WorldWideScience

Sample records for salamanders eurycea sosorum

  1. 76 FR 15992 - Endangered and Threatened Species Permit Applications

    Science.gov (United States)

    2011-03-22

    ...-106816 Applicant: Douglas High School, Douglas, Arizona. Applicant requests a new permit for holding a... (Gila pupurea) at Douglas High School, to establish, reestablish, or augment populations consistent with... salamander (Eurycea sosorum), San Marco salamander (Eurycea nana), Texas blind salamander (Typhlomolge...

  2. Effects of mercury on behavior and performance of northern two-lined salamanders (Eurycea bislineata)

    Energy Technology Data Exchange (ETDEWEB)

    Burke, John N; Bergeron, Christine M; Todd, Brian D [Wildlife Ecotoxicology and Physiological Ecology Program, Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, 100 Cheatham Hall, Blacksburg, VA 24061 (United States); Hopkins, William A., E-mail: hopkinsw@vt.ed [Wildlife Ecotoxicology and Physiological Ecology Program, Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, 100 Cheatham Hall, Blacksburg, VA 24061 (United States)

    2010-12-15

    Mercury (Hg) causes a range of deleterious effects in wildlife, but little is known about its effects on amphibians. Our objective was to determine whether Hg affects performance and behavior in two-lined salamanders (Eurycea bislineata). We collected salamanders from Hg-contaminated and reference sites and assessed speed, responsiveness, and prey capture ability. Mercury concentrations were >17x higher in salamanders from the contaminated sites and were among the highest documented in amphibians. In the first, but not in the second, locomotion trial, we found a significant effect of Hg on speed and responsiveness. In the prey capture experiment, reference salamanders ate approximately twice as many prey items as the contaminated salamanders. Together, our results suggest that sublethal Hg concentrations may negatively affect salamanders by reducing their ability to successfully execute tasks critical to survival. Future work is warranted to determine whether Hg has other sublethal effects on salamanders and whether other amphibians are similarly affected. - Mercury contamination may alter behavior and performance in the northern two-lined salamander (Eurycea bislineata).

  3. Effects of mercury on behavior and performance of northern two-lined salamanders (Eurycea bislineata)

    International Nuclear Information System (INIS)

    Burke, John N.; Bergeron, Christine M.; Todd, Brian D.; Hopkins, William A.

    2010-01-01

    Mercury (Hg) causes a range of deleterious effects in wildlife, but little is known about its effects on amphibians. Our objective was to determine whether Hg affects performance and behavior in two-lined salamanders (Eurycea bislineata). We collected salamanders from Hg-contaminated and reference sites and assessed speed, responsiveness, and prey capture ability. Mercury concentrations were >17x higher in salamanders from the contaminated sites and were among the highest documented in amphibians. In the first, but not in the second, locomotion trial, we found a significant effect of Hg on speed and responsiveness. In the prey capture experiment, reference salamanders ate approximately twice as many prey items as the contaminated salamanders. Together, our results suggest that sublethal Hg concentrations may negatively affect salamanders by reducing their ability to successfully execute tasks critical to survival. Future work is warranted to determine whether Hg has other sublethal effects on salamanders and whether other amphibians are similarly affected. - Mercury contamination may alter behavior and performance in the northern two-lined salamander (Eurycea bislineata).

  4. Digits lost or gained? Evidence for pedal evolution in the dwarf salamander complex (Eurycea, Plethodontidae.

    Directory of Open Access Journals (Sweden)

    Trip Lamb

    Full Text Available Change in digit number, particularly digit loss, has occurred repeatedly over the evolutionary history of tetrapods. Although digit loss has been documented among distantly related species of salamanders, it is relatively uncommon in this amphibian order. For example, reduction from five to four toes appears to have evolved just three times in the morphologically and ecologically diverse family Plethodontidae. Here we report a molecular phylogenetic analysis for one of these four-toed lineages--the Eurycea quadridigitata complex (dwarf salamanders--emphasizing relationships to other species in the genus. A multilocus phylogeny reveals that dwarf salamanders are paraphyletic with respect to a complex of five-toed, paedomorphic Eurycea from the Edwards Plateau in Texas. We use this phylogeny to examine evolution of digit number within the dwarf-Edwards Plateau clade, testing contrasting hypotheses of digit loss (parallelism among dwarf salamanders versus digit gain (re-evolution in the Edwards Plateau complex. Bayes factors analysis provides statistical support for a five-toed common ancestor at the dwarf-Edwards node, favoring, slightly, the parallelism hypothesis for digit loss. More importantly, our phylogenetic results pinpoint a rare event in the pedal evolution of plethodontid salamanders.

  5. Computer-assisted photo identification outperforms visible implant elastomers in an endangered salamander, Eurycea tonkawae.

    Directory of Open Access Journals (Sweden)

    Nathan F Bendik

    Full Text Available Despite recognition that nearly one-third of the 6300 amphibian species are threatened with extinction, our understanding of the general ecology and population status of many amphibians is relatively poor. A widely-used method for monitoring amphibians involves injecting captured individuals with unique combinations of colored visible implant elastomer (VIE. We compared VIE identification to a less-invasive method - computer-assisted photographic identification (photoID - in endangered Jollyville Plateau salamanders (Eurycea tonkawae, a species with a known range limited to eight stream drainages in central Texas. We based photoID on the unique pigmentation patterns on the dorsal head region of 1215 individual salamanders using identification software Wild-ID. We compared the performance of photoID methods to VIEs using both 'high-quality' and 'low-quality' images, which were taken using two different camera types and technologies. For high-quality images, the photoID method had a false rejection rate of 0.76% compared to 1.90% for VIEs. Using a comparable dataset of lower-quality images, the false rejection rate was much higher (15.9%. Photo matching scores were negatively correlated with time between captures, suggesting that evolving natural marks could increase misidentification rates in longer term capture-recapture studies. Our study demonstrates the utility of large-scale capture-recapture using photo identification methods for Eurycea and other species with stable natural marks that can be reliably photographed.

  6. Effects of metamorphosis on the aquatic escape response of the two-lined salamander (Eurycea bislineata).

    Science.gov (United States)

    Azizi, Emanuel; Landberg, Tobias

    2002-03-01

    Although numerous studies have described the escape kinematics of fishes, little is known about the aquatic escape responses of salamanders. We compare the escape kinematics of larval and adult Eurycea bislineata, the two-lined salamander, to examine the effects of metamorphosis on aquatic escape performance. We hypothesize that shape changes associated with resorption of the larval tail fin at metamorphosis will affect aquatic locomotor performance. Escape responses were recorded using high-speed video, and the effects of life stage and total length on escape kinematics were analyzed statistically using analysis of covariance. Our results show that both larval and adult E. bislineata use a two-stage escape response (similar to the C-starts of fishes) that consists of a preparatory (stage 1) and a propulsive (stage 2) stroke. The duration of both kinematic stages and the distance traveled during stage 2 increased with total length. Both larval and adult E. bislineata had final escape trajectories that were directed away from the stimulus. The main kinematic difference between larvae and adults is that adults exhibit significantly greater maximum curvature during stage 1. Total escape duration and the distance traveled during stage 2 did not differ significantly between larvae and adults. Despite the significantly lower tail aspect ratio of adults, we found no significant decrease in the overall escape performance of adult E. bislineata. Our results suggest that adults may compensate for the decrease in tail aspect ratio by increasing their maximum curvature. These findings do not support the hypothesis that larvae exhibit better locomotor performance than adults as a result of stronger selective pressures on early life stages.

  7. Comparative and developmental patterns of amphibious auditory function in salamanders.

    Science.gov (United States)

    Zeyl, Jeffrey N; Johnston, Carol E

    2016-12-01

    Early amphibious tetrapods may have detected aquatic sound pressure using sound-induced lung vibrations, but their lack of tympanic middle ears would have restricted aerial sensitivity. Sharing these characteristics, salamanders could be models for the carryover of auditory function across an aquatic-terrestrial boundary without tympanic middle ears. We measured amphibious auditory evoked potential audiograms in five phylogenetically and ecologically distinct salamanders (Amphiuma means, Notophthalmus viridescens, Ambystoma talpoideum, Eurycea spp., and Plethodon glutinosus) and tested whether metamorphosis and terrestrial niche were linked to aerial sensitivity. Threshold differences between media varied between species. A. means' relative aerial sensitivity was greatest at 100 Hz and decreased with increasing frequency. In contrast, all other salamanders retained greater sensitivity up to 500 Hz, and in A. talpoideum and Eurycea, relative sensitivity at 500 Hz was higher than at 100 Hz. Aerial thresholds of terrestrial P. glutinosus above 200 Hz were similar to A. talpoideum and Eurycea, but lower than N. viridescens and A. means. Metamorphosis did not affect aerial sensitivity in N. viridescens or A. talpoideum. These results fail to support a hypothesis of terrestrial hearing specialization across ontogeny or phylogeny. We discuss methodological limitations to our amphibious comparisons and factors affecting variation in amphibious performance.

  8. Effects of microhabitat and land use on stream salamander abundance in the southwest Virginia coalfields

    Science.gov (United States)

    Sweeten, Sara E.; Ford, W. Mark

    2015-01-01

    Large-scale land uses such as residential wastewater discharge and coal mining practices, particularly surface coal extraction and associated valley fills, are of particular ecological concern in central Appalachia. Identification and quantification of both alterations across scales are a necessary first-step to mitigate negative consequences to biota. In central Appalachian headwater streams absent of fish, salamanders are the dominant, most abundant vertebrate predator providing a significant intermediate trophic role. Stream salamander species are considered to be sensitive to aquatic stressors and environmental alterations, and past research has shown linkages among microhabitat parameters, large-scale land use such as urbanization and logging with salamander abundances. However, little is known about these linkages in the coalfields of central Appalachia. In the summer of 2013, we visited 70 sites (sampled three times each) in the southwest Virginia coalfields to survey salamanders and quantify stream and riparian microhabitat parameters. Using an information-theoretic framework we compared the effects of microhabitat and large-scale land use on salamander abundances. Our findings indicate that dusky salamander (Desmognathus spp.) abundances are more correlated to microhabitat parameters such as canopy cover than to subwatershed land uses. Brook salamander (Eurycea spp.) abundances show strong negative associations to the suspended sediments and stream substrate embeddedness. Neither Desmognathus spp. nor Eurycea spp. abundances were influenced by water conductivity. These suggest protection or restoration of riparian habitats and erosion control is an important conservation component for maintaining stream salamanders in the mined landscapes of central Appalachia.

  9. Evolution of coprophagy and nutrient absorption in a Cave Salamander

    Directory of Open Access Journals (Sweden)

    Daphne Soares

    2017-11-01

    Full Text Available The transition from carnivory to omnivory is poorly understood. The ability to feed at more than one trophic level theoretically increases an animal’s fitness in a novel environment. Because of the absence of light and photosynthesis, most subterranean ecosystems are characterized by very few trophic levels, such that food scarcity is a challenge in many subterranean habitats. One strategy against starvation is to expand diet breadth. Grotto Salamanders (Eurycea spelaea (Stejneger, 1892 are known to ingest bat guano deliberately, challenging the general understanding that salamanders are strictly carnivorous. Here we tested the hypothesis that grotto salamanders have broadened their diet related to cave adaptation and found that, although coprophagous behavior is present, salamanders are unable to acquire sufficient nutrition from bat guano alone. Our results suggest that the coprophagic behavior has emerged prior to physiological or gut biome adaptations.

  10. Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas

    Science.gov (United States)

    Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.

    2014-01-01

    Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.

  11. Application of stable isotope analysis to study temporal changes in foraging ecology in a highly endangered amphibian.

    Directory of Open Access Journals (Sweden)

    J Hayley Gillespie

    Full Text Available Understanding dietary trends for endangered species may be essential to assessing the effects of ecological disturbances such as habitat modification, species introductions or global climate change. Documenting temporal variation in prey selection may also be crucial for understanding population dynamics. However, the rarity, secretive behaviours and obscure microhabitats of some endangered species can make direct foraging observations difficult or impossible. Furthermore, the lethality or invasiveness of some traditional methods of dietary analysis (e.g. gut contents analysis, gastric lavage makes them inappropriate for such species. Stable isotope analysis facilitates non-lethal, indirect analysis of animal diet that has unrealized potential in the conservation of endangered organisms, particularly amphibians.I determined proportional contributions of aquatic macroinvertebrate prey to the diet of an endangered aquatic salamander Eurycea sosorum over a two-year period using stable isotope analysis of (13/12C and (15/14N and the Bayesian stable isotope mixing model SIAR. I calculated Strauss' dietary electivity indices by comparing these proportions with changing relative abundance of potential prey species through time. Stable isotope analyses revealed that a previously unknown prey item (soft-bodied planarian flatworms in the genus Dugesia made up the majority of E. sosorum diet. Results also demonstrate that E. sosorum is an opportunistic forager capable of diet switching to include a greater proportion of alternative prey when Dugesia populations decline. There is also evidence of intra-population dietary variation.Effective application of stable isotope analysis can help circumvent two key limitations commonly experienced by researchers of endangered species: the inability to directly observe these species in nature and the invasiveness or lethality of traditional methods of dietary analysis. This study illustrates the feasibility of stable

  12. Multiple drivers, scales, and interactions influence southern Appalachian stream salamander occupancy

    Science.gov (United States)

    Cecala, Kristen K.; Maerz, John C.; Halstead, Brian J.; Frisch, John R.; Gragson, Ted L.; Hepinstall-Cymerman, Jeffrey; Leigh, David S.; Jackson, C. Rhett; Peterson, James T.; Pringle, Catherine M.

    2018-01-01

    Understanding how factors that vary in spatial scale relate to population abundance is vital to forecasting species responses to environmental change. Stream and river ecosystems are inherently hierarchical, potentially resulting in organismal responses to fine‐scale changes in patch characteristics that are conditional on the watershed context. Here, we address how populations of two salamander species are affected by interactions among hierarchical processes operating at different scales within a rapidly changing landscape of the southern Appalachian Mountains. We modeled reach‐level occupancy of larval and adult black‐bellied salamanders (Desmognathus quadramaculatus) and larval Blue Ridge two‐lined salamanders (Eurycea wilderae) as a function of 17 different terrestrial and aquatic predictor variables that varied in spatial extent. We found that salamander occurrence varied widely among streams within fully forested catchments, but also exhibited species‐specific responses to changes in local conditions. While D. quadramaculatus declined predictably in relation to losses in forest cover, larval occupancy exhibited the strongest negative response to forest loss as well as decreases in elevation. Conversely, occupancy of E. wilderae was unassociated with watershed conditions, only responding negatively to higher proportions of fast‐flowing stream habitat types. Evaluation of hierarchical relationships demonstrated that most fine‐scale variables were closely correlated with broad watershed‐scale variables, suggesting that local reach‐scale factors have relatively smaller effects within the context of the larger landscape. Our results imply that effective management of southern Appalachian stream salamanders must first focus on the larger scale condition of watersheds before management of local‐scale conditions should proceed. Our findings confirm the results of some studies while refuting the results of others, which may indicate that

  13. Effects of microhabitat and large-scale land use on stream salamander occupancy in the coalfields of Central Appalachia

    Science.gov (United States)

    Sweeten, Sara E.; Ford, W. Mark

    2016-01-01

    Large-scale coal mining practices, particularly surface coal extraction and associated valley fills as well as residential wastewater discharge, are of ecological concern for aquatic systems in central Appalachia. Identifying and quantifying alterations to ecosystems along a gradient of spatial scales is a necessary first-step to aid in mitigation of negative consequences to aquatic biota. In central Appalachian headwater streams, apart from fish, salamanders are the most abundant vertebrate predator that provide a significant intermediate trophic role linking aquatic and terrestrial food webs. Stream salamander species are considered to be sensitive to aquatic stressors and environmental alterations, as past research has shown linkages among microhabitat parameters, large-scale land use such as urbanization and logging, and salamander abundances. However, there is little information examining these relationships between environmental conditions and salamander occupancy in the coalfields of central Appalachia. In the summer of 2013, 70 sites (sampled two to three times each) in the southwest Virginia coalfields were visited to collect salamanders and quantify stream and riparian microhabitat parameters. Using an information-theoretic framework, effects of microhabitat and large-scale land use on stream salamander occupancy were compared. The findings indicate that Desmognathus spp. occupancy rates are more correlated to microhabitat parameters such as canopy cover than to large-scale land uses. However, Eurycea spp. occupancy rates had a strong association with large-scale land uses, particularly recent mining and forest cover within the watershed. These findings suggest that protection of riparian habitats is an important consideration for maintaining aquatic systems in central Appalachia. If this is not possible, restoration riparian areas should follow guidelines using quick-growing tree species that are native to Appalachian riparian areas. These types of trees

  14. Environmental Assessment: Invasive Pest Plant Management

    Science.gov (United States)

    2005-01-01

    Silvilagus floridanus Amphibians Eastern newt Notophthalmus viridescens Spotted salamander Ambystoma maculatum Two-lined salamander Eurycea...Annual EnQeron annuus c A Geranium. Carolina Geranium carotinia.num - c WA!B Geranium, Cranesbill Geranium maculatum c c WA!B Ground 01erry...Physalis heterophyffa c p Hemlock, Poison Conium macula/urn c 6 B Hen bit Lamium amplexicau/e c 3 WA/B Hoary Cress Cardarfa spp. c p Houndstongue

  15. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders.

    Directory of Open Access Journals (Sweden)

    Julie L Ziemba

    Full Text Available Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp. are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding. We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from "non-invaded" and "pheretimoid invaded" sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance

  16. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders.

    Science.gov (United States)

    Ziemba, Julie L; Hickerson, Cari-Ann M; Anthony, Carl D

    2016-01-01

    Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp.) are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander)], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding). We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from "non-invaded" and "pheretimoid invaded" sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance following Asian

  17. Conservation assessment for the Siskiyou Mountains salamander and Scott Bar salamander in northern California.

    Energy Technology Data Exchange (ETDEWEB)

    Vinikour, W. S.; LaGory, K. E.; Adduci, J. J.; Environmental Science Division

    2006-10-20

    The purpose of this conservation assessment is to summarize existing knowledge regarding the biology and ecology of the Siskiyou Mountains salamander and Scott Bar salamander, identify threats to the two species, and identify conservation considerations to aid federal management for persistence of the species. The conservation assessment will serve as the basis for a conservation strategy for the species.

  18. Reproductive biology of Ambystoma salamanders in the southeastern United States

    Science.gov (United States)

    Glorioso, Brad M.; Waddle, J. Hardin; Hefner, J. M.

    2015-01-01

    Reproductive aspects of Ambystoma salamanders were investigated at sites in Louisiana (2010–12) and Mississippi (2013). Three species occurred at the Louisiana site, Spotted Salamander (A. maculatum), Marbled Salamander (A. opacum), and Mole Salamander (A. talpoideum), whereas only Spotted Salamanders were studied at the Mississippi site. A total of 162 and 71 egg masses of Spotted Salamanders were examined at the Louisiana and Mississippi sites, respectively. Significantly more Spotted Salamander eggs per egg mass were observed at the Mississippi site (x̄ = 78.2) than the Louisiana site (x̄ = 53.8; P < 0.001). The mean snout–vent length of female Spotted Salamanders at the Mississippi site (82.9 mm) was significantly larger than the Louisiana site (76.1 mm; P < 0.001). Opaque Spotted Salamander egg masses were not found at the Mississippi site, but accounted for 11% of examined egg masses at the Louisiana site. The mean number of eggs per egg mass at the Louisiana site did not differ between opaque (47.3) and clear (54.6) egg masses (P = 0.21). A total of 47 egg masses of the Mole Salamander were examined, with a mean number of 6.7 embryos per mass. Twenty-three individual nests of the Marbled Salamander were found either under or in decaying logs in the dry pond basins. There was no difference between the mean numbers of eggs per mass of attended nests (93.0) versus those that were discovered unattended (86.6; P = 0.67). Females tended to place their nests at intermediate heights within the pond basin.

  19. Evolution of gigantism in amphiumid salamanders.

    Directory of Open Access Journals (Sweden)

    Ronald M Bonett

    2009-05-01

    Full Text Available The Amphiumidae contains three species of elongate, permanently aquatic salamanders with four diminutive limbs that append one, two, or three toes. Two of the species, Amphiuma means and A. tridactylum, are among the largest salamanders in the world, reaching lengths of more than one meter, whereas the third species (A. pholeter, extinct amphiumids, and closely related salamander families are relatively small. Amphiuma means and A. tridactylum are widespread species and live in a wide range of lowland aquatic habitats on the Coastal Plain of the southeastern United States, whereas A. pholeter is restricted to very specialized organic muck habitats and is syntopic with A. means. Here we present analyses of sequences of mitochondrial and nuclear loci from across the distribution of the three taxa to assess lineage diversity, relationships, and relative timing of divergence in amphiumid salamanders. In addition we analyze the evolution of gigantism in the clade. Our analyses indicate three lineages that have diverged since the late Miocene, that correspond to the three currently recognized species, but the two gigantic species are not each other's closest relatives. Given that the most closely related salamander families and fossil amphiumids from the Upper Cretaceous and Paleocene are relatively small, our results suggest at least two extreme changes in body size within the Amphuimidae. Gigantic body size either evolved once as the ancestral condition of modern amphiumas, with a subsequent strong size reduction in A. pholeter, or gigantism independently evolved twice in the modern species, A. means and A. tridactylum. These patterns are concordant with differences in habitat breadth and range size among lineages, and have implications for reproductive isolation and diversification of amphiumid salamanders.

  20. Terrestrial salamander abundance on reclaimed mountaintop removal mines

    Science.gov (United States)

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Mountaintop removal mining, a large-scale disturbance affecting vegetation, soil structure, and topography, converts landscapes from mature forests to extensive grassland and shrubland habitats. We sampled salamanders using drift-fence arrays and coverboard transects on and near mountaintop removal mines in southern West Virginia, USA, during 2000–2002. We compared terrestrial salamander relative abundance and species richness of un-mined, intact forest with habitats on reclaimed mountaintop removal mines (reclaimed grassland, reclaimed shrubland, and fragmented forest). Salamanders within forests increased in relative abundance with increasing distance from reclaimed mine edge. Reclaimed grassland and shrubland habitats had lower relative abundance and species richness than forests. Characteristics of reclaimed habitats that likely contributed to lower salamander abundance included poor soils (dry, compacted, little organic matter, high rock content), reduced vertical structure of vegetation and little tree cover, and low litter and woody debris cover. Past research has shown that salamander populations reduced by clearcutting may rebound in 15–24 years. Time since disturbance was 7–28 years in reclaimed habitats on our study areas and salamander populations had not reached levels found in adjacent mature forests.

  1. Salamander occupancy in headwater stream networks

    Science.gov (United States)

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  2. Effects of red-backed salamanders on ecosystem functions.

    Directory of Open Access Journals (Sweden)

    Daniel J Hocking

    Full Text Available Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp. likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m(2 plots and small-scale enclosures (2 m(2 where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m(-2. In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders. Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types.

  3. Effects of red-backed salamanders on ecosystem functions.

    Science.gov (United States)

    Hocking, Daniel J; Babbitt, Kimberly J

    2014-01-01

    Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp.) likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus) on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m(2) plots) and small-scale enclosures (2 m(2)) where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m(-2)). In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders). Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types.

  4. Bromeliad Selection by Two Salamander Species in a Harsh Environment

    Science.gov (United States)

    Ruano-Fajardo, Gustavo; Rovito, Sean M.; Ladle, Richard J.

    2014-01-01

    Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya) in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height), as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment. PMID:24892414

  5. Bromeliad selection by two salamander species in a harsh environment.

    Directory of Open Access Journals (Sweden)

    Gustavo Ruano-Fajardo

    Full Text Available Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height, as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment.

  6. Impact of valley fills on streamside salamanders in southern West Virginia

    Science.gov (United States)

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Valley fills associated with mountaintop-removal mining bury stream headwaters and affect water quality and ecological function of reaches below fills. We quantified relative abundance of streamside salamanders in southern West Virginia during 2002 in three streams below valley fills (VFS) and in three reference streams (RS). We surveyed 36 10- × 2-m stream transects, once in summer and fall, paired by order and structure. Of 2,343 salamanders captured, 66.7% were from RS. Total salamanders (adults plus larvae) were more abundant in RS than VFS for first-order and second-order reaches. Adult salamanders had greater abundance in first-order reaches of RS than VFS. Larval salamanders were more abundant in second-order reaches of RS than VFS. No stream width or mesohabitat variables differed between VFS and RS. Only two cover variables differed. Silt cover, greater in VFS than RS first-order reaches, is a likely contributor to reduced abundance of salamanders in VFS. Second-order RS had more boulder cover than second-order VFS, which may have contributed to the higher total and larval salamander abundance in RS. Water chemistry assessments of our VFS and RS reported elevated levels of metal and ion concentrations in VFS, which can depress macroinvertebrate populations and likely affect salamander abundance. Valley fills appear to have significant negative effects on stream salamander abundance due to alterations in habitat structure, water quality and chemistry, and macroinvertebrate communities in streams below fills.

  7. Environmental and Anthropogenic Factors Influencing Salamanders in Riparian Forests: A Review

    Directory of Open Access Journals (Sweden)

    Hannah L. Clipp

    2014-11-01

    Full Text Available Salamanders and riparian forests are intimately interconnected. Salamanders are integral to ecosystem functions, contributing to vertebrate biomass and complex food webs in riparian forests. In turn, these forests are critical ecosystems that perform many environmental services, facilitate high biodiversity and species richness, and provide habitat to salamander populations. Due to the global decline of amphibians, it is important to understand, as thoroughly and holistically as possible, the roles of environmental parameters and the impact of human activities on salamander abundance and diversity in riparian forests. To determine the population responses of salamanders to a variety of environmental factors and anthropogenic activities, we conducted a review of published literature that compared salamander abundance and diversity, and then summarized and synthesized the data into general patterns. We identify stream quality, leaf litter and woody debris, riparian buffer width, and soil characteristics as major environmental factors influencing salamander populations in riparian forests, describe and explain salamander responses to those factors, and discuss the effects of anthropogenic activities such as timber harvest, prescribed fires, urbanization, road construction, and habitat fragmentation. This review can assist land and natural resource managers in anticipating the consequences of human activities and preparing strategic conservation plans.

  8. Ontogenetic evidence for the Paleozoic ancestry of salamanders.

    Science.gov (United States)

    Schoch, Rainer R; Carroll, Robert L

    2003-01-01

    The phylogenetic positions of frogs, salamanders, and caecilians have been difficult to establish. Data matrices based primarily on Paleozoic taxa support a monophyletic origin of all Lissamphibia but have resulted in widely divergent hypotheses of the nature of their common ancestor. Analysis that concentrates on the character states of the stem taxa of the extant orders, in contrast, suggests a polyphyletic origin from divergent Paleozoic clades. Comparison of patterns of larval development in Paleozoic and modern amphibians provides a means to test previous phylogenies based primarily on adult characteristics. This proves to be highly informative in the case of the origin of salamanders. Putative ancestors of salamanders are recognized from the Permo-Carboniferous boundary of Germany on the basis of ontogenetic changes observed in fossil remains of larval growth series. The entire developmental sequence from hatching to metamorphosis is revealed in an assemblage of over 600 specimens from a single locality, all belonging to the genus Apateon. Apateon forms the most speciose genus of the neotenic temnospondyl family Branchiosauridae. The sequence of ossification of individual bones and the changing configuration of the skull closely parallel those observed in the development of primitive living salamanders. These fossils provide a model of how derived features of the salamander skull may have evolved in the context of feeding specializations that appeared in early larval stages of members of the Branchiosauridae. Larvae of Apateon share many unique derived characters with salamanders of the families Hynobiidae, Salamandridae, and Ambystomatidae, which have not been recognized in any other group of Paleozoic amphibians.

  9. Movement, demographics, and occupancy dynamics of a federally-threatened salamander: evaluating the adequacy of critical habitat

    Directory of Open Access Journals (Sweden)

    Nathan F. Bendik

    2016-03-01

    Full Text Available Critical habitat for many species is often limited to occupied localities. For rare and cryptic species, or those lacking sufficient data, occupied habitats may go unrecognized, potentially hindering species recovery. Proposed critical habitat for the aquatic Jollyville Plateau salamander (Eurycea tonkawae and two sister species were delineated based on the assumption that surface habitat is restricted to springs and excludes intervening stream reaches. To test this assumption, we performed two studies to understand aspects of individual, population, and metapopulation ecology of E. tonkawae. First, we examined movement and population demographics using capture-recapture along a spring-influenced stream reach. We then extended our investigation of stream habitat use with a study of occupancy and habitat dynamics in multiple headwater streams. Indications of extensive stream channel use based on capture-recapture results included frequent movements of >15 m, and high juvenile abundance downstream of the spring. Initial occupancy of E. tonkawae was associated with shallow depths, maidenhair fern presence and low temperature variation (indicative of groundwater influence, although many occupied sites were far from known springs. Additionally, previously dry sites were three times more likely to be colonized than wet sites. Our results indicate extensive use of stream habitats, including intermittent ones, by E. tonkawae. These areas may be important for maintaining population connectivity or even as primary habitat patches. Restricting critical habitat to occupied sites will result in a mismatch with actual habitat use, particularly when assumptions of habitat use are untested, thus limiting the potential for recovery.

  10. Tiger salamanders' (Ambystoma tigrinum) response learning and usage of visual cues.

    Science.gov (United States)

    Kundey, Shannon M A; Millar, Roberto; McPherson, Justin; Gonzalez, Maya; Fitz, Aleyna; Allen, Chadbourne

    2016-05-01

    We explored tiger salamanders' (Ambystoma tigrinum) learning to execute a response within a maze as proximal visual cue conditions varied. In Experiment 1, salamanders learned to turn consistently in a T-maze for reinforcement before the maze was rotated. All learned the initial task and executed the trained turn during test, suggesting that they learned to demonstrate the reinforced response during training and continued to perform it during test. In a second experiment utilizing a similar procedure, two visual cues were placed consistently at the maze junction. Salamanders were reinforced for turning towards one cue. Cue placement was reversed during test. All learned the initial task, but executed the trained turn rather than turning towards the visual cue during test, evidencing response learning. In Experiment 3, we investigated whether a compound visual cue could control salamanders' behaviour when it was the only cue predictive of reinforcement in a cross-maze by varying start position and cue placement. All learned to turn in the direction indicated by the compound visual cue, indicating that visual cues can come to control their behaviour. Following training, testing revealed that salamanders attended to stimuli foreground over background features. Overall, these results suggest that salamanders learn to execute responses over learning to use visual cues but can use visual cues if required. Our success with this paradigm offers the potential in future studies to explore salamanders' cognition further, as well as to shed light on how features of the tiger salamanders' life history (e.g. hibernation and metamorphosis) impact cognition.

  11. Diagnostic and molecular evaluation of three iridovirus-associated salamander mortality events

    Science.gov (United States)

    Docherty, D.E.; Meteyer, C.U.; Wang, Jingyuan; Mao, J.; Case, S.T.; Chinchar, V.G.

    2003-01-01

    In 1998 viruses were isolated from tiger salamander larvae (Ambystoma tigrinum diaboli and A. tigrinum melanostictum) involved in North Dakota and Utah (USA) mortality events and spotted salamander (A. maculatum) larvae in a third event in Maine (USA). Although sympatric caudates and anurans were present at all three sites only ambystomid larvae appeared to be affected. Mortality at the North Dakota site was in the thousands while at the Utah and Maine sites mortality was in the hundreds. Sick larvae were lethargic and slow moving. They swam in circles with obvious buoyancy problems and were unable to remain upright. On the ventral surface, near the gills and hind limbs, red spots or swollen areas were noted. Necropsy findings included: hemorrhages and ulceration of the skin, subcutaneous and intramuscular edema, swollen and pale livers with multifocal hemorrhage, and distended fluid-filled intestines with areas of hemorrhage. Light microscopy revealed intracytoplasmic inclusions, suggestive of a viral infection, in a variety of organs. Electron microscopy of ultra thin sections of the same tissues revealed iridovirus-like particles within the inclusions. These viruses were isolated from a variety of organs, indicating a systemic infection. Representative viral isolates from the three mortality events were characterized using molecular assays. Characterization confirmed that the viral isolates were iridoviruses and that the two tiger salamander isolates were similar and could be distinguished from the spotted salamander isolate. The spotted salamander isolate was similar to frog virus 3, the type species of the genus Ranavirus, while the tiger salamander isolates were not. These data indicate that different species of salamanders can become infected and die in association with different iridoviruses. Challenge assays are required to determine the fish and amphibian host range of these isolates and to assess the susceptibility of tiger and spotted salamanders to

  12. Better than fish on land? Hearing across metamorphosis in salamanders

    DEFF Research Database (Denmark)

    Christensen, Christian Bech; Lauridsen, Henrik; Christensen-Dalsgaard, Jakob

    2015-01-01

    hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater...... hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne...

  13. Woodland salamander responses to a shelterwood harvest-prescribed burn silvicultural treatment within Appalachian mixed-oak forests

    Science.gov (United States)

    Ford, W. Mark; Mahoney, Kathleen R.; Russell, Kevin R.; Rodrigue, Jane L.; Riddle, Jason D.; Schuler, Thomas M.; Adams, Mary Beth

    2015-01-01

    Forest management practices that mimic natural canopy disturbances, including prescribed fire and timber harvests, may reduce competition and facilitate establishment of favorable vegetative species within various ecosystems. Fire suppression in the central Appalachian region for almost a century has contributed to a transition from oak-dominated to more mesophytic, fire-intolerant forest communities. Prescribed fire coupled with timber removal is currently implemented to aid in oak regeneration and establishment but responses of woodland salamanders to this complex silvicultural system is poorly documented. The purpose of our research was to determine how woodland salamanders respond to shelterwood harvests following successive burns in a central Appalachian mixed-oak forest. Woodland salamanders were surveyed using coverboard arrays in May, July, and August–September 2011 and 2012. Surveys were conducted within fenced shelterwood-burn (prescribed fires, shelterwood harvest, and fencing to prevent white-tailed deer [Odocoileus virginianus] herbivory), shelterwood-burn (prescribed fires and shelterwood harvest), and control plots. Relative abundance was modeled in relation to habitat variables measured within treatments for mountain dusky salamanders (Desmognathus ochrophaeus), slimy salamanders (Plethodon glutinosus), and eastern red-backed salamanders (Plethodon cinereus). Mountain dusky salamander relative abundance was positively associated with canopy cover and there were significantly more individuals within controls than either shelterwood-burn or fenced shelterwood-burn treatments. Conversely, habitat variables associated with slimy salamanders and eastern red-backed salamanders did not differ among treatments. Salamander age-class structure within controls did not differ from shelterwood-burn or fenced shelterwood-burn treatments for any species. Overall, the woodland salamander assemblage remained relatively intact throughout the shelterwoodburn

  14. Effects of host species and environment on the skin microbiome of Plethodontid salamanders

    Science.gov (United States)

    Muletz-Wolz, Carly R.; Yarwood, Stephanie A.; Grant, Evan H. Campbell; Fleischer, Robert C.; Lips, Karen R.

    2018-01-01

    The amphibian skin microbiome is recognized for its role in defence against pathogens, including the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd). Yet, we have little understanding of evolutionary and ecological processes that structure these communities, especially for salamanders and closely related species. We investigated patterns in the distribution of bacterial communities on Plethodon salamander skin across host species and environments.Quantifying salamander skin microbiome structure contributes to our understanding of how host-associated bacteria are distributed across the landscape, among host species, and their putative relationship with disease.We characterized skin microbiome structure (alpha-diversity, beta-diversity and bacterial operational taxonomic unit [OTU] abundances) using 16S rRNA gene sequencing for co-occurring Plethodon salamander species (35 Plethodon cinereus, 17 Plethodon glutinosus, 10 Plethodon cylindraceus) at three localities to differentiate the effects of host species from environmental factors on the microbiome. We sampled the microbiome of P. cinereus along an elevational gradient (n = 50, 700–1,000 m a.s.l.) at one locality to determine whether elevation predicts microbiome structure. Finally, we quantified prevalence and abundance of putatively anti-Bd bacteria to determine if Bd-inhibitory bacteria are dominant microbiome members.Co-occurring salamanders had similar microbiome structure, but among sites salamanders had dissimilar microbiome structure for beta-diversity and abundance of 28 bacterial OTUs. We found that alpha-diversity increased with elevation, beta-diversity and the abundance of 17 bacterial OTUs changed with elevation (16 OTUs decreasing, 1 OTU increasing). We detected 11 putatively anti-Bd bacterial OTUs that were present on 90% of salamanders and made up an average relative abundance of 83% (SD ± 8.5) per salamander. All salamanders tested negative for Bd.We conclude that

  15. Environmental influences on egg and clutch sizes in lentic- and lotic-breeding salamanders

    Directory of Open Access Journals (Sweden)

    Jon M. Davenport

    2010-12-01

    Full Text Available Recent research indicates that social and environmental factors influence egg and clutch sizes in amphibians. However, most of this work is based on the reproductively diverse order Anura (frogs and toads, whereas less research has been conducted on Caudata (salamanders and Gymnophiona (caecilians. Researchers have suggested that a relationship exists between social and environmental factors and egg and clutch sizes in salamanders, but studies controlling for phylogenetic context are lacking. We could not identify a sufficient number of comparisons for social influences on egg and clutch sizes; therefore, we focused on environmental influences for this study. Data on egg size, clutch size, environmental factors, and phylogenies for salamanders were assembled from the scientific literature. We used independent, pair-wise comparisons to investigate the association of larval salamander habitat and egg size and the association of larval salamander habitat with clutch sizes within a phylogenetic framework. There is a significant association between larval habitat and egg size; specifically, stream-breeding species produce larger eggs. There is no significant association between larval habitat and clutchsize. Our study confirms earlier reports that salamander egg size is associated with larval environments, but is the first to use phylogenetically independent contrasts to account for the lack of phylogenetic independence of the traits measured (egg size and clutch size associated with many of the diverse lineages. Our study shows that environmental selection pressure can be quite strong on one aspect of salamander reproduction—egg size.

  16. Seasonality and microhabitat selection in a forest-dwelling salamander

    Science.gov (United States)

    Basile, Marco; Romano, Antonio; Costa, Andrea; Posillico, Mario; Scinti Roger, Daniele; Crisci, Aldo; Raimondi, Ranieri; Altea, Tiziana; Garfì, Vittorio; Santopuoli, Giovanni; Marchetti, Marco; Salvidio, Sebastiano; De Cinti, Bruno; Matteucci, Giorgio

    2017-10-01

    Many small terrestrial vertebrates exhibit limited spatial movement and are considerably exposed to changes in local environmental variables. Among such vertebrates, amphibians at present experience a dramatic decline due to their limited resilience to environmental change. Since the local survival and abundance of amphibians is intrinsically related to the availability of shelters, conservation plans need to take microhabitat requirements into account. In order to gain insight into the terrestrial ecology of the spectacled salamander Salamandrina perspicillata and to identify appropriate forest management strategies, we investigated the salamander's seasonal variability in habitat use of trees as shelters in relation to tree features (size, buttresses, basal holes) and environmental variables in a beech forest in Italy. We used the occupancy approach to assess tree suitability on a non-conventional spatial scale. Our approach provides fine-grained parameters of microhabitat suitability and elucidates many aspects of the salamander's terrestrial ecology . Occupancy changed with the annual life cycle and was higher in autumn than in spring, when females were found closer to the stream in the study area. Salamanders showed a seasonal pattern regarding the trees they occupied and a clear preference for trees with a larger diameter and more burrows. With respect to forest management, we suggest maintaining a suitable number of trees with a trunk diameter exceeding 30 cm. A practice of selective logging along the banks of streams could help maintain an adequate quantity of the appropriate microhabitat. Furthermore, in areas with a presence of salamanders, a good forest management plan requires leaving an adequate buffer zone around streams, which should be wider in autumn than in spring.

  17. 77 FR 36287 - Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, Calaveras...

    Science.gov (United States)

    2012-06-18

    ...-FXES11120800000F2-123-F2] Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander... animal, the threatened Central California Distinct Population Segment of the California tiger salamander (tiger salamander). The applicant would implement a conservation program to minimize and mitigate the...

  18. A nondestructive technique to monitor the relative abundance of terrestrial salamanders

    Science.gov (United States)

    Richard M. DeGraaf; Mariko. Yamasaki

    1992-01-01

    Salamanders are abundant vertebrates in many forest ecosystems, and their annual biomass production can be important in forest food webs (Pough et al. 1987). Population densities of eastern redback salamanders (Plethodon cinereus) can exceed 2 individuals/m2 in deciduous forests of the United States (Heatwole 1962, Jaeger 1980...

  19. Cannibalistic-morph Tiger Salamanders in unexpected ecological contexts

    Science.gov (United States)

    McLean, Kyle I.; Stockwell, Craig A.; Mushet, David M.

    2016-01-01

    Barred tiger salamanders [Ambystoma mavortium (Baird, 1850)] exhibit two trophic morphologies; a typical and a cannibalistic morph. Cannibalistic morphs, distinguished by enlarged vomerine teeth, wide heads, slender bodies, and cannibalistic tendencies, are often found where conspecifics occur at high density. During 2012 and 2013, 162 North Dakota wetlands and lakes were sampled for salamanders. Fifty-one contained A. mavortium populations; four of these contained cannibalistic morph individuals. Two populations with cannibalistic morphs occurred at sites with high abundances of conspecifics. However, the other two populations occurred at sites with unexpectedly low conspecific but high fathead minnow [Pimephales promelas (Rafinesque, 1820)] abundances. Further, no typical morphs were observed in either of these later two populations, contrasting with earlier research suggesting cannibalistic morphs only occur at low frequencies in salamander populations. Another anomaly of all four populations was the occurrence of cannibalistic morphs in permanent water sites, suggesting their presence was due to factors other than faster growth allowing them to occupy ephemeral habitats. Therefore, our findings suggest environmental factors inducing the cannibalistic morphism may be more complex than previously thought.

  20. Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma Tigrinum.

    Science.gov (United States)

    Simons, R S; Bennett, W O; Brainerd, E L

    2000-03-01

    The mechanics of lung ventilation in frogs and aquatic salamanders has been well characterized, whereas lung ventilation in terrestrial-phase (post-metamorphic) salamanders has received little attention. We used electromyography (EMG), X-ray videography, standard videography and buccal and body cavity pressure measurements to characterize the ventilation mechanics of adult (post-metamorphic) tiger salamanders (Ambystoma tigrinum). Three results emerged: (i) under terrestrial conditions or when floating at the surface of the water, adult A. tigrinum breathed through their nares using a two-stroke buccal pump; (ii) in addition to this narial two-stroke pump, adult tiger salamanders also gulped air in through their mouths using a modified two-stroke buccal pump when in an aquatic environment; and (iii) exhalation in adult tiger salamanders is active during aquatic gulping breaths, whereas exhalation appears to be passive during terrestrial breathing at rest. Active exhalation in aquatic breaths is indicated by an increase in body cavity pressure during exhalation and associated EMG activity in the lateral hypaxial musculature, particularly the M. transversus abdominis. In terrestrial breathing, no EMG activity in the lateral hypaxial muscles is generally present, and body cavity pressure decreases during exhalation. In aquatic breaths, tidal volume is larger than in terrestrial breaths, and breathing frequency is much lower (approximately 1 breath 10 min(-)(1 )versus 4-6 breaths min(-)(1)). The use of hypaxial muscles to power active exhalation in the aquatic environment may result from the need for more complete exhalation and larger tidal volumes when breathing infrequently. This hypothesis is supported by previous findings that terrestrial frogs ventilate their lungs with small tidal volumes and exhale passively, whereas aquatic frogs and salamanders use large tidal volumes and and exhale actively.

  1. Detection of an enigmatic plethodontid Salamander using Environmental DNA

    Science.gov (United States)

    Pierson, Todd W.; Mckee, Anna; Spear, Stephen F.; Maerz, John C.; Camp, Carlos D.; Glenn, Travis C.

    2016-01-01

    The isolation and identification of environmental DNA (eDNA) offers a non-invasive and efficient method for the detection of rare and secretive aquatic wildlife, and it is being widely integrated into inventory and monitoring efforts. The Patch-Nosed Salamander (Urspelerpes brucei) is a tiny, recently discovered species of plethodontid salamander known only from headwater streams in a small region of Georgia and South Carolina. Here, we present results of a quantitative PCR-based eDNA assay capable of detecting Urspelerpes in more than 75% of 33 samples from five confirmed streams. We deployed the method at 31 additional streams and located three previously undocumented populations of Urspelerpes. We compare the results of our eDNA assay with our attempt to use aquatic leaf litterbags for the rapid detection of Urspelerpes and demonstrate the relative efficacy of the eDNA assay. We suggest that eDNA offers great potential for use in detecting other aquatic and semi-aquatic plethodontid salamanders.

  2. Slow Lives in the Fast Landscape: Conservation and Management of Plethodontid Salamanders in Production Forests of the United States

    Directory of Open Access Journals (Sweden)

    Jessica A. Homyack

    2014-11-01

    Full Text Available Intensively-managed forest (IMF ecosystems support environmental processes, retain biodiversity and reduce pressure to extract wood products from other forests, but may affect species, such as plethodontid salamanders, that are associated with closed canopies and possess limited vagility. We describe: (1 critical aspects of IMF ecosystems; (2 effectiveness of plethodontid salamanders as barometers of forest change; (3 two case studies of relationships between salamanders and coarse woody debris (CWD; and (4 research needs for effective management of salamanders in IMF ecosystems. Although plethodontid salamanders are sensitive to microclimate changes, their role as ecological indicators rarely have been evaluated quantitatively. Our case studies of CWD and salamanders in western and eastern forests demonstrated effects of species, region and spatial scale on the existence and strength of relationships between plethodontid species and a “critical” microhabitat variable. Oregon slender salamanders (Batrachoseps wrighti were more strongly associated with abundance of CWD in managed second growth forests than ensatina salamanders (Ensatina eschscholtzii. Similarly, CWD was not an important predictor of abundance of Appalachian salamanders in managed hardwood forest. Gaining knowledge of salamanders in IMF ecosystems is critical to reconciling ecological and economic objectives of intensive forest management, but faces challenges in design and implementation.

  3. Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability.

    Science.gov (United States)

    Muletz-Wolz, Carly R; DiRenzo, Graziella V; Yarwood, Stephanie A; Campbell Grant, Evan H; Fleischer, Robert C; Lips, Karen R

    2017-05-01

    Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti- B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti- B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus , 15 P. glutinosus , 9 P. cylindraceus ) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti- B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti- B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti- B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti- B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti- B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis Anti- B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a

  4. Design tradeoffs in long-term research for stream salamanders

    Science.gov (United States)

    Brand, Adrianne B,; Grant, Evan H. Campbell

    2017-01-01

    Long-term research programs can benefit from early and periodic evaluation of their ability to meet stated objectives. In particular, consideration of the spatial allocation of effort is key. We sampled 4 species of stream salamanders intensively for 2 years (2010–2011) in the Chesapeake and Ohio Canal National Historical Park, Maryland, USA to evaluate alternative distributions of sampling locations within stream networks, and then evaluated via simulation the ability of multiple survey designs to detect declines in occupancy and to estimate dynamic parameters (colonization, extinction) over 5 years for 2 species. We expected that fine-scale microhabitat variables (e.g., cobble, detritus) would be the strongest determinants of occupancy for each of the 4 species; however, we found greater support for all species for models including variables describing position within the stream network, stream size, or stream microhabitat. A monitoring design focused on headwater sections had greater power to detect changes in occupancy and the dynamic parameters in each of 3 scenarios for the dusky salamander (Desmognathus fuscus) and red salamander (Pseudotriton ruber). Results for transect length were more variable, but across all species and scenarios, 25-m transects are most suitable as a balance between maximizing detection probability and describing colonization and extinction. These results inform sampling design and provide a general framework for setting appropriate goals, effort, and duration in the initial planning stages of research programs on stream salamanders in the eastern United States.

  5. Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation

    Science.gov (United States)

    Walker, Donald M.; Leys, Jacob E.; Dunham, Kelly E.; Oliver, Joshua C.; Schiller, Emily E.; Stephenson, Kelsey S.; Kimrey, John T.; Wooten, Jessica; Rogers, Mark W.

    2017-01-01

    Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine-scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild-caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small-bodied wild terrestrial salamander populations.

  6. Protective Immunity Induced by DNA Vaccination against Ranavirus Infection in Chinese Giant Salamander Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2018-01-01

    Full Text Available Andrias davidianus ranavirus (ADRV is an emerging viral pathogen that causes severe systemic hemorrhagic disease in Chinese giant salamanders. There is an urgent need for developing an effective vaccine against this fatal disease. In this study, DNA vaccines containing the ADRV 2L gene (pcDNA-2L and the 58L gene (pcDNA-58L were respectively constructed, and their immune protective effects were evaluated in Chinese giant salamanders. In vitro and in vivo expression of the vaccine plasmids were confirmed in transfected cells and muscle tissues of vaccinated Chinese giant salamanders by using immunoblot analysis or RT-PCR. Following ADRV challenge, the Chinese giant salamanders vaccinated with pcDNA-2L showed a relative percent survival (RPS of 66.7%, which was significant higher than that in Chinese giant salamanders immunized with pcDNA-58L (RPS of 3.3%. Moreover, the specific antibody against ADRV was detected in Chinese giant salamanders vaccinated with pcDNA-2L at 14 and 21 days post-vaccination by indirect enzyme-linked immunosorbent assay (ELISA. Transcriptional analysis revealed that the expression levels of immune-related genes including type I interferon (IFN, myxovirus resistance (Mx, major histocompatibility complex class IA (MHC IA, and immunoglobulin M (IgM were strongly up-regulated after vaccination with pcDNA-2L. Furthermore, vaccination with pcDNA-2L significantly suppressed the virus replication, which was seen by a low viral load in the spleen of Chinese giant salamander survivals after ADRV challenge. These results indicated that pcDNA-2L could induce a significant innate immune response and an adaptive immune response involving both humoral and cell-mediated immunity that conferred effective protection against ADRV infection, and might be a potential vaccine candidate for controlling ADRV disease in Chinese giant salamanders.

  7. Predicted Changes in Climatic Niche and Climate Refugia of Conservation Priority Salamander Species in the Northeastern United States

    Directory of Open Access Journals (Sweden)

    William B. Sutton

    2014-12-01

    Full Text Available Global climate change represents one of the most extensive and pervasive threats to wildlife populations. Amphibians, specifically salamanders, are particularly susceptible to the effects of changing climates due to their restrictive physiological requirements and low vagility; however, little is known about which landscapes and species are vulnerable to climate change. Our study objectives included, (1 evaluating species-specific predictions (based on 2050 climate projections and vulnerabilities to climate change and (2 using collective species responses to identify areas of climate refugia for conservation priority salamanders in the northeastern United States. All evaluated salamander species were projected to lose a portion of their climatic niche. Averaged projected losses ranged from 3%–100% for individual species, with the Cow Knob Salamander (Plethodon punctatus, Cheat Mountain Salamander (Plethodon nettingi, Shenandoah Mountain Salamander (Plethodon virginia, Mabee’s Salamander (Ambystoma mabeei, and Streamside Salamander (Ambystoma barbouri predicted to lose at least 97% of their landscape-scale climatic niche. The Western Allegheny Plateau was predicted to lose the greatest salamander climate refugia richness (i.e., number of species with a climatically-suitable niche in a landscape patch, whereas the Central Appalachians provided refugia for the greatest number of species during current and projected climate scenarios. Our results can be used to identify species and landscapes that are likely to be further affected by climate change and potentially resilient habitats that will provide consistent climatic conditions in the face of environmental change.

  8. A new approach for surveying the Alpine Salamander (Salamandra atra in Austria

    Directory of Open Access Journals (Sweden)

    Ursula Reinthaler-Lottermoser

    2010-12-01

    Full Text Available The Alpine Salamander is a small pitch black amphibian which is endemic to the European Alps and the Dinarides. It is strictly protected according to the European FFH guidelines. Despite its central role in the alpine ecosystem our actual published record in Austria is small. In order to resolve this shortcoming our project explores its distribution in Austria. It uses a participatory and community based approach to gather data. Everybody can enter and look at Alpine Salamander observations on our website www.alpensalamander.eu. This approach also allows us to establish an “oral history” of Salamander observations in the past 50 years by conducting interviews in the local community. Since July 2009 the website and salamander report database are online. From the actual data (more than 5600 records we already obtained an overview about the present distribution and data quality. The data are an excellent basis for detailed scientific studies on these remarkable amphibians. With this new and highly interactive approach science and education are combined to initiate protection measures with the public.

  9. Data from proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xiaofang Geng

    2015-06-01

    Full Text Available The Chinese giant salamander (Andrias davidianus, renowned as a living fossil, is the largest and longest-lived amphibian species in the world. Its skin is rich in collagens, and has developed mucous gland which could secrete a large amount of mucus under the scraping and electric stimulation. The molting is the degraded skin stratum corneum. To establish the functional skin proteome of Chinese giant salamander, two-dimensional gel electrophoresis (2DE and mass spectrometry (MS were applied to detect the composition and relative abundance of the proteins in the skin, mucus and molting. The determination of the general proteome in the skin can potentially serve as a foundation for future studies characterizing the skin proteomes from diseased salamander to provide molecular and mechanistic insights into various disease states and potential therapeutic interventions. Data presented here are also related to the research article “Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus” in the Journal of Proteomics [1].

  10. Effects of edge contrast on redback salamander distribution in even-aged northern hardwoods

    Science.gov (United States)

    Richard M. DeGraaf; Mariko. Yamasaki

    2002-01-01

    Terrestrial salamanders are sensitive to forest disturbance associated with even-aged management. We studied the distribution of redback salamanders (Plethodon cinereus) for 4 yr at edges between even-aged northern hardwood stands along three replicate transects in each of three edge contrast types: regeneration/mature, sapling/mature, and...

  11. Acid precipitation and reproductive success of Ambystoma salamanders

    Energy Technology Data Exchange (ETDEWEB)

    Pough, R H; Wilson, R E

    1976-01-01

    The two species of mole salamander that occur in the Ithaca, New York, region (Ambystoma maculatum and A. jeffersonianum) breed in temporary ponds that are formed by accumulation of melted snow and spring rains. Water in many of these pools during the breeding season is acid; pH values as low as 3.5 have been measured. In laboratory experiments A. maculatum tolerated pHs from 6 to 10 and had greatest hatching success at pH 7 to 9. Ambystoma Jeffersonianum tolerated pH 4 to 8 and was most successful at pH 5 to 6. Mortality rose abruptly beyond the tolerance limits. The pH optimum shifted upward with increasing temperature for A. jeffersonianum and downward for A. maculatum. Judging from our laboratory studies, the acidity measured in breeding ponds should cause mortality in A. maculatum and permit normal development in A. jeffersonianum. In a four-year study of a large acidic vernal pond, 938 adult A. maculatum produced 486 metamorphosed juveniles (0.52 juvenile/adult), while 686 adult A. jeffersonianum produced 2157 juveniles (3.14 juveniles/adult). Because the effects of acid precipitation on the salamanders' breeding ponds are cumulative from year to year, profound changes in the salamander populations can be anticipated.

  12. Acid precipitation and reproductive success of Ambystoma salamanders

    Energy Technology Data Exchange (ETDEWEB)

    Pough, F H; Wilson, R E

    1977-03-01

    The two species of mole salamander that occur in the Ithaca, New York, region (Ambystoma maculatum and A. jeffersonianum) breed in temporary ponds that are formed by accumulation of melted snow and spring rains. Water in many of these pools during the breeding season is acid; pH values as low as 3.5 have been measured. In laboratory experiments A. maculatum tolerated pHs from 6 to 10 and had greatest hatching success at pH 7 to 9. Ambystoma jeffersonianum tolerated pH 4 to 8 and was most successful at pH 5 to 6. Mortality rose abruptly beyond the tolerance limits. The pH optimum shifted upward with increasing temperature for A. jeffersonianum and downward for A. maculatum. Judging from our laboratory studies, the acidity measured in breeding ponds should cause mortality in A. maculatum and permit normal development in A. jeffersonianum. In a 4 yr study of a large, acidic vernal pond, 938 adult A. maculatum produced 486 metamorphosed juveniles (0.52 juvenile/adult), while 686 adult A. jeffersonianum produced 2157 juveniles (3.14 juveniles/adult). Because the effects of acid precipitation on the salamanders' breeding ponds are cumulative from year to year, profound changes in the salamander populations can be anticipated.

  13. Cytogenetics of the Brazilian Bolitoglossa paraensis (Unterstein, 1930 salamanders (Caudata, Plethodontidae

    Directory of Open Access Journals (Sweden)

    Jéssica Barata da Silva

    2014-09-01

    Full Text Available Plethodontid salamanders of genus Bolitoglossa constitute the largest and most diverse group of salamanders, including around 20% of living caudate species. Recent studies have indicated the occurrence of five recognized species in the Brazilian Amazon Rainforest. We present here the first cytogenetic data of a Brazilian salamander, which may prove to be a useful by contribution to the cytotaxonomy of the genus. Specimens were collected near the "type" locality (Utinga, Belém, PA, Brazil. Chromosomal preparations from duodenal epithelial cells and testes were subjected to Giemsa staining, C-banding and DAPI/CMA3 fluorochrome staining. All specimens showed a karyotype with 13 bi-armed chromosome pairs (2n = 26. Nucleolar Organizer Regions, evidenced by CMA3, were located distally on the long arm of pair 7 (7q. DAPI+ heterochromatin was predominantly centromeric, with some small pericentromeric bands. Although the C-banding patterns of other Bolitoglossa species are so far unknown, cytogenetic studies conducted in other Plethodontid salamanders have demonstrated that pericentromeric heterochromatin is a useful cytological marker for identifying interspecific homeologies. Species diversification is usually accompanied by chromosomal changes. Therefore, the cytogenetic characterization of Bolitoglossa populations from the middle and western Brazilian Amazon Basin could identify differences which may lead to the identification of new species.

  14. Anatomy, function, and evolution of jaw and hyobranchial muscles in cryptobranchoid salamander larvae.

    Science.gov (United States)

    Kleinteich, Thomas; Herzen, Julia; Beckmann, Felix; Matsui, Masafumi; Haas, Alexander

    2014-02-01

    Larval salamanders (Lissamphibia: Caudata) are known to be effective suction feeders in their aquatic environments, although they will eventually transform into terrestrial tongue feeding adults during metamorphosis. Early tetrapods may have had a similar biphasic life cycle and this makes larval salamanders a particularly interesting model to study the anatomy, function, development, and evolution of the feeding apparatus in terrestrial vertebrates. Here, we provide a description of the muscles that are involved in the feeding strike in salamander larvae of the Hynobiidae and compare them to larvae of the paedomorphic Cryptobranchidae. We provide a functional and evolutionary interpretation for the observed muscle characters. The cranial muscles in larvae from species of the Hynobiidae and Cryptobranchidae are generally very similar. Most notable are the differences in the presence of the m. hyomandibularis, a muscle that connects the hyobranchial apparatus with the lower jaw. We found this muscle only in Onychodactylus japonicus (Hynobiidae) but not in other hynobiid or cryptobranchid salamanders. Interestingly, the m. hyomandibularis in O. japonicus originates from the ceratobranchial I and not the ceratohyal, and thus exhibits what was previously assumed to be the derived condition. Finally, we applied a biomechanical model to simulate suction feeding in larval salamanders. We provide evidence that a flattened shape of the hyobranchial apparatus in its resting position is beneficial for a fast and successful suction feeding strike. Copyright © 2013 Wiley Periodicals, Inc.

  15. Decadal changes in phenology of peak abundance patterns of woodland pond salamanders in northern Wisconsin

    Science.gov (United States)

    Donner, Deahn M.; Ribic, Christine; Beck, Albert J.; Higgins, Dale; Eklund, Dan; Reinecke, Susan

    2015-01-01

    Woodland ponds are important landscape features that help sustain populations of amphibians that require this aquatic habitat for successful reproduction. Species abundance patterns often reflect site-specific differences in hydrology, physical characteristics, and surrounding vegetation. Large-scale processes such as changing land cover and environmental conditions are other potential drivers influencing amphibian populations in the Upper Midwest, but little information exists on the combined effects of these factors. We used Blue-spotted (Ambystoma laterale Hallowell) and Spotted Salamander (A. maculatum Shaw) monitoring data collected at the same woodland ponds thirteen years apart to determine if changing environmental conditions and vegetation cover in surrounding landscapes influenced salamander movement phenology and abundance. Four woodland ponds in northern Wisconsin were sampled for salamanders in April 1992-1994 and 2005-2007. While Blue-spotted Salamanders were more abundant than Spotted Salamanders in all ponds, there was no change in the numbers of either species over the years. However, peak numbers of Blue-spotted Salamanders occurred 11.7 days earlier (range: 9-14 days) in the 2000s compared to the 1990s; Spotted Salamanders occurred 9.5 days earlier (range: 3 - 13 days). Air and water temperatures (April 13- 24) increased, on average, 4.8°C and 3.7°C, respectively, between the decades regardless of pond. There were no discernible changes in canopy openness in surrounding forests between decades that would have warmed the water sooner (i.e., more light penetration). Our finding that salamander breeding phenology can vary by roughly 10 days in Wisconsin contributes to growing evidence that amphibian populations have responded to changing climate conditions by shifting life-cycle events. Managers can use this information to adjust monitoring programs and forest management activities in the surrounding landscape to avoid vulnerable amphibian

  16. Survey of Pathogenic Chytrid Fungi (Batrachochytrium dendrobatidis and B. salamandrivorans) in Salamanders from Three Mountain Ranges in Europe and the Americas.

    Science.gov (United States)

    Parrott, Joshua Curtis; Shepack, Alexander; Burkart, David; LaBumbard, Brandon; Scimè, Patrick; Baruch, Ethan; Catenazzi, Alessandro

    2017-06-01

    Batrachochytrium salamandrivorans (Bsal) is a virulent fungal pathogen that infects salamanders. It is implicated in the recent collapse of several populations of fire salamanders in Europe. This pathogen seems much like that of its sister species, Batrachochytrium dendrobatidis (Bd), the agent responsible for anuran extinctions and extirpations worldwide, and is considered to be an emerging global threat to salamander communities. Bsal thrives at temperatures found in many mountainous regions rich in salamander species; because of this, we have screened specimens of salamanders representing 17 species inhabiting mountain ranges in three continents: The Smoky Mountains, the Swiss Alps, and the Peruvian Andes. We screened 509 salamanders, with 192 representing New World salamanders that were never tested for Bsal previously. Bsal was not detected, and Bd was mostly present at low prevalence except for one site in the Andes.

  17. Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander

    Directory of Open Access Journals (Sweden)

    Jérémy Tissier

    2017-10-01

    Full Text Available Fossils are almost always represented by hard tissues but we present here the exceptional case of a three-dimensionally preserved specimen that was ‘mummified’ (likely between 40 and 34 million years ago in a terrestrial karstic environment. This fossil is the incomplete body of a salamander, Phosphotriton sigei, whose skeleton and external morphology are well preserved, as revealed by phase-contrast synchrotron X-ray microtomography. In addition, internal structures composed of soft tissues preserved in three dimensions are now identified: a lung, the spinal cord, a lumbosacral plexus, the digestive tract, muscles and urogenital organs that may be cloacal glands. These are among the oldest known cases of three-dimensional preservation of these organs in vertebrates and shed light on the ecology of this salamander. Indeed, the digestive tract contains remains of a frog, which represents the only known case of an extinct salamander that fed on a frog, an extremely rare type of predation in extant salamanders. These new data improve our scarce knowledge on soft tissue anatomy of early urodeles and should prove useful for future biologists and palaeontologists working on urodele evolutionary biology. We also suggest that the presence of bat guano and carcasses represented a close source of phosphorus, favouring preservation of soft tissues. Bone microanatomy indicates that P. sigei was likely amphibious or terrestrial, and was probably not neotenic.

  18. Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander.

    Science.gov (United States)

    Tissier, Jérémy; Rage, Jean-Claude; Laurin, Michel

    2017-01-01

    Fossils are almost always represented by hard tissues but we present here the exceptional case of a three-dimensionally preserved specimen that was 'mummified' (likely between 40 and 34 million years ago) in a terrestrial karstic environment. This fossil is the incomplete body of a salamander, Phosphotriton sigei , whose skeleton and external morphology are well preserved, as revealed by phase-contrast synchrotron X-ray microtomography. In addition, internal structures composed of soft tissues preserved in three dimensions are now identified: a lung, the spinal cord, a lumbosacral plexus, the digestive tract, muscles and urogenital organs that may be cloacal glands. These are among the oldest known cases of three-dimensional preservation of these organs in vertebrates and shed light on the ecology of this salamander. Indeed, the digestive tract contains remains of a frog, which represents the only known case of an extinct salamander that fed on a frog, an extremely rare type of predation in extant salamanders. These new data improve our scarce knowledge on soft tissue anatomy of early urodeles and should prove useful for future biologists and palaeontologists working on urodele evolutionary biology. We also suggest that the presence of bat guano and carcasses represented a close source of phosphorus, favouring preservation of soft tissues. Bone microanatomy indicates that P. sigei was likely amphibious or terrestrial, and was probably not neotenic.

  19. Effects of Buffering Key Habitat for Terrestrial Salamanders: Implications for the Management of the Federally Threatened Red Hills Salamander (Phaeognathus hubrichti and Other Imperiled Plethodontids

    Directory of Open Access Journals (Sweden)

    Joseph J. Apodaca

    2015-03-01

    Full Text Available Forestry practices are placing ever increasing emphasis on sustainability and the maintenance of ecological processes, biodiversity, and endangered species or populations. Balancing timber harvest and the management of imperiled species presents a particularly difficult challenge during this shift, as we often know very little about these species’ natural history and how and why silviculture practices affect their populations. Accordingly, investigation of and improvement on current management practices for threatened species is imperative. We investigated the effectiveness of habitat buffers as a management technique for the imperiled Red Hills salamander (Phaeognathus hubrichti by combining genetic, transect, and body-condition data. We found that populations where habitat buffers have been employed have higher genetic diversity and higher population densities, and individuals have better overall body condition. These results indicate that buffering the habitat of imperiled species can be an effective management tool for terrestrial salamanders. Additionally, they provide further evidence that leaving the habitat of imperiled salamanders unbuffered can have both immediate and long-term negative impacts on populations.

  20. Toxicological responses of red-backed salamanders (Plethodon cinereus) to subchronic soil exposures of 2,4-dinitrotoluene

    International Nuclear Information System (INIS)

    Johnson, Mark S.; Suski, Jamie; Bazar, Matthew A.

    2007-01-01

    Dinitrotoluenes are used as propellants and in explosives by the military and as such have been found at relatively high concentrations in the soil. To determine whether concentrations of 2,4-dinitrotoluene (2,4-DNT) in soil are toxic to amphibians, 100 red-backed salamanders (Plethodon cinereus) were exposed to either 1500, 800, 200, 75 or 0 mg 2,4-DNT/kg soil for 28 days and evaluated for indicators of toxicity. Concentrations of 2,4-DNT were less than targets and varied with time. Most salamanders exposed to concentrations exceeding 1050 mg/kg died or were moribund within the first week. Salamanders exposed to soil concentrations exceeding 345 mg/kg lost >6% of their body mass though no mortality occurred. Overt effects included a reduction in feed consumption and an increase in bucco-pharyngeal oscillations in salamanders. These results suggest that only high soil concentrations of 2,4-DNT have the potential to cause overtly toxic effects in terrestrial salamanders. - Exposures of 2,4-dinitrotoluene in soil exceeding 345 mg/kg causes toxicity to P. cinereus

  1. Molecular characterization and expression analysis of cathepsin C in Chinese giant salamander (Andrias davidianus after Aeromonas hydrophila infection

    Directory of Open Access Journals (Sweden)

    Zisheng Wang

    2018-03-01

    Full Text Available Background: Cathepsin C (CTSC (dipeptidyl peptidase I, DPPI, is a member of the papain superfamily of cysteine proteases and involves in a variety of host reactions. However, the information of CTST in Chinese giant salamander (Andrias davidianus, an amphibian species with important evolutionary position and economic values, remained unclear. Results: The full-length salamander CTSC cDNA contained a 96 bp of 5′-UTR, a 1392 bp of ORF encoding 463 amino acids, and a 95 bp of 3′-UTR. The salamander CTSC possessed several sequence features similar to other reported CTSCs such as a signal peptide, a propeptide and a mature peptide. The active site triad of Cys, His and Asn were also found existing in salamander CTSC. Salamander CTSC mRNA was constitutively expressed in all the examined tissues with significantly variant expression level. The highest expression of CTSC was in intestine, followed with stomach, spleen, lung and brain. Following Aeromonas hydrophila infection for 12 h, salamander CTSC was significantly up-regulated in several tissues including lung, spleen, brain, kidney, heart, stomach and skin. Conclusion: CTSC plays roles in the immune response to bacterial infection, which provided valuable information for further studying the functions of CTSC in salamander. Keywords: cDNA, CTSC, Dipeptidyl peptidase I, Gene expression, Hydrophila, Immune, Peptide, Sequence, Tissue

  2. Climate-mediated competition in a high-elevation salamander community

    Science.gov (United States)

    Dallalio, Eric A.; Brand, Adrianne B,; Grant, Evan H. Campbell

    2017-01-01

    The distribution of the federally endangered Shenandoah Salamander (Plethodon shenandoah) is presumed to be limited by competition with the Red-backed Salamander (Plethodon cinereus). In particular, the current distribution of P. shenandoah is understood to be restricted to warmer and drier habitats because of interspecific interactions. These habitats may be particularly sensitive to climate change, though the influence of competition may also be affected by temperature and relative humidity. We investigated the response of P. shenandoah to competition with P. cinereus under four climate scenarios in 3-dimensional mesocosms. The results suggest that, although climate change may alleviate competitive pressure from P. cinereus, warmer temperatures may also significantly influence the persistence of the species across its known range.

  3. Role of habitat complexity in predator-prey dynamics between an introduced fish and larval Long-toed Salamanders (Ambystoma macrodactylum)

    Science.gov (United States)

    Kenison, Erin K; Litt, Andrea R.; Pilliod, David S.; McMahon, Tom E

    2016-01-01

    Predation by nonnative fishes has reduced abundance and increased extinction risk for amphibian populations worldwide. Although rare, fish and palatable amphibians have been observed to coexist where aquatic vegetation and structural complexity provide suitable refugia. We examined whether larval long-toed salamanders (Ambystoma macrodactylum Baird, 1849) increased use of vegetation cover in lakes with trout and whether adding vegetation structure could reduce predation risk and nonconsumptive effects (NCEs), such as reductions in body size and delayed metamorphosis. We compared use of vegetation cover by larval salamanders in lakes with and without trout and conducted a field experiment to investigate the influence of added vegetation structure on salamander body morphology and life history. The probability of catching salamanders in traps in lakes with trout was positively correlated with the proportion of submerged vegetation and surface cover. Growth rates of salamanders in enclosures with trout cues decreased as much as 85% and the probability of metamorphosis decreased by 56%. We did not find evidence that adding vegetation reduced NCEs in experimental enclosures, but salamanders in lakes with trout utilized more highly-vegetated areas which suggests that adding vegetation structure at the scale of the whole lake may facilitate coexistence between salamanders and introduced trout.

  4. Habitat relationships of eastern red-backed salamanders (Plethodon cinereus) in Appalachian agroforestry and grazing systems

    Science.gov (United States)

    Breanna L. Riedel; Kevin R. Russell; W. Mark Ford; Katherine P. O' Neill; Harry W. Godwin

    2008-01-01

    Woodland salamander responses to either traditional grazing or silvopasture systems are virtually unknown. An information-theoretic modelling approach was used to evaluate responses of red-backed salamanders (Plethodon cinereus) to silvopasture and meadow conversions in southern West Virginia. Searches of area-constrained plots and artificial...

  5. Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Zhou

    2017-07-01

    Full Text Available The Chinese giant salamander iridovirus (CGSIV, belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographa californica nucleopolyhedrosis virus (AcNPV, expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1 × 108 plaque forming units/mL (PFU/mL and confirmed by Western blot and indirect immunofluorescence (IIF assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9 cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISA and neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.

  6. Long bone histology of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan.

    Science.gov (United States)

    Skutschas, Pavel; Stein, Koen

    2015-04-01

    Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and 'salamander A') has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions. © 2015 Anatomical Society.

  7. Evaluating multi-level models to test occupancy state responses of Plethodontid salamanders

    Science.gov (United States)

    Kroll, Andrew J.; Garcia, Tiffany S.; Jones, Jay E.; Dugger, Catherine; Murden, Blake; Johnson, Josh; Peerman, Summer; Brintz, Ben; Rochelle, Michael

    2015-01-01

    Plethodontid salamanders are diverse and widely distributed taxa and play critical roles in ecosystem processes. Due to salamander use of structurally complex habitats, and because only a portion of a population is available for sampling, evaluation of sampling designs and estimators is critical to provide strong inference about Plethodontid ecology and responses to conservation and management activities. We conducted a simulation study to evaluate the effectiveness of multi-scale and hierarchical single-scale occupancy models in the context of a Before-After Control-Impact (BACI) experimental design with multiple levels of sampling. Also, we fit the hierarchical single-scale model to empirical data collected for Oregon slender and Ensatina salamanders across two years on 66 forest stands in the Cascade Range, Oregon, USA. All models were fit within a Bayesian framework. Estimator precision in both models improved with increasing numbers of primary and secondary sampling units, underscoring the potential gains accrued when adding secondary sampling units. Both models showed evidence of estimator bias at low detection probabilities and low sample sizes; this problem was particularly acute for the multi-scale model. Our results suggested that sufficient sample sizes at both the primary and secondary sampling levels could ameliorate this issue. Empirical data indicated Oregon slender salamander occupancy was associated strongly with the amount of coarse woody debris (posterior mean = 0.74; SD = 0.24); Ensatina occupancy was not associated with amount of coarse woody debris (posterior mean = -0.01; SD = 0.29). Our simulation results indicate that either model is suitable for use in an experimental study of Plethodontid salamanders provided that sample sizes are sufficiently large. However, hierarchical single-scale and multi-scale models describe different processes and estimate different parameters. As a result, we recommend careful consideration of study questions

  8. Evaluating Multi-Level Models to Test Occupancy State Responses of Plethodontid Salamanders.

    Directory of Open Access Journals (Sweden)

    Andrew J Kroll

    Full Text Available Plethodontid salamanders are diverse and widely distributed taxa and play critical roles in ecosystem processes. Due to salamander use of structurally complex habitats, and because only a portion of a population is available for sampling, evaluation of sampling designs and estimators is critical to provide strong inference about Plethodontid ecology and responses to conservation and management activities. We conducted a simulation study to evaluate the effectiveness of multi-scale and hierarchical single-scale occupancy models in the context of a Before-After Control-Impact (BACI experimental design with multiple levels of sampling. Also, we fit the hierarchical single-scale model to empirical data collected for Oregon slender and Ensatina salamanders across two years on 66 forest stands in the Cascade Range, Oregon, USA. All models were fit within a Bayesian framework. Estimator precision in both models improved with increasing numbers of primary and secondary sampling units, underscoring the potential gains accrued when adding secondary sampling units. Both models showed evidence of estimator bias at low detection probabilities and low sample sizes; this problem was particularly acute for the multi-scale model. Our results suggested that sufficient sample sizes at both the primary and secondary sampling levels could ameliorate this issue. Empirical data indicated Oregon slender salamander occupancy was associated strongly with the amount of coarse woody debris (posterior mean = 0.74; SD = 0.24; Ensatina occupancy was not associated with amount of coarse woody debris (posterior mean = -0.01; SD = 0.29. Our simulation results indicate that either model is suitable for use in an experimental study of Plethodontid salamanders provided that sample sizes are sufficiently large. However, hierarchical single-scale and multi-scale models describe different processes and estimate different parameters. As a result, we recommend careful consideration of

  9. Using a GIS model to assess terrestrial salamander response to alternative forest management plans

    Science.gov (United States)

    Eric J. Gustafson; Nathan L. Murphy; Thomas R. Crow

    2001-01-01

    A GIS model predicting the spatial distribution of terrestrial salamander abundance based on topography and forest age was developed using parameters derived from the literature. The model was tested by sampling salamander abundance across the full range of site conditions used in the model. A regression of the predictions of our GIS model against these sample data...

  10. Microarray analysis of a salamander hopeful monster reveals transcriptional signatures of paedomorphic brain development

    Science.gov (United States)

    2010-01-01

    Background The Mexican axolotl (Ambystoma mexicanum) is considered a hopeful monster because it exhibits an adaptive and derived mode of development - paedomorphosis - that has evolved rapidly and independently among tiger salamanders. Unlike related tiger salamanders that undergo metamorphosis, axolotls retain larval morphological traits into adulthood and thus present an adult body plan that differs dramatically from the ancestral (metamorphic) form. The basis of paedomorphic development was investigated by comparing temporal patterns of gene transcription between axolotl and tiger salamander larvae (Ambystoma tigrinum tigrinum) that typically undergo a metamorphosis. Results Transcript abundances from whole brain and pituitary were estimated via microarray analysis on four different days post hatching (42, 56, 70, 84 dph) and regression modeling was used to independently identify genes that were differentially expressed as a function of time in both species. Collectively, more differentially expressed genes (DEGs) were identified as unique to the axolotl (n = 76) and tiger salamander (n = 292) than were identified as shared (n = 108). All but two of the shared DEGs exhibited the same temporal pattern of expression and the unique genes tended to show greater changes later in the larval period when tiger salamander larvae were undergoing anatomical metamorphosis. A second, complementary analysis that directly compared the expression of 1320 genes between the species identified 409 genes that differed as a function of species or the interaction between time and species. Of these 409 DEGs, 84% exhibited higher abundances in tiger salamander larvae at all sampling times. Conclusions Many of the unique tiger salamander transcriptional responses are probably associated with metamorphic biological processes. However, the axolotl also showed unique patterns of transcription early in development. In particular, the axolotl showed a genome-wide reduction in mRNA abundance

  11. Microarray analysis of a salamander hopeful monster reveals transcriptional signatures of paedomorphic brain development

    Directory of Open Access Journals (Sweden)

    Putta Srikrishna

    2010-06-01

    Full Text Available Abstract Background The Mexican axolotl (Ambystoma mexicanum is considered a hopeful monster because it exhibits an adaptive and derived mode of development - paedomorphosis - that has evolved rapidly and independently among tiger salamanders. Unlike related tiger salamanders that undergo metamorphosis, axolotls retain larval morphological traits into adulthood and thus present an adult body plan that differs dramatically from the ancestral (metamorphic form. The basis of paedomorphic development was investigated by comparing temporal patterns of gene transcription between axolotl and tiger salamander larvae (Ambystoma tigrinum tigrinum that typically undergo a metamorphosis. Results Transcript abundances from whole brain and pituitary were estimated via microarray analysis on four different days post hatching (42, 56, 70, 84 dph and regression modeling was used to independently identify genes that were differentially expressed as a function of time in both species. Collectively, more differentially expressed genes (DEGs were identified as unique to the axolotl (n = 76 and tiger salamander (n = 292 than were identified as shared (n = 108. All but two of the shared DEGs exhibited the same temporal pattern of expression and the unique genes tended to show greater changes later in the larval period when tiger salamander larvae were undergoing anatomical metamorphosis. A second, complementary analysis that directly compared the expression of 1320 genes between the species identified 409 genes that differed as a function of species or the interaction between time and species. Of these 409 DEGs, 84% exhibited higher abundances in tiger salamander larvae at all sampling times. Conclusions Many of the unique tiger salamander transcriptional responses are probably associated with metamorphic biological processes. However, the axolotl also showed unique patterns of transcription early in development. In particular, the axolotl showed a genome

  12. Apparent survival of the salamander Salamandra salamandra is low because of high migratory activity

    Directory of Open Access Journals (Sweden)

    Schaub Michael

    2007-09-01

    Full Text Available Abstract Background Understanding the demographic processes underlying population dynamics is a central theme in ecology. Populations decline if losses from the population (i.e., mortality and emigration exceed gains (i.e., recruitment and immigration. Amphibians are thought to exhibit little movement even though local populations often fluctuate dramatically and are likely to go exinct if there is no rescue effect through immigration from nearby populations. Terrestrial salamanders are generally portrayed as amphibians with low migratory activity. Our study uses demographic analysis as a key to unravel whether emigration or mortality is the main cause of "losses" from the population. In particular, we use the analysis to challenge the common belief that terrestrial salamanders show low migratory activity. Results The mark-recapture analysis of adult salamanders showed that monthly survival was high (> 90% without a seasonal pattern. These estimates, however, translate into rather low rates of local annual survival of only ~40% and suggest that emigration was important. The estimated probability of emigration was 49%. Conclusion Our analysis shows that terrestrial salamanders exhibit more migratory activity than commonly thought. This may be due either because the spatial extent of salamander populations is underestimated or because there is a substantial exchange of individuals between populations. Our current results are in line with several other studies that suggest high migratory activity in amphibians. In particular, many amphibian populations may be characterized by high proportions of transients and/or floaters.

  13. Morphological variation in two genetically distinct groups of the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela)

    NARCIS (Netherlands)

    Alexandrino, J.; Ferrand, N.; Arntzen, J.W.

    2005-01-01

    Morphometric and colour pattern variation in the endemic Iberian salamander Chioglossa lusitanica is concordant with the genetic differentiation of two groups of populations separated by the Mondego river in Portugal. Salamanders from the south have shorter digits than those from the north. Clinal

  14. Informing recovery in a human-transformed landscape: Drought-mediated coexistence alters population trends of an imperiled salamander and invasive predators

    Science.gov (United States)

    Hossack, Blake R.; Honeycutt, Richard; Sigafus, Brent H.; Muths, Erin L.; Crawford, Catherine L.; Jones, Thomas R.; Sorensen, Jeff A.; Rorabaugh, James C.; Chambert, Thierry

    2017-01-01

    Understanding the additive or interactive threats of habitat transformation and invasive species is critical for conservation, especially where climate change is expected to increase the severity or frequency of drought. In the arid southwestern USA, this combination of stressors has caused widespread declines of native aquatic and semi-aquatic species. Achieving resilience to drought and other effects of climate change may depend upon continued management, so understanding the combined effects of stressors is important. We used Bayesian hierarchical models fitted with 10-years of pond-based monitoring surveys for the federally-endangered Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi) and invasive predators (fishes and American Bullfrogs, Lithobates catesbeianus) that threaten native species. We estimated trends in occupancy of salamanders and invasive predators while accounting for hydrological dynamics of ponds, then used a two-species interaction model to directly estimate how invasive predators affected salamander occupancy. We also tested a conceptual model that predicted that drought, by limiting the distribution of invasive predators, could ultimately benefit native species. Even though occupancy of invasive predators was stationary and their presence in a pond reduced the probability of salamander presence by 23%, occupancy of Sonoran Tiger Salamanders increased, annually, by 2.2%. Occupancy of salamanders and invasive predators both declined dramatically following the 5th consecutive year of drought. Salamander occupancy recovered quickly after return to non-drought conditions, while occupancy of invasive predators remained suppressed. Models that incorporated three time-lagged periods (1 to 4 years) of local moisture conditions confirmed that salamanders and invasive predators responded differently to drought, reflecting how life-history strategies shape responses to disturbances. The positive 10-year trend in salamander occupancy and their

  15. Salamander blue-sensitive cones lost during metamorphosis.

    NARCIS (Netherlands)

    Chen, Y.; Znoiko, S.; Grip, W.J. de; Crouch, R.K.; Ma, J.X.

    2008-01-01

    The tiger salamander lives in shallow water with bright light in the aquatic phase, and in dim tunnels or caves in the terrestrial phase. In the aquatic phase, there are five types of photoreceptors--two types of rods and three types of cones. Our previous studies showed that the green rods and

  16. 76 FR 55413 - Proposed Safe Harbor Agreement for California Red-legged Frog, California Tiger Salamander, Smith...

    Science.gov (United States)

    2011-09-07

    ...] Proposed Safe Harbor Agreement for California Red-legged Frog, California Tiger Salamander, Smith's Blue... endangered Smith's blue butterfly (Euphilotes enoptes smithi) under the Endangered Species Act of 1973, as..., California tiger salamander, Smith's blue butterfly, and Yadon's piperia on the property subject to the...

  17. Skin Microbiomes of California Terrestrial Salamanders Are Influenced by Habitat More Than Host Phylogeny

    Directory of Open Access Journals (Sweden)

    Alicia K. Bird

    2018-03-01

    Full Text Available A multitude of microorganisms live on and within plant and animal hosts, yet the ecology and evolution of these microbial communities remains poorly understood in many taxa. This study examined the extent to which environmental factors and host taxonomic identity explain microbiome variation within two salamander genera, Ensatina and Batrachoseps, in the family Plethodontidae. In particular, we assessed whether microbiome differentiation paralleled host genetic distance at three levels of taxonomy: genus and high and low clade levels within Ensatina eschscholtzii. We predicted that more genetically related host populations would have more similar microbiomes than more distantly related host populations. We found that salamander microbiomes possess bacterial species that are most likely acquired from their surrounding soil environment, but the relative representation of those bacterial species is significantly different on the skin of salamanders compared to soil. We found differences in skin microbiome alpha diversity among Ensatina higher and lower clade groups, as well as differences between Ensatina and Batrachoseps. We also found that relative microbiome composition (beta diversity did vary between Ensatina lower clades, but differences were driven by only a few clades and not correlated to clade genetic distances. We conclude this difference was likely a result of Ensatina lower clades being associated with geographic location and habitat type, as salamander identity at higher taxonomic levels (genus and Ensatina higher clades was a weak predictor of microbiome composition. These results lead us to conclude that environmental factors are likely playing a more significant role in salamander cutaneous microbiome assemblages than host-specific traits.

  18. Behavioral and Physiological Responses of Ozark Zigzag Salamanders to Stimuli from an Invasive Predator: The Armadillo

    Directory of Open Access Journals (Sweden)

    Adam L. Crane

    2012-01-01

    Full Text Available When new predators invade a habitat, either through range extensions or introductions, prey may be at a high risk because they do not recognize the predators as dangerous. The nine-banded armadillo (Dasypus novemcinctus has recently expanded its range in North America. Armadillos forage by searching soil and leaf litter, consuming invertebrates and small vertebrates, including salamanders. We tested whether Ozark zigzag salamanders (Plethodon angusticlavius from a population coexisting with armadillos for about 30 years exhibit antipredator behavior in the presence of armadillo chemical cues and whether they can discriminate between stimuli from armadillos and a nonpredatory sympatric mammal (white-tailed deer, Odocoileus virginianus. Salamanders appeared to recognize substrate cues from armadillos as a threat because they increased escape behaviors and oxygen consumption. When exposed to airborne cues from armadillos, salamanders also exhibited an antipredator response by spending more time in an inconspicuous posture. Additionally, individually consistent behaviors across treatments for some response variables suggest the potential for a behavioral syndrome in this species.

  19. Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes.

    Science.gov (United States)

    Samuels, Amy K; Weisrock, David W; Smith, Jeramiah J; France, Katherine J; Walker, John A; Putta, Srikrishna; Voss, S Randal

    2005-04-11

    We report on a study that extended mitochondrial transcript information from a recent EST project to obtain complete mitochondrial genome sequence for 5 tiger salamander complex species (Ambystoma mexicanum, A. t. tigrinum, A. andersoni, A. californiense, and A. dumerilii). We describe, for the first time, aspects of mitochondrial transcription in a representative amphibian, and then use complete mitochondrial sequence data to examine salamander phylogeny at both deep and shallow levels of evolutionary divergence. The available mitochondrial ESTs for A. mexicanum (N=2481) and A. t. tigrinum (N=1205) provided 92% and 87% coverage of the mitochondrial genome, respectively. Complete mitochondrial sequences for all species were rapidly obtained by using long distance PCR and DNA sequencing. A number of genome structural characteristics (base pair length, base composition, gene number, gene boundaries, codon usage) were highly similar among all species and to other distantly related salamanders. Overall, mitochondrial transcription in Ambystoma approximated the pattern observed in other vertebrates. We inferred from the mapping of ESTs onto mtDNA that transcription occurs from both heavy and light strand promoters and continues around the entire length of the mtDNA, followed by post-transcriptional processing. However, the observation of many short transcripts corresponding to rRNA genes indicates that transcription may often terminate prematurely to bias transcription of rRNA genes; indeed an rRNA transcription termination signal sequence was observed immediately following the 16S rRNA gene. Phylogenetic analyses of salamander family relationships consistently grouped Ambystomatidae in a clade containing Cryptobranchidae and Hynobiidae, to the exclusion of Salamandridae. This robust result suggests a novel alternative hypothesis because previous studies have consistently identified Ambystomatidae and Salamandridae as closely related taxa. Phylogenetic analyses of tiger

  20. in Chinese giant salamander ( Andrias davidianus , Blanchard, 1871)

    African Journals Online (AJOL)

    A disease in farmed Chinese giant salamander (Andrias davidianus) was a common event, being an economically important threat for Chinese farms. Based on the clinical signs, epizootiology and pathogens belonging to the genus, Ranavirus was suspected as the possible etiology. Although in a cultured Chinese giant ...

  1. Variable infection of stream salamanders in the southern Appalachians by the trematode Metagonimoides oregonensis (family: Heterophyidae)

    Science.gov (United States)

    Jennie A. Wyderko; Ernest F. Benfield; John C. Maerz; Kristen C. Cecala; Lisa K. Belden

    2015-01-01

    Many factors contribute to parasites varying in host specificity and distribution among potential hosts. Metagonimoides oregonensis is a digenetic trematode that uses stream-dwelling plethodontid salamanders as second intermediate hosts in the Eastern US. We completed a field survey to identify which stream salamander species, at a regional level, are most...

  2. A Salamander Tale: Effective Exhibits and Attitude Change

    Science.gov (United States)

    Rollins, Jeffrey; Watson, Sunnie Lee

    2017-01-01

    Little information exists regarding intention behind the design and development of Extension outreach and educational exhibits. An evaluation of response to the exhibit "A Salamander Tale" indicates that the methods used to develop the exhibit resulted in an effective way to present information to an adult audience. Survey questions were…

  3. Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders.

    Science.gov (United States)

    Frahry, Matthew Blake; Sun, Cheng; Chong, Rebecca A; Mueller, Rachel Lockridge

    2015-02-01

    Across the tree of life, species vary dramatically in nuclear genome size. Mutations that add or remove sequences from genomes-insertions or deletions, or indels-are the ultimate source of this variation. Differences in the tempo and mode of insertion and deletion across taxa have been proposed to contribute to evolutionary diversity in genome size. Among vertebrates, most of the largest genomes are found within the salamanders, an amphibian clade with genome sizes ranging from ~14 to ~120 Gb. Salamander genomes have been shown to experience slower rates of DNA loss through small (i.e., genomes. However, no studies have addressed DNA loss from salamander genomes resulting from larger deletions. Here, we focus on one type of large deletion-ectopic-recombination-mediated removal of LTR retrotransposon sequences. In ectopic recombination, double-strand breaks are repaired using a "wrong" (i.e., ectopic, or non-allelic) template sequence-typically another locus of similar sequence. When breaks occur within the LTR portions of LTR retrotransposons, ectopic-recombination-mediated repair can produce deletions that remove the internal transposon sequence and the equivalent of one of the two LTR sequences. These deletions leave a signature in the genome-a solo LTR sequence. We compared levels of solo LTRs in the genomes of four salamander species with levels present in five vertebrates with smaller genomes. Our results demonstrate that salamanders have low levels of solo LTRs, suggesting that ectopic-recombination-mediated deletion of LTR retrotransposons occurs more slowly than in other vertebrates with smaller genomes.

  4. Reproductive biology of the Del Norte salamander (Plethodon elongatus).

    Science.gov (United States)

    Clara A. Wheeler; Hartwell H. Welsh Jr.; Lisa M. Ollivier

    2013-01-01

    We examined seasonal reproductive patterns of the Del Norte Salamander, Plethodon elongatus, in mixed conifer and hardwood forests of northwestern California and southwestern Oregon. Seasonal size differences in reproductive structures suggested that maximum spermatogenic activity occurred during the late summer, with spermatozoa transfer to the...

  5. Overview of the status of the Cheat Mountain salamander

    Science.gov (United States)

    Thomas K. Pauley

    2010-01-01

    Plethodon nettingi, the Cheat Mountain salamander, is endemic to the high elevations of the Allegheny Mountains in eastern West Virginia. In 1938, N.B. Green named the species from specimens collected at Barton Knob, Randolph County, in honor of his friend and colleague Graham Netting.

  6. Phylogeography of Sardinian cave salamanders (genus Hydromantes) is mainly determined by geomorphology.

    Science.gov (United States)

    Chiari, Ylenia; van der Meijden, Arie; Mucedda, Mauro; Lourenço, João M; Hochkirch, Axel; Veith, Michael

    2012-01-01

    Detecting the factors that determine the interruption of gene flow between populations is key to understanding how speciation occurs. In this context, caves are an excellent system for studying processes of colonization, differentiation and speciation, since they represent discrete geographical units often with known geological histories. Here, we asked whether discontinuous calcareous areas and cave systems represent major barriers to gene flow within and among the five species of Sardinian cave salamanders (genus Hydromantes) and whether intraspecific genetic structure parallels geographic distance within and among caves. We generated mitochondrial cytochrome b gene sequences from 184 individuals representing 48 populations, and used a Bayesian phylogeographic approach to infer possible areas of cladogenesis for these species and reconstruct historical and current dispersal routes among distinct populations. Our results show deep genetic divergence within and among all Sardinian cave salamander species, which can mostly be attributed to the effects of mountains and discontinuities in major calcareous areas and cave systems acting as barriers to gene flow. While these salamander species can also occur outside caves, our results indicate that there is a very poor dispersal of these species between separate cave systems.

  7. Data set for transcriptome analysis of the Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xuemei Jiang

    2016-03-01

    Full Text Available The Chinese giant salamander (Andrias davidianus occupies a seat at the phylogenetic and species evolution process, which makes it an invaluable model for genetics; however, the genetic information and gene sequences about the Chinese giant salamander in public databases are scanty. Hence, we aimed to perform transcriptome analysis with the help of high-throughput sequencing. In this data, 61,317,940 raw reads were acquired from Chinese giant salamander mRNA using Illumina paired-end sequencing platform. After de novo assembly, a total of 72,072 unigenes were gained, in which 33,834 (46.95% and 29,479 (40.91% transcripts exhibited homology to sequences in the Nr database and Swiss-Prot database, (E-value <10−5, respectively. In the obtained unigenes, 18,019 (25% transcripts were assigned with at least one Gene Ontology term, of which 1218 (6.8% transcripts were assigned to immune system processes. In addition, a total of 17,572 assembled sequences were assigned into 241 predicted KEGG metabolic pathways. Among these, 2552 (14.5% transcripts were assigned to the immune system relevant pathway and 5 transcripts were identified as potential antimicrobial peptides (AMPs. Keywords: Andrias davidianus, Transcriptome

  8. Infection of spotted salamanders (Ambystoma maculatum) with Ichthyophonus-like organisms in Virginia.

    Science.gov (United States)

    Ware, Joy L; Viverette, Cathy; Kleopfer, John D; Pletcher, Leeanna; Massey, Davis; Wright, Anne

    2008-01-01

    Ichthyophonus-like organisms were found in two free-ranging adult spotted salamanders (Ambystoma maculatum) captured within two different vernal ponds in the Virginia Commonwealth University Rice Center for Environmental Life Sciences in Charles City County, Virginia. Histopathologic examination of necropsied specimens revealed large spores, often enclosed by granulomas. These enclosed spores resembled those caused by the fish pathogen Ichthyophonus hoeferi. One salamander displayed an externally visible large swelling beneath the jaws. The other lacked macroscopic abnormalities, but histologic sections of ventral muscle revealed early-stage Ichthyophonus-like organisms and minimal granulomatous reactions. This is the first report of Ichthyophonus-like infection of Ambystoma maculatum in Virginia.

  9. The phenology of a rare salamander (Salamandra infraimmaculata in a population breeding under unpredictable ambient conditions: a 25 year study

    Directory of Open Access Journals (Sweden)

    Michael R. Warburg

    2007-11-01

    Full Text Available This is a long-term study (1974-1999 on the phenology of the rare, xeric- inhabiting salamander Salamandra infraimmaculata in a small isolated population during the breeding season near the breeding ponds on Mt. Carmel. This is a fringe area of the genus’ south-easternmost Palaearctic distribution. Salamanders were captured during the 25 year long study. The first years up to the 1980s the total number of salamanders increased but during the last years there seems to have been a decline. Although this could be a phase in normal population cyclic oscillations nevertheless when compared with long-term data on a European Salamandra it does not seem so. The interpretation of the species’ status is dependent on numbers of salamanders captured as well as on the duration of the study. These subjects are reviewed and discussed in this paper.

  10. Abundance of western red-backed salamanders (Plethodon vehiculum) in the Washington Coast Range after headwater stream-buffer manipulation

    Science.gov (United States)

    Randall J. Wilk; Jeffrey D. Ricklefs; Martin G. Raphael

    2014-01-01

    We evaluated the effect of forest riparian alternative tree buffer designs on Western Red-backed Salamanders (Plethodon vehiculum) along headwater stream banks in managed forests of the Washington Coast Range. We used pit trap live removals in early autumn to estimate relative abundances of surface-active salamanders before and after 3 levels of riparian buffer...

  11. Heterogeneous vesicles in mucous epithelial cells of posterior esophagus of Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2015-08-01

    Full Text Available The Chinese giant salamander belongs to an old lineage of salamanders and endangered species. Many studies of breeding and disease regarding this amphibian had been implemented. However, the studies on the ultrastructure of this amphibian are rare. In this work, we provide a histological and ultrastructural investigation on posterior esophagus of Chinese giant salamander. The sections of amphibian esophagus were stained by hematoxylin & eosin (H&E. Moreover, the esophageal epithelium was observed by transmission electron microscopy (TEM. The results showed that esophageal epithelium was a single layer epithelium, which consisted of mucous cells and columnar cells. The esophageal glands were present in submucosa. The columnar cells were ciliated. According to the diverging ultrastructure of mucous vesicles, three types of mucous cells could be identified in the esophageal mucosa: i electron-lucent vesicles mucous cell (ELV-MC; ii electron-dense vesicles mucous cell (EDV-MC; and iii mixed vesicles mucous cell (MV-MC.

  12. Cave exploitation by an usual epigean species: a review on the current knowledge on fire salamander breeding in cave

    Directory of Open Access Journals (Sweden)

    Raoul Manenti

    2017-11-01

    Full Text Available The fire salamander (Salamandra salamandra is a relatively common epigean amphibian, widely distributed throughout Europe, which usually gives birth to aquatic larvae. Even if epigean streams represent the most common places in which the species breeds, in some countries caves with underground waters are also used. To improve our understanding of the habitat features allowing successful breeding of salamanders in underground sites, we combined an exhaustive review of the available literature, especially the grey one, with direct observations performed from 2008 to 2017 in several natural and artificial caves of Lombardy, Liguria and Tuscany (Italy, Ariège and Provence (France. We provide a synthesis of published and unpublished caves in which the fire salamander breeding has been observed, along with a synthesis of the investigated ecological, behavioural and morphological traits. The use of underground sites is reported in several published papers and appears to be a common phenomenon not limited to single karst areas. The absence of predators, the relative stability of the aquatic habitats and the possibility to exploit new ecological resources are environmental factors that favour the breeding of the fire salamander. Our synthesis suggests that breeding of fire salamanders in caves is not a random event, but a widespread phenomenon that may be linked to specific biogeographical factors. Further insights may be obtained by performing genetic analyses on both cave and epigean populations, and considering larger landscape scales for ecological studies as well. Gene flow between salamanders that breed in caves and in streams probably occurs, but on the other hand, assortative mating might limit it, thus allowing the conservation of local adaptations driving successful cave colonisation.

  13. Stoichiometry of excreta and excretion rates of a stream-dwelling plethodontid salamander

    Data.gov (United States)

    U.S. Environmental Protection Agency — Stoichiometry of excreta and excretion rates of a stream-dwelling plethodontid salamander in Cincinnati, OH, USA. This dataset is associated with the following...

  14. Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land.

    Science.gov (United States)

    Kawano, Sandy M; Blob, Richard W

    2013-08-01

    The invasion of land was a pivotal event in vertebrate evolution that was associated with major appendicular modifications. Although fossils indicate that the evolution of fundamentally limb-like appendages likely occurred in aquatic environments, the functional consequences of using early digited limbs, rather than fins, for terrestrial propulsion have had little empirical investigation. Paleontological and experimental analyses both have led to the proposal of an early origin of "hind limb-driven" locomotion among tetrapods or their ancestors. However, the retention of a pectoral appendage that had already developed terrestrial adaptations has been proposed for some taxa, and few data are available from extant functional models that can provide a foundation for evaluating the relative contributions of pectoral and pelvic appendages to terrestrial support among early stem tetrapods. To examine these aspects of vertebrate locomotor evolution during the invasion of land, we measured three-dimensional ground reaction forces (GRFs) produced by isolated pectoral fins of mudskipper fishes (Periophthalmus barbarus) during terrestrial crutching, and compared these to isolated walking footfalls by the forelimbs and hind limbs of tiger salamanders (Ambystoma tigrinum), a species with subequally-sized limbs that facilitate comparisons to early tetrapods. Pectoral appendages of salamanders and mudskippers exhibited numerous differences in GRFs. Compared with salamander forelimbs, isolated fins of mudskippers bear lower vertical magnitudes of GRFs (as a proportion of body weight), and had GRFs that were oriented more medially. Comparing the salamanders' forelimbs and hind limbs, although the peak net GRF occurs later in stance for the forelimb, both limbs experience nearly identical mediolateral and vertical components of GRF, suggesting comparable contributions to support. Thus, forelimbs could also have played a significant locomotor role among basal tetrapods that had limbs

  15. Efficacy of riparian buffers in mitigating local populations declines and the effects of even-aged timber harvest on larval salamanders

    Science.gov (United States)

    William E Peterman; Raymond D. Semlitch

    2009-01-01

    Headwater streams are an important and prevalent feature of the eastern North American landscape.These streams provide a wealth of ecosystem services and support tremendous biological diversity, which is predominated by salamanders in the Appalachian region. Salamanders are ubiquitous throughout the region, contributing a significant...

  16. Effects of acid precipitation on embryonic mortality of Ambystoma salamanders in the Connecticut Valley of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R P

    1983-01-01

    An investigation of increased embryonic mortality of the spotted salamander Ambystoma maculatum concomitant with breeding pond acidification from acid rainfall in the Connecticut Valley of Massachusetts analyzes the pH and chemistry of rain and pond water and monitored embryonic mortality in 1976 and 1977. Although acid rain continues to occur in the area and Ambystoma breeding ponds are acidic, the average pH of six ponds dropped from 5.62 to 5.10 during the study. Pond pH decreased up to 0.75 pH units following heavy rainfall. Despite this, embryonic mortality of spotted and Jefferson salamanders was low, and no significant correlation between pond pH and percent embryonic mortality was found. The size of present populations and the embryonic acid tolerance exhibited by the salamander indicate that acid rain has not had an effect in this location. 22 references, 2 figures, 4 tables.

  17. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches

    International Nuclear Information System (INIS)

    Karraker, Nancy E.; Gibbs, James P.

    2011-01-01

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. - Road deicing salts irreversibly disrupts osmoregulation of salamander egg clutches.

  18. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches

    Energy Technology Data Exchange (ETDEWEB)

    Karraker, Nancy E., E-mail: karraker@hku.hk [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States); Gibbs, James P [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States)

    2011-03-15

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. - Road deicing salts irreversibly disrupts osmoregulation of salamander egg clutches.

  19. Distribution of the Sonora Tiger Salamander (Ambystoma mavortium stebbinsi) in Mexico

    Science.gov (United States)

    Hossack, Blake R.; Muths, Erin L.; Rorabaugh, James C.; Lemos Espinal, Julio A.; Sigafus, Brent H.; Chambert, Thierry A.; Carreon Arroyo, Gerardo; Hurtado Felix, David; Toyos Martinez, Daniel; Jones, Thomas R.

    2016-01-01

    The Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi Lowe, 1954) was listed as federally endangered in the USA in 1997 (USFWS 1997). In the USA, the distribution of A. mavortium stebbinsi is limited to the San Rafael Valley (approximately 567 km2), between the Sierra San Antonio (called the Patagonia Mountains in Arizona) and Huachuca Mountains, and south of the Canelo Hills, Arizona (Fig. 1). The USA listing was triggered by loss of natural wetland habitats, threats from invasive predators, frequent die-offs from disease, introgression with the introduced Barred Tiger Salamander (A. mavortium mavortium), and small range and number of breeding sites that increases susceptibility to stochastic events (USFWS 1997). Small population sizes and limited gene flow have caused inbreeding, which may further reduce population viability and the potential for recovery (Jones et al. 1988; Storfer et al. 2014). 

  20. Egg predators of an endemic Italian salamander, Salamandrina perspicillata (Savi, 1821

    Directory of Open Access Journals (Sweden)

    Antonio Romano

    2008-05-01

    Full Text Available We report new aquatic predators feeding on Northern spectacled salamander eggs, Salamandrina perspicillata, an endemic Italian species. Eggs were preyed upon by the leech, Trocheta bykowskii, and the trichopteran larvae of Potamophylax cingulatus and Halesus appenninus.

  1. In search of critically endangered species: the current situation of two tiny salamander species in the Neotropical mountains of Mexico.

    Science.gov (United States)

    Sandoval-Comte, Adriana; Pineda, Eduardo; Aguilar-López, José L

    2012-01-01

    Worldwide, one in every three species of amphibian is endangered, 39 species have gone extinct in the last 500 years and another 130 species are suspected to have gone extinct in recent decades. Of the amphibians, salamanders have the highest portion of their species in one of the risk categories, even higher than the frogs. To date there have been few studies that have used recent field data to examine the status of populations of endangered salamanders. In this study we evaluate the current situation of two tiny salamanders, Parvimolge townsendi and Thorius pennatulus, both of which are distributed at intermediate elevations in the mountains of the northern Neotropics and are considered to be critically endangered; the first has been proposed as possibly extinct. By carrying out exhaustive surveys in both historical and potentially suitable sites for these two species, we evaluated their abundance and the characteristics of their habitats, and we estimated their potential geographic distribution. We visited 22 sites, investing 672 person-hours of sampling effort in the surveys, and found 201 P. townsendi salamanders in 11 sites and only 13 T. pennatulus salamanders in 5 sites. Both species were preferentially found in cloud forest fragments that were well conserved or only moderately transformed, and some of the salamanders were found in shade coffee plantations. The potential distribution area of both species is markedly fragmented and we estimate that it has decreased by more than 48%. The results of this study highlight the importance of carrying out exhaustive, systematic field surveys to obtain accurate information about the current situation of critically endangered species, and help us better understand the crisis that amphibians are facing worldwide.

  2. Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima.

    Science.gov (United States)

    Fuma, Shoichi; Ihara, Sadao; Kawaguchi, Isao; Ishikawa, Takahiro; Watanabe, Yoshito; Kubota, Yoshihisa; Sato, Youji; Takahashi, Hiroyuki; Aono, Tatsuo; Ishii, Nobuyoshi; Soeda, Haruhi; Matsui, Kumi; Une, Yumi; Minamiya, Yukio; Yoshida, Satoshi

    2015-05-01

    The radiological risks to the Tohoku hynobiid salamanders (class Amphibia), Hynobius lichenatus due to the Fukushima Dai-ichi Nuclear Power Plant accident were assessed in Fukushima Prefecture, including evacuation areas. Aquatic egg clutches (n = 1 for each sampling date and site; n = 4 in total), overwintering larvae (n = 1-5 for each sampling date and site; n = 17 in total), and terrestrial juveniles or adults (n = 1 or 3 for each sampling date and site; n = 12 in total) of H. lichenatus were collected from the end of April 2011 to April 2013. Environmental media such as litter (n = 1-5 for each sampling date and site; n = 30 in total), soil (n = 1-8 for each sampling date and site; n = 31 in total), water (n = 1 for each sampling date and site; n = 17 in total), and sediment (n = 1 for each sampling date and site; n = 17 in total) were also collected. Activity concentrations of (134)Cs + (137)Cs were 1.9-2800, 0.13-320, and 0.51-220 kBq (dry kg) (-1) in the litter, soil, and sediment samples, respectively, and were 0.31-220 and <0.29-40 kBq (wet kg)(-1) in the adult and larval salamanders, respectively. External and internal absorbed dose rates to H. lichenatus were calculated from these activity concentration data, using the ERICA Assessment Tool methodology. External dose rates were also measured in situ with glass dosimeters. There was agreement within a factor of 2 between the calculated and measured external dose rates. In the most severely contaminated habitat of this salamander, a northern part of Abukuma Mountains, the highest total dose rates were estimated to be 50 and 15 μGy h(-1) for the adults and overwintering larvae, respectively. Growth and survival of H. lichenatus was not affected at a dose rate of up to 490 μGy h(-1) in the previous laboratory chronic gamma-irradiation experiment, and thus growth and survival of this salamander would not be affected, even in the most severely contaminated habitat in Fukushima Prefecture. However, further

  3. The effect of waist twisting on walking speed of an amphibious salamander like robot

    Science.gov (United States)

    Yin, Xin-Yan; Jia, Li-Chao; Wang, Chen; Xie, Guang-Ming

    2016-06-01

    Amphibious salamanders often swing their waist to coordinate quadruped walking in order to improve their crawling speed. A robot with a swing waist joint, like an amphibious salamander, is used to mimic this locomotion. A control method is designed to allow the robot to maintain the rotational speed of its legs continuous and avoid impact between its legs and the ground. An analytical expression is established between the amplitude of the waist joint and the step length. Further, an optimization amplitude is obtained corresponding to the maximum stride. The simulation results based on automatic dynamic analysis of mechanical systems (ADAMS) and physical experiments verify the rationality and validity of this expression.

  4. Mechanics of lung ventilation in a large aquatic salamander, siren lacertina

    Science.gov (United States)

    Brainerd; j

    1998-06-01

    Lung ventilation in Siren lacertina was studied using X-ray video, measurements of body cavity pressure and electromyography of hypaxial muscles. S. lacertina utilizes a two-stroke buccal pump in which mixing of expired and inspired gas is minimized by partial expansion of the buccal cavity during exhalation and then full expansion after exhalation is complete. Mixing is further reduced by the use of one or two accessory inspirations after the first, mixed-gas cycle. Exhalation occurs in two phases: a passive phase in which hydrostatic pressure and possibly lung elasticity force air out of the lungs, and an active phase in which contraction of the transverse abdominis (TA) muscle increases body cavity pressure and forces most of the remaining air out. In electromyograms of the lateral hypaxial musculature, the TA became active 200-400 ms before the rise in body cavity pressure, and activity ceased at peak pressure. The TA was not active during inspiration, and no consistent activity during breathing was noted in the external oblique, internal oblique and rectus abdominis muscles. The finding that the TA is the primary expiratory muscle in S. lacertina agrees with findings in a previous study of another salamander, Necturus maculosus. Together, these results indicate that the use of the TA for exhalation is a primitive character for salamanders and support the hypothesis that the breathing mechanism of salamanders represents an intermediate step in evolution between a buccal pump, in which only head muscles are used for ventilation, and an aspiration pump, in which axial muscles are used for both exhalation and inhalation.

  5. In search of critically endangered species: the current situation of two tiny salamander species in the Neotropical mountains of Mexico.

    Directory of Open Access Journals (Sweden)

    Adriana Sandoval-Comte

    Full Text Available Worldwide, one in every three species of amphibian is endangered, 39 species have gone extinct in the last 500 years and another 130 species are suspected to have gone extinct in recent decades. Of the amphibians, salamanders have the highest portion of their species in one of the risk categories, even higher than the frogs. To date there have been few studies that have used recent field data to examine the status of populations of endangered salamanders. In this study we evaluate the current situation of two tiny salamanders, Parvimolge townsendi and Thorius pennatulus, both of which are distributed at intermediate elevations in the mountains of the northern Neotropics and are considered to be critically endangered; the first has been proposed as possibly extinct. By carrying out exhaustive surveys in both historical and potentially suitable sites for these two species, we evaluated their abundance and the characteristics of their habitats, and we estimated their potential geographic distribution. We visited 22 sites, investing 672 person-hours of sampling effort in the surveys, and found 201 P. townsendi salamanders in 11 sites and only 13 T. pennatulus salamanders in 5 sites. Both species were preferentially found in cloud forest fragments that were well conserved or only moderately transformed, and some of the salamanders were found in shade coffee plantations. The potential distribution area of both species is markedly fragmented and we estimate that it has decreased by more than 48%. The results of this study highlight the importance of carrying out exhaustive, systematic field surveys to obtain accurate information about the current situation of critically endangered species, and help us better understand the crisis that amphibians are facing worldwide.

  6. Ballistic tongue projection in a miniaturized salamander.

    Science.gov (United States)

    Deban, Stephen M; Bloom, Segall V

    2018-05-20

    Miniaturization of body size is often accompanied by peculiarities in morphology that can have functional consequences. We examined the feeding behavior and morphology of the miniaturized plethodontid salamander Thorius, one of the smallest vertebrates, to determine if its performance and biomechanics differ from those of its larger relatives. High-speed imaging and dynamics analysis of feeding at a range of temperatures show that tongue projection in Thorius macdougalli is ballistic and achieves accelerations of up to 600 G with low thermal sensitivity, indicating that tongue projection is powered by an elastic-recoil mechanism. Preceding ballistic projection is an unusual preparatory phase of tongue protrusion, which, like tongue retraction, shows lower performance and higher thermal sensitivity that are indicative of movement being powered directly by muscle shortening. The variability of tongue-projection kinematics and dynamics is comparable to larger ballistic-tongued plethodontids and reveals that Thorius is capable of modulating its tongue movements in response to prey distance. Morphological examination revealed that T. macdougalli possesses a reduced number of myofibers in the tongue muscles, a large projector muscle mass relative to tongue mass, and an unusual folding of the tongue skeleton, compared with larger relatives. Nonetheless, T. macdougalli retains the elaborated collagen aponeuroses in the projector muscle that store elastic energy and a tongue skeleton that is free of direct myofiber insertion, two features that appear to be essential for ballistic tongue projection in salamanders. © 2018 Wiley Periodicals, Inc.

  7. Conservation genetics of the endangered Shenandoah salamander (Plethodon shenandoah, Plethodontidae)

    Science.gov (United States)

    Carpenter, D.W.; Jung, R.E.; Sites, J.W.

    2001-01-01

    The Shenandoah salamander (Plethodon shenandoah) is restricted to three isolated talus outcrops in Shenandoah National Park, VA, USA and has one of the smallest ranges of any tetrapod vertebrate. This species was listed as endangered under the US Endangered Species Act in 1989 over concern that direct competition with the red-backed salamander (Plethodon cinereus), successional habitat changes, and human impacts may cause its decline and possible extinction. We address two issues herein: (1) whether extensive introgression (through long-term hybridization) is present between the two species and threatens the survival of P. shenandoah, and (2) the level of population structure within P. shenandoah. We provide evidence from mtDNA haplotypes that shows no genetic differentiation among the three isolates of P. shenandoah, suggesting that their fragmentation is a geologically recent event, and/or that the isolates are still connected by occasional gene flow. There is also no evidence for extensive introgression of alleles in either direction between P. cinereus and P. shenandoah, which suggests that P. shenandoah may not be in danger of being genetically swamped out through hybridization with P. cinereus.

  8. Taxonomy Icon Data: Japanese giant salamander [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Japanese giant salamander Andrias japonicus Chordata/Vertebrata/Amphibia Andrias_japonicus_L.png Andrias_jap...onicus_NL.png Andrias_japonicus_S.png Andrias_japonicus_NS.png http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Andrias+japonicus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+jap...onicus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+japonicus...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+japonicus&t=NS ...

  9. An annotated review of the Salamander types described in the Fauna Japonica

    NARCIS (Netherlands)

    Hoogmoed, M.S.

    1978-01-01

    The whereabouts of the salamander types described by Temminck & Schlegel in the Fauna Japonica (1838) are discussed and lectotypes are selected from the syntypes for the following nominal species : Salamandra naevia Temminck & Schlegel, S. unguiculata Temminck & Schlegel, S. subcristata Temminck &

  10. Physical condition, sex, and age-class of eastern red-backed salamanders (Plethodon cinereus) in forested and open habitats of West Virginia, USA

    Science.gov (United States)

    Breanna L. Riedel; Kevin R. Russell; W. Mark Ford

    2012-01-01

    Nonforested habitats such as open fields and pastures have been considered unsuitable for desiccation-prone woodland salamanders such as the Eastern Red-backed Salamander (Plethodon cinereus). Recent research has suggested that Plethodon cinereus may not only disperse across but also reside within open habitats including fields,...

  11. Habitat predictors of genetic diversity for two sympatric wetland-breeding amphibian species.

    Science.gov (United States)

    McKee, Anna M; Maerz, John C; Smith, Lora L; Glenn, Travis C

    2017-08-01

    Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond-breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata ; and Southern Leopard frogs, Lithobates sphenocephalus ) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond-breeding amphibian species.

  12. Data congruence, paedomorphosis and salamanders

    Directory of Open Access Journals (Sweden)

    Struck Torsten H

    2007-10-01

    Full Text Available Abstract Background The retention of ancestral juvenile characters by adult stages of descendants is called paedomorphosis. However, this process can mislead phylogenetic analyses based on morphological data, even in combination with molecular data, because the assessment if a character is primary absent or secondary lost is difficult. Thus, the detection of incongruence between morphological and molecular data is necessary to investigate the reliability of simultaneous analyses. Different methods have been proposed to detect data congruence or incongruence. Five of them (PABA, PBS, NDI, LILD, DRI are used herein to assess incongruence between morphological and molecular data in a case study addressing salamander phylogeny, which comprises several supposedly paedomorphic taxa. Therefore, previously published data sets were compiled herein. Furthermore, two strategies ameliorating effects of paedomorphosis on phylogenetic studies were tested herein using a statistical rigor. Additionally, efficiency of the different methods to assess incongruence was analyzed using this empirical data set. Finally, a test statistic is presented for all these methods except DRI. Results The addition of morphological data to molecular data results in both different positions of three of the four paedomorphic taxa and strong incongruence, but treating the morphological data using different strategies ameliorating the negative impact of paedomorphosis revokes these changes and minimizes the conflict. Of these strategies the strategy to just exclude paedomorphic character traits seem to be most beneficial. Of the three molecular partitions analyzed herein the RAG1 partition seems to be the most suitable to resolve deep salamander phylogeny. The rRNA and mtDNA partition are either too conserved or too variable, respectively. Of the different methods to detect incongruence, the NDI and PABA approaches are more conservative in the indication of incongruence than LILD and

  13. Conservation genetics of extremely isolated urban populations of the northern dusky salamander (Desmognathus fuscus in New York City

    Directory of Open Access Journals (Sweden)

    Jason Munshi-South

    2013-04-01

    Full Text Available Urbanization is a major cause of amphibian decline. Stream-dwelling plethodontid salamanders are particularly susceptible to urbanization due to declining water quality and hydrological changes, but few studies have examined these taxa in cities. The northern dusky salamander (Desmognathus fuscus was once common in the New York City metropolitan area, but has substantially declined throughout the region in recent decades. We used five tetranucleotide microsatellite loci to examine population differentiation, genetic variation, and bottlenecks among five remnant urban populations of dusky salamanders in NYC. These genetic measures provide information on isolation, prevalence of inbreeding, long-term prospects for population persistence, and potential for evolutionary responses to future environmental change. All populations were genetically differentiated from each other, and the most isolated populations in Manhattan have maintained very little genetic variation (i.e. <20% heterozygosity. A majority of the populations also exhibited evidence of genetic bottlenecks. These findings contrast with published estimates of high genetic variation within and lack of structure between populations of other desmognathine salamanders sampled over similar or larger spatial scales. Declines in genetic variation likely resulted from population extirpations and the degradation of stream and terrestrial paths for dispersal in NYC. Loss of genetic variability in populations isolated by human development may be an underappreciated cause and/or consequence of the decline of this species in urbanized areas of the northeast USA.

  14. SPATIALLY AUTOCORRELATED DEMOGRAPHY AND INTERPOND MIGRATION IN THE CALIFORNIA TIGER SALAMANDER (AMBYSTOME CALIFORNIENSE)

    Science.gov (United States)

    We investigated the metapopulation structure of the California tiger salamander (Ambystoma californiense) using a combination of indirect and direct methods to evaluate two key requirements of modern metapopulation models: 1) that patches support somewhat independent populations ...

  15. Comparing population patterns to processes: abundance and survival of a forest salamander following habitat degradation.

    Directory of Open Access Journals (Sweden)

    Clint R V Otto

    Full Text Available Habitat degradation resulting from anthropogenic activities poses immediate and prolonged threats to biodiversity, particularly among declining amphibians. Many studies infer amphibian response to habitat degradation by correlating patterns in species occupancy or abundance with environmental effects, often without regard to the demographic processes underlying these patterns. We evaluated how retention of vertical green trees (CANOPY and coarse woody debris (CWD influenced terrestrial salamander abundance and apparent survival in recently clearcut forests. Estimated abundance of unmarked salamanders was positively related to CANOPY (β Canopy  = 0.21 (0.02-1.19; 95% CI, but not CWD (β CWD  = 0.11 (-0.13-0.35 within 3,600 m2 sites, whereas estimated abundance of unmarked salamanders was not related to CANOPY (β Canopy  = -0.01 (-0.21-0.18 or CWD (β CWD  = -0.02 (-0.23-0.19 for 9 m2 enclosures. In contrast, apparent survival of marked salamanders within our enclosures over 1 month was positively influenced by both CANOPY and CWD retention (β Canopy  = 0.73 (0.27-1.19; 95% CI and β CWD  = 1.01 (0.53-1.50. Our results indicate that environmental correlates to abundance are scale dependent reflecting habitat selection processes and organism movements after a habitat disturbance event. Our study also provides a cautionary example of how scientific inference is conditional on the response variable(s, and scale(s of measure chosen by the investigator, which can have important implications for species conservation and management. Our research highlights the need for joint evaluation of population state variables, such as abundance, and population-level process, such as survival, when assessing anthropogenic impacts on forest biodiversity.

  16. Genic regions of a large salamander genome contain long introns and novel genes

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2009-01-01

    Full Text Available Abstract Background The basis of genome size variation remains an outstanding question because DNA sequence data are lacking for organisms with large genomes. Sixteen BAC clones from the Mexican axolotl (Ambystoma mexicanum: c-value = 32 × 109 bp were isolated and sequenced to characterize the structure of genic regions. Results Annotation of genes within BACs showed that axolotl introns are on average 10× longer than orthologous vertebrate introns and they are predicted to contain more functional elements, including miRNAs and snoRNAs. Loci were discovered within BACs for two novel EST transcripts that are differentially expressed during spinal cord regeneration and skin metamorphosis. Unexpectedly, a third novel gene was also discovered while manually annotating BACs. Analysis of human-axolotl protein-coding sequences suggests there are 2% more lineage specific genes in the axolotl genome than the human genome, but the great majority (86% of genes between axolotl and human are predicted to be 1:1 orthologs. Considering that axolotl genes are on average 5× larger than human genes, the genic component of the salamander genome is estimated to be incredibly large, approximately 2.8 gigabases! Conclusion This study shows that a large salamander genome has a correspondingly large genic component, primarily because genes have incredibly long introns. These intronic sequences may harbor novel coding and non-coding sequences that regulate biological processes that are unique to salamanders.

  17. Unexpected rarity of the pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957-2011.

    Directory of Open Access Journals (Sweden)

    Carly Muletz

    Full Text Available Widespread population declines in terrestrial Plethodon salamanders occurred by the 1980s throughout the Appalachian Mountains, the center of global salamander diversity, with no evident recovery. We tested the hypothesis that the historic introduction and spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd into the eastern US was followed by Plethodon population declines. We expected to detect elevated prevalence of Bd prior to population declines as observed for Central American plethodontids. We tested 1,498 Plethodon salamanders of 12 species (892 museum specimens, 606 wild individuals for the presence of Bd, and tested 94 of those for Batrachochytrium salamandrivorans (Bs and for ranavirus. Field samples were collected in 2011 from 48 field sites across a 767 km transect. Historic samples from museum specimens were collected at five sites with the greatest number and longest duration of collection (1957-987, four of which were sampled in the field in 2011. None of the museum specimens were positive for Bd, but four P. cinereus from field surveys were positive. The overall Bd prevalence from 1957-2011 for 12 Plethodon species sampled across a 757 km transect was 0.2% (95% CI 0.1-0.7%. All 94 samples were negative for Bs and ranavirus. We conclude that known amphibian pathogens are unlikely causes for declines in these Plethodon populations. Furthermore, these exceptionally low levels of Bd, in a region known to harbor Bd, may indicate that Plethodon specific traits limit Bd infection.

  18. Identification of conservation units of the hynobiid salamander Pachyhynobius shangchengensis.

    Science.gov (United States)

    Su, L-N; Zhao, Y-Y; Wu, X-M; Zhang, H-F; Li, X-C

    2015-08-19

    The evolutionary significant units (ESUs) of the salamander Pachyhynobius shangchengensis (Hynobiidae) in the Dabieshan mountains, southeastern China, were identified based on mitochondrial DNA data. We used methods for detecting cryptic species, such as the minimum spanning tree, the automatic barcode gap discovery, and the generalized mixed Yule-coalescent model; geographical partitioning was also used to identify the ESUs. A total of four ESUs were identified.

  19. Prevalence of Batrachochytrium dendrobatidis in a Nicaraguan, micro-endemic Neotropical salamander, Bolitoglossa mombachoensis

    NARCIS (Netherlands)

    Stark, Tariq; Laurijssens, Carlijn; Weterings, Martijn; Martel, An; Köhler, Gunther; Pasmans, Frank

    2017-01-01

    Amphibians are the most threatened terrestrial vertebrates on the planet and are iconic in the global biodiversity crisis. Their global decline caused by the fungal agent Batrachochytrium dendrobatidis (Bd) is well known. Declines of Mesoamerican salamanders of the family Plethodontidae, mainly

  20. Transcriptomic analysis of endangered Chinese salamander: identification of immune, sex and reproduction-related genes and genetic markers.

    Directory of Open Access Journals (Sweden)

    Rongbo Che

    Full Text Available The Chinese salamander (Hynobius chinensis, an endangered amphibian species of salamander endemic to China, has attracted much attention because of its value of studying paleontology evolutionary history and decreasing population size. Despite increasing interest in the Hynobius chinensis genome, genomic resources for the species are still very limited. A comprehensive transcriptome of Hynobius chinensis, which will provide a resource for genome annotation, candidate genes identification and molecular marker development should be generated to supplement it.We performed a de novo assembly of Hynobius chinensis transcriptome by Illumina sequencing. A total of 148,510 nonredundant unigenes with an average length of approximately 580 bp were obtained. In all, 60,388 (40.66% unigenes showed homologous matches in at least one database and 33,537 (22.58% unigenes were annotated by all four databases. In total, 41,553 unigenes were categorized into 62 sub-categories by BLAST2GO search, and 19,468 transcripts were assigned to 140 KEGG pathways. A large number of unigenes involved in immune system, local adaptation, reproduction and sex determination were identified, as well as 31,982 simple sequence repeats (SSRs and 460,923 putative single nucleotide polymorphisms (SNPs.This dataset represents the first transcriptome analysis of the Chinese salamander (Hynobius chinensis, an endangered species, to be also the first time of hynobiidae. The transcriptome will provide valuable resource for further research in discovery of new genes, protection of population, adaptive evolution and survey of various pathways, as well as development of molecule markers in Chinese salamander; and reference information for closely related species.

  1. 3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese giant salamander Andrias davidianus (Amphibia:Urodela.

    Directory of Open Access Journals (Sweden)

    Josep Fortuny

    Full Text Available Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their "conservative" morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints.

  2. Larval salamanders and channel geomorphology are indicators of hydrologic permanence in forested headwater streams

    Science.gov (United States)

    Regulatory agencies need rapid indicators of hydrologic permanence for jurisdictional determinations of headwater streams. Our study objective was to assess the utility of larval salamander presence and assemblage structure and habitat variables for determining stream permanence ...

  3. Differentiated egg size of the cannibalistic salamander Hynobius retardatus

    OpenAIRE

    Michimae, Hirofumi

    2007-01-01

    Larvae of the salamander, Hynobius retardatus, are carnivorous, and even though there are two morphs, a typical morph and a broad-headed or “cannibal” morph, both are cannibalistic. They also sometimes eat other large prey, for example larvae of the frog, Rana pirica. In natural habitats, use of both conspecific and R. pirica larvae as food may contribute more strongly to high survival and substantially to fitness when larval densities are higher, because early-stage H. retardatus larvae some...

  4. Macrohabitat models of occurrence for the threatened Cheat Mountain salamander, Plethodon nettingi

    Science.gov (United States)

    Lester O. Dillard; Kevin R. Russell; W. Mark Ford

    2008-01-01

    The federally threatened Cheat Mountain salamander (Plethodon nettingi; hereafter CMS) is known to occur at approximately 70 small, scattered sites in the Allegheny Mountains of eastern West Virginia. We used a comparative modeling approach to explain the landscape-level distribution and habitat relationships of CMS in relation to a suite of biotic...

  5. Telocytes in pancreas of the Chinese giant salamander (Andrias davidianus).

    Science.gov (United States)

    Zhang, Hui; Yu, Pengcheng; Zhong, Shengwei; Ge, Tingting; Peng, Shasha; Guo, Xiaoquan; Zhou, Zuohong

    2016-11-01

    Telocytes (TCs), novel interstitial cells, have been identified in various organs of many mammals. However, information about TCs of lower animals remains rare. Herein, pancreatic TCs of the Chinese giant salamanders (Andrias davidianus) were identified by CD34 immunohistochemistry (IHC) and transmission electron microscopy (TEM). The IHC micrographs revealed CD34 + TCs with long telopodes (Tps) that were located in the interstitium of the pancreas. CD34 + TCs/Tps were frequently observed between exocrine acinar cells and were close to blood vessels. The TEM micrographs also showed the existence of TCs in the interstitium of the pancreas. TCs had distinctive ultrastructural features, such as one to three very long and thin Tps with podoms and podomers, caveolae, dichotomous branching, neighbouring exosomes and vesicles. The Tps and exosomes were found in close proximity to exocrine acinar cells and α cells. It is suggested that TCs may play a role in the regeneration of acinar cells and α cells. In conclusion, our results demonstrated the presence of TCs in the pancreas of the Chinese giant salamander. This finding will assist us in a better understanding of TCs functions in the amphibian pancreas. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Effects of chronic γ-irradiation on growth and survival of the Tohoku hynobiid salamander, Hynobius lichenatus

    Energy Technology Data Exchange (ETDEWEB)

    Fuma, Shoichi [Project for Environmental Dynamics and Radiation Effects, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 Japan (Japan); Une, Yumi [Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201 (Japan); Ihara, Sadao [Hokkaido University of Education Kushiro Campus, 1-15-55 Shiroyama, Kushiro, Hokkaido 085-8580 Japan (Japan); Matsui, Kumi [Laboratory of Veterinary Physiology 1, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201 (Japan); Kudo, Tomoo; Tokiwa, Toshihiro [Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201 (Japan); Kubota, Yoshihisa; Soeda, Haruhi [Project for Environmental Dynamics and Radiation Effects, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 Japan (Japan); Ishikawa, Takahiro [Department of Technical Support and Development, Research, Development and Support Centre, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 Japan (Japan); Doi, Kazutaka [Project for Human Health, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 Japan (Japan); Watanabe, Yoshito; Yoshida, Satoshi [Project for Environmental Dynamics and Radiation Effects, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 Japan (Japan)

    2014-09-15

    The Tohoku hynobiid salamanders, Hynobius lichenatus, were chronically irradiated with γ-rays from embryonic to juvenile stages for 450 days. At 490 μGy h{sup −1} or lower dose rates, growth and survival were not significantly affected by irradiation, and any morphological aberrations and histological damages were not observed. At 4600 μGy h{sup −1}, growth was severely inhibited, and all the individuals died mostly at the juvenile stage. Chronic LD{sub 50} was 42 Gy as a total dose. In the liver, the number of hematopoietic cells was significantly reduced in the living juveniles, and these cells disappeared in the dead juveniles. In the spleen, mature lymphocytes were depleted in the living larvae, and almost all the heamtopoietic cells disappeared in the dead juveniles. These results suggest that this salamander died due to acute radiation syndrome, i.e., hematopoietic damage and subsequent sepsis caused by immune depression. The death would be also attributed to skin damage inducing infection. At 18,000 μGy h{sup −1}, morphological aberrations and severe growth inhibition were observed. All the individuals died at the larval stage due to a multiple organ failure. Chronic LD{sub 50} was 28 Gy as a total dose. Assuming that chronic LD{sub 50} was 42 Gy at lower dose rates than 4600 μGy h{sup −1}, a chronic median lethal dose rate could be estimated to be <340 μGy h{sup −1} for the whole life (>14 years). These results suggest that, among guidance dose rates, i.e., 4–400 μGy h{sup −1}, proposed by various organisations and research programmes for protection of amphibians and taxonomic groups or ecosystems including amphibians, most of them would protect this salamander but the highest value may not on the whole life scale. - Highlights: • The salamanders, Hynobius lichenatus, were chronically γ-irradiated for 450 days. • At 490 μGy h{sup −1} or lower, irradiation did not significantly affect growth and survival. • All the individuals

  7. Salamander chytrid fungus (Batrachochytrium salamandrivorans) in the United States—Developing research, monitoring, and management strategies

    Science.gov (United States)

    Grant, Evan H. Campbell; Muths, Erin L.; Katz, Rachel A.; Canessa, Stefano; Adams, Michael J.; Ballard, Jennifer R.; Berger, Lee; Briggs, Cheryl J.; Coleman, Jeremy; Gray, Matthew J.; Harris, M. Camille; Harris, Reid N.; Hossack, Blake R.; Huyvaert, Kathryn P.; Kolby, Jonathan E.; Lips, Karen R.; Lovich, Robert E.; McCallum, Hamish I.; Mendelson, Joseph R.; Nanjappa, Priya; Olson, Deanna H.; Powers, Jenny G.; Richgels, Katherine L. D.; Russell, Robin E.; Schmidt, Benedikt R.; Spitzen-van der Sluijs, Annemarieke; Watry, Mary Kay; Woodhams, Douglas C.; White, C. LeAnn

    2016-01-20

    The recently (2013) identified pathogenic chytrid fungus, Batrachochytrium salamandrivorans (Bsal), poses a severe threat to the distribution and abundance of salamanders within the United States and Europe. Development of a response strategy for the potential, and likely, invasion of Bsal into the United States is crucial to protect global salamander biodiversity. A formal working group, led by Amphibian Research and Monitoring Initiative (ARMI) scientists from the U.S. Geological Survey (USGS) Patuxent Wildlife Research Center, Fort Collins Science Center, and Forest and Rangeland Ecosystem Science Center, was held at the USGS Powell Center for Analysis and Synthesis in Fort Collins, Colorado, United States from June 23 to June 25, 2015, to identify crucial Bsal research and monitoring needs that could inform conservation and management strategies for salamanders in the United States. Key findings of the workshop included the following: (1) the introduction of Bsal into the United States is highly probable, if not inevitable, thus requiring development of immediate short-term and long-term intervention strategies to prevent Bsal establishment and biodiversity decline; (2) management actions targeted towards pathogen containment may be ineffective in reducing the long-term spread of Bsal throughout the United States; and (3) early detection of Bsal through surveillance at key amphibian import locations, among high-risk wild populations, and through analysis of archived samples is necessary for developing management responses. Top research priorities during the preinvasion stage included the following: (1) deployment of qualified diagnostic methods for Bsal and establishment of standardized laboratory practices, (2) assessment of susceptibility for amphibian hosts (including anurans), and (3) development and evaluation of short- and long-term pathogen intervention and management strategies. Several outcomes were achieved during the workshop, including development

  8. The Dynamics of Two Hybrid Zones in Appalachian Salamanders of the Genus Plethodon

    Science.gov (United States)

    Nelson G. Hairston; R. Haven Wiley; Charles K. Smith; Kenneth A. Kneidel

    1992-01-01

    Two zones of intergradation between populations of Plethodon have been studied for 18 and 20 years, respectively. The data consist of systematic scores of colors, made at least twice annually. Near Heintooga Overlook in the Balsam Mountains (Great Smoky Mountains National Park), the salamanders' cheeks are gray. Proceeding north toward the...

  9. Microarray analysis identifies keratin loci as sensitive biomarkers for thyroid hormone disruption in the salamander Ambystoma mexicanum.

    Science.gov (United States)

    Page, Robert B; Monaghan, James R; Samuels, Amy K; Smith, Jeramiah J; Beachy, Christopher K; Voss, S Randal

    2007-02-01

    Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.

  10. Modelling cross-scale relationships between climate, hydrology, and individual animals: Generating scenarios for stream salamanders

    Directory of Open Access Journals (Sweden)

    Philippe eGirard

    2015-07-01

    Full Text Available Hybrid modelling provides a unique opportunity to study cross-scale relationships in environmental systems by linking together models of global, regional, landscape, and local-scale processes, yet the approach is rarely applied to address conservation and management questions. Here, we demonstrate how a hybrid modelling approach can be used to assess the effect of cross-scale interactions on the survival of the Allegheny Mountain Dusky Salamander (Desmognathus ochrophaeus in response to changes in temperature and water availability induced by climate change at the northern limits of its distribution. To do so, we combine regional climate modelling with a landscape-scale integrated surface-groundwater flow model and an individual-based model of stream salamanders. On average, climate scenarios depict a warmer and wetter environment for the 2050 horizon. The increase in average annual temperature and extended hydrological activity time series in the future, combined with a better synchronization with the salamanders’ reproduction period, result in a significant increase in the long-term population viability of the salamanders. This indicates that climate change may not necessarily limit the survivability of small, stream-dwelling animals in headwater basins located in cold and humid regions. This new knowledge suggests that habitat conservation initiatives for amphibians with large latitudinal distributions in Eastern North America should be prioritized at the northern limits of their ranges to facilitate species migration and persistence in the face of climate change. This example demonstrates how hybrid models can serve as powerful tools for informing management and conservation decisions.

  11. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    Science.gov (United States)

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  12. Ambient ultraviolet radiation causes mortality in salamander eggs

    International Nuclear Information System (INIS)

    Blaustein, A.R.; Edmond, B.; Kiesecker, J.M.

    1995-01-01

    Previous research has shown that amphibian species have differential sensitivity to ultraviolet-B (UV-B) radiation. In some anuran species, ambient levels of UV-B cause mortality in embryonic stages and hatching success is significantly reduced. Projected increases in UV-B may affect an increasing number of species. The adverse effects of UV-B may eventually be manifested at the population level and may ultimately contribute to population declines. Using field experiments, we investigated the effects of ambient UV-B on salamander (Ambystoma gracile) embryos developing at natural oviposition sites. We show that the hatching success of eggs of A. gracile shielded from UV-B is significantly higher than those not shielded from UV-B. 27 refs., 1 fig

  13. 76 FR 44036 - Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, AT&T Portable...

    Science.gov (United States)

    2011-07-22

    ... developed portion of the AT&T facility on October 25 and 29, 2010. In addition, several salamander larvae... were rejected due to the presence of other Federally listed species, including vernal pool fairy shrimp...

  14. Fire salamander (Salamandra salamandra in Larzac plateau: low occurrence, pond-breeding and cohabitation of larvae with paedomorphic palmate newts (Lissotriton helveticus

    Directory of Open Access Journals (Sweden)

    Mathieu Denoël

    2014-06-01

    Full Text Available Alternative reproductive strategies are widespread in caudate amphibians. Among them, fire salamanders (Salamandra salamandra usually rely on streams to give birth to aquatic larvae but also use ponds, whereas palmate newt larvae (Lissotriton helveticus typically metamorphose into terrestrial juveniles, but can also reproduce in retaining their gills, a process known as paedomorphosis. Here we report repeated observations of an unusual case of coexistence of these two alternative traits in the same pond (Larzac, France. The prevalence of fire salamanders in Southern Larzac was very low (pond occupancy: 0.36%. The observed abundance of fire salamander larvae and paedomorphic newts was also low in the studied pond. On one hand, the rarity of this coexistence pattern may suggest that habitat characteristics may not be optimal or that competition or predation processes might be operating. However, these hypotheses remain to be tested. On the other hand, as this is the only known case of breeding in Southern Larzac, it could be considered to be at a high risk of extirpation.

  15. Geographic variation, genetic structure, and conservation unit designation in the Larch Mountain salamander (Plethodon larselli).

    Science.gov (United States)

    R. Steven Wagner; Mark P. Miller; Charles M. Crisafulli; Susan M. Haig

    2005-01-01

    The Larch Mountain salamander (Plethodon larselli Burns, 1954) is an endemic species in the Pacific northwestern United States facing threats related to habitat destruction. To facilitate development of conservation strategies, we used DNA sequences and RAPDs (random amplified polymorphic DNA) to examine differences among populations of this...

  16. Projected loss of a salamander diversity hotspot as a consequence of projected global climate change

    Science.gov (United States)

    Joseph R. Milanovich; William E. Peterman; Nathan P. Nibbelink; John C. Maerz

    2010-01-01

    Background: Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation....

  17. Phylogenetic analysis of Common Garter Snake (Thamnophis sirtalis) stomach contents detects cryptic range of a secretive salamander (Ensatina eschscholtzii oregonensis) Herpetological Conservation and Biology 5(3):395–402

    Science.gov (United States)

    Sean B. Reilly; Andrew D Gottsho; Justin M. Garwood; Bryan. Jennings

    2010-01-01

    Given the current global amphibian decline, it is crucial to obtain accurate and current information regarding species distributions. Secretive amphibians such as plethodontid salamanders can be difficult to detect in many cases, especially in remote, high elevation areas. We used molecular phylogenetic analyses to identify three partially digested salamanders palped...

  18. Can the eastern red-backed salamander (Plethodon cinereus) persist in an acidified landscape?

    Science.gov (United States)

    Bondi, Cheryl A; Beier, Colin M.; Ducey, Peter K; Lawrence, Gregory B.; Bailey, Scott W.

    2016-01-01

    Hardwood forests of eastern North America have experienced decades of acidic deposition, leading to soil acidification where base cation supply was insufficient to neutralize acid inputs. Negative impacts of soil acidity on amphibians include disrupted embryonic development, lower growth rates, and habitat loss. However, some amphibians exhibit intraspecific variation in acid tolerance, suggesting the potential for local adaptation in areas where soils are naturally acidic. The eastern red-backed salamander (Plethodon cinereus) is a highly abundant top predator of the northern hardwood forest floor. Early research found that P. cinereus was sensitive to acidic soils, avoiding substrates with pH habitats. However, recent studies have documented P. cinereus populations in lower pH conditions than previously observed, suggesting some populations may persist in acidic conditions. Here, we evaluated relationships between organic horizon soil pH and P. cinereus abundance, adult health (body size and condition), and microhabitat selection, based on surveys of 34 hardwood forests in northeastern United States that encompass a regional soil pH gradient. We found no associations between soil pH and P. cinereus abundance or health, and observed that this salamander used substrates with pH similar to that available, suggesting that pH does not mediate their fine-scale distributions. The strongest negative predictor of P. cinereus abundance was the presence of dusky salamanders (Desmognathus spp.), which were most abundant in the western Adirondacks. Our results indicate that P. cinereus occupies a wider range of soil pH than has been previously thought, which has implications for their functional role in forest food webs and nutrient cycles in acid-impaired ecosystems. Tolerance of P. cinereus for more acidic habitats, including anthropogenically acidified forests, may be due to local adaptation in reproductively isolated populations and/or generalist

  19. Effects of pH on embryo tolerance and adult behavior in the tiger salamander, Ambystoma tigrinum tigrinum

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, H H; Howard, R D; Whitten, K A [Purdue Univ., Lafayette, IN (United States). Dept. of Biological Sciences

    1995-08-01

    Adult discrimination ability and embryo performance was examined under different pH conditions in the eastern tiger salamander. Individuals from three populations were collected in habitats that differed naturally in pH. Two pH treatments were used to determine adult pH discrimination ability, and eight pH treatments to evaluate embryo performance. Results suggested that the pH of the source-population habitat could influence breeding-habitat discrimination by adults. Decreasing pH produced similar patterns of lethal and sublethal effects on embryos from the three populations, with reduced performance at low pH. The pH at which 50% mortality occurs was estimated at 4.2, suggesting that tiger salamanders were relatively acid tolerant. The study suggested that adult behavior patterns could influence the success of population reintroductions to previously acidified areas. 78 refs., 2 tabs., 4 figs.

  20. A new species of salamander (Bolitoglossa: Plethodontidae from the Cordillera Oriental of the Colombian Andes

    Directory of Open Access Journals (Sweden)

    Andrés R. Acosta-Galvis

    2012-01-01

    Full Text Available Eight species of salamanders are recognized to Cordillera Oriental of Colombia. Here we describe a new species of the genus Bolitoglossa, named Bolitoglossa guaneae sp. nov. The highest number of species of this genus is found in the cloud forests located in the western flank of the Cordillera Oriental.

  1. Woodland salamanders as metrics of forest ecosystem recovery: a case study from California’s redwoods

    Science.gov (United States)

    Hart Welsh; Garth Hodgson

    2013-01-01

    Woodland (Plethodontid) salamanders occur in huge numbers in healthy forests in North America where the abundances of many species vary along successional gradients. Their high numbers and trophic role as predators on shredder and decomposer arthropods influence nutrient and carbon pathways at the leaf litter/soil interface. Their extreme niche conservatism and low...

  2. Cutaneous mastocytomas in the neotenic caudate amphibians Ambystoma mexicanum (axolotl) and Ambystoma tigrinun (tiger salamander)

    Science.gov (United States)

    Harshbarger, J.C.; Chang, S.C.; DeLanney, L.E.; Rose, F.L.; Green, D.E.

    1999-01-01

    Spontaneous mastocytomas studied in 18 axolotls (Ambystoma mexicanum) and six tiger salamanders (Ambystoma tigrinum) were gray-white, uni- to multilobular cutaneous protrusions from 2mm to 2cm in diameter. Tumors were moderately cellular unencapsulated masses that usually infiltrated the dermis and hypodermis with the destruction of intervening tissues. Some tumors were invading superficial bundles of the underlying skeletal muscle. Tumors consisted of mitotically active cells derived from a single lineage but showing a range of differentiation. Immature cells had nearly smooth to lightly cleft or folded basophilic nuclei bordered by a band of cytoplasm with few cytoplasmic processes and containing a few small uniform eccentric granules. Mature cells had basophilic nuclei with deep clefts or folds and abundant eosinophilic cytoplasm with multiple long intertwining cytoplasmic extensions packed with metachromatic granules. The axolotls were old individuals from an inbred laboratory colony. The tiger salamanders were wild animals from a single polluted pond. They could have been old and inbred. Both groups were neotenic. These are the first mastocytomas discovered in cold-blooded animals.

  3. Fostering Children’s Connection to Nature Through Authentic Situations: The Case of Saving Salamanders at School

    Directory of Open Access Journals (Sweden)

    Stephan Barthel

    2018-06-01

    Full Text Available The aim of this paper is to explore how children learn to form new relationships with nature. It draws on a longitudinal case study of children participating in a stewardship project involving the conservation of salamanders during the school day in Stockholm, Sweden. The qualitative method includes two waves of data collection: when a group of 10-year-old children participated in the project (2015 and 2 years after they participated (2017. We conducted 49 interviews with children as well as using participant observations and questionnaires. We found indications that children developed sympathy for salamanders and increased concern and care for nature, and that such relationships persisted 2 years after participation. Our rich qualitative data suggest that whole situations of sufficient unpredictability triggering free exploration of the area, direct sensory contact and significant experiences of interacting with a species were important for children’s development of affective relationships with the salamander species and with nature in an open-ended sense. Saving the lives of trapped animals enabled direct sensory interaction, feedback, increased understanding, and development of new skills for dynamically exploring further ways of saving species in an interactive process experienced as deeply meaningful, enjoyable and connecting. The behavioral setting instilled a sense of pride and commitment, and the high degree of responsibility given to the children while exploring the habitat during authentic situations enriched children’s enjoyment. The study has implications for the design of education programs that aim to connect children with nature and for a child-sensitive urban policy that supports authentic nature situations in close spatial proximity to preschools and schools.

  4. Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans

    OpenAIRE

    Van Rooij, Pascale; Pasmans, Frank; Coen, Yanaïka; Martel, An

    2017-01-01

    The recently emerged chytrid fungus Batrachochytrium salamandrivorans (Bsal) causes European salamander declines. Proper hygiene protocols including disinfection procedures are crucial to prevent disease transmission. Here, the efficacy of chemical disinfectants in killing Bsal was evaluated. At all tested conditions, Biocidal (R), Chloramine-T (R), Dettol medical (R), Disolol (R), ethanol, F10 (R), Hibiscrub (R), potassium permanganate, Safe4 (R), sodium hypochlorite, and Virkon S (R), were ...

  5. The trophic role of a forest salamander: impacts on invertebrates, leaf litter retention, and the humification process

    Science.gov (United States)

    M. L. Best; H. H. Welsh

    2014-01-01

    Woodland (Plethodontid) salamanders are the most abundant vertebrates in North American forests, functioning as predators on invertebrates and prey for higher trophic levels. We investigated the role of Ensatina (Ensatina eschscholtzii) in regulating invertebrate numbers and leaf litter retention in a northern California forest. Our objective was...

  6. Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: A simulation study

    Directory of Open Access Journals (Sweden)

    Nalin eHarischandra

    2011-11-01

    Full Text Available Here, we use a three-dimensional, neuro-musculo-mechanical model of a salamander with realistic physical parameters in order to investigate the role of sensory feedback in gait generation and transition. Activation of limb and axial muscles were driven by neural output patterns obtained from a central pattern generator (CPG which is composed of simulated spiking neurons with adaptation. The CPG consists of a body CPG and four limb CPGs that are interconnected via synapses both ipsilateraly and contralaterally. We use the model both with and without sensory modulation and for different combinations of ipsilateral and contralateral coupling between the limb CPGs. We found that the proprioceptive sensory inputs are essential in obtaining a coordinated walking gait. The sensory feedback includes the signals coming from the stretch receptor like intraspinal neurons located in the girdle regions and the limb stretch receptors residing in the hip and scapula regions of the salamander. On the other hand, coordinated motor output patterns for the trotting gait were obtainable without the sensory inputs. We found that the gait transition from walking to trotting can be induced by increased activity of the descending drive coming from the mesencephalic locomotor region (MLR and is helped by the sensory inputs at the hip and scapula regions detecting the late stance phase. More neurophysiological experiments are required to identify the precise type of mechanoreceptors in the salamander and the neural mechanisms mediating the sensory modulation.

  7. Osteological Variation among Extreme Morphological Forms in the Mexican Salamander Genus Chiropterotriton (Amphibia: Plethodontidae: Morphological Evolution And Homoplasy.

    Directory of Open Access Journals (Sweden)

    David M Darda

    Full Text Available Osteological variation is recorded among and within four of the most distinctive species of the Mexican salamander genus Chiropterotriton. Analysis of the data is consistent with the monophyletic status of the genus and documents previously unrecorded intraspecific and interspecific variation. Most of the recorded variation involves qualitative and quantitative proportional differences, but four fixed differences constitute autapomorphic states that affirm and diagnose some species (C. dimidiatus, C. magnipes. Osteological variation in 15 characters is analyzed with respect to predictions generated from four hypotheses: 1 phylogeny, 2 adaptation to specific habitats (the four species include cave-dwelling, terrestrial, and arboreal forms, 3 size-free shape, and 4 size. High levels of intraspecific variation suggest that the characters studied are not subject to rigid functional constraints in salamanders, regardless of size. The pattern predicted by the hypothesis based on size differences seen among these four Chiropterotriton species matches most closely the observed pattern of relative skull robustness. Since size change and heterochrony are often associated in plethodontid evolution, it is likely that changes in developmental timing play a role in the morphological transitions among these morphologically diverse taxa. Webbed feet, miniaturization, body shape, and an unusual tarsal arrangement are morphologies exhibited in species of Chiropterotrition that are shown to be homoplastic with other clades of tropical plethodontids. Although extensive homoplasy in salamanders might be seen as a roadblock to unraveling phylogenetic hypotheses, the homologous developmental systems that appear to underlie such homoplasy may reveal common and consistent evolutionary processes at work.

  8. Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration.

    Directory of Open Access Journals (Sweden)

    Acely Garza-Garcia

    Full Text Available BACKGROUND: Following the amputation of a limb, newts and salamanders have the capability to regenerate the lost tissues via a complex process that takes place at the site of injury. Initially these cells undergo dedifferentiation to a state competent to regenerate the missing limb structures. Crucially, dedifferentiated cells have memory of their level of origin along the proximodistal (PD axis of the limb, a property known as positional identity. Notophthalmus viridescens Prod1 is a cell-surface molecule of the three-finger protein (TFP superfamily involved in the specification of newt limb PD identity. The TFP superfamily is a highly diverse group of metazoan proteins that includes snake venom toxins, mammalian transmembrane receptors and miscellaneous signaling molecules. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of identifying potential orthologs of Prod1, we have solved its 3D structure and compared it to other known TFPs using phylogenetic techniques. The analysis shows that TFP 3D structures group in different categories according to function. Prod1 clusters with other cell surface protein TFP domains including the complement regulator CD59 and the C-terminal domain of urokinase-type plasminogen activator. To infer orthology, a structure-based multiple sequence alignment of representative TFP family members was built and analyzed by phylogenetic methods. Prod1 has been proposed to be the salamander CD59 but our analysis fails to support this association. Prod1 is not a good match for any of the TFP families present in mammals and this result was further supported by the identification of the putative orthologs of both CD59 and N. viridescens Prod1 in sequence data for the salamander Ambystoma tigrinum. CONCLUSIONS/SIGNIFICANCE: The available data suggest that Prod1, and thereby its role in encoding PD identity, is restricted to salamanders. The lack of comparable limb-regenerative capability in other adult vertebrates could be

  9. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal

    2017-01-31

    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.

  10. A little bit is better than nothing: the incomplete parthenogenesis of salamanders, frogs and fish

    Directory of Open Access Journals (Sweden)

    Schartl Manfred

    2010-08-01

    Full Text Available Abstract A re-examination of the mitochondrial genomes of unisexual salamander lineages, published in BMC Evolutionary Biology, shows them to be the oldest unisexual vertebrates known, having been around for 5 million years. This presents a challenge to the prediction that lack of genetic recombination is a fast track to extinction. See research article http://www.biomedcentral.com/1471-2148/10/238

  11. From biomedicine to natural history research: EST resources for ambystomatid salamanders

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2004-08-01

    Full Text Available Abstract Background Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum and Eastern tiger salamander (A. tigrinum tigrinum, species with deep and diverse research histories. Results Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. Conclusions Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research.

  12. From biomedicine to natural history research: EST resources for ambystomatid salamanders

    Science.gov (United States)

    Putta, Srikrishna; Smith, Jeramiah J; Walker, John A; Rondet, Mathieu; Weisrock, David W; Monaghan, James; Samuels, Amy K; Kump, Kevin; King, David C; Maness, Nicholas J; Habermann, Bianca; Tanaka, Elly; Bryant, Susan V; Gardiner, David M; Parichy, David M; Voss, S Randal

    2004-01-01

    Background Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum) and Eastern tiger salamander (A. tigrinum tigrinum), species with deep and diverse research histories. Results Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. Conclusions Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research. PMID:15310388

  13. Effects of atrazine on egg masses of the yellow-spotted salamander (Ambystoma maculatum) and its endosymbiotic alga (Oophila amblystomatis)

    International Nuclear Information System (INIS)

    Baxter, Leilan; Brain, Richard A.; Hosmer, Alan J.; Nema, Mohini; Müller, Kirsten M.; Solomon, Keith R.; Hanson, Mark L.

    2015-01-01

    Embryonic growth of the yellow-spotted salamander (Ambystoma maculatum) is enhanced by the presence of the green alga Oophila amblystomatis, in the egg capsule. To further assess potential impacts of herbicides on this relationship, A. maculatum egg masses were exposed to atrazine (0–338 μg/L) until hatching (up to 66 days). Exposure to atrazine reduced PSII yield of the symbiotic algae in a concentration-dependent manner, but did not significantly affect visible algal growth or any metrics associated with salamander development. Algal cells were also cultured in the laboratory for toxicity testing. In the 96-h growth inhibition test (0–680 μg/L), ECx values were generally greater than those reported for standard algal test species. Complete recovery of growth rates occurred within 96-h of transferring cells to untreated media. Overall, development of A. maculatum embryos was not affected by exposure to atrazine at concentrations and durations exceeding those found in the environment. - Highlights: • The yellow-spotted salamander produces eggs that are colonized by a symbiotic green alga. • We tested the sensitivity of this system to the herbicide atrazine. • Embryo development was not significantly affected by exposure at up to 300 μg/L. • The alga was isolated and 96-h growth tests were performed in the laboratory. • EC50s for Oophila sp. were >100 μg/L. - Development of Ambystoma maculatum embryos in egg masses was not impacted by exposure to atrazine at concentrations and durations exceeding those commonly found in the environment.

  14. Response of stream-breeding salamander larvae to sediment deposition in southern Appalachian (U.S.A.) headwater streams

    Science.gov (United States)

    S. Conner Keitzer; Reuben. Goforth

    2012-01-01

    Summary 1. Increased fine sediment deposition is a prevalent threat to stream biodiversity and has been shown to impact stream-breeding salamanders negatively. However, their complex life histories make it difficult to determine which stage is affected. 2. We conducted field experiments from 26 August to 11 September 2010 and 11 October to 11...

  15. Estimating occurrence and detection probabilities for stream-breeding salamanders in the Gulf Coastal Plain

    Science.gov (United States)

    Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.

    2017-01-01

    Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.

  16. Growth, survival, longevity, and population size of the Big Mouth Cave salamander (Gyrinophilus palleucus necturoides) from the type locality in Grundy County, Tennessee, USA

    Science.gov (United States)

    Niemiller, Matthew L.; Glorioso, Brad M.; Fenolio, Dante B.; Reynolds, R. Graham; Taylor, Steven J.; Miller, Brian T.

    2016-01-01

    Salamander species that live entirely in subterranean habitats have evolved adaptations that allow them to cope with perpetual darkness and limited energy resources. We conducted a 26-month mark–recapture study to better understand the individual growth and demography of a population of the Big Mouth Cave Salamander (Gyrinophilus palleucus necturoides). We employed a growth model to estimate growth rates, age at sexual maturity, and longevity, and an open population model to estimate population size, density, detectability, and survival rates. Furthermore, we examined cover use and evidence of potential predation. Individuals probably reach sexual maturity in 3–5 years and live at least nine years. Survival rates were generally high (>75%) but declined during the study. More than 30% of captured salamanders had regenerating tails or tail damage, which presumably represent predation attempts by conspecifics or crayfishes. Most salamanders (>90%) were found under cover (e.g., rocks, trash, decaying plant material). Based on 11 surveys during the study, population size estimates ranged from 21 to 104 individuals in the ca. 710 m2 study area. Previous surveys indicated that this population experienced a significant decline from the early 1970s through the 1990s, perhaps related to silvicultural and agricultural practices. However, our data suggest that this population has either recovered or stabilized during the past 20 years. Differences in relative abundance between early surveys and our survey could be associated with differences in survey methods or sampling conditions rather than an increase in population size. Regardless, our study demonstrates that this population is larger than previously thought and is in no immediate risk of extirpation, though it does appear to exhibit higher rates of predation than expected for a species believed to be an apex predator of subterranean food webs.

  17. Tongue and taste organ development in the ontogeny of direct-developing salamander Plethodon cinereus (Lissamphibia: Plethodontidae).

    Science.gov (United States)

    Budzik, Karolina A; Żuwała, Krystyna; Kerney, Ryan

    2016-07-01

    The latest research on direct developing caecilian and anuran species indicate presence of only one generation of taste organs during their ontogeny. This is distinct from indirect developing batrachians studied thus far, which possess taste buds in larvae and anatomically distinct taste discs in metamorphs. This study is a description of the tongue and taste organ morphology and development in direct developing salamander Plethodon cinereus (Plethodontidae) using histology and electron microscopy techniques. The results reveal two distinct stages tongue morphology (primary and secondary), similar to metamorphic urodeles, although only one stage of taste organ morphology. Taste disc sensory zones emerge on the surface of the oropharyngeal epithelium by the end of embryonic development, which coincides with maturation of the soft tongue. Taste organs occur in the epithelium of the tongue pad (where they are situated on the dermal papillae), the palate and the inner surface of the mandible and the maxilla. Plethodon cinereus embryos only possess taste disc type taste organs. Similar to the direct developing anuran Eleutherodactylus coqui (Eleutherodactylidae), these salamanders do not recapitulate larval taste bud morphology as an embryo. The lack of taste bud formation is probably a broadly distributed feature characteristic to direct developing batrachians. J. Morphol. 277:906-915, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. A 3D musculo-mechanical model of the salamander for the study of different gaits and modes of locomotion

    Directory of Open Access Journals (Sweden)

    Nalin eHarischandra

    2010-12-01

    Full Text Available Computer simulation has been used to investigate several aspectsof locomotion in salamanders. Here we introduce a three-dimensionalforward dynamics mechanical model of a salamander, with physicallyrealistic weight and size parameters. Movements of the four limbs and ofthe trunk and tail are generated by sets of linearly modeled skeletalmuscles. In this study, activation of these muscles were driven byprescribed neural output patterns. The model was successfully used tomimic locomotion on level ground and in water. We compare thewalking gait where a wave of activity in the axial muscles travelsbetween the girdles, with the trotting gait in simulations usingthe musculo-mechanical model. In a separate experiment, the model is usedto compare different strategies for turning while stepping; either bybending the trunk or by using side-stepping in the front legs. We foundthat for turning, the use of side-stepping alone or in combination withtrunk bending, was more effective than the use of trunk bending alone. Weconclude that the musculo-mechanical model described here together with aproper neural controller is useful for neuro-physiological experiments insilico.

  19. Dissolved oxygen fluctuations in karst spring flow and implications for endemic species: Barton Springs, Edwards aquifer, Texas, USA

    Science.gov (United States)

    Mahler, Barbara J.; Bourgeais, Renan

    2013-01-01

    Karst aquifers and springs provide the dissolved oxygen critical for survival of endemic stygophiles worldwide, but little is known about fluctuations of dissolved oxygen concentrations (DO) and factors that control those concentrations. We investigated temporal variation in DO at Barton Springs, Austin, Texas, USA. During 2006–2012, DO fluctuated by as much as a factor of 2, and at some periods decreased to concentrations that adversely affect the Barton Springs salamander (Eurycea sorosum) (≤4.4 mg/L), a federally listed endangered species endemic to Barton Springs. DO was lowest (≤4.4 mg/L) when discharge was low (≤1 m3/s) and spring water temperature was >21 °C, although not at a maximum; the minimum DO recorded was 4.0 mg/L. Relatively low DO (3/s) and maximum T (22.2 °C). A four-segment linear regression model with daily data for discharge and spring water temperature as explanatory variables provided an excellent fit for mean daily DO (Nash–Sutcliffe coefficient for the validation period of 0.90). DO also fluctuated at short-term timescales in response to storms, and DO measured at 15-min intervals could be simulated with a combination of discharge, spring temperature, and specific conductance as explanatory variables. On the basis of the daily-data regression model, we hypothesize that more frequent low DO corresponding to salamander mortality could result from (i) lower discharge from Barton Springs resulting from increased groundwater withdrawals or decreased recharge as a result of climate change, and (or) (ii) higher groundwater temperature as a result of climate change.

  20. The influence of a water current on the larval deposition pattern of females of a diverging fire salamander population (Salamandra salamandra)

    NARCIS (Netherlands)

    Krause, E.T.; Caspers, B.A.

    2015-01-01

    Fire salamanders are amphibians that exhibit a highly specific reproductive mode termed ovo-viviparity. The eggs develop inside their mothers, and the females give birth to fully developed larvae. The larvae in our study area cluster in two distinct genetic groups that can be linked directly to the

  1. Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration

    Science.gov (United States)

    Zhu, Wei; Kuo, Dwight; Nathanson, Jason; Satoh, Akira; Pao, Gerald M.; Yeo, Gene W.; Bryant, Susan V.; Voss, S. Randal; Gardiner, David M.; Hunter, Tony

    2012-01-01

    Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mammals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of salamander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. In addition, higher genomic LINE-1 content was also detected in the limb regenerate when compared to that before amputation indicating that LINE-1 retrotransposition is indeed active during regeneration. Active LINE-1 retrotransposition has been suggested to have a potentially deleterious impact on genomic integrity. Silencing of activated LINE-1 by small RNAs has been reported to be part of the machinery aiming to maintain genomic integrity. Indeed, we were able to identify putative LINE-1-related piRNAs in the limb blastema. Transposable element-related piRNAs have been identified frequently in the germline in other organisms. Thus, we present here a scenario in which a unique germline-like state is established during axolotl limb regeneration, and the re-activation of LINE-1 may serve as a marker for cellular dedifferentiation in the early-stage of limb regeneration. PMID:22913491

  2. Chloride equilibrium potential in salamander cones

    Directory of Open Access Journals (Sweden)

    Bryson Eric J

    2004-12-01

    Full Text Available Abstract Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca.

  3. Developing landscape habitat models for rare amphibians with small geographic ranges: a case study of Siskiyou Mountains salamanders in the western USA

    Science.gov (United States)

    Nobuya Suzuki; Deanna H. Olson; Edward C. Reilly

    2007-01-01

    To advance the development of conservation planning for rare species with small geographic ranges, we determined habitat associations of Siskiyou Mountains salamanders (Plethodon stormi) and developed habitat suitability models at fine (10 ha), medium (40 ha), and broad (202 ha) spatial scales using available geographic information systems data and...

  4. Plethodontid salamander mitochondrial genomics: A parsimonyevaluation of character conflict and implications for historicalbiogeography

    Energy Technology Data Exchange (ETDEWEB)

    Macey, J. Robert

    2005-01-19

    A new parsimony analysis of 27 complete mitochondrial genomic sequences is conducted to investigate the phylogenetic relationships of plethodontid salamanders. This analysis focuses on the amount of character conflict between phylogenetic trees recovered from newly conducted parsimony searches and the Bayesian and maximum likelihood topology reported by Mueller et al. (2004, PNAS, 101, 13820-13825). Strong support for Hemidactylium as the sister taxon to all other plethodontids is recovered from parsimony analyses. Plotting area relationships on the most parsimonious phylogenetic tree suggests that eastern North America is the origin of the family Plethodontidae supporting the ''Out of Appalachia'' hypothesis. A new taxonomy that recognizes clades recovered from phylogenetic analyses is proposed.

  5. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches.

    Science.gov (United States)

    Karraker, Nancy E; Gibbs, James P

    2011-03-01

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Pseudo-immunolabelling with the avidin-biotin-peroxidase complex (ABC) due to the presence of endogenous biotin in retinal Müller cells of goldfish and salamander

    NARCIS (Netherlands)

    Bhattacharjee, J.; Nunes Cardozo, B.; Kamphuis, W.; Kamermans, M.; Vrensen, G. F.

    1997-01-01

    Immunodetection techniques are dependent on enzyme-protein conjugates for the visualisation of antigen-antibody complexes. One of the most widely used is the avidin-biotin-peroxidase complex (ABC) method. The present study demonstrates that direct treatment of goldfish and salamander retinal

  7. Site-level habitat models for the endemic, threatened Cheat Mountain salamander (Plethodon nettingi): the importance of geophysical and biotic attributes for predicting occurrence

    Science.gov (United States)

    Lester O. Dillard; Kevin R. Russell; W. Mark Ford

    2008-01-01

    The federally threatened Cheat Mountain salamander (Plethodon nettingi; hereafter CMS) is known to occur in approximately 70 small, scattered populations in the Allegheny Mountains of eastern West Virginia, USA. Current conservation and management efforts on federal, state, and private lands involving CMS largely rely on small scale, largely...

  8. Diet of larval Ambystoma rivulare (Caudata: Ambystomatidae, a threatened salamander from the Volcán Nevado de Toluca, Mexico

    Directory of Open Access Journals (Sweden)

    Julio A. Lemos-Espinal

    2015-06-01

    Full Text Available Several species of salamander in the genus Ambystoma occur in the mountains surrounding Mexico City and are considered at risk of extinction. However, little is known about their ecology and natural history. The Toluca Stream Siredon (Ambystoma rivulare is classified as “Data Deficient” by the IUCN, and considered “Threatened” under Mexican law. From October 2013 to September 2014, we examined the diet of larval A. rivulare from a stream on the Volcán Nevado de Toluca in Mexico to provide insight into the suitability of the habitat to support this population of salamanders. Ostracods accounted for approximately 90% of all prey items consumed by larval A. rivulare. The number of ostracods found in stomachs increased with individual body size, but the proportion of ostracods in stomachs did not vary with body size. Nematodes were observed in approximately one third of the stomachs we examined. The diversity of prey in the diet of A. rivulare in the stream we studied is low and dominated by a single prey taxon, ostracods. Our results suggest that if environmental conditions in the stream change such that ostracods are negatively affected then the long-term persistence of this population of A. rivulare might be in jeopardy.

  9. The Importance of Maintaining Upland Forest Habitat Surrounding Salamander Breeding Ponds: Case Study of the Eastern Tiger Salamander in New York, USA

    Directory of Open Access Journals (Sweden)

    Valorie Titus

    2014-12-01

    Full Text Available Most amphibians use both wetland and upland habitats, but the extent of their movement in forested habitats is poorly known. We used radiotelemetry to observe the movements of adult and juvenile eastern tiger salamanders over a 4-year period. Females tended to move farther from the breeding ponds into upland forested habitat than males, while the distance a juvenile moved appeared to be related to body size, with the largest individuals moving as far as the adult females. Individuals chose refugia in native pitch pine—oak forested habitat and avoided open fields, roads, and developed areas. We also observed a difference in potential predation pressures in relation to the distance an individual moved from the edge of the pond. Our results support delineating forested wetland buffer zones on a case-by-case basis to reduce the impacts of concentrated predation, to increase and protect the availability of pitch pine—oak forests near the breeding pond, and to focus primarily on the habitat needs of the adult females and larger juveniles, which in turn will encompass habitat needs of adult males and smaller juveniles.

  10. Habitat adaptation rather than genetic distance correlates with female preference in fire salamanders (Salamandra salamandra

    Directory of Open Access Journals (Sweden)

    Weitere Markus

    2009-06-01

    Full Text Available Abstract Background Although some mechanisms of habitat adaptation of conspecific populations have been recently elucidated, the evolution of female preference has rarely been addressed as a force driving habitat adaptation in natural settings. Habitat adaptation of fire salamanders (Salamandra salamandra, as found in Middle Europe (Germany, can be framed in an explicit phylogeographic framework that allows for the evolution of habitat adaptation between distinct populations to be traced. Typically, females of S. salamandra only deposit their larvae in small permanent streams. However, some populations of the western post-glacial recolonization lineage use small temporary ponds as larval habitats. Pond larvae display several habitat-specific adaptations that are absent in stream-adapted larvae. We conducted mate preference tests with females from three distinct German populations in order to determine the influence of habitat adaptation versus neutral genetic distance on female mate choice. Two populations that we tested belong to the western post-glacial recolonization group, but are adapted to either stream or pond habitats. The third population is adapted to streams but represents the eastern recolonization lineage. Results Despite large genetic distances with FST values around 0.5, the stream-adapted females preferred males from the same habitat type regardless of genetic distance. Conversely, pond-adapted females did not prefer males from their own population when compared to stream-adapted individuals of either lineage. Conclusion A comparative analysis of our data showed that habitat adaptation rather than neutral genetic distance correlates with female preference in these salamanders, and that habitat-dependent female preference of a specific pond-reproducing population may have been lost during adaptation to the novel environmental conditions of ponds.

  11. Nutritional and medicinal characteristics of Chinese giant salamander (Andrias davidianus for applications in healthcare industry by artificial cultivation: A review

    Directory of Open Access Journals (Sweden)

    Dong He

    2018-03-01

    Full Text Available Andrias davidianus, i. e. Chinese giant salamander (CGS, is one of the largest and oldest amphibians existing in the world and is also one of the valuable biological resources of China. Wild CGS has been threatened with extinction in the past decades due to over capturing, deterioration of natural environment, the slow breeding and growth of the wild species in nature. However, in the past twenty years, with the breakthrough and progress of artificial breeding technology by artificial insemination, the number of artificially cultivated CGS has increased rapidly. Artificially cultivated CGS can either be released to the CGS living environment to increase the population in nature or legally applied in food and medicinal industry as a feedstock due to the unique nutritional and medicinal values of CGS as recorded historically. In this review, the nutritional components, bioactive components and medicinal activities of the artificially cultivated CGS will be summarized. The mucus, skin, meat and bone of CGS contain many different bioactive substances thereby having various medicinal activities including anti-aging, anti-fatigue, anti-tumor, therapy of burn and anti-infection and other physiological functions. This paper will further discuss the potential applications of the artificially cultivated CGS in healthcare industry and prospects of future technological development. Keywords: Andrias davidianus, Artificial breeding, Chinese giant salamander, Functional foods, Medicinal activity, Natural resource protection, Nutrition

  12. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat

    Directory of Open Access Journals (Sweden)

    Juan Felipe Diaz Quiroz

    2014-06-01

    Full Text Available Most spinal cord injuries lead to permanent paralysis in mammals. By contrast, the remarkable regenerative abilities of salamanders enable full functional recovery even from complete spinal cord transections. The molecular differences underlying this evolutionary divergence between mammals and amphibians are poorly understood. We focused on upstream regulators of gene expression as primary entry points into this question. We identified a group of microRNAs (miRNAs that are conserved between the Mexican axolotl salamander (Ambystoma mexicanum and mammals but show marked cross-species differences in regulation patterns following spinal cord injury. We found that precise post-injury levels of one of these miRNAs (miR-125b is essential for functional recovery, and guides correct regeneration of axons through the lesion site in a process involving the direct downstream target Sema4D in axolotls. Translating these results to a mammalian model, we increased miR-125b levels in the rat through mimic treatments following spinal cord transection. These treatments downregulated Sema4D and other glial-scar-related genes, and enhanced the animal’s functional recovery. Our study identifies a key regulatory molecule conserved between salamander and mammal, and shows that the expression of miR-125b and Sema4D must be carefully controlled in the right cells at the correct level to promote regeneration. We also show that these molecular components of the salamander’s regeneration-permissive environment can be experimentally harnessed to improve treatment outcomes for mammalian spinal cord injuries.

  13. Population Structure and Evolution after Speciation of the Hokkaido Salamander (Hynobius retardatus.

    Directory of Open Access Journals (Sweden)

    Masatoshi Matsunami

    Full Text Available The Hokkaido salamander (Hynobius retardatus is endemic to Hokkaido Island, Japan, and shows intriguing flexible phenotypic plasticity and regional morphological diversity. However, to date, allozymes and partial mitochondria DNA sequences have provided only an outline of its demographic histories and the pattern of its genetic diversification. To understand the finer details of the population structure of this species and its evolution since speciation, we genotyped five regional populations by using 12 recently developed microsatellite polymorphic markers. We found a clear population structure with low gene flow among the five populations, but a close genetic relationship between the Teshio and Kitami populations. Our demographic analysis suggested that Teshio and Erimo had the largest effective population sizes among the five populations. These findings regarding the population structure and demography of H. retardatus improve our understanding of the faunal phylogeography on Hokkaido Island and also provide fundamental genetic information that will be useful for future studies.

  14. Deep divergences and extensive phylogeographic structure in a clade of lowland tropical salamanders

    Directory of Open Access Journals (Sweden)

    Rovito Sean M

    2012-12-01

    Full Text Available Abstract Background The complex geological history of Mesoamerica provides the opportunity to study the impact of multiple biogeographic barriers on population differentiation. We examine phylogeographic patterns in a clade of lowland salamanders (Bolitoglossa subgenus Nanotriton using two mitochondrial genes and one nuclear gene. We use several phylogeographic analyses to infer the history of this clade and test hypotheses regarding the geographic origin of species and location of genetic breaks within species. We compare our results to those for other taxa to determine if historical events impacted different species in a similar manner. Results Deep genetic divergence between species indicates that they are relatively old, and two of the three widespread species show strong phylogeographic structure. Comparison of mtDNA and nuclear gene trees shows no evidence of hybridization or introgression between species. Isolated populations of Bolitoglossa rufescens from Los Tuxtlas region constitute a separate lineage based on molecular data and morphology, and divergence between Los Tuxtlas and other areas appears to predate the arrival of B. rufescens in other areas west of the Isthmus of Tehuantepec. The Isthmus appears responsible for Pliocene vicariance within B. rufescens, as has been shown for other taxa. The Motagua-Polochic fault system does not appear to have caused population vicariance, unlike in other systems. Conclusions Species of Nanotriton have responded to some major geological events in the same manner as other taxa, particularly in the case of the Isthmus of Tehuantepec. The deep divergence of the Los Tuxtlas populations of B. rufescens from other populations highlights the contribution of this volcanic system to patterns of regional endemism, and morphological differences observed in the Los Tuxtlas populations suggests that they may represent an undescribed species of Bolitoglossa. The absence of phylogeographic structure in B

  15. A new moss salamander, genus Nototriton (Caudata: Plethodontidae), from the Cordillera de Talamanca, in the Costa Rica-Panama border region.

    Science.gov (United States)

    Arias, Erick; Kubicki, Brian

    2018-01-07

    A new salamander belonging to the genus Nototriton, subgenus Nototriton, is described from the Caribbean slopes of the southeastern Cordillera de Talamanca in Costa Rica, within Parque Internacional La Amistad, at an elevation ca. 1500 m a.s.l. This new taxon is distinguished from its congeners by its morphological characteristics and by its differentiation in DNA sequences of the 16S rRNA, cytochrome oxidase subunit I (COI), and cytochrome b mitochondrial genes. This new species represents the southernmost extension known for the genus Nototriton.

  16. Response of Red-Backed Salamanders (Plethodon Cinereus to Changes in Hemlock Forest Soil Driven by Invasive Hemlock Woolly Adelgid (Adelges Tsugae

    Directory of Open Access Journals (Sweden)

    Alison Ochs

    2017-01-01

    Full Text Available Hemlock forests of the northeastern United States are declining due to the invasive hemlock woolly adelgid (HWA (Adelges tsugae. Hardwood species replace these forests, which affects soil properties that may influence other communities, such as red-backed salamanders (red-backs (Plethodon cinereus. This study examined the effects of HWA invasion on soil properties and how this affects red-backs at the Hemlock Removal Experiment at Harvard Forest, which consists of eight 0.8 ha plots treated with girdling to simulate HWA invasion, logging to simulate common management practices, or hemlock- or hardwood-dominated controls. Coverboard surveys were used to determine the relative abundance of red-backs between plots during June and July 2014 and soil cores were collected from which the bulk density, moisture, pH, temperature, leaf litter, and carbon-nitrogen ratio were measured. Ordination provided a soil quality index based on temperature, pH, and carbon-to-nitrogen ratio, which was significantly different between plot treatments (p < 0.05 and showed a significant negative correlation with the red-back relative abundance (p < 0.05. The findings support the hypothesis that red-backs are affected by soil quality, which is affected by plot treatment and thus HWA invasion. Further studies should explore how salamanders react in the long term towards changing environments and consider the use of red-backs as indicator species.

  17. Status of some populations of Mexican salamanders (Amphibia: Plethodontidae

    Directory of Open Access Journals (Sweden)

    Gabriela Parra-Olea

    1999-06-01

    Full Text Available Populations of Mexican plethodontid salamanders have been surveyed non-systematically over the last 25 years. In light of many reports of disappearance of amphibians around the world, we checked for persistence of reported species at ten of these sites. All of the commoner species persist (we observed individuals representing a total of 30 species. While observed densities of many species of Mexican plethodontids are lower to much lower than was the case 20 to 25 years ago, evidence for recent extinctions, such as has been reported for amphibian taxa elsewhere, is equivocal or lacking. Habitat modification has contributed to difficulties in finding certain species.Poblaciones de varias especies de salamandras pletodóntidas en México han sido monitoreadas de manera no sistemática durante los últimos 25 años. Diez de éstas poblaciones fueran visitadas recientemente con el propósito de verificar la persistencia de las especies reportadas para dichas localidades. Nuestras observaciones confirman la persistencia local de más de 30 especies cuyo estatus era desconocido, aunque la frecuencia de observación de estas especies es en general menor que en fechas anteriores. Estas observaciones son particularmente relevantes dada la situación actual de preocupación por la disminución mundial de anfibios.

  18. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change.

    Directory of Open Access Journals (Sweden)

    Houston C Chandler

    Full Text Available The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi, a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006-2014 of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896-2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis. Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions.

  19. Parallel habitat acclimatization is realized by the expression of different genes in two closely related salamander species (genus Salamandra).

    Science.gov (United States)

    Goedbloed, D J; Czypionka, T; Altmüller, J; Rodriguez, A; Küpfer, E; Segev, O; Blaustein, L; Templeton, A R; Nolte, A W; Steinfartz, S

    2017-12-01

    The utilization of similar habitats by different species provides an ideal opportunity to identify genes underlying adaptation and acclimatization. Here, we analysed the gene expression of two closely related salamander species: Salamandra salamandra in Central Europe and Salamandra infraimmaculata in the Near East. These species inhabit similar habitat types: 'temporary ponds' and 'permanent streams' during larval development. We developed two species-specific gene expression microarrays, each targeting over 12 000 transcripts, including an overlapping subset of 8331 orthologues. Gene expression was examined for systematic differences between temporary ponds and permanent streams in larvae from both salamander species to establish gene sets and functions associated with these two habitat types. Only 20 orthologues were associated with a habitat in both species, but these orthologues did not show parallel expression patterns across species more than expected by chance. Functional annotation of a set of 106 genes with the highest effect size for a habitat suggested four putative gene function categories associated with a habitat in both species: cell proliferation, neural development, oxygen responses and muscle capacity. Among these high effect size genes was a single orthologue (14-3-3 protein zeta/YWHAZ) that was downregulated in temporary ponds in both species. The emergence of four gene function categories combined with a lack of parallel expression of orthologues (except 14-3-3 protein zeta) suggests that parallel habitat adaptation or acclimatization by larvae from S. salamandra and S. infraimmaculata to temporary ponds and permanent streams is mainly realized by different genes with a converging functionality.

  20. Histological and MS spectrometric analyses of the modified tissue of bulgy form tadpoles induced by salamander predation

    Directory of Open Access Journals (Sweden)

    Tsukasa Mori

    2012-02-01

    The rapid induction of a defensive morphology by a prey species in face of a predation risk is an intriguing in ecological context; however, the physiological mechanisms that underlie this phenotypic plasticity remain uncertain. Here we investigated the phenotypic changes shown by Rana pirica tadpoles in response to a predation threat by larvae of the salamander Hynobius retardatus. One such response is the bulgy morph phenotype, a relatively rapid swelling in size by the tadpoles that begins within 4 days and reaches a maximum at 8 to 10 days. We found that although the total volume of bodily fluid increased significantly (P<0.01 in bulgy morph tadpoles, osmotic pressure was maintained at the same level as control tadpoles by a significant increase (P<0.01 in Na and Cl ion concentrations. In our previous report, we identified a novel frog gene named pirica that affects the waterproofing of the skin membrane in tadpoles. Our results support the hypothesis that predator-induced expression of pirica on the skin membrane causes retention of absorbed water. Midline sections of bulgy morph tadpoles showed the presence of swollen connective tissue beneath the skin that was sparsely composed of cells containing hyaluronic acid. Mass spectrographic (LC-MS/MS analysis identified histone H3 and 14-3-3 zeta as the most abundant constituents in the liquid aspirated from the connective tissue of bulgy tadpoles. Immunohistochemistry using antibodies against these proteins showed the presence of non-chromatin associated histone H3 in the swollen connective tissue. Histones and 14-3-3 proteins are also involved in antimicrobial activity and secretion of antibacterial proteins, respectively. Bulgy tadpoles have a larger surface area than controls, and their skin often has bite wounds inflicted by the larval salamanders. Thus, formation of the bulgy morph may also require and be supported by activation of innate immune systems.

  1. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders

    Science.gov (United States)

    Laking, Alexandra E.; Ngo, Hai Ngoc; Pasmans, Frank; Martel, An; Nguyen, Tao Thien

    2017-01-01

    The amphibian chytrid fungi, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), pose a major threat to amphibian biodiversity. Recent evidence suggests Southeast Asia as a potential cradle for both fungi, which likely resulted in widespread host-pathogen co-existence. We sampled 583 salamanders from 8 species across Vietnam in 55 locations for Bsal and Bd, determined scaled mass index as a proxy for fitness and collected environmental data. Bsal was found within 14 of the 55 habitats (2 of which it was detected in 2013), in 5 salamandrid species, with a prevalence of 2.92%. The globalized pandemic lineage of Bd was found within one pond on one species with a prevalence of 0.69%. Combined with a complete lack of correlation between infection and individual body condition and absence of indication of associated disease, this suggests low level pathogen endemism and Bsal and Bd co-existence with Vietnamese salamandrid populations. Bsal was more widespread than Bd, and occurs at temperatures higher than tolerated by the type strain, suggesting a wider thermal niche than currently known. Therefore, this study provides support for the hypothesis that these chytrid fungi may be endemic to Asia and that species within this region may act as a disease reservoir. PMID:28287614

  2. Wetland and microhabitat use by nesting four-toed salamanders in Maine

    Science.gov (United States)

    Chalmers, R.J.; Loftin, C.S.

    2006-01-01

    Little is known of Four-Toed Salamander (Hemidactylium scutatum) habitat use, despite the species' extensive range and elevated conservation status. We investigated species-habitat relationships that predict H. scutatum nesting presence in Maine at wetland and microhabitat scales by comparing microhabitats with and without nests. We created logistic regression models, selected models with AIC, and evaluated models with reserve data. Wetlands with nests were best predicted by shoreline microhabitat of Sphagnum spp., wood substrate, water flow, blue-joint reed grass (Calamagrostis canadensis), meadowsweet (Spiraea alba), steeplebush (Spiraea tomentosa), sensitive fern (Onoclea sensibilis), and absence of sheep laurel (Kalmia angustifolia) or deciduous forest canopy. Within occupied wetlands, shoreline microhabitat where nests occurred was best distinguished from available, unoccupied shoreline microhabitat by steeper shore, greater near-shore and basin water depth, deeper nesting vegetation, presence of moss spp. and winterberry (Ilex verticillata), and a negative association with S. alba, leatherleaf (Chamaedaphne calyculata), and K. angustifolia. These models of wetland and microhabitat use by H. scutatum may assist ecologists and managers in detecting and conserving this species. Copyright 2006 Society for the Study of Amphibians and Reptiles.

  3. Gonadotropin-Releasing Hormone Modulates Vomeronasal Neuron Response to Male Salamander Pheromone

    Directory of Open Access Journals (Sweden)

    Celeste R. Wirsig-Wiechmann

    2012-01-01

    Full Text Available Electrophysiological studies have shown that gonadotropin-releasing hormone (GnRH modifies chemosensory neurons responses to odors. We have previously demonstrated that male Plethodon shermani pheromone stimulates vomeronasal neurons in the female conspecific. In the present study we used agmatine uptake as a relative measure of the effects of GnRH on this pheromone-induced neural activation of vomeronasal neurons. Whole male pheromone extract containing 3 millimolar agmatine with or without 10 micromolar GnRH was applied to the nasolabial groove of female salamanders for 45 minutes. Immunocytochemical procedures were conducted to visualize and quantify relative agmatine uptake as measured by labeling density of activated vomeronasal neurons. The relative number of labeled neurons did not differ between the two groups: pheromone alone or pheromone-GnRH. However, vomeronasal neurons exposed to pheromone-GnRH collectively demonstrated higher labeling intensity, as a percentage above background (75% as compared with neurons exposed to pheromone alone (63%, P < 0.018. Since the labeling intensity of agmatine within neurons signifies the relative activity levels of the neurons, these results suggest that GnRH increases the response of female vomeronasal neurons to male pheromone.

  4. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus)

    Science.gov (United States)

    Margolis, Ellis; Malevich, Steven B.

    2016-01-01

    Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to

  5. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Science.gov (United States)

    Goldberg, Caren S; Pilliod, David S; Arkle, Robert S; Waits, Lisette P

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  6. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Directory of Open Access Journals (Sweden)

    Caren S Goldberg

    Full Text Available Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus. We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  7. Recombinant nAG (a Salamander-Derived Protein Decreases the Formation of Hypertrophic Scarring in the Rabbit Ear Model

    Directory of Open Access Journals (Sweden)

    Mohammad M. Al-Qattan

    2014-01-01

    Full Text Available nAG (newt-Anterrior Gradient protein is the key mediator of regrowth of amputated limbs in salamanders. In a previous work in our lab, a new nAG gene (suitable for humans was designed and cloned. The cloned vector was transfected into primary human fibroblasts. The expression of nAG in human primary fibroblasts was found to suppress collagen expression. The current study shows that local injection of recombinant nAG reduces scar hypertrophy in the rabbit ear model. This is associated with lower scar elevation index (SEI, lower levels of collagen I & III, higher levels of MMP1, and a higher degree of scar maturation in experimental wounds compared to controls.

  8. A review of the biology and conservation of the Cope's giant salamander Dicamptodon copei Nussbaum, 1970 (Amphibia: Caudata: Dicamptodontidae) in the Pacific northwestern region of the USA

    Science.gov (United States)

    Alex D. Foster; Deanna H. Olson; Lawrence L.C. Jones

    2015-01-01

    The Cope’s Giant Salamander Dicamptodon copei is a stream dwelling amphibian reliant on cool streams, native to forested areas primarily west of the crest of the Cascade Range in the Pacific Northwest region, USA. Unlike other members of the genus, adult D. copei are most often found in a paedomorphic form, and rarely transforms to a terrestrial stage. As a result,...

  9. Molecular mechanisms of extensive mitochondrial gene rearrangementin plethodontid salamanders

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rachel Lockridge; Boore, Jeffrey L.

    2005-06-01

    Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light strand replication and the nearby tRNA genes or the regions flanking the origin of heavy strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and non-tandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mtDNAs, up to 25 percent of the total length is composed of tandem duplications of non-coding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intra-molecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.

  10. New species of salamander (Caudata: Plethodontidae: Cryptotriton) from Quebrada Cataguana, Francisco Morazán, Honduras, with comments on the taxonomic status of Cryptotriton wakei.

    Science.gov (United States)

    Mccranie, James R; Rovito, Sean M

    2014-05-09

    We describe a new species of the plethodontid salamander genus Cryptotriton from Honduras after comparing morphological, molecular, and osteological data from the holotype to that of the other nominal forms of the genus. The new species differs from all of the known species of Cryptotriton in at least one character from all three datasets. We also suggest placing C. wakei in the synonymy of C. nasalis after examining the morphological and osteological characters of the single known specimen of C. wakei.

  11. Comparative limb bone loading in the humerus and femur of the tiger salamander: testing the 'mixed-chain' hypothesis for skeletal safety factors.

    Science.gov (United States)

    Kawano, Sandy M; Economy, D Ross; Kennedy, Marian S; Dean, Delphine; Blob, Richard W

    2016-02-01

    Locomotion imposes some of the highest loads upon the skeleton, and diverse bone designs have evolved to withstand these demands. Excessive loads can fatally injure organisms; however, bones have a margin of extra protection, called a 'safety factor' (SF), to accommodate loads that are higher than normal. The extent to which SFs might vary amongst an animal's limb bones is unclear. If the limbs are likened to a chain composed of bones as 'links', then similar SFs might be expected for all limb bones because failure of the system would be determined by the weakest link, and extra protection in other links could waste energetic resources. However, Alexander proposed that a 'mixed-chain' of SFs might be found amongst bones if: (1) their energetic costs differ, (2) some elements face variable demands, or (3) SFs are generally high. To test whether such conditions contribute to diversity in limb bone SFs, we compared the biomechanical properties and locomotor loading of the humerus and femur in the tiger salamander (Ambystoma tigrinum). Despite high SFs in salamanders and similar sizes of the humerus and femur that would suggest similar energetic costs, the humerus had lower bone stresses, higher mechanical hardness and larger SFs. SFs were greatest in the anatomical regions where yield stresses were highest in the humerus and lowest in the femur. Such intraspecific variation between and within bones may relate to their different biomechanical functions, providing insight into the emergence of novel locomotor capabilities during the invasion of land by tetrapods. © 2016. Published by The Company of Biologists Ltd.

  12. A metagenomics-based approach to the top-down effect on the detritivore food web: a salamanders influence on fungal communities within a deciduous forest.

    Science.gov (United States)

    Walker, Donald M; Lawrence, Brandy R; Esterline, Dakota; Graham, Sean P; Edelbrock, Michael A; Wooten, Jessica A

    2014-11-01

    The flow of energy within an ecosystem can be considered either top-down, where predators influence consumers, or bottom-up, where producers influence consumers. Plethodon cinereus (Red-backed Salamander) is a terrestrial keystone predator who feeds on invertebrates within the ecosystem. We investigated the impact of the removal of P. cinereus on the detritivore food web in an upland deciduous forest in northwest Ohio, U.S.A. A total of eight aluminum enclosures, each containing a single P. cinereus under a small log, were constructed in the deciduous forest. On Day 1 of the experiment, four salamanders were evicted from four of the eight enclosures. Organic matter and soil were collected from the center of each enclosure at Day 1 and Day 21. From each sample, DNA was extracted, fungal-specific amplification performed, and 454 pyrosequencing was used to sequence the nuclear ribosomal internal transcribed spacer (ITS2) region and partial ribosomal large subunit (LSU). Changes in overall fungal community composition or species diversity were not statistically significant between treatments. Statistically significant shifts in the most abundant taxonomic groups of fungi were documented in presence but not absence enclosures. We concluded that P. cinereus does not affect the overall composition or diversity of fungal communities, but does have an impact on specific groups of fungi. This study used a metagenomics-based approach to investigate a missing link among a keystone predator, P. cinereus, invertebrates, and fungal communities, all of which are critical in the detritivore food web.

  13. Transcriptome analysis of the Chinese giant salamander (Andrias davidianus using RNA-sequencing

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2017-12-01

    Full Text Available The Chinese giant salamander (Andrias davidianus is an economically important animal on academic value. However, the genomic information of this species has been less studied. In our study, the transcripts of A. davidianus were obtained by RNA-seq to conduct a transcriptomic analysis. In total 132,912 unigenes were generated with an average length of 690 bp and N50 of 1263 bp by de novo assembly using Trinity software. Using a sequence similarity search against the nine public databases (CDD, KOG, NR, NT, PFAM, Swiss-prot, TrEMBL, GO and KEGG databases, a total of 24,049, 18,406, 36,711, 15,858, 20,500, 27,515, 36,705, 28,879 and 10,958 unigenes were annotated in databases, respectively. Of these, 6323 unigenes were annotated in all database and 39,672 unigenes were annotated in at least one database. Blasted with KEGG pathway, 10,958 unigenes were annotated, and it was divided into 343 categories according to different pathways. In addition, we also identified 29,790 SSRs. This study provided a valuable resource for understanding transcriptomic information of A. davidianus and laid a foundation for further research on functional gene cloning, genomics, genetic diversity analysis and molecular marker exploitation in A. davidianus.

  14. Sequencing and de novo transcriptome assembly of the Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2017-06-01

    Full Text Available Next-generation technologies for determination of genomics and transcriptomics composition have a wide range of applications. Andrias davidianus, has become an endangered amphibian species of salamander endemic in China. However, there is a lack of the molecular information. In this study, we obtained the RNA-Seq data from a pool of A. davidianus tissue including spleen, liver, muscle, kidney, skin, testis, gut and heart using Illumina HiSeq 2500 platform. A total of 15,398,997,600 bp were obtained, corresponding to 102,659,984 raw reads. A total of 102,659,984 reads were filtered after removing low-quality reads and trimming the adapter sequences. The Trinity program was used to de novo assemble 132,912 unigenes with an average length of 690 bp and N50 of 1263 bp. Unigenes were annotated through number of databases. These transcriptomic data of A. davidianus should open the door to molecular evolution studies based on the entire transcriptome or targeted genes of interest to sequence. The raw data in this study can be available in NCBI SRA database with accession number of SRP099564.

  15. Assessment of intra and interregional genetic variation in the Eastern Red-backed Salamander, Plethodon cinereus, via analysis of novel microsatellite markers.

    Directory of Open Access Journals (Sweden)

    Alexander C Cameron

    Full Text Available The red-backed salamander (Plethodon cinereus has long-served as a model system in ecology, evolution, and behavior, and studies surveying molecular variation in this species have become increasingly common over the past decade. However, difficulties are commonly encountered when extending microsatellite markers to populations that are unstudied from a genetic perspective due to high levels of genetic differentiation across this species' range. To ameliorate this issue, we used 454 pyrosequencing to identify hundreds of microsatellite loci. We then screened 40 of our top candidate loci in populations in Virginia, Pennsylvania, and Ohio-including an isolated island population ~ 4.5 km off the shore of Lake Erie (South Bass Island. We identified 25 loci that are polymorphic in a well-studied region of Virginia and 11 of these loci were polymorphic in populations located in the genetically unstudied regions of Ohio and Pennsylvania. Use of these loci to examine patterns of variation within populations revealed that South Bass Island has low diversity in comparison to other sites. However, neither South Bass Island nor isolated populations around Cleveland are inbred. Assessment of variation between populations revealed three well defined genetic clusters corresponding to Virginia, mainland Ohio/Pennsylvania, and South Bass Island. Comparisons of our results to those of others working in various parts of the range are consistent with the idea that differentiation is lower in regions that were once glaciated. However, these comparisons also suggest that well differentiated isolated populations in the formerly glaciated portion of the range are not uncommon. This work provides novel genetic resources that will facilitate population genetic studies in a part of the red-backed salamander's range that has not previously been studied in this manner. Moreover, this work refines our understanding of how neutral variation is distributed in this ecologically

  16. Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii.

    Science.gov (United States)

    Chevallier, Stéphanie; Landry, Marc; Nagy, Frédéric; Cabelguen, Jean-Marie

    2004-10-01

    Electromyographic (EMG) analysis was used to provide an assessment of the recovery of locomotion in spinal-transected adult salamanders (Pleurodeles waltlii). EMG recordings were performed during swimming and overground stepping in the same animal before and at various times (up to 500 days) after a mid-trunk spinalization. Two-three weeks after spinalization, locomotor EMG activity was limited to the forelimbs and the body rostral to the transection. Thereafter, there was a return of the locomotor EMG activity at progressively more caudal levels below the transection. The animals reached stable locomotor patterns 3-4 months post-transection. Several locomotor parameters (cycle duration, burst duration, burst proportion, intersegmental phase lag, interlimb coupling) measured at various recovery times after spinalization were compared with those in intact animals. These comparisons revealed transient and long-term alterations in the locomotor parameters both above and below the transection site. These alterations were much more pronounced for swimming than for stepping and revealed differences in adaptive plasticity between the two locomotor networks. Recovered locomotor activity was immediately abolished by retransection at the site of the original spinalization, suggesting that the spinal cord caudal to the transection was reinnervated by descending brain and/or propriospinal axons, and that this regeneration contributed to the restoration of locomotor activity. Anatomical studies conducted in parallel further demonstrated that some of the regenerated axons came from glutamatergic and serotoninergic immunoreactive cells within the reticular formation.

  17. Novel, non-invasive method for distinguishing the individuals of the fire salamander (Salamandra salamandra in capture-mark-recapture studies

    Directory of Open Access Journals (Sweden)

    Goran Šukalo

    2013-07-01

    Full Text Available Recently we started implementing a highly efficient, non-invasive method of direct individual marking (i.e., typifying in a population study of the fire salamander, Salamandra salamandra. Our technique is based on the unique alphanumeric code for every individual, generated upon the numbers of openings of repellent/toxic skin glands in the yellow areas of the selected regions of the body. This code was proved reliable in the sample of 159 individuals from two separate populations and enabled easy and quick recognition of recaptured animals. The proposed method is inexpensive, easily applicable in the field, involves minimum stress for the animals and does not affect their behaviour and the possibility of repeated captures of “marked” (i.e., coded individuals. It is particularly suitable for dense populations.

  18. Male pheromone protein components activate female vomeronasal neurons in the salamander Plethodon shermani

    Directory of Open Access Journals (Sweden)

    Feldhoff Pamela W

    2006-03-01

    Full Text Available Abstract Background The mental gland pheromone of male Plethodon salamanders contains two main protein components: a 22 kDa protein named Plethodon Receptivity Factor (PRF and a 7 kDa protein named Plethodon Modulating Factor (PMF, respectively. Each protein component individually has opposing effects on female courtship behavior, with PRF shortening and PMF lengthening courtship. In this study, we test the hypothesis that PRF or PMF individually activate vomeronasal neurons. The agmatine-uptake technique was used to visualize chemosensory neurons that were activated by each protein component individually. Results Vomeronasal neurons exposed to agmatine in saline did not demonstrate significant labeling. However, a population of vomeronasal neurons was labeled following exposure to either PRF or PMF. When expressed as a percent of control level labeled cells, PRF labeled more neurons than did PMF. These percentages for PRF and PMF, added together, parallel the percentage of labeled vomeronasal neurons when females are exposed to the whole pheromone. Conclusion This study suggests that two specific populations of female vomeronasal neurons are responsible for responding to each of the two components of the male pheromone mixture. These two neural populations, therefore, could express different receptors which, in turn, transmit different information to the brain, thus accounting for the different female behavior elicited by each pheromone component.

  19. Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans.

    Science.gov (United States)

    Van Rooij, Pascale; Pasmans, Frank; Coen, Yanaika; Martel, An

    2017-01-01

    The recently emerged chytrid fungus Batrachochytrium salamandrivorans (Bsal) causes European salamander declines. Proper hygiene protocols including disinfection procedures are crucial to prevent disease transmission. Here, the efficacy of chemical disinfectants in killing Bsal was evaluated. At all tested conditions, Biocidal®, Chloramine-T®, Dettol medical®, Disolol®, ethanol, F10®, Hibiscrub®, potassium permanganate, Safe4®, sodium hypochlorite, and Virkon S®, were effective at killing Bsal. Concentrations of 5% sodium chloride or lower, 0.01% peracetic acid and 0.001-1% copper sulphate were inactive against Bsal. None of the conditions tested for hydrogen peroxide affected Bsal viability, while it did kill Batrachochytrium dendrobatidis (Bd). For Bsal, enzymatic breakdown of hydrogen peroxide by catalases and specific morphological features (clustering of sporangia, development of new sporangia within the original sporangium), were identified as fungal factors altering susceptibility to several of the disinfectants tested. Based on the in vitro results we recommend 1% Virkon S®, 4% sodium hypochlorite and 70% ethanol for disinfecting equipment in the field, lab or captive setting, with a minimal contact time of 5 minutes for 1% Virkon S® and 1 minute for the latter disinfectants. These conditions not only efficiently target Bsal, but also Bd and Ranavirus.

  20. Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans.

    Directory of Open Access Journals (Sweden)

    Pascale Van Rooij

    Full Text Available The recently emerged chytrid fungus Batrachochytrium salamandrivorans (Bsal causes European salamander declines. Proper hygiene protocols including disinfection procedures are crucial to prevent disease transmission. Here, the efficacy of chemical disinfectants in killing Bsal was evaluated. At all tested conditions, Biocidal®, Chloramine-T®, Dettol medical®, Disolol®, ethanol, F10®, Hibiscrub®, potassium permanganate, Safe4®, sodium hypochlorite, and Virkon S®, were effective at killing Bsal. Concentrations of 5% sodium chloride or lower, 0.01% peracetic acid and 0.001-1% copper sulphate were inactive against Bsal. None of the conditions tested for hydrogen peroxide affected Bsal viability, while it did kill Batrachochytrium dendrobatidis (Bd. For Bsal, enzymatic breakdown of hydrogen peroxide by catalases and specific morphological features (clustering of sporangia, development of new sporangia within the original sporangium, were identified as fungal factors altering susceptibility to several of the disinfectants tested. Based on the in vitro results we recommend 1% Virkon S®, 4% sodium hypochlorite and 70% ethanol for disinfecting equipment in the field, lab or captive setting, with a minimal contact time of 5 minutes for 1% Virkon S® and 1 minute for the latter disinfectants. These conditions not only efficiently target Bsal, but also Bd and Ranavirus.

  1. Olfactory effects of a hypervariable multicomponent pheromone in the red-legged salamander, Plethodon shermani.

    Directory of Open Access Journals (Sweden)

    Damien B Wilburn

    Full Text Available Chemical communication via chemosensory signaling is an essential process for promoting and modifying reproductive behavior in many species. During courtship in plethodontid salamanders, males deliver a mixture of non-volatile proteinaceous pheromones that activate chemosensory neurons in the vomeronasal epithelium (VNE and increase female receptivity. One component of this mixture, Plethodontid Modulating Factor (PMF, is a hypervariable pheromone expressed as more than 30 unique isoforms that differ between individual males-likely driven by co-evolution with female receptors to promote gene duplication and positive selection of the PMF gene complex. Courtship trials with females receiving different PMF isoform mixtures had variable effects on female mating receptivity, with only the most complex mixtures increasing receptivity, such that we believe that sufficient isoform diversity allows males to improve their reproductive success with any female in the mating population. The aim of this study was to test the effects of isoform variability on VNE neuron activation using the agmatine uptake assay. All isoform mixtures activated a similar number of neurons (>200% over background except for a single purified PMF isoform (+17%. These data further support the hypothesis that PMF isoforms act synergistically in order to regulate female receptivity, and different putative mechanisms are discussed.

  2. Hatching success in salamanders and chorus frogs at two sites in Colorado, USA: Effects of acidic deposition and climate

    Science.gov (United States)

    Muths, E.; Campbell, D.H.; Corn, P.S.

    2003-01-01

    The snowpack in the vicinity of the Mount Zirkel Wilderness Area is among the most acidic in the western United States. We analyzed water chemistry and examined hatching success in tiger salamanders and chorus frogs at ponds there and at nearby Rabbit Ears Pass (Dumont) to determine whether acid deposition affects amphibians or their breeding habitats at these potentially sensitive locations. We found a wide range of acid neutralizing capacity among ponds within sites; the minimum pH recorded during the experiment was 5.4 at one of 12 ponds with all others at pH ??? 5.7. At Dumont, hatching success for chorus frogs was greater in ponds with low acid neutralizing capacity; however, lowest pHs were >5.8. At current levels of acid deposition, weather and pond characteristics are likely more important than acidity in influencing hatching success in amphibian larvae at these sites.

  3. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    Science.gov (United States)

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique

  4. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    Directory of Open Access Journals (Sweden)

    Damien B Wilburn

    Full Text Available In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s without the immediate need for complementary mutations. Consequently

  5. Temperature and ontogenetic effects on color change in the larval salamander species Ambystoma barbouri and Ambystoma texanum

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T S; Straus, R; Sih, A [Univ. of Kentucky, Dept. of Biological Sciences, Lexington, Kentucky (United States)

    2003-04-01

    Temperature has been shown to affect body color in several species of amphibians. The interaction between color and temperature may also change over larval ontogeny, perhaps because of age-related or seasonal changes in selection pressures on color. We quantified the effects of temperature on the color of the salamander sister species Ambystoma barbouri and Ambystoma texanum over larval ontogeny. We found that early-stage larvae responded to cold temperatures with a dark color relative to that of the warm temperature response. Both species then exhibited an ontogenetic shift in larval color, with larvae becoming lighter with age. Interestingly, older larvae showed decreased plasticity in color change to temperature when compared with younger stages. Older A. texanum larvae exhibited a reversal in the direction of color change, with cold temperatures inducing a lighter color relative to warm temperatures. We suggest that the overall pattern of color change (a plastic color response to temperature for young larvae, a progressive lightening of larvae over development, and an apparent loss of color plasticity to temperature over ontogeny) can be plausibly explained by seasonal changes in environmental factors (temperature, ultraviolet radiation) selecting for body color. (author)

  6. Temperature and ontogenetic effects on color change in the larval salamander species Ambystoma barbouri and Ambystoma texanum

    International Nuclear Information System (INIS)

    Garcia, T.S.; Straus, R.; Sih, A.

    2003-01-01

    Temperature has been shown to affect body color in several species of amphibians. The interaction between color and temperature may also change over larval ontogeny, perhaps because of age-related or seasonal changes in selection pressures on color. We quantified the effects of temperature on the color of the salamander sister species Ambystoma barbouri and Ambystoma texanum over larval ontogeny. We found that early-stage larvae responded to cold temperatures with a dark color relative to that of the warm temperature response. Both species then exhibited an ontogenetic shift in larval color, with larvae becoming lighter with age. Interestingly, older larvae showed decreased plasticity in color change to temperature when compared with younger stages. Older A. texanum larvae exhibited a reversal in the direction of color change, with cold temperatures inducing a lighter color relative to warm temperatures. We suggest that the overall pattern of color change (a plastic color response to temperature for young larvae, a progressive lightening of larvae over development, and an apparent loss of color plasticity to temperature over ontogeny) can be plausibly explained by seasonal changes in environmental factors (temperature, ultraviolet radiation) selecting for body color. (author)

  7. Environmental DNA method for estimating salamander distribution in headwater streams, and a comparison of water sampling methods.

    Science.gov (United States)

    Katano, Izumi; Harada, Ken; Doi, Hideyuki; Souma, Rio; Minamoto, Toshifumi

    2017-01-01

    Environmental DNA (eDNA) has recently been used for detecting the distribution of macroorganisms in various aquatic habitats. In this study, we applied an eDNA method to estimate the distribution of the Japanese clawed salamander, Onychodactylus japonicus, in headwater streams. Additionally, we compared the detection of eDNA and hand-capturing methods used for determining the distribution of O. japonicus. For eDNA detection, we designed a qPCR primer/probe set for O. japonicus using the 12S rRNA region. We detected the eDNA of O. japonicus at all sites (with the exception of one), where we also observed them by hand-capturing. Additionally, we detected eDNA at two sites where we were unable to observe individuals using the hand-capturing method. Moreover, we found that eDNA concentrations and detection rates of the two water sampling areas (stream surface and under stones) were not significantly different, although the eDNA concentration in the water under stones was more varied than that on the surface. We, therefore, conclude that eDNA methods could be used to determine the distribution of macroorganisms inhabiting headwater systems by using samples collected from the surface of the water.

  8. Sixty-Five Million Years of Change in Temperature and Topography Explain Evolutionary History in Eastern North American Plethodontid Salamanders.

    Science.gov (United States)

    Barnes, Richard; Clark, Adam Thomas

    2017-07-01

    For many taxa and systems, species richness peaks at midelevations. One potential explanation for this pattern is that large-scale changes in climate and geography have, over evolutionary time, selected for traits that are favored under conditions found in contemporary midelevation regions. To test this hypothesis, we use records of historical temperature and topographic changes over the past 65 Myr to construct a general simulation model of plethodontid salamander evolution in eastern North America. We then explore possible mechanisms constraining species to midelevation bands by using the model to predict plethodontid evolutionary history and contemporary geographic distributions. Our results show that models that incorporate both temperature and topographic changes are better able to predict these patterns, suggesting that both processes may have played an important role in driving plethodontid evolution in the region. Additionally, our model (whose annotated source code is included as a supplement) represents a proof of concept to encourage future work that takes advantage of recent advances in computing power to combine models of ecology, evolution, and earth history to better explain the abundance and distribution of species over time.

  9. Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America

    Energy Technology Data Exchange (ETDEWEB)

    Jancovich, James K; Jinghe, Mao; Chinchar, V Gregory; Wyatt, Christopher; Case, Steven T; Kumar, Sudhir; Valente, Graziela; Subramanian, Sankar; Davidson, Elizabeth W; Collins, James P; Jacobs, Bertram L

    2003-11-10

    Disease is among the suspected causes of amphibian population declines, and an iridovirus and a chytrid fungus are the primary pathogens associated with amphibian mortalities. Ambystoma tigrinum virus (ATV) and a closely related strain, Regina ranavirus (RRV), are implicated in salamander die-offs in Arizona and Canada, respectively. We report the complete sequence of the ATV genome and partial sequence of the RRV genome. Sequence analysis of the ATV/RRV genomes showed marked similarity to other ranaviruses, including tiger frog virus (TFV) and frog virus 3 (FV3), the type virus of the genus Ranavirus (family Iridoviridae), as well as more distant relationships to lymphocystis disease virus, Chilo iridescent virus, and infectious spleen and kidney necrosis virus. Putative open reading frames (ORFs) in the ATV sequence identified 24 genes that appear to control virus replication and block antiviral responses. In addition, >50 other putative genes, homologous to ORFs in other iridoviral genomes but of unknown function, were also identified. Sequence comparison performed by dot plot analysis between ATV and itself revealed a conserved 14-bp palindromic repeat within most intragenic regions. Dot plot analysis of ATV vs RRV sequences identified several polymorphisms between the two isolates. Finally, a comparison of ATV and TFV genomic sequences identified genomic rearrangements consistent with the high recombination frequency of iridoviruses. Given the adverse effects that ranavirus infections have on amphibian and fish populations, ATV/RRV sequence information will allow the design of better diagnostic probes for identifying ranavirus infections and extend our understanding of molecular events in ranavirus-infected cells.

  10. Understanding positional cues in salamander limb regeneration: implications for optimizing cell-based regenerative therapies

    Directory of Open Access Journals (Sweden)

    Catherine D. McCusker

    2014-06-01

    Full Text Available Regenerative medicine has reached the point where we are performing clinical trials with stem-cell-derived cell populations in an effort to treat numerous human pathologies. However, many of these efforts have been challenged by the inability of the engrafted populations to properly integrate into the host environment to make a functional biological unit. It is apparent that we must understand the basic biology of tissue integration in order to apply these principles to the development of regenerative therapies in humans. Studying tissue integration in model organisms, where the process of integration between the newly regenerated tissues and the ‘old’ existing structures can be observed and manipulated, can provide valuable insights. Embryonic and adult cells have a memory of their original position, and this positional information can modify surrounding tissues and drive the formation of new structures. In this Review, we discuss the positional interactions that control the ability of grafted cells to integrate into existing tissues during the process of salamander limb regeneration, and discuss how these insights could explain the integration defects observed in current cell-based regenerative therapies. Additionally, we describe potential molecular tools that can be used to manipulate the positional information in grafted cell populations, and to promote the communication of positional cues in the host environment to facilitate the integration of engrafted cells. Lastly, we explain how studying positional information in current cell-based therapies and in regenerating limbs could provide key insights to improve the integration of cell-based regenerative therapies in the future.

  11. Extinction debt as a driver of amphibian declines: An example with imperiled flatwoods salamanders

    Science.gov (United States)

    Semiltsch, Raymond D; Walls, Susan; Barichivich, William J.; O'Donnell, Katherine

    2017-01-01

    A comprehensive view of population declines and their underlying causes is necessary to reverse species loss. Historically, in many cases, a narrow view may have allowed species declines to continue, virtually undetected, for long periods of time (perhaps even decades). We suggest that extinction debt is likely responsible for numerous (perhaps most) amphibian declines and that this perspective should be incorporated into the structure of amphibian research and management. Extinction debt, originally proposed to explain changes in species richness following environmental disturbance, also may refer to the proportion of populations of an individual species that is expected to eventually be lost because of habitat change. A conservation framework to address extinction debt focuses research on threats at the individual, population, and metapopulation levels. This approach will help enhance, restore, and protect specific processes and habitats at the proper scale by directing management to the most vulnerable level and stage of a species. We illustrate this approach using Flatwoods Salamanders, Ambystoma cingulatumand Ambystoma bishopi, which occurred historically throughout the Coastal Plain of the southeastern United States but have experienced a greater than 85% loss of populations in recent years. Reversal of these losses is possible only if conservation and recovery efforts encompass individual, population, and metapopulation levels. We illustrate our framework by outlining actions that could be taken at each of these levels to help guide conservation and management of amphibians with complex life cycles and provide options for how to prioritize conservation actions in the face of logistical and budgetary shortfalls.

  12. Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America

    International Nuclear Information System (INIS)

    Jancovich, James K.; Mao Jinghe; Chinchar, V. Gregory; Wyatt, Christopher; Case, Steven T.; Kumar, Sudhir; Valente, Graziela; Subramanian, Sankar; Davidson, Elizabeth W.; Collins, James P.; Jacobs, Bertram L.

    2003-01-01

    Disease is among the suspected causes of amphibian population declines, and an iridovirus and a chytrid fungus are the primary pathogens associated with amphibian mortalities. Ambystoma tigrinum virus (ATV) and a closely related strain, Regina ranavirus (RRV), are implicated in salamander die-offs in Arizona and Canada, respectively. We report the complete sequence of the ATV genome and partial sequence of the RRV genome. Sequence analysis of the ATV/RRV genomes showed marked similarity to other ranaviruses, including tiger frog virus (TFV) and frog virus 3 (FV3), the type virus of the genus Ranavirus (family Iridoviridae), as well as more distant relationships to lymphocystis disease virus, Chilo iridescent virus, and infectious spleen and kidney necrosis virus. Putative open reading frames (ORFs) in the ATV sequence identified 24 genes that appear to control virus replication and block antiviral responses. In addition, >50 other putative genes, homologous to ORFs in other iridoviral genomes but of unknown function, were also identified. Sequence comparison performed by dot plot analysis between ATV and itself revealed a conserved 14-bp palindromic repeat within most intragenic regions. Dot plot analysis of ATV vs RRV sequences identified several polymorphisms between the two isolates. Finally, a comparison of ATV and TFV genomic sequences identified genomic rearrangements consistent with the high recombination frequency of iridoviruses. Given the adverse effects that ranavirus infections have on amphibian and fish populations, ATV/RRV sequence information will allow the design of better diagnostic probes for identifying ranavirus infections and extend our understanding of molecular events in ranavirus-infected cells

  13. Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rachel Lockridge; Macey, J. Robert; Jaekel, Martin; Wake, David B.; Boore, Jeffrey L.

    2004-08-01

    The evolutionary history of the largest salamander family (Plethodontidae) is characterized by extreme morphological homoplasy. Analysis of the mechanisms generating such homoplasy requires an independent, molecular phylogeny. To this end, we sequenced 24 complete mitochondrial genomes (22 plethodontids and two outgroup taxa), added data for three species from GenBank, and performed partitioned and unpartitioned Bayesian, ML, and MP phylogenetic analyses. We explored four dataset partitioning strategies to account for evolutionary process heterogeneity among genes and codon positions, all of which yielded increased model likelihoods and decreased numbers of supported nodes in the topologies (PP > 0.95) relative to the unpartitioned analysis. Our phylogenetic analyses yielded congruent trees that contrast with the traditional morphology-based taxonomy; the monophyly of three out of four major groups is rejected. Reanalysis of current hypotheses in light of these new evolutionary relationships suggests that (1) a larval life history stage re-evolved from a direct-developing ancestor multiple times, (2) there is no phylogenetic support for the ''Out of Appalachia'' hypothesis of plethodontid origins, and (3) novel scenarios must be reconstructed for the convergent evolution of projectile tongues, reduction in toe number, and specialization for defensive tail loss. Some of these novel scenarios imply morphological transformation series that proceed in the opposite direction than was previously thought. In addition, they suggest surprising evolutionary lability in traits previously interpreted to be conservative.

  14. Biology of tiny animals: three new species of minute salamanders (Plethodontidae: Thorius from Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Gabriela Parra-Olea

    2016-11-01

    Full Text Available We describe three new species of minute salamanders, genus Thorius, from the Sierra Madre del Sur of Oaxaca, Mexico. Until now only a single species, T. minutissimus, has been reported from this region, although molecular data have long shown extensive genetic differentiation among geographically disjunct populations. Adult Thorius pinicola sp. nov., T. longicaudus sp. nov., and T. tlaxiacus sp. nov. are larger than T. minutissimus and possess elliptical rather than oval nostrils; T. pinicola and T. longicaudus also have longer tails. All three new species occur west of the range of T. minutissimus, which has the easternmost distribution of any member of the genus. The new species are distinguished from each other and from other named Thorius in Oaxaca by a combination of adult body size, external morphology and osteology, and by protein characters (allozymes and differences in DNA sequences. In addition, we redescribe T. minutissimus and a related species, T. narisovalis, to further clarify the taxonomic status of Oaxacan populations and to facilitate future studies of the remaining genetically differentiated Thorius that cannot be satisfactorily assigned to any named species. Populations of all five species considered here appear to have declined dramatically over the last one or two decades and live specimens are difficult to find in nature. Thorius may be the most endangered genus of amphibians in the world. All species may go extinct before the end of this century.

  15. Temporal response of the tiger salamander (Ambystoma tigrinum to 3,000 years of climatic variation

    Directory of Open Access Journals (Sweden)

    Long Webb

    2005-09-01

    Full Text Available Abstract Background Amphibians are sensitive indicators of environmental conditions and show measurable responses, such as changes in phenology, abundance and range limits to local changes in precipitation and temperature regimes. Amphibians offer unique opportunities to study the important ecological and evolutionary implications of responses in life history characteristics to climatic change. We analyzed a late-Holocene fossil record of the Tiger Salamander (Ambystoma tigrinum for evidence of population-level changes in body size and paedomorphosis to climatic change over the last 3000 years. Results We found a significant difference in body size index between paedomorphic and metamorphic individuals during the time interval dominated by the Medieval Warm Period. There is a consistent ratio of paedomorphic to metamorphic specimens through the entire 3000 years, demonstrating that not all life history characteristics of the population were significantly altered by changes in climate on this timescale. Conclusion The fossil record of Ambystoma tigrinum we used spans an ecologically relevant timescale appropriate for understanding population and community response to projected climatic change. The population-level responses we documented are concordant with expectations based on modern environmental studies, and yield insight into population-level patterns across hundreds of generations, especially the independence of different life history characteristics. These conclusions lead us to offer general predictions about the future response of this species based on likely scenarios of climatic warming in the Rocky Mountain region.

  16. Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing.

    Science.gov (United States)

    Keinath, Melissa C; Timoshevskiy, Vladimir A; Timoshevskaya, Nataliya Y; Tsonis, Panagiotis A; Voss, S Randal; Smith, Jeramiah J

    2015-11-10

    Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes.

  17. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations.

    Directory of Open Access Journals (Sweden)

    Rachael Y Dudaniec

    Full Text Available With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus in two core regions (Washington State, United States versus the species' northern peripheral region (British Columbia, Canada where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a 'flat' landscape, but at the periphery, topography (slope and elevation had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management.

  18. A new species of dusky salamander (Amphibia: Plethodontidae: Desmognathus) from the Eastern Gulf Coastal Plain of the United States and a redescription of D. auriculatus

    Science.gov (United States)

    Means, D Bruce; Lamb, Jennifer Y; Bernardo, Joseph

    2017-05-10

    The Coastal Plain of the southeastern U. S. is one of the planet's top biodiversity hotspots and yet many taxa have not been adequately studied. The plethodontid salamander, Desmognathus auriculatus, was originally thought to occur from east Texas to Virginia, a range spanning dozens of interfluves and large river systems. Beamer and Lamb (2008) found five independent mitochondrial lineages of what has been called D. auriculatus in the Atlantic Coastal Plain, but did not examine the extensive distribution of D. auriculatus in the Gulf Coastal Plain. We present morphological and molecular genetic data distinguishing two evolutionarily independent and distantly related lineages that are currently subsumed under the taxon D. auriculatus in the eastern Gulf Coastal Plain. We describe one of these as a new species, Desmognathus valentinei sp. nov., and assign the second one to D. auriculatus which we formally redescribe.

  19. Morphology and evolutionary implications of the annual cycle of secretion and sperm storage in spermathecae of the salamander Ambystoma opacum (Amphibia: Ambystomatidae).

    Science.gov (United States)

    Sever, David M; Krenz, John D; Johnson, Kristin M; Rania, Lisa C

    1995-01-01

    Females of the marbled salamander, Ambystoma opacum, store sperm in exocrine glands called spermathecae in the roof of the cloaca. Eggs are fertilized by sperm released from the spermathecae during oviposition. Some sperm remain in the spermathecae following oviposition, but these sperm degenerate within a month and none persists more than 6 mo after oviposition. Thus, sperm storage between successive breeding seasons does not occur. Apical secretory vaculoes are abundant during the fall mating season and contain a substance that is alcian blue+ at pH 2.5. Production of secretory vacuoles decreases markedly after oviposition, and the glands are inactive by the summer months. Ambystoma opacum is a terrestrial breeder, and some mating occurs prior to arrival at pond basins where oviposition occurs. Mating prior to arrival at the ovipository site may prolong the breeding season, leading to fitness implications for both males and females. Females have opportunities for more matings, and the possibilities for sperm competition in the spermathecae are enhanced. © 1995 Wiley-Liss, Inc. Copyright © 1995 Wiley-Liss, Inc.

  20. Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae

    Directory of Open Access Journals (Sweden)

    Nistri Annamaria

    2010-07-01

    Full Text Available Abstract Background A major goal in evolutionary biology is to understand the evolution of phenotypic diversity. Both natural and sexual selection play a large role in generating phenotypic adaptations, with biomechanical requirements and developmental mechanisms mediating patterns of phenotypic evolution. For many traits, the relative importance of selective and developmental components remains understudied. Results We investigated ontogenetic trajectories of foot morphology in the eight species of European plethodontid cave salamander to test the hypothesis that adult foot morphology was adapted for climbing. Using geometric morphometrics and other approaches, we found that developmental patterns in five species displayed little morphological change during growth (isometry, where the extensive interdigital webbing in adults was best explained as the retention of the juvenile morphological state. By contrast, three species exhibited significant allometry, with an increase in interdigital webbing during growth. Phylogenetic analyses revealed that multiple evolutionary transitions between isometry and allometry of foot webbing have occurred in this lineage. Allometric parameters of foot growth were most similar to those of a tropical species previously shown to be adapted for climbing. Finally, interspecific variation in adult foot morphology was significantly reduced as compared to variation among juveniles, indicating that ontogenetic convergence had resulted in a common adult foot morphology across species. Conclusions The results presented here provide evidence of a complex history of phenotypic evolution in this clade. The common adult phenotype exhibited among species reveals that selection plays an important part in generating patterns of foot diversity in the group. However, developmental trajectories arriving at this common morphology are distinct; with some species displaying developmental stasis (isometry, while others show an increase

  1. Foraging trade-offs along a predator-permanence gradient in subalpine wetlands

    Science.gov (United States)

    Wissinger, S.A.; Whiteman, H.H.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.

    1999-01-01

    We conducted a series of field and laboratory experiments to determine the direct and indirect effects of a top predator, the tiger salamander (Ambystoma tigrinum nebulosum), on larvae of two species of limnephilid caddisflies (Limnephilus externus and Asynarchus nigriculus) in subalpine wetlands in central Colorado. Asynarchus larvae predominate in temporary wetlands and are aggressive intraguild predators on Limnephilus larvae, which only predominate in permanent basins with salamanders. We first conducted a field experiment in mesocosms (cattle tanks) to quantify the predatory effects of different life stages of salamanders on the two caddisfly species. Two life stages of the salamanders (larvae and paedomorphs) preferentially preyed on Asynarchus relative to Limnephilus. Subsequent laboratory experiments revealed that high Asynarchus activity rates and relatively ineffective antipredatory behaviors led to higher salamander detection and attack rates compared to Limnephilus. In a second field experiment (full factorial for presence and absence of each of the three species), we found that salamander predation on Asynarchus had an indirect positive effect on Limnephilus: survival was higher in the presence of salamanders + Asynarchus than with just Asynarchus. In the laboratory we compared the predatory effects of salamanders with and without their mouths sewn shut and found the observed indirect positive effect on Limnephilus survival to be mainly the result of reduced numbers of Asynarchus rather than salamander-induced changes in Asynarchus behavior. We argue that indirect effects of predator-predator interactions on shared prey will be mainly density-mediated and not trait-mediated when one of the predators (in this case, Asynarchus) is under strong selection for rapid growth and therefore does not modify foraging behaviors in response to the other predator. The reciprocal dominance of Limnephilus and Asynarchus in habitats with and without salamanders

  2. The effects of food level and conspecific density on biting and cannibalism in larval long-toed salamanders, Ambystoma macrodactylum.

    Science.gov (United States)

    Wildy, Erica L; Chivers, Douglas P; Kiesecker, Joseph M; Blaustein, Andrew R

    2001-07-01

    Previous studies have examined abiotic and biotic factors that facilitate agonistic behavior. For larval amphibians, food availability and conspecific density have been suggested as important factors influencing intraspecific aggression and cannibalism. In this study, we examined the separate and combined effects of food availability and density on the agonistic behavior and life history of larval long-toed salamanders, Ambystoma macrodactylum. We designed a 2×2 factorial experiment in which larvae were raised with either a high or low density of conspecifics and fed either a high or low level of food. For each treatment, we quantified the amount of group size variation, biting, and cannibalism occurring. Additionally, we examined survival to, time to and size at metamorphosis for all larvae. Results indicated that differences in both density and food level influenced all three life history traits measured. Moreover, differences in food level at which larvae were reared resulted in higher within-group size variation and heightened intraspecific biting while both density and food level contributed to increased cannibalism. We suggest that increased hunger levels and an uneven size structure promoted biting among larvae in the low food treatments. Moreover, these factors combined with a higher encounter rate with conspecifics in the high density treatments may have prompted larger individuals to seek an alternative food source in the form of smaller conspecifics.

  3. Effects of metamorphosis and captivity on the in vitro sensitivity of thyroid glands from the tiger salamander, Ambystoma tigrinum, to bovine thyrotropin

    International Nuclear Information System (INIS)

    Norman, M.F.; Norris, D.O.

    1987-01-01

    The sensitivity of thyroid glands from the tiger salamander, Ambystoma tigrinum, to bovine thyrotropin (bTSH) was tested in vitro. Thyroids were taken from subjects representing metamorphic stages I (premetamorphic larvae), II (onset of climax), and VII (completion of gill resorption), as well as from captivity control larvae. Exogenous TSH reduced the cumulative uptake of 125 I in vitro by thyroids from stage I larvae after 24 and 48 hr. The capacity of thyroids to release thyroxine (T4) in vitro was used subsequently as a measure of their responsiveness to TSH. Baseline levels of T4 release in vitro were variable but did not differ significantly among developmental stages. A low dose of bTSH (5 X 10(-6) IU/ml) did not increase in vitro T4 release compared with that of controls. A larger dose (5 X 10(-4) IU/ml) caused greater increases in T4 release from thyroids of stage II and VII subjects than from those of controls. This dose produced only a small response by thyroids from captivity-control subjects. The results suggest that the thyroids of Ambystoma increase in their capacity to respond to TSH during the process of metamorphosis

  4. Molecular phylogenetic reconstruction of the endemic Asian salamander family Hynobiidae (Amphibia, Caudata).

    Science.gov (United States)

    Weisrock, David W; Macey, J Robert; Matsui, Masafumi; Mulcahy, Daniel G; Papenfuss, Theodore J

    2013-01-01

    The salamander family Hynobiidae contains over 50 species and has been the subject of a number of molecular phylogenetic investigations aimed at reconstructing branches across the entire family. In general, studies using the greatest amount of sequence data have used reduced taxon sampling, while the study with the greatest taxon sampling has used a limited sequence data set. Here, we provide insights into the phylogenetic history of the Hynobiidae using both dense taxon sampling and a large mitochondrial DNA sequence data set. We report exclusive new mitochondrial DNA data of 2566 aligned bases (with 151 excluded sites, of included sites 1157 are variable with 957 parsimony informative). This is sampled from two genic regions encoding a 12S-16S region (the 3' end of 12S rRNA, tRNA(VAI), and the 5' end of 16S rRNA), and a ND2-COI region (ND2, tRNA(Trp), tRNA(Ala), tRNA(Asn), the origin for light strand replication--O(L), tRNA(Cys), tRNAT(Tyr), and the 5' end of COI). Analyses using parsimony, Bayesian, and maximum likelihood optimality criteria produce similar phylogenetic trees, with discordant branches generally receiving low levels of branch support. Monophyly of the Hynobiidae is strongly supported across all analyses, as is the sister relationship and deep divergence between the genus Onychodactylus with all remaining hynobiids. Within this latter grouping our phylogenetic results identify six clades that are relatively divergent from one another, but for which there is minimal support for their phylogenetic placement. This includes the genus Batrachuperus, the genus Hynobius, the genus Pachyhynobius, the genus Salamandrella, a clade containing the genera Ranodon and Paradactylodon, and a clade containing the genera Liua and Pseudohynobius. This latter clade receives low bootstrap support in the parsimony analysis, but is consistent across all three analytical methods. Our results also clarify a number of well-supported relationships within the larger

  5. Amphibian commerce as a likely source of pathogen pollution.

    Science.gov (United States)

    Picco, Angela M; Collins, James P

    2008-12-01

    The commercial trade of wildlife occurs on a global scale. In addition to removing animals from their native populations, this trade may lead to the release and subsequent introduction of nonindigenous species and the pathogens they carry. Emerging infectious diseases, such as chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), and ranaviral disease have spread with global trade in amphibians and are linked to amphibian declines and die-offs worldwide, which suggests that the commercial trade in amphibians may be a source of pathogen pollution. We screened tiger salamanders involved in the bait trade in the western United States for both ranaviruses and Bd with polymerase chain reaction and used oral reports from bait shops and ranavirus DNA sequences from infected bait salamanders to determine how these animals and their pathogens are moved geographically by commerce. In addition, we conducted 2 surveys of anglers to determine how often tiger salamanders are used as bait and how often they are released into fishing waters by anglers, and organized bait-shop surveys to determine whether tiger salamanders are released back into the wild after being housed in bait shops. Ranaviruses were detected in the tiger salamander bait trade in Arizona, Colorado, and New Mexico, and Bd was detected in Arizona bait shops. Ranaviruses were spread geographically through the bait trade. All tiger salamanders in the bait trade were collected from the wild, and in general they moved east to west and north to south, bringing with them their multiple ranavirus strains. Finally, 26-73% of anglers used tiger salamanders as fishing bait, 26-67% of anglers released tiger salamanders bought as bait into fishing waters, and 4% of bait shops released tiger salamanders back into the wild after they were housed in shops with infected animals. The tiger salamander bait trade in the western United States is a useful model for understanding the consequences of the

  6. Risk of survival, establishment and spread of Batrachochytrium salamandrivorans (Bsal) in the EU

    DEFF Research Database (Denmark)

    EFSA Panel on Animal Health and Welfare; More, Simon; Miranda, Miguel Angel

    2018-01-01

    , Germany and the Netherlands. According to niche modelling, at least part of the distribution range of every salamander species in Europe overlaps with the climate conditions predicted to be suitable for Bsal. Passive surveillance is considered the most suitable approach for detection of Bsal emergence...... considered the most feasible and effective: (i) for ensuring safer international or intra‐EU trade of live salamanders, are: ban or restrictions on salamander imports, hygiene procedures and good practice manuals; (ii) for protecting kept salamanders from Bsal, are: identification and treatment of positive...... the overall effectiveness. It is recommended to: introduce a harmonised protocol for Bsal detection throughout the EU; improve data acquisition on salamander abundance and distribution; enhance passive surveillance activities; increase public and professionals’ awareness; condition any movement of captive...

  7. Bayesian salamanders: analysing the demography of an underground population of the European plethodontid Speleomantes strinatii with state-space modelling

    Directory of Open Access Journals (Sweden)

    Salvidio Sebastiano

    2010-02-01

    Full Text Available Abstract Background It has been suggested that Plethodontid salamanders are excellent candidates for indicating ecosystem health. However, detailed, long-term data sets of their populations are rare, limiting our understanding of the demographic processes underlying their population fluctuations. Here we present a demographic analysis based on a 1996 - 2008 data set on an underground population of Speleomantes strinatii (Aellen in NW Italy. We utilised a Bayesian state-space approach allowing us to parameterise a stage-structured Lefkovitch model. We used all the available population data from annual temporary removal experiments to provide us with the baseline data on the numbers of juveniles, subadults and adult males and females present at any given time. Results Sampling the posterior chains of the converged state-space model gives us the likelihood distributions of the state-specific demographic rates and the associated uncertainty of these estimates. Analysing the resulting parameterised Lefkovitch matrices shows that the population growth is very close to 1, and that at population equilibrium we expect half of the individuals present to be adults of reproductive age which is what we also observe in the data. Elasticity analysis shows that adult survival is the key determinant for population growth. Conclusion This analysis demonstrates how an understanding of population demography can be gained from structured population data even in a case where following marked individuals over their whole lifespan is not practical.

  8. Effects of simulated solar UVB radiation on early developmental stages of the northwestern salamander (Ambystoma gracile) from three lakes

    Science.gov (United States)

    Calfee, R.D.; Little, E.E.; Pearl, C.A.; Hoffman, R.L.

    2010-01-01

    Solar ultraviolet radiation (UV) has received much attention as a factor that could play a role in amphibian population declines. UV can be hazardous to some amphibians, but the resultant effects depend on a variety of environmental and behavioral factors. In this study, the potential effects of UV on the Northwestern Salamander, Ambystoma gracile, from three lakes were assessed in the laboratory using a solar simulator. We measured the survival of embryos and the survival and growth of larvae exposed to four UV treatments in controlled laboratory studies, the UV absorbance of egg jelly, oviposition depths in the lakes, and UV absorbance in water samples from the three lakes. Hatching success of embryos decreased in the higher UV treatments as compared to the control treatments, and growth of surviving larvae was significantly reduced in the higher UVB irradiance treatments. The egg jelly exhibited a small peak of absorbance within the UVB range (290-320 nm). The magnitude of UV absorbance differed among egg jellies from the three lakes. Oviposition depths at the three sites averaged 1.10 m below the water surface. Approximately 66 of surface UVB radiation was attenuated at 10-cm depth in all three lakes. Results of this study indicate that larvae may be sensitive to UVB exposure under laboratory conditions; however, in field conditions the depths of egg deposition in the lakes, absorbance of UV radiation by the water column, and the potential for behavioral adjustments may mitigate severe effects of UV radiation. Copyright 2010 Society for the Study of Amphibians and Reptiles.

  9. Reproduction of the salamander Siren intermedia le conte with especial reference to oviducal anatomy and mode of fertilization.

    Science.gov (United States)

    Sever, David M; Rania, Lisa C; Krenz, John D

    1996-03-01

    Reproduction was studied in a South Carolina population of the paedomorphic salamander Siren intermedia with emphasis on anatomy of the female oviduct. The oviduct forms 67-79% of the snout-vent length in this elongate species and can be divided into three portions. The atrium, 7-13% of oviducal length, is the narrow anteriormost portion, with the ostial opening immediately caudad of the transverse septum. The ampulla, 63-75% of oviducal length, is the highly convoluted, middle portion in which gelatinous coverings are added to the eggs during their passage. Hypertrophy of the oviducal glands in the ampulla causes the ampulla to increase in diameter during the ovipository season. The secretion of the eosinophilic oviducal glands is intensely positive following staining with the periodic acid-Schiff procedure and does not react with alcian blue at pH 2.5. This staining reaction, coupled with the presence of abundant rough endoplasmic reticulum and Golgi complexes, indicates that the secretion contains a glycoprotein. The ovisac, 16-25% of oviducal length, is the most posterior portion of the oviduct and holds up to 10-11 eggs prior to oviposition. Oviducal glands similar to those in the ampulla are absent in the ovisac. Oviposition in female sirens occurs during February-April in this population, and male spermiation is concurrent. Entire oviducts were sectioned from three females collected during the ovipository season and from two collected prior to the breeding season, and sperm were not found in the oviducts of these specimens. Thus no evidence was found for internal fertilization or sperm storage in the oviducts of sirens. © 1996 Wiley-Liss, Inc. Copyright © 1996 Wiley-Liss, Inc.

  10. Spatial variation in risk and consequence of Batrachochytrium salamandrivorans introduction in the USA

    Science.gov (United States)

    Richgels, Katherine L. D.; Russell, Robin E.; Adams, Michael J.; White, C. LeAnn; Campbell Grant, Evan H.

    2016-01-01

    A newly identified fungal pathogen, Batrachochytrium salamandrivorans (Bsal), is responsible for mass mortality events and severe population declines in European salamanders. The eastern USA has the highest diversity of salamanders in the world and the introduction of this pathogen is likely to be devastating. Although data are inevitably limited for new pathogens, disease-risk assessments use best available data to inform management decisions. Using characteristics of Bsal ecology, spatial data on imports and pet trade establishments, and salamander species diversity, we identify high-risk areas with both a high likelihood of introduction and severe consequences for local salamanders. We predict that the Pacific coast, southern Appalachian Mountains and mid-Atlantic regions will have the highest relative risk from Bsal. Management of invasive pathogens becomes difficult once they are established in wildlife populations; therefore, import restrictions to limit pathogen introduction and early detection through surveillance of high-risk areas are priorities for preventing the next crisis for North American salamanders.

  11. The effects of simulated solar UVB radiation on early developmental stages of the Northwestern Salamander (Ambystoma gracile) from three lakes

    Science.gov (United States)

    Calfee, Robin D.; Little, Edward E.; Pearl, Christopher A.; Hoffman, Robert L.

    2010-01-01

    Solar ultraviolet radiation (UV) has received much attention as a factor that could play a role in amphibian population declines. UV can be hazardous to some amphibians, but the resultant effects depend on a variety of environmental and behavioral factors. In this study, the potential effects of UV on the Northwestern Salamander, Ambystoma gracile, from three lakes were assessed in the laboratory using a solar simulator. We measured the survival of embryos and the survival and growth of larvae exposed to four UV treatments in controlled laboratory studies, the UV absorbance of egg jelly, oviposition depths in the lakes, and UV absorbance in water samples from the three lakes. Hatching success of embryos decreased in the higher UV treatments as compared to the control treatments, and growth of surviving larvae was significantly reduced in the higher UVB irradiance treatments. The egg jelly exhibited a small peak of absorbance within the UVB range (290–320 nm). The magnitude of UV absorbance differed among egg jellies from the three lakes. Oviposition depths at the three sites averaged 1.10 m below the water surface. Approximately 66% of surface UVB radiation was attenuated at 10-cm depth in all three lakes. Results of this study indicate that larvae may be sensitive to UVB exposure under laboratory conditions; however, in field conditions the depths of egg deposition in the lakes, absorbance of UV radiation by the water column, and the potential for behavioral adjustments may mitigate severe effects of UV radiation.

  12. 77 FR 56481 - Endangered and Threatened Wildlife and Plants; Proposed Endangered Status for the Jemez Mountains...

    Science.gov (United States)

    2012-09-12

    ... Information The salamander is uniformly dark brown above, with occasional fine gold to brassy coloring with... salamander aboveground activity are likely influenced by snow infiltration and summer monsoon rains. When...

  13. Multilocus Phylogeography and Species Delimitation in the Cumberland Plateau Salamander, Plethodon kentucki: Incongruence among Data Sets and Methods.

    Directory of Open Access Journals (Sweden)

    Shawn R Kuchta

    Full Text Available Species are a fundamental unit of biodiversity, yet can be challenging to delimit objectively. This is particularly true of species complexes characterized by high levels of population genetic structure, hybridization between genetic groups, isolation by distance, and limited phenotypic variation. Previous work on the Cumberland Plateau Salamander, Plethodon kentucki, suggested that it might constitute a species complex despite occupying a relatively small geographic range. To examine this hypothesis, we sampled 135 individuals from 43 populations, and used four mitochondrial loci and five nuclear loci (5693 base pairs to quantify phylogeographic structure and probe for cryptic species diversity. Rates of evolution for each locus were inferred using the multidistribute package, and time calibrated gene trees and species trees were inferred using BEAST 2 and *BEAST 2, respectively. Because the parameter space relevant for species delimitation is large and complex, and all methods make simplifying assumptions that may lead them to fail, we conducted an array of analyses. Our assumption was that strongly supported species would be congruent across methods. Putative species were first delimited using a Bayesian implementation of the GMYC model (bGMYC, Geneland, and Brownie. We then validated these species using the genealogical sorting index and BPP. We found substantial phylogeographic diversity using mtDNA, including four divergent clades and an inferred common ancestor at 14.9 myr (95% HPD: 10.8-19.7 myr. By contrast, this diversity was not corroborated by nuclear sequence data, which exhibited low levels of variation and weak phylogeographic structure. Species trees estimated a far younger root than did the mtDNA data, closer to 1.0 myr old. Mutually exclusive putative species were identified by the different approaches. Possible causes of data set discordance, and the problem of species delimitation in complexes with high levels of population

  14. Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark Hellbender salamanders.

    Directory of Open Access Journals (Sweden)

    Cheryl A Nickerson

    cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines.

  15. Effects of Tail Clipping on Larval Performance and Tail Regeneration Rates in the Near Eastern Fire Salamander, Salamandra infraimmaculata.

    Directory of Open Access Journals (Sweden)

    Ori Segev

    Full Text Available Tail-tip clipping is a common technique for collecting tissue samples from amphibian larvae and adults. Surprisingly, studies of this invasive sampling procedure or of natural tail clipping--i.e., bites inflicted by predators including conspecifics--on the performance and fitness of aquatic larval stages of urodeles are scarce. We conducted two studies in which we assessed the effects of posterior tail clipping (~30 percent of tail on Near Eastern fire salamander (Salamandra infraimmaculata larvae. In a laboratory study, we checked regeneration rates of posterior tail-tip clipping at different ages. Regeneration rates were hump-shaped, peaking at the age of ~30 days and then decreasing. This variation in tail regeneration rates suggests tradeoffs in resource allocation between regeneration and somatic growth during early and advanced development. In an outdoor artificial pond experiment, under constant larval densities, we assessed how tail clipping of newborn larvae affects survival to, time to, and size at metamorphosis. Repeated measures ANOVA on mean larval survival per pond revealed no effect of tail clipping. Tail clipping had correspondingly no effect on larval growth and development expressed in size (mass and snout-vent length at, and time to, metamorphosis. We conclude that despite the given variation in tail regeneration rates throughout larval ontogeny, clipping of 30% percent of the posterior tail area seems to have no adverse effects on larval fitness and survival. We suggest that future use of this imperative tool for the study of amphibian should take into account larval developmental stage during the time of application and not just the relative size of the clipped tail sample.

  16. Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development.

    Science.gov (United States)

    Fröbisch, Nadia B; Bickelmann, Constanze; Olori, Jennifer C; Witzmann, Florian

    2015-11-12

    Among extant tetrapods, salamanders are unique in showing a reversed preaxial polarity in patterning of the skeletal elements of the limbs, and in displaying the highest capacity for regeneration, including full limb and tail regeneration. These features are particularly striking as tetrapod limb development has otherwise been shown to be a highly conserved process. It remains elusive whether the capacity to regenerate limbs in salamanders is mechanistically and evolutionarily linked to the aberrant pattern of limb development; both are features classically regarded as unique to urodeles. New molecular data suggest that salamander-specific orphan genes play a central role in limb regeneration and may also be involved in the preaxial patterning during limb development. Here we show that preaxial polarity in limb development was present in various groups of temnospondyl amphibians of the Carboniferous and Permian periods, including the dissorophoids Apateon and Micromelerpeton, as well as the stereospondylomorph Sclerocephalus. Limb regeneration has also been reported in Micromelerpeton, demonstrating that both features were already present together in antecedents of modern salamanders 290 million years ago. Furthermore, data from lepospondyl 'microsaurs' on the amniote stem indicate that these taxa may have shown some capacity for limb regeneration and were capable of tail regeneration, including re-patterning of the caudal vertebral column that is otherwise only seen in salamander tail regeneration. The data from fossils suggest that salamander-like regeneration is an ancient feature of tetrapods that was subsequently lost at least once in the lineage leading to amniotes. Salamanders are the only modern tetrapods that retained regenerative capacities as well as preaxial polarity in limb development.

  17. Management and monitoring of the endangered Shenandoah salamander under climate change: Workshop report 10-12 April 2012

    Science.gov (United States)

    Grant, Evan H. Campbell; Wofford, John E.B.; Smith, D.R.; Dennis, J.; Hawkins-Hoffman, C.; Schaberl, J.; Foley, M.; Bogle, M.

    2014-01-01

    Here we report on a structured decision making (SDM) process to identify management strategies to ensure persistence of the federally endangered Shenandoah salamander (Plethodon shenandoah), given that it may be at increased extinction risk under projected climate change. The focus of this report is the second of two SDM workshops; in the first workshop, participants developed a prototype of the decision, including problem frame, management objectives and a suite of potential management strategies, predictive models to inform the decision and link alternatives with the objectives to identify potential solutions, and identified data needs to reduce key uncertainties in the decision. Participants in this second workshop included experts in National Park Service policy at multiple administrative levels, who refined objectives, further evaluated the initial management alternatives, and discussed policy constraints on implementing active management for the species and its high-elevation habitat. The conclusion of the second workshop was similar to that of the first: the current state of information and objectives suggest that there is some value in considering active management to reduce the long-term extinction risk for the species, though there are institutional conservative policies to implementing active management at range-wide scales. The workshop participants also emphasized a conservative NPS management philosophy, including caution in implementing management actions that may ultimately harm the system, a stated assumption that ecosystem changes were “natural” unless demonstrated otherwise (therefore not warranting active management to mitigate), and a need to demonstrate that extinction risk is tied to anthropogenic influence prior to taking active management to mitigate specific anthropogenic influences. Even within a protected area having minimal human disturbance, intertwined environmental variables and interspecific relationships that drive population

  18. Concurrent speciation in the eastern woodland salamanders (Genus Plethodon):DNA sequences of the complete albumin nuclear and partialmitochondrial 12s genes

    Science.gov (United States)

    Highton, Richard; Hastings, Amy Picard; Palmer, Catherine; Watts, Richard; Hass, Carla A.; Culver, Melanie; Arnold, Stevan

    2012-01-01

    Salamanders of the North American plethodontid genus Plethodon are important model organisms in a variety of studies that depend on a phylogenetic framework (e.g., chemical communication, ecological competition, life histories, hybridization, and speciation), and consequently their systematics has been intensively investigated over several decades. Nevertheless, we lack a synthesis of relationships among the species. In the analyses reported here we use new DNA sequence data from the complete nuclear albumin gene (1818 bp) and the 12s mitochondrial gene (355 bp), as well as published data for four other genes (Wiens et al., 2006), up to a total of 6989 bp, to infer relationships. We relate these results to past systematic work based on morphology, allozymes, and DNA sequences. Although basal relationships show a strong consensus across studies, many terminal relationships remain in flux despite substantial sequencing and other molecular and morphological studies. This systematic instability appears to be a consequence of contemporaneous bursts of speciation in the late Miocene and Pliocene, yielding many closely related extant species in each of the four eastern species groups. Therefore we conclude that many relationships are likely to remain poorly resolved in the face of additional sequencing efforts. On the other hand, the current classification of the 45 eastern species into four species groups is supported. The Plethodon cinereus group (10 species) is the sister group to the clade comprising the other three groups, but these latter groups (Plethodon glutinosus [28 species], Plethodon welleri [5 species], and Plethodon wehrlei [2 species]) probably diverged from each other at approximately the same time.

  19. Habitat alteration increases invasive fire ant abundance to the detriment of amphibians and reptiles

    Science.gov (United States)

    Todd, B.D.; Rothermel, B.B.; Reed, R.N.; Luhring, T.M.; Schlatter, K.; Trenkamp, L.; Gibbons, J.W.

    2008-01-01

    Altered habitats have been suggested to facilitate red imported fire ant (Solenopsis invicta) colonization and dispersal, possibly compounding effects of habitat alteration on native wildlife. In this study, we compared colonization intensity of wood cover boards by S. invicta among four forest management treatments in South Carolina, USA: an unharvested control (>30 years old); a partially thinned stand; a clearcut with coarse woody debris retained; and a clearcut with coarse woody debris removed. Additionally, we compared dehydration rates and survival of recently metamorphosed salamanders (marbled salamanders, Ambystoma opacum, and mole salamanders, A. talpoideum) among treatments. We found that the number of wood cover boards colonized by S. invicta differed significantly among treatments, being lowest in the unharvested forest treatments and increasing with the degree of habitat alteration. Salamanders that were maintained in experimental field enclosures to study water loss were unexpectedly subjected to high levels of S. invicta predation that differed among forest treatments. All known predation by S. invicta was restricted to salamanders in clearcuts. The amount of vegetative ground cover was inversely related to the likelihood of S. invicta predation of salamanders. Our results show that S. invicta abundance increases with habitat disturbance and that this increased abundance has negative consequences for amphibians that remain in altered habitats. Our findings also suggest that the presence of invasive S. invicta may compromise the utility of cover boards and other techniques commonly used in herpetological studies in the Southeast. ?? 2007 Springer Science+Business Media B.V.

  20. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks

    Science.gov (United States)

    Campbell, Grant E.H.; Nichols, J.D.; Lowe, W.H.; Fagan, W.F.

    2010-01-01

    Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.

  1. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks.

    Science.gov (United States)

    Campbell Grant, Evan H; Nichols, James D; Lowe, Winsor H; Fagan, William F

    2010-04-13

    Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.

  2. Induction of Metamorphosis Causes Differences in Sex-Specific Allocation Patterns in Axolotls (Ambystoma mexicanum) that Have Different Growth Histories.

    Science.gov (United States)

    Clarkson, Pamela M; Beachy, Christopher K

    2015-12-01

    We tested the hypothesis that salamanders growing at different rates would have allocation patterns that differ among male and female metamorphic and larval salamanders. We raised individual axolotls, Ambystoma mexicanum , on four food regimes: constant high growth (throughout the experiment), constant low growth (restricted throughout the experiment), high growth switched to low growth (ad libitum switched after 140 d to restricted), and low growth switched to high growth (restricted switched after 140 d to ad libitum). Because axolotls are obligate paedomorphs, we exposed half of the salamanders to thyroid hormone to induce metamorphosis. We assayed growth and dissected and weighed gonads and fat bodies. Salamanders that were switched from restricted to ad libitum food regime delayed metamorphosis. In all treatment groups, females had larger gonads than males and males had larger fat bodies than females. The association between storage and reproduction differed between larvae and metamorphs and depended on sex.

  3. Changes in faunal and vegetation communities along a soil calcium gradient in northern hardwood forests

    Science.gov (United States)

    Beier, Colin M.; Woods, Anne M.; Hotopp, Kenneth P.; Gibbs, James P.; Mitchell, Myron J.; Dovciak, Martin; Leopold, Donald J.; Lawrence, Gregory B.; Page, Blair D.

    2012-01-01

    Depletion of Ca from forest soils due to acidic deposition has had potentially pervasive effects on forest communities, but these impacts remain largely unknown. Because snails, salamanders, and plants play essential roles in the Ca cycle of northern hardwood forests, we hypothesized that their community diversity, abundance, and structure would vary with differences in biotic Ca availability. To test this hypothesis, we sampled 12 upland hardwood forests representing a soil Ca gradient in the Adirondack Mountains, New York (USA), where chronic deposition has resulted in acidified soils but where areas of well-buffered soils remain Ca rich due to parent materials. Along the gradient of increasing soil [Ca2+], we observed increasing trends in snail community richness and abundance, live biomass of redback salamanders (Plethodon cinereus (Green, 1818)), and canopy tree basal area. Salamander communities were dominated by mountain dusky salamanders (Desmognathus ochrophaeus Cope, 1859) at Ca-poor sites and changed continuously along the Ca gradient to become dominated by redback salamanders at the Ca-rich sites. Several known calciphilic species of snails and plants were found only at the highest-Ca sites. Our results indicated that Ca availability, which is shaped by geology and acidic deposition inputs, influences northern hardwood forest ecosystems at multiple trophic levels, although the underlying mechanisms require further study.

  4. Molecular evidence for the early history of living amphibians.

    Science.gov (United States)

    Feller, A E; Hedges, S B

    1998-06-01

    The evolutionary relationships of the three orders of living amphibians (lissamphibians) has been difficult to resolve, partly because of their specialized morphologies. Traditionally, frogs and salamanders are considered to be closest relatives, and all three orders are thought to have arisen in the Paleozoic (>250 myr). Here, we present evidence from the DNA sequences of four mitochondrial genes (2.7 kilobases) that challenges the conventional hypothesis and supports a salamander-caecilian relationship. This, in light of the fossil record and distribution of the families, suggests a more recent (Mesozoic) origin for salamanders and caecilians directly linked to the initial breakup of the supercontinent Pangaea. We propose that this single geologic event isolated salamanders and archaeobatrachian frogs on the northern continents (Laurasia) and the caecilians and neobatrachian frogs on the southern continents (Gondwana). Among the neobatrachian frog families, molecular evidence supports a South American clade and an African clade, inferred here to be the result of mid-Cretaceous vicariance. Copyright 1998 Academic Press.

  5. A refined ecological risk assessment for California red-legged frog, Delta smelt, and California tiger salamander exposed to malathion.

    Science.gov (United States)

    Clemow, Yvonne H; Manning, Gillian E; Breton, Roger L; Winchell, Michael F; Padilla, Lauren; Rodney, Sara I; Hanzas, John P; Estes, Tammara L; Budreski, Katherine; Toth, Brent N; Hill, Katie L; Priest, Colleen D; Teed, R Scott; Knopper, Loren D; Moore, Dwayne Rj; Stone, Christopher T; Whatling, Paul

    2018-03-01

    The California red-legged frog (CRLF), Delta smelt (DS), and California tiger salamander (CTS) are 3 species listed under the United States Federal Endangered Species Act (ESA), all of which inhabit aquatic ecosystems in California. The US Environmental Protection Agency (USEPA) has conducted deterministic screening-level risk assessments for these species potentially exposed to malathion, an organophosphorus insecticide and acaricide. Results from our screening-level analyses identified potential risk of direct effects to DS as well as indirect effects to all 3 species via reduction in prey. Accordingly, for those species and scenarios in which risk was identified at the screening level, we conducted a refined probabilistic risk assessment for CRLF, DS, and CTS. The refined ecological risk assessment (ERA) was conducted using best available data and approaches, as recommended by the 2013 National Research Council (NRC) report "Assessing Risks to Endangered and Threatened Species from Pesticides." Refined aquatic exposure models including the Pesticide Root Zone Model (PRZM), the Vegetative Filter Strip Modeling System (VFSMOD), the Variable Volume Water Model (VVWM), the Exposure Analysis Modeling System (EXAMS), and the Soil and Water Assessment Tool (SWAT) were used to generate estimated exposure concentrations (EECs) for malathion based on worst-case scenarios in California. Refined effects analyses involved developing concentration-response curves for fish and species sensitivity distributions (SSDs) for fish and aquatic invertebrates. Quantitative risk curves, field and mesocosm studies, surface-water monitoring data, and incident reports were considered in a weight-of-evidence approach. Currently, labeled uses of malathion are not expected to result in direct effects to CRLF, DS or CTS, or indirect effects due to effects on fish and invertebrate prey. Integr Environ Assess Manag 2018;14:224-239. © 2017 The Authors. Integrated Environmental Assessment and

  6. Reptile and amphibian response to oak regeneration treatments in productive southern Appalachian hardwood forest

    Science.gov (United States)

    Cathryn H. Greenberg; Christopher E. Moorman; Amy L. Raybuck; Chad Sundol; Tara L. Keyser; Janis Bush; Dean M. Simon; Gordon S. Warburton

    2016-01-01

    Forest restoration efforts commonly employ silvicultural methods that alter light and competition to influence species composition. Changes to forest structure and microclimate may adversely affect some taxa (e.g., terrestrial salamanders), but positively affect others (e.g., early successional birds). Salamanders are cited as indicators of ecosystem health because of...

  7. Understanding the role of uncertainty on learning and retention of predator information.

    Science.gov (United States)

    Ferrari, Maud C O; Vrtělová, Jana; Brown, Grant E; Chivers, Douglas P

    2012-09-01

    Due to the highly variable nature of predation risk, prey animals need to continuously collect information regarding the risk posed by predators. One question that ensues is how long to use this information for? An adaptive framework of predator-related information use predicted that certainty should influence the duration for which information regarding the threatening nature of a species is used in decision-making. It predicts that uncertainty contributes to the reduction in the duration of information use, due to the cost of displaying antipredator behaviours towards non-threatening species. Here, we test this prediction using repetition of conditioning events as a way to increase the certainty associated with the predatory nature of a novel salamander for woodfrog tadpoles. Tadpoles were conditioned 1, 2 or 4 times to recognize a novel salamander as a predator and subsequently tested for their response to the salamander 1 day or 11 days post-conditioning. We found that conditioning repetition did not affect the intensity with which tadpoles learned to respond to the salamander after 1 day. However, after 11 days, tadpoles with fewer conditionings responded to the salamander with a weaker intensity than those that received more conditionings. Our results provide support for the model prediction that an increase in the certainty associated with correctly identifying a predator leads to longer retention of the threat.

  8. Interactions of an insecticide, herbicide, and natural stressors in amphibian community mesocosms

    Science.gov (United States)

    Boone, M.D.; James, S.M.

    2003-01-01

    Amphibians developing in wetlands embedded within or near agricultural lands may frequently encounter chemical mixtures. The objectives of our study were to determine the effects that post-application concentrations of an insecticide (carbaryl) and an herbicide (atrazine) have on body mass, development, and survival of two anuran species (southern leopard frog, Rana sphenocephala; American toad, Bufo americanus) and two caudate species (spotted salamander, Ambystoma maculatum; small-mouthed salamander, A. texanum) reared in outdoor cattle tank mesocosms. In one experiment, we manipulated tadpole density (low or high), carbaryl exposure (0, 3.5, 7.0 mg/L), and atrazine exposure (0 or 200 μg/L) to test for effects on development, mass, and survival of larvae. In a second experiment, we manipulated pond hydroperiod (constant or drying), carbaryl exposure (0 or 5 mg/L), and atrazine exposure (0 or 200 μg/L) to test for effects on mass, time, and survival to metamorphosis. Salamanders were virtually eliminated in carbaryl treatments, indicating that at realistic levels, this insecticide could cause population declines for salamanders in contaminated habitats. Carbaryl also had negative effects on toad survival. Exposure to atrazine had negative effects on body size, development, and time to metamorphosis in anuran species, which were associated with reduced chlorophyll levels. Both chemicals interacted significantly with density or hydroperiod, indicating that the environmental conditions could influence the impact of a contaminant. A significant atrazine-by-carbaryl interaction resulted in smaller and less developed spotted salamander larvae than in control ponds. Atrazine exposure, however, appeared to moderate negative effects of carbaryl for spotted salamanders. Our research suggests that important changes in the community's food web result from chemical exposure, which influence the susceptibility of amphibian species to contaminants.

  9. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change.

    Science.gov (United States)

    Markle, Tricia M; Kozak, Kenneth H

    2018-05-01

    Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further

  10. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M

    2015-08-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals.

  11. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians.

    Science.gov (United States)

    Martel, An; Spitzen-van der Sluijs, Annemarieke; Blooi, Mark; Bert, Wim; Ducatelle, Richard; Fisher, Matthew C; Woeltjes, Antonius; Bosman, Wilbert; Chiers, Koen; Bossuyt, Franky; Pasmans, Frank

    2013-09-17

    The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines remain unexplained, among them a steep decrease in fire salamander populations (Salamandra salamandra) that has brought this species to the edge of local extinction. Here we isolated and characterized a unique chytrid fungus, Batrachochytrium salamandrivorans sp. nov., from this salamander population. This chytrid causes erosive skin disease and rapid mortality in experimentally infected fire salamanders and was present in skin lesions of salamanders found dead during the decline event. Together with the closely related B. dendrobatidis, this taxon forms a well-supported chytridiomycete clade, adapted to vertebrate hosts and highly pathogenic to amphibians. However, the lower thermal growth preference of B. salamandrivorans, compared with B. dendrobatidis, and resistance of midwife toads (Alytes obstetricans) to experimental infection with B. salamandrivorans suggest differential niche occupation of the two chytrid fungi.

  12. Multi-Scale Approach to Understanding Source-Sink Dynamics of Amphibians

    Science.gov (United States)

    2015-12-01

    spotted salamander, A. maculatum) at Fort Leonard Wood (FLW), Missouri. We used a multi-faceted approach in which we combined ecological , genetic...spotted salamander, A. maculatum) at Fort Leonard Wood , Missouri through a combination of intensive ecological field studies, genetic analyses, and...spatial demographic networks to identify optimal locations for wetland construction and restoration. Ecological Applications. Walls, S. C., Ball, L. C

  13. How Metamorphosis Is Different in Plethodontids: Larval Life History Perspectives on Life-Cycle Evolution

    Science.gov (United States)

    Beachy, Christopher K.; Ryan, Travis J.; Bonett, Ronald M.

    2017-01-01

    Plethodontid salamanders exhibit biphasic, larval form paedomorphic, and direct developing life cycles. This diversity of developmental strategies exceeds that of any other family of terrestrial vertebrate. Here we compare patterns of larval development among the three divergent lineages of biphasic plethodontids and other salamanders. We discuss how patterns of life-cycle evolution and larval ecology might have produced a wide array of larval life histories. Compared with many other salamanders, most larval plethodontids have relatively slow growth rates and sometimes exceptionally long larval periods (up to 60 mo). Recent phylogenetic analyses of life-cycle evolution indicate that ancestral plethodontids were likely direct developers. If true, then biphasic and paedomorphic lineages might have been independently derived through different developmental mechanisms. Furthermore, biphasic plethodontids largely colonized stream habitats, which tend to have lower productivity than seasonally ephemeral ponds. Consistent with this, plethodontid larvae grow very slowly, and metamorphic timing does not appear to be strongly affected by growth history. On the basis of this, we speculate that feeding schedules and stress hormones might play a comparatively reduced role in governing the timing of metamorphosis of stream-dwelling salamanders, particularly plethodontids. PMID:29269959

  14. Environmental Assessment to Construct a Perimeter Fence at Georgetown Military Family Housing Travis Air Force Base, Fairfield, California

    Science.gov (United States)

    2011-07-06

    Herpetology 28(2): 159-164. California Department ofFish and Game. 2011. RAREFIND. Natural Heritage Division, Sacramento, California. Feaver, P. E...California tiger salamander. Journal of Herpetology 30(2): 282-285. Morey, S. R. 1998. Pool duration influences age and body mass at metamorphosis in the...V.J. 1998. Natural History Notes: Ambystoma ca/iforniense (Central California tiger salamander). Survey technique. Herpetological Review 29:96

  15. Despite Buffers, Experimental Forest Clearcuts Impact Amphibian Body Size and Biomass.

    Science.gov (United States)

    Veysey Powell, Jessica S; Babbitt, Kimberly J

    2015-01-01

    Forest buffers are a primary tool used to protect wetland-dependent wildlife. Though implemented widely, buffer efficacy is untested for most amphibian species. Consequently, it remains unclear whether buffers are sufficient for maintaining amphibian populations and if so, how wide buffers should be. We present evidence from a six-year, landscape-scale experiment testing the impacts of clearcutting, buffer width, and hydroperiod on body size and condition and biomass of breeding adults for two amphibian species at 11 vernal pools in the northeastern United States. We randomly assigned treatments (i.e., reference, 100m buffer, 30m buffer) across pools, clearcut to create buffers, and captured all spotted salamanders and wood frogs. Clearcuts strongly and negatively impacted size, condition, and biomass, but wider buffers mitigated effect magnitude and duration. Among recaptured individuals, for example, 30m-treatment salamanders were predicted to be about 9.5 mm shorter than, while 100m-treatment salamanders did not differ in length from, reference-treatment salamanders. Similarly, among recaptured frogs, mean length in the 30m treatment was predicted to decrease by about 1 mm/year, while in the 100m and reference treatments, length was time-invariant. Some, but not all, metrics recovered with time. For example, female new-captured and recaptured salamanders were predicted, respectively and on average, to weigh 4.5 and 7 g less in the 30m versus reference treatment right after the cut. While recaptured-female mass was predicted to recover by 9.5 years post-cut, new-captured-female mass did not recover. Hydroperiod was an important mediator: in the 100m treatment, cutting predominately affected pools that were stressed hydrologically. Overall, salamanders and female frogs were impacted more than male frogs. Our results highlight the importance of individualized metrics like body size, which can reveal sublethal effects and illuminate mechanisms by which habitat

  16. Despite Buffers, Experimental Forest Clearcuts Impact Amphibian Body Size and Biomass.

    Directory of Open Access Journals (Sweden)

    Jessica S Veysey Powell

    Full Text Available Forest buffers are a primary tool used to protect wetland-dependent wildlife. Though implemented widely, buffer efficacy is untested for most amphibian species. Consequently, it remains unclear whether buffers are sufficient for maintaining amphibian populations and if so, how wide buffers should be. We present evidence from a six-year, landscape-scale experiment testing the impacts of clearcutting, buffer width, and hydroperiod on body size and condition and biomass of breeding adults for two amphibian species at 11 vernal pools in the northeastern United States. We randomly assigned treatments (i.e., reference, 100m buffer, 30m buffer across pools, clearcut to create buffers, and captured all spotted salamanders and wood frogs. Clearcuts strongly and negatively impacted size, condition, and biomass, but wider buffers mitigated effect magnitude and duration. Among recaptured individuals, for example, 30m-treatment salamanders were predicted to be about 9.5 mm shorter than, while 100m-treatment salamanders did not differ in length from, reference-treatment salamanders. Similarly, among recaptured frogs, mean length in the 30m treatment was predicted to decrease by about 1 mm/year, while in the 100m and reference treatments, length was time-invariant. Some, but not all, metrics recovered with time. For example, female new-captured and recaptured salamanders were predicted, respectively and on average, to weigh 4.5 and 7 g less in the 30m versus reference treatment right after the cut. While recaptured-female mass was predicted to recover by 9.5 years post-cut, new-captured-female mass did not recover. Hydroperiod was an important mediator: in the 100m treatment, cutting predominately affected pools that were stressed hydrologically. Overall, salamanders and female frogs were impacted more than male frogs. Our results highlight the importance of individualized metrics like body size, which can reveal sublethal effects and illuminate mechanisms by

  17. Predator cannibalism can intensify negative impacts on heterospecific prey.

    Science.gov (United States)

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing

  18. Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl

    OpenAIRE

    Zhu, Wei; Pao, Gerald M; Satoh, Akira; Cummings, Gillian; Monaghan, James R; Harkins, Timothy T; Bryant, Susan V; Voss, S Randal; Gardiner, David M; Hunter, Tony

    2012-01-01

    The capacity for tissue and organ regeneration in humans is dwarfed by comparison to that of salamanders. Emerging evidence suggests that mechanisms learned from the early phase of salamander limb regeneration-wound healing, cellular dedifferentiation and blastemal formation-will reveal therapeutic approaches for tissue regeneration in humans. Here we describe a unique transcriptional fingerprint of regenerating limb tissue in the Mexican axolotl (Ambystoma mexicanum) that is indicative of ce...

  19. Axolotl cells and tissues enhances cutaneous wound healing in mice

    OpenAIRE

    DEMIRCAN, Turan; KESKIN, Ilknur; GUNAL, Yalcin; ILHAN, Ayse Elif; KOLBASI, Bircan; OZTURK, Gurkan

    2017-01-01

    Adult mammalian skin wound repair is defective due to loss of the regulation in balancing the complete epithelial regeneration and excessive connective tissue production, and this repair process commonly results in scar tissue formation. However, unlike mammals, adult salamanders repair the wounds by regeneration compared to scarring. To elucidate the healing capability of a salamander, Axolotl, in a different species, here we addressed this question by treating the wounds in mice with Axolot...

  20. Spatial capture-recapture: a promising method for analyzing data collected using artificial cover objects

    Science.gov (United States)

    Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell

    2016-01-01

    Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.

  1. Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models.

    Science.gov (United States)

    O'Donnell, Katherine M; Thompson, Frank R; Semlitsch, Raymond D

    2015-01-01

    Detectability of individual animals is highly variable and nearly always binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model's potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3-5 surveys each spring and fall 2010-2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability.

  2. An integrative approach to phylogeography: investigating the effects of ancient seaways, climate, and historical geology on multi-locus phylogeographic boundaries of the Arboreal Salamander (Aneides lugubris).

    Science.gov (United States)

    Reilly, Sean B; Corl, Ammon; Wake, David B

    2015-11-04

    Phylogeography is an important tool that can be used to reveal cryptic biodiversity and to better understand the processes that promote lineage diversification. We studied the phylogeographic history of the Arboreal Salamander (Aneides lugubris), a wide-ranging species endemic to the California floristic province. We used multi-locus data to reconstruct the evolutionary history of A. lugubris and to discover the geographic location of major genetic breaks within the species. We also used species distribution modeling and comparative phylogeography to better understand the environmental factors that have shaped the genetic history of A. lugubris. We found six major mitochondrial clades in A. lugubris. Nuclear loci supported the existence of at least three genetically distinct groups, corresponding to populations north of the San Francisco Bay and in the Sierra Nevada, in the Santa Cruz Mountains, and in the central coast and southern California. All of the genetic breaks in mitochondrial and nuclear loci corresponded to regions where historical barriers to dispersal have been observed in other species. Geologic or water barriers likely were the most important factors restricting gene flow among clades. Climatic unsuitability during glacial maximum may have contributed to the isolation of the mitochondrial clades in the central coast and southern California. A projection of our species distribution model to a future scenario with a moderate amount of climate change suggests that most of the range of A. lugubris will remain climatically suitable, but climatic conditions in the Sierra Nevada and low elevation areas in Southern California are likely to deteriorate. Aneides lugubris contains substantial cryptic genetic diversity as a result of historical isolation of populations. At least two (and perhaps three) evolutionarily significant units in A. lugubris merit protection; all six mitochondrial clades should be considered as management units within the species.

  3. Amphibians of Olympic National Park

    Science.gov (United States)

    ,

    2000-01-01

    Amphibians evolved from fishes about 360 million years ago and were the first vertebrates adapted to life on land. The word amphibian means "double life." It refers to the life history of many amphibians, which spend part of their life in water and part on land. There are three major groups of amphibians: salamanders, frogs, and toads, and caecilians. Salamanders, frogs, and toads can be found in Olympic National Park (ONP), but caecilians live only in tropical regions. Many amphibians are generalist predators, eating almost any prey they can fit into their mouths.

  4. Archaeological Investigations at the San Gabriel Reservoir Districts, Central Texas. Volume 2.

    Science.gov (United States)

    1982-06-01

    both edges have clearly been ground or smoothed. 2. unnamed biface: n = 1 From San Geronimo dated levels from this site comes an elon - gated rectangular...Slider Chrysemys Sp. X Musk /Muditotesp. xnseid X tsh turtle Trionyx Sp. x AMPHIBIANS t sp. Cent ridae X BulrgRana catesbiana x oSp. Salamander sp...sp. ?3 3.19 Viper 10 1.39 Coluber 62 8.62 Turtle sp. 3 0/41 Musk /Mud Turtle 1 0.13 Lizard 15 2.08 Toad/Frog 7 0.97 Salamander 1 0.13 Fish sp. 10 1.39

  5. An Experimental Test of Buffer Utility as a Technique for Managing Pool-Breeding Amphibians.

    Science.gov (United States)

    Powell, Jessica S Veysey; Babbitt, Kimberly J

    2015-01-01

    Vegetated buffers are used extensively to manage wetland-dependent wildlife. Despite widespread application, buffer utility has not been experimentally validated for most species. To address this gap, we conducted a six-year, landscape-scale experiment, testing how buffers of different widths affect the demographic structure of two amphibian species at 11 ephemeral pools in a working forest of the northeastern U.S. We randomly assigned each pool to one of three treatments (i.e., reference, 100m buffer, 30m buffer) and clearcut to create buffers. We captured all spotted salamanders and wood frogs breeding in each pool and examined the impacts of treatment and hydroperiod on breeding-population abundance, sex ratio, and recapture rate. The negative effects of clearcutting tended to increase as forest-buffer width decreased and be strongest for salamanders and when other stressors were present (e.g., at short-hydroperiod pools). Recapture rates were reduced in the 30m, but not 100m, treatment. Throughout the experiment for frogs, and during the first year post-cut for salamanders, the predicted mean proportion of recaptured adults in the 30m treatment was only 62% and 40%, respectively, of that in the reference treatment. Frog sex ratio and abundance did not differ across treatments, but salamander sex ratios were increasingly male-biased in both cut treatments. By the final year, there were on average, only about 40% and 65% as many females predicted in the 100m and 30m treatments, respectively, compared to the first year. Breeding salamanders at short-hydroperiod pools were about 10% as abundant in the 100m versus reference treatment. Our study demonstrates that buffers partially mitigate the impacts of habitat disturbance on wetland-dependent amphibians, but buffer width and hydroperiod critically mediate that process. We provide the first experimental evidence showing that 30-m-wide buffers may be insufficient for maintaining resilient breeding populations of pool

  6. An Experimental Test of Buffer Utility as a Technique for Managing Pool-Breeding Amphibians.

    Directory of Open Access Journals (Sweden)

    Jessica S Veysey Powell

    Full Text Available Vegetated buffers are used extensively to manage wetland-dependent wildlife. Despite widespread application, buffer utility has not been experimentally validated for most species. To address this gap, we conducted a six-year, landscape-scale experiment, testing how buffers of different widths affect the demographic structure of two amphibian species at 11 ephemeral pools in a working forest of the northeastern U.S. We randomly assigned each pool to one of three treatments (i.e., reference, 100m buffer, 30m buffer and clearcut to create buffers. We captured all spotted salamanders and wood frogs breeding in each pool and examined the impacts of treatment and hydroperiod on breeding-population abundance, sex ratio, and recapture rate. The negative effects of clearcutting tended to increase as forest-buffer width decreased and be strongest for salamanders and when other stressors were present (e.g., at short-hydroperiod pools. Recapture rates were reduced in the 30m, but not 100m, treatment. Throughout the experiment for frogs, and during the first year post-cut for salamanders, the predicted mean proportion of recaptured adults in the 30m treatment was only 62% and 40%, respectively, of that in the reference treatment. Frog sex ratio and abundance did not differ across treatments, but salamander sex ratios were increasingly male-biased in both cut treatments. By the final year, there were on average, only about 40% and 65% as many females predicted in the 100m and 30m treatments, respectively, compared to the first year. Breeding salamanders at short-hydroperiod pools were about 10% as abundant in the 100m versus reference treatment. Our study demonstrates that buffers partially mitigate the impacts of habitat disturbance on wetland-dependent amphibians, but buffer width and hydroperiod critically mediate that process. We provide the first experimental evidence showing that 30-m-wide buffers may be insufficient for maintaining resilient breeding

  7. Assessment of environmental DNA for detecting presence of imperiled aquatic amphibian species in isolated wetlands

    Science.gov (United States)

    Mckee, Anna; Calhoun, Daniel L.; Barichivich, William J.; Spear, Stephen F.; Goldberg, Caren S.; Glenn, Travis C

    2015-01-01

    Environmental DNA (eDNA) is an emerging tool that allows low-impact sampling for aquatic species by isolating DNA from water samples and screening for DNA sequences specific to species of interest. However, researchers have not tested this method in naturally acidic wetlands that provide breeding habitat for a number of imperiled species, including the frosted salamander (Ambystoma cingulatum), reticulated flatwoods salamanders (Ambystoma bishopi), striped newt (Notophthalmus perstriatus), and gopher frog (Lithobates capito). Our objectives for this study were to develop and optimize eDNA survey protocols and assays to complement and enhance capture-based survey methods for these amphibian species. We collected three or more water samples, dipnetted or trapped larval and adult amphibians, and conducted visual encounter surveys for egg masses for target species at 40 sites on 12 different longleaf pine (Pinus palustris) tracts. We used quantitative PCRs to screen eDNA from each site for target species presence. We detected flatwoods salamanders at three sites with eDNA but did not detect them during physical surveys. Based on the sample location we assumed these eDNA detections to indicate the presence of frosted flatwoods salamanders. We did not detect reticulated flatwoods salamanders. We detected striped newts with physical and eDNA surveys at two wetlands. We detected gopher frogs at 12 sites total, three with eDNA alone, two with physical surveys alone, and seven with physical and eDNA surveys. We detected our target species with eDNA at 9 of 11 sites where they were present as indicated from traditional surveys and at six sites where they were not detected with traditional surveys. It was, however, critical to use at least three water samples per site for eDNA. Our results demonstrate eDNA surveys can be a useful complement to traditional survey methods for detecting imperiled pond-breeding amphibians. Environmental DNA may be particularly useful in situations

  8. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease

    Science.gov (United States)

    Flowers, G. Parker; Timberlake, Andrew T.; Mclean, Kaitlin C.; Monaghan, James R.; Crews, Craig M.

    2014-01-01

    Among tetrapods, only urodele salamanders, such as the axolotl Ambystoma mexicanum, can completely regenerate limbs as adults. The mystery of why salamanders, but not other animals, possess this ability has for generations captivated scientists seeking to induce this phenomenon in other vertebrates. Although many recent advances in molecular biology have allowed limb regeneration and tissue repair in the axolotl to be investigated in increasing detail, the molecular toolkit for the study of this process has been limited. Here, we report that the CRISPR-Cas9 RNA-guided nuclease system can efficiently create mutations at targeted sites within the axolotl genome. We identify individual animals treated with RNA-guided nucleases that have mutation frequencies close to 100% at targeted sites. We employ this technique to completely functionally ablate EGFP expression in transgenic animals and recapitulate developmental phenotypes produced by loss of the conserved gene brachyury. Thus, this advance allows a reverse genetic approach in the axolotl and will undoubtedly provide invaluable insight into the mechanisms of salamanders' unique regenerative ability. PMID:24764077

  9. Potential influence of plant chemicals on infectivity of Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Davidson, Elizabeth W; Larsen, Andrew; Meins Palmer, Crystal

    2012-11-08

    We explored whether extracts of trees frequently found associated with amphibian habitats in Australia and Arizona, USA, may be inhibitory to the fungal pathogen Batrachochytrium dendrobatidis (Bd), which has been associated with global amphibian declines. We used salamanders Ambystoma tigrinum as the model system. Salamanders acquired significantly lower loads of Bd when exposed on leaves and extracts from the river red gum Eucalyptus camaldulensis, and loads were also low in some animals exposed on extracts of 2 oak species, Quercus emoryi and Q. turbinella. Some previously infected salamanders had their pathogen loads reduced, and some were fully cured, by placing them in leaf extracts, although some animals also self cured when housed in water alone. A significant number of animals cured of Bd infections 6 mo earlier were found to be resistant to reinfection. These results suggest that plants associated with amphibian habitats should be taken into consideration when explaining the prevalence of Bd in these habitats and that some amphibians may acquire resistance to the fungus if previously cured.

  10. Ecological equivalency as a tool for endangered species management.

    Science.gov (United States)

    Searcy, Christopher A; Rollins, Hilary B; Shaffer, H Bradley

    2016-01-01

    The use of taxon substitutes for extinct or endangered species is a controversial conservation measure. We use the example of the endangered California tiger salamander (Ambystoma californiense; CTS), which is being replaced by hybrids with the invasive barred tiger salamander (Ambystoma mavortium), to illustrate a strategy for evaluating taxon substitutes based on their position in a multivariate community space. Approximately one-quarter of CTS's range is currently occupied by "full hybrids" with 70% nonnative genes, while another one-quarter is occupied by "superinvasives" where a specific set of 3/68 genes comprising 4% of the surveyed genome is nonnative. Based on previous surveys of natural CTS breeding ponds, we stocked experimental mesocosms with field-verified, realistic densities of tiger salamander larvae and their prey, and used these mesocosms to evaluate ecological equivalency between pure CTS, full hybrids, and superinvasives in experimental pond communities. We also included a fourth treatment with no salamanders present to evaluate the community effects of eliminating Ambystoma larvae altogether. We found that pure CTS and superinvasive larvae were ecologically equivalent, because their positions in the multivariate community space were statistically indistinguishable and they did not differ significantly along any univariate community axes. Full hybrids were ecologically similar, but not equivalent, to the other two genotypes, and the no-Ambystoma treatment was by far the most divergent. We conclude that, at least for the larval stage, superinvasives are adequate taxon substitutes for pure CTS and should probably be afforded protection under the Endangered Species Act. The proper conservation status for full hybrids remains debatable.

  11. Gain-of-function assays in the axolotl (Ambystoma mexicanum) to identify signaling pathways that induce and regulate limb regeneration.

    Science.gov (United States)

    Lee, Jangwoo; Aguilar, Cristian; Gardiner, David

    2013-01-01

    The adult salamander has been studied as a model for regeneration of complex tissues for many decades. Only recently with the development of gain-of-function assays for regeneration, has it been possible to screen for and assay the function of the multitude of signaling factors that have been identified in studies of embryonic development and tumorigenesis. Given the conservation of function of these regulatory pathways controlling growth and pattern formation, it is now possible to use the functional assays in the salamander to test the ability of endogenous as well as small-molecule signaling factors to induce a regenerative response.

  12. Protein incorporation by isolated amphibian oocytes. VI. Comparison of autologous and xenogeneic vitellogenins

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R A; Deufel, R A; Misulovin, Z

    1980-01-01

    1. Labeled vitellogenins were isolated from the sera of several amphibians, a turtle, and a pigeon, and were incubated in vitro with oocytes from Xenopus laevis and Rana pipiens. 2. Oocytes from X. laevis sequestered vitellogenin from salamanders, turtle, and pigeon at rates comparable to that for autologous vitellogenin, while anuran vitellogenins were sequestered at somewhat lower rates. 3. Oocytes from R. pipiens sequestered X. laevis vitellogenin at a rate comparable to autologous vitellogenin, while salamander, turtle, and pigeon vitellogenins were sequestered at faster rates. 4. All vitellogenins examined appear to be recognized and incorporated specifically by X. laevis and R. pipiens oocytes.

  13. Courtship Pheromone Use in a Model Urodele, the Mexican Axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Maex, Margo; Van Bocxlaer, Ines; Mortier, Anneleen; Proost, Paul; Bossuyt, Franky

    2016-02-04

    Sex pheromones have been shown to constitute a crucial aspect of salamander reproduction. Until now, courtship pheromones of Salamandridae and Plethodontidae have been intensively studied, but information on chemical communication in other urodelan families is essentially lacking. The axolotl (Ambystoma mexicanum, Ambystomatidae) has a courtship display that suggests a key role for chemical communication in the orchestration of its sexual behavior, but no sex pheromones have yet been characterized from this species. Here we combined whole transcriptome analyses of the male cloaca with proteomic analyses of water in which axolotls were allowed to court to show that male axolotls secrete multiple ca. 20 kDa glycosylated sodefrin precursor-like factor (SPF) proteins during courtship. In combination with phylogenetic analyses, our data show that the male cloaca essentially secretes a courtship-specific clade of SPF proteins that is orthologous to salamandrid courtship pheromones. In addition, we identified an SPF protein for which no orthologs have been described from other salamanders so far. Overall, our study advocates a central role for SPF proteins during the courtship display of axolotls and adds knowledge on pheromone use in a previously unexplored deep evolutionary branch of salamander evolution.

  14. What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades

    Directory of Open Access Journals (Sweden)

    Wiens John J

    2011-10-01

    Full Text Available Abstract Background The use of mitochondrial DNA data in phylogenetics is controversial, yet studies that combine mitochondrial and nuclear DNA data (mtDNA and nucDNA to estimate phylogeny are common, especially in vertebrates. Surprisingly, the consequences of combining these data types are largely unexplored, and many fundamental questions remain unaddressed in the literature. For example, how much do trees from mtDNA and nucDNA differ? How are topological conflicts between these data types typically resolved in the combined-data tree? What determines whether a node will be resolved in favor of mtDNA or nucDNA, and are there any generalities that can be made regarding resolution of mtDNA-nucDNA conflicts in combined-data trees? Here, we address these and related questions using new and published nucDNA and mtDNA data for Plethodon salamanders and published data from 13 other vertebrate clades (including fish, frogs, lizards, birds, turtles, and mammals. Results We find widespread discordance between trees from mtDNA and nucDNA (30-70% of nodes disagree per clade, but this discordance is typically not strongly supported. Despite often having larger numbers of variable characters, mtDNA data do not typically dominate combined-data analyses, and combined-data trees often share more nodes with trees from nucDNA alone. There is no relationship between the proportion of nodes shared between combined-data and mtDNA trees and relative numbers of variable characters or levels of homoplasy in the mtDNA and nucDNA data sets. Congruence between trees from mtDNA and nucDNA is higher on branches that are longer and deeper in the combined-data tree, but whether a conflicting node will be resolved in favor mtDNA or nucDNA is unrelated to branch length. Conflicts that are resolved in favor of nucDNA tend to occur at deeper nodes in the combined-data tree. In contrast to these overall trends, we find that Plethodon have an unusually large number of strongly

  15. Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models.

    Directory of Open Access Journals (Sweden)

    Katherine M O'Donnell

    Full Text Available Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model's potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3-5 surveys each spring and fall 2010-2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling, while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling. By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and

  16. Factors influencing detection of eDNA from a stream-dwelling amphibian

    Science.gov (United States)

    Pilliod, David S.; Goldberg, Caren S.; Arkle, Robert S.; Waits, Lisette P.

    2013-01-01

    Environmental DNA (eDNA) methods for detecting and estimating abundance of aquatic species are emerging rapidly, but little is known about how processes such as secretion rate, environmental degradation, and time since colonization or extirpation from a given site affect eDNA measurements. Using stream-dwelling salamanders and quantitative PCR (qPCR) analysis, we conducted three experiments to assess eDNA: (i) production rate; (ii) persistence time under different temperature and light conditions; and (iii) detectability and concentration through time following experimental introduction and removal of salamanders into previously unoccupied streams. We found that 44–50 g individuals held in aquaria produced 77 ng eDNA/h for 2 h, after which production either slowed considerably or began to equilibrate with degradation. eDNA in both full-sun and shaded treatments degraded exponentially to 2) and when samples were collected within 5 m of the animals. Concentrations of eDNA detected were very low and increased steadily from 6–24 h after introduction, reaching 0.0022 ng/L. Within 1 h of removing salamanders from the stream, eDNA was no longer detectable. These results suggest that eDNA detectability and concentration depend on production rates of individuals, environmental conditions, density of animals, and their residence time.

  17. Pronounced peramorphosis in lissamphibians--Aviturus exsecratus (Urodela, Cryptobranchidae from the Paleocene-Eocene Thermal Maximum of Mongolia.

    Directory of Open Access Journals (Sweden)

    Davit Vasilyan

    Full Text Available BACKGROUND: The oldest and largest member of giant salamanders (Cryptobranchidae Aviturus exsecratus appears in the latest Paleocene (near the Paleocene-Eocene Thermal Maximum of Mongolia. Based on femoral and vertebral morphology and metrics, a terrestrial adaptation has been supposed for this species. METHODOLOGY/PRINCIPAL FINDINGS: A detailed morphological reinvestigation of published as well as unpublished material reveals that this salamander shows a vomerine dentition that is posteriorly shifted and arranged in a zigzag pattern, a strongly developed olfactory region within the cranial cavity, and the highest bone ossification and relatively longest femur among all fossil and recent cryptobranchids. CONCLUSIONS/SIGNIFICANCE: The presence of these characteristics indicates a peramorphic developmental pattern for Aviturus exsecratus. Our results from Av. exsecratus indicate for the first time pronounced peramorphosis within a crown-group lissamphibian. Av. exsecratus represents a new developmental trajectory within both fossil and recent lissamphibian clades characterized by extended ontogeny and large body size, resembling the pattern known from late Paleozoic eryopines. Moreover, Av. exsecratus is not only a cryptobranchid with distinctive peramorphic characters, but also the first giant salamander with partially terrestrial (amphibious lifestyle. The morphology of the vomers and dentaries suggests the ability of both underwater and terrestrial feeding.

  18. Drastic Population Size Change in Two Populations of the Golden-Striped Salamander over a Forty-Year Period—Are Eucalypt Plantations to Blame?

    Directory of Open Access Journals (Sweden)

    Jan W. Arntzen

    2015-07-01

    Full Text Available Over the last half century the Iberian peninsula has seen the large scale planting of exotic gum trees (Eucalyptus sp. therewith reducing space for native wildlife. An additional effect of the gum tree plantations may be the lowering of the water table in adjacent streams, to which amphibian species with a larval niche in the running sections of small streams would be especially susceptible. In northwestern Iberia that niche is occupied by the Golden-striped salamander, Chioglossa lusitanica. I here report on the demographic trends of two C. lusitanica populations over a forty-year period, in two areas of one mountain range near Porto in northwestern Portugal. In both areas advantage was taken of the migration pattern of C. lusitanica to sites for aestivation and breeding in summer and fall. The area of the Silveirinhos brook was transformed in a plantation of gum trees shortly after the research started, while the area of Poço do Inferno remained virtually unaffected. At Silveirinhos the adult C. lusitanica population declined by one or two orders of magnitude, from ca. 1500 individuals to less than 50 at present. Demographic models that operate under a uniform larval mortality yielded population sizes that are compatible with field observations, including the late onset of the decline at 14 or more years after the planting of the gum trees and the near-extinction at year 32. An alternative reason for the relatively recent population collapse of C. lusitanica may have been disease, but no sick individuals or corpses have become available for clinical investigation. Conversely, the control population at Poço do Inferno increased in size by a factor of five or more. These data support the hypothesis that gum tree plantations have a strong negative effect on C. lusitanica. The population size increase at Poço do Inferno is probably attributable to the installation of wastewater treatment in the adjacent town of Valongo, with a discharge in the

  19. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: REPTILES (Reptile Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for estuarine reptiles (turtles, terrapins) and amphibians (salamanders, frogs) for the Hudson River....

  20. Generation of axolotl hematopoietic chimeras

    Directory of Open Access Journals (Sweden)

    David Lopez

    2015-02-01

    Full Text Available Wound repair is an extremely complex process that requires precise coordination between various cell types including immune cells.  Unfortunately, in mammals this usually results in scar formation instead of restoration of the original fully functional tissue, otherwise known as regeneration.  Various animal models like frogs and salamanders are currently being studied to determine the intracellular and intercellular pathways, controlled by gene expression, that elicit cell proliferation, differentiation, and migration of cells during regenerative healing.  Now, the necessary genetic tools to map regenerative pathways are becoming available for the axolotl salamander, thus allowing comparative studies between scarring and regeneration.  Here, we describe in detail three methods to produce axolotl hematopoietic cell-tagged chimeras for the study of hematopoiesis and regeneration.

  1. Data mining in newt-omics, the repository for omics data from the newt.

    Science.gov (United States)

    Looso, Mario; Braun, Thomas

    2015-01-01

    Salamanders are an excellent model organism to study regenerative processes due to their unique ability to regenerate lost appendages or organs. Straightforward bioinformatics tools to analyze and take advantage of the growing number of "omics" studies performed in salamanders were lacking so far. To overcome this limitation, we have generated a comprehensive data repository for the red-spotted newt Notophthalmus viridescens, named newt-omics, merging omics style datasets on the transcriptome and proteome level including expression values and annotations. The resource is freely available via a user-friendly Web-based graphical user interface ( http://newt-omics.mpi-bn.mpg.de) that allows access and queries to the database without prior bioinformatical expertise. The repository is updated regularly, incorporating new published datasets from omics technologies.

  2. Research Article Genetic Analysis of Signal Peptides in Amphibian ...

    Indian Academy of Sciences (India)

    USUARIO

    Depending on the genus, the whole structure could be duplicated in tandem or scattered ..... signalling, presumably for translocating the lipid bilayer during synthesis. .... revised classification of extant frogs, salamanders, and caecilians.

  3. Fetal adaptations for viviparity in amphibians.

    Science.gov (United States)

    Wake, Marvalee H

    2015-08-01

    Live-bearing has evolved in all three orders of amphibians--frogs, salamanders, and caecilians. Developing young may be either yolk dependent, or maternal nutrients may be supplied after yolk is resorbed, depending on the species. Among frogs, embryos in two distantly related lineages develop in the skin of the maternal parents' backs; they are born either as advanced larvae or fully metamorphosed froglets, depending on the species. In other frogs, and in salamanders and caecilians, viviparity is intraoviductal; one lineage of salamanders includes species that are yolk dependent and born either as larvae or metamorphs, or that practice cannibalism and are born as metamorphs. Live-bearing caecilians all, so far as is known, exhaust yolk before hatching and mothers provide nutrients during the rest of the relatively long gestation period. The developing young that have maternal nutrition have a number of heterochronic changes, such as precocious development of the feeding apparatus and the gut. Furthermore, several of the fetal adaptations, such as a specialized dentition and a prolonged metamorphosis, are homoplasious and present in members of two or all three of the amphibian orders. At the same time, we know little about the developmental and functional bases for fetal adaptations, and less about the factors that drive their evolution and facilitate their maintenance. © 2014 Wiley Periodicals, Inc.

  4. Buffer-Mediated Effects of Clearcutting on In-Pool Amphibian Productivity: Can Aquatic Processes Compensate for Terrestrial Habitat Disturbance?

    Directory of Open Access Journals (Sweden)

    Jessica S. Veysey Powell

    2016-12-01

    Full Text Available Natural resource extraction and wildlife conservation are often perceived as incompatible. For wetland-dependent amphibians, forested buffers may mitigate timber-harvest impacts, but little empirical research has focused on buffers around lentic habitats. We conducted a landscape experiment to examine how spotted salamander and wood frog reproductive output (i.e., eggmass and metamorph production respond to clearcutting mediated by buffers of different widths (i.e., uncut, 30 m buffer, 100 m buffer at ephemeral pools in an industrial forest. We found complex interactions between buffer treatment and reproductive output, which were strongly mediated by hydroperiod. Overall, reproductive output was most sensitive at 30 m-buffer pools and for salamanders, but responses diverged across productivity metrics even within these categories. Notably, for both cut treatments over time, while salamander eggmass abundance decreased, metamorph productivity (i.e., snout-vent length [SVL] and abundance tended to increase. For example, average metamorph SVLs were predicted to lengthen between 0.2 and 0.4 mm per year post-cut. Additionally, typical relationships between reproductive output and hydroperiod (as indicated by the reference treatment were disrupted for both species in both cut treatments. For example, long-hydroperiod pools produced more salamander metamorphs than short-hydroperiod pools in both the reference and 30 m-buffer treatments, but the rate of increase was lower in the 30 m-buffer treatment such that a long-hydroperiod pool in the reference treatment was predicted to produce, on average, 24 more metamorphs than a similar pool in the 30 m-buffer treatment. From a conservation perspective, our results highlight the importance of evaluating both terrestrial and aquatic responses to terrestrial habitat disturbance, since responses may be reinforcing (i.e., exert similarly positive or negative effects, with the potential for amplification in the

  5. JONAS, HANS, Memorias. Por Juan Arana

    Directory of Open Access Journals (Sweden)

    Juan Arana

    2012-05-01

    Full Text Available Autor: Hans Jonas (2005. Editorial: Losada, Madrid. Traducción: Illana Giner Comín. Basadas en las conversaciones con Rachel Salamander. Proemiode Lore Jonas. Prólogo de Rachel Salamander. Editor: Christian Wiese. Hans Jonas forma parte, con Koestler,Popper, Heidegger o Wittgenstein, del selecto grupo de pensadores y escritores a quienes tocó vivir en primera persona gran parte de las peripecias del turbulento siglo XX. Pero, como en todo, hay diferencias.La trayectoria vital de Jonas no dibuja el perfil de una desmesura excéntrica, como la de Wittgenstein, ni de una tenaz ambición teórica, como la de Popper, ni de un lamentable olvido del prójimo, como la de Heidegger, ni de un aventurismo desquiciado, como la de Koestler.

  6. Linkage Map of Lissotriton Newts Provides Insight into the Genetic Basis of Reproductive Isolation

    Directory of Open Access Journals (Sweden)

    Marta Niedzicka

    2017-07-01

    Full Text Available Linkage maps are widely used to investigate structure, function, and evolution of genomes. In speciation research, maps facilitate the study of the genetic architecture of reproductive isolation by allowing identification of genomic regions underlying reduced fitness of hybrids. Here we present a linkage map for European newts of the Lissotriton vulgaris species complex, constructed using two families of F2 L. montandoni × L. vulgaris hybrids. The map consists of 1146 protein-coding genes on 12 linkage groups, equal to the haploid chromosome number, with a total length of 1484 cM (1.29 cM per marker. It is notably shorter than two other maps available for salamanders, but the differences in map length are consistent with cytogenetic estimates of the number of chiasmata per chromosomal arm. Thus, large salamander genomes do not necessarily translate into long linkage maps, as previously suggested. Consequently, salamanders are an excellent model to study evolutionary consequences of recombination rate variation in taxa with large genomes and a similar number of chromosomes. A complex pattern of transmission ratio distortion (TRD was detected: TRD occurred mostly in one family, in one breeding season, and was clustered in two genomic segments. This is consistent with environment-dependent mortality of individuals carrying L. montandoni alleles in these two segments and suggests a role of TRD blocks in reproductive isolation. The reported linkage map will empower studies on the genomic architecture of divergence and interactions between the genomes of hybridizing newts.

  7. Toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in three vertebrate species.

    Science.gov (United States)

    Johnson, Mark S; McFarland, Craig A; Bazar, Matthew A; Quinn, Michael J; LaFiandra, Emily May; Talent, Larry G

    2010-04-01

    The explosive, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine or high-melting explosive (HMX), has been found in soils in areas used for testing and training by the military. Many of these areas contain habitat for valued wildlife species. In an effort to better understand the environmental consequences from exposure, a reptilian (western fence lizard [Sceloporus occidentalis]), an amphibian (red-backed salamander [Plethodon cinereus]), and a mammalian species (rabbit [Oryctolagus cuniculus]) were exposed to HMX under controlled laboratory conditions. Lizards and rabbits were exposed to HMX by way of corn oil through gavage, and salamanders were exposed to HMX in soil. Two deaths occurred from acute oral exposures to lizards to 5000 mg HMX/kg BW. Histological and gross pathologic assessment suggested gut impaction as a possible cause of death. Salamanders exposed to concentrations of HMX in soil 24 h after oral exposures. An LD(50) for rabbits was calculated as 93 mg/kg (95% confidence interval 76-117). A subacute 14-day testing regime found a lowest observed effect level of 10 mg/kg-d and a no observed adverse effect level of 5 mg/kg-d based on hyperkinesia and seizure incidence, although changes suggesting functional hepatic alterations were also found. These data suggest that physiologic differences between species, particularly in gastrointestinal structure and function, can affect the absorption of HMX and hence lead to marked differences in toxicity from exposure to the same compound.

  8. MRI tracking of SPIO labelled stem cells in a true regenerative environment, the regenerating limb of the axolotl

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Foldager, Casper Bindzus; Hagensen, Mette

    are generally restricted by their limited regenerative potential. Conversely, excellent animal models for regenerative studies exist in lower vertebrates such as the urodele amphibians (salamanders and newts), exemplified in the iconic Mexican axolotl (Ambystoma mexicanum) capable of regenerating whole limbs...

  9. Book Reyiews

    African Journals Online (AJOL)

    various aspects of the biology of these two species in. Britain, and many more in .... devoted to the anatomy of the salamander brain, and cytoarchitecture of the central .... the case of arboreal folivores; the Koala has been studied in detail.

  10. Immunocytochemical localization of the glutamate transporter GLT-1 in goldfish (Carassius auratus) retina

    NARCIS (Netherlands)

    Vandenbranden, C. A.; Yazulla, S.; Studholme, K. M.; Kamphuis, W.; Kamermans, M.

    2000-01-01

    Glutamate is the major excitatory neurotransmitter in the retina of vertebrates. Electrophysiological experiments in goldfish and salamander have shown that neuronal glutamate transporters play an important role in the clearance of glutamate from cone synaptic clefts. In this study, the localization

  11. Hyperbaric oxygen therapy in a true regenerative environment, the regenerating limb of the axolotl

    DEFF Research Database (Denmark)

    Hansen, Kasper; Lauridsen, Henrik; Pedersen, Michael

    2012-01-01

    vertebrates such as the urodele amphibians (salamanders and newts), are excellent animal models for regenerative studies. The iconic Mexican axolotl (Ambystoma mexicanum) is capable of regenerating whole limbs, tail, jaw, and many inner organs, by dedifferentiation of cells to form a blastema (collection...

  12. Germline Transgenic Methods for Tracking Cells and Testing Gene Function during Regeneration in the Axolotl

    Science.gov (United States)

    Khattak, Shahryar; Schuez, Maritta; Richter, Tobias; Knapp, Dunja; Haigo, Saori L.; Sandoval-Guzmán, Tatiana; Hradlikova, Kristyna; Duemmler, Annett; Kerney, Ryan; Tanaka, Elly M.

    2013-01-01

    The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly overexpress the cell-cycle inhibitor p16INK4a, which negatively regulates spinal cord regeneration. These tissue-specific germline axolotl lines and tightly inducible Cre drivers and LoxP reporter lines render this classical regeneration model molecularly accessible. PMID:24052945

  13. Effects of an infectious fungus, Batrachochytrium dendrobatidis, on amphibian predator-prey interactions.

    Directory of Open Access Journals (Sweden)

    Barbara A Han

    2011-02-01

    Full Text Available The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.

  14. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, Pedro Gomes; Op 't Veld, Roel C.; de Graaf, Wolter; Strijkers, Gustav J.; Grüll, Holger

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function

  15. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, P.G.; Op ‘t Veld, R.C.; de Graaf, W.; Strijkers, G.J.; Grüll, H.

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a noninvasive technique to image heart function of

  16. 77 FR 50767 - Endangered and Threatened Wildlife and Plants; Endangered Status for Four Central Texas...

    Science.gov (United States)

    2012-08-22

    ... Water Tank Cave) (Pierce 2011c, pers. comm.; Gluesenkamp 2011a, TPWD, pers. comm.). Recent mark... ecology of Georgetown salamanders that occupy the cave sites (Cobbs Cavern, Bat Well, and Water Tank Cave... systems, including increased flow velocities, increased sedimentation, increased contamination, changes in...

  17. 75 FR 54822 - Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition To List the Jemez...

    Science.gov (United States)

    2010-09-09

    ... fine gold to brassy coloring with stippling dorsally (on the back and sides) and is sooty gray..., generally May through September, when summer monsoon rains occur. Unfortunately, methods for determining... log (rounds) to provide immediate cover for salamanders before summer rains (Interagency BAER Team...

  18. Developmental morphological diversity in caecilian amphibians : systematic and evolutionary implications

    NARCIS (Netherlands)

    Müller, Hendrik

    2007-01-01

    Caecilians, or Gymnophiona, constitute one of the three extant orders of the Recent Amphibia and are the least known, major living tetrapod clade. Compared to frogs and salamanders, caecilians have an unusual skull morphology. Earlier reports of an unusually high number of individual skull

  19. Environmental Assessment 819th Red Horse Five Year Plan, Malmstrom Air Force Base, Montana

    Science.gov (United States)

    2007-08-07

    the health of sensitive populations such as people with asthma , children, and the 23 elderly. Secondary standards define levels of air quality...pipiens), the tiger salamander 38 (Ambystoma tigrinum), and painted turtle (Chrysemys picta) (MTNHP 2006a). Other species 39 that may live in the

  20. 40 CFR Table 1 to Subpart Xxxxxx... - Description of Source Categories Affected by This Subpart

    Science.gov (United States)

    2010-07-01

    ... heating units, combination gas-oil burners, oil or gas swimming pool heaters, heating apparatus (except... supplies industry sector of this source category includes establishments primarily engaged in high energy...), coke and gas burning salamanders, liquid or gas solar energy collectors, solar heaters, space heaters...

  1. 75 FR 30423 - Draft Comprehensive Conservation Plan and Environmental Assessment; Canaan Valley National...

    Science.gov (United States)

    2010-06-01

    ... Mountain salamander and Indiana bat. Its dominant habitats include wet meadows, peatlands, shrub and... refuge revenue sharing payments, and continuing our role in land conservation partnerships. The draft CCP... wetland complex as a Research Natural Area. The hunt program would remain the same as alternative A...

  2. A regenerative biology view on artificial tissue construction and 3D bioprinting: what may we learn from natural regenerative phenomena?

    DEFF Research Database (Denmark)

    Lauridsen, Henrik

    2017-01-01

    The implications of the low tissue regenerative potential in humans are severe and widespread. Several of our major diseases are direct results of this deficiency that leaves us vulnerable to events of tissue damage. This is opposed to some animal groups, such as the urodele amphibians (salamanders...

  3. 78 FR 55599 - Endangered and Threatened Wildlife and Plants; Determination of Endangered Species Status for...

    Science.gov (United States)

    2013-09-10

    ... occasional fine gold to brassy coloring with stippling dorsally (on the back and sides) and is sooty gray... likely influenced by melting snow and summer monsoon rains. When active above ground, the species is... summer monsoon rains occur. Unfortunately, methods for determining locations to survey salamanders over...

  4. Dry creek long-term watershed study: buffer zone performance as viable amphibian habitat

    Science.gov (United States)

    Brooke L. Talley; Thomas L. Crisman

    2006-01-01

    As bioindicators, amphibians typically require both terrestrial and aquatic habitats to complete their life cycles. Pre- timber-harvest monitoring (December 2002 through September 2003) of salamander and frog (Hylidae) populations was conducted in four watersheds of Decatur County, GA. Post- timber-harvest monitoring (December 2003 through September...

  5. A black, non-troglomorphic amphibian from the karst of Slovenia: Proteus anguinus parkelj n. ssp. (Urodela: Proteidae)

    NARCIS (Netherlands)

    Sket, B.; Arntzen, J.W.

    1994-01-01

    A morphologically distinct cavernicolous salamander Proteus anguinus from southeastern Slovenia (Bela Krajina) is described as P. a. parkelj ssp. n. It differs from P. a. anguinus in a dark pigmentation, fully developed eyes, a skull with broader and shorter bones and fewer teeth, a voluminous jaw

  6. Toxicity of road salt to Nova Scotia amphibians.

    Science.gov (United States)

    Collins, Sara J; Russell, Ronald W

    2009-01-01

    The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC(50)) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species.

  7. Early action to address an emerging wildlife disease

    Science.gov (United States)

    Adams, Michael J.; Harris, M. Camille; Grear, Daniel A.

    2017-02-23

    A deadly fungal pathogen, Batrachochytrium salamandrivorans (Bsal) that affects amphibian skin was discovered during a die-off of European fire salamanders (Salamandra salamandra) in 2014. This pathogen has the potential to worsen already severe worldwide amphibian declines. Bsal is a close relative to another fungal disease known as Batrachochytrium dendrobatidis (Bd). Many scientists consider Bd to be the greatest threat to amphibian biodiversity of any disease because it affects a large number of species and has the unusual ability to drive species and populations to extinction.Although not yet detected in the United States, the emergence of Bsal could threaten the salamander population, which is the most diverse in the world. The spread of Bsal likely will lead to more State and federally listed threatened or endangered amphibian species, and associated economic effects.Because of the concern expressed by resource management agencies, the U.S. Geological Survey (USGS) has made Bsal and similar pathogens a priority for research.

  8. to view fulltext PDF

    Indian Academy of Sciences (India)

    Unknown

    population of amphibians, especially of frogs and salamanders, over the past 40 years: “The most serious population decline may have occurred long before scientists noticed and sounded the alarm”. Their analysis concluded that the world's amphibian population has decreased by more than 50% since the 1950s.

  9. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. ARMANDO SUNNY. Articles written in Journal of Genetics. Volume 96 Issue 6 December 2017 pp 873-883 RESEARCH ARTICLE. Genetic variability and structure of an isolated population of Ambystoma altamirani , a mole salamander that lives in the mountains of one of the largest ...

  10. Impacts of water development on aquatic macroinvertebrates, amphibians, and plants in wetlands of a semi-arid landscape

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.

    2004-01-01

    We compared the macroinvertebrate and amphibian communities of 12 excavated and 12 natural wetlands in western North Dakota, USA, to assess the effects of artificially lengthened hydroperiods on the biotic communities of wetlands in this semi-arid region. Excavated wetlands were much deeper and captured greater volumes of water than natural wetlands. Most excavated wetlands maintained water throughout the study period (May to October 1999), whereas most of the natural wetlands were dry by June. Excavated wetlands were largely unvegetated or contained submergent and deep-marsh plant species. The natural wetlands had two well-defined vegetative zones populated by plant species typical of wet meadows and shallow marshes. Excavated wetlands had a richer aquatic macroinvertebrate community that included several predatory taxa not found in natural wetlands. Taxa adapted to the short hydroperiods of seasonal wetlands were largely absent from excavated wetlands. The amphibian community of natural and excavated wetlands included the boreal chorus frog (Pseudacris maculata), northern leopard frog (Rana pipiens), plains spadefoot (Scaphiopus bombifrons), Woodhouse's toad (Bufo woodhousii woodhousii), and tiger salamander (Ambystoma tigrinum). The plains spadefoot occurred only in natural wetlands while tiger salamanders occurred in all 12 excavated wetlands and only one natural wetland. Boreal chorus frogs and northern leopard frogs were present in both wetland types; however, they successfully reproduced only in wetlands lacking tiger salamanders. Artificially extending the hydroperiod of wetlands by excavation has greatly influenced the composition of native biotic communities adapted to the naturally short hydroperiods of wetlands in this semi-arid region. The compositional change of the biotic communities can be related to hydrological changes and biotic interactions, especially predation related to excavation.

  11. Identification of a novel uromodulin-like gene related to predator-induced bulgy morph in anuran tadpoles by functional microarray analysis.

    Directory of Open Access Journals (Sweden)

    Tsukasa Mori

    2009-06-01

    Full Text Available Tadpoles of the anuran species Rana pirica can undergo predator-specific morphological responses. Exposure to a predation threat by larvae of the salamander Hynobius retardatus results in formation of a bulgy body (bulgy morph with a higher tail. The tadpoles revert to a normal phenotype upon removal of the larval salamander threat. Although predator-induced phenotypic plasticity is of major interest to evolutionary ecologists, the molecular and physiological mechanisms that control this response have yet to be elucidated. In a previous study, we identified various genes that are expressed in the skin of the bulgy morph. However, it proved difficult to determine which of these were key genes in the control of gene expression associated with the bulgy phenotype. Here, we show that a novel gene plays an important role in the phenotypic plasticity producing the bulgy morph. A functional microarray analysis using facial tissue samples of control and bulgy morph tadpoles identified candidate functional genes for predator-specific morphological responses. A larger functional microarray was prepared than in the previous study and used to analyze mRNAs extracted from facial and brain tissues of tadpoles from induction-reversion experiments. We found that a novel uromodulin-like gene, which we name here pirica, was up-regulated and that keratin genes were down-regulated as the period of exposure to larval salamanders increased. Pirica consists of a 1296 bp open reading frame, which is putatively translated into a protein of 432 amino acids. The protein contains a zona pellucida domain similar to that of proteins that function to control water permeability. We found that the gene was expressed in the superficial epidermis of the tadpole skin.

  12. Variation in winter metabolic reduction between sympatric amphibians

    Czech Academy of Sciences Publication Activity Database

    Podhajský, Luděk; Gvoždík, Lumír

    2016-01-01

    Roč. 201, November (2016), s. 110-114 ISSN 1095-6433 R&D Projects: GA ČR(CZ) GA15-07140S Institutional support: RVO:68081766 Keywords : Caloric reserves * Ichthyosaura * Lissotriton * Metabolic rate * Newt * Oxygen consumption * Respirometry * Salamander * Thermal sensitivity * Wintering Subject RIV: EG - Zoology Impact factor: 1.812, year: 2016

  13. Batrachochytrium salamandrivorans: The North American response and a call for action

    Science.gov (United States)

    Matthew J. Gray; James P. Lewis; Priya Nanjappa; Blake Klocke; Frank Pasmans; An Martel; Craig Stephen; Gabriela Parra Olea; Scott A. Smith; Allison Sacerdote-Velat; Michelle R. Christman; Jennifer M. Williams; Deanna H. Olson; Deborah A. Hogan

    2015-01-01

    Batrachochytrium salamandrivorans (Bsal) is an emerging fungal pathogen that has caused recent die-offs of native salamanders in Europe and is known to be lethal to at least some North American species in laboratory trials [1]. Bsal appears to have originated in Asia, and may have been introduced by humans...

  14. Worldwide Emerging Environmental Issues Affecting the U.S. Military. March 2010

    Science.gov (United States)

    2010-03-01

    contaminated and polluted water than from all forms of violence , including wars, notes the UNEP report, Sick Water? Some two million tons of waste...list—some species of iguanas, an entire genus of tree frogs from Central America, and Kaiser’s newt salamander from Iran. In the meantime, the EU

  15. All about Amphibians. Animal Life for Children. [Videotape].

    Science.gov (United States)

    2000

    This videotape teaches children about their favorite amphibious creatures, as well as amphibians' nearest cousins--toads, newts, and salamanders. Young students discover how these amazing creatures can live both in and out of water, learn about the amphibious life cycle, and compare the differences between amphibians and reptiles. This videotape…

  16. Subterranean systems provide a suitable overwintering habitat for Salamandra salamandra

    Directory of Open Access Journals (Sweden)

    Monika Balogová

    2017-09-01

    Full Text Available The fire salamander (Salamandra salamandra has been repeatedly noted to occur in natural and artificial subterranean systems. Despite the obvious connection of this species with underground shelters, their level of dependence and importance to the species is still not fully understood. In this study, we carried out long-term monitoring based on the capture-mark-recapture method in two wintering populations aggregated in extensive underground habitats. Using the POPAN model we found the population size in a natural shelter to be more than twice that of an artificial underground shelter. Survival and recapture probabilities calculated using the Cormack-Jolly-Seber model were very constant over time, with higher survival values in males than in females and juveniles, though in terms of recapture probability, the opposite situation was recorded. In addition, survival probability obtained from Cormack-Jolly-Seber model was higher than survival from POPAN model. The observed bigger population size and the lower recapture rate in the natural cave was probably a reflection of habitat complexity. Our study showed that regular visits are needed to detect the true significance of underground shelters for fire salamanders. The presence of larvae was recorded in both wintering sites, especially in bodies of water near the entrance. On the basis of previous and our observations we incline to the view, that karst areas can induce not only laying in underground shelters but also group wintering in this species. Our study highlights the strong connection of the life cycle of fire salamanders with underground shelters and their essential importance for the persistence of some populations during unfavourable conditions and breeding activity. In addition, the study introduces the POPAN and Cormac-Jolly-Seber models for estimating of population size, survival and recapture probability in wintering populations of the species, which could provide important information

  17. Non-native salmonids affect amphibian occupancy at multiple spatial scales

    Science.gov (United States)

    Pilliod, David S.; Hossack, Blake R.; Bahls, Peter F.; Bull, Evelyn L.; Corn, Paul Stephen; Hokit, Grant; Maxell, Bryce A.; Munger, James C.; Wyrick, Aimee

    2010-01-01

    Aim The introduction of non-native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non-native salmonids on the occupancy of two native amphibians, the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments. Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA. Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence. Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large-catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale. Main conclusions Our results suggest that the negative effects of non-native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non-native fish and A. macrodactylum at higher elevations in the northern Rocky

  18. Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping.

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uno

    Full Text Available Comparative genome analysis of non-avian reptiles and amphibians provides important clues about the process of genome evolution in tetrapods. However, there is still only limited information available on the genome structures of these organisms. Consequently, the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes in tetrapods remain poorly understood. We constructed chromosome maps of functional genes for the Chinese soft-shelled turtle (Pelodiscus sinensis, the Siamese crocodile (Crocodylus siamensis, and the Western clawed frog (Xenopus tropicalis and compared them with genome and/or chromosome maps of other tetrapod species (salamander, lizard, snake, chicken, and human. This is the first report on the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes inferred from comparative genomic analysis of vertebrates, which cover all major non-avian reptilian taxa (Squamata, Crocodilia, Testudines. The eight largest macrochromosomes of the turtle and chicken were equivalent, and 11 linkage groups had also remained intact in the crocodile. Linkage groups of the chicken macrochromosomes were also highly conserved in X. tropicalis, two squamates, and the salamander, but not in human. Chicken microchromosomal linkages were conserved in the squamates, which have fewer microchromosomes than chicken, and also in Xenopus and the salamander, which both lack microchromosomes; in the latter, the chicken microchromosomal segments have been integrated into macrochromosomes. Our present findings open up the possibility that the ancestral amniotes and tetrapods had at least 10 large genetic linkage groups and many microchromosomes, which corresponded to the chicken macro- and microchromosomes, respectively. The turtle and chicken might retain the microchromosomes of the amniote protokaryotype almost intact. The decrease in number and/or disappearance of microchromosomes by repeated

  19. Herpetology of the American Madrean Archipelago and adjacent valleys

    Science.gov (United States)

    Lawrence L. C. Jones

    2005-01-01

    Approximately 110 species of amphibians (18 frogs and toads, and 1 salamander) and reptiles (47 snakes, 39 lizards, and 5 turtles) are known from the American Madrean Archipelago and adjacent valleys. The high diversity of the herpetofauna comes from a variety of factors, including a convergence of biotic communities representing deserts, grasslands, and mountains....

  20. Costly neighbours: Heterospecific competitive interactions increase metabolic rates in dominant species

    Czech Academy of Sciences Publication Activity Database

    Janča, M.; Gvoždík, Lumír

    2017-01-01

    Roč. 7, č. 5177 (2017), č. článku 5177. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA15-07140S Institutional support: RVO:68081766 Keywords : interference competition * intraspecific variation * terrestrial salamander * energy metabolism * natural selection * newts Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 4.259, year: 2016

  1. The Future of Architecture Collaborative Information Sharing: DoDAF Version 2.03 Updates

    Science.gov (United States)

    2012-04-30

    Salamander x Select Solution Factory Select Business Solutions BPMN , UML x SimonTool Simon Labs x SimProcess CACI BPMN x System Architecture Management...for DoDAF Mega UML x Metastorm ProVision Metastorm BPMN x Naval Simulation System - 4 Aces METRON x NetViz CA x OPNET OPNET x Tool Name Vendor Primary

  2. Using maximum entropy modeling to identify and prioritize red spruce forest habitat in West Virginia

    Science.gov (United States)

    Nathan R. Beane; James S. Rentch; Thomas M. Schuler

    2013-01-01

    Red spruce forests in West Virginia are found in island-like distributions at high elevations and provide essential habitat for the endangered Cheat Mountain salamander and the recently delisted Virginia northern flying squirrel. Therefore, it is important to identify restoration priorities of red spruce forests. Maximum entropy modeling was used to identify areas of...

  3. Toxicity of road salt to Nova Scotia amphibians

    International Nuclear Information System (INIS)

    Collins, Sara J.; Russell, Ronald W.

    2009-01-01

    The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC 50 ) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species. - Salt toxicity is presented as a mechanism affecting the distribution of amphibians and structure of amphibian communities in roadside wetlands

  4. Using spatial capture–recapture to elucidate population processes and space-use in herpetological studies

    Science.gov (United States)

    Muñoz, David J.; Miller, David A.W.; Sutherland, Chris; Grant, Evan H. Campbell

    2016-01-01

    The cryptic behavior and ecology of herpetofauna make estimating the impacts of environmental change on demography difficult; yet, the ability to measure demographic relationships is essential for elucidating mechanisms leading to the population declines reported for herpetofauna worldwide. Recently developed spatial capture–recapture (SCR) methods are well suited to standard herpetofauna monitoring approaches. Individually identifying animals and their locations allows accurate estimates of population densities and survival. Spatial capture–recapture methods also allow estimation of parameters describing space-use and movement, which generally are expensive or difficult to obtain using other methods. In this paper, we discuss the basic components of SCR models, the available software for conducting analyses, and the experimental designs based on common herpetological survey methods. We then apply SCR models to Red-backed Salamander (Plethodon cinereus), to determine differences in density, survival, dispersal, and space-use between adult male and female salamanders. By highlighting the capabilities of SCR, and its advantages compared to traditional methods, we hope to give herpetologists the resource they need to apply SCR in their own systems.

  5. Sacramento Metropolitan Area, California

    Science.gov (United States)

    1992-02-01

    addition, several Federal candidate species, the California Hibiscus , California tiger salamander, Sacramento Anthicid Beetle, Sacramento Valley tiger...Board, California Waste Management Board, and Department of Health Services contribute to this list. The Yolo County Health Services Agency maintains and...operation and maintenance of the completed recreational facility. Recreation development is limited to project lands unless health and safety

  6. Environmental Assessment for Conversion of the Existing Aero Club Runway to Emergency Helipad for David Grant Medical Center Travis Air Force Base, Fairfield, California

    Science.gov (United States)

    2010-07-01

    FT Potential Ambystoma californiense California tiger salamander FT Known Branchinecta conservatio Conservancy fairy shrimp FE Potential Elaphrus...elderberry longhorn beetle FT Potential Branchinecta lynchi Vernal pool fairy shrimp FT Known Lepidurus packardi Vernal pool tadpole shrimp FE...Area. During 2008 vernal pool invertebrate monitoring, CTS larvae were discovered in the northeastern part of Travis AFB, in the Castle Terrace

  7. Gehlen, Darwin e la salamandra

    Directory of Open Access Journals (Sweden)

    RASINI, VALLORI

    2016-12-01

    Full Text Available Gehlen, Darwin and the Salamander Arnold Gehlen creates a theory of man as “lacking being” that leads to a theory of a “superior being”. Man is radically different from animal, and Gehlen uses the biological idea of human neoteny to refuse the Darwinian theory of human evolution. However his arguments are preconceived and ineffectual.

  8. [Jaws of amphibians and reptiles].

    Science.gov (United States)

    Tanimoto, Masahiro

    2005-04-01

    Big jaws of amphibians and reptiles are mainly treated in this article. In amphibians enlarged skulls are for the big jaw in contrast with human's skulls for the brain. For example, famous fossils of Homo diluvii testis are ones of salamanders in fact. In reptiles, mosasaur jaws and teeth and their ecology are introduced for instance.

  9. California Tiger Salamander Range - CWHR [ds588

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  10. Asexual Reproduction Does Not Apparently Increase the Rate of Chromosomal Evolution: Karyotype Stability in Diploid and Triploid Clonal Hybrid Fish (Cobitis, Cypriniformes, Teleostei)

    Czech Academy of Sciences Publication Activity Database

    Majtánová, Zuzana; Choleva, Lukáš; Symonová, Radka; Ráb, Petr; Kotusz, J.; Pekárik, L.; Janko, Karel

    2016-01-01

    Roč. 11, č. 1 (2016), e0146872-e0146872 E-ISSN 1932-6203 R&D Projects: GA ČR GAP506/10/1155; GA ČR GPP506/12/P857; GA ČR GA13-12580S Institutional support: RVO:67985904 Keywords : in-situ hybridization * fresh water fish * unisexual salamanders Subject RIV: EG - Zoology Impact factor: 2.806, year: 2016

  11. Discovery of Salamandra atra aurorae (Trevisan, 1982 on the Altopiano di Vezzena, Trentino (Northeastern Italy

    Directory of Open Access Journals (Sweden)

    Wouter Beukema

    2008-05-01

    Full Text Available Aurora’s Alpine Salamander is a limited distributed subspecies endemic to the Altopiano di Asiago, Veneto. In the current paper the occurrence of Salamandra atra aurorae is described for the Altopiano di Vezzena, Trentino. The aim of this paper is to review the distribution as well as to comment on the conservational status of the subspecies in Trentino.

  12. Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Bryant, Susan V; Gardiner, David M

    2012-06-15

    The ability of adult vertebrates to repair tissue damage is widespread and impressive; however, the ability to regenerate structurally complex organs such as the limb is limited largely to the salamanders. The fact that most of the tissues of the limb can regenerate has led investigators to question and identify the barriers to organ regeneration. From studies in the salamander, it is known that one of the earliest steps required for successful regeneration involves signaling between nerves and the wound epithelium/apical epithelial cap (AEC). In this study we confirm an earlier report that the keratinocytes of the AEC acquire their function coincident with exiting the cell cycle. We have discovered that this unique, coordinated behavior is regulated by nerve signaling and is associated with the presence of gap junctions between the basal keratinocytes of the AEC. Disruption of nerve signaling results in a loss of gap junction protein, the reentry of the cells into the cell cycle, and regenerative failure. Finally, coordinated exit from the cell cycle appears to be a conserved behavior of populations of cells that function as signaling centers during both development and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Regeneration of limb joints in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Lee, Jangwoo; Gardiner, David M

    2012-01-01

    In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.

  14. Regeneration of limb joints in the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Jangwoo Lee

    Full Text Available In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.

  15. Climate change, multiple stressors, and the decline of ectotherms.

    Science.gov (United States)

    Rohr, Jason R; Palmer, Brent D

    2013-08-01

    Climate change is believed to be causing declines of ectothermic vertebrates, but there is little evidence that climatic conditions associated with declines have exceeded critical (i.e., acutely lethal) maxima or minima, and most relevant studies are correlative, anecdotal, or short-term (hours). We conducted an 11-week factorial experiment to examine the effects of temperature (22 °C or 27 °C), moisture (wet or dry), and atrazine (an herbicide; 0, 4, 40, 400 μg/L exposure as embryos and larvae) on the survival, growth, behavior, and foraging rates of postmetamorphic streamside salamanders (Ambystoma barbouri), a species of conservation concern. The tested climatic conditions were between the critical maxima and minima of streamside salamanders; thus, this experiment quantified the long-term effects of climate change within the noncritical range of this species. Despite a suite of behavioral adaptations to warm and dry conditions (e.g., burrowing, refuge use, huddling with conspecifics, and a reduction in activity), streamside salamanders exhibited significant loss of mass and significant mortality in all but the cool and moist conditions, which were closest to the climatic conditions in which they are most active in nature. A temperature of 27 °C represented a greater mortality risk than dry conditions; death occurred rapidly at this temperature and more gradually under cool and dry conditions. Foraging decreased under dry conditions, which suggests there were opportunity costs to water conservation. Exposure to the herbicide atrazine additively decreased water-conserving behaviors, foraging efficiency, mass, and time to death. Hence, the hypothesis that moderate climate change can cause population declines is even more plausible under scenarios with multiple stressors. These results suggest that climate change within the noncritical range of species and pollution may reduce individual performance by altering metabolic demands, hydration, and foraging effort

  16. Comparative pelvic development of the axolotl (Ambystoma mexicanum) and the Australian lungfish (Neoceratodus forsteri): conservation and innovation across the fish-tetrapod transition.

    Science.gov (United States)

    Boisvert, Catherine Anne; Joss, Jean Mp; Ahlberg, Per E

    2013-01-23

    The fish-tetrapod transition was one of the major events in vertebrate evolution and was enabled by many morphological changes. Although the transformation of paired fish fins into tetrapod limbs has been a major topic of study in recent years, both from paleontological and comparative developmental perspectives, the interest has focused almost exclusively on the distal part of the appendage and in particular the origin of digits. Relatively little attention has been paid to the transformation of the pelvic girdle from a small unipartite structure to a large tripartite weight-bearing structure, allowing tetrapods to rely mostly on their hindlimbs for locomotion. In order to understand how the ischium and the ilium evolved and how the acetabulum was reoriented during this transition, growth series of the Australian lungfish Neoceratodus forsteri and the Mexican axolotl Ambystoma mexicanum were cleared and stained for cartilage and bone and immunostained for skeletal muscles. In order to understand the myological developmental data, hypotheses about the homologies of pelvic muscles in adults of Latimeria, Neoceratodus and Necturus were formulated based on descriptions from the literature of the coelacanth (Latimeria), the Australian Lungfish (Neoceratodus) and a salamander (Necturus). In the axolotl and the lungfish, the chondrification of the pelvic girdle starts at the acetabula and progresses anteriorly in the lungfish and anteriorly and posteriorly in the salamander. The ilium develops by extending dorsally to meet and connect to the sacral rib in the axolotl. Homologous muscles develop in the same order with the hypaxial musculature developing first, followed by the deep, then the superficial pelvic musculature. Development of the pelvic endoskeleton and musculature is very similar in Neoceratodus and Ambystoma. If the acetabulum is seen as being a fixed landmark, the evolution of the ischium only required pubic pre-chondrogenic cells to migrate posteriorly. It

  17. Environmental Assessment: Military Family Housing Revitalization Travis Air Force Base, California

    Science.gov (United States)

    2007-05-01

    area that, with the San Joaquin Valley to the south, forms the Great Central Valley of California. The Coast Ranges bound the valley to the west. In...Endangered Species Common Name Scientific Name Federal Status State Status Plants Colusa grass Neostapfia colusana T E Contra Costa goldfields...federally listed species, Contra Costa goldfields, vernal pool fairy shrimp, California tiger salamander, and alkali milk-vetch (Astragalus tener var. tener

  18. Regulation of Regenerative Responses by Factors in the Extracellular Matrix during Axolotl (Ambystoma mexicanum) Limb Regeneration

    OpenAIRE

    Phan, Anne Quy

    2014-01-01

    Salamanders are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. Axolotl limb regeneration is a stepwise sequence of three requisite processes: (1) scarless wound healing to generate a regenerative wound epithelium, (2) blastema formation by migration, proliferation and dedifferentiation to create a mass of multipotent regeneration-competent progenitor cells, and (3) induction of pattern formation by interaction of cells with opposi...

  19. Bent's Old Fort: Amphibians and Reptiles

    Science.gov (United States)

    Muths, E.

    2008-01-01

    Bent's Old Fort National Historic Site sits along the Arkansas River in the semi-desert prairie of southeastern Colorado. The USGS provided assistance in designing surveys to assess the variety of herpetofauna (amphibians and reptiles) resident at this site. This brochure is the results of those efforts and provides visitors with information on what frogs, toads, snakes and salamanders might be seen and heard at Bent's Old Fort.

  20. From "Duck Factory" to "Fish Factory": Climate induced changes in vertebrate communities of prairie pothole wetlands and small lakes

    Science.gov (United States)

    McLean, Kyle I.; Mushet, David M.; Stockwell, Craig A.

    2016-01-01

    The Prairie Pothole Region’s myriad wetlands and small lakes contribute to its stature as the “duck factory” of North America. The fishless nature of the region’s aquatic habitats, a result of frequent drying, freezing, and high salinity, influences its importance to waterfowl. Recent precipitation increases have resulted in higher water levels and wetland/lake freshening. In 2012–13, we sampled chemical characteristics and vertebrates (fish and salamanders) of 162 Prairie Pothole wetlands and small lakes. We used non-metric multidimensional scaling, principal component analysis, and bootstrapping techniques to reveal relationships. We found fish present in a majority of sites (84 %). Fish responses to water chemistry varied by species. Fathead minnows (Pimephales promelas) and brook sticklebacks (Culaea inconstans) occurred across the broadest range of conditions. Yellow perch (Perca flavescens) occurred in a smaller, chemically defined, subset. Iowa darters (Etheostoma exile) were restricted to the narrowest range of conditions. Tiger salamanders (Ambystoma mavortium) rarely occurred in lakes with fish. We also compared our chemical data to similar data collected in 1966–1976 to explore factors contributing to the expansion of fish into previously fishless sites. Our work contributes to a better understanding of relationships between aquatic biota and climate-induced changes in this ecologically important area.

  1. Are we in the midst of the sixth mass extinction? A view from the world of amphibians

    OpenAIRE

    Wake, David B.; Vredenburg, Vance T.

    2008-01-01

    Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians—frogs, salamanders, and caecilians—may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amp...

  2. The herpetofauna of Parque Nacional Pico Bonito, Honduras

    Directory of Open Access Journals (Sweden)

    James R. McCranie

    2005-10-01

    Full Text Available Seventy-three species of amphibians and reptiles (six salamanders, 20 anurans, 20 lizards, and 27 snakes are known from Parque Nacional Pico Bonito, Honduras. The physiography, climate, vegetation, and microhabitats of the park are briefly described. Forty-four species are recorded from Lowland Moist Forest, 45 from Premontane Wet Forest, and 14 from Lower Montane Wet Forest. The primary microhabitat and relative abundance of each species are indicated and population declines are discussed.

  3. A parametric method for assessing diversification-rate variation in phylogenetic trees.

    Science.gov (United States)

    Shah, Premal; Fitzpatrick, Benjamin M; Fordyce, James A

    2013-02-01

    Phylogenetic hypotheses are frequently used to examine variation in rates of diversification across the history of a group. Patterns of diversification-rate variation can be used to infer underlying ecological and evolutionary processes responsible for patterns of cladogenesis. Most existing methods examine rate variation through time. Methods for examining differences in diversification among groups are more limited. Here, we present a new method, parametric rate comparison (PRC), that explicitly compares diversification rates among lineages in a tree using a variety of standard statistical distributions. PRC can identify subclades of the tree where diversification rates are at variance with the remainder of the tree. A randomization test can be used to evaluate how often such variance would appear by chance alone. The method also allows for comparison of diversification rate among a priori defined groups. Further, the application of the PRC method is not restricted to monophyletic groups. We examined the performance of PRC using simulated data, which showed that PRC has acceptable false-positive rates and statistical power to detect rate variation. We apply the PRC method to the well-studied radiation of North American Plethodon salamanders, and support the inference that the large-bodied Plethodon glutinosus clade has a higher historical rate of diversification compared to other Plethodon salamanders. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  4. Chemosignals, hormones, and amphibian reproduction.

    Science.gov (United States)

    Woodley, Sarah

    2015-02-01

    This article is part of a Special Issue "Chemosignals and Reproduction". Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran "breeding glands", 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Multiplicity of Buc copies in Atlantic salmon contrasts with loss of the germ cell determinant in primates, rodents and axolotl

    OpenAIRE

    Skugor, Adrijana; Tveiten, Helge; Johnsen, Hanne; Andersen, Øivind

    2016-01-01

    Background The primordial germ cells (PGCs) giving rise to gametes are determined by two different mechanisms in vertebrates. While the germ cell fate in mammals and salamanders is induced by zygotic signals, maternally delivered germ cell determinants specify the PGCs in birds, frogs and teleost fish. Assembly of the germ plasm in the oocyte is organized by the single Buc in zebrafish, named Velo1 in Xenopus, and by Oskar in Drosophila. Secondary loss of oskar in several insect lineages coin...

  6. Amphibians and reptiles of the Calakmul Biosphere Reserve, México, with new records

    OpenAIRE

    Colston, Timothy; Barão-Nóbrega, José António; Manders, Ryan; Lett, Alice; Wilmott, Jamie; Cameron, Gavin; Hunter, Sidony; Radage, Adam; Littlefair, Etienne; Williams, Robert; Lopez Cen, Antonio; Slater, Kathy

    2015-01-01

    We provide a list of amphibians and reptiles of the Calakmul Biosphere Reserve in the southern half of the Mexican Yucatan, in the state of Campeche. The study area was sampled through opportunistic, transect and pitfall trap surveys conducted for three successive years. These surveys resulted in a total of 2,359 amphibian and reptile encounters, belonging to 20 amphibian and 69 reptile species from 24 total families. We present herein the records for one snake, one chelonian and two salamand...

  7. Amphibians and reptiles of the state of Hidalgo, Mexico

    OpenAIRE

    Lemos-Espinal, Julio; Smith, Geoffrey

    2015-01-01

    We compiled a checklist of the amphibians and reptiles of the state of Hidalgo, Mexico. The herpetofauna of Hidalgo consists of a total of 175 species: 54 amphibians (14 salamanders and 40 anurans); and 121 reptiles (one crocodile, five turtles, 36 lizards, 79 snakes). These taxa represent 32 families (12 amphibian families, 20 reptile families) and 87 genera (24 amphibian genera, 63 reptile genera). Two of these species are non-native species (Hemidactylus frenatus Duméril and Bibron, 1836 a...

  8. Defense Trade Data: Sources and Recommendations

    Science.gov (United States)

    2010-11-01

    Sabre reconnaissance vehicles and Spartan, Stormer and FV-432 Bulldog APC $144m deaJ GBP70 m ($126-129 m) deal; BGM-109 Tomahawk Block-JV (Tactical...6BTA-5.9 version;; for 189 BvS-10 APC from Sweden and modernization of some 2100 Scimitar and Sabre reconnaissance vehicles and Spartan. Stormer ...Viking CV variant 29 AFV 432 1487 Stormer APC 147 CVR(T) Scimitar 322 CVR(T) Spartan 494 CVR(T) Sturgeon 35 CVR(T) Salamander 32 Saxon 147

  9. Robot-salamander näitab maismaaloomade arengut / Kaivo Kopli

    Index Scriptorium Estoniae

    Kopli, Kaivo

    2007-01-01

    Teadlased on valmistanud salamandrisarnase masina, mis ühendab bioloogia robootikaga ja võimaldab uurida seda, kuidas esimesed tetrapoodid - neljajalgsed selgroogsed - ronisid sadu miljoneid aastaid tagasi maale elama

  10. Effects of ionizing radiation on salamander orientation. Final report

    International Nuclear Information System (INIS)

    Shoop, C.R.

    1975-01-01

    Pens were stocked with larvae of Am, bystoma opacum, A. maculatum, and Rana sylvatica and observations were made on survivorship, metamorphosis, size of juveniles, length of larval period, and migration. Migrating adults were irradiated with a 137 Cs source; the control and experimental animals were then returned to their points of capture and released. Radiation effects were not evident. Studies were conducted on the uptake and turnover of sodium, praseodymium, and europium by larval and hatchling amphibians and reptiles

  11. Salamander colonization of Chase Lake, Stutsman County, North Dakota

    Science.gov (United States)

    Mushet, David M.; McLean, Kyle I.; Stockwell, Craig A.

    2013-01-01

    Salt concentrations in lakes are dynamic. In the western United States, water diversions have caused significant declines in lake levels resulting in increased salinity, placing many aquatic species at risk (Galat and Robinson 1983, Beutel et al. 2001). Severe droughts can have similar effects on salt concentrations and aquatic communities (Swanson et al. 2003). Conversely, large inputs of water can dilute salt concentrations and contribute to community shifts (Euliss et al. 2004).

  12. DEMOGRAPHY AND SPATIAL POPULATION STRUCTURE IN CALIFORNIA TIGER SALAMANDER

    Science.gov (United States)

    Although the causes of many amphibian declines remain mysterious, there is general agreement that human habitat alteration represents the greatest threat to amphibian populations. In January 2000 the US Fish and Wildlife Service proposed listing Santa Barbara County California Ti...

  13. Effects of. beta. radiation on amphibian embryos (Pleurodeles waltlii) and capacities of regulation during development

    Energy Technology Data Exchange (ETDEWEB)

    Gallien, C L; Lenfant-Guyot, M; Labrousse, J P [Paris-5 Univ., 75 (France)

    1981-01-01

    The eukariotic cells of complex organisms possessing abundant and sophisticated genetic information, advanced metabolism and very diversified structures are particularly sensitive to the effects of radiation. One may note, however, that all cells of an organism which has been totally radiated may not be affected in the same way; this leaves room, particularly in embryonic organisms during development, for fairly broad possibilities of regulation. We have undertaken analysis of one aspect of these phenomena on a particularly favorable biological model: the embryo of the salamander Pleurodeles waltlii.

  14. Trouble in the aquatic world: How wildlife professionals are battling amphibian declines

    Science.gov (United States)

    Olson, Deanna H.; Chestnut, Tara E.

    2014-01-01

    A parasitic fungus, similar to the one that caused the extinction of numerous tropical frog and toad species, is killing salamanders in Europe. Scientists first identified the fungus, Batrachochytrium salamandrivorans, in 2013 as the culprit behind the death of fire salamanders (Salamandra salamandra) in the Netherlands (Martel et al. 2013) and are now exploring its potential impact to other species. Although the fungus, which kills the amphibians by infecting their skin, has not yet spread to the United States, researchers believe it’s only a matter of time before it does and, when that happens, the impact on salamander populations could be devastating (Martel et al. 2014).Reports of worldwide declines of amphibians began a quarter of a century ago (Blaustein & Wake 1990). Globally, some amphibian population declines occurred in the late 1950s and early 1960s, and declining trends continued in North America (Houlahan et al. 2000). In the earlier years, population declines were attributed primarily to overharvest due to unregulated supply of species such as the northern leopard frog (Lithobates pipiens) for educational use (Dodd 2013). In later years, however, causes of declines were less evident. In 1989, herpetologists at the First World Congress of Herpetology traded alarming stories of losses across continents and in seemingly protected landscapes, making it clear that amphibian population declines were a “global phenomenon.” In response to these reports, in 1991, the International Union for Conservation of Nature (IUCN) established the Declining Amphibian Populations Task Force to better understand the scale and scope of global amphibian declines. Unfortunately, the absence of long-term monitoring data and targeted studies made it difficult for the task force to compile information.Today, according to AmphibiaWeb.org, there are 7,342 amphibian species in the world — double the number since the first alerts of declines — making the situation

  15. Low prevalence of chytrid fungus (Batrachochytrium dendrobatidis) in amphibians of U.S. headwater streams

    Science.gov (United States)

    Hossack, Blake R.; Adams, Michael J.; Campbell Grant, Evan H.; Pearl, Chistopher A.; Bettaso, James B.; Barichivich, William J.; Lowe, Winsor H.; True, Kimberly; Ware, Joy L.; Corn, Paul Stephen

    2010-01-01

    Many declines of amphibian populations have been associated with chytridiomycosis, a disease caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd). Despite the relatively high prevalence of chytridiomycosis in stream amphibians globally, most surveys in North America have focused primarily on wetland-associated species, which are frequently infected. To better understand the distribution and prevalence of Bd in headwater amphibian communities, we sampled 452 tailed frogs (Ascaphus truei and Ascaphus montanus) and 304 stream salamanders (seven species in the Dicamptodontidae and Plethodontidae) for Bd in 38, first- to third-order streams in five montane areas across the United States. We tested for presence of Bd by using PCR on skin swabs from salamanders and metamorphosed tailed frogs or the oral disc of frog larvae. We detected Bd on only seven individuals (0.93%) in four streams. Based on our study and results from five other studies that have sampled headwater- or seep-associated amphibians in the United States, Bd has been detected on only 3% of 1,322 individuals from 21 species. These results differ strongly from surveys in Central America and Australia, where Bd is more prevalent on stream-breeding species, as well as results from wetland-associated anurans in the same regions of the United States that we sampled. Differences in the prevalence of Bd between stream- and wetland-associated amphibians in the United States may be related to species-specific variation in susceptibility to chytridiomycosis or habitat differences.

  16. Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl

    Science.gov (United States)

    Zhu, Wei; Pao, Gerald M; Satoh, Akira; Cummings, Gillian; Monaghan, James R; Harkins, Timothy T; Bryant, Susan V; Voss, S Randal; Gardiner, David M; Hunter, Tony

    2013-01-01

    The capacity for tissue and organ regeneration in humans is dwarfed by comparison to that of salamanders. Emerging evidence suggests that mechanisms learned from the early phase of salamander limb regeneration – wound healing, cellular dedifferentiation and blastemal formation – will reveal therapeutic approaches for tissue regeneration in humans. Here we describe a unique transcriptional fingerprint of regenerating limb tissue in the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells to a germline-like state. Two genes that are required for self-renewal of germ cells in mice and flies, Piwi-like 1 (PL1) and Piwi-like 2 (PL2), are expressed in limb blastemal cells, the basal layer keratinocytes and the thickened apical epithelial cap in the wound epidermis in the regenerating limb. Depletion of PL1 and PL2 by morpholino oligonucleotides decreased cell proliferation and increased cell death in the blastema leading to a significant retardation of regeneration. Examination of key molecules that are known to be required for limb development or regeneration further revealed that FGF8 is transcriptionally downregulated in the presence of the morpholino oligos, indicating PL1 and PL2 might participate in FGF signaling during limb regeneration. Given the requirement for FGF signaling in limb development and regeneration, the results suggest that PL1 and PL2 function to establish a unique germline-like state that is associated with successful regeneration. PMID:22841627

  17. Genomics of a Metamorphic Timing QTL: met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    Science.gov (United States)

    Page, Robert B.; Boley, Meredith A.; Kump, David K.; Voss, Stephen R.

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation. PMID:23946331

  18. Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians.

    Science.gov (United States)

    Wake, David B; Vredenburg, Vance T

    2008-08-12

    Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians--frogs, salamanders, and caecilians--may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction.

  19. Mechanism of Action of Secreted Newt Anterior Gradient Protein.

    Directory of Open Access Journals (Sweden)

    Kathrin S Grassme

    Full Text Available Anterior gradient (AG proteins have a thioredoxin fold and are targeted to the secretory pathway where they may act in the ER, as well as after secretion into the extracellular space. A newt member of the family (nAG was previously identified as interacting with the GPI-anchored salamander-specific three-finger protein called Prod1. Expression of nAG has been implicated in the nerve dependence of limb regeneration in salamanders, and nAG acted as a growth factor for cultured newt limb blastemal (progenitor cells, but the mechanism of action was not understood. Here we show that addition of a peptide antibody to Prod1 specifically inhibit the proliferation of blastema cells, suggesting that Prod1 acts as a cell surface receptor for secreted nAG, leading to S phase entry. Mutation of the single cysteine residue in the canonical active site of nAG to alanine or serine leads to protein degradation, but addition of residues at the C terminus stabilises the secreted protein. The mutation of the cysteine residue led to no detectable activity on S phase entry in cultured newt limb blastemal cells. In addition, our phylogenetic analyses have identified a new Caudata AG protein called AG4. A comparison of the AG proteins in a cell culture assay indicates that nAG secretion is significantly higher than AGR2 or AG4, suggesting that this property may vary in different members of the family.

  20. Are we in the midst of the sixth mass extinction? A view from the world of amphibians

    Science.gov (United States)

    Wake, David B.; Vredenburg, Vance T.

    2008-01-01

    Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians—frogs, salamanders, and caecilians—may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction. PMID:18695221

  1. Fine structure of the epidermal Leydig cells in the axolotl Ambystoma mexicanum in relation to their function.

    Science.gov (United States)

    Jarial, M S

    1989-01-01

    The fine structure of the Leydig cells in the epidermis of the strictly aquatic adult axolotl Ambystoma mexicanum resembles that of similar cells in larval salamanders. The major finding of this study is that the mucous secretion of the Leydig cells is released into the intercellular spaces from which it is discharged through pores onto the surface of the epidermis where it forms a mucous layer to protect the skin. Images Figs. 1-2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Figs. 11-13 PMID:2630544

  2. Amphibians and reptiles of the state of San Luis Potosí, Mexico, with comparisons with adjoining states.

    Science.gov (United States)

    Lemos-Espinal, Julio A; Smith, Geoffrey R; Woolrich-Piña, Guillermo A

    2018-01-01

    A summary of the species of amphibians and reptiles of the state has been compiled, including their geographic distributions, habitats, and conservation statuses. The herpetofauna of San Luis Potosí consists of 41 species of amphibians and 141 species of reptiles. San Luis Potosí shares the highest number of species with Hidalgo and Tamaulipas, and the least number of species with Nuevo León. In San Luis Potosí, there are several taxa of particular conservation concern including salamanders, emydid and trionychid turtles, anguid and xenosaurid lizards, and natricid and colubrid snakes.

  3. Axial dynamics during locomotion in vertebrates: lesson from the salamander

    OpenAIRE

    GOSSARD, JEAN-PIERRE; DUBUC, RÉJEAN; KOLTA, ARLETTE; Cabelguen, Jean-Marie; Ijspeert, Auke; Lamarque, Stéphanie; Ryczko, Dimitri

    2010-01-01

    Much of what we know about the flexibility of the locomotor networks in vertebrates is derived from studies examining the adaptation of limb movements during stepping in various conditions. However, the body movements play important roles during locomotion: they produce the thrust during undulatory locomotion and they help to increase the stride length during legged locomotion. In this chapter, we review our current knowledge about the flexibility in the neuronal circuits controlling the body...

  4. The phylogeny of amphibian metamorphosis.

    Science.gov (United States)

    Reiss, John O

    2002-01-01

    Frogs have one of the most extreme metamorphoses among vertebrates. How did this metamorphosis evolve? By combining the methods previously proposed by Mabee and Humphries (1993) and Velhagen (1997), I develop a phylogenetic method suited for rigorous analysis of this question. In a preliminary analysis using 12 transformation sequence characters and 36 associated event sequence characters, all drawn from the osteology of the skull, the evolution of metamorphosis is traced on an assumed phylogeny. This phylogeny has lissamphibians (frogs, salamanders, and caecilians) monophyletic, with frogs the sister group of salamanders. Successive outgroups used are temnospondyls and discosauriscids, both of which are fossil groups for which ontogenetic data are available. In the reconstruction of character evolution, an unambiguous change (synapomorphy) along the branch leading to lissamphibians is a delay in the lengthening of the maxilla until metamorphosis, in accordance with my previous suggestion (Reiss, 1996). However, widening of the interpterygoid vacuity does not appear as a synapomophy of lissamphibians, due to variation in the character states in the outgroups. From a more theoretical perspective, the reconstructed evolution of amphibian metamorphosis involves examples of heterochrony, through the shift of ancestral premetamorphic events to the metamorphic period, caenogenesis, through the origin of new larval features, and terminal addition, through the origin of new adult features. Other changes don't readily fit these categories. This preliminary study provides evidence that metamorphic changes in frogs arose as further modifications of changes unique to lissamphibians, as well as a new method by which such questions can be examined.

  5. Increased frequency and severity of developmental deformities in rough-skinned newt (Taricha granulosa) embryos exposed to road deicing salts (NaCl and MgCl2)

    International Nuclear Information System (INIS)

    Hopkins, Gareth R.; French, Susannah S.; Brodie, Edmund D.

    2013-01-01

    Road-side aquatic ecosystems in North America are annually polluted with millions of tons of road deicing salts, which threaten the survival of amphibians which live and breed in these habitats. While much is known of the effects of NaCl, little is known of the second most-commonly used deicer, MgCl 2 , which is now used exclusively in parts of the continent. Here we report that environmentally relevant concentrations of both NaCl and MgCl 2 cause increased incidence of developmental deformities in rough-skinned newt hatchlings that developed embryonically in these salts. In addition, we provide some of the first quantification of severity of different deformities, and reveal that increased salt concentrations increase both deformity frequency and severity. Our work contributes to the growing body of literature that suggests salamanders and newts are particularly vulnerable to salt, and that the emerging pollutant, MgCl 2 is comparable in its effects to the more traditionally-used NaCl. - Highlights: ► Rough-skinned newt embryos were raised in NaCl and MgCl 2 road deicing salts. ► We quantified the frequency and severity of resulting developmental deformities. ► Both salts caused increased frequency and severity of developmental deformities. ► Effects of MgCl 2 , an emerging stressor, are comparable to traditionally-used NaCl. ► Newts and salamanders may be more susceptible to road salt than frogs and toads. - Two commonly used road deicing salts, NaCl and MgCl 2 , caused increased frequency and severity of developmental deformities in rough-skinned newt embryos.

  6. Cranial muscle development in the model organism ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny.

    Science.gov (United States)

    Ziermann, Janine M; Diogo, Rui

    2013-07-01

    There is still confusion about the homology of several cranial muscles in salamanders with those of other vertebrates. This is true, in part, because of the fact that many muscles present in early ontogeny of amphibians disappear during development and specifically during metamorphosis. Resolving this confusion is important for the understanding of the comparative and evolutionary morphology of vertebrates and tetrapods because amphibians are the phylogenetically most plesiomorphic tetrapods, concerning for example their myology, and include two often used model organisms, Xenopus laevis (anuran) and Ambystoma mexicanum (urodele). Here we provide the first detailed report of the cranial muscle development in axolotl from early ontogenetic stages to the adult stage. We describe different and complementary types of general muscle morphogenetic gradients in the head: from anterior to posterior, from lateral to medial, and from origin to insertion. Furthermore, even during the development of neotenic salamanders such as axolotls, various larval muscles become indistinct, contradicting the commonly accepted view that during ontogeny the tendency is mostly toward the differentiation of muscles. We provide an updated comparison between these muscles and the muscles of other vertebrates, a discussion of the homologies and evolution, and show that the order in which the muscles appear during axolotl ontogeny is in general similar to their appearance in phylogeny (e.g. differentiation of adductor mandibulae muscles from one anlage to four muscles), with only a few remarkable exceptions, as for example the dilatator laryngis that appears evolutionary later but in the development before the intermandibularis. Copyright © 2013 Wiley Periodicals, Inc.

  7. Effect of thyroid hormone concentration on the transcriptional response underlying induced metamorphosis in the Mexican axolotl (Ambystoma).

    Science.gov (United States)

    Page, Robert B; Voss, Stephen R; Samuels, Amy K; Smith, Jeramiah J; Putta, Srikrishna; Beachy, Christopher K

    2008-02-11

    Thyroid hormones (TH) induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T4). We induced metamorphosis in juvenile Mexican axolotls (Ambystoma mexicanum) using 5 and 50 nM T4, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28), and used microarray analysis to quantify mRNA abundances. Individuals reared in the higher T4 concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T4 concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by > or = two-fold between T4 treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by > or = two-fold in the 5 and 50 nM T4 treatments, respectively. We found that T4 concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T4. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis.

  8. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes

    Science.gov (United States)

    Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.

    2011-01-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624

  9. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    Science.gov (United States)

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity. © 2010 Blackwell Publishing Ltd.

  10. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human

    Directory of Open Access Journals (Sweden)

    Dimitri Ryczko

    2017-05-01

    Full Text Available In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

  11. Predator-driven nutrient recycling in California stream ecosystems.

    Directory of Open Access Journals (Sweden)

    Robin G Munshaw

    Full Text Available Nutrient recycling by consumers in streams can influence ecosystem nutrient availability and the assemblage and growth of photoautotrophs. Stream fishes can play a large role in nutrient recycling, but contributions by other vertebrates to overall recycling rates remain poorly studied. In tributaries of the Pacific Northwest, coastal giant salamanders (Dicamptodon tenebrosus occur at high densities alongside steelhead trout (Oncorhynchus mykiss and are top aquatic predators. We surveyed the density and body size distributions of D. tenebrosus and O. mykiss in a California tributary stream, combined with a field study to determine mass-specific excretion rates of ammonium (N and total dissolved phosphorus (P for D. tenebrosus. We estimated O. mykiss excretion rates (N, P by bioenergetics using field-collected data on the nutrient composition of O. mykiss diets from the same system. Despite lower abundance, D. tenebrosus biomass was 2.5 times higher than O. mykiss. Mass-specific excretion summed over 170 m of stream revealed that O. mykiss recycle 1.7 times more N, and 1.2 times more P than D. tenebrosus, and had a higher N:P ratio (8.7 than that of D. tenebrosus (6.0, or the two species combined (7.5. Through simulated trade-offs in biomass, we estimate that shifts from salamander biomass toward fish biomass have the potential to ease nutrient limitation in forested tributary streams. These results suggest that natural and anthropogenic heterogeneity in the relative abundance of these vertebrates and variation in the uptake rates across river networks can affect broad-scale patterns of nutrient limitation.

  12. Contributions to the functional morphology of caudate skulls: kinetic and akinetic forms

    Directory of Open Access Journals (Sweden)

    Nikolay Natchev

    2016-09-01

    Full Text Available A strongly ossified and rigid skull roof, which prevents parietal kinesis, has been reported for the adults of all amphibian clades. Our μ-CT investigations revealed that the Buresch’s newt (Triturus ivanbureschi possess a peculiar cranial construction. In addition to the typical amphibian pleurokinetic articulation between skull roof and palatoquadrate associated structures, we found flexible connections between nasals and frontals (prokinesis, vomer and parasphenoid (palatokinesis, and between frontals and parietals (mesokinesis. This is the first description of mesokinesis in urodelans. The construction of the skull in the Buresch’s newts also indicates the presence of an articulation between parietals and the exocipitals, discussed as a possible kind of metakinesis. The specific combination of pleuro-, pro-, meso-, palato-, and metakinetic skull articulations indicate to a new kind of kinetic systems unknown for urodelans to this date. We discuss the possible neotenic origin of the skull kinesis and pose the hypothesis that the kinesis in T. ivanbureschi increases the efficiency of fast jaw closure. For that, we compared the construction of the skull in T. ivanbureschi to the akinetic skull of the Common fire salamander Salamandra salamandra. We hypothesize that the design of the skull in the purely terrestrial living salamander shows a similar degree of intracranial mobility. However, this mobility is permitted by elasticity of some bones and not by true articulation between them. We comment on the possible relation between the skull construction and the form of prey shaking mechanism that the species apply to immobilize their victims.

  13. Characterizing the width of amphibian movements during postbreeding migration.

    Science.gov (United States)

    Coster, Stephanie S; Veysey Powell, Jessica S; Babbitt, Kimberly J

    2014-06-01

    Habitat linkages can help maintain connectivity of animal populations in developed landscapes. However, the lack of empirical data on the width of lateral movements (i.e., the zigzagging of individuals as they move from one point to point another) makes determining the width of such linkages challenging. We used radiotracking data from wood frogs (Lithobates sylvaticus) and spotted salamanders (Ambystoma maculatum) in a managed forest in Maine (U.S.A.) to characterize movement patterns of populations and thus inform planning for the width of wildlife corridors. For each individual, we calculated the polar coordinates of all locations, estimated the vector sum of the polar coordinates, and measured the distance from each location to the vector sum. By fitting a Gaussian distribution over a histogram of these distances, we created a population-level probability density function and estimated the 50th and 95th percentiles to determine the width of lateral movement as individuals progressed from the pond to upland habitat. For spotted salamanders 50% of lateral movements were ≤13 m wide and 95% of movements were ≤39 m wide. For wood frogs, 50% of lateral movements were ≤17 m wide and 95% of movements were ≤ 51 m wide. For both species, those individuals that traveled the farthest from the pond also displayed the greatest lateral movement. Our results serve as a foundation for spatially explicit conservation planning for pond-breeding amphibians in areas undergoing development. Our technique can also be applied to movement data from other taxa to aid in designing habitat linkages. © 2014 Society for Conservation Biology.

  14. From tails to toes: developing nonlethal tissue indicators of mercury exposure in five amphibian species.

    Science.gov (United States)

    Pfleeger, Adam Z; Eagles-Smith, Collin A; Kowalski, Brandon M; Herring, Garth; Willacker, James J; Jackson, Allyson K; Pierce, John R

    2016-04-01

    Exposure to environmental contaminants has been implicated as a factor in global amphibian decline. Mercury (Hg) is a particularly widespread contaminant that biomagnifies in amphibians and can cause a suite of deleterious effects. However, monitoring contaminant exposure in amphibian tissues may conflict with conservation goals if lethal take is required. Thus, there is a need to develop non-lethal tissue sampling techniques to quantify contaminant exposure in amphibians. Some minimally invasive sampling techniques, such as toe-clipping, are common in population-genetic research, but it is unclear if these methods can adequately characterize contaminant exposure. We examined the relationships between mercury (Hg) concentrations in non-lethally sampled tissues and paired whole-bodies in five amphibian species. Specifically, we examined the utility of three different tail-clip sections from four salamander species and toe-clips from one anuran species. Both tail and toe-clips accurately predicted whole-body THg concentrations, but the relationships differed among species and the specific tail-clip section or toe that was used. Tail-clips comprised of the distal 0-2 cm segment performed the best across all salamander species, explaining between 82 and 92% of the variation in paired whole-body THg concentrations. Toe-clips were less effective predictors of frog THg concentrations, but THg concentrations in outer rear toes accounted for up to 79% of the variability in frog whole-body THg concentrations. These findings suggest non-lethal sampling of tails and toes has potential applications for monitoring contaminant exposure and risk in amphibians, but care must be taken to ensure consistent collection and interpretation of samples.

  15. Amphibians and reptiles of the state of San Luis Potosí, Mexico, with comparisons with adjoining states

    Science.gov (United States)

    Lemos-Espinal, Julio A.; Smith, Geoffrey R.; Woolrich-Piña, Guillermo A.

    2018-01-01

    Abstract A summary of the species of amphibians and reptiles of the state has been compiled, including their geographic distributions, habitats, and conservation statuses. The herpetofauna of San Luis Potosí consists of 41 species of amphibians and 141 species of reptiles. San Luis Potosí shares the highest number of species with Hidalgo and Tamaulipas, and the least number of species with Nuevo León. In San Luis Potosí, there are several taxa of particular conservation concern including salamanders, emydid and trionychid turtles, anguid and xenosaurid lizards, and natricid and colubrid snakes. PMID:29731682

  16. The effect of nonstationarity on models inferred from neural data

    International Nuclear Information System (INIS)

    Tyrcha, Joanna; Roudi, Yasser; Marsili, Matteo; Hertz, John

    2013-01-01

    Neurons subject to a common nonstationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished with machine learning techniques, provided that the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a nonstationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the nonstationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as a function of their rank (Zipf plots) are well explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the nonstationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot. (paper)

  17. Effect of thyroid hormone concentration on the transcriptional response underlying induced metamorphosis in the Mexican axolotl (Ambystoma

    Directory of Open Access Journals (Sweden)

    Samuels Amy K

    2008-02-01

    Full Text Available Abstract Background Thyroid hormones (TH induce gene expression programs that orchestrate amphibian metamorphosis. In contrast to anurans, many salamanders do not undergo metamorphosis in nature. However, they can be induced to undergo metamorphosis via exposure to thyroxine (T4. We induced metamorphosis in juvenile Mexican axolotls (Ambystoma mexicanum using 5 and 50 nM T4, collected epidermal tissue from the head at four time points (Days 0, 2, 12, 28, and used microarray analysis to quantify mRNA abundances. Results Individuals reared in the higher T4 concentration initiated morphological and transcriptional changes earlier and completed metamorphosis by Day 28. In contrast, initiation of metamorphosis was delayed in the lower T4 concentration and none of the individuals completed metamorphosis by Day 28. We identified 402 genes that were statistically differentially expressed by ≥ two-fold between T4 treatments at one or more non-Day 0 sampling times. To complement this analysis, we used linear and quadratic regression to identify 542 and 709 genes that were differentially expressed by ≥ two-fold in the 5 and 50 nM T4 treatments, respectively. Conclusion We found that T4 concentration affected the timing of gene expression and the shape of temporal gene expression profiles. However, essentially all of the identified genes were similarly affected by 5 and 50 nM T4. We discuss genes and biological processes that appear to be common to salamander and anuran metamorphosis, and also highlight clear transcriptional differences. Our results show that gene expression in axolotls is diverse and precise, and that axolotls provide new insights about amphibian metamorphosis.

  18. The effect of nonstationarity on models inferred from neural data

    Energy Technology Data Exchange (ETDEWEB)

    Tyrcha, Joanna [Department of Mathematical Statistics, Stockholm University, SE-10691 Stockholm (Sweden); Roudi, Yasser [Kavli Institute for Systems Neuroscience, NTNU, NO-7010 Trondheim (Norway); Marsili, Matteo [The Abdus Salam ICTP, Strada Costiera 11, I-34151, Trieste (Italy); Hertz, John [Nordita, Royal Institute of Technology and Stockholm University, SE-106 91 Stockholm (Sweden)

    2013-03-01

    Neurons subject to a common nonstationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished with machine learning techniques, provided that the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a nonstationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the nonstationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as a function of their rank (Zipf plots) are well explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the nonstationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot. (paper)

  19. Predictors of breeding site occupancy by amphibians in montane landscapes

    Science.gov (United States)

    Groff, Luke A.; Loftin, Cynthia S.; Calhoun, Aram J.K.

    2017-01-01

    Ecological relationships and processes vary across species’ geographic distributions, life stages and spatial, and temporal scales. Montane landscapes are characterized by low wetland densities, rugged topographies, and cold climates. Consequently, aquatic-dependent and low-vagility ectothermic species (e.g., pool-breeding amphibians) may exhibit unique ecological associations in montane landscapes. We evaluated the relative importance of breeding- and landscape-scale features associated with spotted salamander (Ambystoma maculatum) and wood frog (Lithobates sylvaticus) wetland occupancy in Maine's Upper Montane-Alpine Zone ecoregion, and we determined whether models performed better when the inclusive landscape-scale covariates were estimated with topography-weighted or circular buffers. We surveyed 135 potential breeding sites during May 2013–June 2014 and evaluated environmental relationships with multi-season implicit dynamics occupancy models. Breeding site occupancy by both species was influenced solely by breeding-scale habitat features. Spotted salamander occupancy probabilities increased with previous or current beaver (Castor canadensis) presence, and models generally were better supported when the inclusive landscape-scale covariates were estimated with topography-weighted rather than circular buffers. Wood frog occupancy probabilities increased with site area and percent shallows, but neither buffer type was better supported than the other. Model rank order and support varied between buffer types, but model inferences did not. Our results suggest pool-breeding amphibian conservation in montane Maine include measures to maintain beaver populations and large wetlands with proportionally large areas of shallows ≤1-m deep. Inconsistencies between our study and previous studies substantiate the value of region-specific research for augmenting species’ conservation management plans and suggest the application of out-of-region inferences may promote

  20. Development of peat-oil (POM) and peat-alcohol (PAM) slurries as alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D F

    1983-11-01

    The preparation and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM) is described. POM and PAM prepared using North Carolina peat and having varied peat loadings, peat moisture contents and peat particle sizes have been studied by measuring slurry sedimentation ratios and drain times from sedimentation tubes. The peat moisture content was particularly crucial in forming stable slurries. The effect of a variety of additives at 0.5-1.0 wt% on sedimentation ratios, drain times and viscosities was studied. Calorimetric studies of several PAM and POM slurries as well as preliminary combustion tests of POM slurries in a salamander burner are also reported.

  1. The development of peat-oil (POM) and peat-alcohol (PAM) slurries as alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, D F; Evans, G O; Harrell, P A; Whitehurst, B M

    1983-11-01

    The preparation and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM) is described. POM and PAM prepared using North Carolina peat and having varied peat loadings, peat moisture contents, and peat particle sizes have been studied by measuring slurry sedimentation ratios and drain times from sedimentation tubes. The peat moisture content was particularly crucial in forming stable slurries. The effect of a variety of additives at 0.5-1.0 wt.% on sedimentation ratios, drain times, and viscosities was studied. Calorimetric studies of several PAM and POM slurries as well as preliminary combustion tests of POM slurries in a salamander burner are also reported.

  2. Records of new and rare elasmobranchs from Taiwan.

    Science.gov (United States)

    Hsu, Hua Hsun; Joung, Shoou Jeng; Ebert, David A; Lin, Chia Yen

    2013-01-01

    Five new records of elasmobranchs collected from eastern Taiwan fish markets, Da-xi and Cheng-gong, are presented. Samples were caught by deepsea longliners and bottom trawlers which operate in northeastern waters off Taiwan between 2004 and 2012. These five new species records include the smalltooth sandtiger, Odontaspis ferox (Risso, 1810) (Lamniformes: Odontaspididae), salamander shark, Parmaturus pilosus Garman, 1906 (Carcharhiniformes: Scyliorhinidae), leadhued skate Notoraja tobitukai (Hiyama, 1940) (Rajiformes: Arhynchobatidae), giant skate Dipturus gigas (Ishiyama, 1958) (Rajiformes: Rajidae), and the pelagic stingray Pteroplatytrygon violacea (Bonaparte, 1832) (Myliobatiformes: Dasyatidae), Diagnostic characteristics for each species are given and a key to the genera Parmaturus and Dipturus from Taiwan is presented.

  3. Pheromone communication in amphibians and reptiles.

    Science.gov (United States)

    Houck, Lynne D

    2009-01-01

    This selective review considers herpetological papers that feature the use of chemical cues, particularly pheromones involved in reproductive interactions between potential mates. Primary examples include garter snake females that attract males, lacertid lizards and the effects of their femoral gland secretions, aquatic male newts that chemically attract females, and terrestrial salamander males that chemically persuade a female to mate. Each case study spans a number of research approaches (molecular, biochemical, behavioral) and is related to sensory processing and the physiological effects of pheromone delivery. These and related studies show that natural pheromones can be identified, validated with behavioral tests, and incorporated in research on vomeronasal functional response.

  4. Mine spoil prairies expand critical habitat for endangered and threatened amphibian and reptile species

    Science.gov (United States)

    Lannoo, Michael J.; Kinney, Vanessa C.; Heemeyer, Jennifer L.; Engbrecht, Nathan J.; Gallant, Alisa L.; Klaver, Robert W.

    2009-01-01

    Coal extraction has been occurring in the Midwestern United States for over a century. Despite the pre-mining history of the landscape as woodlands, spent surface coalfields are often reclaimed to grasslands. We assessed amphibian and reptile species on a large tract of coal spoil prairie and found 13 species of amphibians (nine frog and four salamander species) and 19 species of reptiles (one lizard, five turtle, and 13 snake species). Two state-endangered and three state species of special concern were documented. The amphibian diversity at our study site was comparable to the diversity found at a large restored prairie situated 175 km north, within the historic prairie peninsula.

  5. Eggs and hatchlings of the Mexican salamander Pseudoeurycea cephalica (Caudata: Plethodontidae

    Directory of Open Access Journals (Sweden)

    Thomas Bille

    1998-06-01

    Full Text Available Eggs and hatchlings of Pseudoeurycea c. cephalica from Parque Nacional Lagunas de Zempoala, Morelos, Mexico are described for the first time. The eggs are similar to eggs of P. cephalica manni and P. belli in being unstranded. Egg capsules resemble P. nigromaculata and P. juarezi in having two gelatinous envelopes. The embryos have extensively webbed hands and feet with a continuous reduction in webbing during embryogenesis, supporting the hypothesis that webbing of the feet is a paedomorphic character. The hatchlings are uniform grayish-black dorsally and slightly paler ventrally. They are robust with broad heads and short tails and lack both vomerine and maxillary teeth. Lack of dentition has previously been found in juveniles of P. belli.Se describe por primera vez huevos y recién nacidos de Pseudoeurycea cephalica cephalica procedentes del Parque Nacional Lagunas de Zempoala, Morelos, México. Los huevos se paracen a los de P. cephalica manni y P. belli en que no están unidos entre sí por ningún cordón. Se parecen en cuanto a constitución a los de P. nigromaculata y P. juarezi en tener dos capas gelatinosas. Los embriones tienen los pies y manos palmeados, produciéndose una reducción de la superficie palmeada a lo largo de la embriogénesis, lo cual confirma que el palmeado de pies y manos es un carácter pedomórfico. Los recién nacidos son de color gris negruzco, uniforme dorsalmente y de color más claro ventralmente. Son robustos, con cabeza ancha, cola corta y carecen de dientes tanto vomerinos como maxilares. Esta falta de dentición ya fue encontrada anteriormente en juveniles de P. belli.

  6. Impacts of road deicing salt on the demography of vernal pool-breeding amphibians.

    Science.gov (United States)

    Karraker, Nancy E; Gibbs, James P; Vonesh, James R

    2008-04-01

    Deicing agents, primarily road salt, are applied to roads in 26 states in the United States and in a number of European countries, yet the scale of impacts of road salt on aquatic organisms remains largely under-studied. The issue is germane to amphibian conservation because both adult and larval amphibians are known to be particularly sensitive to changes in their osmolar environments. In this study, we combined survey, experimental, and demographic modeling approaches to evaluate the possible effects of road salt on two common vernal-pond-breeding amphibian species, the spotted salamander (Ambystoma maculatum) and the wood frog (Rana sylvatica). We found that in the Adirondack Mountain Region of New York (USA), road salt traveled up to 172 m from the highway into wetlands. Surveys showed that egg mass densities of spotted salamanders (A. maculatum) and wood frogs (R. sylvatica) were two times higher in forest pools than roadside pools, but this pattern was better explained by road proximity than by increased salinity. Experiments demonstrated that embryonic and larval survival were reduced at moderate (500 muS) and high conductivities (3000 muS) in A. maculatum and at high conductivities in R. sylvatica. Demographic models suggest that such egg and larval stage effects of salt may have important impacts on populations near roads, particularly in the case of A. maculatum, for which salt exposure may lead to local extinction. For both species, the effect of road salt was dependent upon the strength of larval density dependence and declined rapidly with distance from the roadside, with the greatest negative effects being limited to within 50 m. Based on this evidence, we argue that efforts to protect local populations of A. maculatum and R. sylvatica in roadside wetlands should, in part, be aimed at reducing application of road salt near wetlands with high conductivity levels.

  7. Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration

    Science.gov (United States)

    Holman, Edna C.; Campbell, Leah J.; Hines, John; Crews, Craig M.

    2012-01-01

    Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum) has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression) of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum (“Amex”) miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3′UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes. PMID:23028429

  8. Microarray analysis of microRNA expression during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Edna C Holman

    Full Text Available Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum ("Amex" miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3'UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes.

  9. Early development of Ensatina eschscholtzii: an amphibian with a large, yolky egg

    Directory of Open Access Journals (Sweden)

    Collazo Andres

    2010-08-01

    Full Text Available Abstract Background Comparative analyses between amphibians, concentrating on the cellular mechanisms of morphogenesis, reveal a large variability in the early developmental processes that were thought to be conserved during evolution. Increased egg size is one factor that could have a strong effect on early developmental processes such as cleavage pattern and gastrulation. Salamanders of the family Plethodontidae are particularly appropriate for such comparative studies because the species have eggs of varying size, including very large yolky eggs. Results In this paper, we describe for the first time the early development (from fertilization through neurulation of the plethodontid salamander Ensatina eschscholtzii. This species has one of the largest eggs known for an amphibian, with a mean ± SD diameter of 6 ± 0.43 mm (range 5.3-6.9; n = 17 eggs. Cleavage is meroblastic until approximately the 16-cell stage (fourth or fifth cleavage. At the beginning of gastrulation, the blastocoel roof is one cell thick, and the dorsal lip of the blastopore forms below the equator of the embryo. The ventral lip of the blastopore forms closer to the vegetal pole, and relatively little involution occurs during gastrulation. Cell migration is visible through the transparent blastocoel roof of the gastrula. At the end of gastrulation, a small archenteron spreading dorsally from the blastopore represents the relatively small and superficial area of the egg where early embryonic axis formation occurs. The resulting pattern is similar to the embryonic disk described for one species of anuran. Conclusions Comparisons with the early development of other species of amphibians suggest that an evolutionary increase in egg size can result in predictable changes in the patterns and rate of early development, but mainly within an evolutionary lineage.

  10. Interactive effects of wildfire, forest management, and isolation on amphibian and parasite abundance

    Science.gov (United States)

    Hossack, Blake R.; Corn, P. Stephen; Winsor H. Lowe,; R. Kenneth Honeycutt,; Sean A. Parks,

    2013-01-01

    Projected increases in wildfire and other climate-driven disturbances will affect populations and communities worldwide, including host–parasite relationships. Research in temperate forests has shown that wildfire can negatively affect amphibians, but this research has occurred primarily outside of managed landscapes where interactions with human disturbances could result in additive or synergistic effects. Furthermore, parasites represent a large component of biodiversity and can affect host fitness and population dynamics, yet they are rarely included in studies of how vertebrate hosts respond to disturbance. To determine how wildfire affects amphibians and their parasites, and whether effects differ between protected and managed landscapes, we compared abundance of two amphibians and two nematodes relative to wildfire extent and severity around wetlands in neighboring protected and managed forests (Montana, USA). Population sizes of adult, male long-toed salamanders (Ambystoma macrodactylum) decreased with increased burn severity, with stronger negative effects on isolated populations and in managed forests. In contrast, breeding population sizes of Columbia spotted frogs (Rana luteiventris) increased with burn extent in both protected and managed protected forests. Path analysis showed that the effects of wildfire on the two species of nematodes were consistent with differences in their life history and transmission strategies and the responses of their hosts. Burn severity indirectly reduced abundance of soil-transmitted Cosmocercoides variabilis through reductions in salamander abundance. Burn severity also directly reduced C. variabilis abundance, possibly though changes in soil conditions. For the aquatically transmitted nematode Gyrinicola batrachiensis, the positive effect of burn extent on density of Columbia spotted frog larvae indirectly increased parasite abundance. Our results show that effects of wildfire on amphibians depend upon burn extent

  11. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites

    Directory of Open Access Journals (Sweden)

    Andrew Howard Loudon

    2014-08-01

    Full Text Available Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd. Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola from red-backed salamanders (Plethodon cinereus and cultured isolates both alone and together to collect their cell-free supernatants (CFS. We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: 1 CFSs of single isolates; 2 combined CFSs of two isolates; and 3 CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection

  12. Extreme variation in the atrial septation of caecilians (Amphibia: Gymnophiona)

    Science.gov (United States)

    de Bakker, Desiderius M; Wilkinson, Mark; Jensen, Bjarke

    2015-01-01

    Caecilians (order Gymnophiona) are elongate, limbless, snake-like amphibians that are the sister-group (closest relatives) of all other recent amphibians (frogs and salamanders). Little is known of their cardiovascular anatomy and physiology, but one nearly century old study suggests that Hypogeophis (family Indotyphlidae), commonly relied upon as a representative caecilian species, has atrial septation in the frontal plane and more than one septum. In contrast, in other vertebrates there generally is one atrial septum in the sagittal plane. We studied the adult heart of Idiocranium (also Indotyphlidae) using immunohistochemistry and confirm that the interatrial septum is close to the frontal plane. Additionally, a parallel right atrial septum divides three-fourths of the right atrial cavity of this species. Idiocranium embryos in the Hill collection reveal that atrial septation initiates in the sagittal plane as in other tetrapods. Late developmental stages, however, see a left-ward shift of visceral organs and a concordant rotation of the atria that reorients the atrial septa towards the frontal plane. The gross anatomies of species from six other caecilian families reveal that (i) the right atrial septum developed early in caecilian evolution (only absent in Rhinatrematidae) and that (ii) rotation of the atria evolved later and its degree varies between families. In most vertebrates a prominent atrial trabeculation associates with the sinuatrial valve, the so-called septum spurium, and the right atrial septum seems homologous to this trabeculation but much more developed. The right atrial septum does not appear to be a consequence of body elongation because it is absent in some caecilians and in snakes. The interatrial septum of caecilians shares multiple characters with the atrial septum of lungfishes, salamanders and the embryonic septum primum of amniotes. In conclusion, atrial septation in caecilians is based on evolutionarily conserved structures but

  13. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C.; De Palma, F.; De Vito, L.; Stefanelli, A. [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell`Uomo

    1997-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  14. The urodelean Mauthner cell. Morphology of the afferent synapses to the M-cell of larval Salamandra salamandra

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, C; De Palma, F; De Vito, L; Stefanelli, A [Rome, Univ. (Italy). Dipt. di Biologia Animale e dell` Uomo

    1998-12-31

    In the present work the fine morphology and the distribution of the afferent synapses to the Mauthner cell of larval Salamandra salamandra are described. The aim of the study is to characterize the synaptic bed in the larvae of this terrestrial salamander in order to compare it with that of larval axolotl and larval anurans. Four main types of afferent endings have been identified: myelinated club endings, round-vesicle end bulbs, flattened-vesicle end bulbs and spiral fibers endings. The M-cell afferent synaptology of larval stages of terrestrial amphibians is quite similar to that previously observed in larval stages of aquatic species. This fact can be related to the fundamental similarities between the larval lifestyles.

  15. Herpetological Monitoring Using a Pitfall Trapping Design in Southern California

    Science.gov (United States)

    Fisher, Robert; Stokes, Drew; Rochester, Carlton; Brehme, Cheryl; Hathaway, Stacie; Case, Ted

    2008-01-01

    The steps necessary to conduct a pitfall trapping survey for small terrestrial vertebrates are presented. Descriptions of the materials needed and the methods to build trapping equipment from raw materials are discussed. Recommended data collection techniques are given along with suggested data fields. Animal specimen processing procedures, including toe- and scale-clipping, are described for lizards, snakes, frogs, and salamanders. Methods are presented for conducting vegetation surveys that can be used to classify the environment associated with each pitfall trap array. Techniques for data storage and presentation are given based on commonly use computer applications. As with any study, much consideration should be given to the study design and methods before beginning any data collection effort.

  16. Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration.

    Science.gov (United States)

    Flowers, Grant Parker; Sanor, Lucas D; Crews, Craig M

    2017-09-16

    Salamanders are unparalleled among tetrapods in their ability to regenerate many structures, including entire limbs, and the study of this ability may provide insights into human regenerative therapies. The complex structure of the limb poses challenges to the investigation of the cellular and molecular basis of its regeneration. Using CRISPR/Cas, we genetically labelled unique cell lineages within the developing axolotl embryo and tracked the frequency of each lineage within amputated and fully regenerated limbs. This allowed us, for the first time, to assess the contributions of multiple low frequency cell lineages to the regenerating limb at once. Our comparisons reveal that regenerated limbs are high fidelity replicas of the originals even after repeated amputations.

  17. ENVIRONMENT-DEPENDENT ADMIXTURE DYNAMICS IN A TIGER SALAMANDER HYBRID ZONE. (R828896)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Time--temperature relation of embryonic development in the northwestern salamander, Ambystoma gracile

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H A

    1976-04-01

    A field and laboratory study on temperature-related embryonic development of Ambystoma gracile was made on a population from northwestern Washington. Natural spawning began in the beaver pond during early March, and the duration of embryonic development (stages 1 to 46) was about 62 days. Average water temperature in the pond during embryonic development was 8.5/sup 0/C (range, 4.4 to 14.3/sup 0/C). The laboratory data of embryonic development at constant temperatures show that the limits of temperature tolerance are about 5 to 22.5/sup 0/C. Rate of development was measured by determining time required to develop from first cleavage (stage 2) to gill circulation (stage 37); representative rates are 12.7 days at 20/sup 0/C, 27 days at 12/sup 0/C, and 89 days at 7/sup 0/C. Embryos of A. gracile have the slowest rate of development when compared with embryos of four other species of Ambystoma (maculatum, mexicanum, tigrinum, and jeffersonianum) and with embryos of three Pacific Northwest frogs (Ascaphus truei, Rana aurora, and Hyla regilla).

  19. Monitoring and Management of a Sensitive Resource: A Landscape-level Approach with Amphibians

    Science.gov (United States)

    2000-03-01

    adults and tadpoles) of eight species of frogs and six individuals of one species of aquatic salamander (Table 13). Frogs in the genus Rana were...0.00 0.00 0.00 ɘ.01 0.00 0.00 0.04 0.00 0.00 0.00 0.01 Diospyros virginiana nla 0.00 0.01 0.00 0.00 0.00 0.00 ɘ.01 Fagus grandifolia nla 0.00 0.00...0.02 0.07 0.01 0.08 0.01 0.00 0.00 0.03 Comus florida 0.02 0.11 0.00 0.01 0.11 0.04 0.05 0.00 0.02 0.00 0.00 0.02 0.00 0.01 Diospyros virginiana n/a

  20. Records of Salamandrina perspicillata (Savi, 1821 in the Colli Albani (Latium, central Italy, with some ecological notes (Urodela, Salamandridae

    Directory of Open Access Journals (Sweden)

    Claudio Angelini

    2006-01-01

    Full Text Available The distribution of the Northern Spectacled Salamander in the Colli Albani (= Albani Hills, together with some ecological aspects at eight sites are reported. In four sites, oviposition took place between February and April, but in the other four it probably started at least in the first half of december. Eggs were deposited into the water of either temporary or perennial spring ponds or inside flooded man-made tuff tunnels. In some sites, which do not undergo summer drought, some larvae surpassed the summer and even the following winter. For one site, length and weight of 52 ovipositing females were recorded and larval development was monitored. A clear relation between larval body size and limb development did not appear.

  1. Natural Resource Damages Settlement Projects at the Fernald Preserve - 12316

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Jane [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States); Schneider, Tom [Fernald Project Manager, Ohio Environmental Protection Agency, Dayton, Ohio (United States); Hertel, Bill [Project Manager, S.M. Stoller Corporation, Harrison, Ohio (United States); Homer, John [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States)

    2012-07-01

    This paper describes the development and implementation of two ecological restoration projects at the Fernald Preserve that are funded through a CERCLA natural resource damage settlement. The Paddys Run Tributary Project involves creation of vernal pool wetland habitat with adjacent forest restoration. The Triangle Area Project is a mesic tall-grass prairie establishment, similar to other efforts at the Fernald Preserve. The goal of the Fernald Natural Resource Trustees is to establish habitat for Ambystomatid salamander species, as well as grassland birds. Planning and implementation of on-property ecological restoration projects is one component of compensation for natural resource injury. As with the rest of the Fernald Preserve, ecological restoration has helped turn a DOE liability into a community asset. (authors)

  2. Increasing signal-to-noise ratio of swept-source optical coherence tomography by oversampling in k-space

    Science.gov (United States)

    Nagib, Karim; Mezgebo, Biniyam; Thakur, Rahul; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Optical coherence tomography systems suffer from noise that could reduce ability to interpret reconstructed images correctly. We describe a method to increase the signal-to-noise ratio of swept-source optical coherence tomography (SSOCT) using oversampling in k-space. Due to this oversampling, information redundancy would be introduced in the measured interferogram that could be used to reduce white noise in the reconstructed A-scan. We applied our novel scaled nonuniform discrete Fourier transform to oversampled SS-OCT interferograms to reconstruct images of a salamander egg. The peak-signal-to-noise (PSNR) between the reconstructed images using interferograms sampled at 250MS/s andz50MS/s demonstrate that this oversampling increased the signal-to-noise ratio by 25.22 dB.

  3. Connective Tissue Fibroblast Properties Are Position-Dependent during Mouse Digit Tip Regeneration

    Science.gov (United States)

    Wu, Yuanyuan; Wang, Karen; Karapetyan, Adrine; Fernando, Warnakulusuriya Akash; Simkin, Jennifer; Han, Manjong; Rugg, Elizabeth L.; Muneoka, Ken

    2013-01-01

    A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3) leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2), fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3) and incompetent (P2) levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of connective tissue

  4. Adaptation in Coding by Large Populations of Neurons in the Retina

    Science.gov (United States)

    Ioffe, Mark L.

    A comprehensive theory of neural computation requires an understanding of the statistical properties of the neural population code. The focus of this work is the experimental study and theoretical analysis of the statistical properties of neural activity in the tiger salamander retina. This is an accessible yet complex system, for which we control the visual input and record from a substantial portion--greater than a half--of the ganglion cell population generating the spiking output. Our experiments probe adaptation of the retina to visual statistics: a central feature of sensory systems which have to adjust their limited dynamic range to a far larger space of possible inputs. In Chapter 1 we place our work in context with a brief overview of the relevant background. In Chapter 2 we describe the experimental methodology of recording from 100+ ganglion cells in the tiger salamander retina. In Chapter 3 we first present the measurements of adaptation of individual cells to changes in stimulation statistics and then investigate whether pairwise correlations in fluctuations of ganglion cell activity change across different stimulation conditions. We then transition to a study of the population-level probability distribution of the retinal response captured with maximum-entropy models. Convergence of the model inference is presented in Chapter 4. In Chapter 5 we first test the empirical presence of a phase transition in such models fitting the retinal response to different experimental conditions, and then proceed to develop other characterizations which are sensitive to complexity in the interaction matrix. This includes an analysis of the dynamics of sampling at finite temperature, which demonstrates a range of subtle attractor-like properties in the energy landscape. These are largely conserved when ambient illumination is varied 1000-fold, a result not necessarily apparent from the measured low-order statistics of the distribution. Our results form a consistent

  5. Activation of retinal glial (Müller cells by extracellular ATP induces pronounced increases in extracellular H+ flux.

    Directory of Open Access Journals (Sweden)

    Boriana K Tchernookova

    Full Text Available Small alterations in extracellular acidity are potentially important modulators of neuronal signaling within the vertebrate retina. Here we report a novel extracellular acidification mechanism mediated by glial cells in the retina. Using self-referencing H+-selective microelectrodes to measure extracellular H+ fluxes, we show that activation of retinal Müller (glial cells of the tiger salamander by micromolar concentrations of extracellular ATP induces a pronounced extracellular H+ flux independent of bicarbonate transport. ADP, UTP and the non-hydrolyzable analog ATPγs at micromolar concentrations were also potent stimulators of extracellular H+ fluxes, but adenosine was not. The extracellular H+ fluxes induced by ATP were mimicked by the P2Y1 agonist MRS 2365 and were significantly reduced by the P2 receptor blockers suramin and PPADS, suggesting activation of P2Y receptors. Bath-applied ATP induced an intracellular rise in calcium in Müller cells; both the calcium rise and the extracellular H+ fluxes were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin and when the PLC-IP3 signaling pathway was disrupted with 2-APB and U73122. The anion transport inhibitor DIDS also markedly reduced the ATP-induced increase in H+ flux while SITS had no effect. ATP-induced H+ fluxes were also observed from Müller cells isolated from human, rat, monkey, skate and lamprey retinae, suggesting a highly evolutionarily conserved mechanism of potential general importance. Extracellular ATP also induced significant increases in extracellular H+ flux at the level of both the outer and inner plexiform layers in retinal slices of tiger salamander which was significantly reduced by suramin and PPADS. We suggest that the novel H+ flux mediated by ATP-activation of Müller cells and of other glia as well may be a key mechanism modulating neuronal signaling in the vertebrate retina and throughout the brain.

  6. Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wu

    Full Text Available A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3 leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2, fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3 and incompetent (P2 levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of

  7. Species interactions and the effects of climate variability on a wetland amphibian metacommunity

    Science.gov (United States)

    Davis, Courtney L.; Miller, David A.W.; Walls, Susan C.; Barichivich, William J.; Riley, Jeffrey W.; Brown, Mary E.

    2017-01-01

    Disentangling the role that multiple interacting factors have on species responses to shifting climate poses a significant challenge. However, our ability to do so is of utmost importance to predict the effects of climate change on species distributions. We examined how populations of three species of wetland-breeding amphibians, which varied in life history requirements, responded to a six-year period of extremely variable precipitation. This interval was punctuated by both extensive drought and heavy precipitation and flooding, providing a natural experiment to measure community responses to environmental perturbations. We estimated occurrence dynamics using a discrete hidden Markov modeling approach that incorporated information regarding habitat state and predator–prey interactions. This approach allowed us to measure how metapopulation dynamics of each amphibian species was affected by interactions among weather, wetland hydroperiod, and co-occurrence with fish predators. The pig frog, a generalist, proved most resistant to perturbations, with both colonization and persistence being unaffected by seasonal variation in precipitation or co-occurrence with fishes. The ornate chorus frog, an ephemeral wetland specialist, responded positively to periods of drought owing to increased persistence and colonization rates during periods of low-rainfall. Low probabilities of occurrence of the ornate chorus frog in long-duration wetlands were driven by interactions with predators due to low colonization rates when fishes were present. The mole salamander was most sensitive to shifts in water availability. In our study area, this species never occurred in short-duration wetlands and persistence probabilities decreased during periods of drought. At the same time, negative effects occurred with extreme precipitation because flooding facilitated colonization of fishes to isolated wetlands and mole salamanders did not colonize wetlands once fishes were present. We

  8. Realistic Fasting Does Not Affect Stable Isotope Levels of a Metabolically Efficient Salamander

    Science.gov (United States)

    Stable isotopes are commonly used to examine various aspects of animal ecology. The use of stable isotopes generally proceeds under the implicit assumption that resource use is the only factor driving variation in stable isotope levels; however, a wealth of studies demonstrate a...

  9. BITING IN THE SALAMANDER SIREN INTERMEDIA: COURTSHIP COMPONENT OR AGONISTIC BEHAVIOR? (R825795)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Adaptive colour contrast coding in the salamander retina efficiently matches natural scene statistics.

    Directory of Open Access Journals (Sweden)

    Genadiy Vasserman

    Full Text Available The visual system continually adjusts its sensitivity to the statistical properties of the environment through an adaptation process that starts in the retina. Colour perception and processing is commonly thought to occur mainly in high visual areas, and indeed most evidence for chromatic colour contrast adaptation comes from cortical studies. We show that colour contrast adaptation starts in the retina where ganglion cells adjust their responses to the spectral properties of the environment. We demonstrate that the ganglion cells match their responses to red-blue stimulus combinations according to the relative contrast of each of the input channels by rotating their functional response properties in colour space. Using measurements of the chromatic statistics of natural environments, we show that the retina balances inputs from the two (red and blue stimulated colour channels, as would be expected from theoretical optimal behaviour. Our results suggest that colour is encoded in the retina based on the efficient processing of spectral information that matches spectral combinations in natural scenes on the colour processing level.

  11. Ion exchange mechanisms on the erythrocyte membrane of the aquatic salamander, Amphiuma tridactylum

    DEFF Research Database (Denmark)

    Tufts, B L; Nikinmaa, M; Steffensen, J F

    1987-01-01

    The effects of different pharmacological agents and incubation media on the intracellular pH and water content of Amphiuma erythrocytes were investigated in vitro. Adrenaline had no significant effect on the intracellular pH or cell water content. DIDS caused an intracellular alkalinization that ...

  12. GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina

    NARCIS (Netherlands)

    Kamermans, M.; Werblin, F.

    1992-01-01

    Horizontal cells (HCs) appear to release, and also to be sensitive to, GABA. The external GABA concentration is increased with depolarization of the HC membrane via an electrogenic GABA transporter. This extracellular GABA opens a GABAA-gated Cl- channel in the HC membrane. Since the equilibrium

  13. Testing the efficacy of downscaling in species distribution modelling: a comparison between MaxEnt and Favourability Function models

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, J.; Toxopeus, A.G.; Skidmore, A.K.; Real, R.

    2016-07-01

    Statistical downscaling is used to improve the knowledge of spatial distributions from broad–scale to fine–scale maps with higher potential for conservation planning. We assessed the effectiveness of downscaling in two commonly used species distribution models: Maximum Entropy (MaxEnt) and the Favourability Function (FF). We used atlas data (10 x 10 km) of the fire salamander Salamandra salamandra distribution in southern Spain to derive models at a 1 x 1 km resolution. Downscaled models were assessed using an independent dataset of the species’ distribution at 1 x 1 km. The Favourability model showed better downscaling performance than the MaxEnt model, and the models that were based on linear combinations of environmental variables performed better than models allowing higher flexibility. The Favourability model minimized model overfitting compared to the MaxEnt model. (Author)

  14. Testing the efficacy of downscaling in species distribution modelling: a comparison between MaxEnt and Favourability Function models

    Directory of Open Access Journals (Sweden)

    Olivero, J.

    2016-03-01

    Full Text Available Statistical downscaling is used to improve the knowledge of spatial distributions from broad–scale to fine–scale maps with higher potential for conservation planning. We assessed the effectiveness of downscaling in two commonly used species distribution models: Maximum Entropy (MaxEnt and the Favourability Function (FF. We used atlas data (10 x 10 km of the fire salamander Salamandra salamandra distribution in southern Spain to derive models at a 1 x 1 km resolution. Downscaled models were assessed using an independent dataset of the species’ distribution at 1 x 1 km. The Favourability model showed better downscaling performance than the MaxEnt model, and the models that were based on linear combinations of environmental variables performed better than models allowing higher flexibility. The Favourability model minimized model overfitting compared to the MaxEnt model.

  15. Doubly Periodic Traveling Waves in a Cellular Neural Network with Linear Reaction

    Directory of Open Access Journals (Sweden)

    Lin JianJhong

    2009-01-01

    Full Text Available Szekeley observed that the dynamic pattern of the locomotion of salamanders can be explained by periodic vector sequences generated by logical neural networks. Such sequences can mathematically be described by "doubly periodic traveling waves" and therefore it is of interest to propose dynamic models that may produce such waves. One such dynamic network model is built here based on reaction-diffusion principles and a complete discussion is given for the existence of doubly periodic waves as outputs. Since there are 2 parameters in our model and 4 a priori unknown parameters involved in our search of solutions, our results are nontrivial. The reaction term in our model is a linear function and hence our results can also be interpreted as existence criteria for solutions of a nontrivial linear problem depending on 6 parameters.

  16. Maximizing Sampling Efficiency and Minimizing Uncertainty in Presence/Absence Classification of Rare Salamander Populations

    Science.gov (United States)

    2008-10-31

    of the Apalachicola River drainage. Although this proposed division in classification appears to be generally accepted by the herpetological community...breeding in small forest ponds. Herpetological Review 33(4):275-280. Carle, F. L. and M. R. Strub. 1978. A new method for estimating population size...gopher frogs (Rana capito) and southern leopard frogs (Rana sphenocephala). Journal of Herpetology 42: 97-103. Grevstad, F.S. 2005. Simulating

  17. Species Profile: Flatwoods Salamander (Ambystoma cingulatum) on Military Installations in the Southeastern United States

    National Research Council Canada - National Science Library

    Palis, John

    1997-01-01

    .... Fish and Wildlife Service. The species inhabits the lower Southeastern Coastal Plain from southern South Carolina to northern Florida, and westward through Georgia to extreme southwestern Alabama...

  18. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks

    Science.gov (United States)

    Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe

    2010-01-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...

  19. Book review: Behavioral ecology of the eastern red-backed salamander: 50 years of research

    Science.gov (United States)

    Walls, Susan; Mitchell, Joseph C.

    2017-01-01

    In commemoration of the 100th anniversary of the British Ecological Society, Sutherland et al. (2013) identified 100 questions of fundamental significance in “pure” (i.e., not applied) ecology. A somewhat unexpected outcome of these authors’ exercise was the realization that, after 100 years of comprehensive, intensive scientific research, there remained “profound knowledge

  20. Comparison of silvicultural and natural disturbance effects on terrestrial salamanders in northern hardwood forests

    Science.gov (United States)

    Daniel J. Hocking; Kimberly J. Babbitt; Mariko. Yamasaki

    2013-01-01

    In forested ecosystems timber harvesting has the potential to emulate natural disturbances, thereby maintaining the natural communities adapted to particular disturbances. We compared the effects of even-aged (clearcut and patch cut) and uneven-aged (group cut, single-tree selection) timber management techniques with natural ice-storm damage and unmanipulated reference...

  1. A general scenario of Hox gene inventory variation among major sarcopterygian lineages

    Directory of Open Access Journals (Sweden)

    Wang Chaolin

    2011-01-01

    Full Text Available Abstract Background Hox genes are known to play a key role in shaping the body plan of metazoans. Evolutionary dynamics of these genes is therefore essential in explaining patterns of evolutionary diversity. Among extant sarcopterygians comprising both lobe-finned fishes and tetrapods, our knowledge of the Hox genes and clusters has largely been restricted in several model organisms such as frogs, birds and mammals. Some evolutionary gaps still exist, especially for those groups with derived body morphology or occupying key positions on the tree of life, hindering our understanding of how Hox gene inventory varied along the sarcopterygian lineage. Results We determined the Hox gene inventory for six sarcopterygian groups: lungfishes, caecilians, salamanders, snakes, turtles and crocodiles by comprehensive PCR survey and genome walking. Variable Hox genes in each of the six sarcopterygian group representatives, compared to the human Hox gene inventory, were further validated for their presence/absence by PCR survey in a number of related species representing a broad evolutionary coverage of the group. Turtles, crocodiles, birds and placental mammals possess the same 39 Hox genes. HoxD12 is absent in snakes, amphibians and probably lungfishes. HoxB13 is lost in frogs and caecilians. Lobe-finned fishes, amphibians and squamate reptiles possess HoxC3. HoxC1 is only present in caecilians and lobe-finned fishes. Similar to coelacanths, lungfishes also possess HoxA14, which is only found in lobe-finned fishes to date. Our Hox gene variation data favor the lungfish-tetrapod, turtle-archosaur and frog-salamander relationships and imply that the loss of HoxD12 is not directly related to digit reduction. Conclusions Our newly determined Hox inventory data provide a more complete scenario for evolutionary dynamics of Hox genes along the sarcopterygian lineage. Limbless, worm-like caecilians and snakes possess similar Hox gene inventories to animals with

  2. Molecular basis of pathogenesis of emerging viruses infecting aquatic animals

    Directory of Open Access Journals (Sweden)

    Lang Gui

    2018-01-01

    Full Text Available Aquatic vertebrates are very abundant in the world, and they are of tremendous importance in providing global food security and nutrition. However, emergent and resurgent viruses, such as ranavirus (e.g., Rana grylio virus, RGV and Andriasd avidianus ranavirus, ADRV, herpesvirus (e.g., Carassius carassius herpesvirus, CaHV, reovirus (e.g., grass carp reovirus 109, GCRV-109, Scophthal musmaximus reovirus, SMReV and Micropterus salmoides reovirus, MsReV, and rhabdovirus (e.g., Siniper cachuatsi rhabdovirus, SCRV and Scophthal musmaximus rhabdovirus, SMRV can cause severe diseases in aquaculture animals and wild lower vertebrates, such as frogs, giant salamanders, fish, and so on. Here, we will briefly describe the symptoms produced by the aforementioned viruses and the molecular basis of the virus–host interactions. This manuscript aims to provide an overview of viral diseases in lower vertebrates with an emphasis on visible symptomatic manifestations and pathogenesis.

  3. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    McCusker, Catherine D; Gardiner, David M

    2013-01-01

    The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP), to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.

  4. Swept source optical coherence tomography of objects with arbitrary reflectivity profiles

    Science.gov (United States)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Swept Source optical coherence tomography (SS-OCT) has become a well established imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferogram measured in the frequency domain (k-space). Fourier inversion of the obtained interferogram typically produces a potentially overlapping conjugate mirror image, whose overlap could be avoided by restricting the object to have its highest reflectivity at its surface. However, this restriction may not be fulfilled when imaging a very thin object that is placed on a highly reflective surface, or imaging an object containing a contrast agent with high reflectivity. In this paper, we show that oversampling of the SS-OCT signal in k-space would overcome the need for such restriction on the object. Our result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  5. Using decision analysis to support proactive management of emerging infectious wildlife diseases

    Science.gov (United States)

    Grant, Evan H. Campbell; Muths, Erin L.; Katz, Rachel A.; Canessa, Stefano; Adams, Michael J.; Ballard, Jennifer R.; Berger, Lee; Briggs, Cheryl J.; Coleman, Jeremy; Gray, Matthew J.; Harris, M. Camille; Harris, Reid N.; Hossack, Blake R.; Huyvaert, Kathryn P.; Kolby, Jonathan E.; Lips, Karen R.; Lovich, Robert E.; McCallum, Hamish I.; Mendelson, Joseph R.; Nanjappa, Priya; Olson, Deanna H.; Powers, Jenny G.; Richgels, Katherine L. D.; Russell, Robin E.; Schmidt, Benedikt R.; Spitzen-van der Sluijs, Annemarieke; Watry, Mary Kay; Woodhams, Douglas C.; White, C. LeAnn

    2017-01-01

    Despite calls for improved responses to emerging infectious diseases in wildlife, management is seldom considered until a disease has been detected in affected populations. Reactive approaches may limit the potential for control and increase total response costs. An alternative, proactive management framework can identify immediate actions that reduce future impacts even before a disease is detected, and plan subsequent actions that are conditional on disease emergence. We identify four main obstacles to developing proactive management strategies for the newly discovered salamander pathogen Batrachochytrium salamandrivorans (Bsal). Given that uncertainty is a hallmark of wildlife disease management and that associated decisions are often complicated by multiple competing objectives, we advocate using decision analysis to create and evaluate trade-offs between proactive (pre-emergence) and reactive (post-emergence) management options. Policy makers and natural resource agency personnel can apply principles from decision analysis to improve strategies for countering emerging infectious diseases.

  6. Woodland pond salamander abundance in relation to forest management and environmental conditions in northern Wisconsin

    Science.gov (United States)

    Deahn M. Donner; Christine A. Ribic; Albert J. Beck; Dale Higgins; Dan Eklund; Susan. Reinecke

    2015-01-01

    Woodland ponds are important landscape features that help sustain populations of amphibians that require this aquatic habitat for successful reproduction. Species abundance patterns often reflect site-specific differences in hydrology, physical characteristics, and surrounding vegetation. Large-scale processes such as changing land cover and environmental conditions...

  7. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    Science.gov (United States)

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  8. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination.

    Science.gov (United States)

    Khattak, Shahryar; Murawala, Prayag; Andreas, Heino; Kappert, Verena; Schuez, Maritta; Sandoval-Guzmán, Tatiana; Crawford, Karen; Tanaka, Elly M

    2014-03-01

    The axolotl (Mexican salamander, Ambystoma mexicanum) has become a very useful model organism for studying limb and spinal cord regeneration because of its high regenerative capacity. Here we present a protocol for successfully mating and breeding axolotls in the laboratory throughout the year, for metamorphosing axolotls by a single i.p. injection and for axolotl transgenesis using I-SceI meganuclease and the mini Tol2 transposon system. Tol2-mediated transgenesis provides different features and advantages compared with I-SceI-mediated transgenesis, and it can result in more than 30% of animals expressing the transgene throughout their bodies so that they can be directly used for experimentation. By using Tol2-mediated transgenesis, experiments can be performed within weeks (e.g., 5-6 weeks for obtaining 2-3-cm-long larvae) without the need to establish germline transgenic lines (which take 12-18 months). In addition, we describe here tamoxifen-induced Cre-mediated recombination in transgenic axolotls.

  9. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Catherine D McCusker

    Full Text Available The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP, to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.

  10. Delayed rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B.

    2011-01-01

    SUMMARY Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5–10 mV) also suppressed firing during subsequent depolarization. This suppression was sensitive selectively to blockers of delayed-rectifier K channels (KDR). Somatic membrane patches showed TEA-sensitive KDR currents with activation near −25 mV and removal of inactivation at voltages negative to Vrest. Brief periods of hyperpolarization apparently remove KDR inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. PMID:21745646

  11. Responses of Mammalian Insectivores, Amphibians, and Reptiles to Broad-Scale Manipulation of Coarse Woody Debris

    Energy Technology Data Exchange (ETDEWEB)

    McCay, T.S.; Forschler, B.T.; Komoroski, M.J.; Ford, W.M.

    2002-03-10

    Sampled shrews at 9.3 ha plots from logs manually removed and control plots in loblolly pine forests of the Southeastern Coastal Plain. Capture rates of Cryptotis parva were lower at plots from which deadwood was removed whereas capture rates of Blarina cavolinensis and Sorex longirostris did not differ between control and removal plots. Cryptotis may have been most sensitive to removal plots due to low population density, hence poor ability to move into areas of low reproduction. (Second Abstract, p. 37)Presentation of evidence that juvenile amphibians including Ambystomatid salamanders may disperse hundreds of meter from their natal wetlands within the weeks to months following metamorphosis. Data indicates Ambystoma trigrinum metamorphs can take at least six months to disperse and en route use non-polar lipid reserves garnished as larvae. Report suggests a land management regime that allows for both juvenile amphibian dispersal and also the consumptive use of the surrounding landscape.

  12. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals

    Science.gov (United States)

    Gawriluk, Thomas R.; Simkin, Jennifer; Thompson, Katherine L.; Biswas, Shishir K.; Clare-Salzler, Zak; Kimani, John M.; Kiama, Stephen G.; Smith, Jeramiah J.; Ezenwa, Vanessa O.; Seifert, Ashley W.

    2016-01-01

    Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas other rodents including MRL/MpJ ‘healer' mice heal similar injuries by scarring. We demonstrate ear-hole closure is independent of ear size, and closure rate can be modelled with a cubic function. Cellular and genetic analyses reveal that injury induces blastema formation in Acomys cahirinus. Despite cell cycle re-entry in Mus musculus and A. cahirinus, efficient cell cycle progression and proliferation only occurs in spiny mice. Together, our data unite blastema-mediated regeneration in spiny mice with regeneration in other vertebrates such as salamanders, newts and zebrafish, where all healthy adults regenerate in response to injury. PMID:27109826

  13. Eye retraction in the giant guitarfish, Rhynchobatus djiddensis (Elasmobranchii: Batoidea): a novel mechanism for eye protection in batoid fishes.

    Science.gov (United States)

    Tomita, Taketeru; Murakumo, Kiyomi; Miyamoto, Kei; Sato, Keiichi; Oka, Shin-ichiro; Kamisako, Haruka; Toda, Minoru

    2016-02-01

    Eye retraction behavior has evolved independently in some vertebrate linages such as mudskippers (fish), frogs and salamanders (amphibians), and cetaceans (mammals). In this paper, we report the eye retraction behavior of the giant guitarfish (Rhynchobatus djiddensis) for the first time, and discuss its mechanism and function. The eye retraction distance was nearly the same as the diameter of the eyeball itself, indicating that eye retraction in the giant guitarfish is probably one of the largest among vertebrates. Eye retraction is achieved by unique arrangement of the eye muscle: one of the anterior eye muscles (the obliquus inferior) is directed ventrally from the eyeball and attaches to the ventral surface of the neurocranium. Due to such muscle arrangement, the obliquus inferior can pull the eyeball ventrally. This mechanism was also confirmed by electrical stimulation of the obliquus inferior. The eye retraction ability of the giant guitarfish likely represents a novel eye protection behavior of elasmobranch fishes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Amphibians in the climate vise: loss and restoration of resilience of montane wetland ecosystems in the western US

    Science.gov (United States)

    Ryan, Maureen E.; Palen, Wendy J.; Adams, Michael J.; Rochefort, Regina M.

    2014-01-01

    Wetlands in the remote mountains of the western US have undergone two massive ecological “experiments” spanning the 20th century. Beginning in the late 1800s and expanding after World War II, fish and wildlife managers intentionally introduced millions of predatory trout (primarily Oncorhynchus spp) into fishless mountain ponds and lakes across the western states. These new top predators, which now occupy 95% of large mountain lakes, have limited the habitat distributions of native frogs, salamanders, and wetland invertebrates to smaller, more ephemeral ponds where trout do not survive. Now a second “experiment” – anthropogenic climate change – threatens to eliminate many of these ephemeral habitats and shorten wetland hydroperiods. Caught between climate-induced habitat loss and predation from introduced fish, native mountain lake fauna of the western US – especially amphibians – are at risk of extirpation. Targeted fish removals, guided by models of how wetlands will change under future climate scenarios, provide innovative strategies for restoring resilience of wetland ecosystems to climate change.

  15. Amphibian monitoring in the Atchafalaya Basin

    Science.gov (United States)

    Waddle, Hardin

    2011-01-01

    Amphibians are a diverse group of animals that includes frogs, toads, and salamanders. They are adapted to living in a variety of habitats, but most require water for at least one life stage. Amphibians have recently become a worldwide conservation concern because of declines and extinctions even in remote protected areas previously thought to be safe from the pressures of habitat loss and degradation. Amphibians are an important part of ecosystem dynamics because they can be quite abundant and serve both as a predator of smaller organisms and as prey to a suite of vertebrate predators. Their permeable skin and aquatic life history also make them useful as indicators of ecosystem health. Since 2002, the U.S. Geological Survey has been studying the frog and toad species inhabiting the Atchafalaya Basin to monitor for population declines and to better understand how the species are potentially affected by disease, environmental contaminants, and climate change.

  16. Experience of measuring wall thicknesses of district heating pipes in use with free-floating salamanders (pigs)

    International Nuclear Information System (INIS)

    Barbian, O.A.; Goedecke, H.; Krieg, W.

    1992-01-01

    A test system for district heating pipes (laid above ground or in the ground or in the offshore field) is introduced, a so-called 'intelligent' test 'pig' which, like in a pneumatic tube, floats through the pipe with the medium during operation and finds out any corrosion damage. The equipment works on the principle of ultrasonic wall thickness testing in immersed technique, and is equipped with a large number of test heads in order to scan the pipe surface completely in one run-through. The data processing in the pig with the aid of microprocessors and the type of data collection in mass memories is briefly described. The test results are clearly shown by coloured graphics, which makes efficient assessment and evaluation of the faults possible. The ability of the system to supply information (data collection, data storage, assessment and evaluation) is demonstrated by a series of typical faults, which were found worldwide in oil and gas pipes. (orig./HP) [de

  17. 76 FR 61956 - Endangered and Threatened Wildlife and Plants; Endangered Status for the Ozark Hellbender Salamander

    Science.gov (United States)

    2011-10-06

    ... stated that animals infected with Batrachochytrium dendrobatidis (the pathogen which causes amphibian... seq.) is a law that was passed to prevent extinction of species by providing measures to help alleviate the loss of species and their habitats. Before a plant or animal species can receive the...

  18. The use of artificial impoundments by two amphibian species in the Delaware Water Gap National Recreation Area

    Science.gov (United States)

    Julian, J.T.; Snyder, C.D.; Young, J.A.

    2006-01-01

    We compared breeding activity of Ambystoma maculatum (Spotted Salamander) and Rana sylvatica (Wood Frog) in artificial impoundments to patterns in natural wetlands over a three-year period in the Delaware Water Gap National Recreation Area. Rana sylvatica were 5.6 times more likely to use natural bodies of water for breeding than artificial impoundments, while A. maculatum were 2.7 times more likely to use natural bodies of water. Both species were approximately 9 times more likely to breed in fishless bodies of water than in waters with predatory fish. Ambystoma maculatum were 6 times more likely to breed in wetlands with more stable seasonal hydroperiods, while R. sylvatica were only 2 times more likely to do so. We conclude that the high likelihood of fish presence in impoundments was the primary explanation for why both species were less likely to use impoundments than natural wetlands, while the tendency of A. maculatum to avoid natural wetlands with shorter hydroperiods explained why differences in use between pond types was more pronounced for R. sylvatica.

  19. The metamorphosis of amphibian toxicogenomics

    Directory of Open Access Journals (Sweden)

    Caren eHelbing

    2012-03-01

    Full Text Available Amphibians are important vertebrates in toxicology often representing both aquatic and terrestrial forms within the life history of the same species. Of the thousands of species, only two have substantial genomics resources: the recently published genome of the Pipid, Xenopus (Silurana tropicalis, and transcript information (and ongoing genome sequencing project of Xenopus laevis. However, many more species representative of regional ecological niches and life strategies are used in toxicology worldwide. Since Xenopus species diverged from the most populous frog family, the Ranidae, ~200 million years ago, there are notable differences between them and the even more distant Caudates (salamanders and Caecilians. These differences include genome size, gene composition, and extent of polyploidization. Application of toxicogenomics to amphibians requires the mobilization of resources and expertise to develop de novo sequence assemblies and analysis strategies for a broader range of amphibian species. The present mini-review will present the advances in toxicogenomics as pertains to amphibians with particular emphasis upon the development and use of genomic techniques (inclusive of transcriptomics, proteomics, and metabolomics and the challenges inherent therein.

  20. The Snowmastodon Project: A view of the Last Interglacial Period from high in the Colorado Rockies

    Science.gov (United States)

    Pigati, Jeffery S.

    2015-01-01

    In North America, terrestrial records of biodiversity and climate change that span the Last Interglacial Period [or Marine Oxygen Isotope Stage (MIS) 5] are rare. In 2010-11, construction at Ziegler Reservoir near Snowmass Village, Colorado revealed a lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site (ZRFS) also contained thousands of well-preserved bones and teeth of Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals, including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework, shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5.

  1. Amphibians in Southern Apennine: distribution, ecology and conservation notes in the “Appennino Lucano, Val d’Agri e Lagonegrese” National Park (Southern Italy

    Directory of Open Access Journals (Sweden)

    Antonio Romano

    2012-12-01

    Full Text Available Italy is the European country with the highest amphibian richness and endemism. However distributional data from some Southern Italy areas are scanty, in particularly for the Basilicata region. In this study, we present the results of field and bibliographic survey on the amphibians of the “Appennino Lucano, Val d’Agri e Lagonegrese” National Park (almost 70,000 ha. We recorded breeding activity of 12 amphibian species in 307 sites, for a total of 493 records. For some endemic species we provide new ecological data, such as new altitudinal limit (Salamandrina terdigitata or expansion of the annual activity cycle (Bombina pachypus. Indices of diffusion, density and rarity were applied to test the status of each species in the Park. Correspondence analyses showed a clear aquatic habitat partitioning between anurans and urodelans and, concerning the latter, between newts and salamanders, newts being strictly dependent on artificial water bodies. Our results support the growing idea, recently formalized by the IUCN, that maintaining and restoring artificial water bodies may be fundamental for an appropriate conservation management of amphibian communities in Mediterranean rural landscapes.

  2. Growth hormone and prolactin in Andrias davidianus: cDNA cloning, tissue distribution and phylogenetic analysis.

    Science.gov (United States)

    Yang, Liping; Meng, Zining; Liu, Yun; Zhang, Yong; Liu, Xiaochun; Lu, Danqi; Huang, Junhai; Lin, Haoran

    2010-01-15

    The Chinese giant salamander (Andrias davidianus) is one of the largest and 'living fossil' species of amphibian. To obtain genetic information for this species, the cDNAs encoding growth hormone (adGH) and prolactin (adPRL) were cloned from a pituitary cDNA library. The isolated adGH cDNA consisted of 864 bp and encoded a propeptide of 215 amino acids, while the cDNA of adPRL was 1106 bp in length and encoded a putative peptide of 229 amino acids. Expression of the GH and PRL mRNA was only detected in the pituitary. Phylogenetic analyses were performed based on the isolated pituitary hormone sequences using maximum parsimony and neighbor-joining algorithms. The clustering results are similar to that based on the morphological characteristics or the rRNA genes, which indicate that the two orders (Anura and Caudata) of amphibian were monophyletic, and that A. davidianus was diverged early in the Caudate clade. These results indicated that both the GH and PRL sequence might be useful to study the phylogenies of relatively moderate evolved groups.

  3. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin.

    Science.gov (United States)

    Ferris, Donald R; Satoh, Akira; Mandefro, Berhan; Cummings, Gillian M; Gardiner, David M; Rugg, Elizabeth L

    2010-10-01

    Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re-epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.

  4. Probability of Regenerating a Normal Limb After Bite Injury in the Mexican Axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Thompson, Sierra; Muzinic, Laura; Muzinic, Christopher; Niemiller, Matthew L; Voss, S Randal

    2014-06-01

    Multiple factors are thought to cause limb abnormalities in amphibian populations by altering processes of limb development and regeneration. We examined adult and juvenile axolotls ( Ambystoma mexicanum ) in the Ambystoma Genetic Stock Center (AGSC) for limb and digit abnormalities to investigate the probability of normal regeneration after bite injury. We observed that 80% of larval salamanders show evidence of bite injury at the time of transition from group housing to solitary housing. Among 717 adult axolotls that were surveyed, which included solitary-housed males and group-housed females, approximately half presented abnormalities, including examples of extra or missing digits and limbs, fused digits, and digits growing from atypical anatomical positions. Bite injury likely explains these limb defects, and not abnormal development, because limbs with normal anatomy regenerated after performing rostral amputations. We infer that only 43% of AGSC larvae will present four anatomically normal looking adult limbs after incurring a bite injury. Our results show regeneration of normal limb anatomy to be less than perfect after bite injury.

  5. Housing and maintenance of Ambystoma mexicanum, the Mexican axolotl.

    Science.gov (United States)

    Farkas, Johanna E; Monaghan, James R

    2015-01-01

    The aim of this paper is to assemble a significant amount of information on Ambystoma mexicanum, the axolotl salamander, to assist in the basic knowledge needed to raise, breed, and study most aspects of axolotl biology. It is important to understand the basic biology of the axolotl in order to make informed decisions on their proper care and use in experiments. Therefore, we will provide necessary information to the non-herpetologist that will assist in their study of this unique and fascinating animal. We also aim to provide a resource on the general anatomy, behavior, and experimental tips specific to the Mexican axolotl that will be of use to most axolotl laboratories. Axolotls have been actively researched since the 1860s, giving testament to their relatively straightforward maintenance and their versatility as an animal model for development and regeneration. Interest in using the axolotl in laboratory research has grown tremendously over the past decade, so dedicated resources to support the study of this species are needed and encouraged.

  6. Forever young: Endocrinology of paedomorphosis in the Mexican axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    De Groef, Bert; Grommen, Sylvia V H; Darras, Veerle M

    2018-05-16

    The Mexican axolotl (Ambystoma mexicanum) is a salamander species that does not undergo metamorphosis, resulting in the retention of juvenile characteristics in the mature breeding stage (paedomorphosis). Here we review the endocrinological studies investigating the proximate cause of axolotl paedomorphosis with a focus on the hypothalamo-pituitary-thyroid (HPT) axis. It is well established that axolotl paedomorphosis is a consequence of low activity of the HPT axis. The pituitary hormone thyrotropin (TSH) is capable of inducing metamorphosis in the axolotl, which indicates that all processes and interactions in the HPT axis below the pituitary level are functional, but that TSH release is impaired. In metamorphosing species, TSH secretion is largely controlled by the hypothalamic neuropeptide corticotropin-releasing hormone (CRH), which seems to have lost its thyrotropic activity in the axolotl. However, preliminary experiments have not yet confirmed a role for faulty CRH signalling in axolotl paedomorphosis. Other hypothalamic factors and potential pituitary inhibitors need to be investigated to identify their roles in amphibian metamorphosis and axolotl paedomorphosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. CRISPR-Mediated Genomic Deletion of Sox2 in the Axolotl Shows a Requirement in Spinal Cord Neural Stem Cell Amplification during Tail Regeneration

    Directory of Open Access Journals (Sweden)

    Ji-Feng Fei

    2014-09-01

    Full Text Available The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs and clustered regularly interspaced short palindromic repeats (CRISPRs in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl.

  8. Batrachochytrium salamandrivorans and the risk of a second amphibian pandemic

    Science.gov (United States)

    Yap, Tiffany A.; Nguyen, Natalie T.; Serr, Megan; Shepak, Alex; Vredenburg, Vance

    2017-01-01

    Amphibians are experiencing devastating population declines globally. A major driver is chytridiomycosis, an emerging infectious disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Bdwas described in 1999 and has been linked with declines since the 1970s, while Bsal is a more recently discovered pathogen that was described in 2013. It is hypothesized that Bsaloriginated in Asia and spread via international trade to Europe, where it has been linked to salamander die-offs. Trade in live amphibians thus represents a significant threat to global biodiversity in amphibians. We review the current state of knowledge regarding Bsal and describe the risk of Bsal spread. We discuss regional responses to Bsal and barriers that impede a rapid, coordinated global effort. The discovery of a second deadly emerging chytrid fungal pathogen in amphibians poses an opportunity for scientists, conservationists, and governments to improve global biosecurity and further protect humans and wildlife from a growing number of emerging infectious diseases.

  9. Regeneration and repair of human digits and limbs: fact and fiction.

    Science.gov (United States)

    Shieh, Shyh-Jou; Cheng, Tsun-Chih

    2015-08-01

    A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's "wish list." Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit- and limb-building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations.

  10. Amphibian embryo and parental defenses and a larval predator reduce egg mortality from water mold.

    Science.gov (United States)

    Gomez-Mestre, Ivan; Touchon, Justin C; Warkentin, Karen M

    2006-10-01

    Water molds attack aquatic eggs worldwide and have been associated with major mortality events in some cases, but typically only in association with additional stressors. We combined field observations and laboratory experiments to study egg stage defenses against pathogenic water mold in three temperate amphibians. Spotted salamanders (Ambystoma maculatum) wrap their eggs in a protective jelly layer that prevents mold from reaching the embryos. Wood frog (Rana sylvatica) egg masses have less jelly but are laid while ponds are still cold and mold growth is slow. American toad (Bufo americanus) eggs experience the highest infection levels. They are surrounded by thin jelly and are laid when ponds have warmed and mold grows rapidly. Eggs of all three species hatched early when infected, yielding smaller and less developed hatchlings. This response was strongest in B. americanus. Precocious hatching increased vulnerability of wood frog hatchlings to invertebrate predators. Finally, despite being potential toad hatchling predators, R. sylvatica tadpoles can have a positive effect on B. americanus eggs. They eat water mold off infected toad clutches, increasing their hatching success.

  11. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells.

    Science.gov (United States)

    Weick, Michael; Demb, Jonathan B

    2011-07-14

    Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Natural resource assessment: an approach to science based planning in national parks

    Science.gov (United States)

    Mahan, C.G.; Vanderhorst, J.P.; Young, J.A.

    2009-01-01

    We conducted a natural resource assessment at two national parks, New River Gorge National River and Shenandoah National Park, to help meet the goals of the Natural Resource Challenge-a program to help strengthen natural resource management at national parks. We met this challenge by synthesizing and interpreting natural resource information for planning purposes and we identified information gaps and natural significance of resources. We identified a variety of natural resources at both parks as being globally and/or nationally significant, including large expanses of unfragmented, mixed-mesophytic forests that qualify for wilderness protection, rare plant communities, diverse assemblages of neotropical migratory birds and salamanders, and outstanding aquatic recreational resources. In addition, these parks function, in part, as ecological reserves for plants in and wildlife. With these significant natural resources in mind, we also developed a suite of natural resource management recommendations in light of increasing threats from within and outside park boundaries. We hope that our approach can provide a blueprint for natural resource conservation at publically owned lands.

  13. Pastures to Prairies to Pools: An Update on Natural Resource Damages Settlement Projects at the Fernald Preserve - 13198

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Jane [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States); Schneider, Tom [Fernald Project Manager, Ohio Environmental Protection Agency, Dayton, Ohio (United States); Hertel, Bill [Project Manager, S.M. Stoller Corporation, Harrison, Ohio (United States); Homer, John [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States)

    2013-07-01

    The DOE Office of Legacy Management oversees implementation and monitoring of two ecological restoration projects at the Fernald Preserve, Fernald, Ohio, that are funded through a CERCLA natural resource damage settlement. Planning and implementation of on-property ecological restoration projects is one component of compensation for natural resource injury. The Paddys Run Tributary Project involves creation of vernal pool wetland habitat with adjacent forest restoration. The Triangle Area Project is a mesic tall-grass prairie establishment, similar to other efforts at the Fernald Preserve. The goal of the Fernald Natural Resource Trustees is to establish habitat for Ambystomatid salamander species, as well as grassland birds. Field implementation of these projects was completed in May 2012. Herbaceous cover and woody vegetation survival was determined in August and September 2012. Results show successful establishment of native vegetation. Additional monitoring will be needed to determine whether project goals have been met. As with the rest of the Fernald Preserve, ecological restoration has helped turn a DOE liability into a community asset. (authors)

  14. Fish kidney cells show higher tolerance to hyperosmolality than amphibian

    Directory of Open Access Journals (Sweden)

    Lang Gui

    2018-05-01

    Full Text Available In contrast to fish, amphibians inhabit both aquatic and terrestrial environments. To better understand osmoregulation in fish and amphibian, we have investigated the morphological changes in kidney cells to osmotic stress. To address this, kidney cell line isolated from the freshwater grass carp (CIK and Chinese giant salamander (GSK were challenged to different mediums with distinct osmotic pressures (100, 300 and 700 mOsm. Morphological alterations of the fish and amphibian cells were compared by optical and electron microscopy. Following hyposmotic treatment (100 mOsm, both CIK and GSK cells became unhealthy and show condensed chromatin, swollen mitochondria and cytoplasmic vacuole. Meanwhile, after hyperosmotic treatment (700 mOsm, shrunken CIK cells with multipolar shape, pale or lightly stained cytoplasm, condensed chromatin, vacuoles and swollen mitochondria were detected. GSK cells were seriously damaged and most were completely lysed. The results suggest that fish kidney cells show a higher degree of tolerance to hyperosmoticity by comparing to amphibians and provide novel insights on the osmoregulatory capacity and adaptability of kidney cells between the two animal groups.

  15. Evolution and Diversity of Transposable Elements in Vertebrate Genomes.

    Science.gov (United States)

    Sotero-Caio, Cibele G; Platt, Roy N; Suh, Alexander; Ray, David A

    2017-01-01

    Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Macrophages are required to coordinate mouse digit tip regeneration.

    Science.gov (United States)

    Simkin, Jennifer; Sammarco, Mimi C; Marrero, Luis; Dawson, Lindsay A; Yan, Mingquan; Tucker, Catherine; Cammack, Alex; Muneoka, Ken

    2017-11-01

    In mammals, macrophages are known to play a major role in tissue regeneration. They contribute to inflammation, histolysis, re-epithelialization, revascularization and cell proliferation. Macrophages have been shown to be essential for regeneration in salamanders and fish, but their role has not been elucidated in mammalian epimorphic regeneration. Here, using the regenerating mouse digit tip as a mammalian model, we demonstrate that macrophages are essential for the regeneration process. Using cell-depletion strategies, we show that regeneration is completely inhibited; bone histolysis does not occur, wound re-epithelialization is inhibited and the blastema does not form. Although rescue of epidermal wound closure in the absence of macrophages promotes blastema accumulation, it does not rescue cell differentiation, indicating that macrophages play a key role in the redifferentiation of the blastema. We provide additional evidence that although bone degradation is a component, it is not essential to the overall regenerative process. These findings show that macrophages play an essential role in coordinating the epimorphic regenerative response in mammals. © 2017. Published by The Company of Biologists Ltd.

  17. Regeneration and repair of human digits and limbs: fact and fiction

    Science.gov (United States)

    Cheng, Tsun‐Chih

    2015-01-01

    Abstract A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's “wish list.” Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit‐ and limb‐building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations. PMID:27499873

  18. Magnetic Orientation in Birds and Other Animals

    Science.gov (United States)

    Wiltschko, Wolfgang

    The use of the geomagnetic field for compass orientation is widespread among animals, with two types of magnetic compass mechanisms described: an shape inclination compass in birds, turtles and salamanders and a shape polarity compass in arthropods, fishes and mammals. Additionally, some vertebrates appear to derive positional information from the total intensity and/or inclination of the geomagnetic field. For magnetoreception by animals, two models are currently discussed, the shape Radical Pair model assuming light-dependent processes by specialized photopigments, and the shape Magnetite hypothesis proposing magnetoreception by crystals of magnetite, Fe304. Behavioral experiments with migratory birds, testing them under monochromatic lights and subjecting them to a brief, strong pulse that could reverse the magnetization of magnetite particles, produced evidence for both mechanisms. However, monochromatic lights affect old, experienced and young birds alike, whereas the pulse affects only experienced birds, leaving young, inexperienced birds unaffected. These observations suggest that a radical pair mechanism provides birds with directional information for their innate magnetic compass and a magnetite-based mechanism possibly mediates information about total intensity for indicating position.

  19. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity

    Science.gov (United States)

    Stier, Adrian C.; Michonneau, François; Smith, Matthew D.; Pasch, Bret; Maden, Malcolm

    2014-01-01

    Abstract While most tetrapods are unable to regenerate severed body parts, amphibians display a remarkable ability to regenerate an array of structures. Frogs can regenerate appendages as larva, but they lose this ability around metamorphosis. In contrast, salamanders regenerate appendages as larva, juveniles, and adults. However, the extent to which fundamental traits (e.g., metamorphosis, body size, aging, etc.) restrict regenerative ability remains contentious. Here we utilize the ability of normally paedomorphic adult axolotls (Ambystoma mexicanum) to undergo induced metamorphosis by thyroxine exposure to test how metamorphosis and body size affects regeneration in age‐matched paedomorphic and metamorphic individuals. We show that body size does not affect regeneration in adult axolotls, but metamorphosis causes a twofold reduction in regeneration rate, and lead to carpal and digit malformations. Furthermore, we find evidence that metamorphic blastemal cells may take longer to traverse the cell cycle and display a lower proliferative rate. This study identifies the axolotl as a powerful system to study how metamorphosis restricts regeneration independently of developmental stage, body size, and age; and more broadly how metamorphosis affects tissue‐specific changes. PMID:27499857

  20. Pastures to Prairies to Pools: An Update on Natural Resource Damages Settlement Projects at the Fernald Preserve - 13198

    International Nuclear Information System (INIS)

    Powell, Jane; Schneider, Tom; Hertel, Bill; Homer, John

    2013-01-01

    The DOE Office of Legacy Management oversees implementation and monitoring of two ecological restoration projects at the Fernald Preserve, Fernald, Ohio, that are funded through a CERCLA natural resource damage settlement. Planning and implementation of on-property ecological restoration projects is one component of compensation for natural resource injury. The Paddys Run Tributary Project involves creation of vernal pool wetland habitat with adjacent forest restoration. The Triangle Area Project is a mesic tall-grass prairie establishment, similar to other efforts at the Fernald Preserve. The goal of the Fernald Natural Resource Trustees is to establish habitat for Ambystomatid salamander species, as well as grassland birds. Field implementation of these projects was completed in May 2012. Herbaceous cover and woody vegetation survival was determined in August and September 2012. Results show successful establishment of native vegetation. Additional monitoring will be needed to determine whether project goals have been met. As with the rest of the Fernald Preserve, ecological restoration has helped turn a DOE liability into a community asset. (authors)

  1. The evolution of locomotor rhythmicity in tetrapods.

    Science.gov (United States)

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  2. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration.

    Science.gov (United States)

    Fei, Ji-Feng; Schuez, Maritta; Knapp, Dunja; Taniguchi, Yuka; Drechsel, David N; Tanaka, Elly M

    2017-11-21

    Salamanders exhibit extensive regenerative capacities and serve as a unique model in regeneration research. However, due to the lack of targeted gene knockin approaches, it has been difficult to label and manipulate some of the cell populations that are crucial for understanding the mechanisms underlying regeneration. Here we have established highly efficient gene knockin approaches in the axolotl ( Ambystoma mexicanum ) based on the CRISPR/Cas9 technology. Using a homology-independent method, we successfully inserted both the Cherry reporter gene and a larger membrane-tagged Cherry-ER T2 -Cre-ER T2 (∼5-kb) cassette into axolotl Sox2 and Pax7 genomic loci. Depending on the size of the DNA fragments for integration, 5-15% of the F0 transgenic axolotl are positive for the transgene. Using these techniques, we have labeled and traced the PAX7-positive satellite cells as a major source contributing to myogenesis during axolotl limb regeneration. Our work brings a key genetic tool to molecular and cellular studies of axolotl regeneration.

  3. Evolutionary aspects of growth hormones and prolactins and their receptors

    International Nuclear Information System (INIS)

    Tarpey, J.F.

    1986-01-01

    The interactions of GH's, PRL's and PL's with receptors for GH and PRL were examined from a comparative and evolutionary viewpoint. The binding of 125 I-bGH to membrane preparations from liver of representatives of the major classes of non-mammalian vertebrates was also studied. Only hepatic membranes from sturgeon and Gillichthys had significant bGH binding and were further characterized and compared with male rabbit liver membranes in terms of time, temperature, pH, and membrane concentration to optimize binding conditions. The binding of several members of the GH, PRL, PL family of hormones to GH receptors from liver of sturgeon, Gillichthys, rabbit, mouse and rat was investigated. in terms of hormonal specificity, the mammalian receptors and the sturgeon binding sites were similar, while Gillichthys receptors had a different pattern of hormonal specificity. The binding of 125 I-oPRL to renal membranes of the turtle, Pseudemys scripta elegans, was characterized and compared to PRL binding sites of kidney membranes of the bullfrog, Rana catesbeiana, and the tiger salamander, Ambystoma tigrinum

  4. Abundance, biomass production, nutrient content, and the possible role of terrestrial salamanders in Missouri Ozark forest ecosystems

    Science.gov (United States)

    R.D. Semlitsch; K.M. O' Donnell; F.R. Thompson

    2014-01-01

    The transfer of energy and nutrients largely depends on the role of animals in the movement of biomass between trophic levels and ecosystems. Despite the historical recognition that amphibians could play an important role in the movement of biomass and nutrients, very few studies have provided reliable estimates of abundance and density of amphibians to reveal their...

  5. Metagonimoides oregonensis (Heterophyidae:Digenea) Infection in pleurocerid snails and Desmognathus quadramaculatus salamander larvae in southern Appalachian streams

    Science.gov (United States)

    Lisa K. Belden; William E. Peterman; Stephen A. Smith; Lauren R. Brooks; E.F. Benfield; Wesley P. Black; Zhaomin Yang; Jeremy M. Wojdak

    2012-01-01

    Metagonimoides oregonensis (Heterophyidae) is a little-known digenetic trematode that uses raccoons and possibly mink as definitive hosts, and stream snails and amphibians as intermediate hosts. Some variation in the life cycle and adult morphology in western and eastern populations has been previously noted. In the southern Appalachians, Pleurocera snails and stream...

  6. The Husting dilemma: A methodological note

    Science.gov (United States)

    Nichols, J.D.; Hepp, G.R.; Pollock, K.H.; Hines, J.E.

    1987-01-01

    Recently, Gill (1985) discussed the interpretation of capture history data resulting from his own studies on the red-spotted newt, Notophthalmus viridescens , and work by Husting (1965) on spotted salamanders, Ambystoma maculatum. Gill (1985) noted that gaps in capture histories (years in which individuals were not captured, preceded and followed by years in which they were) could result from either of two very different possibilities: (1) failure of the animal to return to the fenced pond to breed (the alternative Husting (1965) favored), or (2) return of the animal to the breeding pond, but failure of the investigator to capture it and detect its presence. The authors agree entirely with Gill (1985) that capture history data such as his or those of Husting (1965) should be analyzed using models that recognize the possibility of 'census error,' and that it is important to try to distinguish between such 'error' and skipped breeding efforts. The purpose of this note is to point out the relationship between Gill's (1985:347) null model and certain capture-recapture models, and to use capture-recapture models and tests to analyze the original data of Husting (1965).

  7. Summary of the Snowmastodon Project Special Volume. A high-elevation, multi-proxy biotic and environmental record of MIS 6-4 from the Ziegler Reservoir fossil site, Snowmass Village, Colorado, USA

    Science.gov (United States)

    Miller, Ian M.; Pigati, Jeffrey S.; Scott Anderson, R.; Johnson, Kirk R.; Mahan, Shannon A.; Ager, Thomas A.; Baker, Richard G.; Blaauw, Maarten; Bright, Jordon; Brown, Peter M.; Bryant, Bruce; Calamari, Zachary T.; Carrara, Paul E.; Cherney, Michael D.; Demboski, John R.; Elias, Scott A.; Fisher, Daniel C.; Gray, Harrison J.; Haskett, Danielle R.; Honke, Jeffrey S.; Jackson, Stephen T.; Jiménez-Moreno, Gonzalo; Kline, Douglas; Leonard, Eric M.; Lifton, Nathaniel A.; Lucking, Carol; Gregory McDonald, H.; Miller, Dane M.; Muhs, Daniel R.; Nash, Stephen E.; Newton, Cody; Paces, James B.; Petrie, Lesley; Plummer, Mitchell A.; Porinchu, David F.; Rountrey, Adam N.; Scott, Eric; Sertich, Joseph J. W.; Sharpe, Saxon E.; Skipp, Gary L.; Strickland, Laura E.; Stucky, Richard K.; Thompson, Robert S.; Wilson, Jim

    2014-11-01

    In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean-atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010-2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~ 140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5.

  8. A high-elevation, multi-proxy biotic and environmental record of MIS 6-4 from the Ziegler Reservoir fossil site, Snowmass Village, Colorado, USA

    Science.gov (United States)

    Miller, Ian M.; Pigati, Jeffrey S.; Anderson, R. Scott; Johnson, Kirk R.; Mahan, Shannon; Ager, Thomas A.; Baker, Richard G.; Blaauw, Maarten; Bright, Jordon; Brown, Peter M.; Bryant, Bruce; Calamari, Zachary T.; Carrara, Paul E.; Michael D., Cherney; Demboski, John R.; Elias, Scott A.; Fisher, Daniel C.; Gray, Harrison J.; Haskett, Danielle R.; Honke, Jeffrey S.; Jackson, Stephen T.; Jiménez-Moreno, Gonzalo; Kline, Douglas; Leonard, Eric M.; Lifton, Nathaniel A.; Lucking, Carol; McDonald, H. Gregory; Miller, Dane M.; Muhs, Daniel R.; Nash, Stephen E.; Newton, Cody; Paces, James B.; Petrie, Lesley; Plummer, Mitchell A.; Porinchu, David F.; Rountrey, Adam N.; Scott, Eric; Sertich, Joseph J. W.; Sharpe, Saxon E.; Skipp, Gary L.; Strickland, Laura E.; Stucky, Richard K.; Thompson, Robert S.; Wilson, Jim

    2014-01-01

    In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean–atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010–2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~ 140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5.

  9. Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema.

    Directory of Open Access Journals (Sweden)

    Ron Stewart

    Full Text Available The salamander has the remarkable ability to regenerate its limb after amputation. Cells at the site of amputation form a blastema and then proliferate and differentiate to regrow the limb. To better understand this process, we performed deep RNA sequencing of the blastema over a time course in the axolotl, a species whose genome has not been sequenced. Using a novel comparative approach to analyzing RNA-seq data, we characterized the transcriptional dynamics of the regenerating axolotl limb with respect to the human gene set. This approach involved de novo assembly of axolotl transcripts, RNA-seq transcript quantification without a reference genome, and transformation of abundances from axolotl contigs to human genes. We found a prominent burst in oncogene expression during the first day and blastemal/limb bud genes peaking at 7 to 14 days. In addition, we found that limb patterning genes, SALL genes, and genes involved in angiogenesis, wound healing, defense/immunity, and bone development are enriched during blastema formation and development. Finally, we identified a category of genes with no prior literature support for limb regeneration that are candidates for further evaluation based on their expression pattern during the regenerative process.

  10. Regulation of proximal-distal intercalation during limb regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-12-01

    Intercalation is the process whereby cells located at the boundary of a wound interact to stimulate proliferation and the restoration of the structures between the boundaries that were lost during wounding. Thus, intercalation is widely considered to be the mechanism of regeneration. When a salamander limb is amputated, the entire cascade of regeneration events is activated, and the missing limb segments and their boundaries (joints) as well as the structures within each segment are regenerated. Therefore, in an amputated limb it is not possible to distinguish between intersegmental regeneration (formation of new segments/joints) and intrasegmental regeneration (formation of structures within a given segment), and it is not possible to study the differential regulation of these two processes. We have used two models for regeneration that allow us to study these two processes independently, and report that inter- and intrasegmental regeneration are different processes regulated by different signaling pathways. New limb segments/joints can be regenerated from cells that dedifferentiate to form blastema cells in response to signaling that is mediated in part by fibroblast growth factor. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.

  11. DiI Perfusion as a Method for Vascular Visualization in Ambystoma mexicanum.

    Science.gov (United States)

    Saltman, Anna J; Barakat, May; Bryant, Donald M; Brodovskaya, Anastasia; Whited, Jessica L

    2017-06-16

    Perfusion techniques have been used for centuries to visualize the circulation of tissues. Axolotl (Ambystoma mexicanum) is a species of salamander that has emerged as an essential model for regeneration studies. Little is known about how revascularization occurs in the context of regeneration in these animals. Here we report a simple method for visualization of the vasculature in axolotl via perfusion of 1,1'-Dioctadecy-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). DiI is a lipophilic carbocyanine dye that inserts into the plasma membrane of endothelial cells instantaneously. Perfusion is done using a peristaltic pump such that DiI enters the circulation through the aorta. During perfusion, dye flows through the axolotl's blood vessels and incorporates into the lipid bilayer of vascular endothelial cells upon contact. The perfusion procedure takes approximately one hour for an eight-inch axolotl. Immediately after perfusion with DiI, the axolotl can be visualized with a confocal fluorescent microscope. The DiI emits light in the red-orange range when excited with a green fluorescent filter. This DiI perfusion procedure can be used to visualize the vascular structure of axolotls or to demonstrate patterns of revascularization in regenerating tissues.

  12. The relationship between the number of loci and the statistical support for the topology of UPGMA trees obtained from genetic distance data.

    Science.gov (United States)

    Highton, R

    1993-12-01

    An analysis of the relationship between the number of loci utilized in an electrophoretic study of genetic relationships and the statistical support for the topology of UPGMA trees is reported for two published data sets. These are Highton and Larson (Syst. Zool.28:579-599, 1979), an analysis of the relationships of 28 species of plethodonine salamanders, and Hedges (Syst. Zool., 35:1-21, 1986), a similar study of 30 taxa of Holarctic hylid frogs. As the number of loci increases, the statistical support for the topology at each node in UPGMA trees was determined by both the bootstrap and jackknife methods. The results show that the bootstrap and jackknife probabilities supporting the topology at some nodes of UPGMA trees increase as the number of loci utilized in a study is increased, as expected for nodes that have groupings that reflect phylogenetic relationships. The pattern of increase varies and is especially rapid in the case of groups with no close relatives. At nodes that likely do not represent correct phylogenetic relationships, the bootstrap probabilities do not increase and often decline with the addition of more loci.

  13. A diversity and conservation inventory of the Herpetofauna of the Cuautlapan Valley, Veracruz, Mexico.

    Science.gov (United States)

    DE LA Luz, Nelson M Ceron; Lemos-Espinal, Julio A; Smith, Geoffrey R

    2016-12-05

    We compiled an inventory of the amphibians and reptiles of the Cuautlapan Valley, Veracruz, Mexico based on field surveys and museum and literature records. We found a total of 78 species: 28 amphibians (6 Salamanders and 22 anurans); and 50 reptiles (three turtles, 18 lizards, and 29 snakes). These taxa represent 26 families (eight amphibian families, 18 reptile families) and 60 genera (19 amphibian genera, 41 reptile genera). Two of these species are not native to the area (Rhinoclemmys pulcherrima and Hemidactylus frenatus). According to the IUCN red list, five species are Critically Endangered, two are Endangered, four are Near Threatened, and four are Vulnerable. In the SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales) listing, one species is Endangered, eight species are Threatened, and 25 are Subject to Special Protection. Even though the Cuautlapan Valley is represented by a relatively small area it hosts a rich diversity of amphibian and reptile species, many of which are at risk and protected under Mexican law. This valley lies between the growing cities of Orizaba and Cordoba which have contributed to habitat degradation threatening the existence of the wildlife that occurs there.

  14. Size does matter - Intraspecific variation of feeding mechanics in the crested newt Triturus dobrogicus (Kiritzescu, 1903)

    Science.gov (United States)

    Kucera, Florian; Beisser, Christian J.; Lemell, Patrick

    2018-03-01

    Many studies have yet been conducted on suction feeding in aquatic salamander species. Within the Salamandridae, the crested newt Triturus dobrogicus (Kiritzescu, 1903), occurring from the Austrian Danube floodplains to the Danube Delta, was not subject of investigations so far. The present study examines the kinematics of aquatic suction feeding in this species by means of high-speed videography. Recordings of five individuals of different size and sex while feeding on bloodworms were conducted, in order to identify potential discrepancies among individuals and sizes. Five coordinate points were digitized from recordings of prey capture and twelve time- and velocity-determined variables were evaluated. All specimens follow a typical inertial suction feeding process, where rapid hyoid depression expands the buccal cavity. Generated negative pressure within the buccal cavity causes influx of water along with the prey item into the mouth. Results demonstrate higher distance values and angles for gape in individuals with smaller size. In addition, hyoid depression is maximized in smaller individuals. While Triturus dobrogicus resembles a typical inertial suction feeder in its functional morphology, intraspecific differences could be found regarding the correlation of different feeding patterns and body size.

  15. Antimicrobial peptide from mucus of Andrias davidianus: screening and purification by magnetic cell membrane separation technique.

    Science.gov (United States)

    Pei, Jinjin; Jiang, Lei

    2017-07-01

    Andrias davidianus, the Chinese giant salamander, has been used in traditional Chinese medicine for many decades. However, no antimicrobial peptides (AMPs) have been described from A. davidianus until now. Here we describe a novel AMP (andricin 01) isolated from the mucus of A. davidianus. The peptide was recovered using an innovative magnetic cell membrane separation technique and was characterised using mass spectrometry and circular dichroism (CD) spectroscopy. Andricin 01 is comprised of ten amino acid residues with a total molecular mass of 955.1 Da. CD spectrum analysis gave results similar to the archetypal random coil spectrum, consistent with the three-dimensional rendering calculated by current bioinformatics tools. Andricin 01 was found to be inhibitory both to Gram-negative and Gram-positive bacteria. Furthermore, the peptide at the minimal bacterial concentration did not show cell cytotoxicity against human hepatocytes or renal cells and did not show haemolytic activity against red blood cells, indicating that is potentially safe and effective for human use. Andricin 01 shows promise as a novel antibacterial that may provide an insight into the development of new drugs. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  16. Stimulus-dependent maximum entropy models of neural population codes.

    Directory of Open Access Journals (Sweden)

    Einat Granot-Atedgi

    Full Text Available Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.

  17. Temperature-mediated changes in rates of predator forgetting in woodfrog tadpoles.

    Directory of Open Access Journals (Sweden)

    Maud C O Ferrari

    Full Text Available Hundreds of studies have investigated the sources and nature of information that prey gather about their predators and the ways in which prey use this information to mediate their risk of predation. However, relatively little theoretical or empirical work has considered the question of how long information should be maintained and used by prey animals in making behavioural decisions. Here, we tested whether the size of the memory window associated with predator recognition could be affected by an intrinsic factor, such as size and growth rate of the prey. We maintained groups of predator-naive woodfrog, Lithobates sylvaticus, tadpoles at different temperatures for 8 days to induce differences in tadpole size. We then conditioned small and large tadpoles to recognize the odour of a predatory tiger salamander, Ambystoma tigrinum. Tadpoles were then maintained either on a high or low growth trajectory for another 8 days, after which they were tested for their response to the predator. Our results suggest that the memory window related to predator recognition of tadpoles is determined by both their size and/or growth rate at the time of learning and their subsequent growth rate post-learning.

  18. A phylogenomic approach to vertebrate phylogeny supports a turtle-archosaur affinity and a possible paraphyletic lissamphibia.

    Directory of Open Access Journals (Sweden)

    Jonathan J Fong

    Full Text Available In resolving the vertebrate tree of life, two fundamental questions remain: 1 what is the phylogenetic position of turtles within amniotes, and 2 what are the relationships between the three major lissamphibian (extant amphibian groups? These relationships have historically been difficult to resolve, with five different hypotheses proposed for turtle placement, and four proposed branching patterns within Lissamphibia. We compiled a large cDNA/EST dataset for vertebrates (75 genes for 129 taxa to address these outstanding questions. Gene-specific phylogenetic analyses revealed a great deal of variation in preferred topology, resulting in topologically ambiguous conclusions from the combined dataset. Due to consistent preferences for the same divergent topologies across genes, we suspected systematic phylogenetic error as a cause of some variation. Accordingly, we developed and tested a novel statistical method that identifies sites that have a high probability of containing biased signal for a specific phylogenetic relationship. After removing putatively biased sites, support emerged for a sister relationship between turtles and either crocodilians or archosaurs, as well as for a caecilian-salamander sister relationship within Lissamphibia, with Lissamphibia potentially paraphyletic.

  19. Searching for collective behavior in a large network of sensory neurons.

    Directory of Open Access Journals (Sweden)

    Gašper Tkačik

    2014-01-01

    Full Text Available Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such "K-pairwise" models--being systematic extensions of the previously used pairwise Ising models--provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1 estimating its entropy, which constrains the population's capacity to represent visual information; 2 classifying activity patterns into a small set of metastable collective modes; 3 showing that the neural codeword ensembles are extremely inhomogenous; 4 demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.

  20. The Maryland Amphibian and Reptile Atlas: A Volunteer-Based Distributional Survey

    Directory of Open Access Journals (Sweden)

    Heather R. Cunningham

    2012-01-01

    Full Text Available Declines of amphibian and reptile populations are well documented. Yet a lack of understanding of their distribution may hinder conservation planning for these species. The Maryland Amphibian and Reptile Atlas project (MARA was launched in 2010. This five-year, citizen science project will document the distribution of the 93 amphibian and reptile species in Maryland. During the 2010 and 2011 field seasons, 488 registered MARA volunteers collected 13,919 occurrence records that document 85 of Maryland's amphibian and reptile species, including 19 frog, 20 salamander, five lizard, 25 snake, and 16 turtle species. Thirteen of these species are of conservation concern in Maryland. The MARA will establish a baseline by which future changes in the distribution of populations of native herpetofauna can be assessed as well as provide information for immediate management actions for rare and threatened species. As a citizen science project it has the added benefit of educating citizens about native amphibian and reptile diversity and its ecological benefits—an important step in creating an informed society that actively participates in the long-term conservation of Maryland's nature heritage.

  1. PAH exposure levels in mudpuppy (amphibian)

    Energy Technology Data Exchange (ETDEWEB)

    Trudeau, F; Maisonneuve, F [Environment Canada, Canadian Wildlife Service, Hull, PQ (Canada); Gendron, A D [Quebec Univ., Montreal, PQ (Canada); Bishop, C A [Environment Canada, Canada Centre for Inland Waters, Burlington, ON (Canada)

    1999-12-31

    The presence of PAHs in the environment is of great concern because of the mutagenic, teratogenic and carcinogenic properties of the metabolites produced in exposed organisms. In recent years, exposure of fish to PAHs was demonstrated by the detection of pyrene-type metabolites in bile, using synchronous fluorescence spectrometry (SFS), which offers a rapid screening tool to estimate recent exposure to PAHs. In this experiment, the SFS technique was applied to mudpuppy (Necturus maculosus), a benthic carnivorous salamander found in the lakes and rivers of northeastern America, susceptible to the chronic effects of contaminants accumulated through its diet and through its contact with the contaminated sediment. Samples were taken from a variety of locations (Akwesasne River, Batiscan River, in the St.-Lawrence River System, Des Prairies River and Quesnel Bay in the Ottawa River System, Wolfe Island, Long Point and the Detroit River in the Great Lakes Basin). Results of the examination showed that mud puppies collected from the Detroit River had, by far, the highest concentrations of biliary 1-hydroxy pyrene (798 ng/ml), compared to 84 ng/ml, or less, in other animals in the sample.

  2. Size does matter – Intraspecific variation of feeding mechanics in the crested newt Triturus dobrogicus (Kiritzescu, 1903

    Directory of Open Access Journals (Sweden)

    Kucera Florian

    2018-03-01

    Full Text Available Many studies have yet been conducted on suction feeding in aquatic salamander species. Within the Salamandridae, the crested newt Triturus dobrogicus (Kiritzescu, 1903, occurring from the Austrian Danube floodplains to the Danube Delta, was not subject of investigations so far. The present study examines the kinematics of aquatic suction feeding in this species by means of high-speed videography. Recordings of five individuals of different size and sex while feeding on bloodworms were conducted, in order to identify potential discrepancies among individuals and sizes. Five coordinate points were digitized from recordings of prey capture and twelve time- and velocity-determined variables were evaluated. All specimens follow a typical inertial suction feeding process, where rapid hyoid depression expands the buccal cavity. Generated negative pressure within the buccal cavity causes influx of water along with the prey item into the mouth. Results demonstrate higher distance values and angles for gape in individuals with smaller size. In addition, hyoid depression is maximized in smaller individuals. While Triturus dobrogicus resembles a typical inertial suction feeder in its functional morphology, intraspecific differences could be found regarding the correlation of different feeding patterns and body size.

  3. 1999 SITE ENVIRONMENTAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    ENGEL-COX,J.; ZIMMERMAN,E.; LEE,R.; WILLIAMS,J.; GREEN,T.; PAQUETTE,D.; HOODA,B.; SCARPITTA,S.; GENZER,P.; ET AL

    2000-09-01

    Throughout the scientific community, Brookhaven National Laboratory (BNL) is renowned for its leading-edge research in physics, medicine, chemistry, biology, materials, and the environment. BNL is committed to supporting its world-class scientific research with an internationally recognized environmental protection program. The 1999 Site Environmental Report (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the site and fully integrating environmental stewardship into all facets of the Laboratory's mission. BNL is located on 5,265 acres of pine barrens in Suffolk County in the center of Long Island, New York. The Laboratory is situated above a sole source aquifer at the headwaters of the Peconic River; therefore, protecting ground and surface water quality is a special concern. Approximately 3,600 acres of the site are undeveloped and serve as habitat for a wide variety of animals and plants, including one New York State endangered species, the tiger salamander, and two New York State threatened species, the banded sunfish and the stiff goldenrod. Monitoring, preserving, and restoring these ecological resources is a high priority for the Laboratory.

  4. Modeling structured population dynamics using data from unmarked individuals

    Science.gov (United States)

    Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew

    2014-01-01

    The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.

  5. Mechanisms mediating the trophic effect of nerves during vertebrate limb regeneration

    International Nuclear Information System (INIS)

    Munaim, S.I.

    1986-01-01

    Salamanders regenerate their appendages after amputation and nerves are required for this process. Experiments were designed to test the idea that one way nerves could affect blastema cell proliferation is by influencing the metabolism of extracellular matrix (ECM) components and to identify neurotrophic factors which promote blastema cell mitosis. Temporal and spatial differences of glycosaminoglycans (GAGs) synthesis is innervated and denervated limbs were examined. Hyaluronic acid (HA) was found to be the major GAG produced during the proliferative period and chondroitin sulfate during differentiation. Denervation reduced synthesis of both these components by half. Dorsal root ganglia and fibroblast growth factor (FGF), a brain-derived mitogen, similarly doubled GAG synthesis in cultured blastemas, the FGF-effect being primarily on HA production. Histochemical and autoradiographical results confirmed the biochemical data. Autoradiography of the limb tissue showed heaviest labeling of the ECM with 3 H-acetate in areas which also stained most intensely with the dye, carbocyanine DBTC. Denervation reduced the staining and the radioactive labeling. These data indicate that nerves affect synthesis and accumulation of GAGs in the regenerating limb, which may be one way blastema cell proliferation is promoted

  6. The ‘male escape hypothesis’: sex-biased metamorphosis in response to climatic drivers in a facultatively paedomorphic amphibian

    Science.gov (United States)

    Mathiron, Anthony G. E.; Lena, Jean-Paul; Baouch, Sarah

    2017-01-01

    Paedomorphosis is a major evolutionary process that bypasses metamorphosis and allows reproduction in larvae. In newts and salamanders, it can be facultative with paedomorphs retaining gills and metamorphs dispersing. The evolution of these developmental processes is thought to have been driven by the costs and benefits of inhabiting aquatic versus terrestrial habitats. In this context, we aimed at testing the hypothesis that climatic drivers affect phenotypic transition and the difference across sexes because sex-ratio is biased in natural populations. Through a replicated laboratory experiment, we showed that paedomorphic palmate newts (Lissotriton helveticus) metamorphosed at a higher frequency when water availability decreased and metamorphosed earlier when temperature increased in these conditions. All responses were sex-biased, and males were more prone to change phenotype than females. Our work shows how climatic variables can affect facultative paedomorphosis and support theoretical models predicting life on land instead of in water. Moreover, because males metamorphose and leave water more often and earlier than females, these results, for the first time, give an experimental explanation for the rarity of male paedomorphosis (the ‘male escape hypothesis’) and suggest the importance of sex in the evolution of paedomorphosis versus metamorphosis. PMID:28424346

  7. The 'male escape hypothesis': sex-biased metamorphosis in response to climatic drivers in a facultatively paedomorphic amphibian.

    Science.gov (United States)

    Mathiron, Anthony G E; Lena, Jean-Paul; Baouch, Sarah; Denoël, Mathieu

    2017-04-26

    Paedomorphosis is a major evolutionary process that bypasses metamorphosis and allows reproduction in larvae. In newts and salamanders, it can be facultative with paedomorphs retaining gills and metamorphs dispersing. The evolution of these developmental processes is thought to have been driven by the costs and benefits of inhabiting aquatic versus terrestrial habitats. In this context, we aimed at testing the hypothesis that climatic drivers affect phenotypic transition and the difference across sexes because sex-ratio is biased in natural populations. Through a replicated laboratory experiment, we showed that paedomorphic palmate newts ( Lissotriton helveticus ) metamorphosed at a higher frequency when water availability decreased and metamorphosed earlier when temperature increased in these conditions. All responses were sex-biased, and males were more prone to change phenotype than females. Our work shows how climatic variables can affect facultative paedomorphosis and support theoretical models predicting life on land instead of in water. Moreover, because males metamorphose and leave water more often and earlier than females, these results, for the first time, give an experimental explanation for the rarity of male paedomorphosis (the 'male escape hypothesis') and suggest the importance of sex in the evolution of paedomorphosis versus metamorphosis. © 2017 The Author(s).

  8. A high-elevation, multi-proxy biotic and environmental record of MIS 6–4 from the Ziegler Reservoir fossil site, Snowmass Village, Colorado, USA

    Energy Technology Data Exchange (ETDEWEB)

    Ian M. Miller; Mitchell A. Plummer; Various Others

    2014-10-01

    In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean–atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010–2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5

  9. Near-Term Effects of Repeated-Thinning with Riparian Buffers on Headwater Stream Vertebrates and Habitats in Oregon, USA

    Directory of Open Access Journals (Sweden)

    Deanna H. Olson

    2014-11-01

    Full Text Available We examined the effects of a second-thinning harvest with alternative riparian buffer management approaches on headwater stream habitats and associated vertebrates in western Oregon, USA. Our analyses showed that stream reaches were generally distinguished primarily by average width and depth, along with the percentage of the dry reach length, and secondarily, by the volume of down wood. In the first year post-harvest, we observed no effects of buffer treatment on stream habitat attributes after moderate levels of thinning. One of two “thin-through” riparian treatments showed stronger trends for enlarged stream channels, likely due to harvest disturbances. The effects of buffer treatments on salamanders varied among species and with habitat structure. Densities of Plethodon dunni and Rhyacotriton species increased post-harvest in the moderate-density thinning with no-entry buffers in wider streams with more pools and narrower streams with more down wood, respectively. However, Rhyacotriton densities decreased along streams with the narrowest buffer, 6 m, and P. dunni and Dicamptodon tenebrosus densities decreased in thin-through buffers. Our study supports the use of a 15-m or wider buffer to retain sensitive headwater stream amphibians.

  10. A review of best management practices and the mitigation of stream-breeding salamanders in the eastern deciduous forest

    Science.gov (United States)

    Thomas A. Maigret; John J. Cox

    2014-01-01

    Timber harvest has been implicated as a causative factor in the decline of amphibian populations and diversity in many areas of the world. The adoption of best management practices (BMPs) is intended to minimize the impacts of timber harvest on the biotic community, including amphibians and their habitat requirements. Herein, we synthesize the current scientific...

  11. INTERACTIONS BETWEEN BRANCHIATE MOLE SALAMANDERS (AMBYSTOMA TALPOIDEUM) AND LESSER SIRENS (SIREN INTERMEDIA): ASYMMETRICAL COMPETITION AND INTRAGUILD PREDATION. (R825795)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Evolutionary genetics of metamorphic failure using wild-caught vs. laboratory axolotls (Ambystoma mexicanum).

    Science.gov (United States)

    Voss, S R; Shaffer, H B

    2000-09-01

    In many organisms metamorphosis allows for an ecologically important habitat-shift from water to land. However, in some salamanders an adaptive life cycle mode has evolved that is characterized by metamorphic failure (paedomorphosis); these species remain in the aquatic habitat throughout the life cycle. Perhaps the most famous example of metamorphic failure is the Mexican axolotl (Ambystoma mexicanum), which has become a focal species for developmental biology since it was introduced into laboratory culture in the 1800s. Our previous genetic linkage mapping analysis, using an interspecific crossing design, demonstrated that a major gene effect underlies the expression of metamorphic failure in laboratory stocks of the Mexican axolotl. Here, we repeated this experiment using A. mexicanum that were sampled directly from their natural habitat at Lake Xochimilco, Mexico. We found no significant association between the major gene and metamorphic failure when wild-caught axolotls were used in the experimental design, although there is evidence of a smaller genetic effect. Thus, there appears to be genetic variation among Mexican axolotls (and possibly A. tigrinum tigrinum) at loci that contribute to metamorphic failure. This result suggests a role for more than one mutation and possibly artificial selection in the evolution of the major gene effect in the laboratory Mexican axolotl.

  13. Ripensare Darwin? Di ex‐aptations e neotenie. E di Topolino, Pippo e simpatiche salamandre messicane

    Directory of Open Access Journals (Sweden)

    AMODIO, PAOLO

    2016-12-01

    Full Text Available Rethinking Darwin? About Ex‐aptations and Neotenies. Concerning Mickey Mouse, Goofy and likeable mexican Salamanders The theory of evolution by natural selection of Charles Darwin, whose first general exposure dates back to 1859, with the publication of the Origin of Species, is still a matter of intense debate among natural sciences’ scholars and philosophers. After the merger of Darwinian evolutionary research program with the theory of heredity of Gregor Mendel, the mathematical form of population genetics and the analysis of paleontological data (Modern Synthesis and the the important contributions of post-Darwinian authors such as S.J. Gould and N. Eldredge we are entering a new era of great discoveries and news. On the one hand, new data from genetics and paleoanthropology, on the other hand the impetuous development of some fields of applied science such as nanobiotechnology, genetic engineering and synthetic biology put us into the need and the urgency to underline, once again, the relevance and the extraordinary heuristic power of Darwinian research program, an even greater urgency since some authors have announced that we would be at a time to access a post-Darwinian and post-evolutionary era in which man as we actually know it is about to disappear.

  14. Identification of Differentially Expressed Thyroid Hormone Responsive Genes from the Brain of the Mexican Axolotl (Ambystoma mexicanum) ✧

    Science.gov (United States)

    Huggins, P; Johnson, CK; Schoergendorfer, A; Putta, S; Bathke, AC; Stromberg, AJ; Voss, SR

    2011-01-01

    The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5,884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p 1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian. PMID:21457787

  15. Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, A; Graham, G M C; Bryant, S V; Gardiner, D M

    2008-07-15

    Adult urodeles (salamanders) are unique in their ability to regenerate complex organs perfectly. The recently developed Accessory Limb Model (ALM) in the axolotl provides an opportunity to identify and characterize the essential signaling events that control the early steps in limb regeneration. The ALM demonstrates that limb regeneration progresses in a stepwise fashion that is dependent on signals from the wound epidermis, nerves and dermal fibroblasts from opposite sides of the limb. When all the signals are present, a limb is formed de novo. The ALM thus provides an opportunity to identify and characterize the signaling pathways that control blastema morphogenesis and limb regeneration. In the present study, we have utilized the ALM to identity the buttonhead-like zinc-finger transcription factor, Sp9, as being involved in the formation of the regeneration epithelium. Sp9 expression is induced in basal keratinocytes of the apical blastema epithelium in a pattern that is comparable to its expression in developing limb buds, and it thus is an important marker for dedifferentiation of the epidermis. Induction of Sp9 expression is nerve-dependent, and we have identified KGF as an endogenous nerve factor that induces expression of Sp9 in the regeneration epithelium.

  16. Identification of differentially expressed thyroid hormone responsive genes from the brain of the Mexican Axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Huggins, P; Johnson, C K; Schoergendorfer, A; Putta, S; Bathke, A C; Stromberg, A J; Voss, S R

    2012-01-01

    The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Identification of Conserved and Novel MicroRNAs during Tail Regeneration in the Mexican Axolotl

    Directory of Open Access Journals (Sweden)

    Micah D. Gearhart

    2015-09-01

    Full Text Available The Mexican axolotl salamander (Ambystoma mexicanum is one member of a select group of vertebrate animals that have retained the amazing ability to regenerate multiple body parts. In addition to being an important model system for regeneration, the axolotl has also contributed extensively to studies of basic development. While many genes known to play key roles during development have now been implicated in various forms of regeneration, much of the regulatory apparatus controlling the underlying molecular circuitry remains unknown. In recent years, microRNAs have been identified as key regulators of gene expression during development, in many diseases and also, increasingly, in regeneration. Here, we have used deep sequencing combined with qRT-PCR to undertake a comprehensive identification of microRNAs involved in regulating regeneration in the axolotl. Specifically, among the microRNAs that we have found to be expressed in axolotl tissues, we have identified 4564 microRNA families known to be widely conserved among vertebrates, as well as 59,811 reads of putative novel microRNAs. These findings support the hypothesis that microRNAs play key roles in managing the precise spatial and temporal patterns of gene expression that ensures the correct regeneration of missing tissues.

  18. Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-01-15

    The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a "critical-size defect" (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Detailed tail proteomic analysis of axolotl (Ambystoma mexicanum) using an mRNA-seq reference database.

    Science.gov (United States)

    Demircan, Turan; Keskin, Ilknur; Dumlu, Seda Nilgün; Aytürk, Nilüfer; Avşaroğlu, Mahmut Erhan; Akgün, Emel; Öztürk, Gürkan; Baykal, Ahmet Tarık

    2017-01-01

    Salamander axolotl has been emerging as an important model for stem cell research due to its powerful regenerative capacity. Several advantages, such as the high capability of advanced tissue, organ, and appendages regeneration, promote axolotl as an ideal model system to extend our current understanding on the mechanisms of regeneration. Acknowledging the common molecular pathways between amphibians and mammals, there is a great potential to translate the messages from axolotl research to mammalian studies. However, the utilization of axolotl is hindered due to the lack of reference databases of genomic, transcriptomic, and proteomic data. Here, we introduce the proteome analysis of the axolotl tail section searched against an mRNA-seq database. We translated axolotl mRNA sequences to protein sequences and annotated these to process the LC-MS/MS data and identified 1001 nonredundant proteins. Functional classification of identified proteins was performed by gene ontology searches. The presence of some of the identified proteins was validated by in situ antibody labeling. Furthermore, we have analyzed the proteome expressional changes postamputation at three time points to evaluate the underlying mechanisms of the regeneration process. Taken together, this work expands the proteomics data of axolotl to contribute to its establishment as a fully utilized model. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians.

    Science.gov (United States)

    Sloggett, John J

    2012-07-18

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups.