specific changes. This result suggest that posttranslational processing of polypeptides occurs during or prior to the G{sub 2} phase. In the G{sub 1} and S phases and during cytokinesis, several other polypeptides were specifically synthesized. Finally, the variation of mRNAs was analyzed from the autoradiograms of in vitro translation products of poly(A){sup +} RNA isolated at each phase. Three poly(A){sup +} RNAs increased in amount from the G{sub 1} to the S phase and one poly(A){sup +} RNA increased preferentially from the G{sub 2} phase to cytokinesis.

  6. A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Paul, Priyanka; Singh, Sanjay K; Patra, Barunava; Sui, Xueyi; Pattanaik, Sitakanta; Yuan, Ling

    2017-02-01

    Catharanthus roseus produces bioactive terpenoid indole alkaloids (TIAs), including the chemotherapeutics, vincristine and vinblastine. Transcriptional regulation of TIA biosynthesis is not fully understood. The jasmonic acid (JA)-responsive AP2/ERF transcription factor (TF), ORCA3, and its regulator, CrMYC2, play key roles in TIA biosynthesis. ORCA3 forms a physical cluster with two uncharacterized AP2/ERFs, ORCA4 and 5. Here, we report that (1) the ORCA gene cluster is differentially regulated; (2) ORCA4, while overlapping functionally with ORCA3, modulates an additional set of TIA genes. Unlike ORCA3, ORCA4 overexpression resulted in dramatic increase of TIA accumulation in C. roseus hairy roots. In addition, CrMYC2 is capable of activating ORCA3 and co-regulating TIA pathway genes concomitantly with ORCA3. The ORCA gene cluster and CrMYC2 act downstream of a MAP kinase cascade that includes a previously uncharacterized MAP kinase kinase, CrMAPKK1. Overexpression of CrMAPKK1 in C. roseus hairy roots upregulated TIA pathways genes and increased TIA accumulation. This work provides detailed characterization of a TF gene cluster and advances our understanding of the transcriptional and post-translational regulatory mechanisms that govern TIA biosynthesis in C. roseus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents.

    Science.gov (United States)

    Dai, Yuntao; Rozema, Evelien; Verpoorte, Robert; Choi, Young Hae

    2016-02-19

    Natural deep eutectic solvents (NADES) have attracted a great deal of attention in recent times as promising green media. They are generally composed of neutral, acidic or basic compounds that form liquids of high viscosity when mixed in certain molar ratio. Despite their potential, viscosity and acid or basic nature of some ingredients may affect the extraction capacity and stabilizing ability of the target compounds. To investigate these effects, extraction with a series of NADES was employed for the analysis of anthocyanins in flower petals of Catharanthus roseus in combination with HPLC-DAD-based metabolic profiling. Along with the extraction yields of anthocyanins their stability in NADES was also studied. Multivariate data analysis indicates that the lactic acid-glucose (LGH), and 1,2-propanediol-choline chloride (PCH) NADES present a similar extraction power for anthocyanins as conventional organic solvents. Furthermore, among the NADES employed, LGH exhibits an at least three times higher stabilizing capacity for cyanidins than acidified ethanol, which facilitates their extraction and analysis process. Comparing NADES to the conventional organic solvents, in addition to their reduced environmental impact, they proved to provide higher stability for anthocyanins, and therefore have a great potential as possible alternatives to those organic solvents in health related areas such as food, pharmaceuticals and cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis

    Science.gov (United States)

    Shen, Ethan M.; Singh, Sanjay K.; Ghosh, Jayadri S.; Patra, Barunava; Paul, Priyanka; Yuan, Ling; Pattanaik, Sitakanta

    2017-01-01

    MicroRNAs (miRNAs) regulate numerous crucial biological processes in plants. However, information is limited on their involvement in the biosynthesis of specialized metabolites in plants, including Catharanthus roseus that produces a number of pharmaceutically valuable, bioactive terpenoid indole alkaloids (TIAs). Using small RNA-sequencing, we identified 181 conserved and 173 novel miRNAs (cro-miRNAs) in C. roseus seedlings. Genome-wide expression analysis revealed that a set of cro-miRNAs are differentially regulated in response to methyl jasmonate (MeJA). In silico target prediction identified 519 potential cro-miRNA targets that include several auxin response factors (ARFs). The presence of cleaved transcripts of miRNA-targeted ARFs in C. roseus cells was confirmed by Poly(A) Polymerase-Mediated Rapid Amplification of cDNA Ends (PPM-RACE). We showed that auxin (indole acetic acid, IAA) repressed the expression of key TIA pathway genes in C. roseus seedlings. Moreover, we demonstrated that a miRNA-regulated ARF, CrARF16, binds to the promoters of key TIA pathway genes and repress their expression. The C. roseus miRNAome reported here provides a comprehensive account of the cro-miRNA populations, as well as their abundance and expression profiles in response to MeJA. In addition, our findings underscore the importance of miRNAs in posttranscriptional control of the biosynthesis of specialized metabolites. PMID:28223695

  9. Cytological changes in meristematic cells of Allium cepa L. root tip treated with extracts from callus of Catharanthus roseus (L. G. Don

    Directory of Open Access Journals (Sweden)

    Agnieszka Pietrosiuk

    2014-01-01

    Full Text Available The effect of an ethanolic extract from callus of Catharanthus roseus on Allium cepa root cells divisions was investigated. Two lines: white and green callus, were established on solid B5 medium with IAA 1 mg/l and kinetin 0.1 mg/l. The HPLC analysis of callus extracts showed the presence of indole alkaloids, however not known pharmacologically active alkaloids or derivatives used in semisynthesis (vinblastine, ajmalicine, serpentine, yohimbine, vindoline and catharanthine have been found. The ethanolic extract of C. roseus callus inhibited the number of mitoses in Allium cepa root tip cells. Short (1-3 hours treatment resulted in an increase in the index of late prophases, with characteristic light spaces, and the index of metaphases with twisted chromosomes forming an equatorial plate or irregular structures of c-metaphases. At the same time, the percentage of anaphases and telophases decreased significantly. Longer treatment of the root tip inhibited mitotic activity, stopping it completely already after 12 hours. Interphase nuclei became at first denser and homogeneous, eventually their structure became , partitioned into zones and formation of chromatin territories, with distinct large nucleoli has been observed. Electron microscope observations revealed well developed rough endoplasmic reticulum and thick, invaginating cell membrane.

  10. A simple and rapid HPLC-DAD method for simultaneously monitoring the accumulation of alkaloids and precursors in different parts and different developmental stages of Catharanthus roseus plants.

    Science.gov (United States)

    Pan, Qifang; Saiman, Mohd Zuwairi; Mustafa, Natali Rianika; Verpoorte, Robert; Tang, Kexuan

    2016-03-01

    A rapid and simple reversed phase liquid chromatographic system has been developed for simultaneous analysis of terpenoid indole alkaloids (TIAs) and their precursors. This method allowed separation of 11 compounds consisting of eight TIAs (ajmalicine, serpentine, catharanthine, vindoline, vindolinine, vincristine, vinblastine, and anhydrovinblastine) and three related precursors i.e., tryptophan, tryptamine and loganin. The system has been applied for screening the TIAs and precursors in Catharanthus roseus plant extracts. In this study, different organs i.e., flowers, leaves, stems, and roots of C. roseus were investigated. The results indicate that TIAs and precursor accumulation varies qualitatively and quantitatively in different organs of C. roseus. The precursors showed much lower levels than TIAs in all organs. Leaves and flowers accumulate higher level of vindoline, catharanthine and anhydrovinblastine while roots have higher level of ajmalicine, vindolinine and serpentine. Moreover, the alkaloid profiles of leaves harvested at different ages and different growth stages were studied. The results show that the levels of monoindole alkaloids decreased while bisindole alkaloids increased with leaf aging and upon plant growth. The HPLC method has been successfully applied to detect TIAs and precursors in different types of C. roseus samples to facilitate further study of the TIA pathway and its regulation in C. roseus plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves.

    Science.gov (United States)

    Kumar, Krishna; Kumar, Sarma Rajeev; Dwivedi, Varun; Rai, Avanish; Shukla, Ashutosh K; Shanker, Karuna; Nagegowda, Dinesh A

    2015-10-01

    The monoterpene indole alkaloids (MIAs) are generally derived from strictosidine, which is formed by condensation of the terpene moiety secologanin and the indole moiety tryptamine. There are conflicting reports on the limitation of either terpene or indole moiety in the production of MIAs in Catharanthus roseus cell cultures. Formation of geraniol by geraniol synthase (GES) is the first step in secologanin biosynthesis. In this study, feeding of C. roseus leaves with geraniol, but not tryptophan (precursor for tryptamine), increased the accumulation of the MIAs catharanthine and vindoline, indicating the limitation of geraniol in MIA biosynthesis. This was further validated by molecular and in planta characterization of C. roseus GES (CrGES). CrGES transcripts exhibited leaf and shoot specific expression and were induced by methyl jasmonate. Virus-induced gene silencing (VIGS) of CrGES significantly reduced the MIA content, which was restored to near-WT levels upon geraniol feeding. Moreover, over-expression of CrGES in C. roseus leaves increased MIA content. Further, CrGES exhibited correlation with MIA levels in leaves of different C. roseus cultivars and has significantly lower expression relative to other pathway genes. These results demonstrated that the transcriptional regulation of CrGES and thus, the in planta geraniol availability plays crucial role in MIA biosynthesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils.

    Science.gov (United States)

    Khan, Waheed Ullah; Ahmad, Sajid Rashid; Yasin, Nasim Ahmad; Ali, Aamir; Ahmad, Aqeel

    2017-06-03

    The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.

  13. The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus.

    Science.gov (United States)

    Van Moerkercke, Alex; Steensma, Priscille; Gariboldi, Ivo; Espoz, Javiera; Purnama, Purin C; Schweizer, Fabian; Miettinen, Karel; Vanden Bossche, Robin; De Clercq, Rebecca; Memelink, Johan; Goossens, Alain

    2016-10-01

    Monoterpenoid indole alkaloids (MIAs) are produced as plant defence compounds. In the medicinal plant Catharanthus roseus, they comprise the anticancer compounds vinblastine and vincristine. The iridoid (monoterpenoid) pathway forms one of the two branches that feed MIA biosynthesis and its activation is regulated by the transcription factor (TF) basic helix-loop-helix (bHLH) iridoid synthesis 1 (BIS1). Here, we describe the identification and characterisation of BIS2, a jasmonate (JA)-responsive bHLH TF expressed preferentially in internal phloem-associated parenchyma cells, which transactivates promoters of iridoid biosynthesis genes and can homodimerise or form heterodimers with BIS1. Stable overexpression of BIS2 in C. roseus suspension cells and transient ectopic expression of BIS2 in C. roseus petal limbs resulted in increased transcript accumulation of methylerythritol-4-phosphate and iridoid pathway genes, but not of other MIA genes or triterpenoid genes. Transcript profiling also indicated that BIS2 expression is part of an amplification loop, as it is induced by overexpression of either BIS1 or BIS2. Accordingly, silencing of BIS2 in C. roseus suspension cells completely abolished the JA-induced upregulation of the iridoid pathway genes and subsequent MIA accumulation, despite the presence of induced BIS1, indicating that BIS2 is essential for MIA production in C. roseus. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  14. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis.

    Science.gov (United States)

    Salim, Vonny; Yu, Fang; Altarejos, Joaquín; De Luca, Vincenzo

    2013-12-01

    Iridoids are a major group of biologically active molecules that are present in thousands of plant species, and one versatile iridoid, secologanin, is a precursor for the assembly of thousands of monoterpenoid indole alkaloids (MIAs) as well as a number of quinoline alkaloids. This study uses bioinformatics to screen large databases of annotated transcripts from various MIA-producing plant species to select candidate genes that may be involved in iridoid biosynthesis. Virus-induced gene silencing of the selected genes combined with metabolite analyses of silenced plants was then used to identify the 7-deoxyloganic acid 7-hydroxylase (CrDL7H) that is involved in the 3rd to last step in secologanin biosynthesis. Silencing of CrDL7H reduced secologanin levels by at least 70%, and increased the levels of 7-deoxyloganic acid to over 4 mg g(-1) fresh leaf weight compared to control plants in which this iridoid is not detected. Functional expression of this CrDL7H in yeast confirmed its biochemical activity, and substrate specificity studies showed its preference for 7-deoxyloganic acid over other closely related substrates. Together, these results suggest that hydroxylation precedes carboxy-O-methylation in the secologanin pathway in Catharanthus roseus. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  15. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets.

    Science.gov (United States)

    Prakash, Pravin; Ghosliya, Dolly; Gupta, Vikrant

    2015-01-10

    MicroRNAs are small endogenous non-coding RNAs of ~19-24 nucleotides and perform regulatory roles in many plant processes. To identify miRNAs involved in regulatory networks controlling diverse biological processes including secondary metabolism in Catharanthus roseus, an important medicinal plant, we employed deep sequencing of small RNA from leaf tissue. A total of 88 potential miRNAs comprising of 81 conserved miRNAs belonging to 35 families and seven novel miRNAs were identified. Precursors for 16 conserved and seven novel cro-miRNAs were identified, and their stem-loop hairpin structures were predicted. Selected cro-miRNAs were analyzed by stem-loop qRT-PCR and differential expression patterns were observed in different vegetative tissues of C. roseus. Targets were predicted for conserved and novel cro-miRNAs, which were found to be involved in diverse biological role(s) including secondary metabolism. Our study enriches available resources and information regarding miRNAs and their potential targets for better understanding of miRNA-mediated gene regulation in plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Negative-Pressure Cavitation Extraction of Four Main Vinca Alkaloids from Catharanthus roseus Leaves

    Directory of Open Access Journals (Sweden)

    Yuangang Zu

    2012-07-01

    Full Text Available In the present study, an improved method termed negative-pressure cavitation extraction (NPCE followed by reverse phase high-performance liquid chromatography (RP-HPLC was developed for the extraction and quantification of vindoline (VDL, catharanthine (CTR, vincristine (VCR and vinblastine (VLB from Catharanthus roseus leaves. The optimized method employed 60-mesh particles, 80% ethanol, a negative pressure of −0.075 MPa, a solid to liquid ratio of 1:20, 30 min of extraction and three extraction cycles. Under these optimized conditions, the extraction yields of VDL, CTR, VCR and VLB are 0.5783, 0.2843, 0.018 and 0.126 mg/g DW, respectively. These extraction yields are equivalent to those from the well-known ultrasonic extraction method and higher than the yields from maceration extraction and heating reflux extraction. Our results suggest that NPCE-RP-HPLC represents an excellent alternative for the extraction and quantification of vinca alkaloids for pilot- and industrial-scale applications.

  17. In-depth proteome mining of cultured Catharanthus roseus cells identifies candidate proteins involved in the synthesis and transport of secondary metabolites.

    Science.gov (United States)

    Champagne, Antoine; Rischer, Heiko; Oksman-Caldentey, Kirsi-Marja; Boutry, Marc

    2012-12-01

    Madagascar periwinkle (Catharanthus roseus) is the major source of terpenoid indole alkaloids, such as vinblastine or vincristine, used as natural drugs against various cancers. In this study, we have extensively analyzed the proteome of cultured C. roseus cells. Comparison of the proteomes of two independent cell lines with different terpenoid indole alkaloid metabolism by 2D-DIGE revealed 358 proteins that differed quantitatively by at least a twofold average ratio. Of these, 172 were identified by MS; most corresponded to housekeeping proteins. Less abundant proteins were identified by LC separation of tryptic peptides of proteins from one of the lines. We identified 1663 proteins, most of which are housekeeping proteins or involved in primary metabolism. However, 63 enzymes potentially involved in secondary metabolism were also identified, of which 22 are involved in terpenoid indole alkaloid biosynthesis and 16 are predicted transporters putatively involved in secondary metabolite transport. About 30% of the proteins identified have an unclear or unknown function, indicating important gaps in knowledge of plant metabolism. This study is an important step toward elucidating the proteome of C. roseus, which is critical for a better understanding of how this plant synthesizes terpenoid indole alkaloids. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metabolomics Characterization of Two Apocynaceae Plants, Catharanthus roseus and Vinca minor, Using GC-MS and LC-MS Methods in Combination.

    Science.gov (United States)

    Chen, Qi; Lu, Xueyan; Guo, Xiaorui; Guo, Qingxi; Li, Dewen

    2017-06-17

    Catharanthus roseus ( C. roseus ) and Vinca minor ( V. minor ) are two common important medical plants belonging to the family Apocynaceae. In this study, we used non-targeted GC-MS and targeted LC-MS metabolomics to dissect the metabolic profile of two plants with comparable phenotypic and metabolic differences. A total of 58 significantly different metabolites were present in different quantities according to PCA and PLS-DA score plots of the GC-MS analysis. The 58 identified compounds comprised 16 sugars, eight amino acids, nine alcohols and 18 organic acids. We subjected these metabolites into KEGG pathway enrichment analysis and highlighted 27 metabolic pathways, concentrated on the TCA cycle, glycometabolism, oligosaccharides, and polyol and lipid transporter (RFOS). Among the primary metabolites, trehalose, raffinose, digalacturonic acid and gallic acid were revealed to be the most significant marker compounds between the two plants, presumably contributing to species-specific phenotypic and metabolic discrepancy. The profiling of nine typical alkaloids in both plants using LC-MS method highlighted higher levels of crucial terpenoid indole alkaloid (TIA) intermediates of loganin, serpentine, and tabersonine in V. minor than in C. roseus . The possible underlying process of the metabolic flux from primary metabolism pathways to TIA synthesis was discussed and proposed. Generally speaking, this work provides a full-scale comparison of primary and secondary metabolites between two medical plants and a metabolic explanation of their TIA accumulation and phenotype differences.

  19. Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus.

    Science.gov (United States)

    Yang, Zhirong; Patra, Barunava; Li, Runzhi; Pattanaik, Sitakanta; Yuan, Ling

    2013-12-01

    WRKY transcription factors (TFs) are emerging as an important group of regulators of plant secondary metabolism. However, the cis-regulatory elements associated with their regulation have not been well characterized. We have previously demonstrated that CrWRKY1, a member of subgroup III of the WRKY TF family, regulates biosynthesis of terpenoid indole alkaloids in the ornamental and medicinal plant, Catharanthus roseus. Here, we report the isolation and functional characterization of the CrWRKY1 promoter. In silico analysis of the promoter sequence reveals the presence of several potential TF binding motifs, indicating the involvement of additional TFs in the regulation of the TIA pathway. The CrWRKY1 promoter can drive the expression of a β-glucuronidase (GUS) reporter gene in native (C. roseus protoplasts and transgenic hairy roots) and heterologous (transgenic tobacco seedlings) systems. Analysis of 5'- or 3'-end deletions indicates that the sequence located between positions -140 to -93 bp and -3 to +113 bp, relative to the transcription start site, is critical for promoter activity. Mutation analysis shows that two overlapping as-1 elements and a CT-rich motif contribute significantly to promoter activity. The CrWRKY1 promoter is induced in response to methyl jasmonate (MJ) treatment and the promoter region between -230 and -93 bp contains a putative MJ-responsive element. The CrWRKY1 promoter can potentially be used as a tool to isolate novel TFs involved in the regulation of the TIA pathway.

  20. The promoter of Rv0560c is induced by salicylate and structurally-related compounds in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Dorothée L Schuessler

    Full Text Available Mycobacterium tuberculosis, the causative agent of tuberculosis (TB, is a major global health threat. During infection, bacteria are believed to encounter adverse conditions such as iron depletion. Mycobacteria synthesize iron-sequestering mycobactins, which are essential for survival in the host, via the intermediate salicylate. Salicylate is a ubiquitous compound which is known to induce a mild antibiotic resistance phenotype. In M. tuberculosis salicylate highly induces the expression of Rv0560c, a putative methyltransferase. We identified and characterized the promoter and regulatory elements of Rv0560c. P(Rv0560c activity was highly inducible by salicylate in a dose-dependent manner. The induction kinetics of P(Rv0560c were slow, taking several days to reach maximal activity, which was sustained over several weeks. Promoter activity could also be induced by compounds structurally related to salicylate, such as aspirin or para-aminosalicylic acid, but not by benzoate, indicating that induction is specific to a structural motif. The -10 and -35 promoter elements were identified and residues involved in regulation of promoter activity were identified in close proximity to an inverted repeat spanning the -35 promoter element. We conclude that Rv0560c expression is controlled by a yet unknown repressor via a highly-inducible promoter.

  1. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Directory of Open Access Journals (Sweden)

    Solimabi Wahidullah

    Full Text Available As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl with salicylic acid (3-8 were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12, metabolites produced by the bacterium include antimicrobial indole (13 and β-carbolines, norharman (14, harman (15 and methyl derivative (16, which are beneficial to the host and the environment.

  2. Effect of Salicylic Acid and Ethephon on Seed Germination and Seedling Growth of Wheat under Salt Stress

    Directory of Open Access Journals (Sweden)

    Soheyla Shakeri

    2016-10-01

    Full Text Available Water or soil salinities are the most important factors that reduce the seed germination of plants. Ethephon can break seed dormancy in a variety of plants, such as cereals and speeds up germination. In some plants pretreatment of seeds with salicylic acid has increased the germination percentage. To study effect of salicylic acid and ethephon on seed germination of wheat (Seivand cultivar under salinity condition a factorial experiment in a completely randomized design with three replications was conducted at the Plant Research Laboratory of Neyshabur Branch of Islamic Azad University in 2011. Four salinity levels (0, 50, 100, 150 mM, three salicylic acid levels (0, 0.5, 1 mM and four ethephon levels (0, 0.5, 1, 2 mM were used. The results showed that at salinity condition seed germination rate and percentage, shoot and root length, their dry weight and α-amylase activity decreased and proline content increased. Pretreatment of seeds by salicylic acid increased seed germination percentage, some growth parameters, α-amylase activity and proline content under salinity condition. Moreover, pretreatment of seeds by ethephon decreased some growth parameters and increased proline content but its effect on germination and α-amylase activity were not significant. It seems that Salicylic acid as a plant growth regulator under salinity condition and ethephon convertion to ethylene, activated plant tolerance mechanisms to salinity condition and decrease damaging effect of salinity on seed germination and seedling growth of wheat.

  3. The Effect of Foliar Application of Salicylic acid and Thiamine on the Biochimical Characteristics of Gerbera jamesonii cv. Pink elegance

    Directory of Open Access Journals (Sweden)

    M. Mansouri

    2016-02-01

    Full Text Available Gerbera is one of the ten important cut flowers in terms of production and consumption in the world and Iran. In this research effects of foliar application of salicylic acid and thiamine on biochemical characteristics of gerbera flower were investigated. This experiment was conducted in a completely randomized design with four replications in the greenhouse commercial of the Golazin Maghsoud Company. Treatments were included of municipal water (control, salicylic acid 75 and 150 µM and thiamine 250 and 500 µM. Foliar application was performed with interval of two weeks in two stages. The results showed that the treatments had a significant effect on biochemical characteristics of gerbera. The greatest amount of chlorophyll a (36.6 µg/g Fw, b (17.27µg/g Fw and total chlorophyll content (61.17 µg/g Fw were related to Thiamine 250 µM and the highest level of carotenoids content 7.87 (µg/g Fw was related to Thiamine 500 µM. The most reducing sugars content (181.51 mg/g Fw reported in 75 µM salicylic acid. The highest activity of catalase and peroxidase enzyme (94.5 and 70.7 unit enzyme per minute in gram fresh weight, respectively were related to 75 and 150 µM salicylic acid. Thus, salicylic acid and thiamine increased photosynthetic pigments, antioxidant enzyme activities.

  4. Evaluation of Salt Stress Effect on Chlorophyll Fluorescence in Two Sugar beet (Beta vulgaris L. under Salicylate Foliar Application

    Directory of Open Access Journals (Sweden)

    M mohammady Cheraghabady

    2015-09-01

    Full Text Available To study of salicylic acid effect on chlorophyll fluorescence parameters under salt stress condition an experiment was conducted in Split factorial based on randomized complete block design with three replications at Shahid Chamran University of Ahwaz research farm. In 4-leaf stage after full expanded leaves, simultaneous with 150 mM NaCl salt stress applying; the leaves of salicylic acid including 0, 0.5 and 1 mM was sprayed on the leaves early morning. Two cultivars (Jolge and Sharif of sugar beet were used at this experiment. Growth analysis was done at vegetative stage and ripening. Salinity caused significant reduction in root and shoot dry weight, stomatal conductance, SPAD value,Ф PSІІ, qP and Fv/Fm. Also salt stress resulted in significant increase in NPQ. Treatment by salicylic acid caused significant increase of root dry weight, stomatal conductance conditions stress, SPAD value,Ф PSІІ, qP and Fv/Fm compared to not application of salicylic acid under salt stress conditions. According to the results of the Correlation, photochemical quenching excited electron energy (qP and root dry weight (r = 0.56* and shoot dry weight (r = 0.68** stress conditions showed a significant positive correlation. Therefore this attribute can be used to screen for these cultivars under the conditions foliar salicylic acid.

  5. Synergistic Accumulative Effect of Salicylic Acid and Dibutyl Phthalate on Paclitaxel Production in Corylus avellana Cell Culture

    Directory of Open Access Journals (Sweden)

    Rezaei, A.

    2013-02-01

    Full Text Available Suspension cell cultures of Corylus avellana were challenged with salicylic acid and its combined use with dibutyl phthalate solvent. Salicylic acid with concentrations of 12.5, 25 and 50 mg L–1 and 10% (v/v dibutyl phthalate were used and added on day 8 and 10 of subculture, respectively. The results showed that growth, viability and protein content of cells were decreased by the treatments, compared to control. In all treatments, hydrogen peroxide content and lipid peroxidation rate of cells increased, compared to those of the control cells. Activity of phenylalanine ammonia-lyase increased by salicylic acid and, dibutyl phthalate exaggerated effect of salicylic acid. While flavonoids content decreased by the treatments, paclitaxel content increased significantly. The extracellular paclitaxel was more affected, compared to cell-associated paclitaxel and all treatments increased paclitaxel release and specific yield compared to that of the control. The most production of paclitaxel and specific yield of it were observed under effect of combined use of salicylic acid (50 mg L–1 and dibutyl phthalate, suggesting a synergistic accumulative effect.

  6. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family.

    Science.gov (United States)

    Zubieta, Chloe; Ross, Jeannine R; Koscheski, Paul; Yang, Yue; Pichersky, Eran; Noel, Joseph P

    2003-08-01

    Recently, a novel family of methyltransferases was identified in plants. Some members of this newly discovered and recently characterized methyltransferase family catalyze the formation of small-molecule methyl esters using S-adenosyl-L-Met (SAM) as a methyl donor and carboxylic acid-bearing substrates as methyl acceptors. These enzymes include SAMT (SAM:salicylic acid carboxyl methyltransferase), BAMT (SAM:benzoic acid carboxyl methyltransferase), and JMT (SAM:jasmonic acid carboxyl methyltransferase). Moreover, other members of this family of plant methyltransferases have been found to catalyze the N-methylation of caffeine precursors. The 3.0-A crystal structure of Clarkia breweri SAMT in complex with the substrate salicylic acid and the demethylated product S-adenosyl-L-homocysteine reveals a protein structure that possesses a helical active site capping domain and a unique dimerization interface. In addition, the chemical determinants responsible for the selection of salicylic acid demonstrate the structural basis for facile variations of substrate selectivity among functionally characterized plant carboxyl-directed and nitrogen-directed methyltransferases and a growing set of related proteins that have yet to be examined biochemically. Using the three-dimensional structure of SAMT as a guide, we examined the substrate specificity of SAMT by site-directed mutagenesis and activity assays against 12 carboxyl-containing small molecules. Moreover, the utility of structural information for the functional characterization of this large family of plant methyltransferases was demonstrated by the discovery of an Arabidopsis methyltransferase that is specific for the carboxyl-bearing phytohormone indole-3-acetic acid.

  7. Influence of salicylic acid on seed germination of Vicia faba L. under salt stress

    OpenAIRE

    Fatima Anaya; Rachid Fghire; Said Wahbi; Kenza Loutfi

    2018-01-01

    Seed germination is the critical stage for species survival. Salinity affects germination and seedling growth and yield of several crop species, such as broad bean. That is why this study was carried to evaluate the effects of NaCl on seed germination and influence of salicylic acid on seed in order to improving salt tolerant on broad bean. Vicia faba L. is an important pulse crop in the Mediterranean region. In many cases broad bean is grown on saline soils where growth and yield are limited...

  8. One-stop genomic DNA extraction by salicylic acid-coated magnetic nanoparticles.

    Science.gov (United States)

    Zhou, Zhongwu; Kadam, Ulhas S; Irudayaraj, Joseph

    2013-11-15

    Salicylic acid-coated magnetic nanoparticles were prepared via a modified one-step synthesis and used for a one-stop extraction of genomic DNA from mammalian cells. The synthesized magnetic particles were used for magnetic separation of cells from the media by nonspecific binding of the particles as well as extraction of genomic DNA from the lysate. The quantity and quality were confirmed by agarose gel electrophoresis and polymerase chain reaction. The entire process of extraction and isolation can be completed within 30 min. Compared with traditional methods based on centrifugation and filtration, the established method is fast, simple, reliable, and environmentally friendly. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Terbinafine resistance conferred by multiple copies of the salicylate 1-monooxygenase gene in Trichophyton rubrum.

    Science.gov (United States)

    Santos, Hemelin L; Lang, Elza A S; Segato, Fernando; Rossi, Antonio; Martinez-Rossi, Nilce M

    2017-06-02

    Resistance to antifungals is a leading concern in the treatment of human mycoses. We demonstrate that the salA gene, encoding salicylate 1-monooxygenase, is involved in resistance of the dermatophyte Trichophyton rubrum to terbinafine, one of the most effective antifungal drugs against dermatophytes. A strain with multiple copies of salA was constructed and exhibited elevated expression of salA and increased terbinafine resistance. This reflects a mechanism not yet reported in a pathogenic fungus. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. HOMOTRINUCLEAR Fe3III μ – OXO SALICYLATE CLUSTER. SYNTHESIS, STRUCTURE AND PROPERTIES

    Directory of Open Access Journals (Sweden)

    Viorina Gorinchoy

    2013-12-01

    Full Text Available A reaction of iron and barium nitrate with ammonium salicylate in the mixture of solvents leads to the formation of the new homotrinuclear complex, [Fe3O(SalH7(H2O2]∙(DMAA2(MeOH(THF1,5(H2O2,6. Single-crystal X-ray study shows that the titled complex with the moiety {Fe3O} belongs to the well-known group of μ3-oxohomotrinuclear carboxylates. The IR and MS studies are in accordance with x-ray data. Thermal behaviour of the complex was studied.

  11. Jasmonic acid and salicylic acid activate a common defense system in rice.

    Science.gov (United States)

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-06-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice.

  12. Salicylic Acid Alleviates Aluminum Toxicity in Soybean Roots through Modulation of Reactive Oxygen Species Metabolism

    OpenAIRE

    Liu, Ning; Song, Fengbin; Zhu, Xiancan; You, Jiangfeng; Yang, Zhenming; Li, Xiangnan

    2017-01-01

    As an important signal molecule, salicylic acid (SA) improves plant tolerance to aluminum (Al) stress. The objective of this study was to investigate the effects of exogenous SA application on the dynamics of endogenous SA and reactive oxygen species in soybean (Glycine max L.) exposed to Al stress. The roots of soybean seedlings were exposed to a combination of AlCl3 (30 μM) and SA (10 μM)/PAC (100 μM, paclobutrazol, SA biosynthesis inhibitor) for 3, 6, 9, and 12 h. Al stress induced an incr...

  13. Salicylic acid alleviates cold-induced photosynthesis inhibition and oxidative stress in Jasminum sambac

    OpenAIRE

    Cai, Han; He, Mengying; Ma, Kun; HUANG, YONGGAO; Wang, Yun

    2015-01-01

    Salicylic acid (SA) is a signal molecule that mediates many biotic and abiotic stress-induced physiological responses in plants. In the current study the protective effects of SA on cold stress-caused oxidative damage and photosynthesis inhibition in jasmine plants (Jasminum sambac) were examined. Jasmine seedlings were pretreated with 100 µM SA for 3 days and then subjected to cold stress (4 °C) for 15 days. The amounts of superoxide radicals (O_2^{-}) and hydrogen peroxide (H_{2}O_{2}) sign...

  14. Salicylic acid as a tridentate anchoring group for azo-bridged zinc porphyrin in dye-sensitized solar cells.

    Science.gov (United States)

    Gou, Faliang; Jiang, Xu; Li, Bo; Jing, Huanwang; Zhu, Zhenping

    2013-12-11

    Two series dyes of azo-bridged zinc porphyrins have been devised, synthesized, and performed in dye-sensitized solar cells, in which salicylic acids and azo groups were introduced as a new anchoring group and π-conjugated bridge via a simple synthetic procedure. The representation of the new dyes has been investigated by optical, photovoltaic, and electrochemical means. The photoelectric conversion efficiency of their DSSC devices has been improved compared with other DSSC devices sensitized by symmetrical porphyrin dyes. The results revealed that tridentate binding modes between salicylic acid and TiO2 nanoparticles could enhance the efficiency of electron injection. The binding modes between salicylic acid and TiO2 nanoparticles may play a crucial role in the photovoltaic performance of DSSCs.

  15. Salicylic acid differently impacts ethylene and polyamine synthesis in the glycophyte Solanum lycopersicum and the wild-related halophyte Solanum chilense exposed to mild salt stress.

    Science.gov (United States)

    Gharbi, Emna; Martínez, Juan-Pablo; Benahmed, Hela; Fauconnier, Marie-Laure; Lutts, Stanley; Quinet, Muriel

    2016-10-01

    This study aimed to determine the effects of exogenous application of salicylic acid (SA) on the toxic effects of salt in relation to ethylene and polyamine synthesis, and to correlate these traits with the expression of genes involved in ethylene and polyamine metabolism in two tomato species differing in their sensitivity to salt stress, Solanum lycopersicum cv Ailsa Craig and its wild salt-resistant relative Solanum chilense. In S. chilense, treatment with 125 mM NaCl improved plant growth, increased production of ethylene, endogenous salicylic acid and spermine. The production was related to a modification of expression of genes involved in ethylene and polyamine metabolism. In contrast, salinity decreased plant growth in S. lycopersicum without affecting endogenous ethylene, salicylic or polyamine concentrations. Exogenous application of salicylic acid at 0.01 mM enhanced shoot growth in both species and affected ethylene and polyamine production in S. chilense. Concomitant application of NaCl and salicylic acid improved osmotic adjustment, thus suggesting that salt and SA may act in synergy on osmolyte synthesis. However, the beneficial impact of exogenous application of salicylic acid was mitigated by salt stress since NaCl impaired endogenous SA accumulation in the shoot and salicylic acid did not improve plant growth in salt-treated plants. Our results thus revealed that both species respond differently to salinity and that salicylic acid, ethylene and polyamine metabolisms are involved in salt resistance in S. chilense. © 2016 Scandinavian Plant Physiology Society.

  16. Comparison of Catalysts Preyssler and Silica-Supported Nano Preyssler in the Synthesis of Acetyl Salicylic Acid

    Directory of Open Access Journals (Sweden)

    H. Nazari

    2012-01-01

    Full Text Available The extensive demand for cleaner environment is forcing chemical industry to use less hazardous materials. In this regard, heteropolyacids attracted considerable amount of interest due to the less toxic behavior in addition of possessing higher acidity. Heteropoly acids have been used as catalysts for the reaction of salicylic acid with acetic anhydride. The performance of different forms of heteropoly acids in the presence of acetic anhydride as acetylating agent for acetylation of salicylic acid was compared. The best conditions were observed using Preyssler and Silica-supported Preyssler Nanoparticles as catalysts. The catalyst is recyclable and reusable.

  17. The Complete Plastid Genome Sequence of Madagascar Periwinkle Catharanthus roseus (L. G. Don: Plastid Genome Evolution, Molecular Marker Identification, and Phylogenetic Implications in Asterids.

    Directory of Open Access Journals (Sweden)

    Chuan Ku

    Full Text Available The Madagascar periwinkle (Catharanthusroseus in the family Apocynaceae is an important medicinal plant and is the source of several widely marketed chemotherapeutic drugs. It is also commonly grown for its ornamental values and, due to ease of infection and distinctiveness of symptoms, is often used as the host for studies on phytoplasmas, an important group of uncultivated plant pathogens. To gain insights into the characteristics of apocynaceous plastid genomes (plastomes, we used a reference-assisted approach to assemble the complete plastome of C. roseus, which could be applied to other C. roseus-related studies. The C. roseus plastome is the second completely sequenced plastome in the asterid order Gentianales. We performed comparative analyses with two other representative sequences in the same order, including the complete plastome of Coffeaarabica (from the basal Gentianales family Rubiaceae and the nearly complete plastome of Asclepiassyriaca (Apocynaceae. The results demonstrated considerable variations in gene content and plastome organization within Apocynaceae, including the presence/absence of three essential genes (i.e., accD, clpP, and ycf1 and large size changes in non-coding regions (e.g., rps2-rpoC2 and IRb-ndhF. To find plastome markers of potential utility for Catharanthus breeding and phylogenetic analyses, we identified 41 C. roseus-specific simple sequence repeats. Furthermore, five intergenic regions with high divergence between C. roseus and three other euasterids I taxa were identified as candidate markers. To resolve the euasterids I interordinal relationships, 82 plastome genes were used for phylogenetic inference. With the addition of representatives from Apocynaceae and sampling of most other asterid orders, a sister relationship between Gentianales and Solanales is supported.

  18. Effects of aluminum on DNA synthesis, cellular polyamines, polyamine biosynthetic enzymes and inorganic ions in cell suspension cultures of a woody plant, Catharanthus roseus

    Energy Technology Data Exchange (ETDEWEB)

    Minocha, R.; Shortle, W.C. (USDA Forest Service, Durham (US)); Minocha, S.C.; Long, S.L. (Dept. of Plant Biology, Univ. of New Hamshire, Durham (US))

    1992-01-01

    Increased aluminium (Al) solubility in soil waters due to acid precipitation has aroused considerable interest in the problem of Al toxicity in plants. In the present study, an in vitro suspension culture system of Catharanthus roseus (L.) G. Don was used to analyze the effects of aluminum on several biochemical processes in these cells. The aliphatic polyamines, spermine and spermidine, and their precusor, putrescine, have been implicated in a number of stress responses of plants. Addition of 0.2, 0.5 or 1.0 mM AlCl{sub 3} to cells cultured for 3 days caused a small but significant increase in cellular levels of putrescine at 4 h followed by a sharp decline by 16 h. There was no further decline in levels of putrescine during the next 32 h. Spermidine levels did not change appreciably compared to those in the control cultures. However, spermine levels increased by 2-3-fold at 24 and 48 h. Cellular activities of arginine decarboxylase (ADC; EC 4.1.1.19) and S-adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) were both inhibited by 20-25% at 4 and 7 h. Ornithine decarboxylase (ODC; EC 4.1.1.17) was less than 10% of ADC activity at all times. Whereas all concentrations of Al caused a slight decrease in total cell number, cell viability was affected only by 1.0 mM Al. There was a decrease in the cellular levels of Ca, Mg, Na, K, Mn, P and Fe in the cells treated with Al at 4 h, but a significant increase by 16 and 24 h. The results presented here suggest that both the absolute amounts of Al and the length of exposure to it are important for cell toxicity. (au).

  19. Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor.

    Science.gov (United States)

    Verma, Priyanka; Sharma, Abhishek; Khan, Shamshad Ahmad; Shanker, Karuna; Mathur, Ajay K

    2015-01-01

    Tryptophan decarboxylase (TDC) and strictosidine synthase (STR) genes from Catharanthus roseus have been successfully over-expressed in the rol gene integrated cell suspensions of V. minor. Thirty seconds SAAT (sonication-assisted Agrobacterium transformation) treatment of plant cell suspension with LBA1119 having construct () generated three stable TDC + STR over-expressing cell lines--PVG1, PVG2, and PVG3. The transgenes were confirmed by β-glucuronidase GUS histochemical assay and PCR amplification of rol genes/GUS gene. All the three cell suspension lines were found to be slow growing. In comparison to the control cell suspensions (GI = 241.0 ± 5.8), PVG3 cell line registered a growth index (GI) of 208.0 ± 10.0 followed by PVG1 (GI = 140.0 ± 14.2) and PVG2 (GI = 85.0 ± 9.6). The PVG3 cell line was also up-scaled in the 5-l stirred tank bioreactor with GI of 745.6 ± 35.3 under optimized parameters. Only PVG3 line registered a twofold increase in total alkaloid content (2.1 ± 0.1% dry wt.) and showed vincamine presence (0.003 ± 0.001% dry wt.) which was further enhanced at the bioreactor level (2.7 ± 0.3 and 0.005 ± 0.001% dry wt., respectively). Real-time (RT) qPCR analysis of PVG3 showed more than sevenfold to eightfold increase in TDC and STR expression [relative quantity value (RQ) = 7.6 ± 0.8 (TDC); RQ = 8.5 ± 0.9 (STR)].

  20. The Complete Plastid Genome Sequence of Madagascar Periwinkle Catharanthus roseus (L.) G. Don: Plastid Genome Evolution, Molecular Marker Identification, and Phylogenetic Implications in Asterids.

    Science.gov (United States)

    Ku, Chuan; Chung, Wan-Chia; Chen, Ling-Ling; Kuo, Chih-Horng

    2013-01-01

    The Madagascar periwinkle (Catharanthusroseus in the family Apocynaceae) is an important medicinal plant and is the source of several widely marketed chemotherapeutic drugs. It is also commonly grown for its ornamental values and, due to ease of infection and distinctiveness of symptoms, is often used as the host for studies on phytoplasmas, an important group of uncultivated plant pathogens. To gain insights into the characteristics of apocynaceous plastid genomes (plastomes), we used a reference-assisted approach to assemble the complete plastome of C. roseus, which could be applied to other C. roseus-related studies. The C. roseus plastome is the second completely sequenced plastome in the asterid order Gentianales. We performed comparative analyses with two other representative sequences in the same order, including the complete plastome of Coffeaarabica (from the basal Gentianales family Rubiaceae) and the nearly complete plastome of Asclepiassyriaca (Apocynaceae). The results demonstrated considerable variations in gene content and plastome organization within Apocynaceae, including the presence/absence of three essential genes (i.e., accD, clpP, and ycf1) and large size changes in non-coding regions (e.g., rps2-rpoC2 and IRb-ndhF). To find plastome markers of potential utility for Catharanthus breeding and phylogenetic analyses, we identified 41 C. roseus-specific simple sequence repeats. Furthermore, five intergenic regions with high divergence between C. roseus and three other euasterids I taxa were identified as candidate markers. To resolve the euasterids I interordinal relationships, 82 plastome genes were used for phylogenetic inference. With the addition of representatives from Apocynaceae and sampling of most other asterid orders, a sister relationship between Gentianales and Solanales is supported.

  1. Fungal vincristine from Eutypella spp - CrP14 isolated from Catharanthus roseus induces apoptosis in human squamous carcinoma cell line -A431.

    Science.gov (United States)

    Kuriakose, Gini C; Palem, Padmini P C; Jayabaskaran, Chelliah

    2016-08-22

    Catharanthus roseus, a medicinal plant, is known to produce secondary metabolites, vincristine and vinblastine, which are terpenoid indole alkaloids. Previously we have reported that Eutypella spp - CrP14 isolated from stem cutting of this plant had shown significant antiproliferative activity when tested in vitro against HeLa cell line. The present study was conducted to identify the anticancer compound responsible for the anti-proliferative activity of the fungal extract and to evaluate its in vitro anticancer and apoptotic effects. The anti-proliferative activity of the fungal anticancer compound, vincristine was analyzed by MTT assay against different cancer cell lines. We examined its efficacy of apoptotic induction on A431 cells. The parameters examined included cell cycle distribution, loss of mitochondrial membrane potential (MMP), DNA fragmentation and reactive oxygen species (ROS) generation. The presence of vincristine in fungal culture filtrate was confirmed through chromatographic and spectroscopic analyses, and the amount was estimated to be 53 ± 5.0 μg/l. The partially purified fungal vincristine had strong cytotoxic activity towards human squamous carcinoma cells - A431 in the MTT assay. Furthermore, we showed that the fungal vincristine was capable of inducing apoptosis in A431 cells through generation of reactive oxygen species and activation of the intrinsic pathway leading to loss of MMP. We have demonstrated for the first time that the vincristine from Eutypella spp - CrP14 is an efficient inducer of apoptosis in A431 cells, meriting its further evaluation in vivo.

  2. Jasmonate-dependent alkaloid biosynthesis in Catharanthus Roseus hairy root cultures is correlated with the relative expression of Orca and Zct transcription factors.

    Science.gov (United States)

    Goklany, Sheba; Rizvi, Noreen F; Loring, Ralph H; Cram, Erin J; Lee-Parsons, Carolyn W T

    2013-01-01

    The effects of methyl jasmonate (MJ) dosage on terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus are correlated with the relative levels of specific MJ-responsive transcription factors. In this study, the expression of transcription factors (Orca, Zct, Gbf, Myc2, At-hook, and Wrky1), TIA pathway genes (G10h, Tdc, Str, and Sgd), and TIA metabolites (secologanin, strictosidine, and tabersonine) were investigated in C. roseus hairy root cultures elicited with a range of MJ dosages (0-1,000 µM) during mid-exponential growth. The highest production of TIA metabolites occurs at 250 μM MJ, increasing by 150-370% compared with untreated controls. At this MJ dosage, the expression of the transcriptional activators (Orca) is dramatically increased (29-40 fold) while the levels of the transcriptional repressors (Zct) remain low (2-7 fold). Simultaneously, the expression of genes coding for key enzymes involved in TIA biosynthesis increases by 8-15 fold. In contrast, high MJ dosages (1,000 µM) inhibit the production of TIA metabolites. This dosage is correlated with elevated expression levels of Zct (up to 40-fold) relative to Orca (13-19-fold) and minimal induction of the TIA biosynthetic genes (0-6 fold). The significant changes in the expression of Orca and Zct with MJ dosage do not correspond to changes in the expression of the early-response transcription factors (AT-hook, Myc2, and Wrky1) believed to regulate Orca and Zct. In summary, these observations suggest that the dependence of alkaloid production on MJ dosage in C. roseus may be partly mediated through the relative levels of Orca and Zct family transcription factors. © 2013 American Institute of Chemical Engineers.

  3. Pleiotropic phenotypes of the salt-tolerant and cytosine hypomethylated leafless inflorescence, evergreen dwarf and irregular leaf lamina mutants of Catharanthus roseus possessing Mendelian inheritance.

    Science.gov (United States)

    Kumari, Renu; Sharma, Vishakha; Sharma, Vinay; Kumar, Sushil

    2013-12-01

    In Catharanthus roseus, three morphological cum salt-tolerant chemically induced mutants of Mendelian inheritance and their wild-type parent cv Nirmal were characterized for overall cytosine methylation at DNA repeats, expression of 119 protein coding and seven miRNA-coding genes and 50 quantitative traits. The mutants, named after their principal morphological feature(s), were leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill). The Southern-blot analysis of MspI digested DNAs of mutants probed with centromeric and 5S and 18S rDNA probes indicated that, in comparison to wild type, the mutants were extensively demethylated at cytosine sites. Among the 126 genes investigated for transcriptional expression, 85 were upregulated and 41 were downregulated in mutants. All of the five genes known to be stress responsive had increased expression in mutants. Several miRNA genes showed either increased or decreased expression in mutants. The C. roseus counterparts of CMT3, DRM2 and RDR2 were downregulated in mutants. Among the cell, organ and plant size, photosynthesis and metabolism related traits studied, 28 traits were similarly affected in mutants as compared to wild type. Each of the mutants also expressed some traits distinctively. The egd mutant possessed superior photosynthesis and water retention abilities. Biomass was hyperaccumulated in roots, stems, leaves and seeds of the lli mutant. The ill mutant was richest in the pharmaceutical alkaloids catharanthine, vindoline, vincristine and vinblastine. The nature of mutations, origins of mutant phenotypes and evolutionary importance of these mutants are discussed.

  4. Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures.

    Science.gov (United States)

    Zhou, Pengfei; Yang, Jiazeng; Zhu, Jianhua; He, Shuijie; Zhang, Wenjin; Yu, Rongmin; Zi, Jiachen; Song, Liyan; Huang, Xuesong

    2015-09-01

    Long-term stable cell growth and production of vindoline, catharanthine, and ajmalicine of cambial meristematic cells (CMCs) from Catharanthus roseus were observed after 2 years of culture. C. roseus CMCs were treated with β-cyclodextrin (β-CD) and methyl jasmonate (MeJA) individually or in combination and were cultured both in conventional Erlenmeyer flasks (100, 250, and 500 mL) and in a 5-L stirred hybrid airlift bioreactor. CMCs of C. roseus cultured in the bioreactor showed higher yields of vindoline, catharanthine, and ajmalicine than those cultured in flasks. CMCs of C. roseus cultured in the bioreactor and treated with 10 mM β-CD and 150 μM MeJA gave the highest yields of vindoline (7.45 mg/L), catharanthine (1.76 mg/L), and ajmalicine (58.98 mg/L), concentrations that were 799, 654, and 426 % higher, respectively, than yields of CMCs cultured in 100-mL flasks without elicitors. Quantitative reverse transcription (RT)-PCR showed that β-CD and MeJA upregulated transcription levels of genes related to the biosynthesis of terpenoid indole alkaloids (TIAs). This is the first study to report that β-CD induced the generation of NO, which plays an important role in mediating the production of TIAs in C. roseus CMCs. These results suggest that β-CD and MeJA can enhance the production of TIAs in CMCs of C. roseus, and thus, CMCs of C. roseus have significant potential to be an industrial platform for production of bioactive alkaloids.

  5. The Transcription Factor CrWRKY1 Positively Regulates the Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus1[W][OA

    Science.gov (United States)

    Suttipanta, Nitima; Pattanaik, Sitakanta; Kulshrestha, Manish; Patra, Barunava; Singh, Sanjay K.; Yuan, Ling

    2011-01-01

    Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are an important source of natural or semisynthetic anticancer drugs. The biosynthesis of TIAs is tissue specific and induced by certain phytohormones and fungal elicitors, indicating the involvement of a complex transcriptional control network. However, the transcriptional regulation of the TIA pathway is poorly understood. Here, we describe a C. roseus WRKY transcription factor, CrWRKY1, that is preferentially expressed in roots and induced by the phytohormones jasmonate, gibberellic acid, and ethylene. The overexpression of CrWRKY1 in C. roseus hairy roots up-regulated several key TIA pathway genes, especially Tryptophan Decarboxylase (TDC), as well as the transcriptional repressors ZCT1 (for zinc-finger C. roseus transcription factor 1), ZCT2, and ZCT3. However, CrWRKY1 overexpression repressed the transcriptional activators ORCA2, ORCA3, and CrMYC2. Overexpression of a dominant-repressive form of CrWRKY1, created by fusing the SRDX repressor domain to CrWRKY1, resulted in the down-regulation of TDC and ZCTs but the up-regulation of ORCA3 and CrMYC2. CrWRKY1 bound to the W box elements of the TDC promoter in electrophoretic mobility shift, yeast one-hybrid, and C. roseus protoplast assays. Up-regulation of TDC increased TDC activity, tryptamine concentration, and resistance to 4-methyl tryptophan inhibition of CrWRKY1 hairy roots. Compared with control roots, CrWRKY1 hairy roots accumulated up to 3-fold higher levels of serpentine. The preferential expression of CrWRKY1 in roots and its interaction with transcription factors including ORCA3, CrMYC2, and ZCTs may play a key role in determining the root-specific accumulation of serpentine in C. roseus plants. PMID:21988879

  6. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection.

    Science.gov (United States)

    Liu, Li-Yu Daisy; Tseng, Hsin-I; Lin, Chan-Pin; Lin, Yen-Yu; Huang, Yuan-Hung; Huang, Chien-Kang; Chang, Tean-Hsu; Lin, Shih-Shun

    2014-05-01

    Peanut witches'-broom (PnWB) phytoplasma are obligate bacteria that cause leafy flower symptoms in Catharanthus roseus. The PnWB-mediated leafy flower transitions were studied to understand the mechanisms underlying the pathogen-host interaction; however, our understanding is limited because of the lack of information on the C. roseus genome. In this study, the whole-transcriptome profiles from healthy flowers (HFs) and stage 4 (S4) PnWB-infected leafy flowers of C. roseus were investigated using next-generation sequencing (NGS). More than 60,000 contigs were generated using a de novo assembly approach, and 34.2% of the contigs (20,711 genes) were annotated as putative genes through name-calling, open reading frame determination and gene ontology analyses. Furthermore, a customized microarray based on this sequence information was designed and used to analyze samples further at various stages of PnWB infection. In the NGS profile, 87.8% of the genes showed expression levels that were consistent with those in the microarray profiles, suggesting that accurate gene expression levels can be detected using NGS. The data revealed that defense-related and flowering gene expression levels were altered in S4 PnWB-infected leafy flowers, indicating that the immunity and reproductive stages of C. roseus were compromised. The network analysis suggested that the expression levels of >1,000 candidate genes were highly associated with CrSVP1/2 and CrFT expression, which might be crucial in the leafy flower transition. In conclusion, this study provides a new perspective for understanding plant pathology and the mechanisms underlying the leafy flowering transition caused by host-pathogen interactions through analyzing bioinformatics data obtained using a powerful, rapid high-throughput technique.

  7. A Pair of Tabersonine 16-Hydroxylases Initiates the Synthesis of Vindoline in an Organ-Dependent Manner in Catharanthus roseus1[C][W

    Science.gov (United States)

    Besseau, Sébastien; Kellner, Franziska; Lanoue, Arnaud; Thamm, Antje M.K.; Salim, Vonny; Schneider, Bernd; Geu-Flores, Fernando; Höfer, René; Guirimand, Grégory; Guihur, Anthony; Oudin, Audrey; Glevarec, Gaëlle; Foureau, Emilien; Papon, Nicolas; Clastre, Marc; Giglioli-Guivarc’h, Nathalie; St-Pierre, Benoit; Werck-Reichhart, Danièle; Burlat, Vincent; De Luca, Vincenzo; O’Connor, Sarah E.; Courdavault, Vincent

    2013-01-01

    Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis. PMID:24108213

  8. Rapid and simultaneous determination of five vinca alkaloids in Catharanthus roseus and human serum using trilinear component modeling of liquid chromatography-diode array detection data.

    Science.gov (United States)

    Liu, Zhi; Wu, Hai-Long; Li, Yong; Gu, Hui-Wen; Yin, Xiao-Li; Xie, Li-Xia; Yu, Ru-Qin

    2016-07-15

    A novel chemometrics-assisted high performance liquid chromatography method coupled with diode array detector (HPLC-DAD) was proposed for the simultaneous determination of vincristine (VCR), vinblastine (VLB), vindoline (VDL), catharanthine (CAT) and yohimbine (YHB) in Catharanthus roseus (C. roseus) and human serum samples. With the second-order advantage of the alternating trilinear decomposition (ATLD) method, the resolution and rapid determination of five components of interest in complex matrices were performed, even in the present of heavy overlaps and unknown interferences. Therefore, multi-step purification was omitted and five components could be fast eluted out within 7.5min under simple isocratic elution condition (acetonitrile/0.2% formic acid water, 37:63, v/v). Statistical parameters, such as the linear correlation coefficient (R(2)), root-mean-square error of prediction (RMSEP), limit of detection (LOD) and limit of quantitation (LOQ) had been calculated to investigate the accuracy and reliability of the method. The average recoveries of five vinca alkaloids ranged from 97.1% to 101.9% and 98.8% to 103.0% in C. roseus and human serum samples, respectively. The five vinca alkaloids were adequately determined with limits of detection (LODs) of 29.5-49.3ngmL(-1) in C. roseus and 12.4-27.2ngmL(-1) in human serum samples, respectively. The obtained results demonstrated that the analytical strategy provided a feasible alternative for synchronously monitoring the quality of raw herb and the concentration of blood drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Three non-autonomous signals collaborate for nuclear targeting of CrMYC2, a Catharanthus roseus bHLH transcription factor

    Directory of Open Access Journals (Sweden)

    Gantet Pascal

    2010-11-01

    Full Text Available Abstract Background CrMYC2 is an early jasmonate-responsive bHLH transcription factor involved in the regulation of the expression of the genes of the terpenic indole alkaloid biosynthesis pathway in Catharanthus roseus. In this paper, we identified the amino acid domains necessary for the nuclear targeting of CrMYC2. Findings We examined the intracellular localization of whole CrMYC2 and of various deletion mutants, all fused with GFP, using a transient expression assay in onion epidermal cells. Sequence analysis of this protein revealed the presence of four putative basic nuclear localization signals (NLS. Assays showed that none of the predicted NLS is active alone. Further functional dissection of CrMYC2 showed that the nuclear targeting of this transcription factor involves the cooperation of three domains located in the C-terminal region of the protein. The first two domains are located at amino acid residues 454-510 and 510-562 and contain basic classical monopartite NLSs; these regions are referred to as NLS3 (KRPRKR and NLS4 (EAERQRREK, respectively. The third domain, between residues 617 and 652, is rich in basic amino acids that are well conserved in other phylogenetically related bHLH transcription factors. Our data revealed that these three domains are inactive when isolated but act cooperatively to target CrMYC2 to the nucleus. Conclusions This study identified three amino acid domains that act in cooperation to target the CrMYC2 transcription factor to the nucleus. Further fine structure/function analysis of these amino acid domains will allow the identification of new NLS domains and will allow the investigation of the related molecular mechanisms involved in the nuclear targeting of the CrMYC2 bHLH transcription factor.

  10. Suppression of aggressive strains of 'Candidatus phytoplasma mali' by mild strains in Catharanthus roseus and Nicotiana occidentalis and indication of similar action in apple trees.

    Science.gov (United States)

    Schneider, Bernd; Sule, Sandor; Jelkmann, Wilhelm; Seemüller, Erich

    2014-05-01

    To study antagonistic interactions of 'Candidatus Phytoplasma mali' strains, graft inoculation of Catharanthus roseus and Nicotiana occidentalis was performed with mild strains 1/93Vin and 1/93Tab as suppressors and three aggressive strains as challengers. Inoculation of the suppressors was carried out in either the cross-protection modus prior to grafting of the challengers or by co-inoculating suppressors and challengers. Monitoring using multiplex real-time polymerase chain reaction assays revealed that, in long-term cross-protection trials with C. roseus, suppressor 1/93Vin was present in all root and randomly collected stem samples over the entire observation period. In contrast, the challengers were never detected in such stem samples and rarely in the roots. Following simultaneous inoculation, the suppressor successively colonized all stem and root regions whereas detection of challenger AT steadily decreased. However, this strain remained detectable in up to 13 and 27% of stem and root samples, respectively. The cross-protection trials with N. occidentalis yielded results similar to that of the cross-protection experiments with C. roseus. Comparison of the symptomatology of infected apple trees with the presence of putatively suppressive strains indicated that suppression of severe strains also occurs in apple. Phylogenetic analysis using a variable fragment of AAA+ ATPase gene AP460 of 'Ca. P. mali' revealed that suppressors 1/93Vin and 1/93Tab, together with several other mild strains maintained in apple, cluster distantly from obviously nonsuppressive strains that were predominantly highly virulent.

  11. Efficacy of larvicidal and pupicidal activity of Catharanthus roseus aqueous and solvent extracts against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae).

    Science.gov (United States)

    Subarani, Selladurai; Sabhanayakam, Selvi; Kamaraj, Chinnaperumal; Elango, Gandhi; Kadir, Mohamed Abdul

    2013-08-01

    To investigate the larvicidal and pupicidal activities of aqueous, ethyl acetate and methanol extracts of Catharanthus roseus (C. roseus) against malaria and filariasis vectors. The larvicidal and pupicidal activities of C. roseus leaf extracts were tested against the fourth instar larvae and pupae of Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus). The mortality was observed after 24 and 48 h post the treatment. The data were subjected to probit analysis to determine the lethal concentrations (LC50 and LC90) at which 50% and 90% of the treated larvae or pupae of the tested species were killed. The larval and pupal mortality were observed after 24 and 48 h of exposure of aqueous, ethyl acetate and methanol extracts of C. roseus; no mortality was observed in the control group. The LC50 values against the fourth-instar larvae of An. stephensi were 68.62 and 72.04 mg/mL for the aqueous extract, 82.47 mg/mL for the ethyl acetate extract, and 78.80 and 86.64 mg/mL for the methanol extract, while the aqueous, ethyl acetate and methanol extracts had LC50 values of 85.21, 76.84 and 94.20 mg/mL against the fourth-instar larvae of Cx. quinquefasciatus. The aqueous, ethyl acetate and methanol extracts had LC50 values of 118.08, 182.47 and 143.80 mg/mL against the pupae of An. stephensi and 146.20, 226.84 and 156.62 mg/mL against the pupae of Cx. quinquefasciatus, respectively. The aqueous and methanol extracts of C. roseus leaves had an excellent potential to control the malarial vector An. stephensi and filariasis vector Cx. quinquefasciatus. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  12. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [University of Tennessee, Knoxville (UTK); Guan, Ju [University of Tennessee, Knoxville (UTK); Ferrer, Jean-Luc [Universite Joseph Fourier, France; Engle, Nancy L [ORNL; Chern, Mawsheng [University of California, Davis; Ronald, Pamela [University of California, Davis; Tschaplinski, Timothy J [ORNL; Chen, Feng [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed.

  13. Effects of Salicylic Acid on Carotenoids and Antioxidant Activity of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    Somayeh Tajik

    2015-09-01

    Full Text Available Saffron (Crocus sativus L., the most valuable medicinal food product, belongs to the Iridaceae family which has been widely used as a coloring and flavoring agent. The stigmas contain three major compounds, crocins (carotenoid compound responsible for color, picrocrocin (responsible for taste and safranal (responsible for odor. It has been used for medicinal purposes, as a spice and condiment for food and as a dye since ancient times. Numerous studies have shown crocins as main carotenoids of saffron to be capable of a variety of pharmacological effects, such as protection against cardiovascular diseases, inhibition of cancer cell development. Salicylic acid (SA is a signaling molecule and a hormone-like substance that plays an important role in the plant physiological processes. In order of importance of saffron as valuable product, the aim of this study is to investigate effects of salicylic acid application (0.01, 0.1 and 1 mM on crocin and safranal content and antioxidant activity of stigma. Results showed that SA application at 1 mM were the most effective treatments in increase of crocin content and stronger antioxidant activity, but SA had a negative effect on safranal content and the highest quantity of this compound was observed in control plants.

  14. NSAIDs, Mitochondria and Calcium Signaling: Special Focus on Aspirin/Salicylates

    Directory of Open Access Journals (Sweden)

    Yoshihiro Suzuki

    2010-05-01

    Full Text Available Aspirin (acetylsalicylic acid is a well-known nonsteroidal anti-inflammatory drug (NSAID that has long been used as an anti-pyretic and analgesic drug. Recently, much attention has been paid to the chemopreventive and apoptosis-inducing effects of NSAIDs in cancer cells. These effects have been thought to be primarily attributed to the inhibition of cyclooxygenase activity and prostaglandin synthesis. However, recent studies have demonstrated unequivocally that certain NSAIDs, including aspirin and its metabolite salicylic acid, exert their anti-inflammatory and chemopreventive effects independently of cyclooxygenase activity and prostaglandin synthesis inhibition. It is becoming increasingly evident that two potential common targets of NSAIDs are mitochondria and the Ca2+ signaling pathway. In this review, we provide an overview of the current knowledge regarding the roles of mitochondria and Ca2+ in the apoptosis-inducing effects as well as some side effects of aspirin, salicylates and other NSAIDs, and introducing the emerging role of L-type Ca2+ channels, a new Ca2+ entry pathway in non-excitable cells that is up-regulated in human cancer cells.

  15. Combination photodynamic therapy of human breast cancer using salicylic acid and methylene blue

    Science.gov (United States)

    Hosseinzadeh, Reza; Khorsandi, Khatereh; Jahanshiri, Maryam

    2017-09-01

    The objective of this study was to evaluate the effects of combination therapy with methylene blue (MB) assisted photodynamic therapy (PDT) and salicylic acid (SA) as chemo-therapy anticancer agent. The binding of salicylic acid to methylene blue was studied using spectrophotometric method. The results show the 1:2 complex formation between SA and MB. The binding constants and related Gibbs free energies o are obtained (Kb1 = 183.74, Kb2 = 38.13 and ∆ Gb1° = 12.92 kJ·mol- 1, ∆ Gb2° =9.02 kJ·mol- 1). The spectrophotometric results show the improvement in solubilization and reduction prevention for SA and MB in the complex form. These results are in agreements with cellular experiments. The dark toxicity measurements represent the improve efficacy of chemotherapy using combination of SA and MB. The photodynamic therapy results (using red LED as light source (630 nm; power density: 30 mW cm- 2)) show that the cancer cell killing efficiency of MB increases in the combination with SA due to reduction prevention and stabilization of monomeric form of MB.

  16. Tolerance and safety of superficial chemical peeling with salicylic acid in various facial dermatoses

    Directory of Open Access Journals (Sweden)

    Iqbal Zafar

    2005-03-01

    Full Text Available BACKGROUND: Chemical peeling is a skin-wounding procedure that may have some potentially undesirable side-effects. AIMS: The present study is directed towards safety concerns associated with superficial chemical peeling with salicylic acid in various facial dermatoses. METHODS: The study was a non-comparative and a prospective one. Two hundred and sixty-eight patients of either sex, aged between 10 to 60 years, undergoing superficial chemical peeling for various facial dermatoses (melasma, acne vulgaris, freckles, post-inflammatory scars/pigmentation, actinic keratoses, plane facial warts, etc. were included in the study. Eight weekly peeling sessions were carried out in each patient. Tolerance to the procedure and any undesirable effects noted during these sessions were recorded. RESULTS: Almost all the patients tolerated the procedure well. Mild discomfort, burning, irritation and erythema were quite common but the incidence of major side-effects was very low and these too, were easily manageable. There was no significant difference in the incidence of side-effects between facial dermatoses (melasma, acne and other pigmentary disorders. CONCLUSION: Chemical peeling with salicylic acid is a well tolerated and safe treatment modality in many superficial facial dermatoses.

  17. Glycine Betaine and Salicylic Acid Induced Modification in Water Relations and Productivity of Drought Wheat Plants

    Directory of Open Access Journals (Sweden)

    Heshmat S. Aldesuquy

    2014-05-01

    Full Text Available A study of parameters associated with adjustments in internal water balance, namely: diurnal variation in transpiration rate, stomatal opening area, relative water content, water use efficiency, hormonal level of wheat flag leaves in relation to grain yield is presented. Drought induced marked decreases in diurnal and mean daily values of transpiration rate, stomatal pore areas (on upper and lower sides, relative water content, water use efficiency, indole-3-acetic acid (IAA, gibberellic acid (GA3, cytokinins (CKs and grain yield but led to a significant increase in the abscisic acid (ABA concentration in flag leaves of the wheat cultivars. Grain presoaking in salicylic acid or foliar application with glycine betaine alleviated the stress by keeping water within leaves and consequently recover the turgidity of stressed plants by restricting the transpiration rate, stomatal closure, decreasing the ABA level and enhancing the growth promoters particularly (IAA, GA3 & CKs particularly with the sensitive cultivar. Furthermore, the effect was more pronounced with glycine betaine + salicylic acid treatment. The grain yield appeared to be positively correlated with IAA, GA3, CK, RWC, WUEG and WUEB but negatively correlated with ABA, SWD, transpiration rate and stomatal areas on both wheat cultivars.

  18. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

    Science.gov (United States)

    Gualandi, Isacco; Scavetta, Erika; Zappoli, Sergio; Tonelli, Domenica

    2011-03-15

    In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina® and the obtained results are consistent with an independent HPLC analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Fe{sub 3}O{sub 4}/Salicylic acid nanoparticles behavior on chick CAM vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Mihaiescu, Dan Eduard [' Politechnica' University of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Buteica, Alice Sandra; Neamtu, Johny [University of Medicine and Pharmacy of Craiova, Faculty of Pharmacy (Romania); Istrati, Daniela [' Politechnica' University of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Mindrila, Ion, E-mail: tutu0101@yahoo.com [University of Medicine and Pharmacy of Craiova, Department of Morphological Sciences (Romania)

    2013-08-15

    A modified ferrite co-precipitation synthesis was used to obtain core-shell Fe{sub 3}O{sub 4}/salicylic acid magnetic nanoparticles (Sa-MNP) with well-dispersed aqueous solution properties. The newly developed iron oxide nanoparticles properties were investigated with X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, and laser light scattering for their characteristic establishment. The resulting Sa-MNPs have spherical morphology, homogenous size distribution around 60 nm (35 nm FWHM), and a 67 mV Zeta potential value (15.5 mV STDV). In vivo biocompatibility and intravascular behavior of the 60 nm diameter size range synthesized nanoparticles were evaluated on chick chorioallantoic membrane model. The results show a reversible and good controlled intravascular accumulation under static magnetic field, a low risk of embolisation with nanoparticle aggregates detached from venous intravascular nanoblocked areas, a persistent blocking of the arterioles and dependent capillaries network, a good circulating life time and biocompatibility. The beneficial effects of salicylic acid (SA) and in vivo demonstrated capacity of Sa-MNPs to cutoff regional vascular supply under static magnetic field control suggest a possible biomedical application of these MNPs in targeted cancer therapy through magnetic controlled blood flow nanoblocking mechanism.

  20. Fe3O4/Salicylic acid nanoparticles behavior on chick CAM vasculature

    Science.gov (United States)

    Mihaiescu, Dan Eduard; Buteică, Alice Sandra; Neamţu, Johny; Istrati, Daniela; Mîndrilă, Ion

    2013-08-01

    A modified ferrite co-precipitation synthesis was used to obtain core-shell Fe3O4/salicylic acid magnetic nanoparticles (Sa-MNP) with well-dispersed aqueous solution properties. The newly developed iron oxide nanoparticles properties were investigated with X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, and laser light scattering for their characteristic establishment. The resulting Sa-MNPs have spherical morphology, homogenous size distribution around 60 nm (35 nm FWHM), and a 67 mV Zeta potential value (15.5 mV STDV). In vivo biocompatibility and intravascular behavior of the 60 nm diameter size range synthesized nanoparticles were evaluated on chick chorioallantoic membrane model. The results show a reversible and good controlled intravascular accumulation under static magnetic field, a low risk of embolisation with nanoparticle aggregates detached from venous intravascular nanoblocked areas, a persistent blocking of the arterioles and dependent capillaries network, a good circulating life time and biocompatibility. The beneficial effects of salicylic acid (SA) and in vivo demonstrated capacity of Sa-MNPs to cutoff regional vascular supply under static magnetic field control suggest a possible biomedical application of these MNPs in targeted cancer therapy through magnetic controlled blood flow nanoblocking mechanism.

  1. Effect of Salicylic Acid and Chelated Magnesium Sulfate on Fruit Quality Improvement (Physical Characteristics in Pear (cv. Louise Bonne

    Directory of Open Access Journals (Sweden)

    mahjabin adel

    2017-02-01

    Full Text Available Introduction: Fruit quality is described based on the crop functions (for industry or table and/or difference of the consumer tastes in different societies. The conformity of the quality with consumer demands has an effective role in improvement of the marketing process. For example, elongated pears are preferred for the processing industries and conserving productions. The lack of attention to retaining of quality and/or improvement of apparent situation of gardening product in proportion to consumer demands decreases especial consumer acceptance. The necessity of having desired quality characteristics in pear fruits from the characters viewpoint of fruit specific gravity (major rating criterion of pears and proportion of length to diameter (minor rating, because of their role in market acceptance and pricing, is evident. Fruit quality, while harvesting, as one of the components of plants fertility influenced under different parameters like nourishment and could be managed during growth season. In other words, the gain of qualities proportionated to consumers demands and/or processing industries is possible by the use of acquired method such as the kind of mother plant nutrition, and control of pests and diseases, etc. In the current research, the effect of salicylic acid and chelated magnesium sulfate was studied on physical indexes of fruits quality of pear fruit. Materials and Methods: In order to study the effect of treatment agents, an experiment was conducted in the ecological conditions of Qazvinon Pear trees belonging to Louise Bonne cultivar in the Randomized Complete Block Design. The treatments includecontrol group (with andwithout water,chelated magnesium sulfate with concentration of 0.5 gram in a liter, chelated magnesium sulfate with concentration of 0.7gram in a liter, salicylic acid with concentration of0.1 gram in a liter,the compound treatment of salicylic acid with concentration of 0.1 andchelated magnesium sulfate with

  2. Salicylic acid peeling combined with vitamin C mesotherapy versus salicylic acid peeling alone in the treatment of mixed type melasma: A comparative study.

    Science.gov (United States)

    Balevi, Ali; Ustuner, Pelin; Özdemir, Mustafa

    2017-10-01

    Melasma is a distressing condition for both dermatologists and patients. We evaluated the effectiveness of salicylic acid (SA) peel and vitamin C mesotherapy in the treatment of melasma. Fifty female patients were divided into two groups. All patients were treated with 30% SA peel every two weeks for two months. In addition, after SA peeling Group A was intradermally administered 10 vitamin C on the melasma lesion at 1-cm intervals. All patients were followed up for 6 months, during which the recurrence rates were evaluated. Digital photographs of the melasma site were taken and patients' Melasma Area and Severity Index (MASI) scores were assessed. After the treatment, the patients were asked to complete the melasma quality of life questionnaire (MelasQoL) to evaluate their satisfaction with the treatment. All the adverse effects were noted. The MelasQoL and MASI scores of patients in both groups significantly decreased after the treatment. Apart from a burning sensation, no adverse event was observed and all patients tolerated the treatment well. SA peel combined with vitamin C mesotherapy is a safe and effective alternative for the treatment of melasma with no significant side effects and minimal downtime.

  3. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum

    NARCIS (Netherlands)

    Di, X.; Gomila, J.; Takken, F.L.W.

    Phytohormones, such as salicylic acid (SA), ethylene (ET) and jasmonic acid (JA), play key roles in plant defence following pathogen attack. The involvement of these hormones in susceptibility following Fusarium oxysporum (Fo) infection has mostly been studied in Arabidopsis thaliana. However, Fo

  4. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4

    DEFF Research Database (Denmark)

    Brodersen, Klaus Peter; Petersen, Morten; Nielsen, Henrik Bjørn

    2006-01-01

    Arabidopsis MPK4 has been implicated in plant defense regulation because mpk4 knockout plants exhibit constitutive activation of salicylic acid (SA)-dependent defenses, but fail to induce jasmonic acid (JA) defense marker genes in response to JA. We show here that mpk4 mutants are also defective...

  5. Evidence for formation of hydroxyl radicals during reperfusion after global cerebral ischaemia in rats using salicylate trapping and microdialysis

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Balchen, T

    1994-01-01

    Systemic administration of salicylate (SA) to rats (100 mg kg-1 i.p. ) was used as an in vivo trap of hydroxyl radicals (.OH). In the brain SA reacts with hydroxyl radicals to form the stable adducts 2, 3- and 2,5 dihydroxybenzoic acid (DHBAs) which can thus be taken as an index of .OH formation...

  6. Cryotherapy with liquid nitrogen versus topical salicylic acid application for cutaneous warts in primary care : randomized controlled trial

    NARCIS (Netherlands)

    Bruggink, Sjoerd C.; Gussekloo, Jacobijn; Berger, Marjolein Y.; Zaaijer, Krista; Assendelft, Willem J. J.; de Waal, Margot W. M.; Bavinck, Jan Nico Bouwes; Koes, Bart W.; Eekhof, Just A. H.

    2010-01-01

    Background: Cryotherapy is widely used for the treatment of cutaneous warts in primary care. However, evidence favours salicylic acid application. We compared the effectiveness of these treatments as well as a wait-and-see approach. Methods: Consecutive patients with new cutaneous warts were

  7. Effect of Short Term Salicylic Acid and Ascorbic Acid Treatments on Delaying Flowers’ Senescence of Cut Rose Cv. Red Naomy

    Directory of Open Access Journals (Sweden)

    H. Samady

    2015-01-01

    Full Text Available This experiment was conducted on rose cut flowers, Red Naomy cultivar, with the length of 35 cm, for 18 hours as a short-term treatment in a factorial based on completely randomized design with five treatments including sucrose + 8-Hydroxyquinoline sulfate, salicylic acid + sucrose + 8-Hydroxyquinoline sulfate, ascorbic acid + sucrose + 8-Hydroxyquinoline sulfate, Salicylic acid + ascorbic acid + sucrose‌ + 8-Hydroxyquinoline sulfate and distilled water as control, and three replications in bottles. Morphological traits such as shelf life, changes in water uptake, fresh weight, flower diameter and physiological traits such as total protein and proline contents were measured. The results showed that combination of Salicylic acid + sucrose + 8-Hydroxyquinoline sulfate treatment significantly affected shelf life compared to control and other treatments. The results also revealed that the combination of Salicylic acid + ascorbic acid + sucrose‌ + 8-Hydroxyquinoline sulfate delayed flowers senescence and increased the amount of water uptake, fresh weight and flower diameter. Moreover, the greatest protein and proline contents were obtained under ascorbic acid + sucrose + 8-Hydroxyquinoline sulfate treatment and sucrose + 8-Hydroxyquinoline sulfate, respectively.

  8. Salicylic Acid and 4-Nitroaniline Removal from Water Using Magnetic Biochar: An Environmental and Analytical Experiment for the Undergraduate Laboratory

    Science.gov (United States)

    Karunanayake, Akila G.; Dewage, Narada Bombuwala; Todd, Olivia Adele; Essandoh, Matthew; Anderson, Renel; Mlsna, Todd; Mlsna, Deb

    2016-01-01

    Adsorption studies of salicylic acid (SA) and 4-nitroaniline (4NA) from aqueous solutions were performed with magnetic biochar (MBC) in order to train students in analytical techniques such as standard calibration curves, UV-vis spectrophotometry, and chemical separations within the context of wastewater purification. Analysis of samples purified…

  9. Residual impact of methyl salicylate fumigation at the breaker stage on C6 volatile biopathway in red tomato fruit

    Science.gov (United States)

    Flavor, which is comprised of aroma and taste, is an important tomato characteristic. Methyl salicylate (MeSA), acting as a critical mobile signal, plays an important role in tomato stress responses and ripening processes. However, less is studied on the impact of its application at early ripening s...

  10. Spectroscopic studies of solid-state forms of donepezil free base and salt forms with various salicylic acids

    Science.gov (United States)

    Brittain, Harry G.

    2014-12-01

    The polymorphic forms of donepezil free base have been studied using X-ray powder diffraction, Fourier transform infrared absorption spectroscopy, and differential scanning calorimetry. None of the free base crystal forms was observed to exhibit detectable fluorescence in the solid state under ambient conditions. Crystalline salt products were obtained by the reaction of donepezil with salicylic and methyl-substituted salicylic acids, with the salicylate and 4-methylsalicylate salts being obtained as non-solvated products, and the 3-methylsalicylate and 5-methylsalicylate salts being obtained as methanol solvated products. The intensity of solid-state fluorescence from donepezil salicylate and donepezil 4-methylsalicylate was found to be reduced relative to the fluorescence intensity of the corresponding free acids, while the solid-state fluorescence intensity of donepezil 3-methylsalicylate methanolate and donepezil 5-methylsalicylate methanolate was greatly increased relative to the fluorescence intensity of the corresponding free acids. Desolvation of the solvated salt products led to formation of glassy solids that exhibited strong green fluorescence.

  11. Salicylic acid and cysteine contribute to arbutin-induced alleviation of angular leaf spot disease development in cucumber.

    Science.gov (United States)

    Kuźniak, Elżbieta; Wielanek, Marzena; Chwatko, Grażyna; Głowacki, Rafał; Libik-Konieczny, Marta; Piątek, Milena; Gajewska, Ewa; Skłodowska, Maria

    2015-06-01

    Arbutin induced suppression of angular leaf spot disease in cucumber resulting from lower populations of Pseudomonas syringae pv lachrymans in the infected tissues. This study provides insight into mechanisms that may potentially account for this effect. In the absence of the pathogen, exogenous arbutin-induced expression of PR1, the marker of salicylic acid signaling, increased the content of salicylic acid and modulated the cysteine pool. This suggested that arbutin promoted cucumber plants to a "primed" state. When challenged with the pathogen, the arbutin-treated plants showed strongly reduced infection symptoms 7 days after inoculation. At this time point, they were characterized by higher contents of free and protein-bound cysteine due to higher cysteine biosynthetic capacity related to increased activities of serine acetyltransferase and cysteine synthase when compared with plants infected without arbutin treatment. Moreover, in the arbutin-treated and infected plants the contents of free salicylic acid and its conjugates were also increased, partly owing to its biosynthesis via the phenylpropanoid pathway. We suggest that arbutin-induced abrogation of angular leaf spot disease in cucumber could be mediated by salicylic acid and cysteine-based signaling. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana

    NARCIS (Netherlands)

    Wees, A.C.M. van; Swart, E.A.M. de; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2000-01-01

    The plant-signaling molecules salicylic acid (SA) and jasmonic acid (JA) play an important role in induced disease resistance pathways. Cross-talk between SA- and JA-dependent pathways can result in inhibition of JA-mediated defense responses. We investigated possible antagonistic interactions

  13. Characterisation of SalRAB a salicylic acid inducible positively regulated efflux system of Rhizobium leguminosarum bv viciae 3841.

    Directory of Open Access Journals (Sweden)

    Adrian J Tett

    Full Text Available Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants.

  14. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway

    NARCIS (Netherlands)

    Leon Reyes, H.A.; Does, D. van der; Lange, E.S. de; Delker, C.; Wasternack, C.; Wees, A.C.M. van; Ritsema, T.; Pieterse, C.M.J.

    2010-01-01

    Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response

  15. The effects of surface-applied jasmonic and salicylic acids on caterpillar growth and damage to tomato plants

    Science.gov (United States)

    Aaron L. Iverson; Louis R. Iverson; Steve Eshita

    2001-01-01

    We tested the role of salicylic acid (SA) and jasmonic acid (JA) in altering the tomato plant's defense against herbivory by tobacco hornworm. Treatments of SA or JA were topically applied to tomato plants, hornworm consumption was allowed to proceed for 12 days, and harvest analyses were performed Measurements taken included a subjective plant rating (1-10 score...

  16. Consumption study and identification of methyl salicylate in spicy cassava chips

    Energy Technology Data Exchange (ETDEWEB)

    Nirjana, Marlene, E-mail: marlenenirjana@gmail.com; Anggadiredja, Kusnandar; Damayanti, Sophi [School of Pharmacy, Institut Teknologi Bandung Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    Spicy cassava chips is a popular snack. However, some news in electronic media reported addition of balsam which is a banned food additives in that product to give extra spicy flavor. This study aimed to determine ITB students’ pattern of consumption, health problems caused by spicy chips consumption, and knowledge about illicit use of food additives in that product, and identify the main content of balsam namely methyl salicylate in 10 samples of spicy cassava chips taken from inside and outside about ITB campus. A total of 300 questionnaires distributed to ITB students then data processing was performed. Spicy cassava chips sample macerated in 50 mL of methanol for 24 hours at room temperature, filtered and analyzed using gas chromatography capillary column with OV-1, nitrogen carrier gas and flame ionization detector. Based on questionnaires, 292 (97%) of 300 respondents had consumed spicy chips. A total of 247 (85%) from 292 respondents spicy chips consumed less than 3 times a week. A total of 195 respondents (67%) had experienced health problems after eating spicy chips. There were 137 (47%) of the 292 respondents who knew about the illicit addition of food additives into spicy chips; only 35 respondents (12%) who knew about balsam’s addition. There were 126 respondents (43%) who did not pay attention to their health because they will keep eating spicy chips despite the addition of banned food additives. Through the verification of the standard addition method in gas chromatography system with a hydrogen pressure of 1.5 bar, injector temperature 200 °C, detector temperature 230 °C, oven temperature 60 °C for 2 minutes and then increased to 230 °C with rate 6 °C/menit; linearity, limit of detection, limit of quantitation, accuracy, precision, and specificity parameters met the acceptance limits. From 10 spicy cassava chips samples which were analyzed, they did not reveal any content of methyl salicylate. Methyl salicylate contained in the positive

  17. Phenytoin-initiated hydroxyl radical formation: characterization by enhanced salicylate hydroxylation.

    Science.gov (United States)

    Kim, P M; Wells, P G

    1996-01-01

    Bioactivation of phenytoin and related teratogens by peroxidases such as prostaglandin H synthase (PHS) may initiate hydroxyl radical (.OH) formation that is teratogenic. Salicylate is hydroxylated by .OH at the third and fifth carbon atoms, forming 2,3- and 2,5-dihydroxybenzoic acids (DHBA). In vivo salicylate metabolism produces only the 2,5-isomer, so 2,3-DHBA formation may reflect .OH production. In the present study, we validated the salicylate assay using the known .OH generator paraquat and evaluated .OH production by phenytoin. Female CD-1 mice were treated with paraquat (30 mg/kg, intraperitoneally) given 30 min after acetylsalicylic acid (ASA) (200 mg/kg, intraperitoneally). Blood was collected at 5, 15, and 30 min and 1 and 2 hr after paraquat, and plasma was analyzed for DHBA isomers and glucuronide conjugates by high performance liquid chromatography with electrochemical detection. Paraquat increased 2,3-DHBA formation 19.2-fold, with substantial inter-individual variability in the time of maximal formation (p = 0.0001). The 2,3-DHBA glucuronide conjugates in vivo and in hepatic microsomal studies amounted to approximately 11% and 0.43%, respectively, of total 2,3-DHBA equivalents. To investigate putative .OH production initiated via PHS-catalyzed phenytoin bioactivation, ASA was given 30 min before phenytoin (65 or 100 mg/kg, intraperitoneally), resulting in respective 7.6-fold (p = 0.02) and 14.2-fold (p = 0.003) increases in phenytoin-initiated maximal 2,3-DHBA formation. Maximal 2,3-DHBA formation was 2.1-fold higher when ASA was administered after rather than before the same dose (65 mg/kg) of phenytoin (p = 0.03), indicating ASA inhibition of PHS-catalyzed phenytoin bioactivation. Urinary analysis was much less sensitive, and the 2,5-isomer reflected enzymatic rather than .OH-mediated hydroxylation. The paraquat studies demonstrate the importance of timing in accurately quantifying 2,3-DHBA formation and suggest that glucuronidation does not

  18. Efficacy of Myrtus communis L. and Descurainia sophia L. Versus Salicylic Acid for Wart Treatment.

    Science.gov (United States)

    Ghadami Yazdi, Elham; Minaei, Mohamad Bagher; Hashem Dabaghian, Fataneh; Ebrahim Zadeh Ardakani, Mohamad; Ranjbar, Ali Mohammad; Rastegari, Mohamad; Ghadami Yazdi, Ali

    2014-10-01

    Wart is a skin disease with circular appendages, which is called "suloul" in Iranian traditional medicine (ITM). According to ITM literature, warts have different types and causes. The most important mechanism is excretion of materials (Khelt) from body to skin and mucus; its causative material is often phlegm, black bile or a combination of them. To treat warts, it is necessary to consider the patient's life style, modify his dietary intake and moisturize his temperament. This study aimed to compare Myrtus communis L. and Descurainia sophia L. as a method of ITM, versus salicylic acid in treatment of wart. In this study, conducted in Yazd, Iran, 100 patients were selected and randomly divided into four groups. Group 1) salicylic acid, group 2) salicylic acid and D. sophia L. group 3) M. communis L. group 4) M. communis L. and D. sophia L. Numbers, sizes of lesions and symptoms, on days 0, 20, 40 and 90 were examined and analyzed. The relapse rate was investigated three months after. Changes of sizes and numbers of warts in each period of time in each group, compared to baseline, were assessed by Wilcoxon Signed Rank test. To compare these changes between the groups, Kruskal Wallis test was used. In this study 100 patients participated, 69% of which were female. Compared to baseline, mean ± SD of changes for the number of warts in day 40 were 1.12 ± 4.2, 0.96 ± 2.5, 1.32 ± 5.1 and 0.04 ± 0.2 respectively in the four groups (P = 0.02). Mean ± SD of changes for the number of warts in day 90 were 1.84 ± 4.5, 1.56 ± 2.8, 1.24 ± 5.1 and 0.04 ± 0.6 respectively in the four groups (P = 0.03). In addition mean ± SD of changes for the size of warts in day 40 were 0.96 ± 1.8, 1.03 ± 2.4, 2.47 ± 3.0 and 0.45 ± 1.7 respectively in the four groups (P sophia L. can modify the digestion process and patients can excrete large amounts of the substance that causes warts. Therefore, it is better to use it more than 40 days. According to our investigation, in ITM

  19. Central Nervous Activity upon Systemic Salicylate Application in Animals with Kanamycin-Induced Hearing Loss--A Manganese-Enhanced MRI (MEMRI Study.

    Directory of Open Access Journals (Sweden)

    Moritz Gröschel

    Full Text Available This study investigated the effect of systemic salicylate on central auditory and non-auditory structures in mice. Since cochlear hair cells are known to be one major target of salicylate, cochlear effects were reduced by using kanamycin to remove or impair hair cells. Neuronal brain activity was measured using the non-invasive manganese-enhanced magnetic resonance imaging technique. For all brain structures investigated, calcium-related neuronal activity was increased following systemic application of a sodium salicylate solution: probably due to neuronal hyperactivity. In addition, it was shown that the central effect of salicylate was not limited to the auditory system. A general alteration of calcium-related activity was indicated by an increase in manganese accumulation in the preoptic area of the anterior hypothalamus, as well as in the amygdala. The present data suggest that salicylate-induced activity changes in the auditory system differ from those shown in studies of noise trauma. Since salicylate action is reversible, central pharmacological effects of salicylate compared to those of (permanent noise-induced hearing impairment and tinnitus might induce different pathophysiologies. These should therefore, be treated as different causes with the same symptoms.

  20. HSP-72 accelerated expression in mononuclear cells induced in vivo by acetyl salicylic acid can be reproduced in vitro when combined with H2O2.

    Directory of Open Access Journals (Sweden)

    Alvaro A Sandoval-Montiel

    Full Text Available BACKGROUND: Among NSAIDs acetyl salicylic acid remains as a valuable tool because of the variety of benefic prophylactic and therapeutic effects. Nevertheless, the molecular bases for these responses have not been complete understood. We explored the effect of acetyl salicylic acid on the heat shock response. RESULTS: Peripheral blood mononuclear cells from rats challenged with acetyl salicylic acid presented a faster kinetics of expression of HSP-72 messenger RNA and protein in response to in vitro heat shock. This effect reaches its maximum 2 h after treatment and disappeared after 5 h. On isolated peripheral blood mononuclear cells from untreated rats, incubation with acetyl salicylic acid was ineffective to produce priming, but this effect was mimicked when the cells were incubated with the combination of H2O2+ ASA. CONCLUSIONS: Administration of acetyl salicylic acid to rats alters HSP-72 expression mechanism in a way that it becomes more efficient in response to in vitro heat shock. The fact that in vitro acetyl salicylic acid alone did not induce this priming effect implies that in vivo other signals are required. Priming could be reproduces in vitro with the combination of acetyl salicylic acid+H2O2.

  1. Complexation efficiency of differently fixed 8-hydroxyquinoline and salicylic acid ligand groups for labile aluminium species determination in soils--comparison of two methods.

    Science.gov (United States)

    Matús, Peter; Kubová, Jana

    2006-07-28

    Two methods utilizing the complexation of labile Al species by 8-hydroxyquinoline (HQN) and salicylic acid (SA) ligand groups were developed for aluminium operationally defined fractionation in acid soils. First, the solid phase extraction (SPE) procedure by a short-term ion-exchange batch reaction with chelating resins Iontosorb Oxin and Iontosorb Salicyl containing both ligand groups was used previously. Second, the 8-hydroxyquinoline, salicylic acid and ammonium salicylate agents with different concentrations by a single extraction protocol were applied in this paper. The flame atomic absorption spectrometry (FAAS) and optical emission spectrometry with inductively coupled plasma were used for aluminium quantification. The comparison of results from both methods show the possibility to supersede the first laborious method for the second simpler one in Al environmental risk assessment. The use of 1% 8-hydroxyquinoline in 2% acetic acid and 0.2% salicylic acid by a single extraction protocol without a need of sample filtration can supersede the SPE procedure in the Al pollution soil monitoring. Finally, the new scheme usable in a laboratory and moreover, directly in a field was proposed for Al fractionation in solid and liquid environmental samples. The labile Al species in soils and sediments are separated after their single leaching by 8-hydroxyquinoline or salicylic acid without a need of sample filtration. The labile Al species in soil solutions and natural waters are separated after their ultrafiltration followed by the SPE procedure with Iontosorb Oxin or Iontosorb Salicyl.

  2. Complexation efficiency of differently fixed 8-hydroxyquinoline and salicylic acid ligand groups for labile aluminium species determination in soils-comparison of two methods

    Energy Technology Data Exchange (ETDEWEB)

    Matus, Peter [Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina, 842 15 Bratislava (Slovakia)]. E-mail: matus@fns.uniba.sk; Kubova, Jana [Comenius University in Bratislava, Faculty of Natural Sciences, Mlynska dolina, 842 15 Bratislava (Slovakia)

    2006-07-28

    Two methods utilizing the complexation of labile Al species by 8-hydroxyquinoline (HQN) and salicylic acid (SA) ligand groups were developed for aluminium operationally defined fractionation in acid soils. First, the solid phase extraction (SPE) procedure by a short-term ion-exchange batch reaction with chelating resins Iontosorb Oxin and Iontosorb Salicyl containing both ligand groups was used previously. Second, the 8-hydroxyquinoline, salicylic acid and ammonium salicylate agents with different concentrations by a single extraction protocol were applied in this paper. The flame atomic absorption spectrometry (FAAS) and optical emission spectrometry with inductively coupled plasma were used for aluminium quantification. The comparison of results from both methods show the possibility to supersede the first laborious method for the second simpler one in Al environmental risk assessment. The use of 1% 8-hydroxyquinoline in 2% acetic acid and 0.2% salicylic acid by a single extraction protocol without a need of sample filtration can supersede the SPE procedure in the Al pollution soil monitoring. Finally, the new scheme usable in a laboratory and moreover, directly in a field was proposed for Al fractionation in solid and liquid environmental samples. The labile Al species in soils and sediments are separated after their single leaching by 8-hydroxyquinoline or salicylic acid without a need of sample filtration. The labile Al species in soil solutions and natural waters are separated after their ultrafiltration followed by the SPE procedure with Iontosorb Oxin or Iontosorb Salicyl.

  3. Cryotherapy with liquid nitrogen versus topical salicylic acid application for cutaneous warts in primary care: randomized controlled trial

    Science.gov (United States)

    Bruggink, Sjoerd C.; Gussekloo, Jacobijn; Berger, Marjolein Y.; Zaaijer, Krista; Assendelft, Willem J.J.; de Waal, Margot W.M.; Bavinck, Jan Nico Bouwes; Koes, Bart W.; Eekhof, Just A.H.

    2010-01-01

    Background Cryotherapy is widely used for the treatment of cutaneous warts in primary care. However, evidence favours salicylic acid application. We compared the effectiveness of these treatments as well as a wait-and-see approach. Methods Consecutive patients with new cutaneous warts were recruited in 30 primary care practices in the Netherlands between May 1, 2006, and Jan. 26, 2007. We randomly allocated eligible patients to one of three groups: cryotherapy with liquid nitrogen every two weeks, self-application of salicylic acid daily or a wait-and-see approach. The primary outcome was the proportion of participants whose warts were all cured at 13 weeks. Analysis was on an intention-to-treat basis. Secondary outcomes included treatment adherence, side effects and treatment satisfaction. Research nurses assessed outcomes during home visits at 4, 13 and 26 weeks. Results Of the 250 participants (age 4 to 79 years), 240 were included in the analysis at 13 weeks (loss to follow-up 4%). Cure rates were 39% (95% confidence interval [CI] 29%–51%) in the cryotherapy group, 24% (95% CI 16%–35%) in the salicylic acid group and 16% (95% CI 9.5%–25%) in the wait-and-see group. Differences in effectiveness were most pronounced among participants with common warts (n = 116): cure rates were 49% (95% CI 34%–64%) in the cryotherapy group, 15% (95% CI 7%–30%) in the salicylic acid group and 8% (95% CI 3%–21%) in the wait-and-see group. Cure rates among the participants with plantar warts (n = 124) did not differ significantly between treatment groups. Interpretation For common warts, cryotherapy was the most effective therapy in primary care. For plantar warts, we found no clinically relevant difference in effectiveness between cryotherapy, topical application of salicylic acid or a wait-and-see approach after 13 weeks. (ClinicalTrial.gov registration no. ISRCTN42730629) PMID:20837684

  4. A new salicylate synthase AmS is identified for siderophores biosynthesis in Amycolatopsis methanolica 239(T).

    Science.gov (United States)

    Xie, Feng; Dai, Shengwang; Shen, Jinzhao; Ren, Biao; Huang, Pei; Wang, Qiushui; Liu, Xueting; Zhang, Buchang; Dai, Huanqin; Zhang, Lixin

    2015-07-01

    Siderophores are important for the growth of bacteria or the applications in treatment of iron overload-associated diseases due to the iron-chelating property. Salicylate synthase played a key role in the biosynthesis of some NRPS-derived siderophores by the providing of an iron coordination moiety as the initial building block. A new salicylate synthase, namely AmS, was identified in the biosynthesis pathway of siderophore amychelin in Amycolatopsis methanolica 239(T), since it shunt chorismate, an integrant precursor, from primary to secondary metabolite flow. The amino acid sequence alignment and phylogenetic analysis showed that AmS grouped into a new cluster. In vitro assays of AmS revealed its wide temperature tolerance ranged from 0 to 40 °C and narrow pH tolerant ranged from 7.0 to 9.0. AmS was resistant to organic solvents and non-ionic detergents. Moreover, AmS converted chorismate to salicylate with K m of 129.05 μM, k cat of 2.20 min(-1) at optimal conditions, indicating its low substrate specificity and comparable velocity to reported counterparts (Irp9 and MbtI). These properties of AmS may improve the iron-seizing ability of A. methanolica to compete with its neighbors growing in natural environments. Most importantly, serine and cysteine residues were found to be important for the catalytic activity of AmS. This study presented AmS as a new cluster of salicylate synthase and the reaction mechanism and potential applications of salicylate synthase were highlighted as well.

  5. The Effects of Seed Pre-priming with Salicylic Acid under Salinity Stress on Germination and Growth Characteristics of Foeniculum vulgare Mill (Fennel

    Directory of Open Access Journals (Sweden)

    R Moradi

    2011-01-01

    Full Text Available Abstract Salicylic acid (SA or orthohydroxybenzoic acid play a major role in regulation of many physiological processes e.g. growth, development, ion absorption and germination of plats. In order to evaluate the effects of prepriming Fennel seed with salicylic acid in salinity stress condition, on germination and growth characteristics of Fennel, an experiment was conducted in a factorial arrangement based on completely randomized design with three replications. The experimental treatments were salicylic acid with 7 levels (0, 0.1, 0.5, 1, 1.5, 2 and 4 mM and salinity with 5 levels (0, 0.3, 0.5, 1 and 1.5 percentage. All salicylic acid and salinity treatments had significant effect on percentage and speed germination, length of radicle and hypocotyle, dry weight of radicle, hypocotyle and seedling and radicle / hypocotyle ratio (R/H. One mM salicylic acid had the highest percentage and speed of germination, length of radicle and hypocotyle and dry weight of radicle, hypocotyle and seedling. The highest radicle/hypocotyle ratio was obtained at 1.5 mM salicylic acid. Four mM salicylic acid didn't have significant effect on all maintained parameters. With no salinity stress (control, salicylic acid didn’t have any significant effect on all parameters, but when there was salinity stress; prepriming increased all studied characteristics significantly. Therefore, based on our results it seems that salinity resistance of Fennel seeds at germination stage will increase by treating seeds with on mM salicylic acid. Keywords: Fennel, Germination, Orthohydroxybenzoic acid, Salinity stress

  6. Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles

    Science.gov (United States)

    Mokhtari, Samaneh; Rahimpour, Ahmad; Shamsabadi, Ahmad Arabi; Habibzadeh, Setareh; Soroush, Masoud

    2017-01-01

    To improve the hydrophilicity and antifouling properties of polysulfone (PS) ultrafiltration membranes, we studied the use of salicylate-alumoxane (SA) nanoparticles as a novel hydrophilic additive. The effects of SA nanoparticles on the membrane characteristics and performance were investigated in terms of membrane structure, permeation flux, solute rejection, hydrophilicity, and antifouling ability. The new mixed-matrix membranes (MMMs) possess asymmetric structures. They have smaller finger-like pores and smoother surfaces than the neat PS membranes. The embedment of SA nanoparticles in the polymer matrix and the improvement of surface hydrophilicity were investigated. Ultrafiltration experiments indicated that the pure-water flux of the new MMMs initially increases with SA nanoparticles loading followed by a decrease at high loadings. Higher BSA solution flux was achieved for the MMMs compared to the neat PS membranes. Membranes with 1 wt.% SA nanoparticles exhibit the highest flux recovery ratio of 87% and the lowest irreversible fouling of 13%.

  7. Combined patch containing salicylic acid and nicotinamide: role of drug interaction.

    Science.gov (United States)

    Padula, Cristina; Ferretti, Chiara; Nicoli, Sara; Santi, Patrizia

    2010-12-01

    The aim of the present study was to formulate a combined patch containing salicylic (SA) acid and nicotinamide (NA), useful for the treatment of mild acne, and to verify their mutual effect on drug permeation and skin retention. The performance of the patch was tested in vitro in permeation experiments using pig ear skin as barrier. To better understand the data obtained from the film, permeation from solutions and isopropyl myristate/water partition coefficient were also determined. The results obtained in the present work suggest a mutual influence of NA and SA on their permeation across the skin from an innovative transdermal film. The partition coefficient obtained when the two molecules were simultaneously present was typically lower than the respective value obtained with NA and SA alone.

  8. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments.

    Science.gov (United States)

    Giménez, María José; Valverde, Juan Miguel; Valero, Daniel; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María; Castillo, Salvador

    2014-10-01

    The effects of salicylic acid (SA) or acetylsalicylic acid (ASA) treatments during on-tree cherry growth and ripening on fruit quality attributes, especially those related with the content on bioactive compounds and antioxidant activity were analysed in this research. For this purpose, two sweet cherry cultivars, 'Sweet Heart' and 'Sweet Late', were used and SA or ASA treatments, at 0.5, 1.0 and 2.0mM concentrations, were applied at three key points of fruit development (pit hardening, initial colour changes and onset of ripening). These treatments increased fruit weight and ameliorated quality attributes at commercial harvest, and led to cherries with higher concentration in total phenolics and in total anthocyanins, as well as higher antioxidant activity, in both hydrophilic and lipophilic fractions. Thus, preharvest treatments with SA or ASA could be promising tools to improve sweet cherry quality and health beneficial effects for consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Increasing leaf longevity and disease resistance by altering salicylic acid catabolism

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Susheng; Zhang, Kewei

    2018-01-23

    The present invention relates to a transgenic plant having an altered level of salicylic acid 3-hydroxylase ("S3H") protein, compared to that of a non-transgenic plant, where the transgenic plant displays an altered leaf senescence phenotype, relative to a non-transgenic plant. The present invention relates to a mutant plant comprising an inactivated gene encoding S3H protein, where the mutant plant displays a premature or precocious leaf senescence phenotype, relative to a non-mutant plant. The present invention also relates to methods for promoting premature or precocious leaf senescence in a plant, delaying leaf senescence in a plant, and making a mutant plant having a decreased level of S3H protein compared to that of a non-mutant plant, where the mutant plant displays a premature or precocious leaf senescence phenotype relative to a non-mutant plant. The present invention also relates to inducing or promoting pathogen resistance in plants.

  10. Deprotonation of salicylic acid and 5-nitrosalicylic acid in aqueous solutions of ethanol

    Directory of Open Access Journals (Sweden)

    Faraji Mohammad

    2011-01-01

    Full Text Available The protonation constant values of two hydroxybenzoic acids (salicylic and 5-nitrosalicylic acid were studied in some water-ethanol solutions using spectrophotometric and potentiometric methods at 25°C and in an ionic strength of 0.1 M sodium perchlorate. The results indicated that the pKa values increase with increasing proportion of ethanol in mixed solvent. The dependence of the protonation constants on the variation of the solvent were correlated by the dielectric constants of the media. Furthermore, for a better understanding of the solvent influence, the obtained results were explained in terms of the Kamlet-Taft parameters α (hydrogen-bond donor acidity, π

  11. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Hiromu Suzuki

    2014-07-01

    Full Text Available The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1 infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8.

  12. [Possible involvement of hydrogen peroxide and salicylic acid in the legume-rhizobium symbiosis].

    Science.gov (United States)

    Glian'ko, A K; Makarova, L E; Vasil'eva, G G; Mironova, N V

    2005-01-01

    H2O2 content was studied in the roots and epicotyls of pea (Pisum sativum L.) with normal (cultivar Marat) and disturbed (non-nodulating mutant K14 and hypernodulating mutant Nod3) regulation of root nodulation after inoculation with active industrial strain of Rhizobium leguminosarum by. viceae 250a/CIAM 1026. Pea biotypes differed by H2O2 content in the roots and epicotyls. Exogenous salicylic acid (SA) (0.2 mM) affected H2O2 and SA contents in the roots in an inoculation-dependent manner. The involvement of hydrogen peroxide and SA as signaling molecules as well as of antibacterial agents in the pea-rhizobium interaction at the initial stages of symbiosis is proposed.

  13. A Case of Terra Firma-Forme Dermatosis Treated with Salicylic Acid Alcohol Peeling.

    Science.gov (United States)

    Chun, Sin Wook; Lee, Suk Young; Kim, Jong Baik; Choi, Hoo Min; Ro, Byung In; Cho, Han Kyoung

    2017-02-01

    Terra firma-forme dermatosis (TFFD) is a bizarre, acquired and idiopathic dermatosis that etiology has still not been fully defined. It is characterized by the presence of asymptomatic, brownish dirt-like lesion maybe due to disorder of keratinization. These lesions cannot be removed with ordinary cleansing. Therefore, TFFD can be differentiated from dermatosis neglecta. Patient was a 17-year-old man with brownish lesions on his face for 1 month. The patient had a history of regular washing habit with soap and water. The lesions were asymptomatic however due to cosmetic reasons, the patient wanted to treat his skin lesions. Punch biopsy revealed hyperkeratosis and fungal spore are in stratum corneum. Salicylic acid peeling with alcohol base was performed on the patient's face. The skin lesions disappeared completely on gentle swabbing with peeling. In this point, the diagnosis of TFFD could be considered. Since, this disease can be confused with dermatosis neglecta, we report this case with literature review.

  14. Ultraviolet-B radiation alters phenolic salicylate and flavenoid composition of Populus trichocarpa leaves

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J. M. [USDA Forest Service, Forestry Science Laboratory, Corwallis, OR (United States); Bassman, J. H. [Washington State Univ., Dept. of Natural Resources Sciences, Pullman, WA (United States); Fellman, J. K.; Mattinson, D. S. [Washington State Univ., Dept. of Horticulture and Landscape Architecture, Pullman, WA (United States); Eigenbrode, S. [Idaho Univ., Dept. of Plant, Soil and Entomological Sciences, Moscow, ID (United States)

    2003-06-01

    Foliar phenolic composition of field- and greenhouse-grown black cottonwood was studied by subjecting samples to near zero, ambient and twice-ambient concentrations of biologically effective ultraviolet-B radiation. Phenolic compounds were extracted after three months, separated by liquid chromatography and identified and quantified by diode-array spectrometry and mass spectrometry. Phenolic compounds that were found to have increased in response to UV-B radiation were flavonoids, although increasing the level of radiation to ambient and twice ambient levels did not result in further flavonoid accumulation in either greenhouse or field samples. There was, however, an increase in salicortin, a non-flavonoid glycoside, and a salicylates that is important in plant-herbivore-predator relationships. It was concluded that enhanced solar UV-B radiation has the capacity to significantly alter trophic structure in some ecosystems by stimulating specific phenolic compounds. 74 refs., 1 tab., 6 figs.

  15. Postharvest life of cut gerbera flowers as affected by salicylic acid and citric acid

    Directory of Open Access Journals (Sweden)

    H. Heidarnezhadian

    2017-03-01

    Full Text Available Effect of salicylic acid (SA combined with citric acid (CA on gerbera (Gerbera jamesonii cut flowers was studied. The study was conducted in a factorial arrangement, carried out in a complete randomized design. The factors were SA (0.5,1.5 and 3 mM and CA (1.5 and 3 mM. The effects of treatments on the total chlorophyll content, anthocyanin leakage and malondialdehyde content of cut flowers of gerbera were investigated. The results showed that the vase solution containing 1.5 mM SA significantly increased vase life compared to the control. In addition, the malondialdehyde accumulation reduced in the same solution while membrane stability was improved. Results suggest that SA increases vase life by affecting many of the age-related changes associated with Gerbera petal senescence.

  16. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario, E-mail: mariodiaz@uniovi.es

    2014-02-01

    Highlights: • MBR under feed-induced stress conditions: starvation and changing feeding conditions. • High capacity of MBR to withstand high variations in feed loads. • Slow biofilm formation under starvation conditions during the first days. • Observed growth of P. putida for substrate to microorganism ratio higher than 0.6 g/g. • Maximum specific growth rate and growth yield values of around 37.5 h{sup −1} and 0.5 g/g. - Abstract: Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100–1100 mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15 mg/g h were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum Y{sub X/S} of 0.5 g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16 g/m{sup 2}.

  17. Application of Glycine, Tufool and Salicylic Acid in Sugar beet (Beta vulgaris L. under Drought Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Kheirkhah

    2016-03-01

    Full Text Available Sugar beet is one of strategic products to supply sugar in water limited areas of Iran. Thus, proper managements to supply enouph water in production of sugar beet is very important. To evaluate the effects of some anti stress substances like salicylic acid, tyuful and glycine to irritigate the effect of early water deficit on suger beet, an experiment based on randomized complete block design with three replications was carried out at the Research Farm of Fariman Sugar Factory in 2013. Treatments consisted of control (without using anti stress substances, with three concentration of salicylic acid (0.1, 0.5, and 1 mM, tyuful with three concentration (0.5, 1 and 1.5 liter per thousand and glycine with three concentration (1, 2 and 3 liters per thousand. The results showed that the effects of anti-stress materials significantly affected the sugar content, root yield, white sugar yield and harmful nitrogen. Highest sugar content (15.65%, root yield (83.82 t.ha-1 and white sugar percentage (11.15% were obtained by using tyuful 1.5 lit/1000. While, the lowest levels of these characters were obtained from control (not using anti stress substances. Maximum harmful nitrogen was produced in control treatment (4.38 and highest level of alkalinity with mean of 3.49 was observed by using 3 lit/1000 of glycine. Our results showed that all of the anti stress substances had positive effects on sugar beet under drought stress condition.

  18. Response of Brassica napus L grains to the interactive effect of salinity and salicylic acid

    Directory of Open Access Journals (Sweden)

    Salarizdah Mohammadreza

    2012-05-01

    Full Text Available Soil salinity is a serious environmental problem that has negative effect on plant growth, production and photosynthesis. Fresh and dry plant weights decreases with salinity treatments. The very important role of salicylic acid (SA in response to different stress and modification and decline damages due to stresses has established in different studies. In this research, effect of grain soaking presowing in (0, 1, 1.5, 2 and 5 mM of salicylic acid (SA and NaCl (0, 4, 8 and 12 dsm-1 on canola (Brassica napus L was studied. Increasing of NaCl level reduced the germination percentage(GP, Average velocity of germination (AVG and growth parameters of 15-day old seedlings in compared to control plants. pretreated of SA in content 1mM significantly increased the germination percentage, and in contents more than of 1mM reduced the germination percentage in seeds under salinity stress. SA in content 1mM increased RWC, root and shoot of fresh weight in the stressed seedlings. Increasing of NaCl level increased Electrolyte leakage and MDA content in the stress seedling. electrolyte leakage and MDA content were markedly reduced under salt stress with SA 1mM than without. It was concluded that SA could be used as a potential growth regulator to improve salt tolerance in canola. Our observations indicate that, although SA is not essential for germination under normal growth conditions, it plays a promotive role in seed germination under high salinity by reducing oxidative damage.

  19. Anti-inflammatory salicylate treatment alters the metabolic adaptations to lactation in dairy cattle

    Science.gov (United States)

    Farney, Jaymelynn K.; Mamedova, Laman K.; Coetzee, Johann F.; KuKanich, Butch; Sordillo, Lorraine M.; Stoakes, Sara K.; Minton, J. Ernest; Hollis, Larry C.

    2013-01-01

    Adapting to the lactating state requires metabolic adjustments in multiple tissues, especially in the dairy cow, which must meet glucose demands that can exceed 5 kg/day in the face of negligible gastrointestinal glucose absorption. These challenges are met through the process of homeorhesis, the alteration of metabolic setpoints to adapt to a shift in physiological state. To investigate the role of inflammation-associated pathways in these homeorhetic adaptations, we treated cows with the nonsteroidal anti-inflammatory drug sodium salicylate (SS) for the first 7 days of lactation. Administration of SS decreased liver TNF-α mRNA and marginally decreased plasma TNF-α concentration, but plasma eicosanoids and liver NF-κB activity were unaltered during treatment. Despite the mild impact on these inflammatory markers, SS clearly altered metabolic function. Plasma glucose concentration was decreased by SS, but this was not explained by a shift in hepatic gluconeogenic gene expression or by altered milk lactose secretion. Insulin concentrations decreased in SS-treated cows on day 7 compared with controls, which was consistent with the decline in plasma glucose concentration. The revised quantitative insulin sensitivity check index (RQUICKI) was then used to assess whether altered insulin sensitivity may have influenced glucose utilization rate with SS. The RQUICKI estimate of insulin sensitivity was significantly elevated by SS on day 7, coincident with the decline in plasma glucose concentration. Salicylate prevented postpartum insulin resistance, likely causing excessive glucose utilization in peripheral tissues and hypoglycemia. These results represent the first evidence that inflammation-associated pathways are involved in homeorhetic adaptations to lactation. PMID:23678026

  20. Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats.

    Science.gov (United States)

    Al-Shaqha, Waleed M; Khan, Mohsin; Salam, Nasir; Azzi, Arezki; Chaudhary, Anis Ahmad

    2015-10-21

    Catharanthus roseus is an important Ayurvedic medication in traditional medicine. It is potentially used in countries like India, South Africa, China and Malaysia for the healing of diabetes mellitus. Although, the molecular mechanisms behind this effect are yet to be exclusively explored. Due to the great antidiabetic and hyperlipidemic potential of c. roseus, we hypothesized that the insulin mimetic effect of ethanolic extract of c. roseus might add to glucose uptake through improvement in the expression of genes of the glucose transporter (GLUT) family messenger RNA (mRNA) in liver. STZ-induced diabetic rats treated by ethanolic extract of c. roseus 100 mg/kg and 200 mg/kg; and one group treated with Metformin (100 mg/kg). After final administration of treatment of 4 weeks, blood samples were collected under fasting conditions, and the body weights (BWs) were measured. Total RNA from liver was extracted with the Qiagen RNEasy Micro kit (GERMANY) as described in the manufacturer's instructions. First-strand complementary DNA (cDNA) was synthesized at 40 °C by priming with oligo-dT12-18 (Invitrogen, USA) and using Super ScriptII reverse transcriptase according to the protocol provided by the manufacturer (Invitrogen, USA). Real-time polymerase chain reaction (PCR) amplifications for GLUT-4 (gene ID: 25139) were conducted using Light-Cycler 480 (Roche, USA) with the SyBr® I nucleic acid stain (Invitrogen, USA) according to the manufacturer's instructions. Polymerase chain reaction products of β-actin primer gene were used as an internal standard. The proposed study was framed to look at the antidiabetic efficacy of ethanolic extract of c. roseus and an expression of GLUT-2 and GLUT-4 gene in streptozotocin induced diabetic wistar rats. The doses were administered orally at a rate of 100 and 200 mg/kg and detrain the glucose transport system in liver for 4 weeks. The observed results showed a good positive correlation between intracellular calcium and insulin

  1. Examining the transcriptional response of overexpressing anthranilate synthase in the hairy roots of an important medicinal plant Catharanthus roseus by RNA-seq.

    Science.gov (United States)

    Sun, Jiayi; Manmathan, Harish; Sun, Cheng; Peebles, Christie A M

    2016-05-06

    Clinically important anti-cancer drugs vinblastine and vincristine are solely synthesized by the terpenoid indole alkaloid (TIA) pathway in Catharanthus roseus. Anthranilate synthase (AS) is a rate-limiting enzyme in the TIA pathway. The transgenic C. roseus hairy root line overexpressing a feedback insensitive ASα subunit under the control of an inducible promoter and the ASβ subunit constitutively was previously created for the overproduction of TIAs. However, both increases and decreases in TIAs were detected after overexpressing ASα. Although genetic modification is targeted to one gene in the TIA pathway, it could trigger global transcriptional changes that can directly or indirectly affect TIA biosynthesis. In this study, Illumina sequencing and RT-qPCR were used to detect the transcriptional responses to overexpressing AS, which can increase understanding of the complex regulation of the TIA pathway and further inspire rational metabolic engineering for enhanced TIA production in C. roseus hairy roots. Overexpressing AS in C. roseus hairy roots altered the transcription of most known TIA pathway genes and regulators after 12, 24, and 48 h induction detected by RT-qPCR. Changes in the transcriptome of C. roseus hairy roots was further investigated 18 hours after ASα induction and compared to the control hairy roots using RNA-seq. A unigene set of 30,281 was obtained by de novo assembly of the sequencing reads. Comparison of the differentially expressed transcriptional profiles resulted in 2853 differentially expressed transcripts. Functional annotation of these transcripts revealed a complex and systematically transcriptome change in ASαβ hairy roots. Pathway analysis shows alterations in many pathways such as aromatic amino acid biosynthesis, jasmonic acid (JA) biosynthesis and other secondary metabolic pathways after perturbing AS. Moreover, many genes in overall stress response were differentially expressed after overexpressing ASα. The

  2. Antagonism of Ca2+ influx via L-type Ca2+ channels mediates the vasorelaxant effect of Catharanthus roseus-derived vindorosine in rat renal artery.

    Science.gov (United States)

    Wu, Xiao-Lin; Cheang, Wai San; Zhang, Dong-Mei; Li, Yong; Lau, Chi-Wai; Wang, Guo-Cai; Huang, Yu; Ye, Wen-Cai

    2014-12-01

    Catharanthus roseus is a traditional herbal medicine used in Asian and African countries for the treatment of various diseases including hypertension. The present study examined possible cellular mechanisms for the relaxation of rat renal arteries induced by vindorosine extracted from C. roseus. Intrarenal arteries were isolated from 200-300 g male Sprague-Dawley rats and treated with different pharmacological blockers and inhibitors for the measurement of vascular reactivity on a Multi Myograph System. Fluorescence imaging by laser scanning confocal microscopy was utilized to determine the intracellular Ca(2+) level in the vascular smooth muscles of the renal arteries. Vindorosine in micromolar concentrations relaxes renal arteries precontracted by KCl, phenylephrine, 11-dideoxy-9α,11α-epoxymethanoprostaglandin F2α, and serotonin. Vindorosine-induced relaxations were unaffected by endothelium denudation or by treatment with the nitric oxide synthase inhibitor N (G)-nitro-L-arginine methyl ester hydrochloride, the guanylyl cyclase inhibitor 1H-[1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one, the cyclooxygenase inhibitor indomethacin, or K(+) channel blockers such as tetraethylammonium ions, glibenclamide, and BaCl2. Vindorosine-induced relaxations were attenuated in the presence of 0.1 µM nifedipine (an L-type Ca(2+) channel blocker). Vindorosine also concentration-dependently suppressed contractions induced by CaCl2 (0.01-5 mM) in Ca-free 60 mM KCl solution. Furthermore, fluorescence imaging using fluo-4 demonstrated that 30 min incubation with 100 µM vindorosine reduced the 60 mM KCl-stimulated Ca(2+) influx in the smooth muscles of rat renal arteries. The present study is probably the first report of blood vessel relaxation by vindorosine and the possible underlying mechanisms involving the inhibition of Ca(2+) entry via L-type Ca(2+) channels in vascular smooth muscles. Georg Thieme Verlag KG Stuttgart · New York.

  3. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  4. Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome.

    Science.gov (United States)

    Dugé de Bernonville, Thomas; Foureau, Emilien; Parage, Claire; Lanoue, Arnaud; Clastre, Marc; Londono, Monica Arias; Oudin, Audrey; Houillé, Benjamin; Papon, Nicolas; Besseau, Sébastien; Glévarec, Gaëlle; Atehortùa, Lucia; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; De Luca, Vincenzo; O'Connor, Sarah E; Courdavault, Vincent

    2015-08-19

    Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C. roseus transcriptome database containing simultaneously well reconstructed sequences of SLS isoforms and accurate expression levels. After a pair of close mRNA encoding tabersonine 16-hydroxylase (T16H1 and T16H2), this is the second example of improperly assembled transcripts from the MIA pathway in the public transcriptome databases. To construct a more complete transcriptome resource for C. roseus, we re-processed previously published transcriptome data by combining new single assemblies. Care was particularly taken during clustering and filtering steps to remove redundant contigs but not transcripts encoding potential isoforms by monitoring quality reconstruction of MIA genes and specific SLS and T16H isoforms. The new consensus transcriptome allowed a precise

  5. Aislamiento de consorcios de hongos micorrícicos arbusculares de plantas medicinales y su efecto en el crecimiento de vinca (Catharanthus roseus Isolation of arbuscular mycorrhizal fungi consortia from medicinal plants and their effectiveness on growth of vinca (Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    CLAUDIA DE LA ROSA-MERA

    2012-06-01

    Full Text Available Este trabajo consistió en propagar e identificar hongos micorrícicos arbusculares (HMA recolectados de plantas medicinales (PM de áreas naturales de bosques mixtos, y seleccionar consorcios micorrícicos con base en la promoción del crecimiento de vinca Catharanthus roseus (L G. Don, planta medicinal cuyos alcaloides tienen propiedades antineoplásicas. En la primera fase experimental se recolectaron raíces y suelo rizosférico de 13 PM establecidas en campo para evaluar el porcentaje de colonización total (PCT y cuantificar el número de esporas; además, se tomó una parte del suelo para establecer plantas trampa en invernadero durante 10 meses, y posteriormente evaluar el PCT e identificar los principales géneros de HMA. Todas las PM en su condición natural presentaron colonización micorrícica, observándose cuatro géneros de HMA (Glomus, Acaulospora, Gigaspora y Scutellospora, de los cuales Acaulospora y Glomus fueron los predominantes. En la segunda fase experimental se seleccionaron ocho consorcios con base en el PCT (> 40 % obtenido en las plantas trampa, que correspondieron a las muestras recolectadas de Adiantum capillus-veneris L., Castilleja tenuiflora Benth., Erigeron karvinskianus DC., Pimpinella anisum L., Plantago major L., Ricinus communis L., Rubus fruticosus L. y Rumex mexicanus Meisn. Estos consorcios fueron inoculados en plántulas de C. roseus para evaluar su capacidad de estimular el crecimiento de esta especie en condiciones de invernadero. Después de 70 días, a pesar de presentar un solo género predominante (Glomus, el consorcio aislado de R. mexicanus promovió de manera más consistente el crecimiento de C. roseus (número de hojas, área foliar y peso seco foliar en comparación con el resto de los consorcios micorrícicos.This study consisted on propagating and identifying arbuscular mycorrhizal fungi (AMF collected from medicinal plants (MP of natural areas of mixed forest (Estado de Mexico, and

  6. Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis.

    Science.gov (United States)

    O'Brien, Andrew J; Villani, Linda A; Broadfield, Lindsay A; Houde, Vanessa P; Galic, Sandra; Blandino, Giovanni; Kemp, Bruce E; Tsakiridis, Theodoros; Muti, Paola; Steinberg, Gregory R

    2015-07-15

    Aspirin, the pro-drug of salicylate, is associated with reduced incidence of death from cancers of the colon, lung and prostate and is commonly prescribed in combination with metformin in individuals with type 2 diabetes. Salicylate activates the AMP-activated protein kinase (AMPK) by binding at the A-769662 drug binding site on the AMPK β1-subunit, a mechanism that is distinct from metformin which disrupts the adenylate charge of the cell. A hallmark of many cancers is high rates of fatty acid synthesis and AMPK inhibits this pathway through phosphorylation of acetyl-CoA carboxylase (ACC). It is currently unknown whether targeting the AMPK-ACC-lipogenic pathway using salicylate and/or metformin may be effective for inhibiting cancer cell survival. Salicylate suppresses clonogenic survival of prostate and lung cancer cells at therapeutic concentrations achievable following the ingestion of aspirin (novo lipogenesis and these effects were enhanced with the addition of clinical concentrations of metformin (100 μM) and eliminated in mouse embryonic fibroblasts (MEFs) deficient in AMPK β1. Supplementation of media with fatty acids and/or cholesterol reverses the suppressive effects of salicylate and metformin on cell survival indicating the inhibition of de novo lipogenesis is probably important. Pre-clinical studies evaluating the use of salicylate based drugs alone and in combination with metformin to inhibit de novo lipogenesis and the survival of prostate and lung cancers are warranted. © 2015 Authors; published by Portland Press Limited.

  7. Cost-effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts: economic evaluation alongside a randomised controlled trial (EVerT trial)

    Science.gov (United States)

    2012-01-01

    Abstract Background Plantar warts (verrucae) are extremely common. Although many will spontaneously disappear without treatment, treatment may be sought for a variety of reasons such as discomfort. There are a number of different treatments for cutaneous warts, with salicylic acid and cryotherapy using liquid nitrogen being two of the most common forms of treatment. To date, no full economic evaluation of either salicylic acid or cryotherapy has been conducted based on the use of primary data in a pragmatic setting. This paper describes the cost-effectiveness analysis which was conducted alongside a pragmatic multicentre, randomised trial evaluating the clinical effectiveness of cryotherapy versus 50% salicylic acid of the treatment of plantar warts. Methods A cost-effectiveness analysis was undertaken alongside a pragmatic multicentre, randomised controlled trial assessing the clinical effectiveness of 50% salicylic acid and cryotherapy using liquid nitrogen at 12 weeks after randomisation of patients. Cost-effectiveness outcomes were expressed as the additional cost required to completely cure the plantar warts of one additional patient. A NHS perspective was taken for the analysis. Results Cryotherapy costs on average £101.17 (bias corrected and accelerated (BCA) 95% CI: 85.09-117.26) more per participant over the 12 week time-frame, while there is no additional benefit, in terms of proportion of patients healed compared with salicylic acid. Conclusions Cryotherapy is more costly and no more effective than salicylic acid. Trial registration Current Controlled Trials ISRCTN18994246 [controlled-trials.com] and National Research Register N0484189151. PMID:22369511

  8. The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase.

    Science.gov (United States)

    Harrison, Anthony J; Yu, Minmin; Gårdenborg, Therés; Middleditch, Martin; Ramsay, Rochelle J; Baker, Edward N; Lott, J Shaun

    2006-09-01

    The ability to acquire iron from the extracellular environment is a key determinant of pathogenicity in mycobacteria. Mycobacterium tuberculosis acquires iron exclusively via the siderophore mycobactin T, the biosynthesis of which depends on the production of salicylate from chorismate. Salicylate production in other bacteria is either a two-step process involving an isochorismate synthase (chorismate isomerase) and a pyruvate lyase, as observed for Pseudomonas aeruginosa, or a single-step conversion catalyzed by a salicylate synthase, as with Yersinia enterocolitica. Here we present the structure of the enzyme MbtI (Rv2386c) from M. tuberculosis, solved by multiwavelength anomalous diffraction at a resolution of 1.8 A, and biochemical evidence that it is the salicylate synthase necessary for mycobactin biosynthesis. The enzyme is critically dependent on Mg2+ for activity and produces salicylate via an isochorismate intermediate. MbtI is structurally similar to salicylate synthase (Irp9) from Y. enterocolitica and the large subunit of anthranilate synthase (TrpE) and shares the overall architecture of other chorismate-utilizing enzymes, such as the related aminodeoxychorismate synthase PabB. Like Irp9, but unlike TrpE or PabB, MbtI is neither regulated by nor structurally stabilized by bound tryptophan. The structure of MbtI is the starting point for the design of inhibitors of siderophore biosynthesis, which may make useful lead compounds for the production of new antituberculosis drugs, given the strong dependence of pathogenesis on iron acquisition in M. tuberculosis.

  9. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean.

    Science.gov (United States)

    De Meyer, G; Capieau, K; Audenaert, K; Buchala, A; Métraux, J P; Höfte, M

    1999-05-01

    Root colonization by specific nonpathogenic bacteria can induce a systemic resistance in plants to pathogen infections. In bean, this kind of systemic resistance can be induced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 and depends on the production of salicylic acid by this strain. In a model with plants grown in perlite we demonstrated that Pseudomonas aeruginosa 7NSK2-induced resistance is equivalent to the inclusion of 1 nM salicylic acid in the nutrient solution and used the latter treatment to analyze the molecular basis of this phenomenon. Hydroponic feeding of 1 nM salicylic acid solutions induced phenylalanine ammonia-lyase activity in roots and increased free salicylic acid levels in leaves. Because pathogen-induced systemic acquired resistance involves similar changes it was concluded that 7NSK2-induced resistance is mediated by the systemic acquired resistance pathway. This conclusion was validated by analysis of phenylalanine ammonia-lyase activity in roots and of salicylic acid levels in leaves of soil-grown plants treated with Pseudomonas aeruginosa. The induction of systemic acquired resistance by nanogram amounts of salicylic acid is discussed with respect to long-distance signaling in systemic acquired resistance.

  10. Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis

    Directory of Open Access Journals (Sweden)

    Abdelhi Dihazi

    2011-01-01

    Full Text Available Histochemical and ultrastructural analyses were carried out to assess structural and biochemical changes in date palm roots pretreated with salicylic acid (SA then inoculated with Fusarium oxysporum f. sp. albedinis (Foa. Flavonoids, induced proteins, and peroxidase activity were revealed in root tissues of SA-treated plants after challenge by Foa. These reactions were closely associated with plant resistance to Foa. Host reactions induced after inoculation of SA-treated plants with Foa included the plugging of intercellular spaces, the deposition of electron-dense materials at the sites of pathogen penetration, and several damages to fungal cells. On the other hand, untreated inoculated plants showed marked cell wall degradation and total cytoplasm disorganization, indicating the protective effects provided by salicylic acid in treated plants.

  11. Simultaneous high-performance liquid chromatography assay of acetylsalicylic acid and salicylic acid in film-coated aspirin tablets.

    Science.gov (United States)

    Fogel, J; Epstein, P; Chen, P

    1984-12-28

    A reversed-phase high-performance liquid chromatography (HPLC) method has been developed for the simultaneous assay of acetylsalicylic acid (I) and salicylic acid (II) in film-coated aspirin tablets. As little as 0.1% II (relative to I) can be quantitatively determined. Using a 5-microns octadecylsilane column with water-acetonitrile-phosphoric acid (76:24:0.5) as the mobile phase enabled the chromatographic separation to be completed in 4 min. Due to the slow rate of decomposition of I to II in the extraction solvent, acetonitrile-methanol-phosphoric acid (92:8:0.5), the analysis of many samples was routinely performed by means of automated HPLC equipment. Other compounds (non-aspirin salicylates, caffeine and acetaminophen) were also separated by the chromatographic system.

  12. The salicylic acid effect on the Salvia officianlis L. sugar, protein and proline contents under salinity (NaCl stress

    Directory of Open Access Journals (Sweden)

    Khosravi Sahar

    2011-12-01

    Full Text Available Plant growth is impressed by biotic and abiotic stress inversely. There are many reports about proteins change level in salinity stress. Leaves fill up more soluble sugar of glucose, fructose and proline with treatment of salicylic acid. In this research, Salivia officialis seeds planted in pots containing perlite were put in a growth chamber under controlled conditions of 27 ±2 0C and 23 ±2 0C temperature, 14h lightness and 10h darkness; NaCl concentration of 0,4,8,12 ds/m and salicylic acid concentration of 0,1,2,4 mM were used in the form of factorial experiment in a complete randomized design (CRD. The results demonstrated that increasing of proline and sugars due to osmotic slope in plants lead to increasing of tolerance against dehydrations of leave content and acceleration of plant developments in stress conditions.

  13. Stereocontrolled Synthesis of a Potential Transition-State Inhibitor of the Salicylate Synthase MbtI from Mycobacterium tuberculosis.

    Science.gov (United States)

    Liu, Zheng; Liu, Feng; Aldrich, Courtney C

    2015-07-02

    Mycobactins are small-molecule iron chelators (siderophores) produced by Mycobacterium tuberculosis (Mtb) for iron mobilization. The bifunctional salicylate synthase MbtI catalyzes the first step of mycobactin biosynthesis through the conversion of the primary metabolite chorismate into salicylic acid via isochorismate. We report the design, synthesis, and biochemical evaluation of an inhibitor based on the putative transition state (TS) for the isochorismatase partial reaction of MbtI. The inhibitor mimics the hypothesized charge buildup at C-4 of chorismate in the TS as well as C-O bond formation at C-6. Another important design element of the inhibitor is replacement of the labile pyruvate side chain in chorismate with a stable C-linked propionate isostere. We developed a stereocontrolled synthesis of the highly functionalized cyclohexene inhibitor that features an asymmetric aldol reaction using a titanium enolate, diastereoselective Grignard addition to a tert-butanesulfinyl aldimine, and ring closing olefin metathesis as key steps.

  14. Electrochemical and Spectroscopic Characterization of Aluminium(III-para-methyl-meso-tetraphenylporphyrin Complexes Containing Substituted Salicylates as Axial Ligands

    Directory of Open Access Journals (Sweden)

    Gauri D. Bajju

    2013-01-01

    Full Text Available A series of aluminium(III-p-methyl-meso-tetraphenylporphyrin (p-CH3TPP-Al(III containing axially coordinated salicylate anion [p-CH3TPP-Al-X], where X = salicylate (SA, 4-chlorosalicylate (4-CSA, 5-chlorosalicylate (5-CSA, 5-flourosalicylate (5-FSA, 4-aminosalicylate (4-ASA, 5-aminosalicylate (5-ASA, 5-nitrosalicylate (5-NSA, and 5-sulfosalicylate (5-SSA, have been synthesized and characterized by various spectroscopic techniques including ultraviolet-visible (UV-vis, infrared (IR spectroscopy, proton nuclear magnetic resonance (1H NMR spectroscopy, 13C NMR, and elemental analysis. A detailed study of electrochemistry of all the synthesized compounds has been done to compare their oxidation and reduction mechanisms and to explain the effect of axial coordination on their redox properties.

  15. A study of the effect of salicylic acetic acid on a lymphocyte cell model of cellular activation and proliferation.

    Science.gov (United States)

    Aguilar, Enrique Aranda; de la Haba-Rodríguez, Juan; Macho, Antonio; Lucena, Concha; Gómez, Auxiliadora; Calzado, Marco; Muñoz, Eduardo

    2006-01-18

    Salicylic acetic acid (SAA) is a drug that has formed part of the treatment of many diseases for many years. Its anti-inflammatory activity is well known, but recently its possible role in the interference in the oncogenesis mechanisms has become apparent. With the aim of supporting these yet preliminary observations, we studied the effect of salicylic acetic acid on a cellular activation and proliferation model. We used lymphocytes obtained from peripheral blood, which were later exposed to cellular activation and proliferation stimulus by the SEB antigen. Lymphocyte activation was determined by direct immunoflourescence through expression of the receptor IL-2 (CD25) alpha chain and proliferation through the incorporation of tritiated thymidine to the DNA in synthesis together with the determination of the cellular cycle by flow cytometry. We found that both processes, activation and proliferation, are inhibited by increasing doses of SAA.

  16. The Endophytic Bacteria, Salicylic Acid, and Their Combination as Inducers of Rice Resistance Against Xanthomonas Oryzae Pv. Oryzae

    OpenAIRE

    Leiwakabessy, Christoffol; Sinaga, Meity Suradji; Mutaqien, Kikin H; Trikoesoemaningtyas, Trikoesoemaningtyas; Giyanto, Giyanto

    2018-01-01

    Bacterial leaf damage or blight brought by bacteria Xanthomonas oryzae pv. oryzae (X. oryzae pv. oryzae) is considered as an extremely serious disease of rice worldwide, including Indonesia. Induced resistance using chemical and biological agents was considered as a method to control the disease. The objectives of this research were to analyze of endophytic bacteria (Lysinibacillus sphaericus/L.sphaericus) and salicylic acid as the inducers of rice resistance against X. oryzae pv. oryzae. Thi...

  17. Expressions of ion co-transporter genes in salicylate-induced tinnitus and treatment effects of spirulina.

    Science.gov (United States)

    Hwang, Juen-Haur; Chan, Yin-Ching

    2016-09-02

    Although the activity of tinnitus-related ion co-transporter are known, their mRNA expressions has seldom been reported. We aimed to investigate the mRNA expressions of tinnitus-related ion co-transporter genes, and treatment effects of Spirulina. The mRNA expressions of K(+)-Cl(-) co-transporter (KCC2) and Na-K-2Cl co-transporter 1 (NKCC1) genes in the cochlea and brain of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The effects of spirulina water extract on these gene expressions were investigated. Compared to the control group, the tinnitus scores increased significantly, however, the salicylate-induced tinnitus could be reduced significantly by spirulina water extract. The tinnitus group had higher of borderline significance mRNA expression of KCC2 gene in the cochlear, significantly higher in the temporal lobes and in the frontal lobes. Meanwhile, compared to the tinnitus group, the spirulina group had significantly lower mRNA expression of KCC2 gene in the cochlear, temporal lobes, frontal lobes and parahippocampus/hippocampus. However, the NKCC1 mRNA expression was not significantly different between three groups in the cochlea and these brain areas. Salicylate-induced tinnitus might be associated with increased mRNA expression of KCC2 gene, but not with mRNA expressions of NKCC1 gene in the cochlear and some tinnitus-related brain areas. Spirulina reduced the expression of KCC2 genes in salicylate-induced tinnitus.

  18. Effect of Sodium Salicylate on the Viscoelastic Properties and Stability of Polyacrylate-Based Hydrogels for Medical Applications

    OpenAIRE

    Zuzana Kolarova Raskova; Martina Hrabalikova; Vladimir Sedlarik

    2016-01-01

    Investigation was made into the effect exerted by the presence of sodium salicylate (0-2 wt.%), in Carbomer-based hydrogel systems, on processing conditions, rheological and antimicrobial properties in tests against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacterial strains, and examples of yeast (Candida albicans) and mould (Aspergillus niger). In addition, the work presents an examination of long-term stability by means of aging over one year the given hydr...

  19. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways

    OpenAIRE

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcri...

  20. Pharmacokinetics and in vitro efficacy of salicylic acid after oral administration of acetylsalicylic acid in horses.

    Science.gov (United States)

    Buntenkötter, Kathrin; Osmers, Maren; Schenk, Ina; Schänzer, Wilhelm; Machnik, Marc; Düe, Michael; Kietzmann, Manfred

    2017-01-19

    Although acetylsalicylic acid (ASA) is not frequently used as a therapeutic agent in horses, its metabolite SA is of special interest in equestrianism since it is a natural component of many plants used as horse feed. This led to the establishment of thresholds by horse sport organizations for SA in urine and plasma. The aim of this study was to investigate plasma and urine concentrations of salicylic acid (SA) after oral administration of three different single dosages (12.5 mg/kg, 25 mg/kg and 50 mg/kg) of acetylsalicylic acid (ASA) to eight horses in a cross-over designed study. In the 12.5 mg/kg group, SA concentrations in urine peaked 2 h after oral administration (2675 μg/mL); plasma concentrations peaked at 1.5 h (17 μg/mL). In the 25 mg/kg group, maximum concentrations were detected after 2 h (urine, 2785 μg/mL) and 1.5 h (plasma, 23 μg/mL). In the 50 mg/kg group, maximum concentrations were observed after 5 h (urine, 3915 μg/mL) and 1.5 h (plasma, 45 μg/mL). The plasma half-life calculated for SA varied between 5.0 and 5.7 h. The urine concentration of SA fell below the threshold of 750 μg/mL (set by the International Equestrian Federation FEI and most of the horseracing authorities) between 7 and 26 h after administration of 12.5 and 25 mg/kg ASA and between 24 and 36 h after administration of 50 mg/kg ASA. For ASA, IC50 were 0.50 μg/mL (COX-1) and 5.14 μg/mL (COX-2). For salicylic acid, it was not possible to calculate an IC50 for either COX due to insufficient inhibition of both cyclooxygenases. The established SA thresholds of 750 μg//mL urine and 6.5 μg/mL plasma appear too generous and are leaving space for misuse of the anti-inflammatory and analgetic compound ASA in horses.