WorldWideScience

Sample records for salamander limb regeneration

  1. Environmental conditions prerequisite for complete limb regeneration in the postmetamorphic adult land-phase salamander, Ambystoma.

    Science.gov (United States)

    Young, H E; Bailey, C F; Dalley, B K

    1983-07-01

    Historically, postmetamorphic adult land-phase salamanders have been shown to exhibit minimal to nonexistent limb regeneration. Hence, it has been generally accepted that these forms have lost the intrinsic capacity to regenerate a limb. Due to the experimental protocols used, an alternate explanation is also possible: that this intrinsic capacity cannot be expressed when the salamanders are maintained under adverse laboratory environmental conditions. Therefore, this study addresses two questions: 1) What are the optimal environmental conditions for long-term survival of adult land-phase salamanders; and 2) will complete limb regeneration occur in these salamanders if they are maintained under survival conditions. A mixed population of adult Ambystoma were tested under varying conditions of habitat, temperature, humidity, photoperiod, and food source. Complete limb regeneration was possible in 100% of four species of adult postmetamorphic land-phase Ambystoma salamanders given the proper environmental laboratory conditions of a peat moss and potting soil habitat with a controlled temperature of 25 degrees C +/- 5 degrees C, 70% or greater humidity, a 12/12 light/dark photoperiod, a diet including nightcrawlers released into their respective terraria, and an extended observation time of up to 370 days postamputation (dpa). Regeneration was completed during the following range periods for the adult salamanders: A. annulatum, 324 to 370 dpa; A. maculatum, 255 to 300 dpa; A. texanum, 215 to 250 dpa; and A. tigranum, 155 to 180 dpa.

  2. Understanding positional cues in salamander limb regeneration: implications for optimizing cell-based regenerative therapies

    Directory of Open Access Journals (Sweden)

    Catherine D. McCusker

    2014-06-01

    Full Text Available Regenerative medicine has reached the point where we are performing clinical trials with stem-cell-derived cell populations in an effort to treat numerous human pathologies. However, many of these efforts have been challenged by the inability of the engrafted populations to properly integrate into the host environment to make a functional biological unit. It is apparent that we must understand the basic biology of tissue integration in order to apply these principles to the development of regenerative therapies in humans. Studying tissue integration in model organisms, where the process of integration between the newly regenerated tissues and the ‘old’ existing structures can be observed and manipulated, can provide valuable insights. Embryonic and adult cells have a memory of their original position, and this positional information can modify surrounding tissues and drive the formation of new structures. In this Review, we discuss the positional interactions that control the ability of grafted cells to integrate into existing tissues during the process of salamander limb regeneration, and discuss how these insights could explain the integration defects observed in current cell-based regenerative therapies. Additionally, we describe potential molecular tools that can be used to manipulate the positional information in grafted cell populations, and to promote the communication of positional cues in the host environment to facilitate the integration of engrafted cells. Lastly, we explain how studying positional information in current cell-based therapies and in regenerating limbs could provide key insights to improve the integration of cell-based regenerative therapies in the future.

  3. Limb regeneration.

    Science.gov (United States)

    Simon, András; Tanaka, Elly M

    2013-01-01

    Limb regeneration is observed in certain members of the animal phyla. Some animals keep this ability during their entire life while others lose it at some time during development. How do animals regenerate limbs? Is it possible to find unifying, conserved mechanisms of limb regeneration or have different species evolved distinct means of replacing a lost limb? How is limb regeneration similar or different to limb development? Studies on many organisms, including echinoderms, arthropods, and chordates have provided significant knowledge about limb regeneration. In this focus article, we concentrate on tetrapod limb regeneration as studied in three model amphibians: newts, axolotls, and frogs. We review recent progress on tissue interactions during limb regeneration, and place those findings into an evolutionary context. Copyright © 2012 Wiley Periodicals, Inc.

  4. Salamander Regeneration as a Model for Developing Novel Regenerative and Anticancer Therapies

    OpenAIRE

    Fior, Jonathan

    2014-01-01

    Among vertebrates, urodele amphibians are the only tetrapods with the ability to regenerate complex structures such as limbs, tail, and spinal cord throughout their lives. Furthermore, the salamander regeneration process has been shown to reverse tumorigenicity. Fibroblasts are essential for salamander regeneration, but the mechanisms underlying their role in the formation of a regeneration blastema remain unclear. Here, I review the role of fibroblasts in salamander limb regeneration and how...

  5. Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration.

    Directory of Open Access Journals (Sweden)

    Acely Garza-Garcia

    Full Text Available BACKGROUND: Following the amputation of a limb, newts and salamanders have the capability to regenerate the lost tissues via a complex process that takes place at the site of injury. Initially these cells undergo dedifferentiation to a state competent to regenerate the missing limb structures. Crucially, dedifferentiated cells have memory of their level of origin along the proximodistal (PD axis of the limb, a property known as positional identity. Notophthalmus viridescens Prod1 is a cell-surface molecule of the three-finger protein (TFP superfamily involved in the specification of newt limb PD identity. The TFP superfamily is a highly diverse group of metazoan proteins that includes snake venom toxins, mammalian transmembrane receptors and miscellaneous signaling molecules. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of identifying potential orthologs of Prod1, we have solved its 3D structure and compared it to other known TFPs using phylogenetic techniques. The analysis shows that TFP 3D structures group in different categories according to function. Prod1 clusters with other cell surface protein TFP domains including the complement regulator CD59 and the C-terminal domain of urokinase-type plasminogen activator. To infer orthology, a structure-based multiple sequence alignment of representative TFP family members was built and analyzed by phylogenetic methods. Prod1 has been proposed to be the salamander CD59 but our analysis fails to support this association. Prod1 is not a good match for any of the TFP families present in mammals and this result was further supported by the identification of the putative orthologs of both CD59 and N. viridescens Prod1 in sequence data for the salamander Ambystoma tigrinum. CONCLUSIONS/SIGNIFICANCE: The available data suggest that Prod1, and thereby its role in encoding PD identity, is restricted to salamanders. The lack of comparable limb-regenerative capability in other adult vertebrates could be

  6. Regeneration of limb joints in the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Jangwoo Lee

    Full Text Available In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.

  7. Regeneration of Limb Joints in the Axolotl (Ambystoma mexicanum)

    Science.gov (United States)

    Lee, Jangwoo; Gardiner, David M.

    2012-01-01

    In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints. PMID:23185640

  8. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M

    2015-08-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals.

  9. Mechanisms of urodele limb regeneration

    Science.gov (United States)

    2017-01-01

    Abstract This review explores the historical and current state of our knowledge about urodele limb regeneration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and positional memory of blastema cells. (3) The role played by macrophages in the early events of regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal experiments, experiments on the regeneration of half and double half limbs, and experiments using retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization during normal and intercalary regeneration. (7) Is pattern formation is a self‐organizing property of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for regenerating a human limb? PMID:29299322

  10. Limb Regeneration in Xenopus laevis Froglet

    Directory of Open Access Journals (Sweden)

    Makoto Suzuki

    2006-01-01

    Full Text Available Limb regeneration in amphibians is a representative process of epimorphosis. This type of organ regeneration, in which a mass of undifferentiated cells referred to as the “blastema” proliferate to restore the lost part of the amputated organ, is distinct from morphallaxis as observed, for instance, in Hydra, in which rearrangement of pre-existing cells and tissues mainly contribute to regeneration. In contrast to complete limb regeneration in urodele amphibians, limb regeneration in Xenopus, an anuran amphibian, is restricted. In this review of some aspects regarding adult limb regeneration in Xenopus laevis, we suggest that limb regeneration in adult Xenopus, which is pattern/tissue deficient, also represents epimorphosis.

  11. Fingernails Yield Clues to Limb Regeneration

    Science.gov (United States)

    ... Spotlight on Research Fingernails Yield Clues to Limb Regeneration By Kirstie Saltsman, Ph.D. | January 5, 2014 ... Diseases has uncovered chemical signals that drive the regeneration of lost digit tips in mice. The findings, ...

  12. Extracellular Control of Limb Regeneration

    Science.gov (United States)

    Calve, S.; Simon, H.-G.

    Adult newts possess the ability to completely regenerate organs and appendages. Immediately after limb loss, the extracellular matrix (ECM) undergoes dramatic changes that may provide mechanical and biochemical cues to guide the formation of the blastema, which is comprised of uncommitted stem-like cells that proliferate to replace the lost structure. Skeletal muscle is a known reservoir for blastema cells but the mechanism by which it contributes progenitor cells is still unclear. To create physiologically relevant culture conditions for the testing of primary newt muscle cells in vitro, the spatio-temporal distribution of ECM components and the mechanical properties of newt muscle were analyzed. Tenascin-C and hyaluronic acid (HA) were found to be dramatically upregulated in the amputated limb and were co-expressed around regenerating skeletal muscle. The transverse stiffness of muscle measured in situ was used as a guide to generate silicone-based substrates of physiological stiffness. Culturing newt muscle cells under different conditions revealed that the cells are sensitive to both matrix coating and substrate stiffness: Myoblasts on HA-coated soft substrates display a rounded morphology and become more elongated as the stiffness of the substrate increases. Coating of soft substrates with matrigel or fibronectin enhanced cell spreading and eventual cell fusion.

  13. Salamander spinal cord regeneration: The ultimate positive control in vertebrate spinal cord regeneration.

    Science.gov (United States)

    Tazaki, Akira; Tanaka, Elly M; Fei, Ji-Feng

    2017-12-01

    Repairing injured tissues / organs is one of the major challenges for the maintenance of proper organ function in adulthood. In mammals, the central nervous system including the spinal cord, once established during embryonic development, has very limited capacity to regenerate. In contrast, salamanders such as axolotls can fully regenerate the injured spinal cord, making this a very powerful vertebrate model system for studying this process. Here we discuss the cellular and molecular requirements for spinal cord regeneration in the axolotl. The recent development of tools to test molecular function, including CRISPR-mediated gene editing, has lead to the identification of key players involved in the cell response to injury that ultimately leads to outgrowth of neural stem cells that are competent to replay the process of spinal cord development to replace the damaged/missing tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Positional Information Is Reprogrammed in Blastema Cells of the Regenerating Limb of the Axolotl (Ambystoma mexicanum)

    OpenAIRE

    McCusker, Catherine D; Gardiner, David M

    2013-01-01

    The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP), to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is re...

  15. Gene expression patterns specific to the regenerating limb of the Mexican axolotl

    Directory of Open Access Journals (Sweden)

    James R. Monaghan

    2012-07-01

    Salamander limb regeneration is dependent upon tissue interactions that are local to the amputation site. Communication among limb epidermis, peripheral nerves, and mesenchyme coordinate cell migration, cell proliferation, and tissue patterning to generate a blastema, which will form missing limb structures. An outstanding question is how cross-talk between these tissues gives rise to the regeneration blastema. To identify genes associated with epidermis-nerve-mesenchymal interactions during limb regeneration, we examined histological and transcriptional changes during the first week following injury in the wound epidermis and subjacent cells between three injury types; 1 a flank wound on the side of the animal that will not regenerate a limb, 2 a denervated limb that will not regenerate a limb, and 3 an innervated limb that will regenerate a limb. Early, histological and transcriptional changes were similar between the injury types, presumably because a common wound-healing program is employed across anatomical locations. However, some transcripts were enriched in limbs compared to the flank and are associated with vertebrate limb development. Many of these genes were activated before blastema outgrowth and expressed in specific tissue types including the epidermis, peripheral nerve, and mesenchyme. We also identified a relatively small group of transcripts that were more highly expressed in innervated limbs versus denervated limbs. These transcripts encode for proteins involved in myelination of peripheral nerves, epidermal cell function, and proliferation of mesenchymal cells. Overall, our study identifies limb-specific and nerve-dependent genes that are upstream of regenerative growth, and thus promising candidates for the regulation of blastema formation.

  16. Regeneration and repair of human digits and limbs: fact and fiction

    Science.gov (United States)

    Cheng, Tsun‐Chih

    2015-01-01

    Abstract A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's “wish list.” Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit‐ and limb‐building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations. PMID:27499873

  17. Microarray analysis of microRNA expression during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Edna C Holman

    Full Text Available Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum ("Amex" miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3'UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes.

  18. Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land.

    Science.gov (United States)

    Kawano, Sandy M; Blob, Richard W

    2013-08-01

    The invasion of land was a pivotal event in vertebrate evolution that was associated with major appendicular modifications. Although fossils indicate that the evolution of fundamentally limb-like appendages likely occurred in aquatic environments, the functional consequences of using early digited limbs, rather than fins, for terrestrial propulsion have had little empirical investigation. Paleontological and experimental analyses both have led to the proposal of an early origin of "hind limb-driven" locomotion among tetrapods or their ancestors. However, the retention of a pectoral appendage that had already developed terrestrial adaptations has been proposed for some taxa, and few data are available from extant functional models that can provide a foundation for evaluating the relative contributions of pectoral and pelvic appendages to terrestrial support among early stem tetrapods. To examine these aspects of vertebrate locomotor evolution during the invasion of land, we measured three-dimensional ground reaction forces (GRFs) produced by isolated pectoral fins of mudskipper fishes (Periophthalmus barbarus) during terrestrial crutching, and compared these to isolated walking footfalls by the forelimbs and hind limbs of tiger salamanders (Ambystoma tigrinum), a species with subequally-sized limbs that facilitate comparisons to early tetrapods. Pectoral appendages of salamanders and mudskippers exhibited numerous differences in GRFs. Compared with salamander forelimbs, isolated fins of mudskippers bear lower vertical magnitudes of GRFs (as a proportion of body weight), and had GRFs that were oriented more medially. Comparing the salamanders' forelimbs and hind limbs, although the peak net GRF occurs later in stance for the forelimb, both limbs experience nearly identical mediolateral and vertical components of GRF, suggesting comparable contributions to support. Thus, forelimbs could also have played a significant locomotor role among basal tetrapods that had limbs

  19. Proteomic analysis of blastema formation in regenerating axolotl limbs

    Directory of Open Access Journals (Sweden)

    Nye Holly LD

    2009-11-01

    Full Text Available Abstract Background Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post amputation (dpa through the mid-tibia/fibula of axolotl hind limbs. Results We identified 309 unique proteins with significant fold change relative to controls (0 dpa, representing 10 biological process categories: (1 signaling, (2 Ca2+ binding and translocation, (3 transcription, (4 translation, (5 cytoskeleton, (6 extracellular matrix (ECM, (7 metabolism, (8 cell protection, (9 degradation, and (10 cell cycle. In all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5, a cell cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special interest because its fold change was exceptionally high throughout blastema formation. Conclusion Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+ signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein response (UPR. Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5 function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated under the wound epidermis and enter mitosis in response to

  20. MRI tracking of SPIO labelled stem cells in a true regenerative environment, the regenerating limb of the axolotl

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Foldager, Casper Bindzus; Hagensen, Mette

    , facilitating the use of SPIOs in future chemically or genetically induced regenerative therapies. In addition, this study concludes that SPIO labelling and MRI tracking of axolotl stem cells allow for non-invasive longitudinal studies in this model, increasing the potential to draw knowledge from...... are generally restricted by their limited regenerative potential. Conversely, excellent animal models for regenerative studies exist in lower vertebrates such as the urodele amphibians (salamanders and newts), exemplified in the iconic Mexican axolotl (Ambystoma mexicanum) capable of regenerating whole limbs...... in a regenerating axolotl limb model. Superparamagnetic iron oxide particles (SPIOs) sensitive to MRI were used to track cells, and cell viability and regenerative capacity was investigated. Materials and Methods: Limb regeneration was induced by amputation of one hind limb of anaesthetised axolotls. The potential...

  1. Could we also be regenerative superheroes, like salamanders?

    Science.gov (United States)

    Dall'Agnese, Alessandra; Puri, Pier Lorenzo

    2016-09-01

    Development of methods to reawaken the semi-dormant regenerative potential that lies within adult human tissues would hold promise for the restoration of diseased or damaged organs and tissues. While most of the regeneration potential is suppressed in many vertebrates, including humans, during adult life, urodele amphibians (salamanders) retain their regenerative ability throughout adulthood. Studies in newts and axolotls, two salamander models, have provided significant knowledge about adult limb regeneration. In this review, we present a comparative analysis of salamander and mammalian regeneration and discuss how evolutionarily altered properties of the regenerative environment can be exploited to restore full regenerative potential in the human body. © 2016 WILEY Periodicals, Inc.

  2. Variation in salamander tail regeneration is associated with genetic factors that determine tail morphology.

    Directory of Open Access Journals (Sweden)

    Gareth J Voss

    Full Text Available Very little is known about the factors that cause variation in regenerative potential within and between species. Here, we used a genetic approach to identify heritable genetic factors that explain variation in tail regenerative outgrowth. A hybrid ambystomatid salamander (Ambystoma mexicanum x A. andersoni was crossed to an A. mexicanum and 217 offspring were induced to undergo metamorphosis and attain terrestrial adult morphology using thyroid hormone. Following metamorphosis, each salamander's tail tip was amputated and allowed to regenerate, and then amputated a second time and allowed to regenerate. Also, DNA was isolated from all individuals and genotypes were determined for 187 molecular markers distributed throughout the genome. The area of tissue that regenerated after the first and second amputations was highly positively correlated across males and females. Males presented wider tails and regenerated more tail tissue during both episodes of regeneration. Approximately 66-68% of the variation in regenerative outgrowth was explained by tail width, while tail length and genetic sex did not explain a significant amount of variation. A small effect QTL was identified as having a sex-independent effect on tail regeneration, but this QTL was only identified for the first episode of regeneration. Several molecular markers significantly affected regenerative outgrowth during both episodes of regeneration, but the effect sizes were small (<4% and correlated with tail width. The results show that ambysex and minor effect QTL explain variation in adult tail morphology and importantly, tail width. In turn, tail width at the amputation plane largely determines the rate of regenerative outgrowth. Because amputations in this study were made at approximately the same position of the tail, our results resolve an outstanding question in regenerative biology: regenerative outgrowth positively co-varies as a function of tail width at the amputation site.

  3. Variation in salamander tail regeneration is associated with genetic factors that determine tail morphology.

    Science.gov (United States)

    Voss, Gareth J; Kump, D Kevin; Walker, John A; Voss, S Randal

    2013-01-01

    Very little is known about the factors that cause variation in regenerative potential within and between species. Here, we used a genetic approach to identify heritable genetic factors that explain variation in tail regenerative outgrowth. A hybrid ambystomatid salamander (Ambystoma mexicanum x A. andersoni) was crossed to an A. mexicanum and 217 offspring were induced to undergo metamorphosis and attain terrestrial adult morphology using thyroid hormone. Following metamorphosis, each salamander's tail tip was amputated and allowed to regenerate, and then amputated a second time and allowed to regenerate. Also, DNA was isolated from all individuals and genotypes were determined for 187 molecular markers distributed throughout the genome. The area of tissue that regenerated after the first and second amputations was highly positively correlated across males and females. Males presented wider tails and regenerated more tail tissue during both episodes of regeneration. Approximately 66-68% of the variation in regenerative outgrowth was explained by tail width, while tail length and genetic sex did not explain a significant amount of variation. A small effect QTL was identified as having a sex-independent effect on tail regeneration, but this QTL was only identified for the first episode of regeneration. Several molecular markers significantly affected regenerative outgrowth during both episodes of regeneration, but the effect sizes were small (tail width. The results show that ambysex and minor effect QTL explain variation in adult tail morphology and importantly, tail width. In turn, tail width at the amputation plane largely determines the rate of regenerative outgrowth. Because amputations in this study were made at approximately the same position of the tail, our results resolve an outstanding question in regenerative biology: regenerative outgrowth positively co-varies as a function of tail width at the amputation site.

  4. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Catherine D McCusker

    Full Text Available The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP, to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.

  5. Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2009-01-01

    Full Text Available Abstract Background Microarray analysis and 454 cDNA sequencing were used to investigate a centuries-old problem in regenerative biology: the basis of nerve-dependent limb regeneration in salamanders. Innervated (NR and denervated (DL forelimbs of Mexican axolotls were amputated and transcripts were sampled after 0, 5, and 14 days of regeneration. Results Considerable similarity was observed between NR and DL transcriptional programs at 5 and 14 days post amputation (dpa. Genes with extracellular functions that are critical to wound healing were upregulated while muscle-specific genes were downregulated. Thus, many processes that are regulated during early limb regeneration do not depend upon nerve-derived factors. The majority of the transcriptional differences between NR and DL limbs were correlated with blastema formation; cell numbers increased in NR limbs after 5 dpa and this yielded distinct transcriptional signatures of cell proliferation in NR limbs at 14 dpa. These transcriptional signatures were not observed in DL limbs. Instead, gene expression changes within DL limbs suggest more diverse and protracted wound-healing responses. 454 cDNA sequencing complemented the microarray analysis by providing deeper sampling of transcriptional programs and associated biological processes. Assembly of new 454 cDNA sequences with existing expressed sequence tag (EST contigs from the Ambystoma EST database more than doubled (3935 to 9411 the number of non-redundant human-A. mexicanum orthologous sequences. Conclusion Many new candidate gene sequences were discovered for the first time and these will greatly enable future studies of wound healing, epigenetics, genome stability, and nerve-dependent blastema formation and outgrowth using the axolotl model.

  6. Urodele limb and tail regeneration in early biological thought: an essay on scientific controversy and social change.

    Science.gov (United States)

    Dinsmore, C E

    1996-08-01

    Lazzaro Spallanzani (1729-1799) announced his discoveries of salamander tail and limb regeneration to Charles Bonnet (1729-1793) in the 1760's. The phenomenon soon became embroiled with the ongoing epigenesis/preformation controversy over the fundamental nature of generation. The concept of animal regeneration as a process linked to reproduction had emerged in 1740 with Abraham Trembley's (1710-1783) demonstration that a bisected hydra gives rise to two new, completely formed individuals. The discovery of urodele appendage regeneration revealed for the first time that a quadruped could regenerate and restore complex form, lizard tail regenerates having been recognized as only substitute structures. Moreover, regeneration of a quadruped appendage became problematic because it was not supposed to be possible and because it conflicted with prevailing opinion about the nature of higher organisms. Why animal regeneration in general engendered conflict transcends biological concerns and touches on personal philosophical commitments. Preformation had been adopted into orthodox theology as a validation of predestination and of the hierarchical structuring of man's relationships to nature and within society. Epigenetic interpretations of regeneration represented challenges to certain aspects of the extant social and political fabric in their extrapolation to ideas of what constituted natural order. Urodele regeneration as an integral part of the epigenesis/preformation debate therefore constituted a formative component of eighteenth century thought in a period of social and intellectual revolution.

  7. The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods

    Science.gov (United States)

    McCusker, Catherine; Bryant, Susan V.

    2015-01-01

    Abstract The axolotl is one of the few tetrapods that are capable of regenerating complicated biological structures, such as complete limbs, throughout adulthood. Upon injury the axolotl generates a population of regeneration‐competent limb progenitor cells known as the blastema, which will grow, establish pattern, and differentiate into the missing limb structures. In this review we focus on the crucial early events that occur during wound healing, the neural−epithelial interactions that drive the formation of the early blastema, and how these mechanisms differ from those of other species that have restricted regenerative potential, such as humans. We also discuss how the presence of cells from the different axes of the limb is required for the continued growth and establishment of pattern in the blastema as described in the polar coordinate model, and how this positional information is reprogrammed in blastema cells during regeneration. Multiple cell types from the mature limb stump contribute to the blastema at different stages of regeneration, and we discuss the contribution of these types to the regenerate with reference to whether they are “pattern‐forming” or “pattern‐following” cells. Lastly, we explain how an engineering approach will help resolve unanswered questions in limb regeneration, with the goal of translating these concepts to developing better human regenerative therapies. PMID:27499868

  8. Studies of Electrically Stimulated Rat Limb and Peripheral Nerve Regeneration.

    Science.gov (United States)

    1983-08-25

    right forelimb at the midpoint of the zygopodium. Amputation at this point lay below most of the major muscle masEes , and bleeding was minimal, so...ed. Chas. Thomas, Springfield, Ill., pub., 137-152. 3. Stocum, D.L. 1982. Determination of axial polarity in the urodele limb regeneration blastema...fields or charge flow cannot be entirely dismissed. ,.-therwise too weak to be The relative impedances of the cell membrane and interstitial fluids are

  9. Foamy virus for efficient gene transfer in regeneration studies.

    Science.gov (United States)

    Khattak, Shahryar; Sandoval-Guzmán, Tatiana; Stanke, Nicole; Protze, Stephanie; Tanaka, Elly M; Lindemann, Dirk

    2013-05-03

    Molecular studies of appendage regeneration have been hindered by the lack of a stable and efficient means of transferring exogenous genes. We therefore sought an efficient integrating virus system that could be used to study limb and tail regeneration in salamanders. We show that replication-deficient foamy virus (FV) vectors efficiently transduce cells in two different regeneration models in cell culture and in vivo. Injection of EGFP-expressing FV but not lentivirus vector particles into regenerating limbs and tail resulted in widespread expression that persisted throughout regeneration and reamputation pointing to the utility of FV for analyzing adult phenotypes in non-mammalian models. Furthermore, tissue specific transgene expression is achieved using FV vectors during limb regeneration. FV vectors are efficient mean of transferring genes into axolotl limb/tail and infection persists throughout regeneration and reamputation. This is a nontoxic method of delivering genes into axolotls in vivo/ in vitro and can potentially be applied to other salamander species.

  10. Effects of Tail Clipping on Larval Performance and Tail Regeneration Rates in the Near Eastern Fire Salamander, Salamandra infraimmaculata.

    Directory of Open Access Journals (Sweden)

    Ori Segev

    Full Text Available Tail-tip clipping is a common technique for collecting tissue samples from amphibian larvae and adults. Surprisingly, studies of this invasive sampling procedure or of natural tail clipping--i.e., bites inflicted by predators including conspecifics--on the performance and fitness of aquatic larval stages of urodeles are scarce. We conducted two studies in which we assessed the effects of posterior tail clipping (~30 percent of tail on Near Eastern fire salamander (Salamandra infraimmaculata larvae. In a laboratory study, we checked regeneration rates of posterior tail-tip clipping at different ages. Regeneration rates were hump-shaped, peaking at the age of ~30 days and then decreasing. This variation in tail regeneration rates suggests tradeoffs in resource allocation between regeneration and somatic growth during early and advanced development. In an outdoor artificial pond experiment, under constant larval densities, we assessed how tail clipping of newborn larvae affects survival to, time to, and size at metamorphosis. Repeated measures ANOVA on mean larval survival per pond revealed no effect of tail clipping. Tail clipping had correspondingly no effect on larval growth and development expressed in size (mass and snout-vent length at, and time to, metamorphosis. We conclude that despite the given variation in tail regeneration rates throughout larval ontogeny, clipping of 30% percent of the posterior tail area seems to have no adverse effects on larval fitness and survival. We suggest that future use of this imperative tool for the study of amphibian should take into account larval developmental stage during the time of application and not just the relative size of the clipped tail sample.

  11. Effects of Tail Clipping on Larval Performance and Tail Regeneration Rates in the Near Eastern Fire Salamander, Salamandra infraimmaculata.

    Science.gov (United States)

    Segev, Ori; Polevikove, Antonina; Blank, Lior; Goedbloed, Daniel; Küpfer, Eliane; Gershberg, Anna; Koplovich, Avi; Blaustein, Leon

    2015-01-01

    Tail-tip clipping is a common technique for collecting tissue samples from amphibian larvae and adults. Surprisingly, studies of this invasive sampling procedure or of natural tail clipping--i.e., bites inflicted by predators including conspecifics--on the performance and fitness of aquatic larval stages of urodeles are scarce. We conducted two studies in which we assessed the effects of posterior tail clipping (~30 percent of tail) on Near Eastern fire salamander (Salamandra infraimmaculata) larvae. In a laboratory study, we checked regeneration rates of posterior tail-tip clipping at different ages. Regeneration rates were hump-shaped, peaking at the age of ~30 days and then decreasing. This variation in tail regeneration rates suggests tradeoffs in resource allocation between regeneration and somatic growth during early and advanced development. In an outdoor artificial pond experiment, under constant larval densities, we assessed how tail clipping of newborn larvae affects survival to, time to, and size at metamorphosis. Repeated measures ANOVA on mean larval survival per pond revealed no effect of tail clipping. Tail clipping had correspondingly no effect on larval growth and development expressed in size (mass and snout-vent length) at, and time to, metamorphosis. We conclude that despite the given variation in tail regeneration rates throughout larval ontogeny, clipping of 30% percent of the posterior tail area seems to have no adverse effects on larval fitness and survival. We suggest that future use of this imperative tool for the study of amphibian should take into account larval developmental stage during the time of application and not just the relative size of the clipped tail sample.

  12. Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark Hellbender salamanders.

    Directory of Open Access Journals (Sweden)

    Cheryl A Nickerson

    cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines.

  13. Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark Hellbender salamanders.

    Science.gov (United States)

    Nickerson, Cheryl A; Ott, C Mark; Castro, Sarah L; Garcia, Veronica M; Molina, Thomas C; Briggler, Jeffrey T; Pitt, Amber L; Tavano, Joseph J; Byram, J Kelly; Barrila, Jennifer; Nickerson, Max A

    2011-01-01

    Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines.

  14. Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration.

    Directory of Open Access Journals (Sweden)

    Kazumasa Mitogawa

    Full Text Available Axolotls (Ambystoma mexicanum can completely regenerate lost limbs, whereas Xenopus laevis frogs cannot. During limb regeneration, a blastema is first formed at the amputation plane. It is thought that this regeneration blastema forms a limb by mechanisms similar to those of a developing embryonic limb bud. Furthermore, Xenopus laevis frogs can form a blastema after amputation; however, the blastema results in a terminal cone-shaped cartilaginous structure called a "spike." The causes of this patterning defect in Xenopus frog limb regeneration were explored. We hypothesized that differences in chondrogenesis may underlie the patterning defect. Thus, we focused on chondrogenesis. Chondrogenesis marker genes, type I and type II collagen, were compared in regenerative and nonregenerative environments. There were marked differences between axolotls and Xenopus in the expression pattern of these chondrogenesis-associated genes. The relative deficit in the chondrogenic capacity of Xenopus blastema cells may account for the absence of total limb regenerative capacity.

  15. Salamanders and fish can regenerate lost structures - why can't we?

    Directory of Open Access Journals (Sweden)

    Simon Hans-Georg

    2012-02-01

    Full Text Available Abstract The recent introduction of in vivo lineage-tracing techniques using fluorescently labeled cells challenged the long-standing view that complete dedifferentiation is a major force driving vertebrate tissue regeneration. The report in BMC Developmental Biology by Juan Carlos Izpisúa Belmonte and colleagues adds a new twist to a rapidly evolving view of the origin of blastemal cells. As classic and recent experimental findings are considered together, a new perspective on vertebrate muscle regeneration is emerging. See research article http://www.biomedcentral.com/1471-213X/12/9

  16. Comparative limb bone loading in the humerus and femur of the tiger salamander: testing the 'mixed-chain' hypothesis for skeletal safety factors.

    Science.gov (United States)

    Kawano, Sandy M; Economy, D Ross; Kennedy, Marian S; Dean, Delphine; Blob, Richard W

    2016-02-01

    Locomotion imposes some of the highest loads upon the skeleton, and diverse bone designs have evolved to withstand these demands. Excessive loads can fatally injure organisms; however, bones have a margin of extra protection, called a 'safety factor' (SF), to accommodate loads that are higher than normal. The extent to which SFs might vary amongst an animal's limb bones is unclear. If the limbs are likened to a chain composed of bones as 'links', then similar SFs might be expected for all limb bones because failure of the system would be determined by the weakest link, and extra protection in other links could waste energetic resources. However, Alexander proposed that a 'mixed-chain' of SFs might be found amongst bones if: (1) their energetic costs differ, (2) some elements face variable demands, or (3) SFs are generally high. To test whether such conditions contribute to diversity in limb bone SFs, we compared the biomechanical properties and locomotor loading of the humerus and femur in the tiger salamander (Ambystoma tigrinum). Despite high SFs in salamanders and similar sizes of the humerus and femur that would suggest similar energetic costs, the humerus had lower bone stresses, higher mechanical hardness and larger SFs. SFs were greatest in the anatomical regions where yield stresses were highest in the humerus and lowest in the femur. Such intraspecific variation between and within bones may relate to their different biomechanical functions, providing insight into the emergence of novel locomotor capabilities during the invasion of land by tetrapods. © 2016. Published by The Company of Biologists Ltd.

  17. A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors

    Directory of Open Access Journals (Sweden)

    Donald M. Bryant

    2017-01-01

    Full Text Available Mammals have extremely limited regenerative capabilities; however, axolotls are profoundly regenerative and can replace entire limbs. The mechanisms underlying limb regeneration remain poorly understood, partly because the enormous and incompletely sequenced genomes of axolotls have hindered the study of genes facilitating regeneration. We assembled and annotated a de novo transcriptome using RNA-sequencing profiles for a broad spectrum of tissues that is estimated to have near-complete sequence information for 88% of axolotl genes. We devised expression analyses that identified the axolotl orthologs of cirbp and kazald1 as highly expressed and enriched in blastemas. Using morpholino anti-sense oligonucleotides, we find evidence that cirbp plays a cytoprotective role during limb regeneration whereas manipulation of kazald1 expression disrupts regeneration. Our transcriptome and annotation resources greatly complement previous transcriptomic studies and will be a valuable resource for future research in regenerative biology.

  18. Hyperbaric oxygen therapy in a true regenerative environment, the regenerating limb of the axolotl

    DEFF Research Database (Denmark)

    Hansen, Kasper; Lauridsen, Henrik; Pedersen, Michael

    2012-01-01

    -regimes was tested in regenerating axolotl limbs. Materials and Methods: Left forelimb was amputated at the site of mid-humerus in six anaesthetised axolotls. Two HBOT groups (HBOT1 and HBOT2) underwent daily HBOT for 120 minutes at 3 ATA in a pressure chamber. HBOT1 were pressurized in oxygen saturated water......, whereas HBOT2 were pressurized in gaseous oxygen with 100% relative humidity. Control animals were exposed to normobaric conditions in water. Regeneration rate was evaluated as the increasing length of the regenerating appendage. Animals were kept at 20°C at all times. Results: Due to a group n = 2......, the data is only indicative. At present, 80 constitutive days of HBOT has been performed for HBOT1. HBOT2 animals were not able to tolerate hyperbaric gaseous oxygen, and were excluded after 3 HBO treatments. No indicative effect of HBOT on whole limb regeneration has yet been identified. Discussion...

  19. A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis.

    Directory of Open Access Journals (Sweden)

    Anne Golding

    Full Text Available In certain amphibian models limb regeneration can be promoted or inhibited by the local wound bed environment. This research introduces a device that can be utilized as an experimental tool to characterize the conditions that promotes limb regeneration in the adult frog (Xenopus laevis model. In particular, this device was designed to manipulate the local wound environment via a hydrogel insert. Initial characterization of the hydrogel insert revealed that this interaction had a significant influence on mechanical forces to the animal, due to the contraction of the hydrogel. The material and mechanical properties of the hydrogel insert were a factor in the device design in relation to the comfort of the animal and the ability to effectively manipulate the amputation site. The tunable features of the hydrogel were important in determining the pro-regenerative effects in limb regeneration, which was measured by cartilage spike formation and quantified by micro-computed tomography. The hydrogel insert was a factor in the observed morphological outcomes following amputation. Future work will focus on characterizing and optimizing the device's observed capability to manipulate biological pathways that are essential for limb regeneration. However, the present work provides a framework for the role of a hydrogel in the device and a path forward for more systematic studies.

  20. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat.

    Science.gov (United States)

    Diaz Quiroz, Juan Felipe; Tsai, Eve; Coyle, Matthew; Sehm, Tina; Echeverri, Karen

    2014-06-01

    Most spinal cord injuries lead to permanent paralysis in mammals. By contrast, the remarkable regenerative abilities of salamanders enable full functional recovery even from complete spinal cord transections. The molecular differences underlying this evolutionary divergence between mammals and amphibians are poorly understood. We focused on upstream regulators of gene expression as primary entry points into this question. We identified a group of microRNAs (miRNAs) that are conserved between the Mexican axolotl salamander (Ambystoma mexicanum) and mammals but show marked cross-species differences in regulation patterns following spinal cord injury. We found that precise post-injury levels of one of these miRNAs (miR-125b) is essential for functional recovery, and guides correct regeneration of axons through the lesion site in a process involving the direct downstream target Sema4D in axolotls. Translating these results to a mammalian model, we increased miR-125b levels in the rat through mimic treatments following spinal cord transection. These treatments downregulated Sema4D and other glial-scar-related genes, and enhanced the animal's functional recovery. Our study identifies a key regulatory molecule conserved between salamander and mammal, and shows that the expression of miR-125b and Sema4D must be carefully controlled in the right cells at the correct level to promote regeneration. We also show that these molecular components of the salamander's regeneration-permissive environment can be experimentally harnessed to improve treatment outcomes for mammalian spinal cord injuries. © 2014. Published by The Company of Biologists Ltd.

  1. IGF-1 and Chondroitinase ABC Augment Nerve Regeneration after Vascularized Composite Limb Allotransplantation.

    Directory of Open Access Journals (Sweden)

    Nataliya V Kostereva

    Full Text Available Impaired nerve regeneration and inadequate recovery of motor and sensory function following peripheral nerve repair remain the most significant hurdles to optimal functional and quality of life outcomes in vascularized tissue allotransplantation (VCA. Neurotherapeutics such as Insulin-like Growth Factor-1 (IGF-1 and chondroitinase ABC (CH have shown promise in augmenting or accelerating nerve regeneration in experimental models and may have potential in VCA. The aim of this study was to evaluate the efficacy of low dose IGF-1, CH or their combination (IGF-1+CH on nerve regeneration following VCA. We used an allogeneic rat hind limb VCA model maintained on low-dose FK506 (tacrolimus therapy to prevent rejection. Experimental animals received neurotherapeutics administered intra-operatively as multiple intraneural injections. The IGF-1 and IGF-1+CH groups received daily IGF-1 (intramuscular and intraneural injections. Histomorphometry and immunohistochemistry were used to evaluate outcomes at five weeks. Overall, compared to controls, all experimental groups showed improvements in nerve and muscle (gastrocnemius histomorphometry. The IGF-1 group demonstrated superior distal regeneration as confirmed by Schwann cell (SC immunohistochemistry as well as some degree of extrafascicular regeneration. IGF-1 and CH effectively promote nerve regeneration after VCA as confirmed by histomorphometric and immunohistochemical outcomes.

  2. Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular dystrophies

    Science.gov (United States)

    2012-01-01

    Background Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. Methods We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD) with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC), vimentin, MyoD and myogenin and counting internally nucleated fibers. Results We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Conclusions Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes. PMID:22443334

  3. Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Hauerslev Simon

    2012-03-01

    Full Text Available Abstract Background Limb girdle muscular dystrophy (LGMD type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration. Methods We studied muscle regeneration in 22 patients with LGMD2A with calpain 3 deficiency, in five patients with LGMD2I, with a secondary reduction in calpain 3, and in five patients with Becker muscular dystrophy (BMD with normal calpain 3 levels. Regeneration was assessed by using the developmental markers neonatal myosin heavy chain (nMHC, vimentin, MyoD and myogenin and counting internally nucleated fibers. Results We found that the recent regeneration as determined by the number of nMHC/vimentin-positive fibers was greatly diminished in severely affected LGMD2A patients compared to similarly affected patients with LGMD2I and BMD. Whorled fibers, a sign of aberrant regeneration, was highly elevated in patients with a complete lack of calpain 3 compared to patients with residual calpain 3. Regeneration is not affected by location of the mutation in the CAPN3 gene. Conclusions Our findings suggest that calpain 3 is needed for the regenerative process probably during sarcomere remodeling as the complete lack of functional calpain 3 leads to the most severe phenotypes.

  4. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat

    Directory of Open Access Journals (Sweden)

    Juan Felipe Diaz Quiroz

    2014-06-01

    Full Text Available Most spinal cord injuries lead to permanent paralysis in mammals. By contrast, the remarkable regenerative abilities of salamanders enable full functional recovery even from complete spinal cord transections. The molecular differences underlying this evolutionary divergence between mammals and amphibians are poorly understood. We focused on upstream regulators of gene expression as primary entry points into this question. We identified a group of microRNAs (miRNAs that are conserved between the Mexican axolotl salamander (Ambystoma mexicanum and mammals but show marked cross-species differences in regulation patterns following spinal cord injury. We found that precise post-injury levels of one of these miRNAs (miR-125b is essential for functional recovery, and guides correct regeneration of axons through the lesion site in a process involving the direct downstream target Sema4D in axolotls. Translating these results to a mammalian model, we increased miR-125b levels in the rat through mimic treatments following spinal cord transection. These treatments downregulated Sema4D and other glial-scar-related genes, and enhanced the animal’s functional recovery. Our study identifies a key regulatory molecule conserved between salamander and mammal, and shows that the expression of miR-125b and Sema4D must be carefully controlled in the right cells at the correct level to promote regeneration. We also show that these molecular components of the salamander’s regeneration-permissive environment can be experimentally harnessed to improve treatment outcomes for mammalian spinal cord injuries.

  5. Plethodontid salamander response to Silvilcultural Practices in Missouri Ozark forests

    Science.gov (United States)

    Laura A. Herbeck; David R. Larsen

    1999-01-01

    There is little information on the effects of tree harvest on salamander populations in the midwestern United States. We present data on plethodontid salamander densities in replicated stands of three forest age classes in the southeastern Ozarks of Missouri. Forest age classes consisted of regeneration-cut sites

  6. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae

    OpenAIRE

    Rodrigues, Alexandre Miguel Cavaco; Christen, Bea; Martí, Mercé; Izpisúa Belmonte, Juan Carlos

    2012-01-01

    Abstract Background Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders) indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the rege...

  7. Characterization of limb autotomy factor-proecdysis (LAF(pro)), isolated from limb regenerates, that suspends molting in the land crab Gecarcinus lateralis.

    Science.gov (United States)

    Yu, Xiaoli; Chang, Ernest S; Mykles, Donald L

    2002-06-01

    Molting and limb regeneration are tightly coupled processes, both of which are regulated by ecdysteroid hormone synthesized and secreted by the Y-organs. Regeneration of lost appendages can affect the timing and duration of the proecdysial, or premolt, stage of the molt cycle. Autotomy of all eight walking legs induces precocious molts in various decapod crustacean species. In the land crab Gecarcinus lateralis, autotomy of a partially regenerated limb bud before a critical period during proecdysis (regeneration index pro)), that inhibits molting by suppressing the Y-organs from secreting ecdysone. Molting was induced by autotomy of eight walking legs; autotomy of primary (1 degrees ) LBs reduced the level of ecdysteroid hormone in the hemolymph 73% by one week after limb bud autotomy (LBA). Injection of extracts from 2 degrees LBs, but not 1 degrees LBs, inhibited 1 degrees LB growth in proecdysial animals, thus having the same effect on molting as LBA. The inhibitory activity in 2 degrees LB extracts was stable after boiling in water for 15 min, but was destroyed by boiling 15 min in 0.1 N acetic acid or incubation with proteinase K. These results support the hypothesis that LAF(pro) is a peptide that resembles a molt-inhibiting hormone.

  8. A Conserved MicroRNA Regulatory Circuit Is Differentially Controlled during Limb/Appendage Regeneration

    Science.gov (United States)

    King, Benjamin L.; Yin, Viravuth P.

    2016-01-01

    Background Although regenerative capacity is evident throughout the animal kingdom, it is not equally distributed throughout evolution. For instance, complex limb/appendage regeneration is muted in mammals but enhanced in amphibians and teleosts. The defining characteristic of limb/appendage regenerative systems is the formation of a dedifferentiated tissue, termed blastema, which serves as the progenitor reservoir for regenerating tissues. In order to identify a genetic signature that accompanies blastema formation, we employ next-generation sequencing to identify shared, differentially regulated mRNAs and noncoding RNAs in three different, highly regenerative animal systems: zebrafish caudal fins, bichir pectoral fins and axolotl forelimbs. Results These studies identified a core group of 5 microRNAs (miRNAs) that were commonly upregulated and 5 miRNAs that were commonly downregulated, as well as 4 novel tRNAs fragments with sequences conserved with humans. To understand the potential function of these miRNAs, we built a network of 1,550 commonly differentially expressed mRNAs that had functional relationships to 11 orthologous blastema-associated genes. As miR-21 was the most highly upregulated and most highly expressed miRNA in all three models, we validated the expression of known target genes, including the tumor suppressor, pdcd4, and TGFβ receptor subunit, tgfbr2 and novel putative target genes such as the anti-apoptotic factor, bcl2l13, Choline kinase alpha, chka and the regulator of G-protein signaling, rgs5. Conclusions Our extensive analysis of RNA-seq transcriptome profiling studies in three regenerative animal models, that diverged in evolution ~420 million years ago, reveals a common miRNA-regulated genetic network of blastema genes. These comparative studies extend our current understanding of limb/appendage regeneration by identifying previously unassociated blastema genes and the extensive regulation by miRNAs, which could serve as a foundation

  9. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration

    NARCIS (Netherlands)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M.; Straube, Werner L.; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, Andras; Drechsel, David N.; Tanaka, Elly M.

    2017-01-01

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell

  10. Microscopic observations show invasion of inflammatory cells in the limb blastema and epidermis in pre-metamorphic frog tadpoles which destroy the Apical Epidermal CAP and impede regeneration.

    Science.gov (United States)

    Alibardi, Lorenzo

    2017-03-01

    Some limb regeneration in tadpoles of Rana dalmatina occurs at stages 44-48 when small hind-limbs are present while scarring occurs at stages 51-52 when forelimbs have developed and metamorphosis is approaching. Ultrastructural analysis of cells forming the regenerating blastema detects mesenchymal cells and an Apical Epidermal Cap (AEC) in regenerating limb blastema 5-6 days post-amputation at stages 46-48. In contrast, granulocytes and numerous macrophages and lymphocytes prevail over mesenchymal cells in limb blastema at stages 51-52, which are destined to form scars. An increase in inflammatory cells in limb blastema prior to metamorphosis suggests a negative influence of immune cells on limb regeneration. Inflammatory cells invade the apical wound epidermis where stem keratinocytes are likely destroyed, impeding the formation of an AEC, the microregion which leads to limb regeneration. The invasion of immune cells, however, may also represent a physiological consequence of the death of cell populations in the tadpoles occurring with approaching metamorphosis. The passage from an aquatic to a terrestrial life in this frog elicits the typical amniote scarring reaction after wounding, and the limb cannot regenerate. The present observations sustain the hypothesis that the evolution of the adaptive immunity in tetrapods while efficiently preserving adult self-condition, determined the loss of tissue regeneration since the embryonic antigens evocated in blastema cells are removed by immune cells of the adult. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl

    Science.gov (United States)

    2014-01-01

    Background To gain insight into what differences might restrict the capacity for limb regeneration in Xenopus froglets, we used High Performance Liquid Chromatography (HPLC)/double mass spectrometry to characterize protein expression during fibroblastema formation in the amputated froglet hindlimb, and compared the results to those obtained previously for blastema formation in the axolotl limb. Results Comparison of the Xenopus fibroblastema and axolotl blastema revealed several similarities and significant differences in proteomic profiles. The most significant similarity was the strong parallel down regulation of muscle proteins and enzymes involved in carbohydrate metabolism. Regenerating Xenopus limbs differed significantly from axolotl regenerating limbs in several ways: deficiency in the inositol phosphate/diacylglycerol signaling pathway, down regulation of Wnt signaling, up regulation of extracellular matrix (ECM) proteins and proteins involved in chondrocyte differentiation, lack of expression of a key cell cycle protein, ecotropic viral integration site 5 (EVI5), that blocks mitosis in the axolotl, and the expression of several patterning proteins not seen in the axolotl that may dorsalize the fibroblastema. Conclusions We have characterized global protein expression during fibroblastema formation after amputation of the Xenopus froglet hindlimb and identified several differences that lead to signaling deficiency, failure to retard mitosis, premature chondrocyte differentiation, and failure of dorsoventral axial asymmetry. These differences point to possible interventions to improve blastema formation and pattern formation in the froglet limb. PMID:25063185

  12. Evolution of gigantism in amphiumid salamanders.

    Directory of Open Access Journals (Sweden)

    Ronald M Bonett

    Full Text Available The Amphiumidae contains three species of elongate, permanently aquatic salamanders with four diminutive limbs that append one, two, or three toes. Two of the species, Amphiuma means and A. tridactylum, are among the largest salamanders in the world, reaching lengths of more than one meter, whereas the third species (A. pholeter, extinct amphiumids, and closely related salamander families are relatively small. Amphiuma means and A. tridactylum are widespread species and live in a wide range of lowland aquatic habitats on the Coastal Plain of the southeastern United States, whereas A. pholeter is restricted to very specialized organic muck habitats and is syntopic with A. means. Here we present analyses of sequences of mitochondrial and nuclear loci from across the distribution of the three taxa to assess lineage diversity, relationships, and relative timing of divergence in amphiumid salamanders. In addition we analyze the evolution of gigantism in the clade. Our analyses indicate three lineages that have diverged since the late Miocene, that correspond to the three currently recognized species, but the two gigantic species are not each other's closest relatives. Given that the most closely related salamander families and fossil amphiumids from the Upper Cretaceous and Paleocene are relatively small, our results suggest at least two extreme changes in body size within the Amphuimidae. Gigantic body size either evolved once as the ancestral condition of modern amphiumas, with a subsequent strong size reduction in A. pholeter, or gigantism independently evolved twice in the modern species, A. means and A. tridactylum. These patterns are concordant with differences in habitat breadth and range size among lineages, and have implications for reproductive isolation and diversification of amphiumid salamanders.

  13. Live imaging reveals the progenitors and cell dynamics of limb regeneration

    Science.gov (United States)

    Alwes, Frederike; Enjolras, Camille; Averof, Michalis

    2016-01-01

    Regeneration is a complex and dynamic process, mobilizing diverse cell types and remodelling tissues over long time periods. Tracking cell fate and behaviour during regeneration in active adult animals is especially challenging. Here, we establish continuous live imaging of leg regeneration at single-cell resolution in the crustacean Parhyale hawaiensis. By live recordings encompassing the first 4-5 days after amputation, we capture the cellular events that contribute to wound closure and morphogenesis of regenerating legs with unprecedented resolution and temporal detail. Using these recordings we are able to track cell lineages, to generate fate maps of the blastema and to identify the progenitors of regenerated epidermis. We find that there are no specialized stem cells for the epidermis. Most epidermal cells in the distal part of the leg stump proliferate, acquire new positional values and contribute to new segments in the regenerating leg. DOI: http://dx.doi.org/10.7554/eLife.19766.001 PMID:27776632

  14. From biomedicine to natural history research: EST resources for ambystomatid salamanders

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2004-08-01

    Full Text Available Abstract Background Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum and Eastern tiger salamander (A. tigrinum tigrinum, species with deep and diverse research histories. Results Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. Conclusions Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research.

  15. Hyaluronic acid in the tail and limb of amphibians and lizards recreates permissive embryonic conditions for regeneration due to its hygroscopic and immunosuppressive properties.

    Science.gov (United States)

    Alibardi, Lorenzo

    2017-12-01

    The present review focuses on the role of hyaluronate (hyaluronic acid; HA) during limb and tail regeneration in amphibians and lizards mainly in relation to cells of the immune system. This non-sulfated glycosaminoglycan (GAG) increases in early stages of wound healing and blastema formation, like during limb or tail embryogenesis, when the immune system is still immature. The formation of a regenerating blastema occurs by the accumulation of mesenchymal cells displaying embryonic-like antigens and HA. This GAG adsorbs large amount of water and generates a soft tissue over 80% hydrated where mesenchymal and epithelial cells can move and interact, an obligatory passage for organ regeneration. GAGs and HA in particular rise to a high amount and coat plasma membranes of blastema cells forming a shield that likely impedes to the circulating immune cells to elicit an immune reaction against the embryonic-like antigens present on blastema cells. The evolution of limb-tail regeneration in amphibians dates back to the Devonian-Carboniferous, while tail regeneration in lizards is a more recent evolution process, possibly occurred since the Jurassic, which is unique among amniotes. Both processes are associated with the reactivation of proliferating embryonic programs that involve the upregulation of genes for Wnt, non-coding RNAs, and HA synthesis in an immune-suppress organ, the regenerative blastema. Failure of maintaining a lasting HA synthesis for the formation of a highly hydrated blastema leads to scarring, the common healing process of amniotes equipped with an efficient immune system. The study of amphibian and lizard regeneration indicates that attempts to stimulate organ regeneration in other vertebrates require the induction of a highly hydrated and immune-depressed, HA-rich environment, similar to the extracellular environment present during development. © 2017 Wiley Periodicals, Inc.

  16. A new species of salamander (Caudata: Plethodontidae, Bolitoglossa) from Sierra Nevada de Mérida, Venezuela.

    Science.gov (United States)

    García-Gutiérrez, Javier; Escalona, Moisés; Mora, Andrés; Díaz De Pascual, Amelia; Fermin, Gustavo

    2013-01-01

    In this article, a new species of salamander of the genus Bolitoglossa (Eladinea) from the cloud forest near La Mucuy in Sierra Nevada de Mérida, Venezuelan Andes, is described. Bolitoglossa mucuyensis sp. nov. differs from all Venezuelan salamanders, except B. orestes, by a larger SVL/TL ratio, and from La Culata salamander B. orestes by a reduced webbing extension of the front and hind limbs. Additionally, B. mucuyensis sp. nov. and B. orestes diverge 3.12% in terms of the nucleotide sequence of the 16S rRNA gene, as previously reported, and in 8.1% for the cytb gene as shown in this study.

  17. A potential wound-healing-promoting peptide from salamander skin.

    Science.gov (United States)

    Mu, Lixian; Tang, Jing; Liu, Han; Shen, Chuanbin; Rong, Mingqiang; Zhang, Zhiye; Lai, Ren

    2014-09-01

    Although it is well known that wound healing proceeds incredibly quickly in urodele amphibians, such as newts and salamanders, little is known about skin-wound healing, and no bioactive/effector substance that contributes to wound healing has been identified from these animals. As a step toward understanding salamander wound healing and skin regeneration, a potential wound-healing-promoting peptide (tylotoin; KCVRQNNKRVCK) was identified from salamander skin of Tylototriton verrucosus. It shows comparable wound-healing-promoting ability (EC50=11.14 μg/ml) with epidermal growth factor (EGF; NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR) in a murine model of full-thickness dermal wound. Tylotoin directly enhances the motility and proliferation of keratinocytes, vascular endothelial cells, and fibroblasts, resulting in accelerated reepithelialization and granulation tissue formation in the wound site. Tylotoin also promotes the release of transforming growth factor β1 (TGF-β1) and interleukin 6 (IL-6), which are essential in the wound healing response. Gene-encoded tylotoin secreted in salamander skin is possibly an effector molecule for skin wound healing. This study may facilitate understanding of the cellular and molecular events that underlie quick wound healing in salamanders. © FASEB.

  18. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.

    Science.gov (United States)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M

    2017-03-27

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Rodrigues Alexandre

    2012-02-01

    Full Text Available Abstract Background Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Results Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Conclusions Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms.

  20. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae.

    Science.gov (United States)

    Rodrigues, Alexandre Miguel Cavaco; Christen, Bea; Martí, Mercé; Izpisúa Belmonte, Juan Carlos

    2012-02-27

    Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders) indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms.

  1. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae

    Science.gov (United States)

    2012-01-01

    Background Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders) indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Results Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Conclusions Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms. PMID:22369050

  2. Diagnostic and molecular evaluation of three iridovirus-associated salamander mortality events

    Science.gov (United States)

    Docherty, D.E.; Meteyer, C.U.; Wang, Jingyuan; Mao, J.; Case, S.T.; Chinchar, V.G.

    2003-01-01

    In 1998 viruses were isolated from tiger salamander larvae (Ambystoma tigrinum diaboli and A. tigrinum melanostictum) involved in North Dakota and Utah (USA) mortality events and spotted salamander (A. maculatum) larvae in a third event in Maine (USA). Although sympatric caudates and anurans were present at all three sites only ambystomid larvae appeared to be affected. Mortality at the North Dakota site was in the thousands while at the Utah and Maine sites mortality was in the hundreds. Sick larvae were lethargic and slow moving. They swam in circles with obvious buoyancy problems and were unable to remain upright. On the ventral surface, near the gills and hind limbs, red spots or swollen areas were noted. Necropsy findings included: hemorrhages and ulceration of the skin, subcutaneous and intramuscular edema, swollen and pale livers with multifocal hemorrhage, and distended fluid-filled intestines with areas of hemorrhage. Light microscopy revealed intracytoplasmic inclusions, suggestive of a viral infection, in a variety of organs. Electron microscopy of ultra thin sections of the same tissues revealed iridovirus-like particles within the inclusions. These viruses were isolated from a variety of organs, indicating a systemic infection. Representative viral isolates from the three mortality events were characterized using molecular assays. Characterization confirmed that the viral isolates were iridoviruses and that the two tiger salamander isolates were similar and could be distinguished from the spotted salamander isolate. The spotted salamander isolate was similar to frog virus 3, the type species of the genus Ranavirus, while the tiger salamander isolates were not. These data indicate that different species of salamanders can become infected and die in association with different iridoviruses. Challenge assays are required to determine the fish and amphibian host range of these isolates and to assess the susceptibility of tiger and spotted salamanders to

  3. A new and improved algorithm for the quantification of chromatin condensation from microscopic data shows decreased chromatin condensation in regenerating axolotl limb cells.

    Directory of Open Access Journals (Sweden)

    Julian Sosnik

    Full Text Available The nuclear landscape plays an important role in the regulation of tissue and positional specific genes in embryonic and developing cells. Changes in this landscape can be dynamic, and are associated with the differentiation of cells during embryogenesis, and the de-differentiation of cells during induced pluripotent stem cell (iPSC formation and in many cancers. However, tools to quantitatively characterize these changes are limited, especially in the in vivo context, where numerous tissue types are present and cells are arranged in multiple layers. Previous tools have been optimized for the monolayer nature of cultured cells. Therefore, we present a new algorithm to quantify the condensation of chromatin in two in vivo systems. We first developed this algorithm to quantify changes in chromatin compaction and validated it in differentiating spermatids in zebrafish testes. Our algorithm successfully detected the typical increase in chromatin compaction as these cells differentiate. We then employed the algorithm to quantify the changes that occur in amphibian limb cells as they participate in a regenerative response. We observed that the chromatin in the limb cells de-compacts as they contribute to the regenerating organ. We present this new tool as an open sourced software that can be readily accessed and optimized to quantify chromatin compaction in complex multi-layered samples.

  4. A new and improved algorithm for the quantification of chromatin condensation from microscopic data shows decreased chromatin condensation in regenerating axolotl limb cells.

    Science.gov (United States)

    Sosnik, Julian; Vieira, Warren A; Webster, Kaitlyn A; Siegfried, Kellee R; McCusker, Catherine D

    2017-01-01

    The nuclear landscape plays an important role in the regulation of tissue and positional specific genes in embryonic and developing cells. Changes in this landscape can be dynamic, and are associated with the differentiation of cells during embryogenesis, and the de-differentiation of cells during induced pluripotent stem cell (iPSC) formation and in many cancers. However, tools to quantitatively characterize these changes are limited, especially in the in vivo context, where numerous tissue types are present and cells are arranged in multiple layers. Previous tools have been optimized for the monolayer nature of cultured cells. Therefore, we present a new algorithm to quantify the condensation of chromatin in two in vivo systems. We first developed this algorithm to quantify changes in chromatin compaction and validated it in differentiating spermatids in zebrafish testes. Our algorithm successfully detected the typical increase in chromatin compaction as these cells differentiate. We then employed the algorithm to quantify the changes that occur in amphibian limb cells as they participate in a regenerative response. We observed that the chromatin in the limb cells de-compacts as they contribute to the regenerating organ. We present this new tool as an open sourced software that can be readily accessed and optimized to quantify chromatin compaction in complex multi-layered samples.

  5. Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion.

    Science.gov (United States)

    Sheffield, K Megan; Blob, Richard W

    2011-08-01

    Salamanders are often used as representatives of the basal tetrapod body plan in functional studies, but little is known about the loads experienced by their limb bones during locomotion. Although salamanders' slow walking speeds might lead to low locomotor forces and limb bone stresses similar to those of non-avian reptiles, their highly sprawled posture combined with relatively small limb bones could produce elevated limb bone stresses closer to those of avian and mammalian species. This study evaluates the loads on the femur of the tiger salamander (Ambystoma tigrinum) during terrestrial locomotion using three-dimensional measurements of the ground reaction force (GRF) and hindlimb kinematics, as well as anatomical measurements of the femur and hindlimb muscles. At peak stress (29.8 ± 2.0% stance), the net GRF magnitude averaged 0.42 body weights and was directed nearly vertically for the middle 20-40% of the contact interval, essentially perpendicular to the femur. Although torsional shear stresses were significant (4.1 ± 0.3 MPa), bending stresses experienced by the femur were low compared with other vertebrate lineages (tensile: 14.9 ± 0.8 MPa; compressive: -18.9 ± 1.0 MPa), and mechanical property tests indicated yield strengths that were fairly standard for tetrapods (157.1 ± 3.7 MPa). Femoral bending safety factors (10.5) were considerably higher than values typical for birds and mammals, and closer to the elevated values calculated for reptilian species. These results suggest that high limb bone safety factors may have an ancient evolutionary history, though the underlying cause of high safety factors (e.g. low limb bone loads, high bone strength or a combination of the two) may vary among lineages.

  6. Shifty salamanders: transient trophic polymorphism and cannibalism within natural populations of larval ambystomatid salamanders.

    Science.gov (United States)

    Jefferson, Dale M; Ferrari, Maud Co; Mathis, Alicia; Hobson, Keith A; Britzke, Eric R; Crane, Adam L; Blaustein, Andrew R; Chivers, Douglas P

    2014-01-01

    Many species of ambystomatid salamanders are dependent upon highly variable temporary wetlands for larval development. High larval densities may prompt the expression of a distinct head morphology that may facilitate cannibalism. However, few studies have characterized structural cannibalism within natural populations of larval salamanders. In this study we used two species of larval salamanders, long-toed (Ambystoma macrodactylum) and ringed salamanders (A. annulatum). Head morphometrics and stable isotopic values of carbon (δ(13)C) and nitrogen (δ(15)N) were used to identify the presence or absence of structural cannibalism. Weather conditions were also analyzed as a potential factor associated with the expression of cannibalistic morphology. Populations of salamander larvae did not consistently exhibit cannibalistic morphologies throughout collection periods. Larval long-toed salamanders exhibited trophic polymorphisms when relatively lower precipitation amounts were observed. Larval ringed salamanders were observed to be cannibalistic but did not exhibit polymorphisms in this study. Structural cannibalism may be transient in both species; however in long-toed salamanders this morphology is necessary for cannibalism. Ringed salamanders can be cannibalistic without morphological adaptations; however the cannibal morph may prolong the viable time period for cannibalism. Additionally, weather conditions may alter pond hydroperiod, subsequently influencing head morphology and cannibalism.

  7. Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease.

    Directory of Open Access Journals (Sweden)

    Matthew H Becker

    Full Text Available Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd, is an infectious disease that causes population declines of many amphibians. Cutaneous bacteria isolated from redback salamanders, Plethodon cinereus, and mountain yellow-legged frogs, Rana muscosa, inhibit the growth of Bd in vitro. In this study, the bacterial community present on the skin of P. cinereus individuals was investigated to determine if it provides protection to salamanders from the lethal and sub-lethal effects of chytridiomycosis. When the cutaneous bacterial community was reduced prior to Bd exposure, salamanders experienced a significantly greater decrease in body mass, which is a symptom of the disease, when compared to infected individuals with a normal bacterial community. In addition, a greater proportion of infected individuals with a reduced bacterial community experienced limb-lifting, a behavior seen only in infected individuals. Overall, these results demonstrate that the cutaneous bacterial community of P. cinereus provides protection to the salamander from Bd and that alteration of this community can change disease resistance. Therefore, symbiotic microbes associated with this species appear to be an important component of its innate skin defenses.

  8. Live fate-mapping of joint-associated fibroblasts visualizes expansion of cell contributions during zebrafish fin regeneration.

    Science.gov (United States)

    Tornini, Valerie A; Thompson, John D; Allen, Raymond L; Poss, Kenneth D

    2017-08-15

    The blastema is a mass of progenitor cells responsible for regeneration of amputated salamander limbs and fish fins. Previous studies have indicated that resident cell sources producing the blastema contribute lineage-restricted progeny to regenerating tissue. However, these studies have labeled general cell types rather than granular cell subpopulations, and they do not explain the developmental transitions that must occur for distal structures to arise from cells with proximal identities in the appendage stump. Here, we find that regulatory sequences of tph1b, which encodes an enzyme that synthesizes serotonin, mark a subpopulation of fibroblast-like cells restricted to the joints of uninjured adult zebrafish fins. Amputation stimulates serotonin production in regenerating fin fibroblasts, yet targeted tph1b mutations abrogating this response do not disrupt fin regeneration. In uninjured animals, tph1b-expressing cells contribute fibroblast progeny that remain restricted to joints throughout life. By contrast, upon amputation, tph1b+ joint cells give rise to fibroblasts that distribute across the entire lengths of regenerating fin rays. Our experiments visualize and quantify how incorporation into an appendage blastema broadens the progeny contributions of a cellular subpopulation that normally has proximodistal restrictions. © 2017. Published by The Company of Biologists Ltd.

  9. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    Science.gov (United States)

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique

  10. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    Directory of Open Access Journals (Sweden)

    Damien B Wilburn

    Full Text Available In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s without the immediate need for complementary mutations. Consequently

  11. Telocytes in pancreas of the Chinese giant salamander (Andrias davidianus).

    Science.gov (United States)

    Zhang, Hui; Yu, Pengcheng; Zhong, Shengwei; Ge, Tingting; Peng, Shasha; Guo, Xiaoquan; Zhou, Zuohong

    2016-11-01

    Telocytes (TCs), novel interstitial cells, have been identified in various organs of many mammals. However, information about TCs of lower animals remains rare. Herein, pancreatic TCs of the Chinese giant salamanders (Andrias davidianus) were identified by CD34 immunohistochemistry (IHC) and transmission electron microscopy (TEM). The IHC micrographs revealed CD34 + TCs with long telopodes (Tps) that were located in the interstitium of the pancreas. CD34 + TCs/Tps were frequently observed between exocrine acinar cells and were close to blood vessels. The TEM micrographs also showed the existence of TCs in the interstitium of the pancreas. TCs had distinctive ultrastructural features, such as one to three very long and thin Tps with podoms and podomers, caveolae, dichotomous branching, neighbouring exosomes and vesicles. The Tps and exosomes were found in close proximity to exocrine acinar cells and α cells. It is suggested that TCs may play a role in the regeneration of acinar cells and α cells. In conclusion, our results demonstrated the presence of TCs in the pancreas of the Chinese giant salamander. This finding will assist us in a better understanding of TCs functions in the amphibian pancreas. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration.

    Science.gov (United States)

    Fei, Ji-Feng; Schuez, Maritta; Tazaki, Akira; Taniguchi, Yuka; Roensch, Kathleen; Tanaka, Elly M

    2014-09-09

    The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC) and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Cheat Mountain Salamander Survey Summary for 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary goal for this project is to establish baseline information on populations of the Cheat Mountain salamander on the refuge. In the future, an additional...

  14. Conservation assessment for the Siskiyou Mountains salamander and Scott Bar salamander in northern California.

    Energy Technology Data Exchange (ETDEWEB)

    Vinikour, W. S.; LaGory, K. E.; Adduci, J. J.; Environmental Science Division

    2006-10-20

    The purpose of this conservation assessment is to summarize existing knowledge regarding the biology and ecology of the Siskiyou Mountains salamander and Scott Bar salamander, identify threats to the two species, and identify conservation considerations to aid federal management for persistence of the species. The conservation assessment will serve as the basis for a conservation strategy for the species.

  15. CMS Survey / Bald Knob for Cheat Mountain Salamanders 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Several survey reports and summary dated: 1.) Bald Knob was surveyed on 05 June 2002 for Cheat Mountain Salamanders. No Cheat Mountain Salamanders (CMS) were...

  16. Evolution of coprophagy and nutrient absorption in a Cave Salamander

    National Research Council Canada - National Science Library

    Daphne Soares; Rachel Adams; Shea Hammond; Michael E. Slay; Danté B. Fenolio; Matthew L. Niemiller

    2017-01-01

    .... One strategy against starvation is to expand diet breadth. Grotto Salamanders (Eurycea spelaea (Stejneger, 1892)) are known to ingest bat guano deliberately, challenging the general understanding that salamanders are strictly carnivorous...

  17. Sensory Feedback Plays a Significant Role in Generating Walking Gait and in Gait Transition in Salamanders: A Simulation Study

    Science.gov (United States)

    Harischandra, Nalin; Knuesel, Jeremie; Kozlov, Alexander; Bicanski, Andrej; Cabelguen, Jean-Marie; Ijspeert, Auke; Ekeberg, Örjan

    2011-01-01

    Here, we investigate the role of sensory feedback in gait generation and transition by using a three-dimensional, neuro-musculo-mechanical model of a salamander with realistic physical parameters. Activation of limb and axial muscles were driven by neural output patterns obtained from a central pattern generator (CPG) which is composed of simulated spiking neurons with adaptation. The CPG consists of a body-CPG and four limb-CPGs that are interconnected via synapses both ipsilaterally and contralaterally. We use the model both with and without sensory modulation and four different combinations of ipsilateral and contralateral coupling between the limb-CPGs. We found that the proprioceptive sensory inputs are essential in obtaining a coordinated lateral sequence walking gait (walking). The sensory feedback includes the signals coming from the stretch receptor like intraspinal neurons located in the girdle regions and the limb stretch receptors residing in the hip and scapula regions of the salamander. On the other hand, walking trot gait (trotting) is more under central (CPG) influence compared to that of the peripheral or sensory feedback. We found that the gait transition from walking to trotting can be induced by increased activity of the descending drive coming from the mesencephalic locomotor region and is helped by the sensory inputs at the hip and scapula regions detecting the late stance phase. More neurophysiological experiments are required to identify the precise type of mechanoreceptors in the salamander and the neural mechanisms mediating the sensory modulation. PMID:22069388

  18. Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: A simulation study

    Directory of Open Access Journals (Sweden)

    Nalin eHarischandra

    2011-11-01

    Full Text Available Here, we use a three-dimensional, neuro-musculo-mechanical model of a salamander with realistic physical parameters in order to investigate the role of sensory feedback in gait generation and transition. Activation of limb and axial muscles were driven by neural output patterns obtained from a central pattern generator (CPG which is composed of simulated spiking neurons with adaptation. The CPG consists of a body CPG and four limb CPGs that are interconnected via synapses both ipsilateraly and contralaterally. We use the model both with and without sensory modulation and for different combinations of ipsilateral and contralateral coupling between the limb CPGs. We found that the proprioceptive sensory inputs are essential in obtaining a coordinated walking gait. The sensory feedback includes the signals coming from the stretch receptor like intraspinal neurons located in the girdle regions and the limb stretch receptors residing in the hip and scapula regions of the salamander. On the other hand, coordinated motor output patterns for the trotting gait were obtainable without the sensory inputs. We found that the gait transition from walking to trotting can be induced by increased activity of the descending drive coming from the mesencephalic locomotor region (MLR and is helped by the sensory inputs at the hip and scapula regions detecting the late stance phase. More neurophysiological experiments are required to identify the precise type of mechanoreceptors in the salamander and the neural mechanisms mediating the sensory modulation.

  19. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders.

    Directory of Open Access Journals (Sweden)

    Julie L Ziemba

    Full Text Available Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp. are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding. We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from "non-invaded" and "pheretimoid invaded" sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance

  20. Invasive Asian Earthworms Negatively Impact Keystone Terrestrial Salamanders.

    Science.gov (United States)

    Ziemba, Julie L; Hickerson, Cari-Ann M; Anthony, Carl D

    2016-01-01

    Asian pheretimoid earthworms (e.g. Amynthas and Metaphire spp.) are invading North American forests and consuming the vital detrital layer that forest floor biota [including the keystone species Plethodon cinereus (Eastern Red-backed Salamander)], rely on for protection, food, and habitat. Plethodon cinereus population declines have been associated with leaf litter loss following the invasion of several exotic earthworm species, but there have been few studies on the specific interactions between pheretimoid earthworms and P. cinereus. Since some species of large and active pheretimoids spatially overlap with salamanders beneath natural cover objects and in detritus, they may distinctively compound the negative consequences of earthworm-mediated resource degradation by physically disturbing important salamander activities (foraging, mating, and egg brooding). We predicted that earthworms would exclude salamanders from high quality microhabitat, reduce foraging efficiency, and negatively affect salamander fitness. In laboratory trials, salamanders used lower quality microhabitat and consumed fewer flies in the presence of earthworms. In a natural field experiment, conducted on salamander populations from "non-invaded" and "pheretimoid invaded" sites in Ohio, salamanders and earthworms shared cover objects ~60% less than expected. Earthworm abundance was negatively associated with juvenile and male salamander abundance, but had no relationship with female salamander abundance. There was no effect of pheretimoid invasion on salamander body condition. Juvenile and non-resident male salamanders do not hold stable territories centered beneath cover objects such as rocks or logs, which results in reduced access to prey, greater risk of desiccation, and dispersal pressure. Habitat degradation and physical exclusion of salamanders from cover objects may hinder juvenile and male salamander performance, ultimately reducing recruitment and salamander abundance following Asian

  1. Effects of Timber Harvests and Silvicultural Edges on Terrestrial Salamanders

    Science.gov (United States)

    MacNeil, Jami E.; Williams, Rod N.

    2014-01-01

    Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years. Long

  2. Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development.

    Science.gov (United States)

    Fröbisch, Nadia B; Carroll, Robert L; Schoch, Rainer R

    2007-01-01

    Despite the wide range of shapes and sizes that accompany a vast variety of functions, the development of tetrapod limbs follows a conservative pattern of de novo condensation, branching, and segmentation. Development of the zeugopodium and digital arch typically occurs in a posterior to anterior sequence, referred to as postaxial dominance, with a digital sequence of 4-3-5-2-1. The only exception to this pattern in all of living Tetrapoda can be found in salamanders, which display a preaxial dominance in limb development, a de novo condensation of a basale commune (distal carpal/tarsal 1+2) and a precoccial development of digits I and II. These divergent patterns have puzzled researchers for over a century leading to various explanatory hypotheses. Despite many advances in research on tetrapod limb development, the divergent evolution of these two pathways and its causes are still not understood. Based on an extensive ontogenetic series we investigated the pattern of limb development of the 300 Ma old branchiosaurid amphibian Apateon. This revealed a preaxial dominance in limb development that was previously believed to be unique and derived for modern salamanders. The Branchiosauridae are favored as close relatives of extant salamanders in most phylogenetic hypotheses of the highly controversial origins and relationships of extant amphibians. The findings provide new insights into the evolution of developmental pathways in tetrapod limb development, the relationships of modern amphibians with possible Paleozoic antecedents, and their initial timing of divergence.

  3. Genic regions of a large salamander genome contain long introns and novel genes

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2009-01-01

    Full Text Available Abstract Background The basis of genome size variation remains an outstanding question because DNA sequence data are lacking for organisms with large genomes. Sixteen BAC clones from the Mexican axolotl (Ambystoma mexicanum: c-value = 32 × 109 bp were isolated and sequenced to characterize the structure of genic regions. Results Annotation of genes within BACs showed that axolotl introns are on average 10× longer than orthologous vertebrate introns and they are predicted to contain more functional elements, including miRNAs and snoRNAs. Loci were discovered within BACs for two novel EST transcripts that are differentially expressed during spinal cord regeneration and skin metamorphosis. Unexpectedly, a third novel gene was also discovered while manually annotating BACs. Analysis of human-axolotl protein-coding sequences suggests there are 2% more lineage specific genes in the axolotl genome than the human genome, but the great majority (86% of genes between axolotl and human are predicted to be 1:1 orthologs. Considering that axolotl genes are on average 5× larger than human genes, the genic component of the salamander genome is estimated to be incredibly large, approximately 2.8 gigabases! Conclusion This study shows that a large salamander genome has a correspondingly large genic component, primarily because genes have incredibly long introns. These intronic sequences may harbor novel coding and non-coding sequences that regulate biological processes that are unique to salamanders.

  4. Diversification and biogeographical history of Neotropical plethodontid salamanders

    National Research Council Canada - National Science Library

    Rovito, Sean M; Parra‐Olea, Gabriela; Recuero, Ernesto; Wake, David B

    2015-01-01

    ...% of global salamander species diversity. Despite decades of morphological studies and molecular work, a robust multilocus phylogenetic hypothesis based on DNA sequence data is lacking for the group...

  5. Stream salamanders as indicators of stream quality in Maryland, USA

    Science.gov (United States)

    Southerland, M.T.; Jung, R.E.; Baxter, D.P.; Chellman, I.C.; Mercurio, G.; Volstad, J.H.

    2004-01-01

    Biological indicators are critical to the protection of small, headwater streams and the ecological values they provide. Maryland and other state monitoring programs have determined that fish indicators are ineffective in small streams, where stream salamanders may replace fish as top predators. Because of their life history, physiology, abundance, and ubiquity, stream salamanders are likely representative of biological integrity in these streams. The goal of this study was to determine whether stream salamanders are effective indicators of ecological conditions across biogeographic regions and gradients of human disturbance. During the summers of 2001 and 2002, we intensively surveyed for stream salamanders at 76 stream sites located west of the Maryland Coastal Plain, sites also monitored by the Maryland Biological Stream Survey (MBSS) and City of Gaithersburg. We found 1,584 stream salamanders, including all eight species known in Maryland, using two 15 ? 2 m transects and two 4 m2 quadrats that spanned both stream bank and channel. We performed removal sampling on transects to estimate salamander species detection probabilities, which ranged from 0.67-0.85. Stepwise regressions identified 15 of 52 non-salamander variables, representing water quality, physical habitat, land use, and biological conditions, which best predicted salamander metrics. Indicator development involved (1) identifying reference (non-degraded) and degraded sites (using percent forest, shading, riparian buffer width, aesthetic rating, and benthic macroinvertebrate and fish indices of biotic integrity); (2) testing 12 candidate salamander metrics (representing species richness and composition, abundance, species tolerance, and reproductive function) for their ability to distinguish reference from degraded sites; and (3) combining metrics into an index that effectively discriminated sites according to known stream conditions. Final indices for Highlands, Piedmont, and Non-Coastal Plain

  6. Reproductive biology of Ambystoma salamanders in the southeastern United States

    Science.gov (United States)

    Glorioso, Brad M.; Waddle, J. Hardin; Hefner, J. M.

    2015-01-01

    Reproductive aspects of Ambystoma salamanders were investigated at sites in Louisiana (2010–12) and Mississippi (2013). Three species occurred at the Louisiana site, Spotted Salamander (A. maculatum), Marbled Salamander (A. opacum), and Mole Salamander (A. talpoideum), whereas only Spotted Salamanders were studied at the Mississippi site. A total of 162 and 71 egg masses of Spotted Salamanders were examined at the Louisiana and Mississippi sites, respectively. Significantly more Spotted Salamander eggs per egg mass were observed at the Mississippi site (x̄ = 78.2) than the Louisiana site (x̄ = 53.8; P < 0.001). The mean snout–vent length of female Spotted Salamanders at the Mississippi site (82.9 mm) was significantly larger than the Louisiana site (76.1 mm; P < 0.001). Opaque Spotted Salamander egg masses were not found at the Mississippi site, but accounted for 11% of examined egg masses at the Louisiana site. The mean number of eggs per egg mass at the Louisiana site did not differ between opaque (47.3) and clear (54.6) egg masses (P = 0.21). A total of 47 egg masses of the Mole Salamander were examined, with a mean number of 6.7 embryos per mass. Twenty-three individual nests of the Marbled Salamander were found either under or in decaying logs in the dry pond basins. There was no difference between the mean numbers of eggs per mass of attended nests (93.0) versus those that were discovered unattended (86.6; P = 0.67). Females tended to place their nests at intermediate heights within the pond basin.

  7. Bromeliad Selection by Two Salamander Species in a Harsh Environment

    Science.gov (United States)

    Ruano-Fajardo, Gustavo; Rovito, Sean M.; Ladle, Richard J.

    2014-01-01

    Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya) in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height), as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment. PMID:24892414

  8. Bromeliad selection by two salamander species in a harsh environment.

    Directory of Open Access Journals (Sweden)

    Gustavo Ruano-Fajardo

    Full Text Available Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height, as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment.

  9. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    Science.gov (United States)

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  10. Northwestern salamanders Ambystoma gracile in mountain lakes: record oviposition depths among salamanders

    Science.gov (United States)

    Hoffman, R.; Pearl, C.A.; Larson, G.L.; Samora, B.

    2012-01-01

    Oviposition timing, behaviors, and microhabitats of ambystomatid salamanders vary considerably (Egan and Paton 2004; Figiel and Semlitsch 1995; Howard and Wallace 1985; Mac-Cracken 2007). Regardless of species, however, females typically oviposit using sites conducive to embryo development and survival. For example, the results of an experiment by Figiel and Semlitsch (1995) on Ambystoma opacum (Marbled Salamander) oviposition indicated that females actively selected sites that were under grass clumps in wet versus dry treatments, and surmised that environmental conditions such as humidity, moisture, and temperature contributed to their results. Other factors associated with ambystomatid oviposition and embryo survival include water temperature (Anderson 1972; Brown 1976), dissolved oxygen concentration (Petranka et al. 1982; Sacerdote and King 2009), oviposition depth (Dougherty et al. 2005; Egan and Paton 2004), and oviposition attachment structures such as woody vegetation (McCracken 2007; Nussbaum et al. 1983). Resetarits (1996), in creating a model of oviposition site selection for anuran amphibians, hypothesized that oviparous organisms were also capable of modifying oviposition behavior and site selection to accommodate varying habitat conditions and to minimize potential negative effects of environmental stressors. Kats and Sih (1992), investigating the oviposition of Ambystoma barbouri (Streamside Salamander) in pools of a Kentucky stream, found that females preferred pools without predatory Lepomis cyanellus (Green Sunfish), and that the number of egg masses present in a pool historically containing fish increased significantly the year after fish had been extirpated from the pool. Palen et al. (2005) determined that Ambystoma gracile (Northwestern Salamander) and Ambystoma macrodactylum (Longtoed Salamander) eggs were deposited either at increased depth or in full shaded habitats, respectively, as water transperancy to UV-B radiation increased.

  11. Ecological separation in a polymorphic terrestrial salamander.

    Science.gov (United States)

    Anthony, Carl D; Venesky, Matthew D; Hickerson, Cari-Ann M

    2008-07-01

    1. When studying speciation, researchers commonly examine reproductive isolation in recently diverged populations. Polymorphic species provide an opportunity to examine the role of reproductive isolation in populations that may be in the process of divergence. 2. We examined a polymorphic population of Plethodon cinereus (red-backed salamanders) for evidence of sympatric ecological separation by colour morphology. Recent studies have correlated temperature and climate with colour morphology in this species, but no studies have looked at differences in diet or mate choice between colour morphs. We used artificial cover objects to assess salamander diet, mating preference and surface activity over a 2-year period at a field site in north-eastern Ohio. 3. We detected differences in diet between two colour morphs, striped and unstriped. The diets of striped individuals were significantly more diverse and were made up of more profitable prey than the diets of unstriped salamanders. 4. Opposite sex pairs were made up of individuals of the same colour morph and striped males were found more often with larger females than were unstriped males. 5. We corroborate findings of earlier studies suggesting that the unstriped form is adapted to warmer conditions. Unstriped individuals were the first to withdraw from the forest floor as temperatures fell in the late fall. We found no evidence that the colour morphs responded differently to abiotic factors such as soil moisture and relative humidity, and responses to surface temperatures were also equivocal. 6. We conclude that the two colour morphs exhibit some degree of ecological separation and tend to mate assortatively, but are unlikely to be undergoing divergence given the observed frequency of intermorph pairings.

  12. Effects of red-backed salamanders on ecosystem functions.

    Directory of Open Access Journals (Sweden)

    Daniel J Hocking

    Full Text Available Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp. likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m(2 plots and small-scale enclosures (2 m(2 where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m(-2. In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders. Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types.

  13. Artificial Limbs

    Science.gov (United States)

    ... you are missing an arm or leg, an artificial limb can sometimes replace it. The device, which ... activities such as walking, eating, or dressing. Some artificial limbs let you function nearly as well as ...

  14. Paedomorphosis and simplification in the nervous system of salamanders.

    Science.gov (United States)

    Roth, G; Nishikawa, K C; Naujoks-Manteuffel, C; Schmidt, A; Wake, D B

    1993-01-01

    Comparative neuroanatomists since Herrick [1914] have been aware of the paradox that the brain of amphibians, especially salamanders, is less complex than one would expect based on their phylogenetic position among the Tetrapoda. Many features of the brain are less differentiated in salamanders than in tetrapod outgroups, including chondrichthyans and bony fishes, and for some brain characters, the salamander brain is even more simple than that of the agnathans. Here, we perform a cladistic analysis on 23 characters of four sensory systems (visual, auditory, lateral line and olfactory) and the brain. Our taxa include myxinoids, lampreys, chondrichthyans, actinopterygians, Latimeria, Neoceratodus and the lepidosirenid lungfishes, amniotes, frogs, caecilians, salamanders and bolitoglossine salamanders. Of the 23 characters we examined, 19 are most parsimoniously interpreted as secondarily simplified in salamanders from a more complex ancestral state, two characters are equally parsimonious under both hypotheses, one character (well developed ipsilateral retinotectal projections) is more complex in bolitoglossine salamanders than in vertebrates generally, and only one character (migration of neurons in the medial pallium) is most parsimoniously interpreted as retention of the plesiomorphically simple condition. Secondary simplification of the salamander brain appears to result from paedomorphosis, or retention of juvenile or embryonic morphology into adulthood. Paedomorphosis is correlated with an increase in genome size, which in turn is positively correlated with cell size, but negatively correlated with cell proliferation and differentiation rates. Available data suggest that, although increasing genome size and paedomorphosis tend to compromise the function of the salamander brain, compensating mechanisms have evolved that may restore or even enhance brain function.

  15. Night Area Search for Cheat Mountain Salamanders, 2009

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — On July 8, 2009 a night area search was conducted for presence of Cheat Mountain salamanders (Plethodon nettingi) on the Kelly Elkins Tract of the Refuge. A total of...

  16. Cheat Mountain Salamander Coverboard Survey Summary for 2001

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary goal for this project is to establish baseline information on populations of the Cheat Mountain salamander on the refuge. In the future, an additional...

  17. Final Critical Habitat for the San Marcos salamander (Eurycea nana)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To provide the user with a general idea of areas where final critical habitat for San Marcos salamander (Eurycea nana) occur based on the description provided in the...

  18. Evolution of coprophagy and nutrient absorption in a Cave Salamander

    Directory of Open Access Journals (Sweden)

    Daphne Soares

    2017-11-01

    Full Text Available The transition from carnivory to omnivory is poorly understood. The ability to feed at more than one trophic level theoretically increases an animal’s fitness in a novel environment. Because of the absence of light and photosynthesis, most subterranean ecosystems are characterized by very few trophic levels, such that food scarcity is a challenge in many subterranean habitats. One strategy against starvation is to expand diet breadth. Grotto Salamanders (Eurycea spelaea (Stejneger, 1892 are known to ingest bat guano deliberately, challenging the general understanding that salamanders are strictly carnivorous. Here we tested the hypothesis that grotto salamanders have broadened their diet related to cave adaptation and found that, although coprophagous behavior is present, salamanders are unable to acquire sufficient nutrition from bat guano alone. Our results suggest that the coprophagic behavior has emerged prior to physiological or gut biome adaptations.

  19. Final Critical Habitat for Reticulated Flatwoods Salamander (Ambystoma bishopi)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify, in general, the areas of final critical habitat for the endangered Ambystoma bishopi (reticulated flatwoods salamander).

  20. Streamside Salamander Inventory and Monitoring Northeast Refuges Summer 2001

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives of this project are to (1) conduct transect and quadrat sampling for streamside salamanders, (2) determine detection rates and population estimates...

  1. Streamside Salamander Inventory and Monitoring Northeast Refuges Summer 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives of this project are to (1) conduct transect and quadrat sampling for streamside salamanders, (2) determine detection rates and population estimates...

  2. Influence of headwater site conditions and riparian buffers on terrestrial salamander response to forest thinning.

    Science.gov (United States)

    D.E. Rundio; D.H. Olson

    2007-01-01

    We examined the effect of forest thinning and riparian buffers along headwater streams on terrestrial salamanders at two sites in western Oregon. Salamander numbers were reduced postthinning at one site with lower down-wood volume. Terrestrial salamander distributions along stream-to-upslope transects suggest benefits of one and two site-potential tree-height stream...

  3. Salamanders on the bench - A biocompatibility study of salamander skin secretions in cell cultures.

    Science.gov (United States)

    von Byern, Janek; Mebs, Dietrich; Heiss, Egon; Dicke, Ursula; Wetjen, Oliver; Bakkegard, Kristin; Grunwald, Ingo; Wolbank, Susanne; Mühleder, Severin; Gugerell, Alfred; Fuchs, Heidemarie; Nürnberger, Sylvia

    2017-09-01

    Salamanders have evolved a wide variety of antipredator mechanisms and behavior patterns, including toxins and noxious or adhesive skin secretions. The high bonding strength of the natural bioadhesives makes these substances interesting for biomimetic research and applications in industrial and medical sectors. Secretions of toxic species may help to understand the direct effect of harmful substances on the cellular level. In the present study, the biocompatibility of adhesive secretions from four salamander species (Plethodon shermani, Plethodon glutinosus, Ambystoma maculatum, Ambystoma opacum) were analyzed using the MTT assay in cell culture and evaluated against toxic secretions of Pleurodeles waltl, Triturus carnifex, Pseudotriton ruber, Tylototriton verrucosus, and Salamandra salamandra. Their effect on cells was tested in direct contact (direct culture) or under the influence of the extract (indirect exposure) in accordance with the protocol of the international standard norm ISO 10993-5. Human dermal fibroblasts (NHDF), umbilical vein endothelial cells (HUVEC), and articular chondrocytes (HAC), as well as the cell lines C2C12 and L929 were used in both culture types. While the adhesive secretions from Plethodon shermani are cytocompatible and those of Ambystoma opacum are even advantageous, those of Plethodon glutinosus and Ambystoma maculatum appear to be cytotoxic to NDHF and HUVEC. Toxic secretions from Salamandra salamandra exhibited harmful effects on all cell types. Pseudotriton ruber and Triturus carnifex secretions affected certain cell types marginally; those from Pleurodeles waltl and Tylototriton verrucosus were generally well tolerated. The study shows for the first time the effect of salamander secretions on the viability of different cell types in culture. Two adhesive secretions appeared to be cell compatible and are therefore promising candidates for future investigations in the field of medical bioadhesives. Among the toxic secretions

  4. Chloride equilibrium potential in salamander cones

    Directory of Open Access Journals (Sweden)

    Bryson Eric J

    2004-12-01

    Full Text Available Abstract Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca.

  5. Ecological implications of metabolic compensation at low temperatures in salamanders.

    Science.gov (United States)

    Catenazzi, Alessandro

    2016-01-01

    Global warming is influencing the biology of the world's biota. Temperature increases are occurring at a faster pace than that experienced by organisms in their evolutionary histories, limiting the organisms' response to new conditions. Mechanistic models that include physiological traits can help predict species' responses to warming. Changes in metabolism at high temperatures are often examined; yet many species are behaviorally shielded from high temperatures. Salamanders generally favor cold temperatures and are one of few groups of metazoans to be most species-rich in temperate regions. I examined variation in body temperature, behavioral activity, and temperature dependence of resting heart rate, used as a proxy for standard metabolic rate, in fire salamanders (Salamandra salamandra). Over 26 years, I found that salamanders are behaviorally active at temperatures as low as 1 °C, and aestivate at temperatures above 16 °C. Infrared thermography indicates limited thermoregulation opportunities for these nocturnal amphibians. Temperature affects resting heart rate, causing metabolic depression above 11 °C, and metabolic compensation below 8 °C: heart rate at 3 °C is 224% the expected heart rate. Thus, salamanders operating at low temperatures during periods of peak behavioral activity are able to maintain a higher metabolic rate than the rate expected in absence of compensation. This compensatory mechanism has important ecological implications, because it increases estimated seasonal heart rates. Increased heart rate, and thus metabolism, will require higher caloric intake for field-active salamanders. Thus, it is important to consider a species performance breadth over the entire temperature range, and particularly low temperatures that are ecologically relevant for cold tolerant species such as salamanders.

  6. Ecological implications of metabolic compensation at low temperatures in salamanders

    Directory of Open Access Journals (Sweden)

    Alessandro Catenazzi

    2016-05-01

    Full Text Available Global warming is influencing the biology of the world’s biota. Temperature increases are occurring at a faster pace than that experienced by organisms in their evolutionary histories, limiting the organisms’ response to new conditions. Mechanistic models that include physiological traits can help predict species’ responses to warming. Changes in metabolism at high temperatures are often examined; yet many species are behaviorally shielded from high temperatures. Salamanders generally favor cold temperatures and are one of few groups of metazoans to be most species-rich in temperate regions. I examined variation in body temperature, behavioral activity, and temperature dependence of resting heart rate, used as a proxy for standard metabolic rate, in fire salamanders (Salamandra salamandra. Over 26 years, I found that salamanders are behaviorally active at temperatures as low as 1 °C, and aestivate at temperatures above 16 °C. Infrared thermography indicates limited thermoregulation opportunities for these nocturnal amphibians. Temperature affects resting heart rate, causing metabolic depression above 11 °C, and metabolic compensation below 8 °C: heart rate at 3 °C is 224% the expected heart rate. Thus, salamanders operating at low temperatures during periods of peak behavioral activity are able to maintain a higher metabolic rate than the rate expected in absence of compensation. This compensatory mechanism has important ecological implications, because it increases estimated seasonal heart rates. Increased heart rate, and thus metabolism, will require higher caloric intake for field-active salamanders. Thus, it is important to consider a species performance breadth over the entire temperature range, and particularly low temperatures that are ecologically relevant for cold tolerant species such as salamanders.

  7. Reintegration of the regenerated and the remaining tissues during joint regeneration in the newt Cynops pyrrhogaster

    Science.gov (United States)

    Inoue, Takeshi; Yamada, Shigehito

    2015-01-01

    Abstract Urodele amphibians, such as newts, can regenerate a functional limb, including joints, after amputation at any level along the proximal−distal axis of the limb. The blastema can regenerate the limb morphology largely independently of the stump after proximal−distal identity has been established, but the remaining and regenerated tissues must be structurally reintegrated (matched in size and shape). Here we used newt joint regeneration as a model to investigate reintegration, because a functionally interlocking joint requires structural integration between its opposing skeletal elements. After forelimbs were amputated at the elbow joint, the joint was regenerated between the remaining and regenerated skeletal elements. The regenerated cartilage was thick around the amputated joint to make a reciprocally interlocking joint structure with the remaining bone. Furthermore, during regeneration, the extracellular matrix of the remaining tissues was lost, suggesting that the remaining tissues might contribute to the morphogenesis of regenerating cartilage. Our results showed that the area of the regenerated cartilage matched the area of the apposed remaining cartilage, thus contributing to formation of a functional structure. PMID:27499865

  8. Perceived predation risk as a function of predator dietary cues in terrestrial salamanders.

    Science.gov (United States)

    Murray; Jenkins

    1999-01-01

    Prey often avoid predator chemical cues, and in aquatic systems, prey may even appraise predation risk via cues associated with the predator's diet. However, this relationship has not been shown for terrestrial predator-prey systems, where the proximity of predators and prey, and the intensity of predator chemical cues in the environment, may be less than in aquatic systems. In the laboratory, we tested behavioural responses (avoidance, habituation and activity) of terrestrial red-backed salamanders, Plethodon cinereus, to chemical cues from garter snakes, Thamnophis sirtalis, fed either red-backed salamanders or earthworms (Lumbricus spp.). We placed salamanders in arenas lined with paper towels pretreated with snake chemicals, and monitored salamander movements during 120 min. Salamanders avoided substrates preconditioned by earthworm-fed (avoidanceX+/-SE=91.1+/-2.5%, N=25) and salamander-fed (95.2+/-2.5%, N=25) snakes, when tested against untreated substrate (control). Salamanders avoided cues from salamander-fed snakes more strongly (75.2+/-5.5%, N=25) than earthworm-fed snakes when subjected to both treatments simultaneously, implying that salamanders were sensitive to predator diet. Salamanders tended to avoid snake substrate more strongly during the last 60 min of a trial, but activity patterns were similar between salamanders exposed exclusively to control substrate versus those subject to snake cues. In another experiment, salamanders failed to avoid cues from dead conspecifics, suggesting that the stronger avoidance of salamander-fed snakes in the previous experiment was not directly due to chemical cues emitted by predator-killed salamanders. Salamanders also did not discriminate between cues from a salamander-fed snake versus a salamander-fed snake that was recently switched (i.e. diet. Our results imply that terrestrial salamanders are sensitive to perceived predation risk via by-products of predator diet, and that snake predators rather than dead

  9. Posterior tail development in the salamander Eurycea cirrigera: exploring cellular dynamics across life stages.

    Science.gov (United States)

    Vaglia, Janet L; Fornari, Chet; Evans, Paula K

    2017-03-01

    During embryogenesis, the body axis elongates and specializes. In vertebrate groups such as salamanders and lizards, elongation of the posterior body axis (tail) continues throughout life. This phenomenon of post-embryonic tail elongation via addition of vertebrae has remained largely unexplored, and little is known about the underlying developmental mechanisms that promote vertebral addition. Our research investigated tail elongation across life stages in a non-model salamander species, Eurycea cirrigera (Plethodontidae). Post-embryonic addition of segments suggests that the tail tip retains some aspects of embryonic cell/tissue organization and gene expression throughout the life cycle. We describe cell and tissue differentiation and segmentation of the posterior tail using serial histology and expression of the axial tissue markers, MF-20 and Pax6. Embryonic expression patterns of HoxA13 and C13 are shown with in situ hybridization. Tissue sections reveal that the posterior spinal cord forms via cavitation and precedes development of the underlying cartilaginous rod after embryogenesis. Post-embryonic tail elongation occurs in the absence of somites and mesenchymal cells lateral to the midline express MF-20. Pax6 expression was observed only in the spinal cord and some mesenchymal cells of adult Eurycea tails. Distinct temporal and spatial patterns of posterior Hox13 gene expression were observed throughout embryogenesis. Overall, important insights to cell organization, differentiation, and posterior Hox gene expression may be gained from this work. We suggest that further work on gene expression in the elongating adult tail could shed light on mechanisms that link continual axial elongation with regeneration.

  10. Regeneration of organs and tissues in lower vertebrates during and after space flight

    Science.gov (United States)

    Mitashov, V. I.; Brushlinskaya, N. V.; Grigoryan, E. N.; Tuchkova, S. Ya.; Anton, H. J.

    In this paper most important data obtained in studies on the effect of space flight conditions on regeneration in the adult newt are summarized. We demonstrate a phenomenon of synchronization of limb and lens regeneration and increase in its rate during and after space flight. We also describe a peculiarities of cell proliferation in lens, limb and tail regenerates and of the process of minced muscle regeneration.

  11. Extremely high-power tongue projection in plethodontid salamanders

    NARCIS (Netherlands)

    Deban, S.M.; O'Reilly, J.C.; Dicke, U.; Leeuwen, van J.L.

    2007-01-01

    Many plethodontid salamanders project their tongues ballistically at high speed and for relatively great distances. Capturing evasive prey relies on the tongue reaching the target in minimum time, therefore it is expected that power production, or the rate of energy release, is maximized during

  12. Reproductive biology of the Del Norte salamander (Plethodon elongatus).

    Science.gov (United States)

    Clara A. Wheeler; Hartwell H. Welsh Jr.; Lisa M. Ollivier

    2013-01-01

    We examined seasonal reproductive patterns of the Del Norte Salamander, Plethodon elongatus, in mixed conifer and hardwood forests of northwestern California and southwestern Oregon. Seasonal size differences in reproductive structures suggested that maximum spermatogenic activity occurred during the late summer, with spermatozoa transfer to the...

  13. Design tradeoffs in long-term research for stream salamanders

    Science.gov (United States)

    Brand, Adrianne B,; Grant, Evan H. Campbell

    2017-01-01

    Long-term research programs can benefit from early and periodic evaluation of their ability to meet stated objectives. In particular, consideration of the spatial allocation of effort is key. We sampled 4 species of stream salamanders intensively for 2 years (2010–2011) in the Chesapeake and Ohio Canal National Historical Park, Maryland, USA to evaluate alternative distributions of sampling locations within stream networks, and then evaluated via simulation the ability of multiple survey designs to detect declines in occupancy and to estimate dynamic parameters (colonization, extinction) over 5 years for 2 species. We expected that fine-scale microhabitat variables (e.g., cobble, detritus) would be the strongest determinants of occupancy for each of the 4 species; however, we found greater support for all species for models including variables describing position within the stream network, stream size, or stream microhabitat. A monitoring design focused on headwater sections had greater power to detect changes in occupancy and the dynamic parameters in each of 3 scenarios for the dusky salamander (Desmognathus fuscus) and red salamander (Pseudotriton ruber). Results for transect length were more variable, but across all species and scenarios, 25-m transects are most suitable as a balance between maximizing detection probability and describing colonization and extinction. These results inform sampling design and provide a general framework for setting appropriate goals, effort, and duration in the initial planning stages of research programs on stream salamanders in the eastern United States.

  14. Acid precipitation and reproductive success of Ambystoma salamanders

    Science.gov (United States)

    F. Harvey Pough; Richard E. Wilson

    1976-01-01

    The two species of mole salamander that occur in the Ithaca, New York, region (Ambystoma maculatum and A. jeffersonianum) breed in temporary ponds that are formed by accumulation of melted snow and spring rains. Water in many of these pools during the breeding season is acid; pH values as low as 3.5 have been measured. In...

  15. Reproductive allometry in three species of Dusky Salamanders

    Science.gov (United States)

    Richard C. Bruce

    2014-01-01

    Desmognathus comprises 21 currently recognized species of salamanders in eastern North America. Assemblages of 3–6 species occur in the Appalachian Mountains, wherein the larger species are more aquatic and the smaller more terrestrial. Adaptive divergence along the habitat gradient from stream to forest involves variation in such life-history traits as age and size at...

  16. Limb myokymia

    Energy Technology Data Exchange (ETDEWEB)

    Albers, J.W.; Allen, A.A.; Bastron, J.A.; Daube, J.R.

    Thirty-eight patients with myokymic discharges localized to limb muscles on needle electromyography had various neurologic lesions, both acute and chronic. Of the 38 patients, 27 had had previous radiation therapy and the clinical diagnosis of radiation-induced plexopathy, myelopathy, or both. For the remaining 11 patients, the diagnoses included multiple sclerosis, inflammatory polyradiculoneuropathy, ischemic neuropathy, inflammatory myopathy, and chronic disorders of the spinal cord and peripheral nerves. The clinical presentations and results of local ischemia, peripheral nerve block, and percutaneous stimulation suggest that most limb myokymic discharges arise focally at the site of a chronic peripheral nerve lesion.

  17. A 3D Musculo-Mechanical Model of the Salamander for the Study of Different Gaits and Modes of Locomotion

    Science.gov (United States)

    Harischandra, Nalin; Cabelguen, Jean-Marie; Ekeberg, Örjan

    2010-01-01

    Computer simulation has been used to investigate several aspects of locomotion in salamanders. Here we introduce a three-dimensional forward dynamics mechanical model of a salamander, with physically realistic weight and size parameters. Movements of the four limbs and of the trunk and tail are generated by sets of linearly modeled skeletal muscles. In this study, activation of these muscles were driven by prescribed neural output patterns. The model was successfully used to mimic locomotion on level ground and in water. We compare the walking gait where a wave of activity in the axial muscles travels between the girdles, with the trotting gait in simulations using the musculo-mechanical model. In a separate experiment, the model is used to compare different strategies for turning while stepping; either by bending the trunk or by using side-stepping in the front legs. We found that for turning, the use of side-stepping alone or in combination with trunk bending, was more effective than the use of trunk bending alone. We conclude that the musculo-mechanical model described here together with a proper neural controller is useful for neuro-physiological experiments in silico. PMID:21206530

  18. Growth, survival, longevity, and population size of the Big Mouth Cave salamander (Gyrinophilus palleucus necturoides) from the type locality in Grundy County, Tennessee, USA

    Science.gov (United States)

    Niemiller, Matthew L.; Glorioso, Brad M.; Fenolio, Dante B.; Reynolds, R. Graham; Taylor, Steven J.; Miller, Brian T.

    2016-01-01

    Salamander species that live entirely in subterranean habitats have evolved adaptations that allow them to cope with perpetual darkness and limited energy resources. We conducted a 26-month mark–recapture study to better understand the individual growth and demography of a population of the Big Mouth Cave Salamander (Gyrinophilus palleucus necturoides). We employed a growth model to estimate growth rates, age at sexual maturity, and longevity, and an open population model to estimate population size, density, detectability, and survival rates. Furthermore, we examined cover use and evidence of potential predation. Individuals probably reach sexual maturity in 3–5 years and live at least nine years. Survival rates were generally high (>75%) but declined during the study. More than 30% of captured salamanders had regenerating tails or tail damage, which presumably represent predation attempts by conspecifics or crayfishes. Most salamanders (>90%) were found under cover (e.g., rocks, trash, decaying plant material). Based on 11 surveys during the study, population size estimates ranged from 21 to 104 individuals in the ca. 710 m2 study area. Previous surveys indicated that this population experienced a significant decline from the early 1970s through the 1990s, perhaps related to silvicultural and agricultural practices. However, our data suggest that this population has either recovered or stabilized during the past 20 years. Differences in relative abundance between early surveys and our survey could be associated with differences in survey methods or sampling conditions rather than an increase in population size. Regardless, our study demonstrates that this population is larger than previously thought and is in no immediate risk of extirpation, though it does appear to exhibit higher rates of predation than expected for a species believed to be an apex predator of subterranean food webs.

  19. Seasonality and microhabitat selection in a forest-dwelling salamander

    Science.gov (United States)

    Basile, Marco; Romano, Antonio; Costa, Andrea; Posillico, Mario; Scinti Roger, Daniele; Crisci, Aldo; Raimondi, Ranieri; Altea, Tiziana; Garfì, Vittorio; Santopuoli, Giovanni; Marchetti, Marco; Salvidio, Sebastiano; De Cinti, Bruno; Matteucci, Giorgio

    2017-10-01

    Many small terrestrial vertebrates exhibit limited spatial movement and are considerably exposed to changes in local environmental variables. Among such vertebrates, amphibians at present experience a dramatic decline due to their limited resilience to environmental change. Since the local survival and abundance of amphibians is intrinsically related to the availability of shelters, conservation plans need to take microhabitat requirements into account. In order to gain insight into the terrestrial ecology of the spectacled salamander Salamandrina perspicillata and to identify appropriate forest management strategies, we investigated the salamander's seasonal variability in habitat use of trees as shelters in relation to tree features (size, buttresses, basal holes) and environmental variables in a beech forest in Italy. We used the occupancy approach to assess tree suitability on a non-conventional spatial scale. Our approach provides fine-grained parameters of microhabitat suitability and elucidates many aspects of the salamander's terrestrial ecology . Occupancy changed with the annual life cycle and was higher in autumn than in spring, when females were found closer to the stream in the study area. Salamanders showed a seasonal pattern regarding the trees they occupied and a clear preference for trees with a larger diameter and more burrows. With respect to forest management, we suggest maintaining a suitable number of trees with a trunk diameter exceeding 30 cm. A practice of selective logging along the banks of streams could help maintain an adequate quantity of the appropriate microhabitat. Furthermore, in areas with a presence of salamanders, a good forest management plan requires leaving an adequate buffer zone around streams, which should be wider in autumn than in spring.

  20. Experimental Evidence that Nest Attendance Benefits Female Marbled Salamanders (Ambystoma opacum) by Reducing Egg Mortality

    National Research Council Canada - National Science Library

    DEAN A. CROSHAW; DAVID E. SCOTT

    2005-01-01

    ...(s) of specific behaviors. We used field and laboratory experiments to investigate possible fitness benefits and proximate functions of female nest attendance in marbled salamanders (Ambystoma opacum...

  1. Impact of valley fills on streamside salamanders in southern West Virginia

    Science.gov (United States)

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Valley fills associated with mountaintop-removal mining bury stream headwaters and affect water quality and ecological function of reaches below fills. We quantified relative abundance of streamside salamanders in southern West Virginia during 2002 in three streams below valley fills (VFS) and in three reference streams (RS). We surveyed 36 10- × 2-m stream transects, once in summer and fall, paired by order and structure. Of 2,343 salamanders captured, 66.7% were from RS. Total salamanders (adults plus larvae) were more abundant in RS than VFS for first-order and second-order reaches. Adult salamanders had greater abundance in first-order reaches of RS than VFS. Larval salamanders were more abundant in second-order reaches of RS than VFS. No stream width or mesohabitat variables differed between VFS and RS. Only two cover variables differed. Silt cover, greater in VFS than RS first-order reaches, is a likely contributor to reduced abundance of salamanders in VFS. Second-order RS had more boulder cover than second-order VFS, which may have contributed to the higher total and larval salamander abundance in RS. Water chemistry assessments of our VFS and RS reported elevated levels of metal and ion concentrations in VFS, which can depress macroinvertebrate populations and likely affect salamander abundance. Valley fills appear to have significant negative effects on stream salamander abundance due to alterations in habitat structure, water quality and chemistry, and macroinvertebrate communities in streams below fills.

  2. Salamander growth rates increase along an experimental stream phosphorus gradient.

    Science.gov (United States)

    Bumpers, Phillip M; Maerz, John C; Rosemond, Amy D; Benstead, Jonathan P

    2015-11-01

    Nutrient-driven perturbations to the resource base of food webs are predicted to attenuate with trophic distance, so it is unclear whether higher-level consumers will generally respond to anthropogenic nutrient loading. Few studies have tested whether nutrient (specifically, nitrogen [N] and phosphorus [P]) enrichment of aquatic ecosystems propagates through multiple trophic levels to affect predators, or whether N vs. P is relatively more important in driving effects on food webs. We conducted two-year whole-stream N and P additions to five streams to generate gradients in N and P concentration and N:P ratio (target N:P = 2, 8, 16, 32, 128). Larval salamanders are vertebrate predators of primary and secondary macroinvertebrate consumers in many heterotrophic headwater streams in which the basal resources are detritus and associated microorganisms. We determined the effects of N and P on the growth rates of caged and free-roaming larval Desmognathus quadramaculatus and the average body size of larval Eurycea wilderae. Growth rates and average body size increased by up to 40% and 60%, respectively, with P concentration and were negatively related to N:P ratio. These findings were consistent across both species of salamanders using different methodologies (cage vs. free-roaming) and at different temporal scales (3 months vs. 2 yr). Nitrogen concentration was not significantly related to increased growth rate or body size of the salamander species tested. Our findings suggest that salamander growth responds to the relaxation of ecosystem-level P limitation and that moderate P enrichment can have relatively large effects on vertebrate predators in detritus-based food webs.

  3. Evolution of coprophagy and nutrient absorption in a Cave Salamander

    OpenAIRE

    Daphne Soares; Rachel Adams; Shea Hammond; Michael E. Slay; Fenolio, Danté B.; Niemiller, Matthew L.

    2017-01-01

    The transition from carnivory to omnivory is poorly understood. The ability to feed at more than one trophic level theoretically increases an animal’s fitness in a novel environment. Because of the absence of light and photosynthesis, most subterranean ecosystems are characterized by very few trophic levels, such that food scarcity is a challenge in many subterranean habitats. One strategy against starvation is to expand diet breadth. Grotto Salamanders (Eurycea spelaea (Stejneger, 1892)) are...

  4. Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans.

    Science.gov (United States)

    Stegen, Gwij; Pasmans, Frank; Schmidt, Benedikt R; Rouffaer, Lieze O; Van Praet, Sarah; Schaub, Michael; Canessa, Stefano; Laudelout, Arnaud; Kinet, Thierry; Adriaensen, Connie; Haesebrouck, Freddy; Bert, Wim; Bossuyt, Franky; Martel, An

    2017-04-19

    The recent arrival of Batrachochytrium salamandrivorans in Europe was followed by rapid expansion of its geographical distribution and host range, confirming the unprecedented threat that this chytrid fungus poses to western Palaearctic amphibians. Mitigating this hazard requires a thorough understanding of the pathogen's disease ecology that is driving the extinction process. Here, we monitored infection, disease and host population dynamics in a Belgian fire salamander (Salamandra salamandra) population for two years immediately after the first signs of infection. We show that arrival of this chytrid is associated with rapid population collapse without any sign of recovery, largely due to lack of increased resistance in the surviving salamanders and a demographic shift that prevents compensation for mortality. The pathogen adopts a dual transmission strategy, with environmentally resistant non-motile spores in addition to the motile spores identified in its sister species B. dendrobatidis. The fungus retains its virulence not only in water and soil, but also in anurans and less susceptible urodelan species that function as infection reservoirs. The combined characteristics of the disease ecology suggest that further expansion of this fungus will behave as a 'perfect storm' that is able to rapidly extirpate highly susceptible salamander populations across Europe.

  5. Cannibalistic-morph Tiger Salamanders in unexpected ecological contexts

    Science.gov (United States)

    McLean, Kyle I.; Stockwell, Craig A.; Mushet, David M.

    2016-01-01

    Barred tiger salamanders [Ambystoma mavortium (Baird, 1850)] exhibit two trophic morphologies; a typical and a cannibalistic morph. Cannibalistic morphs, distinguished by enlarged vomerine teeth, wide heads, slender bodies, and cannibalistic tendencies, are often found where conspecifics occur at high density. During 2012 and 2013, 162 North Dakota wetlands and lakes were sampled for salamanders. Fifty-one contained A. mavortium populations; four of these contained cannibalistic morph individuals. Two populations with cannibalistic morphs occurred at sites with high abundances of conspecifics. However, the other two populations occurred at sites with unexpectedly low conspecific but high fathead minnow [Pimephales promelas (Rafinesque, 1820)] abundances. Further, no typical morphs were observed in either of these later two populations, contrasting with earlier research suggesting cannibalistic morphs only occur at low frequencies in salamander populations. Another anomaly of all four populations was the occurrence of cannibalistic morphs in permanent water sites, suggesting their presence was due to factors other than faster growth allowing them to occupy ephemeral habitats. Therefore, our findings suggest environmental factors inducing the cannibalistic morphism may be more complex than previously thought.

  6. Detection of an enigmatic plethodontid Salamander using Environmental DNA

    Science.gov (United States)

    Pierson, Todd W.; Mckee, Anna; Spear, Stephen F.; Maerz, John C.; Camp, Carlos D.; Glenn, Travis C.

    2016-01-01

    The isolation and identification of environmental DNA (eDNA) offers a non-invasive and efficient method for the detection of rare and secretive aquatic wildlife, and it is being widely integrated into inventory and monitoring efforts. The Patch-Nosed Salamander (Urspelerpes brucei) is a tiny, recently discovered species of plethodontid salamander known only from headwater streams in a small region of Georgia and South Carolina. Here, we present results of a quantitative PCR-based eDNA assay capable of detecting Urspelerpes in more than 75% of 33 samples from five confirmed streams. We deployed the method at 31 additional streams and located three previously undocumented populations of Urspelerpes. We compare the results of our eDNA assay with our attempt to use aquatic leaf litterbags for the rapid detection of Urspelerpes and demonstrate the relative efficacy of the eDNA assay. We suggest that eDNA offers great potential for use in detecting other aquatic and semi-aquatic plethodontid salamanders.

  7. 76 FR 55413 - Proposed Safe Harbor Agreement for California Red-legged Frog, California Tiger Salamander, Smith...

    Science.gov (United States)

    2011-09-07

    ... Tiger Salamander, Smith's Blue Butterfly, and Yadon's Piperia at Palo Corona Regional Park, Monterey... federally threatened California red-legged frog (Rana draytonii) and California tiger salamander (Ambystoma..., California tiger salamander, Smith's blue butterfly, and Yadon's piperia on the property subject to the...

  8. Transcriptional Profiling of Caudal Fin Regeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Michael Schebesta

    2006-01-01

    Full Text Available Regeneration of severed limbs in adult animals is restricted to urodele amphibians. Mammals, including humans, have very limited regenerative capabilities and even with proper treatment, only the tips of our digits can grow back. Teleost fish can regenerate amputated fins, the evolutionary ancestors of limbs. To elucidate the principles of limb-fin regeneration, we performed an Affymetrix microarray screen on regenerating caudal fins 12, 24, 48, and 72 h post amputation. Approximately 15,000 zebrafish transcripts were analyzed, identifying 829 transcripts as differentially expressed during regeneration. Of those, 563 were up-regulated and 266 were down-regulated. We constructed a comprehensive database containing expression data, functional assignment, and background information from the literature for each differentially expressed transcript. In order to validate our findings, we employed three approaches: (1 microarray expression analysis of genes previously implicated in fin regeneration, (2 RT-PCR analysis of genes newly identified as differentially expressed during regeneration, and (3 in situ hybridization of the up-regulated genes bambi, dlx5A, and her6. Moreover, we show that Smad 1/5/8 proteins, effector molecules of Bmp signaling, are phosphorylated during fin regeneration. Taken together, we provide a comprehensive database of fin regeneration that will serve as an important tool for understanding the molecular mechanisms of regeneration.

  9. The Abundance of Salamanders in Forest Stands with Different Histories of Disturbance

    Science.gov (United States)

    F. Harvey Pough; Donald H. Rhodes; Andres Collazo

    1987-01-01

    Because of the importance of salamanders in forest food chains, the effects of forest management practices on populations of these animals warrant consideration. We compared the numbers and activity patterns of salamanders in areas of a deciduous forest in central New York State that had been cut selectively for firewood, or c1earcut, or planted with conifers. Numbers...

  10. Long-term partial cutting impacts on Desmognathus salamander abundance in West Virginia headwater streams

    Science.gov (United States)

    Kurtis R. Moseley; W. Mark Ford; Thomas M. Schuler

    2008-01-01

    To understand long-term impacts of partial cutting practices on stream-dwelling salamanders in the central Appalachians, we examined pooled abundance of Desmognathus fuscus and D. monticola salamanders (hereafter Desmognathus) in headwater streams located within long-term silvicultural research compartments on...

  11. Relative abundance and species richness of terrestrial salamanders on hardwood ecosystem experiment sites before harvesting

    Science.gov (United States)

    Jami E. MacNeil; Rod N. Williams

    2013-01-01

    Terrestrial salamanders are ideal indicators of forest ecosystem integrity due to their abundance, their role in nutrient cycling, and their sensitivity to environmental change. To understand better how terrestrial salamanders are affected by forest management practices, we monitored species diversity and abundance before implementation of timber harvests within the...

  12. Using a GIS model to assess terrestrial salamander response to alternative forest management plans

    Science.gov (United States)

    Eric J. Gustafson; Nathan L. Murphy; Thomas R. Crow

    2001-01-01

    A GIS model predicting the spatial distribution of terrestrial salamander abundance based on topography and forest age was developed using parameters derived from the literature. The model was tested by sampling salamander abundance across the full range of site conditions used in the model. A regression of the predictions of our GIS model against these sample data...

  13. Diet of the Del Norte Salamander (Plethodon elongatus): Differences by age, gender, and season.

    Science.gov (United States)

    Clara A. Wheeler; Nancy E. Karraker; Hartwell H. Welsh; Lisa M. Ollivier

    2007-01-01

    Terrestrial salamanders are integral components of forest ecosystems and the examination of their feeding habits may provide useful information regarding various ecosystem processes. We studied the diet of the Del Norte Salamander (Plethodon elongatus) and assessed diet differences between age classes, genders, and seasons. The stomachs of 309...

  14. Batrachochytrium salamandrivorans not detected in U.S. survey of pet salamanders.

    Science.gov (United States)

    Klocke, Blake; Becker, Matthew; Lewis, James; Fleischer, Robert C; Muletz-Wolz, Carly R; Rockwood, Larry; Aguirre, A Alonso; Gratwicke, Brian

    2017-10-13

    We engaged pet salamander owners in the United States to screen their animals for two amphibian chytrid fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). We provided pet owners with a sampling kit and instructional video to swab the skin of their animals. We received 639 salamander samples from 65 species by mail, and tested them for Bd and Bsal using qPCR. We detected Bd on 1.3% of salamanders (95% CI 0.0053-0.0267) and did not detect Bsal (95% CI 0.0000-0.0071). If Bsal is present in the U.S. population of pet salamanders, it occurs at a very low prevalence. The United States Fish and Wildlife Service listed 201 species of salamanders as "injurious wildlife" under the Lacey Act (18 U.S.C. § 42) on January 28, 2016, a precautionary action to prevent the introduction of Bsal to the U.S. through the importation of salamanders. This action reduced the number of salamanders imported to the U.S. from 2015 to 2016 by 98.4%. Our results indicate that continued precautions should be taken to prevent the introduction and establishment of Bsal in the U.S., which is a hotspot of salamander biodiversity.

  15. 77 FR 36287 - Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, Calaveras...

    Science.gov (United States)

    2012-06-18

    ... Fish and Wildlife Service Proposed Low-Effect Habitat Conservation Plan for the California Tiger... listed animal, the threatened Central California Distinct Population Segment of the California tiger salamander (tiger salamander). The applicant would implement a conservation program to minimize and mitigate...

  16. Environmental and Anthropogenic Factors Influencing Salamanders in Riparian Forests: A Review

    Directory of Open Access Journals (Sweden)

    Hannah L. Clipp

    2014-11-01

    Full Text Available Salamanders and riparian forests are intimately interconnected. Salamanders are integral to ecosystem functions, contributing to vertebrate biomass and complex food webs in riparian forests. In turn, these forests are critical ecosystems that perform many environmental services, facilitate high biodiversity and species richness, and provide habitat to salamander populations. Due to the global decline of amphibians, it is important to understand, as thoroughly and holistically as possible, the roles of environmental parameters and the impact of human activities on salamander abundance and diversity in riparian forests. To determine the population responses of salamanders to a variety of environmental factors and anthropogenic activities, we conducted a review of published literature that compared salamander abundance and diversity, and then summarized and synthesized the data into general patterns. We identify stream quality, leaf litter and woody debris, riparian buffer width, and soil characteristics as major environmental factors influencing salamander populations in riparian forests, describe and explain salamander responses to those factors, and discuss the effects of anthropogenic activities such as timber harvest, prescribed fires, urbanization, road construction, and habitat fragmentation. This review can assist land and natural resource managers in anticipating the consequences of human activities and preparing strategic conservation plans.

  17. Variable infection of stream salamanders in the southern Appalachians by the trematode Metagonimoides oregonensis (family: Heterophyidae)

    Science.gov (United States)

    Jennie A. Wyderko; Ernest F. Benfield; John C. Maerz; Kristen C. Cecala; Lisa K. Belden

    2015-01-01

    Many factors contribute to parasites varying in host specificity and distribution among potential hosts. Metagonimoides oregonensis is a digenetic trematode that uses stream-dwelling plethodontid salamanders as second intermediate hosts in the Eastern US. We completed a field survey to identify which stream salamander species, at a regional level, are most...

  18. Taxonomy Icon Data: Japanese giant salamander [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Japanese giant salamander Andrias japonicus Chordata/Vertebrata/Amphibia Andrias_japonicus_L.png Andrias_jap...onicus_NL.png Andrias_japonicus_S.png Andrias_japonicus_NS.png http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Andrias+japonicus&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+japon...icus&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+japonicus...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Andrias+japonicus&t=NS ...

  19. What Do Owls, Salamanders, Flycatchers and Cuckoos Have In Common?

    Energy Technology Data Exchange (ETDEWEB)

    Musgrave, Maria A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Wildlife Management

    2016-09-27

    This is an article from the Los Alamos Living magazine. Los Alamos National Laboratory sits on a beautiful and unique landscape that provides important protected habitat to many species, including a few that are federally-listed as threatened or endangered. These species are the Jemez Mountains Salamander, the Mexican Spotted Owl, the Southwestern Willow Flycatcher, the Yellow-billed Cuckoo, and the New Mexico Meadow Jumping Mouse. Part of the job of the Laboratory's wildlife biologists is to survey for these species each year and determine what actions need to be taken if they are found.

  20. Environmental influences on egg and clutch sizes in lentic- and lotic-breeding salamanders

    Directory of Open Access Journals (Sweden)

    Jon M. Davenport

    2010-12-01

    Full Text Available Recent research indicates that social and environmental factors influence egg and clutch sizes in amphibians. However, most of this work is based on the reproductively diverse order Anura (frogs and toads, whereas less research has been conducted on Caudata (salamanders and Gymnophiona (caecilians. Researchers have suggested that a relationship exists between social and environmental factors and egg and clutch sizes in salamanders, but studies controlling for phylogenetic context are lacking. We could not identify a sufficient number of comparisons for social influences on egg and clutch sizes; therefore, we focused on environmental influences for this study. Data on egg size, clutch size, environmental factors, and phylogenies for salamanders were assembled from the scientific literature. We used independent, pair-wise comparisons to investigate the association of larval salamander habitat and egg size and the association of larval salamander habitat with clutch sizes within a phylogenetic framework. There is a significant association between larval habitat and egg size; specifically, stream-breeding species produce larger eggs. There is no significant association between larval habitat and clutchsize. Our study confirms earlier reports that salamander egg size is associated with larval environments, but is the first to use phylogenetically independent contrasts to account for the lack of phylogenetic independence of the traits measured (egg size and clutch size associated with many of the diverse lineages. Our study shows that environmental selection pressure can be quite strong on one aspect of salamander reproduction—egg size.

  1. Strong selection barriers explain microgeographic adaptation in wild salamander populations.

    Science.gov (United States)

    Richardson, Jonathan L; Urban, Mark C

    2013-06-01

    Microgeographic adaptation occurs when populations evolve divergent fitness advantages across the spatial scales at which focal organisms regularly disperse. Although an increasing number of studies find evidence for microgeographic adaptation, the underlying causes often remain unknown. Adaptive divergence requires some combination of limited gene flow and strong divergent natural selection among populations. In this study, we estimated the relative influence of selection, gene flow, and the spatial arrangement of populations in shaping patterns of adaptive divergence in natural populations of the spotted salamander (Ambystoma maculatum). Within the study region, A. maculatum co-occur with the predatory marbled salamander (Ambystoma opacum) in some ponds, and past studies have established a link between predation risk and adaptive trait variation in A. maculatum. Using 14 microsatellite loci, we found a significant pattern of genetic divergence among A. maculatum populations corresponding to levels of A. opacum predation risk. Additionally, A. maculatum foraging rate was strongly associated with predation risk, genetic divergence, and the spatial relationship of ponds on the landscape. Our results indicate the sorting of adaptive genotypes by selection regime and strongly suggest that substantial selective barriers operate against gene flow. This outcome suggests that microgeographic adaptation in A. maculatum is possible because strong antagonistic selection quickly eliminates maladapted phenotypes despite ongoing and substantial immigration. Increasing evidence for microgeographic adaptation suggests a strong role for selective barriers in counteracting the homogenizing influence of gene flow. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  2. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches

    Energy Technology Data Exchange (ETDEWEB)

    Karraker, Nancy E., E-mail: karraker@hku.hk [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States); Gibbs, James P. [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States)

    2011-03-15

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. - Road deicing salts irreversibly disrupts osmoregulation of salamander egg clutches.

  3. Conservation genetics of the endangered Shenandoah salamander (Plethodon shenandoah, Plethodontidae)

    Science.gov (United States)

    Carpenter, D.W.; Jung, R.E.; Sites, J.W.

    2001-01-01

    The Shenandoah salamander (Plethodon shenandoah) is restricted to three isolated talus outcrops in Shenandoah National Park, VA, USA and has one of the smallest ranges of any tetrapod vertebrate. This species was listed as endangered under the US Endangered Species Act in 1989 over concern that direct competition with the red-backed salamander (Plethodon cinereus), successional habitat changes, and human impacts may cause its decline and possible extinction. We address two issues herein: (1) whether extensive introgression (through long-term hybridization) is present between the two species and threatens the survival of P. shenandoah, and (2) the level of population structure within P. shenandoah. We provide evidence from mtDNA haplotypes that shows no genetic differentiation among the three isolates of P. shenandoah, suggesting that their fragmentation is a geologically recent event, and/or that the isolates are still connected by occasional gene flow. There is also no evidence for extensive introgression of alleles in either direction between P. cinereus and P. shenandoah, which suggests that P. shenandoah may not be in danger of being genetically swamped out through hybridization with P. cinereus.

  4. Larval salamanders and channel geomorphology are indicators of hydrologic permanence in forested headwater streams

    Science.gov (United States)

    Regulatory agencies need rapid indicators of hydrologic permanence for jurisdictional determinations of headwater streams. Our study objective was to assess the utility of larval salamander presence and assemblage structure and habitat variables for determining stream permanence ...

  5. Cheat Mountain Salamanders Search Reports 2008 Canaan Valley National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This documents six different surveys between July and September, 2008 that were done to monitor the endangered Cheat Mountain salamander at Canaan Valley National...

  6. Cheat Mountain Salamander coverboard data analysis Canaan Valley National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — From 2000 to 2008 data was collected from three Cheat Mountain salamander coverboard sites at Canaan Valley National Wildlife Refuge: Cabin Knob A, Cabin Knob B, and...

  7. Cheat Mountain Salamanders Search Report 2004 Canaan Valley National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a report that outlines the results of a one-day survey for the endangered Cheat Mountain Salamander at Canaan Valley National Wildlife Refuge in 2004. The...

  8. Investigation into the status of Cheat Mountain Salamander (Plethodon nettingz) at the Canaan Valley NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — There are two primary goals for this project: to establish baseline information on populations of the Cheat Mountain salamander and to determine if there are any...

  9. Egg predators of an endemic Italian salamander, Salamandrina perspicillata (Savi, 1821

    Directory of Open Access Journals (Sweden)

    Antonio Romano

    2008-05-01

    Full Text Available We report new aquatic predators feeding on Northern spectacled salamander eggs, Salamandrina perspicillata, an endemic Italian species. Eggs were preyed upon by the leech, Trocheta bykowskii, and the trichopteran larvae of Potamophylax cingulatus and Halesus appenninus.

  10. Dramatic Declines in Neotropical Salamander Populations Are an Important Part of the Global Amphibian Crisis

    National Research Council Canada - National Science Library

    Sean M. Rovito; Gabriela Parra-Olea; Carlos R. Vásquez-Almazán; Theodore J. Papenfuss; David B. Wake

    2009-01-01

    We document major declines of many species of salamanders at several sites in Central America and Mexico, with emphasis on the San Marcos region of Guatemala, one of the best studied and most diverse...

  11. Contaminant discharge in habitat springs of the Barton Springs Salamander during storm rainfall events

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Aquatic habitat of the endangered Barton Springs salamander, Eurycea sosorum, in Travis County, Texas can potentially be impacted by contaminants in surface runoff...

  12. An annotated review of the Salamander types described in the Fauna Japonica

    NARCIS (Netherlands)

    Hoogmoed, M.S.

    1978-01-01

    The whereabouts of the salamander types described by Temminck & Schlegel in the Fauna Japonica (1838) are discussed and lectotypes are selected from the syntypes for the following nominal species : Salamandra naevia Temminck & Schlegel, S. unguiculata Temminck & Schlegel, S. subcristata Temminck &

  13. Salamander võib õpetada jäsemete kasvatamist / Tiit Kändler

    Index Scriptorium Estoniae

    Kändler, Tiit, 1948-

    2008-01-01

    Salamander on selgroogsete seas ainulaadne olevus. Ta suudab endale kasvatada ka täiskasvanuna uued kehaosad. Kui arstiteadlased välja uurivad, kuidas ta seda teeb, võib see aidata ka inimest rasketest haavadest ravida

  14. Stoichiometry of excreta and excretion rates of a stream-dwelling plethodontid salamander

    Data.gov (United States)

    U.S. Environmental Protection Agency — Stoichiometry of excreta and excretion rates of a stream-dwelling plethodontid salamander in Cincinnati, OH, USA. This dataset is associated with the following...

  15. SPATIALLY AUTOCORRELATED DEMOGRAPHY AND INTERPOND MIGRATION IN THE CALIFORNIA TIGER SALAMANDER (AMBYSTOME CALIFORNIENSE)

    Science.gov (United States)

    We investigated the metapopulation structure of the California tiger salamander (Ambystoma californiense) using a combination of indirect and direct methods to evaluate two key requirements of modern metapopulation models: 1) that patches support somewhat independent populations ...

  16. Water and sediment quality in habitat springs of Edwards Aquifer salamanders

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Many springs associated with the Edwards Aquifer of Texas are inhabited by relict populations of neotenic salamanders in the genus Eurycea. This study was done to...

  17. Periodontal regeneration.

    Science.gov (United States)

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  18. Innovative techniques for sampling stream-inhabiting salamanders

    Energy Technology Data Exchange (ETDEWEB)

    T.M. Luhring; C.A. Young

    2006-01-01

    Although salamanders are excellent indicators of environmental health, the ability to catch them efficiently without substantially disrupting their habitat is not always practical or even possible with current techniques. Ripping open logs and raking leaf packs onto shore (Bruce 1972) are examples of such practices that are disruptive but widely used by herpetologists who have no other means of efficient collection. Drift fences with pitfall traps are effective in catching animals moving within or between habitats but are time consuming and require an initial financial investment and constant upkeep to maintain functionality and prevent animal fatalities (Gibbons and Semlitsch 1981). One current alternative to drift fences is the use of coverboards (Grant et al. 1992), which require less maintenance and sampling effort than drift fences. However, coverboards do not integrate captures over a long time period and often result in a lower number of captures per trap (Grant et al. 1992).

  19. Biological activities of skin secretions of the salamander Tylototriton verrucosus.

    Science.gov (United States)

    Lai, Ren; Yang, Dong-Ming; Lee, Wen-Hui; Zhang, Yun

    2002-08-01

    Water-soluble skin secretions of salamander Tylototriton verrucosus, first described by Anderson in 1871, were studied for their biological and enzymatic activities. They were found to be toxic to mice with an intraperitoneal LD50 of 11.5 mg/kg. Using Sephadex G-75 gel filtration, it was proven that the toxic components of the secretions are proteins with molecular weights ranging from 30,000 to 50,000 Da. The secretions of T. verrucosus display a wide spectrum of antimicrobial activities and also contain both proteolytic activity and trypsin inhibitory activity. In contrast, neither hemolytic nor hemorrhagic activities were found. The secretions were determined to have phospholipase A2 activity; however, no acetylcholine esterase activity was detectable under the assay conditions.

  20. Using passive integrated transponder (PIT) systems for terrestrial detection of blue-spotted salamanders (Ambystoma laterale) in situ

    Science.gov (United States)

    Ryan, Kevin J.; Zydlewski, Joseph D.; Calhoun, Aram J.K.

    2014-01-01

    Pure-diploid Blue-spotted Salamanders (Ambystoma laterale) are the smallest members of the family Ambystomatidae which makes tracking with radio-transmitters difficult because of small battery capacity. Passive integrated transponder (PIT) tags provide another tracking approach for small fossorial animals such as salamanders. We evaluated the use of portable PIT tag readers (PIT packs) to detect PIT tag-implanted pure-diploid Blue-spotted Salamanders in situ. We also examined the detection probability of salamanders with PIT tags held in enclosures in wetland and terrestrial habitats, as well as the underground detection range of PIT packs by scanning for buried tags not implanted into salamanders. Of the 532 PIT tagged salamanders, we detected 6.84% at least once during scanning surveys. We scanned systematically within a 13.37 ha area surrounding a salamander breeding pool on 34 occasions (~119 hours of survey time) and detected PIT tags 74 times. We detected 55% of PITs in tagged salamanders and 45%were expelled tags. We were able to reliably detect buried PIT tags from 1–22cm below the ground surface. Because nearly half the locations represented expelled tags, our data suggest this technique is inappropriate for future studies of pure-diploid Blue-spotted Salamanders, although it may be suitable for polyploid Blue-spotted Salamanders and other ambystomatid species, which are larger in size and may exhibit higher tag retention rates. It may also be prudent to conduct long-term tag retention studies in captivity before tagging and releasing salamanders for in situ study, and to double-mark individuals.

  1. 76 FR 44036 - Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, AT&T Portable...

    Science.gov (United States)

    2011-07-22

    ... Fish and Wildlife Service Proposed Low-Effect Habitat Conservation Plan for the California Tiger... potential for ``take'' of one Federally listed animal, the California tiger salamander. The applicant would... for the California tiger salamander into a new storage facility for portable generators within the...

  2. Abundance of western red-backed salamanders (Plethodon vehiculum) in the Washington Coast Range after headwater stream-buffer manipulation

    Science.gov (United States)

    Randall J. Wilk; Jeffrey D. Ricklefs; Martin G. Raphael

    2014-01-01

    We evaluated the effect of forest riparian alternative tree buffer designs on Western Red-backed Salamanders (Plethodon vehiculum) along headwater stream banks in managed forests of the Washington Coast Range. We used pit trap live removals in early autumn to estimate relative abundances of surface-active salamanders before and after 3 levels of riparian buffer...

  3. The alien limb phenomenon.

    Science.gov (United States)

    Graff-Radford, Jonathan; Rubin, Mark N; Jones, David T; Aksamit, Allen J; Ahlskog, J Eric; Knopman, David S; Petersen, Ronald C; Boeve, Bradley F; Josephs, Keith A

    2013-07-01

    Alien limb phenomenon refers to involuntary motor activity of a limb in conjunction with the feeling of estrangement from that limb. Alien limb serves as a diagnostic feature of corticobasal syndrome. Our objective was to determine the differential diagnoses of alien limb and to determine the features in a large group of patients with the alien limb with different underlying etiologies. We searched the Mayo Clinic Medical Records Linkage system to identify patients with the diagnosis of alien limb seen between January 1, 1996, and July 11, 2011. One hundred and fifty patients with alien limb were identified. Twenty-two were followed in the Alzheimer's Disease Research Center. Etiologies of alien limb included corticobasal syndrome (n = 108), stroke (n = 14), Creutzfeldt Jakob disease (n = 9), hereditary diffuse leukoencephalopathy with spheroids (n = 5), tumor (n = 4), progressive multifocal leukoencephalopathy(n = 2), demyelinating disease (n = 2), progressive dementia not otherwise specified (n = 2), posterior reversible encephalopathy syndrome (n = 1), corpus callosotomy (n = 1), intracerebral hemorrhage (n = 1) and thalamic dementia (n = 1). Ten of 14 cerebrovascular cases were right hemisphere in origin. All cases involved the parietal lobe. Of the 44 patients with corticobasal syndrome from the Alzheimer's Disease Research Center cohort, 22 had alien limb, and 73 % had the alien limb affecting the left extremities. Left sided corticobasal syndrome was significantly associated with the presence of alien limb (p = 0.004). These findings support the notion that the alien limb phenomenon is partially related to damage underlying the parietal cortex, especially right parietal, disconnecting it from other cortical areas.

  4. Larval long-toed salamanders incur nonconsumptive effects in the presence of nonnative trout

    Science.gov (United States)

    Kenison, Erin K.; Litt, Andrea R.; Pilliod, David; McMahon, Thomas E.

    2016-01-01

    Predators can influence prey directly through consumption or indirectly through nonconsumptive effects (NCEs) by altering prey behavior, morphology, and life history. We investigated whether predator-avoidance behaviors by larval long-toed salamanders (Ambystoma macrodactylum) in lakes with nonnative trout result in NCEs on morphology and development. Field studies in lakes with and without trout were corroborated by experimental enclosures, where prey were exposed only to visual and chemical cues of predators. We found that salamanders in lakes with trout were consistently smaller than in lakes without trout: 38% lower weight, 24% shorter body length, and 29% shorter tail length. Similarly, salamanders in protective enclosures grew 2.9 times slower when exposed to visual and olfactory trout cues than when no trout cues were present. Salamanders in trout-free lakes and enclosures were 22.7 times and 1.48 times, respectively, more likely to metamorphose during the summer season than those exposed to trout in lakes and/or their cues. Observed changes in larval growth rate and development likely resulted from a facultative response to predator-avoidance behavior and demonstrate NCEs occurred even when predation risk was only perceived. Reduced body size and growth, as well as delayed metamorphosis, could have ecological consequences for salamander populations existing with fish if those effects carry-over into lower recruitment, survival, and fecundity.

  5. Salamanders increase their feeding activity when infected with the pathogenic chytrid fungus Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Hess, Alexandra; McAllister, Caroline; DeMarchi, Joseph; Zidek, Makenzie; Murone, Julie; Venesky, Matthew D

    2015-10-27

    Immune function is a costly line of defense against parasitism. When infected with a parasite, hosts frequently lose mass due to these costs. However, some infected hosts (e.g. highly resistant individuals) can clear infections with seemingly little fitness losses, but few studies have tested how resistant hosts mitigate these costly immune defenses. We explored this topic using eastern red-backed salamanders Plethodon cinereus and the fungal pathogen Batrachochytrium dendrobatidis (Bd). Bd is generally lethal for amphibians, and stereotypical symptoms of infection include loss in mass and deficits in feeding. However, individuals of P. cinereus can clear their Bd infections with seemingly few fitness costs. We conducted an experiment in which we repeatedly observed the feeding activity of Bd-infected and non-infected salamanders. We found that Bd-infected salamanders generally increased their feeding activity compared to non-infected salamanders. The fact that we did not observe any differences in mass change between the treatments suggests that increased feeding might help Bd-infected salamanders minimize the costs of an effective immune response.

  6. Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas

    Science.gov (United States)

    Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.

    2014-01-01

    Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.

  7. Apparent survival of the salamander Salamandra salamandra is low because of high migratory activity

    Directory of Open Access Journals (Sweden)

    Schaub Michael

    2007-09-01

    Full Text Available Abstract Background Understanding the demographic processes underlying population dynamics is a central theme in ecology. Populations decline if losses from the population (i.e., mortality and emigration exceed gains (i.e., recruitment and immigration. Amphibians are thought to exhibit little movement even though local populations often fluctuate dramatically and are likely to go exinct if there is no rescue effect through immigration from nearby populations. Terrestrial salamanders are generally portrayed as amphibians with low migratory activity. Our study uses demographic analysis as a key to unravel whether emigration or mortality is the main cause of "losses" from the population. In particular, we use the analysis to challenge the common belief that terrestrial salamanders show low migratory activity. Results The mark-recapture analysis of adult salamanders showed that monthly survival was high (> 90% without a seasonal pattern. These estimates, however, translate into rather low rates of local annual survival of only ~40% and suggest that emigration was important. The estimated probability of emigration was 49%. Conclusion Our analysis shows that terrestrial salamanders exhibit more migratory activity than commonly thought. This may be due either because the spatial extent of salamander populations is underestimated or because there is a substantial exchange of individuals between populations. Our current results are in line with several other studies that suggest high migratory activity in amphibians. In particular, many amphibian populations may be characterized by high proportions of transients and/or floaters.

  8. Apparent survival of the salamander Salamandra salamandra is low because of high migratory activity.

    Science.gov (United States)

    Schmidt, Benedikt R; Schaub, Michael; Steinfartz, Sebastian

    2007-09-06

    Understanding the demographic processes underlying population dynamics is a central theme in ecology. Populations decline if losses from the population (i.e., mortality and emigration) exceed gains (i.e., recruitment and immigration). Amphibians are thought to exhibit little movement even though local populations often fluctuate dramatically and are likely to go exinct if there is no rescue effect through immigration from nearby populations. Terrestrial salamanders are generally portrayed as amphibians with low migratory activity. Our study uses demographic analysis as a key to unravel whether emigration or mortality is the main cause of "losses" from the population. In particular, we use the analysis to challenge the common belief that terrestrial salamanders show low migratory activity. The mark-recapture analysis of adult salamanders showed that monthly survival was high (> 90%) without a seasonal pattern. These estimates, however, translate into rather low rates of local annual survival of only ~40% and suggest that emigration was important. The estimated probability of emigration was 49%. Our analysis shows that terrestrial salamanders exhibit more migratory activity than commonly thought. This may be due either because the spatial extent of salamander populations is underestimated or because there is a substantial exchange of individuals between populations. Our current results are in line with several other studies that suggest high migratory activity in amphibians. In particular, many amphibian populations may be characterized by high proportions of transients and/or floaters.

  9. Tissue-engineered bone regeneration.

    Science.gov (United States)

    Petite, H; Viateau, V; Bensaïd, W; Meunier, A; de Pollak, C; Bourguignon, M; Oudina, K; Sedel, L; Guillemin, G

    2000-09-01

    Bone lesions above a critical size become scarred rather than regenerated, leading to nonunion. We have attempted to obtain a greater degree of regeneration by using a resorbable scaffold with regeneration-competent cells to recreate an embryonic environment in injured adult tissues, and thus improve clinical outcome. We have used a combination of a coral scaffold with in vitro-expanded marrow stromal cells (MSC) to increase osteogenesis more than that obtained with the scaffold alone or the scaffold plus fresh bone marrow. The efficiency of the various combinations was assessed in a large segmental defect model in sheep. The tissue-engineered artificial bone underwent morphogenesis leading to complete recorticalization and the formation of a medullary canal with mature lamellar cortical bone in the most favorable cases. Clinical union never occurred when the defects were left empty or filled with the scaffold alone. In contrast, clinical union was obtained in three out of seven operated limbs when the defects were filled with the tissue-engineered bone.

  10. Resource partitioning in two stream salamanders, Dicamptodon tenebrosus and Rhyacotriton cascadae, from the Oregon Cascade Mountains

    Science.gov (United States)

    Cudmore, Wynn W.; Bury, R. Bruce

    2014-01-01

    We investigated the potential for resource partitioning between the Coastal giant salamander (Dicamptodon tenebrosus) and the Cascade torrent salamander (Rhyacotriton cascadae) by examining their diet and microhabitats in forest streams. Larval D. tenebrosus and R. cascadae fed primarily upon aquatic insect larvae. We found similar foods in larval and adult R. cascadae and combined these results. Dicamptodon larvae consumed ephemeropteran, plecopteran, and trichopteran larvae in about equal amounts whereas R. cascadae ate more trichopteran and less ephemeropteran larvae than D. tenebrosus. Diet of all R. cascadae overlapped more with smaller than larger sized D. tenebrosus larvae. Comparisons of diets with available foods indicated R. cascadae is more selective or more gape-limited in its feeding habits than D. tenebrosus larvae. The two salamanders differed in use of microhabitats in creeks, which may contribute to their diet differences.

  11. Wildlife disease. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders.

    Science.gov (United States)

    Martel, A; Blooi, M; Adriaensen, C; Van Rooij, P; Beukema, W; Fisher, M C; Farrer, R A; Schmidt, B R; Tobler, U; Goka, K; Lips, K R; Muletz, C; Zamudio, K R; Bosch, J; Lötters, S; Wombwell, E; Garner, T W J; Cunningham, A A; Spitzen-van der Sluijs, A; Salvidio, S; Ducatelle, R; Nishikawa, K; Nguyen, T T; Kolby, J E; Van Bocxlaer, I; Bossuyt, F; Pasmans, F

    2014-10-31

    Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naïve European amphibian populations, where it is currently causing biodiversity loss. Copyright © 2014, American Association for the Advancement of Science.

  12. Status of some populations of Mexican salamanders (Amphibia: Plethodontidae

    Directory of Open Access Journals (Sweden)

    Gabriela Parra-Olea

    1999-06-01

    Full Text Available Populations of Mexican plethodontid salamanders have been surveyed non-systematically over the last 25 years. In light of many reports of disappearance of amphibians around the world, we checked for persistence of reported species at ten of these sites. All of the commoner species persist (we observed individuals representing a total of 30 species. While observed densities of many species of Mexican plethodontids are lower to much lower than was the case 20 to 25 years ago, evidence for recent extinctions, such as has been reported for amphibian taxa elsewhere, is equivocal or lacking. Habitat modification has contributed to difficulties in finding certain species.Poblaciones de varias especies de salamandras pletodóntidas en México han sido monitoreadas de manera no sistemática durante los últimos 25 años. Diez de éstas poblaciones fueran visitadas recientemente con el propósito de verificar la persistencia de las especies reportadas para dichas localidades. Nuestras observaciones confirman la persistencia local de más de 30 especies cuyo estatus era desconocido, aunque la frecuencia de observación de estas especies es en general menor que en fechas anteriores. Estas observaciones son particularmente relevantes dada la situación actual de preocupación por la disminución mundial de anfibios.

  13. Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina

    Science.gov (United States)

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2013-01-01

    Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726

  14. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders.

    Science.gov (United States)

    Laking, Alexandra E; Ngo, Hai Ngoc; Pasmans, Frank; Martel, An; Nguyen, Tao Thien

    2017-03-13

    The amphibian chytrid fungi, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), pose a major threat to amphibian biodiversity. Recent evidence suggests Southeast Asia as a potential cradle for both fungi, which likely resulted in widespread host-pathogen co-existence. We sampled 583 salamanders from 8 species across Vietnam in 55 locations for Bsal and Bd, determined scaled mass index as a proxy for fitness and collected environmental data. Bsal was found within 14 of the 55 habitats (2 of which it was detected in 2013), in 5 salamandrid species, with a prevalence of 2.92%. The globalized pandemic lineage of Bd was found within one pond on one species with a prevalence of 0.69%. Combined with a complete lack of correlation between infection and individual body condition and absence of indication of associated disease, this suggests low level pathogen endemism and Bsal and Bd co-existence with Vietnamese salamandrid populations. Bsal was more widespread than Bd, and occurs at temperatures higher than tolerated by the type strain, suggesting a wider thermal niche than currently known. Therefore, this study provides support for the hypothesis that these chytrid fungi may be endemic to Asia and that species within this region may act as a disease reservoir.

  15. Survey of Pathogenic Chytrid Fungi (Batrachochytrium dendrobatidis and B. salamandrivorans) in Salamanders from Three Mountain Ranges in Europe and the Americas.

    Science.gov (United States)

    Parrott, Joshua Curtis; Shepack, Alexander; Burkart, David; LaBumbard, Brandon; Scimè, Patrick; Baruch, Ethan; Catenazzi, Alessandro

    2017-06-01

    Batrachochytrium salamandrivorans (Bsal) is a virulent fungal pathogen that infects salamanders. It is implicated in the recent collapse of several populations of fire salamanders in Europe. This pathogen seems much like that of its sister species, Batrachochytrium dendrobatidis (Bd), the agent responsible for anuran extinctions and extirpations worldwide, and is considered to be an emerging global threat to salamander communities. Bsal thrives at temperatures found in many mountainous regions rich in salamander species; because of this, we have screened specimens of salamanders representing 17 species inhabiting mountain ranges in three continents: The Smoky Mountains, the Swiss Alps, and the Peruvian Andes. We screened 509 salamanders, with 192 representing New World salamanders that were never tested for Bsal previously. Bsal was not detected, and Bd was mostly present at low prevalence except for one site in the Andes.

  16. Antifungal bacteria on woodland salamander skin exhibit high taxonomic diversity and geographic variability

    Science.gov (United States)

    Muletz-Wolz, Carly R.; DiRenzo, Graziella V.; Yarwood, Stephanie A.; Grant, Evan H. Campbell; Fleischer, Robert C.; Lips, Karen R.

    2017-01-01

    Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis. Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis. Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis. Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective

  17. Different season, different strategies: Feeding ecology of two syntopic forest-dwelling salamanders

    Science.gov (United States)

    Sebastiano, Salvidio; Antonio, Romano; Fabrizio, Oneto; Dario, Ottonello; Roberta, Michelon

    2012-08-01

    Trophic niche may be the most important ecological dimension for some vertebrate groups and in particular for terrestrial amphibians, that are important predators of soil invertebrates. In general, resource partitioning occurs between syntopic species with similar ecological niches, and coexistence patterns seem to be regulated by temporal resource variability. However most of the generalization on foraging strategies of terrestrial salamanders are extrapolated from studies on New World temperate species, thus we investigated the seasonal effect of resource variation in an European forest ecosystem, in which two ecologically similar but phylogenetically distinct salamander species are found. The diet of adult and juvenile cave salamanders (Speleomantes strinati), and of adult spectacled salamander (Salamandrina perspicillata) was obtained by stomach flushing, and results showed large seasonal changes both in prey availability and in salamander realised trophic niche. Values of trophic diversity were similar and niche overlaps were large among all salamander groups in spring, during high prey availability. Conversely in autumn, when a two-fold reduction in prey biomass was observed, there was a clear niche partitioning as the smaller S. perspicillata shifted from a generalist to a specialized trophic strategy. Juvenile Speleomantes strinatii, that largely overlapped in size with S. perspicillata, did not show any change in diet, suggesting that the feeding strategies were species-specific and not size-mediated. The observed patterns of variation in feeding ecology indicate that similar predators may react differently to changing prey availability to enhance niche partitioning. We also observed an increased energy intake during autumn for S perspicillata and S. strinatii juveniles, possibly related to differences in microhabitat use and activity patterns.

  18. Decadal changes in phenology of peak abundance patterns of woodland pond salamanders in northern Wisconsin

    Science.gov (United States)

    Donner, Deahn M.; Ribic, Christine; Beck, Albert J.; Higgins, Dale; Eklund, Dan; Reinecke, Susan

    2015-01-01

    Woodland ponds are important landscape features that help sustain populations of amphibians that require this aquatic habitat for successful reproduction. Species abundance patterns often reflect site-specific differences in hydrology, physical characteristics, and surrounding vegetation. Large-scale processes such as changing land cover and environmental conditions are other potential drivers influencing amphibian populations in the Upper Midwest, but little information exists on the combined effects of these factors. We used Blue-spotted (Ambystoma laterale Hallowell) and Spotted Salamander (A. maculatum Shaw) monitoring data collected at the same woodland ponds thirteen years apart to determine if changing environmental conditions and vegetation cover in surrounding landscapes influenced salamander movement phenology and abundance. Four woodland ponds in northern Wisconsin were sampled for salamanders in April 1992-1994 and 2005-2007. While Blue-spotted Salamanders were more abundant than Spotted Salamanders in all ponds, there was no change in the numbers of either species over the years. However, peak numbers of Blue-spotted Salamanders occurred 11.7 days earlier (range: 9-14 days) in the 2000s compared to the 1990s; Spotted Salamanders occurred 9.5 days earlier (range: 3 - 13 days). Air and water temperatures (April 13- 24) increased, on average, 4.8°C and 3.7°C, respectively, between the decades regardless of pond. There were no discernible changes in canopy openness in surrounding forests between decades that would have warmed the water sooner (i.e., more light penetration). Our finding that salamander breeding phenology can vary by roughly 10 days in Wisconsin contributes to growing evidence that amphibian populations have responded to changing climate conditions by shifting life-cycle events. Managers can use this information to adjust monitoring programs and forest management activities in the surrounding landscape to avoid vulnerable amphibian

  19. Variability of alkaloids in the skin secretion of the European fire salamander (Salamandra salamadra terrestris).

    Science.gov (United States)

    Mebs, Dietrich; Pogoda, Werner

    2005-04-01

    The two major alkaloids, samandarine and samandarone, were identified in the skin secretion of individual specimens from two populations of the European fire salamander (Salamandra salamandra terrestris) by gas chromatography/mass spectrometry. High intraspecific variability in the ratio of both alkaloids was observed, but also in individual specimens over a period of 4 months suggesting separate metabolic pathways of the compounds. Alkaloid synthesis appears to take place also in liver, testes and ovaries, whereas the larvae of the salamanders are entirely free of alkaloids.

  20. The effect of waist twisting on walking speed of an amphibious salamander like robot

    Science.gov (United States)

    Yin, Xin-Yan; Jia, Li-Chao; Wang, Chen; Xie, Guang-Ming

    2016-06-01

    Amphibious salamanders often swing their waist to coordinate quadruped walking in order to improve their crawling speed. A robot with a swing waist joint, like an amphibious salamander, is used to mimic this locomotion. A control method is designed to allow the robot to maintain the rotational speed of its legs continuous and avoid impact between its legs and the ground. An analytical expression is established between the amplitude of the waist joint and the step length. Further, an optimization amplitude is obtained corresponding to the maximum stride. The simulation results based on automatic dynamic analysis of mechanical systems (ADAMS) and physical experiments verify the rationality and validity of this expression.

  1. Upper Limb Exoskeleton

    NARCIS (Netherlands)

    Rusak, Z.; Luijten, J.; Kooijman, A.

    2015-01-01

    The present invention relates a wearable exoskeleton for a user having a torso with an upper limb to support motion of the said upper limb. The wearable exoskeleton comprises a first fixed frame mountable to the torso, an upper arm brace and a first group of actuators for moving the upper arm brace

  2. Isolated limb perfusion

    Directory of Open Access Journals (Sweden)

    Sandra Kuhar

    2016-02-01

    Full Text Available Isolated limb perfusion is a surgical procedure that can be used to treat an advanced malignant melanoma and soft tissue sarcomas, it is also effective in treating in-transit metastases of melanoma and local metastases of soft tissue sarcomas. With perfusion of the affected limb with cytostatic agents it is possible to avoid amputation and mutilating operations that significantly reduced the function of the limb. Since the procedure is isolated on a limb, it can be perfused with much higher doses of cytotoxic drugs, systemic toxicity is thus reduced or prevented. The most common side effects are erythema and edema.Cytotoxic drugs, that are manly used, are melphalan and tumor necrosis factor alpha. Efficient also proved to be simultaneous hyperthermia of the affected limb.

  3. LIMB Demonstration Project Extension

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  4. Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability.

    Science.gov (United States)

    Muletz-Wolz, Carly R; DiRenzo, Graziella V; Yarwood, Stephanie A; Campbell Grant, Evan H; Fleischer, Robert C; Lips, Karen R

    2017-05-01

    Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti- B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti- B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus , 15 P. glutinosus , 9 P. cylindraceus ) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti- B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti- B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti- B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti- B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti- B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis Anti- B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a

  5. Long bone histology of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan.

    Science.gov (United States)

    Skutschas, Pavel; Stein, Koen

    2015-04-01

    Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and 'salamander A') has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions. © 2015 Anatomical Society.

  6. Identification of Conserved and Novel MicroRNAs during Tail Regeneration in the Mexican Axolotl

    Directory of Open Access Journals (Sweden)

    Micah D. Gearhart

    2015-09-01

    Full Text Available The Mexican axolotl salamander (Ambystoma mexicanum is one member of a select group of vertebrate animals that have retained the amazing ability to regenerate multiple body parts. In addition to being an important model system for regeneration, the axolotl has also contributed extensively to studies of basic development. While many genes known to play key roles during development have now been implicated in various forms of regeneration, much of the regulatory apparatus controlling the underlying molecular circuitry remains unknown. In recent years, microRNAs have been identified as key regulators of gene expression during development, in many diseases and also, increasingly, in regeneration. Here, we have used deep sequencing combined with qRT-PCR to undertake a comprehensive identification of microRNAs involved in regulating regeneration in the axolotl. Specifically, among the microRNAs that we have found to be expressed in axolotl tissues, we have identified 4564 microRNA families known to be widely conserved among vertebrates, as well as 59,811 reads of putative novel microRNAs. These findings support the hypothesis that microRNAs play key roles in managing the precise spatial and temporal patterns of gene expression that ensures the correct regeneration of missing tissues.

  7. Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation

    Science.gov (United States)

    Walker, Donald M.; Leys, Jacob E.; Dunham, Kelly E.; Oliver, Joshua C.; Schiller, Emily E.; Stephenson, Kelsey S.; Kimrey, John T.; Wooten, Jessica; Rogers, Mark W.

    2017-01-01

    Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine-scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild-caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small-bodied wild terrestrial salamander populations.

  8. Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation.

    Science.gov (United States)

    Walker, Donald M; Leys, Jacob E; Dunham, Kelly E; Oliver, Joshua C; Schiller, Emily E; Stephenson, Kelsey S; Kimrey, John T; Wooten, Jessica; Rogers, Mark W

    2017-11-01

    Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine-scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild-caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small-bodied wild terrestrial salamander populations. © 2017 John Wiley & Sons Ltd.

  9. Molecular mechanisms of extensive mitochondrial gene rearrangementin plethodontid salamanders

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rachel Lockridge; Boore, Jeffrey L.

    2005-06-01

    Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light strand replication and the nearby tRNA genes or the regions flanking the origin of heavy strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and non-tandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mtDNAs, up to 25 percent of the total length is composed of tandem duplications of non-coding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intra-molecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.

  10. Regenerative Engineering and Bionic Limbs.

    Science.gov (United States)

    James, Roshan; Laurencin, Cato T

    2015-03-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next

  11. Cytogenetics of the Brazilian Bolitoglossa paraensis (Unterstein, 1930 salamanders (Caudata, Plethodontidae

    Directory of Open Access Journals (Sweden)

    Jéssica Barata da Silva

    2014-09-01

    Full Text Available Plethodontid salamanders of genus Bolitoglossa constitute the largest and most diverse group of salamanders, including around 20% of living caudate species. Recent studies have indicated the occurrence of five recognized species in the Brazilian Amazon Rainforest. We present here the first cytogenetic data of a Brazilian salamander, which may prove to be a useful by contribution to the cytotaxonomy of the genus. Specimens were collected near the "type" locality (Utinga, Belém, PA, Brazil. Chromosomal preparations from duodenal epithelial cells and testes were subjected to Giemsa staining, C-banding and DAPI/CMA3 fluorochrome staining. All specimens showed a karyotype with 13 bi-armed chromosome pairs (2n = 26. Nucleolar Organizer Regions, evidenced by CMA3, were located distally on the long arm of pair 7 (7q. DAPI+ heterochromatin was predominantly centromeric, with some small pericentromeric bands. Although the C-banding patterns of other Bolitoglossa species are so far unknown, cytogenetic studies conducted in other Plethodontid salamanders have demonstrated that pericentromeric heterochromatin is a useful cytological marker for identifying interspecific homeologies. Species diversification is usually accompanied by chromosomal changes. Therefore, the cytogenetic characterization of Bolitoglossa populations from the middle and western Brazilian Amazon Basin could identify differences which may lead to the identification of new species.

  12. Oviposition site of the southern torrent salamander (Rhyacotriton variegatus) in northwestern California

    Science.gov (United States)

    Nancy E. Karraker; Lisa M. Ollivier; Garth R. Hodgson

    2005-01-01

    Oviposition sites and reproductive ecology of the southern-torrent salamander (Rhyacotriton variegatus) remain poorly documented. This species oviposits in cryptic locations making the detection of eggs difficult. Here we describe the discovery of 1 clutch of eggs of R. variegatus from northern California, which further expands our...

  13. Cheat Mountain Salamanders Search Report 2006 Canaan Valley National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objective of the survey was to document Cheat Mountain salamander use on either side of Powderline ski trail or Three-Mile ski trail in an effort to continue to...

  14. Sal-Site: Integrating new and existing ambystomatid salamander research and informational resources

    Directory of Open Access Journals (Sweden)

    Weisrock David W

    2005-12-01

    Full Text Available Abstract Salamanders of the genus Ambystoma are a unique model organism system because they enable natural history and biomedical research in the laboratory or field. We developed Sal-Site to integrate new and existing ambystomatid salamander research resources in support of this model system. Sal-Site hosts six important resources: 1 Salamander Genome Project: an information-based web-site describing progress in genome resource development, 2 Ambystoma EST Database: a database of manually edited and analyzed contigs assembled from ESTs that were collected from A. tigrinum tigrinum and A. mexicanum, 3 Ambystoma Gene Collection: a database containing full-length protein-coding sequences, 4 Ambystoma Map and Marker Collection: an image and database resource that shows the location of mapped markers on linkage groups, provides information about markers, and provides integrating links to Ambystoma EST Database and Ambystoma Gene Collection databases, 5 Ambystoma Genetic Stock Center: a website and collection of databases that describe an NSF funded salamander rearing facility that generates and distributes biological materials to researchers and educators throughout the world, and 6 Ambystoma Research Coordination Network: a web-site detailing current research projects and activities involving an international group of researchers. Sal-Site is accessible at http://www.ambystoma.org.

  15. The Amphibian Chytrid Fungus, Batrachochytrium dendrobatidis, in Fully Aquatic Salamanders from Southeastern North America

    Science.gov (United States)

    Chatfield, Matthew W. H.; Moler, Paul; Richards-Zawacki, Corinne L.

    2012-01-01

    Little is known about the impact that the pathogenic amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has on fully aquatic salamander species of the eastern United States. As a first step in determining the impacts of Bd on these species, we aimed to determine the prevalence of Bd in wild populations of fully aquatic salamanders in the genera Amphiuma, Necturus, Pseudobranchus, and Siren. We sampled a total of 98 salamanders, representing nine species from sites in Florida, Mississippi, and Louisiana. Overall, infection prevalence was found to be 0.34, with significant differences among genera but no clear geographic pattern. We also found evidence for seasonal variation, but additional sampling throughout the year is needed to clarify this pattern. The high rate of infection discovered in this study is consistent with studies of other amphibians from the southeastern United States. Coupled with previously published data on life histories and population densities, the results presented here suggest that fully aquatic salamanders may be serving as important vectors of Bd and the interaction between these species and Bd warrants additional research. PMID:22984569

  16. Determining sex and life stage of Del Norte salamanders from external cues

    Science.gov (United States)

    Lisa Ollivier; Hartwell H. Welsh Jr

    2003-01-01

    Life stage determination for many western plethodontids often requires dissection of the specimen. Availability of reliable external measures that could be applied under field conditions would enhance future studies of the genus Plethodon. We examined preserved specimens of the Del Norte Salamander, Plethodon elongatus, taken from...

  17. Prevalence of Batrachochytrium dendrobatidis in a Nicaraguan, micro-endemic Neotropical salamander, Bolitoglossa mombachoensis

    NARCIS (Netherlands)

    Stark, Tariq; Laurijssens, Carlijn; Weterings, Martijn; Martel, An; Köhler, Gunther; Pasmans, Frank

    2017-01-01

    Amphibians are the most threatened terrestrial vertebrates on the planet and are iconic in the global biodiversity crisis. Their global decline caused by the fungal agent Batrachochytrium dendrobatidis (Bd) is well known. Declines of Mesoamerican salamanders of the family Plethodontidae, mainly

  18. Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander

    Directory of Open Access Journals (Sweden)

    Jérémy Tissier

    2017-10-01

    Full Text Available Fossils are almost always represented by hard tissues but we present here the exceptional case of a three-dimensionally preserved specimen that was ‘mummified’ (likely between 40 and 34 million years ago in a terrestrial karstic environment. This fossil is the incomplete body of a salamander, Phosphotriton sigei, whose skeleton and external morphology are well preserved, as revealed by phase-contrast synchrotron X-ray microtomography. In addition, internal structures composed of soft tissues preserved in three dimensions are now identified: a lung, the spinal cord, a lumbosacral plexus, the digestive tract, muscles and urogenital organs that may be cloacal glands. These are among the oldest known cases of three-dimensional preservation of these organs in vertebrates and shed light on the ecology of this salamander. Indeed, the digestive tract contains remains of a frog, which represents the only known case of an extinct salamander that fed on a frog, an extremely rare type of predation in extant salamanders. These new data improve our scarce knowledge on soft tissue anatomy of early urodeles and should prove useful for future biologists and palaeontologists working on urodele evolutionary biology. We also suggest that the presence of bat guano and carcasses represented a close source of phosphorus, favouring preservation of soft tissues. Bone microanatomy indicates that P. sigei was likely amphibious or terrestrial, and was probably not neotenic.

  19. Vertebral development of modern salamanders provides insights into a unique event of their evolutionary history.

    Science.gov (United States)

    Boisvert, Catherine Anne

    2009-01-15

    The origin of salamanders and their interrelationships to the two other modern amphibian orders (frogs and caecilians) are problematic owing to an 80-100 million year gap in the fossil record between the Carboniferous to the Lower Jurassic. This is compounded by a scarcity of adult skeletal characters linking the early representatives of the modern orders to their stem-group in the Paleozoic. The use of ontogenetic characters can be of great use in the resolution of these questions. Growth series of all ten modern salamander families (a 120 cleared and stained larvae) were examined for pattern and timing of vertebral elements chondrification and ossification. The primitive pattern is that of the neural arches developing before the centra, while the reverse represents the derived condition. Both the primitive and derived conditions are observed within the family Hynobiidae, whereas only the derived condition is observed in all other salamanders. This provides support to the claims that Hynobiidae is both the most basal of modern families and potentially polyphyletic (with Ranodon and Hybobius forming the most basal clade and Salamandrella being a part of the most derived clade). This provides insight into a unique event in salamander evolutionary history and suggests that the developmental pattern switch occurred between the Triassic and the mid-Jurassic before the last major radiation. (c) 2008 Wiley-Liss, Inc.

  20. Size-Mediated Tradeoffs in Life-History Traits in Dusky Salamanders

    Science.gov (United States)

    Richard C. Bruce

    2013-01-01

    Among salamanders of the genus Desmognathus, the larger species tend to be more aquatic and the smaller more terrestrial. I studied life histories in assemblages of Desmognathus in the southern Blue Ridge Mountains of North Carolina at sites in the Cowee and southern Nantahala Mountains. Traits evaluated included mortality/survival...

  1. A new approach for surveying the Alpine Salamander (Salamandra atra in Austria

    Directory of Open Access Journals (Sweden)

    Ursula Reinthaler-Lottermoser

    2010-12-01

    Full Text Available The Alpine Salamander is a small pitch black amphibian which is endemic to the European Alps and the Dinarides. It is strictly protected according to the European FFH guidelines. Despite its central role in the alpine ecosystem our actual published record in Austria is small. In order to resolve this shortcoming our project explores its distribution in Austria. It uses a participatory and community based approach to gather data. Everybody can enter and look at Alpine Salamander observations on our website www.alpensalamander.eu. This approach also allows us to establish an “oral history” of Salamander observations in the past 50 years by conducting interviews in the local community. Since July 2009 the website and salamander report database are online. From the actual data (more than 5600 records we already obtained an overview about the present distribution and data quality. The data are an excellent basis for detailed scientific studies on these remarkable amphibians. With this new and highly interactive approach science and education are combined to initiate protection measures with the public.

  2. Stand age and habitat influences on salamanders in Appalachian cove hardwood forests

    Science.gov (United States)

    W. Mark Ford; Brian R. Chapman; Michael A. Menzel; Richard H. Odom

    2002-01-01

    We surveyed cove hardwood stands aged 15, 25, 50, and ≥85 years following clearcutting in the southern Appalachian Mountains of northern Georgia to assess the effects of stand age and stand habitat characteristics on salamander communities using drift-fence array and pitfall methodologies from May 1994 to April 1995. Over a 60,060 pitfall trapnight effort, we...

  3. Data from proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xiaofang Geng

    2015-06-01

    Full Text Available The Chinese giant salamander (Andrias davidianus, renowned as a living fossil, is the largest and longest-lived amphibian species in the world. Its skin is rich in collagens, and has developed mucous gland which could secrete a large amount of mucus under the scraping and electric stimulation. The molting is the degraded skin stratum corneum. To establish the functional skin proteome of Chinese giant salamander, two-dimensional gel electrophoresis (2DE and mass spectrometry (MS were applied to detect the composition and relative abundance of the proteins in the skin, mucus and molting. The determination of the general proteome in the skin can potentially serve as a foundation for future studies characterizing the skin proteomes from diseased salamander to provide molecular and mechanistic insights into various disease states and potential therapeutic interventions. Data presented here are also related to the research article “Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus” in the Journal of Proteomics [1].

  4. Stream salamander species richness and abundance in relation to environmental factors in Shenandoah National Park, Virginia

    Science.gov (United States)

    Campbell Grant, Evan H.; Jung, Robin E.; Rice, Karen C.

    2005-01-01

    Stream salamanders are sensitive to acid mine drainage and may be sensitive to acidification and low acid neutralizing capacity (ANC) of a watershed. Streams in Shenandoah National Park, Virginia, are subject to episodic acidification from precipitation events. We surveyed 25 m by 2 m transects located on the stream bank adjacent to the water channel in Shenandoah National Park for salamanders using a stratified random sampling design based on elevation, aspect and bedrock geology. We investigated the relationships of four species (Eurycea bislineata, Desmognathus fuscus, D. monticola and Gyrinophilus porphyriticus) to habitat and water quality variables. We did not find overwhelming evidence that stream salamanders are affected by the acid-base status of streams in Shenandoah National Park. Desmognathus fuscus and D. monticola abundance was greater both in streams that had a higher potential to neutralize acidification, and in higher elevation (>700 m) streams. Neither abundance of E. bislineata nor species richness were related to any of the habitat variables. Our sampling method preferentially detected the adult age class of the study species and did not allow us to estimate population sizes. We suggest that continued monitoring of stream salamander populations in SNP will determine the effects of stream acidification on these taxa.

  5. Geographic variation, genetic structure, and conservation unit designation in the Larch Mountain salamander (Plethodon larselli).

    Science.gov (United States)

    R. Steven Wagner; Mark P. Miller; Charles M. Crisafulli; Susan M. Haig

    2005-01-01

    The Larch Mountain salamander (Plethodon larselli Burns, 1954) is an endemic species in the Pacific northwestern United States facing threats related to habitat destruction. To facilitate development of conservation strategies, we used DNA sequences and RAPDs (random amplified polymorphic DNA) to examine differences among populations of this...

  6. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders.

    Science.gov (United States)

    Anderson, Jason S; Reisz, Robert R; Scott, Diane; Fröbisch, Nadia B; Sumida, Stuart S

    2008-05-22

    The origin of extant amphibians (Lissamphibia: frogs, salamanders and caecilians) is one of the most controversial questions in vertebrate evolution, owing to large morphological and temporal gaps in the fossil record. Current discussions focus on three competing hypotheses: a monophyletic origin within either Temnospondyli or Lepospondyli, or a polyphyletic origin with frogs and salamanders arising among temnospondyls and caecilians among the lepospondyls. Recent molecular analyses are also controversial, with estimations for the batrachian (frog-salamander) divergence significantly older than the palaeontological evidence supports. Here we report the discovery of an amphibamid temnospondyl from the Early Permian of Texas that bridges the gap between other Palaeozoic amphibians and the earliest known salientians and caudatans from the Mesozoic. The presence of a mosaic of salientian and caudatan characters in this small fossil makes it a key taxon close to the batrachian (frog and salamander) divergence. Phylogenetic analysis suggests that the batrachian divergence occurred in the Middle Permian, rather than the late Carboniferous as recently estimated using molecular clocks, but the divergence with caecilians corresponds to the deep split between temnospondyls and lepospondyls, which is congruent with the molecular estimates.

  7. A survey for Batrachochytrium dendrobatidis in endangered and highly susceptible Vietnamese salamanders (Tylototriton spp.).

    Science.gov (United States)

    Thien, Tao Nguyen; Martel, An; Brutyn, Melanie; Bogaerts, Sergé; Sparreboom, Max; Haesebrouck, Freddy; Fisher, Matthew C; Beukema, Wouter; Van, Tang Duong; Chiers, Koen; Pasmans, Frank

    2013-09-01

    Until now, Asian amphibians appear to have largely escaped declines driven by chytridiomycosis. Vietnamese salamanders that belong to the genus Tylototriton are rare and have a patchy distribution in mountainous areas, falling within the proposed environmental envelope of chytrid infections, surrounded by Batrachochytrium dendrobatidis infected regions. If these salamanders are susceptible to chytridiomycosis, then their populations could be highly vulnerable after the introduction of B. dendrobatidis. Examination for the presence of the chytrid fungus in skin swabs from 19 Tylototriton asperrimus and 104 Tylototriton vietnamensis by using quantitative polymerase chain reaction was performed. Susceptibility of T. asperrimus to experimental infection by using the global panzootic lineage (BdGPL) strain of B. dendrobatidis was examined. The fungus was absent in all samples from all wild salamanders examined. Inoculation with the BdGPL strain resulted in mortality of all five inoculated salamanders within 3 weeks after inoculation with infected animals that manifested severe orthokeratotic hyperkeratosis, epidermal hyperplasia, and spongiosis. Although infection by B. dendrobatidis currently appears absent in Vietnamese Tylototriton populations, the rarity of these animals, their pronounced susceptibility to chytridiomycosis, an apparently suitable environmental context and increasing likelihood of the pathogen being introduced, together suggest the need of urgent measures to avoid future scenarios of extinction as witnessed in Central America and Australia.

  8. Projected loss of a salamander diversity hotspot as a consequence of projected global climate change

    Science.gov (United States)

    Joseph R. Milanovich; William E. Peterman; Nathan P. Nibbelink; John C. Maerz

    2010-01-01

    Background: Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation....

  9. The amphibian chytrid fungus, Batrachochytrium dendrobatidis, in fully aquatic salamanders from Southeastern North America.

    Directory of Open Access Journals (Sweden)

    Matthew W H Chatfield

    Full Text Available Little is known about the impact that the pathogenic amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd, has on fully aquatic salamander species of the eastern United States. As a first step in determining the impacts of Bd on these species, we aimed to determine the prevalence of Bd in wild populations of fully aquatic salamanders in the genera Amphiuma, Necturus, Pseudobranchus, and Siren. We sampled a total of 98 salamanders, representing nine species from sites in Florida, Mississippi, and Louisiana. Overall, infection prevalence was found to be 0.34, with significant differences among genera but no clear geographic pattern. We also found evidence for seasonal variation, but additional sampling throughout the year is needed to clarify this pattern. The high rate of infection discovered in this study is consistent with studies of other amphibians from the southeastern United States. Coupled with previously published data on life histories and population densities, the results presented here suggest that fully aquatic salamanders may be serving as important vectors of Bd and the interaction between these species and Bd warrants additional research.

  10. Behavioral and Physiological Responses of Ozark Zigzag Salamanders to Stimuli from an Invasive Predator: The Armadillo

    Directory of Open Access Journals (Sweden)

    Adam L. Crane

    2012-01-01

    Full Text Available When new predators invade a habitat, either through range extensions or introductions, prey may be at a high risk because they do not recognize the predators as dangerous. The nine-banded armadillo (Dasypus novemcinctus has recently expanded its range in North America. Armadillos forage by searching soil and leaf litter, consuming invertebrates and small vertebrates, including salamanders. We tested whether Ozark zigzag salamanders (Plethodon angusticlavius from a population coexisting with armadillos for about 30 years exhibit antipredator behavior in the presence of armadillo chemical cues and whether they can discriminate between stimuli from armadillos and a nonpredatory sympatric mammal (white-tailed deer, Odocoileus virginianus. Salamanders appeared to recognize substrate cues from armadillos as a threat because they increased escape behaviors and oxygen consumption. When exposed to airborne cues from armadillos, salamanders also exhibited an antipredator response by spending more time in an inconspicuous posture. Additionally, individually consistent behaviors across treatments for some response variables suggest the potential for a behavioral syndrome in this species.

  11. Helping the Retina Regenerate

    Science.gov (United States)

    ... report summarized two possible therapeutic strategies for RGC regeneration. The first would use stem cells to grow ... recommendations in the report include systematic comparisons of animal models that do and do not regenerate RGCs, ...

  12. Microarray analysis of a salamander hopeful monster reveals transcriptional signatures of paedomorphic brain development

    Directory of Open Access Journals (Sweden)

    Putta Srikrishna

    2010-06-01

    Full Text Available Abstract Background The Mexican axolotl (Ambystoma mexicanum is considered a hopeful monster because it exhibits an adaptive and derived mode of development - paedomorphosis - that has evolved rapidly and independently among tiger salamanders. Unlike related tiger salamanders that undergo metamorphosis, axolotls retain larval morphological traits into adulthood and thus present an adult body plan that differs dramatically from the ancestral (metamorphic form. The basis of paedomorphic development was investigated by comparing temporal patterns of gene transcription between axolotl and tiger salamander larvae (Ambystoma tigrinum tigrinum that typically undergo a metamorphosis. Results Transcript abundances from whole brain and pituitary were estimated via microarray analysis on four different days post hatching (42, 56, 70, 84 dph and regression modeling was used to independently identify genes that were differentially expressed as a function of time in both species. Collectively, more differentially expressed genes (DEGs were identified as unique to the axolotl (n = 76 and tiger salamander (n = 292 than were identified as shared (n = 108. All but two of the shared DEGs exhibited the same temporal pattern of expression and the unique genes tended to show greater changes later in the larval period when tiger salamander larvae were undergoing anatomical metamorphosis. A second, complementary analysis that directly compared the expression of 1320 genes between the species identified 409 genes that differed as a function of species or the interaction between time and species. Of these 409 DEGs, 84% exhibited higher abundances in tiger salamander larvae at all sampling times. Conclusions Many of the unique tiger salamander transcriptional responses are probably associated with metamorphic biological processes. However, the axolotl also showed unique patterns of transcription early in development. In particular, the axolotl showed a genome

  13. At random meetings to the creation of new species of Salamander

    Science.gov (United States)

    Brillant, Marie-Pierre

    2013-04-01

    The pupils in final year of high school (15-18 years old) study the notion "species" and the creation of new species in various ways. Having studied genetic admixtures, this activity allows the pupils to build a scenario explaining the creation of a new species of Salamander in southern California from an ancestral population existing in northern Oregon. They can observe, on Google Earth, various populations of Salamander of the genus Ensatina. Salamanders of the genus Ensatina live in California around the Joaquin and Sacramento dry valleys. In this software, the pupils get information about the salamanders' environment and photographs of individuals and environments. During a migratory movement toward new territories to be colonized, these salamanders meet an inhospitable environment that they can not occupy. This population then splits up into two migratory branches, east and west, each overcoming the obstacles in different ways. The two groups gradually colonized southern territories but they avoided the too dry and hot San Joaquin plains. The two main branches of the original population gradually move away from each other, and genetic exchanges between them decrease over time. Eventually, we can find various populations of Salamander on both sides of the valleys, since the salamanders occupied new territories and diversified along the way. Among mutations that randomly occur, only those mutations that are best adapted in the origin were conserved in the genetic heritage of every population. When the individuals stemming from different western populations met, they were interfertile and give fertile hybrids, which was verified in the laboratory. Likewise, when individuals of the different eastern subspecies met accidentally, fertile hybrids also could arise from these crossings. The pupils can observe what happens in the overlap of various populations : interfertility or not. They also have geological, geographical and climatic information about the San Joaquin

  14. Evaluating multi-level models to test occupancy state responses of Plethodontid salamanders

    Science.gov (United States)

    Kroll, Andrew J.; Garcia, Tiffany S.; Jones, Jay E.; Dugger, Catherine; Murden, Blake; Johnson, Josh; Peerman, Summer; Brintz, Ben; Rochelle, Michael

    2015-01-01

    Plethodontid salamanders are diverse and widely distributed taxa and play critical roles in ecosystem processes. Due to salamander use of structurally complex habitats, and because only a portion of a population is available for sampling, evaluation of sampling designs and estimators is critical to provide strong inference about Plethodontid ecology and responses to conservation and management activities. We conducted a simulation study to evaluate the effectiveness of multi-scale and hierarchical single-scale occupancy models in the context of a Before-After Control-Impact (BACI) experimental design with multiple levels of sampling. Also, we fit the hierarchical single-scale model to empirical data collected for Oregon slender and Ensatina salamanders across two years on 66 forest stands in the Cascade Range, Oregon, USA. All models were fit within a Bayesian framework. Estimator precision in both models improved with increasing numbers of primary and secondary sampling units, underscoring the potential gains accrued when adding secondary sampling units. Both models showed evidence of estimator bias at low detection probabilities and low sample sizes; this problem was particularly acute for the multi-scale model. Our results suggested that sufficient sample sizes at both the primary and secondary sampling levels could ameliorate this issue. Empirical data indicated Oregon slender salamander occupancy was associated strongly with the amount of coarse woody debris (posterior mean = 0.74; SD = 0.24); Ensatina occupancy was not associated with amount of coarse woody debris (posterior mean = -0.01; SD = 0.29). Our simulation results indicate that either model is suitable for use in an experimental study of Plethodontid salamanders provided that sample sizes are sufficiently large. However, hierarchical single-scale and multi-scale models describe different processes and estimate different parameters. As a result, we recommend careful consideration of study questions

  15. Upper Limb Exoskeleton

    OpenAIRE

    Rusak, Z.; Luijten, J.; Kooijman, A.

    2015-01-01

    The present invention relates a wearable exoskeleton for a user having a torso with an upper limb to support motion of the said upper limb. The wearable exoskeleton comprises a first fixed frame mountable to the torso, an upper arm brace and a first group of actuators for moving the upper arm brace relative to the first fixed frame. In an example the present invention is for use in post-stroke therapy.

  16. Axial dynamics during locomotion in vertebrates: lesson from the salamander

    OpenAIRE

    GOSSARD, JEAN-PIERRE; Dubuc, Réjean; Kolta, Arlette; Cabelguen, Jean-Marie; Ijspeert, Auke; Lamarque, Stéphanie; Ryczko, Dimitri

    2010-01-01

    Much of what we know about the flexibility of the locomotor networks in vertebrates is derived from studies examining the adaptation of limb movements during stepping in various conditions. However, the body movements play important roles during locomotion: they produce the thrust during undulatory locomotion and they help to increase the stride length during legged locomotion. In this chapter, we review our current knowledge about the flexibility in the neuronal circuits controlling the body...

  17. Transcriptomic analysis of tail regeneration in the lizard Anolis carolinensis reveals activation of conserved vertebrate developmental and repair mechanisms.

    Directory of Open Access Journals (Sweden)

    Elizabeth D Hutchins

    Full Text Available Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326 differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22 unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However, high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip. These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies.

  18. Northern flying squirrel, Glaucomys sabrinus fuscus (endangered), and Cheat Mountain salamander, Plethodon nettingi (threatened), evaluation; Bald Knob of Cabin

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — On April 17, 1991, the WVFO conducted an endangered species recon of properties in the southern end of Canaan Valley. Cheat Mountain Salamander A viable population...

  19. Report on the Status of the Cheat Mountain Salamander in the Cabin Mountain Area of West Virginia 1991

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This outlines the results of field surveys that were conducted for the Cheat Mountain salamander on the Kelley property on three mountains in the Cabin Mountain area...

  20. Impacts of a gape limited Brook Trout, Salvelinus fontinalis, on larval Northwestern salamander, Ambystoma gracile, growth: A field enclosure experiment

    Science.gov (United States)

    Currens, C.R.; Liss, W.J.; Hoffman, R.L.

    2007-01-01

    The formation of amphibian population structure is directly affected by predation. Although aquatic predators have been shown to have direct negative effects on larval salamanders in laboratory and field experiments, the potential impacts of gape-limited fish on larval salamander growth has been largely underexplored. We designed an enclosure experiment conducted in situ to quantify the effects of gape-limited Brook Trout (Salvelinus fontinalis) on larval Northwestern Salamander (Ambystoma gracile) growth. We specifically tested whether the presence of fish too small to consume larvae had a negative effect on larval growth. The results of this study indicate that the presence of a gape-limited S. fontinalis can have a negative effect on growth of larval A. gracile salamanders. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  1. The phenology of a rare salamander (Salamandra infraimmaculata in a population breeding under unpredictable ambient conditions: a 25 year study

    Directory of Open Access Journals (Sweden)

    Michael R. Warburg

    2007-11-01

    Full Text Available This is a long-term study (1974-1999 on the phenology of the rare, xeric- inhabiting salamander Salamandra infraimmaculata in a small isolated population during the breeding season near the breeding ponds on Mt. Carmel. This is a fringe area of the genus’ south-easternmost Palaearctic distribution. Salamanders were captured during the 25 year long study. The first years up to the 1980s the total number of salamanders increased but during the last years there seems to have been a decline. Although this could be a phase in normal population cyclic oscillations nevertheless when compared with long-term data on a European Salamandra it does not seem so. The interpretation of the species’ status is dependent on numbers of salamanders captured as well as on the duration of the study. These subjects are reviewed and discussed in this paper.

  2. Regeneration of periodontal tissues: guided tissue regeneration.

    Science.gov (United States)

    Villar, Cristina C; Cochran, David L

    2010-01-01

    The concept that only fibroblasts from the periodontal ligament or undifferentiated mesenchymal cells have the potential to re-create the original periodontal attachment has been long recognized. Based on this concept, guided tissue regeneration has been applied with variable success to regenerate periodontal defects. Quantitative analysis of clinical outcomes after guided tissue regeneration suggests that this therapy is a successful and predictable procedure to treat narrow intrabony defects and class II mandibular furcations, but offers limited benefits in the treatment of other types of periodontal defects.

  3. Transient laminin beta 1a Induction Defines the Wound Epidermis during Zebrafish Fin Regeneration

    Science.gov (United States)

    Chen, Chen-Hui; Merriman, Alexander F.; Savage, Jeremiah; Willer, Jason; Wahlig, Taylor; Katsanis, Nicholas; Yin, Viravuth P.; Poss, Kenneth D.

    2015-01-01

    The first critical stage in salamander or teleost appendage regeneration is creation of a specialized epidermis that instructs growth from underlying stump tissue. Here, we performed a forward genetic screen for mutations that impair this process in amputated zebrafish fins. Positional cloning and complementation assays identified a temperature-sensitive allele of the ECM component laminin beta 1a (lamb1a) that blocks fin regeneration. lamb1a, but not its paralog lamb1b, is sharply induced in a subset of epithelial cells after fin amputation, where it is required to establish and maintain a polarized basal epithelial cell layer. These events facilitate expression of the morphogenetic factors shha and lef1, basolateral positioning of phosphorylated Igf1r, patterning of new osteoblasts, and regeneration of bone. By contrast, lamb1a function is dispensable for juvenile body growth, homeostatic adult tissue maintenance, repair of split fins, or renewal of genetically ablated osteoblasts. fgf20a mutations or transgenic Fgf receptor inhibition disrupt lamb1a expression, linking a central growth factor to epithelial maturation during regeneration. Our findings reveal transient induction of lamb1a in epithelial cells as a key, growth factor-guided step in formation of a signaling-competent regeneration epidermis. PMID:26305099

  4. Limb salvage surgery

    Directory of Open Access Journals (Sweden)

    Dinesh Kadam

    2013-01-01

    Full Text Available The threat of lower limb loss is seen commonly in severe crush injury, cancer ablation, diabetes, peripheral vascular disease and neuropathy. The primary goal of limb salvage is to restore and maintain stability and ambulation. Reconstructive strategies differ in each condition such as: Meticulous debridement and early coverage in trauma, replacing lost functional units in cancer ablation, improving vascularity in ischaemic leg and providing stable walking surface for trophic ulcer. The decision to salvage the critically injured limb is multifactorial and should be individualised along with laid down definitive indications. Early cover remains the standard of care, delayed wound coverage not necessarily affect the final outcome. Limb salvage is more cost-effective than amputations in a long run. Limb salvage is the choice of procedure over amputation in 95% of limb sarcoma without affecting the survival. Compound flaps with different tissue components, skeletal reconstruction; tendon transfer/reconstruction helps to restore function. Adjuvant radiation alters tissue characters and calls for modification in reconstructive plan. Neuropathic ulcers are wide and deep often complicated by osteomyelitis. Free flap reconstruction aids in faster healing and provides superior surface for offloading. Diabetic wounds are primarily due to neuropathy and leads to six-fold increase in ulcerations. Control of infections, aggressive debridement and vascular cover are the mainstay of management. Endovascular procedures are gaining importance and have reduced extent of surgery and increased amputation free survival period. Though the standard approach remains utilising best option in the reconstruction ladder, the recent trend shows running down the ladder of reconstruction with newer reliable local flaps and negative wound pressure therapy.

  5. Hypothesis: terminal transverse limb defects with "nubbins" represent a regenerative process during limb development in human fetuses.

    Science.gov (United States)

    Gardiner, David M; Holmes, Lewis B

    2012-03-01

    Terminal transverse limb defects with nubbins occur in one arm at one of several levels (distal humerus, proximal forearm, wrist, and at the metacarpal-phalangeal joint in the hand). The associated nubbins contain osteocartilaginous tissue and small nails and are not associated with evidence of amnion disruption. We present affected newborn infants whose terminal transverse limb defects are at one of these three levels: proximal forearm, elbow, or metacarpal-phalangeal joint. We hypothesize that the presence of residual digit-like structures reflects a regenerative process that has occurred during limb development in these infants. Only limited regeneration of digit-like structures can occur in the human fetus. Copyright © 2012 Wiley Periodicals, Inc.

  6. Desulfurization sorbent regeneration

    Science.gov (United States)

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  7. Regeneration in Swimming

    OpenAIRE

    Lehocký, Jan

    2006-01-01

    Topic: Regeneration in the swimming Aim: Using a questionnaire to find out information and views on the need of regeneration and its use. Process the results and evaluate the survey data into synoptic tables and graphs. Giving a comprehensive overview of the field of regeneration in the swimming sport. Method: The research group of our work happened 30 swimmers - participants Championship Czech Republic 2005 in short swimming pool at the age of 15-33 years. Results: It was confirmed that most...

  8. Survey for the pathogenic chytrid fungus Batrachochytrium dendrobatidis in southwestern North Carolina salamander populations.

    Science.gov (United States)

    Keitzer, S Conor; Goforth, Reuben; Pessier, Allan P; Johnson, April J

    2011-04-01

    Batrachochytrium dendrobatidis is a fungal pathogen responsible for a potentially fatal disease of amphibians. We conducted a survey for B. dendrobatidis in the Appalachian Mountains of southwestern North Carolina, USA, from 10 June to 23 July 23 2009. Ventral skin swabs were collected from plethodontid salamanders (n=278) and real-time PCR was performed to test for the presence of B. dendrobatidis. We found no evidence of B. dendrobatidis, suggesting that B. dendrobatidis is absent or present in such low levels that it was undetected. If B. dendrobatidis was present at the time of our sampling, this survey supports evidence of low prevalence of B. dendrobatidis in North American headwater stream salamander populations.

  9. Climate-mediated competition in a high-elevation salamander community

    Science.gov (United States)

    Dallalio, Eric A.; Brand, Adrianne B,; Grant, Evan H. Campbell

    2017-01-01

    The distribution of the federally endangered Shenandoah Salamander (Plethodon shenandoah) is presumed to be limited by competition with the Red-backed Salamander (Plethodon cinereus). In particular, the current distribution of P. shenandoah is understood to be restricted to warmer and drier habitats because of interspecific interactions. These habitats may be particularly sensitive to climate change, though the influence of competition may also be affected by temperature and relative humidity. We investigated the response of P. shenandoah to competition with P. cinereus under four climate scenarios in 3-dimensional mesocosms. The results suggest that, although climate change may alleviate competitive pressure from P. cinereus, warmer temperatures may also significantly influence the persistence of the species across its known range.

  10. Distribution of the Sonora Tiger Salamander (Ambystoma mavortium stebbinsi) in Mexico

    Science.gov (United States)

    Hossack, Blake R.; Muths, Erin L.; Rorabaugh, James C.; Lemos Espinal, Julio A.; Sigafus, Brent H.; Chambert, Thierry A.; Carreon Arroyo, Gerardo; Hurtado Felix, David; Toyos Martinez, Daniel; Jones, Thomas R.

    2016-01-01

    The Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi Lowe, 1954) was listed as federally endangered in the USA in 1997 (USFWS 1997). In the USA, the distribution of A. mavortium stebbinsi is limited to the San Rafael Valley (approximately 567 km2), between the Sierra San Antonio (called the Patagonia Mountains in Arizona) and Huachuca Mountains, and south of the Canelo Hills, Arizona (Fig. 1). The USA listing was triggered by loss of natural wetland habitats, threats from invasive predators, frequent die-offs from disease, introgression with the introduced Barred Tiger Salamander (A. mavortium mavortium), and small range and number of breeding sites that increases susceptibility to stochastic events (USFWS 1997). Small population sizes and limited gene flow have caused inbreeding, which may further reduce population viability and the potential for recovery (Jones et al. 1988; Storfer et al. 2014). 

  11. Optic nerve regeneration.

    Science.gov (United States)

    Benowitz, Larry I; Yin, Yuqin

    2010-08-01

    Retinal ganglion cells are usually not able to regenerate their axons after optic nerve injury or degenerative disorders, resulting in lifelong visual loss. This situation can be partially reversed by activating the intrinsic growth state of retinal ganglion cells, maintaining their viability, and counteracting inhibitory signals in the extracellular environment. Advances during the past few years continue to extend the amount of regeneration that can be achieved in animal models. These findings give hope that clinically meaningful regeneration may become a reality within a few years if regenerating axons can be guided to their appropriate destinations.

  12. Comparing population patterns to processes: abundance and survival of a forest salamander following habitat degradation.

    Directory of Open Access Journals (Sweden)

    Clint R V Otto

    Full Text Available Habitat degradation resulting from anthropogenic activities poses immediate and prolonged threats to biodiversity, particularly among declining amphibians. Many studies infer amphibian response to habitat degradation by correlating patterns in species occupancy or abundance with environmental effects, often without regard to the demographic processes underlying these patterns. We evaluated how retention of vertical green trees (CANOPY and coarse woody debris (CWD influenced terrestrial salamander abundance and apparent survival in recently clearcut forests. Estimated abundance of unmarked salamanders was positively related to CANOPY (β Canopy  = 0.21 (0.02-1.19; 95% CI, but not CWD (β CWD  = 0.11 (-0.13-0.35 within 3,600 m2 sites, whereas estimated abundance of unmarked salamanders was not related to CANOPY (β Canopy  = -0.01 (-0.21-0.18 or CWD (β CWD  = -0.02 (-0.23-0.19 for 9 m2 enclosures. In contrast, apparent survival of marked salamanders within our enclosures over 1 month was positively influenced by both CANOPY and CWD retention (β Canopy  = 0.73 (0.27-1.19; 95% CI and β CWD  = 1.01 (0.53-1.50. Our results indicate that environmental correlates to abundance are scale dependent reflecting habitat selection processes and organism movements after a habitat disturbance event. Our study also provides a cautionary example of how scientific inference is conditional on the response variable(s, and scale(s of measure chosen by the investigator, which can have important implications for species conservation and management. Our research highlights the need for joint evaluation of population state variables, such as abundance, and population-level process, such as survival, when assessing anthropogenic impacts on forest biodiversity.

  13. Generalisation within specialization: inter-individual diet variation in the only specialized salamander in the world

    OpenAIRE

    Andrea Costa; Sebastiano Salvidio; Mario Posillico; Giorgio Matteucci; Bruno De Cinti; Antonio Romano

    2015-01-01

    Specialization is typically inferred at population and species level but in the last decade many authors highlighted this trait at the individual level, finding that generalist populations can be composed by both generalist and specialist individual. Despite hundreds of reported cases of individual specialization there is a complete lack of information on inter-individual diet variation in specialist species. We studied the diet of the Italian endemic Spectacled Salamander (Salamandrina persp...

  14. First record of salamander predation by a Liophis (Wagler, 1830 snake in the Venezuelan Andes

    Directory of Open Access Journals (Sweden)

    Luis Felipe Esqueda

    2009-12-01

    Full Text Available Information available so far is exceedingly meagre about the diet of the snakes included in the genus Liophis, one of the most diverse groups that inhabit terrestrial ecosystems of South America. For the first time is documented the predation of a salamander by Liophis from Venezuela, including a brief overview on the alteration of montane and submontane Andean ecosystem and their effect on the natural dynamic.

  15. The Impact of Management on the Movement and Home Range Size of Indiana's Eastern Hellbender Salamanders

    OpenAIRE

    McCallen, Emily B.; Kraus, Bart T.; Burgmeier, Nick G.; Williams, Rod N.

    2016-01-01

    Eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) are a large, fully aquatic salamander species distributed throughout watersheds in the eastern United States. In Indiana, hellbenders were once found in tributaries of the Ohio River and the Wabash River but are now restricted to a single river in the southern portion of the state. Monitoring within the Blue River over twenty years has revealed a steady decrease in the total abundance of hellbenders and a shift towards older ind...

  16. Purification and characterization of cholecystokinin from the skin of salamander Tylototriton verrucosus

    OpenAIRE

    Jiang, Wen-Bin; HAKIM, Ma; Luo, Lei; LI, Bo-Wen; Yang, Shi-Long; SONG, Yu-Zhu; Lai, Ren; Lu, Qiu-Min

    2015-01-01

    As a group of intestinal hormones and neurotransmitters, cholecystokinins (CCKs) regulate and affect pancreatic enzyme secretion, gastrointestinal motility, pain hypersensitivity, digestion and satiety, and generally contain a DYMGWMDFG sequence at the C-terminus. Many CCKs have been reported in mammals. However, only a few have been reported in amphibians, such as Hyla nigrovittata, Xenopus laevis, and Rana catesbeiana, with none reported in urodele amphibians like newts and salamanders. Her...

  17. Ecology and distribution of the Florida bog frog and flatwoods salamander on Eglin Air Force Base

    OpenAIRE

    Bishop, David Christopher

    2005-01-01

    I studied the ecology and distribution of the Florida bog frog (Rana okaloosae) and flatwoods salamander (Ambystoma cingulatum) on Eglin Air Force Base in northwest Florida. I report data on the breeding ecology, population dynamics, home ranges, microhabitat, and distribution of the endemic bog frog and make comparisons to its closest relative, the bronze frog (Rana clamitans clamitans). Bog and bronze frogs occur in the same habitats and are suspected to hybridize. I investigated th...

  18. Vertebrate hosts as islands: dynamics of selection, immigration, loss, persistence and potential function of bacteria on salamander skin

    Directory of Open Access Journals (Sweden)

    Andrew Howard Loudon

    2016-03-01

    Full Text Available Skin bacterial communities can protect amphibians from a fungal pathogen; however, little is known about how these communities are maintained. We used a neutral model of community ecology to identify bacteria that are maintained on salamanders by selection or by dispersal from a bacterial reservoir (soil and ecological drift. We found that 75% (9/12 of bacteria that were consistent with positive selection, < 1% of bacteria that were consistent with random dispersal and none of the bacteria that were consistent under negative selection had a 97% or greater match to antifungal isolates. Additionally we performed an experiment where salamanders were either provided or denied a bacterial reservoir and estimated immigration and loss (emigration and local extinction rates of bacteria on salamanders in both treatments. Loss was strongly related to bacterial richness, suggesting competition is important for structuring the community. Bacteria closely related to antifungal isolates were more likely to persist on salamanders with or without a bacterial reservoir, suggesting they had a competitive advantage. Furthermore, over-represented and under-represented OTUs had similar persistence on salamanders when a bacterial reservoir was present. However, under-represented OTUs were less likely to persist in the absence of a bacterial reservoir, suggesting that the over-represented and under-represented bacteria are selected for or against on salamanders through time. Our findings from the neutral model, migration and persistence analyses show that bacteria that exhibit a high similarity to antifungal isolates persist on salamanders, which likely protect hosts against pathogens and improve fitness. This research is one of the first to apply ecological theory to investigate assembly of host associated-bacterial communities, which can provide insights for probiotic bioaugmentation as a conservation strategy against disease.

  19. Phylogeography of Sardinian cave salamanders (genus Hydromantes) is mainly determined by geomorphology.

    Science.gov (United States)

    Chiari, Ylenia; van der Meijden, Arie; Mucedda, Mauro; Lourenço, João M; Hochkirch, Axel; Veith, Michael

    2012-01-01

    Detecting the factors that determine the interruption of gene flow between populations is key to understanding how speciation occurs. In this context, caves are an excellent system for studying processes of colonization, differentiation and speciation, since they represent discrete geographical units often with known geological histories. Here, we asked whether discontinuous calcareous areas and cave systems represent major barriers to gene flow within and among the five species of Sardinian cave salamanders (genus Hydromantes) and whether intraspecific genetic structure parallels geographic distance within and among caves. We generated mitochondrial cytochrome b gene sequences from 184 individuals representing 48 populations, and used a Bayesian phylogeographic approach to infer possible areas of cladogenesis for these species and reconstruct historical and current dispersal routes among distinct populations. Our results show deep genetic divergence within and among all Sardinian cave salamander species, which can mostly be attributed to the effects of mountains and discontinuities in major calcareous areas and cave systems acting as barriers to gene flow. While these salamander species can also occur outside caves, our results indicate that there is a very poor dispersal of these species between separate cave systems.

  20. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats

    Science.gov (United States)

    Salvidio, Sebastiano; Palumbi, Giulia; Romano, Antonio; Costa, Andrea

    2017-04-01

    Recent studies suggest that many organisms actively colonize the subterranean environment to avoid climatic stress, exploit new ecological opportunities and reduce competition and predation. Terrestrial salamanders are known to colonize the more stable subterranean habitats mainly to escape external climatic extremes, while the role of predation avoidance remains untested. To better understand the importance of predation, we used clay models of the cave salamander Speleomantes strinatii to compare the predation occurring in woodland and subterranean habitats. Models were positioned in three forests and in three caves in NW Italy. One-hundred eighty-four models were retrieved from the field and 59 (32%) were attacked by predators. Models were attacked on their head more often than expected by chance and, therefore, were perceived by predators as real prey items. In the woodlands, clay models showed a four-time higher probability of being attacked in comparison to caves, suggesting a different level of potential predation risk in these surface habitats. These findings are one of the first experimental evidences that, in terrestrial ecosystems, predation avoidance may contribute to the salamander underground colonization process.

  1. The dynamic evolutionary history of genome size in North American woodland salamanders.

    Science.gov (United States)

    Newman, Catherine E; Gregory, T Ryan; Austin, Christopher C

    2017-04-01

    The genus Plethodon is the most species-rich salamander genus in North America, and nearly half of its species face an uncertain future. It is also one of the most diverse families in terms of genome sizes, which range from 1C = 18.2 to 69.3 pg, or 5-20 times larger than the human genome. Large genome size in salamanders results in part from accumulation of transposable elements and is associated with various developmental and physiological traits. However, genome sizes have been reported for only 25% of the species of Plethodon (14 of 55). We collected genome size data for Plethodon serratus to supplement an ongoing phylogeographic study, reconstructed the evolutionary history of genome size in Plethodontidae, and inferred probable genome sizes for the 41 species missing empirical data. Results revealed multiple genome size changes in Plethodon: genomes of western Plethodon increased, whereas genomes of eastern Plethodon decreased, followed by additional decreases or subsequent increases. The estimated genome size of P. serratus was 21 pg. New understanding of variation in genome size evolution, along with genome size inferences for previously unstudied taxa, provide a foundation for future studies on the biology of plethodontid salamanders.

  2. Pathogens as a factor limiting the spread of cannibalism in tiger salamanders.

    Science.gov (United States)

    Pfennig, David W; Loeb, Michael L G; Collins, James P

    1991-10-01

    Intraspecific predation is taxonomically widespread, but few species routinely prey on conspecifics. This is surprising as conspecifics could be a valuable resource for animals limited by food. A potential cost of cannibalism that has been largely unexplored is that it may enhance the risk of acquiring debilitating pathogens or toxins from conspecifics. We examined how pathogens affect variation in the incidence of cannibalism in tiger salamander larvae (Ambystoma tigrinum nebulosum), which occur as two environmentally-induced morphs, typicals and cannibals. Salamanders from one population were more likely than those in another to develop into cannibals, even when reared under identical conditions. Variation in the propensity to become a cannibal may be caused by variation in pathogen density. In the population with cannibals at low frequency, bacterial blooms in late summer correlated with massive die-offs of salamanders. The frequency of cannibals correlated significantly negatively with bacterial density in ten different natural lakes. In the laboratory, cannibals exposed to a diseased conspecific always preyed on the sick animal. As a result, cannibals wre more likely to acquire and die from disease than were typicals that were similarly exposed, or cannibals that were exposed to healthy conspecifics. Since conspecifics often share lethal pathogens, enhanced risk of disease may explain why cannibalism is generally infrequent. Pathogens may constrain not only the tendency to be behaviorally cannibalistic, but also the propensity to develop specialized cannibal morphologies.

  3. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats.

    Science.gov (United States)

    Salvidio, Sebastiano; Palumbi, Giulia; Romano, Antonio; Costa, Andrea

    2017-04-01

    Recent studies suggest that many organisms actively colonize the subterranean environment to avoid climatic stress, exploit new ecological opportunities and reduce competition and predation. Terrestrial salamanders are known to colonize the more stable subterranean habitats mainly to escape external climatic extremes, while the role of predation avoidance remains untested. To better understand the importance of predation, we used clay models of the cave salamander Speleomantes strinatii to compare the predation occurring in woodland and subterranean habitats. Models were positioned in three forests and in three caves in NW Italy. One-hundred eighty-four models were retrieved from the field and 59 (32%) were attacked by predators. Models were attacked on their head more often than expected by chance and, therefore, were perceived by predators as real prey items. In the woodlands, clay models showed a four-time higher probability of being attacked in comparison to caves, suggesting a different level of potential predation risk in these surface habitats. These findings are one of the first experimental evidences that, in terrestrial ecosystems, predation avoidance may contribute to the salamander underground colonization process.

  4. Ultrasonography: a method used for pregnancy imaging of the fire salamander (Salamandra salamandra).

    Science.gov (United States)

    Najbar, A; Kiełbowicz, Z; Szymczak, J; Ogielska, M

    2016-12-01

    Ultrasound imaging has more frequently been used in veterinary medicine of amphibians and reptiles. In this study, we have verified the usefulness of ultrasound imaging in pregnancy determination of the fire salamander Salamandra salamandra. We have also undertaken to estimate the number of larvae and their developmental stage directly in the oviducts. Three gravid females from Lower Silesia (southern Poland) were examined. Due to the small size of the scanned animals, and the particular arrangement of embryos in the oviducts and ultrasound beams dispersal, the method proved to be inaccurate. Therefore, the minimum number of well-visualized larvae was determined. The maximum number of larvae was established on the basis of the visible fragments of embryos. After birth, we found that the number of larvae born was included in the "min-max" range in only one case. In the remaining two salamanders the number of larvae was higher than estimated in 3 to 7 individuals. The results showed that ultrasound imaging allows the minimum number of larvae in salamander; oviducts to be specified. However, total length measurements were possible only for single and clearly visible embryos.

  5. Unexpected Rarity of the Pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957–2011

    Science.gov (United States)

    Muletz, Carly; Caruso, Nicholas M.; Fleischer, Robert C.; McDiarmid, Roy W.; Lips, Karen R.

    2014-01-01

    Widespread population declines in terrestrial Plethodon salamanders occurred by the 1980s throughout the Appalachian Mountains, the center of global salamander diversity, with no evident recovery. We tested the hypothesis that the historic introduction and spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) into the eastern US was followed by Plethodon population declines. We expected to detect elevated prevalence of Bd prior to population declines as observed for Central American plethodontids. We tested 1,498 Plethodon salamanders of 12 species (892 museum specimens, 606 wild individuals) for the presence of Bd, and tested 94 of those for Batrachochytrium salamandrivorans (Bs) and for ranavirus. Field samples were collected in 2011 from 48 field sites across a 767 km transect. Historic samples from museum specimens were collected at five sites with the greatest number and longest duration of collection (1957–987), four of which were sampled in the field in 2011. None of the museum specimens were positive for Bd, but four P. cinereus from field surveys were positive. The overall Bd prevalence from 1957–2011 for 12 Plethodon species sampled across a 757 km transect was 0.2% (95% CI 0.1–0.7%). All 94 samples were negative for Bs and ranavirus. We conclude that known amphibian pathogens are unlikely causes for declines in these Plethodon populations. Furthermore, these exceptionally low levels of Bd, in a region known to harbor Bd, may indicate that Plethodon specific traits limit Bd infection. PMID:25084159

  6. Unexpected rarity of the pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957-2011.

    Science.gov (United States)

    Muletz, Carly; Caruso, Nicholas M; Fleischer, Robert C; McDiarmid, Roy W; Lips, Karen R

    2014-01-01

    Widespread population declines in terrestrial Plethodon salamanders occurred by the 1980s throughout the Appalachian Mountains, the center of global salamander diversity, with no evident recovery. We tested the hypothesis that the historic introduction and spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) into the eastern US was followed by Plethodon population declines. We expected to detect elevated prevalence of Bd prior to population declines as observed for Central American plethodontids. We tested 1,498 Plethodon salamanders of 12 species (892 museum specimens, 606 wild individuals) for the presence of Bd, and tested 94 of those for Batrachochytrium salamandrivorans (Bs) and for ranavirus. Field samples were collected in 2011 from 48 field sites across a 767 km transect. Historic samples from museum specimens were collected at five sites with the greatest number and longest duration of collection (1957-987), four of which were sampled in the field in 2011. None of the museum specimens were positive for Bd, but four P. cinereus from field surveys were positive. The overall Bd prevalence from 1957-2011 for 12 Plethodon species sampled across a 757 km transect was 0.2% (95% CI 0.1-0.7%). All 94 samples were negative for Bs and ranavirus. We conclude that known amphibian pathogens are unlikely causes for declines in these Plethodon populations. Furthermore, these exceptionally low levels of Bd, in a region known to harbor Bd, may indicate that Plethodon specific traits limit Bd infection.

  7. Unexpected rarity of the pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957-2011.

    Directory of Open Access Journals (Sweden)

    Carly Muletz

    Full Text Available Widespread population declines in terrestrial Plethodon salamanders occurred by the 1980s throughout the Appalachian Mountains, the center of global salamander diversity, with no evident recovery. We tested the hypothesis that the historic introduction and spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd into the eastern US was followed by Plethodon population declines. We expected to detect elevated prevalence of Bd prior to population declines as observed for Central American plethodontids. We tested 1,498 Plethodon salamanders of 12 species (892 museum specimens, 606 wild individuals for the presence of Bd, and tested 94 of those for Batrachochytrium salamandrivorans (Bs and for ranavirus. Field samples were collected in 2011 from 48 field sites across a 767 km transect. Historic samples from museum specimens were collected at five sites with the greatest number and longest duration of collection (1957-987, four of which were sampled in the field in 2011. None of the museum specimens were positive for Bd, but four P. cinereus from field surveys were positive. The overall Bd prevalence from 1957-2011 for 12 Plethodon species sampled across a 757 km transect was 0.2% (95% CI 0.1-0.7%. All 94 samples were negative for Bs and ranavirus. We conclude that known amphibian pathogens are unlikely causes for declines in these Plethodon populations. Furthermore, these exceptionally low levels of Bd, in a region known to harbor Bd, may indicate that Plethodon specific traits limit Bd infection.

  8. Limb girdle muscular dystrophies

    DEFF Research Database (Denmark)

    Vissing, John

    2016-01-01

    PURPOSE OF REVIEW: The aim of the study was to describe the clinical spectrum of limb girdle muscular dystrophies (LGMDs), the pitfalls of the current classification system for LGMDs, and emerging therapies for these conditions. RECENT FINDINGS: Close to half of all LGMD subtypes have been...

  9. Phantom limb pain

    Science.gov (United States)

    ... there Changes in the weather Stress Infection An artificial limb that does not fit properly Poor blood flow ... Move or exercise the remaining part of your arm or leg. If you are wearing your prosthesis, take it off. If you are not wearing ...

  10. Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis.

    Science.gov (United States)

    Tsutsumi, Rio; Yamada, Shigehito; Agata, Kiyokazu

    2016-02-01

    A functional joint requires integration of multiple tissues: the apposing skeletal elements should form an interlocking structure, and muscles should insert into skeletal tissues via tendons across the joint. Whereas newts can regenerate functional joints after amputation, Xenopus laevis regenerates a cartilaginous rod without joints, a "spike." Previously we reported that the reintegration mechanism between the remaining and regenerated tissues has a significant effect on regenerating joint morphogenesis during elbow joint regeneration in newt. Based on this insight into the importance of reintegration, we amputated frogs' limbs at the elbow joint and found that frogs could regenerate a functional elbow joint between the remaining tissues and regenerated spike. During regeneration, the regenerating cartilage was partially connected to the remaining articular cartilage to reform the interlocking structure of the elbow joint at the proximal end of the spike. Furthermore, the muscles of the remaining part inserted into the regenerated spike cartilage via tendons. This study might open up an avenue for analyzing molecular and cellular mechanisms of joint regeneration using Xenopus.

  11. Limb-Girdle Muscular Dystrophy (LGMD)

    Science.gov (United States)

    ... Blog Donate Search MDA.org Close Limb-Girdle Muscular Dystrophy (LGMD) Share print email share facebook twitter google plus linkedin Limb-Girdle Muscular Dystrophy (LGMD) What is limb-girdle muscular dystrophy? Limb- ...

  12. Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis

    Directory of Open Access Journals (Sweden)

    Passamaneck Yale J

    2012-12-01

    Full Text Available Abstract Background The contribution of cell proliferation to regeneration varies greatly between different metazoan models. Planarians rely on pluripotent neoblasts and amphibian limb regeneration depends upon formation of a proliferative blastema, while regeneration in Hydra can occur in the absence of cell proliferation. Recently, the cnidarian Nematostella vectensis has shown potential as a model for studies of regeneration because of the ability to conduct comparative studies of patterning during embryonic development, asexual reproduction, and regeneration. The present study investigates the pattern of cell proliferation during the regeneration of oral structures and the role of cell proliferation in this process. Results In intact polyps, cell proliferation is observed in both ectodermal and endodermal tissues throughout the entire oral-aboral axis, including in the tentacles and physa. Following bisection, there is initially little change in proliferation at the wound site of the aboral fragment, however, beginning 18 to 24 hours after amputation there is a dramatic increase in cell proliferation at the wound site in the aboral fragment. This elevated level of proliferation is maintained throughout the course or regeneration of oral structures, including the tentacles, the mouth, and the pharynx. Treatments with the cell proliferation inhibitors hydroxyurea and nocodazole demonstrate that cell proliferation is indispensable for the regeneration of oral structures. Although inhibition of regeneration by nocodazole was generally irreversible, secondary amputation reinitiates cell proliferation and regeneration. Conclusions The study has found that high levels of cell proliferation characterize the regeneration of oral structures in Nematostella, and that this cell proliferation is necessary for the proper progression of regeneration. Thus, while cell proliferation contributes to regeneration of oral structures in both Nematostella and

  13. Toxicity and immune system effects of dietary deltamethrin exposure in tiger salamanders (Ambystoma tigrinum).

    Science.gov (United States)

    Froese, Jennifer M W; Smits, Judit E G; Forsyth, Douglas J; Wickstrom, Mark L

    2009-01-01

    One theory proposed to explain the global declines in amphibian populations involves contaminant-induced immune alteration and subsequent increased susceptibility to infectious disease. The goal of this study was twofold, to (1) study acute oral toxicity of deltamethrin (cyclopropanecarboxylic acid, 3-(2,2-dibromoethenyl)-2,2-dimethyl cyano(3-phenoxyphenyl)methyl ester) in tiger salamanders (Ambystoma tigrinum), and (2) evaluate whether the insecticide deltamethrin produces immunosuppression in these animals. In the acute toxicity study, tiger salamanders receiving single doses of deltamethrin ranging from 1 to 35 mg/kg displayed intention tremors, hypersalivation, ataxia, choreoathetosis (writhing), severe depression (immobility with minimal response to stimuli), and death. For acute effects, based on clinical signs, the median lethal dose (LD(50)) and lowest observed adverse effect level (LOAEL) were estimated to be 5 to 10 mg/kg and 1 mg/kg, respectively. The LOAEL in animals dosed 3 times per week for 4 wk was 400 microg/kg/d. The endpoints for the immunotoxicity study included lymphoid organ mass and histopathology, hematological variables, and functional assays of phagocytosis, oxidative burst, and lymphoblastic transformation. Tiger salamanders in 4 treatment groups (0, 4, 40, or 400 microg/kg/d) were dosed with deltamethrin via the diet 3 times per week for 4 wk. Deltamethrin exposure resulted in increased liver mass, packed cell volume, and total plasma protein concentration, but these effects were not dose dependent. The relative mass of kidney and spleen, plasma albumin and globulin concentrations, and circulating leukocyte numbers were not affected by deltamethrin exposure, nor were phagocytosis, oxidative burst, and lymphoblastic transformation. This study shows that at moderate levels of exposure, deltamethrin may be neurotoxic to tiger salamanders. However, based on the immune assays considered in this study there was no evidence of immunosuppression

  14. Salamander chytrid fungus (Batrachochytrium salamandrivorans) in the United States—Developing research, monitoring, and management strategies

    Science.gov (United States)

    Grant, Evan H. Campbell; Muths, Erin L.; Katz, Rachel A.; Canessa, Stefano; Adams, Michael J.; Ballard, Jennifer R.; Berger, Lee; Briggs, Cheryl J.; Coleman, Jeremy; Gray, Matthew J.; Harris, M. Camille; Harris, Reid N.; Hossack, Blake R.; Huyvaert, Kathryn P.; Kolby, Jonathan E.; Lips, Karen R.; Lovich, Robert E.; McCallum, Hamish I.; Mendelson, Joseph R.; Nanjappa, Priya; Olson, Deanna H.; Powers, Jenny G.; Richgels, Katherine L. D.; Russell, Robin E.; Schmidt, Benedikt R.; Spitzen-van der Sluijs, Annemarieke; Watry, Mary Kay; Woodhams, Douglas C.; White, C. LeAnn

    2016-01-20

    The recently (2013) identified pathogenic chytrid fungus, Batrachochytrium salamandrivorans (Bsal), poses a severe threat to the distribution and abundance of salamanders within the United States and Europe. Development of a response strategy for the potential, and likely, invasion of Bsal into the United States is crucial to protect global salamander biodiversity. A formal working group, led by Amphibian Research and Monitoring Initiative (ARMI) scientists from the U.S. Geological Survey (USGS) Patuxent Wildlife Research Center, Fort Collins Science Center, and Forest and Rangeland Ecosystem Science Center, was held at the USGS Powell Center for Analysis and Synthesis in Fort Collins, Colorado, United States from June 23 to June 25, 2015, to identify crucial Bsal research and monitoring needs that could inform conservation and management strategies for salamanders in the United States. Key findings of the workshop included the following: (1) the introduction of Bsal into the United States is highly probable, if not inevitable, thus requiring development of immediate short-term and long-term intervention strategies to prevent Bsal establishment and biodiversity decline; (2) management actions targeted towards pathogen containment may be ineffective in reducing the long-term spread of Bsal throughout the United States; and (3) early detection of Bsal through surveillance at key amphibian import locations, among high-risk wild populations, and through analysis of archived samples is necessary for developing management responses. Top research priorities during the preinvasion stage included the following: (1) deployment of qualified diagnostic methods for Bsal and establishment of standardized laboratory practices, (2) assessment of susceptibility for amphibian hosts (including anurans), and (3) development and evaluation of short- and long-term pathogen intervention and management strategies. Several outcomes were achieved during the workshop, including development

  15. Physical condition, sex, and age-class of eastern red-backed salamanders (Plethodon cinereus) in forested and open habitats of West Virginia, USA

    Science.gov (United States)

    Breanna L. Riedel; Kevin R. Russell; W. Mark. Ford

    2012-01-01

    Nonforested habitats such as open fields and pastures have been considered unsuitable for desiccation-prone woodland salamanders such as the Eastern Red-backed Salamander (Plethodon cinereus). Recent research has suggested that Plethodon cinereus may not only disperse across but also reside within open habitats including fields,...

  16. Retina regeneration in zebrafish.

    Science.gov (United States)

    Wan, Jin; Goldman, Daniel

    2016-10-01

    Unlike mammals, zebrafish are able to regenerate a damaged retina. Key to this regenerative response are Müller glia that respond to retinal injury by undergoing a reprogramming event that allows them to divide and generate a retinal progenitor that is multipotent and responsible for regenerating all major retinal neuron types. The fish and mammalian retina are composed of similar cell types with conserved function. Because of this it is anticipated that studies of retina regeneration in fish may suggest strategies for stimulating Müller glia reprogramming and retina regeneration in mammals. In this review we describe recent advances and future directions in retina regeneration research using zebrafish as a model system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Informing recovery in a human-transformed landscape: Drought-mediated coexistence alters population trends of an imperiled salamander and invasive predators

    Science.gov (United States)

    Hossack, Blake R.; Honeycutt, Richard; Sigafus, Brent H.; Muths, Erin L.; Crawford, Catherine L.; Jones, Thomas R.; Sorensen, Jeff A.; Rorabaugh, James C.; Chambert, Thierry

    2017-01-01

    Understanding the additive or interactive threats of habitat transformation and invasive species is critical for conservation, especially where climate change is expected to increase the severity or frequency of drought. In the arid southwestern USA, this combination of stressors has caused widespread declines of native aquatic and semi-aquatic species. Achieving resilience to drought and other effects of climate change may depend upon continued management, so understanding the combined effects of stressors is important. We used Bayesian hierarchical models fitted with 10-years of pond-based monitoring surveys for the federally-endangered Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi) and invasive predators (fishes and American Bullfrogs, Lithobates catesbeianus) that threaten native species. We estimated trends in occupancy of salamanders and invasive predators while accounting for hydrological dynamics of ponds, then used a two-species interaction model to directly estimate how invasive predators affected salamander occupancy. We also tested a conceptual model that predicted that drought, by limiting the distribution of invasive predators, could ultimately benefit native species. Even though occupancy of invasive predators was stationary and their presence in a pond reduced the probability of salamander presence by 23%, occupancy of Sonoran Tiger Salamanders increased, annually, by 2.2%. Occupancy of salamanders and invasive predators both declined dramatically following the 5th consecutive year of drought. Salamander occupancy recovered quickly after return to non-drought conditions, while occupancy of invasive predators remained suppressed. Models that incorporated three time-lagged periods (1 to 4 years) of local moisture conditions confirmed that salamanders and invasive predators responded differently to drought, reflecting how life-history strategies shape responses to disturbances. The positive 10-year trend in salamander occupancy and their

  18. A new species of salamander of the genus Hynobius (Amphibia, Caudata, Hynobiidae) from South Korea.

    Science.gov (United States)

    Min, Mi-Sook; Baek, Hae-Jun; Song, Jae-Young; Chang, Min Ho; Poyarkov, Nikolay A Jr

    2016-09-21

    We describe a new species of lentic-breeding Hynobius salamander from the Naro Islands, near the village of Bongrae-myeon, Goheung-gun, Jeollanam-do, South Korea, on the basis of results of morphological, ecological and genetic analyses. Hynobius unisacculus sp. nov. is distinguished from its congeners by a combination of the following morphological attributes: (1) comparatively small size (adult SVL up to 61 mm; range 38.3-60.3 mm in males and 37.5-59.9 mm in females); (2) relatively slender short limbs; tips of fore- and hindlimbs adpressed on body never meeting, but separated by a large gap (gap of -3.0 to -1.5 costal folds in males and -3.5 to -1.5 in females); (3) comparatively short tail (TL/SVL ratio in adult males varying from 0.54-0.98, in adult females from 0.55 to 0.89), tail flattened and with a low dorsal fin extending to the posterior one-third of tail length; (4) usually 11 (occasionally 12) costal grooves; (5) in adults, dark brown dorsum with indistinct bronze or dark copper spots, lighter greyish-white or pinkish belly; (6) well developed fifth toe; (7) comparatively shallow vomerine tooth series with 13-23 vomerine teeth; (8) small, pigmented ova, located in one, occasionally two, strings in a small, curved egg sac with folded envelope, lacking distinct mucous stalks or whiptail-like structures on both ends. The molecular differentiation among Korean Hynobius is high; Hynobius unisacculus sp. nov. is genetically highly divergent from the morphologically similar H. leechii, H. yangi and H. quelpaertensis: pairwise distances are 9.7%, 9.1% and 8.0% of sequence divergence at the COI mtDNA gene respectively, and 10.9%, 10.9% and 9.4% of sequence divergence at the cyt b mtDNA gene, respectively. At present, the new species is known from coastal areas and offshore islands in southeastern part of Jeollanam-do in South Korea. We suggest the species should be considered as Vulnerable (Vu2a) in accordance with IUCN's Red List categories. Our study supports

  19. Tooth regeneration: Current status

    Directory of Open Access Journals (Sweden)

    Dadu Shifali

    2009-01-01

    Full Text Available Regeneration of a functional tooth has the potential to be a promising therapeutic strategy. Experiments have shown that with the use of principles of bioengineering along with adult stem cells, scaffold material, and signaling molecules, tooth regeneration is possible. Research work is in progress on creating a viable bioroot with all its support. A new culture needs to be created that can possibly provide all the nutrients to the stem cells. With the ongoing research, tissue engineering is likely to revolutionize dental health and well-being of people by regenerating teeth over the next decade.

  20. Tooth regeneration: current status.

    Science.gov (United States)

    Dadu, Shifali S

    2009-01-01

    Regeneration of a functional tooth has the potential to be a promising therapeutic strategy. Experiments have shown that with the use of principles of bioengineering along with adult stem cells, scaffold material, and signaling molecules, tooth regeneration is possible. Research work is in progress on creating a viable bioroot with all its support. A new culture needs to be created that can possibly provide all the nutrients to the stem cells. With the ongoing research, tissue engineering is likely to revolutionize dental health and well-being of people by regenerating teeth over the next decade.

  1. Clinical advances in bone regeneration.

    Science.gov (United States)

    Siddiqui, Nashat A; Owen, John M

    2013-05-01

    Understanding of the biology of bone regeneration has been increasing rapidly, with greater appreciation for the importance of biochemical aspects as well as the mechanical requirements for bone to heal. There are a number of situations where there is difficulty in bone healing such as fracture non-union; or growth such as osteogenesis imperfecta; or a requirement for surplus bone to reconstruct defects such as following surgery for tumour excision or limb lengthening. There is a greater understanding of the complex interplay between osteoblasts and osteoclasts, and the chemical mediators that provide signalling along complex pathways. Although we have known about substances such as Bone Morphogenic Proteins and Growth Hormones for some time, their application in clinical practice is still not widespread, and we need to study them more to understand their role in bone healing. With newer technologies such as stem cells and gene therapy being developed there is the potential for vast improvement in bone regenerative techniques, although we are not at a stage where we can be confident that these techniques will work. In this review article we discuss the basic healing process of bone and how our understanding of this has led to improved techniques as well as the potential for future developments in new technologies.

  2. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    Science.gov (United States)

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa+ /BrdU+ coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247. © 2016 AlphaMed Press.

  3. Ultrastructural immunolocalization of hyaluronate in regenerating tail of lizards and amphibians supports an immune-suppressive role to favor regeneration.

    Science.gov (United States)

    Alibardi, Lorenzo

    2017-10-31

    Hyaluronate is produced in high amount during the initial stages of regeneration of the tail and limbs of lizards, newts, and frog tadpoles. The fine distribution of hyaluronate in the regenerating tail blastemas has been assessed by ultrastructural immunolocalization of the Hyaluronate Binding Protein (HABP), a protein that indirectly reveals the presence of hyaluronate in tissues. The present electron microscopic study shows that HABP is detected in the cytoplasm but this proteins is mainly localized on the surfaces of cells in the wound epidermis and mesenchymal cells of the blastema. HABP appears, therefore, accumulated along the cell surface, indicating that hyaluronate coats these embryonic-like cells and their antigens. The high level of hyaluronate in the blastema, aside favoring tissue hydration, cell movements, and remodeling for blastema formation and growth, likely elicits a protection from the possible immune-reaction of lymphocytes and macrophages to embryonic-fetal-like antigens present on the surface of blastema and epidermal cells. Their survival, therefore, allows the continuous multiplication of these cells in regions rich in hyaluronate, promoting the regeneration of a new tail or limbs. The study suggests that organ regeneration in vertebrates is only possible in the presence of high hyaluronate content and hydration. These two conditions facilitate cell movement, immune-protection, and activate the Wnt signaling pathway, like during development. © 2017 Wiley Periodicals, Inc.

  4. Regeneration review reprise

    OpenAIRE

    Whited, Jessica LaMae; Tabin, Clifford James

    2010-01-01

    There have been notable advances in the scientific understanding of regeneration within the past year alone, including two recently published in BMC Biology. Increasingly, progress in the regeneration field is being inspired by comparisons with stem cell biology and enabled by newly developed techniques that allow simultaneous examination of thousands of genes and proteins. See research articles http://www.biomedcentral.com/1741-7007/7/83 and http://www.biomedcentral.com/1741-7007/8/5.

  5. Limb immobilization and corticobasal syndrome.

    Science.gov (United States)

    Graff-Radford, Jonathan; Boeve, Bradley F; Drubach, Daniel A; Knopman, David S; Ahlskog, J Eric; Golden, Erin C; Drubach, Dina I; Petersen, Ronald C; Josephs, Keith A

    2012-12-01

    Recently, we evaluated two patients with corticobasal syndrome (CBS) who reported symptom onset after limb immobilization. Our objective was to investigate the association between trauma, immobilization and CBS. The charts of forty-four consecutive CBS patients seen in the Mayo Clinic Alzheimer Disease Research Center were reviewed with attention to trauma and limb immobilization. 10 CBS patients (23%) had immobilization or trauma on the most affected limb preceding the onset or acceleration of symptoms. The median age at onset was 61. Six patients manifested their first symptoms after immobilization from surgery or fracture with one after leg trauma. Four patients had pre-existing symptoms of limb dysfunction but significantly worsened after immobilization or surgery. 23 percent of patients had immobilization or trauma of the affected limb. This might have implications for management of CBS, for avoiding injury, limiting immobilization and increasing movement in the affected limb. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Myogenic capacity of muscle progenitor cells from head and limb muscles.

    Science.gov (United States)

    Grefte, Sander; Kuijpers, Mette A R; Kuijpers-Jagtman, Anne M; Torensma, Ruurd; Von den Hoff, Johannes W

    2012-02-01

    The restoration of muscles in the soft palate of patients with cleft lip and/or palate is accompanied by fibrosis, which leads to speech and feeding problems. Treatment strategies that improve muscle regeneration have only been tested in limb muscles. Therefore, in the present study the myogenic potential of muscle progenitor cells (MPCs) isolated from head muscles was compared with that of limb muscles. Muscle progenitor cells were isolated from the head muscles and limb muscles of rats and cultured. The proliferation of MPCs was analysed by DNA quantification. The differentiation capacity was analysed by quantifying the numbers of fused cells, and by measuring the mRNA levels of differentiation markers. Muscle progenitor cells were stained to quantify the expression of paired box protein Pax 7 (Pax-7), myoblast determination protein 1 (MyoD), and myogenin. Proliferation was similar in the head MPCs and the limb MPCs. Differentiating head and limb MPCs showed a comparable number of fused cells and mRNA expression levels of myosin-1 (Myh1), myosin-3 (Myh3), and myosin-4 (Myh4). During proliferation and differentiation, the number of Pax-7(+), MyoD(+), and myogenin(+) cells in head and limb MPCs was equal. It was concluded that head and limb MPCs show similar myogenic capacities in vitro. Therefore, in vivo myogenic differences between those muscles might rely on the local microenvironment. Thus, regenerative strategies for limb muscles might also be used for head muscles. © 2012 Eur J Oral Sci.

  7. Behavioral and physiological antipredator responses of the San Marcos salamander, Eurycea nana.

    Science.gov (United States)

    Davis, Drew R; Gabor, Caitlin R

    2015-02-01

    Exposure to predatory stimuli typically results in the elevation of circulating glucocorticoid levels and a behavioral response of freezing or escape behavior in many prey species. Corticosterone (CORT) is the main glucocorticoid in amphibians and is known to be important in modulating many behaviors and developmental functions. The federally threatened San Marcos salamander, Eurycea nana, decreases activity in response to both native and introduced predatory fish, however, experience may further influence these interactions. To better understand the indirect effects of fish predators on this salamander, we examined both the antipredator behavior and water-borne CORT release rates in response to chemical cues (kairomones) from two fish species that varied in temporal risk of predation: (1) a low encounter frequency predator (largemouth bass, Micropterus salmoides), (2) a high encounter frequency predator (redbreast sunfish, Lepomis auritus), and (3) a blank water control. Salamanders reduced activity (antipredator response) after exposure to both predator treatments, but not to the blank water control, and the response to M. salmoides was significantly stronger than that to L. auritus. The CORT response (post-stimulus/pre-stimulus release rates) did not differ between the blank water control and L. auritus treatments, and both were significantly less than the CORT response to M. salmoides. Overall, E. nana showed a decreased antipredator response and no CORT response towards the high encounter frequency L. auritus as compared to the low encounter frequency M. salmoides. Eurycea nana may mute antipredator and CORT responses to high temporal frequency predators. There was, however, no correlation between CORT release rates and antipredator behavior, which suggests that the presence of predators may be affecting CORT response and behavior independently. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Life history plasticity does not confer resilience to environmental change in the mole salamander (Ambystoma talpoideum)

    Science.gov (United States)

    Courtney L. Davis,; David A.W. Miller,; Walls, Susan; Barichivich, William J.; Riley, Jeffrey W.; Brown, Mary E.

    2017-01-01

    Plasticity in life history strategies can be advantageous for species that occupy spatially or temporally variable environments. We examined how phenotypic plasticity influences responses of the mole salamander, Ambystoma talpoideum, to disturbance events at the St. Marks National Wildlife Refuge (SMNWR), FL, USA from 2009 to 2014. We observed periods of extensive drought early in the study, in contrast to high rainfall and expansive flooding events in later years. Flooding facilitated colonization of predatory fishes to isolated wetlands across the refuge. We employed multistate occupancy models to determine how this natural experiment influenced the occurrence of aquatic larvae and paedomorphic adults and what implications this may have for the population. We found that, in terms of occurrence, responses to environmental variation differed between larvae and paedomorphs, but plasticity (i.e. the ability to metamorphose rather than remain in aquatic environment) was not sufficient to buffer populations from declining as a result of environmental perturbations. Drought and fish presence negatively influenced occurrence dynamics of larval and paedomorphic mole salamanders and, consequently, contributed to observed short-term declines of this species. Overall occurrence of larval salamanders decreased from 0.611 in 2009 to 0.075 in 2014 and paedomorph occurrence decreased from 0.311 in 2009 to 0.121 in 2014. Although variation in selection pressures has likely maintained this polyphenism previously, our results suggest that continued changes in environmental variability and the persistence of fish in isolated wetlands could lead to a loss of paedomorphosis in the SMNWR population and, ultimately, impact regional persistence in the future.

  9. Limb lengthening in achondroplasia

    Directory of Open Access Journals (Sweden)

    Sanjay K Chilbule

    2016-01-01

    Full Text Available Background: Stature lengthening in skeletal dysplasia is a contentious issue. Specific guidelines regarding the age and sequence of surgery, methods and extent of lengthening at each stage are not uniform around the world. Despite the need for multiple surgeries, with their attendant complications, parents demanding stature lengthening are not rare, due to the social bias and psychological effects experienced by these patients. This study describes the outcome and complications of extensive stature lengthening performed at our center. Materials and Methods: Eight achondroplasic and one hypochondroplasic patient underwent bilateral transverse lengthening for tibiae, humeri and femora. Tibia lengthening was carried out using a ring fixator and bifocal corticotomy, while a monolateral pediatric limb reconstruction system with unifocal corticotomy was used for the femur and humerus. Lengthening of each bone segment, height gain, healing index and complications were assessed. Subgroup analysis was carried out to assess the effect of age and bone segment on the healing index. Results: Nine patients aged five to 25 years (mean age 10.2 years underwent limb lengthening procedures for 18 tibiae, 10 femora and 8 humeri. Four patients underwent bilateral lengthening of all three segments. The mean length gain for the tibia, femur and humerus was 15.4 cm (100.7%, 9.9 cm (52.8% and 9.6 cm (77.9%, respectively. Healing index was 25.7, 25.6 and 20.6 days/cm, respectively, for the tibia, femur and humerus. An average of 33.3% height gain was attained. Lengthening of both tibia and femur added to projected height achieved as the 3 rd percentile of standard height in three out of four patients. In all, 33 complications were encountered (0.9 complications per segment. Healing index was not affected by age or bone segment. Conclusion: Extensive limb lengthening (more than 50% over initial length carries significant risk and should be undertaken only after due

  10. Diversity of limb-bone safety factors for locomotion in terrestrial vertebrates: evolution and mixed chains.

    Science.gov (United States)

    Blob, Richard W; Espinoza, Nora R; Butcher, Michael T; Lee, Andrew H; D'Amico, Angela R; Baig, Faraz; Sheffield, K Megan

    2014-12-01

    During locomotion over land, vertebrates' limb bones are exposed to loads. Like most biological structures, limb bones have a capacity to withstand greater loads than they usually experience, termed a safety factor (SF). How diverse are limb-bone SFs, and what factors correlate with such variation? We have examined these questions from two perspectives. First, we evaluated locomotor SF for the femur in diverse lineages, including salamanders, frogs, turtles, lizards, crocodilians, and marsupials (opossums). Comparisons with values for hind-limb elements in running birds and eutherian mammals indicate phylogenetic diversity in limb-bone SF. A high SF (∼7) is primitive for tetrapods, but low magnitudes of load and elevated strength of bones contribute to different degrees across lineages; moreover, birds and eutherians appear to have evolved lower SFs independently. Second, we tested the hypothesis that SFs would be similar across limb bones within a taxon by comparing data from the humerus and femur of alligators. Both in bending and in torsion, we found a higher SF for the humerus than for the femur. Such a "mixed chain" of different SFs across elements has been predicted if bones have differing variabilities in load, different costs to maintain, or high SF values in general. Although variability in load is similar for the humerus and femur, a high SF may be less costly for the humerus because it is smaller than the femur. The high SFs of alligators also might facilitate differences in SF among their limb bones. Beyond these specific findings, however, a more general implication of our results is that evaluations of the diversity of limb-bone SFs can provide important perspective to direct future research. In particular, more complete understanding of variation in SF could provide insight into factors that promoted the evolutionary radiation of terrestrial locomotor function in vertebrates. © The Author 2014. Published by Oxford University Press on behalf of the

  11. Two Records of large specimens of Fire Salamander Salamandra salamandra (Linnaeus, 1758 (Amphibia: Caudata in Bulgaria

    Directory of Open Access Journals (Sweden)

    ALEXANDER PULEV

    2016-03-01

    Full Text Available Two particularly large specimens of Fire Salamander have been registered in southwestern Bulgaria in late winter/early spring. Both of them are adult females with total body length 231 mm, and 219 mm. The two specimens recorded are the largest ones found in Bulgaria so far. Their dimensions are impressive for the entire range of the species. Both specimens have been found during the day in a sunny and dry weather, which has not been registered by other researchers in the cold half of the year in Bulgaria. The winter activity of the species has been confirmed.

  12. Genetic variation in an endemic salamander, Salamandra atra, using amplified fragment length polymorphism.

    Science.gov (United States)

    Riberon, Alexandre; Miaud, Claude; Guyetant, R; Taberlet, P

    2004-06-01

    The pattern of genetic differentiation of the endemic alpine salamander, Salamandra atra, has been studied using amplified fragment length polymorphism (AFLP) from 11 populations throughout the range of the two currently recognized subspecies, atra and aurorae. Five different primer combinations produced 706 bands and were analyzed by constructing a phylogenetic tree using NJ and principal component analysis. Significant genetic variation was revealed by AFLP between and within populations but, our results show a lack of genetic structure. AFLP markers seems to be unsuitable to investigate complex and recent diversification.

  13. Role of habitat complexity in predator-prey dynamics between an introduced fish and larval Long-toed Salamanders (Ambystoma macrodactylum)

    Science.gov (United States)

    Kenison, Erin K; Litt, Andrea R.; Pilliod, David; McMahon, Tom E

    2016-01-01

    Predation by nonnative fishes has reduced abundance and increased extinction risk for amphibian populations worldwide. Although rare, fish and palatable amphibians have been observed to coexist where aquatic vegetation and structural complexity provide suitable refugia. We examined whether larval long-toed salamanders (Ambystoma macrodactylum Baird, 1849) increased use of vegetation cover in lakes with trout and whether adding vegetation structure could reduce predation risk and nonconsumptive effects (NCEs), such as reductions in body size and delayed metamorphosis. We compared use of vegetation cover by larval salamanders in lakes with and without trout and conducted a field experiment to investigate the influence of added vegetation structure on salamander body morphology and life history. The probability of catching salamanders in traps in lakes with trout was positively correlated with the proportion of submerged vegetation and surface cover. Growth rates of salamanders in enclosures with trout cues decreased as much as 85% and the probability of metamorphosis decreased by 56%. We did not find evidence that adding vegetation reduced NCEs in experimental enclosures, but salamanders in lakes with trout utilized more highly-vegetated areas which suggests that adding vegetation structure at the scale of the whole lake may facilitate coexistence between salamanders and introduced trout.

  14. Persistence and extirpation in invaded landscapes: patch characteristics and connectivity determine effects of non-native predatory fish on native salamanders

    Science.gov (United States)

    Pilliod, David S.; Arkle, Robert S.; Maxell, Bryce A.

    2012-01-01

    Studies have demonstrated negative effects of non-native, predatory fishes on native amphibians, yet it is still unclear why some amphibian populations persist, while others are extirpated, following fish invasion. We examined this question by developing habitat-based occupancy models for the long-toed salamander (Ambystoma macrodactylum) and nonnative fish using survey data from 1,749 water bodies across 470 catchments in the Northern Rocky Mountains, USA. We first modeled the habitat associations of salamanders at 468 fishless water bodies in 154 catchments where non-native fish were historically, and are currently, absent from the entire catchment. Wethen applied this habitat model to the complete data set to predict the probability of salamander occupancy in each water body, removing any effect of fish presence. Finally, we compared field-observed occurrences of salamanders and fish to modeled probability of salamander occupancy. Suitability models indicated that fish and salamanders had similar habitat preferences, possibly resulting in extirpations of salamander populations from entire catchments where suitable habitats were limiting. Salamanders coexisted with non-native fish in some catchments by using marginal quality, isolated (no inlet or outlet) habitats that remained fishless. They rarely coexisted with fish within individual water bodies and only where habitat quality was highest. Connectivity of water bodies via streams resulted in increased probability of fish invasion and consequently reduced probability of salamander occupancy.These results could be used to identify and prioritize catchments and water bodies where control measures would be most effective at restoring amphibian populations. Our approach could be useful as a framework for improved investigations into questions of persistence and extirpation of native species when non-native species have already become established.

  15. Phantom limb pain after lower limb trauma: origins and treatments.

    Science.gov (United States)

    Foell, Jens; Bekrater-Bodmann, Robin; Flor, Herta; Cole, Jonathan

    2011-12-01

    Phantom sensations, that is, sensations perceived in a body part that has been lost, are a common consequence of accidental or clinical extremity amputations. Most amputation patients report a continuing presence of the limb, with some describing additional sensations such as numbness, tickling, or cramping of the phantom limb. The type, frequency, and stability of these phantom sensations can vary immensely. The phenomenon of painful phantom sensations, that is, phantom limb pain, presents a challenge for practitioners and researchers and is often detrimental to the patient's quality of life. In addition to the use of conventional therapies for chronic pain disorders, recent years have seen the development of novel treatments for phantom limb pain, based on an increasing body of research on neurophysiological changes after amputation. This article describes the current state of research in regard to the demographics, causal factors, and treatments of phantom limb pain.

  16. Inflammation and axon regeneration.

    Science.gov (United States)

    Benowitz, Larry I; Popovich, Phillip G

    2011-12-01

    The inflammatory response that accompanies neural injury involves multiple cell types and effector molecules with both positive and negative effects. Inflammation is essential for normal regeneration in the peripheral nervous system, and here we review evidence that augmenting inflammation can enhance regeneration in areas of the central nervous system in which it normally does not occur. Within the spinal cord, inflammation enables transplanted sensory neurons to regenerate lengthy axons and enhances the ability of a trophic factor to promote corticospinal tract sprouting. Induction of inflammation in the eye supports survival of retinal ganglion cells and enables them to regenerate injured axons through the optic nerve. These effects are linked to an atypical trophic factor, oncomodulin, along with other, better known molecules. Induction of inflammation within dorsal root ganglia, when combined with other treatments, enables peripheral sensory neurons to regenerate axons into the spinal cord. However, inflammation also has negative effects that impede recovery. In light of the importance of inflammation for neural repair, it is important to identify the specific cell types and molecules responsible for the positive and negative effects of inflammation and to develop treatments that tip the balance to favor repair.

  17. The trophic role of a forest salamander: impacts on invertebrates, leaf litter retention, and the humification process

    Science.gov (United States)

    M. L. Best; H. H. Welsh

    2014-01-01

    Woodland (Plethodontid) salamanders are the most abundant vertebrates in North American forests, functioning as predators on invertebrates and prey for higher trophic levels. We investigated the role of Ensatina (Ensatina eschscholtzii) in regulating invertebrate numbers and leaf litter retention in a northern California forest. Our objective was...

  18. Color-Biased Dispersal Inferred by Fine-Scale Genetic Spatial Autocorrelation in a Color Polymorphic Salamander.

    Science.gov (United States)

    Grant, Alexa H; Liebgold, Eric B

    2017-07-01

    Behavioral traits can be influenced by predation rates of color morphs, potentially leading to reduced boldness or increased escape behaviors in one color morph. The red-backed salamander, Plethodon cinereus, is a small terrestrial salamander whose color morphs have different diets and select different microhabitats, but little is known about potential differences in dispersal behaviors. We used fine-scale genetic spatial autocorrelation to examine 122 P. cinereus in a color-polymorphic population at 10 microsatellite loci in order to generate estimates of spatial genetic structure for each color morph. Differences in spatial genetic structure have been used extensively to infer within-population sex-biased dispersal but have never been used to test for dispersal differences between other groups within populations such as color morphs. We found evidence for color-biased dispersal, but not sex-biased dispersal. Striped salamanders had significant positive genetic structure in the shortest distance classes indicating philopatry. In contrast, unstriped salamanders showed a lack of spatial genetic structure at shorter distances and higher than expected genetic similarity at further distances, as expected if they are dispersing from their natal site. These results show that genetic methods typically used for sex-biased dispersal can be used to investigate differences in dispersal between morphs that vary discretely in polymorphic populations, such as color morphs. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Vertebral number is highly evolvable in salamanders and newts (family Salamandridae) and variably associated with climatic parameters

    NARCIS (Netherlands)

    Arntzen, J.W.; Beukema, W.; Galis, F.; Ivanović, A.

    2015-01-01

    In vertebrates, the relative proportion of the number of trunk and caudal vertebrae is an important determinant of body shape. While among amphibians frogs and toads show low variation in vertebrae numbers, in salamanders the numbers of trunk and caudal vertebrae vary widely, giving rise to

  20. Supernumerary phantom limb after stroke

    Science.gov (United States)

    Bakheit, A; Roundhill, S

    2005-01-01

    The perception of a phantom limb is commonly reported after amputations. However, only a few cases have been described after a stroke. This article presents a patient who reported a supernumerary phantom limb (pseudopolymelia) after spontaneous intracerebral haemorrhage and discusses the possible underlying mechanisms for this rare phenomenon. PMID:15749787

  1. Limb Salvage After Bone Cancer

    Science.gov (United States)

    ... usually done at least yearly. Life-long follow-up by an orthopedic surgeon is recommended. Promoting Health after Limb Salvage Physical and occupational therapy play an important role in successful rehabilitation after limb salvage surgery. Both passive and active ...

  2. Phylogeography and spatial genetic structure of the Southern torrent salamander: Implications for conservation and management

    Science.gov (United States)

    Miller, M.P.; Haig, S.M.; Wagner, R.S.

    2006-01-01

    The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders. ?? The American Genetic Association. 2006. All rights reserved.

  3. Molecular cloning, characterization and evolutionary analysis of leptin gene in Chinese giant salamander, Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Tian Hai-feng

    2017-11-01

    Full Text Available Leptin is an important hormone possessing diverse physiological roles in mammals and teleosts. However, it has been characterized only in a few amphibian species, and its evolutions are still under debate. Here, the full length of the leptin (Adlep cDNA of Chinese giant salamander (Andrias davidianus, an early diverging amphibian species, is characterized and according to the results of the primary sequence analysis, tertiary structure reconstruction and phylogenetic analysis is confirmed to be an ortholog of mammalian leptin. An intron was identified between the coding exons of A. davidianus leptin, which indicated that the leptin is present in the salamander genome and contains a conserved gene structure in vertebrates. Adlep is widely distributed but expression levels vary among different tissues, with highest expression levels in the muscle. Additionally, the leptin receptor and other genes were mapped to three known leptin signaling pathways, suggesting that the leptin signaling pathways are present in A. davidianus. Phylogenetic topology of leptins are consistent with the generally accepted evolutionary relationships of vertebrates, and multiple leptin members found in teleosts seem to be obtained through a Cluopeocephala-specific gene duplication event. Our results will lay a foundation for further investigations into the physiological roles of leptin in A. davidianus.

  4. Estimating occurrence and detection probabilities for stream-breeding salamanders in the Gulf Coastal Plain

    Science.gov (United States)

    Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.

    2017-01-01

    Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.

  5. Successful treatment of Batrachochytrium salamandrivorans infections in salamanders requires synergy between voriconazole, polymyxin E and temperature.

    Science.gov (United States)

    Blooi, M; Pasmans, F; Rouffaer, L; Haesebrouck, F; Vercammen, F; Martel, A

    2015-06-30

    Chytridiomycosis caused by the chytrid fungus Batrachochytrium salamandrivorans (Bsal) poses a serious threat to urodelan diversity worldwide. Antimycotic treatment of this disease using protocols developed for the related fungus Batrachochytrium dendrobatidis (Bd), results in therapeutic failure. Here, we reveal that this therapeutic failure is partly due to different minimum inhibitory concentrations (MICs) of antimycotics against Bsal and Bd. In vitro growth inhibition of Bsal occurs after exposure to voriconazole, polymyxin E, itraconazole and terbinafine but not to florfenicol. Synergistic effects between polymyxin E and voriconazole or itraconazole significantly decreased the combined MICs necessary to inhibit Bsal growth. Topical treatment of infected fire salamanders (Salamandra salamandra), with voriconazole or itraconazole alone (12.5 μg/ml and 0.6 μg/ml respectively) or in combination with polymyxin E (2000 IU/ml) at an ambient temperature of 15 °C during 10 days decreased fungal loads but did not clear Bsal infections. However, topical treatment of Bsal infected animals with a combination of polymyxin E (2000 IU/ml) and voriconazole (12.5 μg/ml) at an ambient temperature of 20 °C resulted in clearance of Bsal infections. This treatment protocol was validated in 12 fire salamanders infected with Bsal during a field outbreak and resulted in clearance of infection in all animals.

  6. Purification and characterization of cholecystokinin from the skin of salamander Tylototriton verrucosus.

    Science.gov (United States)

    Jiang, Wen-Bin; Hakim, Ma; Luo, Lei; Li, Bo-Wen; Yang, Shi-Long; Song, Yu-Zhu; Lai, Ren; Lu, Qiu-Min

    2015-05-18

    As a group of intestinal hormones and neurotransmitters, cholecystokinins (CCKs) regulate and affect pancreatic enzyme secretion, gastrointestinal motility, pain hypersensitivity, digestion and satiety, and generally contain a DYMGWMDFG sequence at the C-terminus. Many CCKs have been reported in mammals. However, only a few have been reported in amphibians, such as Hyla nigrovittata, Xenopus laevis, and Rana catesbeiana, with none reported in urodele amphibians like newts and salamanders. Here, a CCK called CCK-TV was identified and characterized from the skin of the salamander Tylototriton verrucosus. This CCK contained an amino acid sequence of DYMGWMDF-NH2 as seen in other CCKs. A cDNA encoding the CCK precursor containing 129 amino acid residues was cloned from the cDNA library of T. verrucosus skin. The CCK-TV had the potential to induce the contraction of smooth muscle strips isolated from porcine gallbladder, eliciting contraction at a concentration of 5.0 x 10⁻¹¹ mol/L and inducing maximal contraction at a concentration of 2.0 x 10⁻⁶ mol/L. The EC50 was 13.6 nmol/L. To the best of our knowledge, this is the first report to identify the presence of a CCK in an urodele amphibian.

  7. Structured decision making as a conservation tool for recovery planning of two endangered salamanders

    Science.gov (United States)

    O'Donnell, Katherine; Messerman, Arianne F; Barichivich, William J.; Semlitsch, Raymond D.; Gorman, Thomas A.; Mitchell, Harold G; Allan, Nathan; Fenolio, Dante B.; Green, Adam; Johnson, Fred A.; Keever, Allison; Mandica, Mark; Martin, Julien; Mott, Jana; Peacock, Terry; Reinman, Joseph; Romanach, Stephanie; Titus, Greg; McGowan, Conor P.; Walls, Susan

    2017-01-01

    At least one-third of all amphibian species face the threat of extinction, and current amphibian extinction rates are four orders of magnitude greater than background rates. Preventing extirpation often requires both ex situ (i.e., conservation breeding programs) and in situ strategies (i.e., protecting natural habitats). Flatwoods salamanders (Ambystoma bishopi and A. cingulatum) are protected under the U.S. Endangered Species Act. The two species have decreased from 476 historical locations to 63 recently extant locations (86.8% loss). We suggest that recovery efforts are needed to increase populations and prevent extinction, but uncertainty regarding optimal actions in both ex situ and in situ realms hinders recovery planning. We used structured decision making (SDM) to address key uncertainties regarding both captive breeding and habitat restoration, and we developed short-, medium-, and long-term goals to achieve recovery objectives. By promoting a transparent, logical approach, SDM has proven vital to recovery plan development for flatwoods salamanders. The SDM approach has clear advantages over other previous approaches to recovery efforts, and we suggest that it should be considered for other complex decisions regarding endangered species.

  8. Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion

    Science.gov (United States)

    Reilly, Stephen M; McElroy, Eric J; Andrew Odum, R; Hornyak, Valerie A

    2006-01-01

    The lumbering locomotor behaviours of tuataras and salamanders are the best examples of quadrupedal locomotion of early terrestrial vertebrates. We show they use the same walking (out-of-phase) and running (in-phase) patterns of external mechanical energy fluctuations of the centre-of-mass known in fast moving (cursorial) animals. Thus, walking and running centre-of-mass mechanics have been a feature of tetrapods since quadrupedal locomotion emerged over 400 million years ago. When walking, these sprawling animals save external mechanical energy with the same pendular effectiveness observed in cursorial animals. However, unlike cursorial animals (that change footfall patterns and mechanics with speed), tuataras and salamanders use only diagonal couplet gaits and indifferently change from walking to running mechanics with no significant change in total mechanical energy. Thus, the change from walking to running is not related to speed and the advantage of walking versus running is unclear. Furthermore, lumbering mechanics in primitive tetrapods is reflected in having total mechanical energy driven by potential energy (rather than kinetic energy as in cursorial animals) and relative centre-of-mass displacements an order of magnitude greater than cursorial animals. Thus, large vertical displacements associated with lumbering locomotion in primitive tetrapods may preclude their ability to increase speed. PMID:16777753

  9. Cutaneous mastocytomas in the neotenic caudate amphibians Ambystoma mexicanum (axolotl) and Ambystoma tigrinun (tiger salamander)

    Science.gov (United States)

    Harshbarger, J.C.; Chang, S.C.; DeLanney, L.E.; Rose, F.L.; Green, D.E.

    1999-01-01

    Spontaneous mastocytomas studied in 18 axolotls (Ambystoma mexicanum) and six tiger salamanders (Ambystoma tigrinum) were gray-white, uni- to multilobular cutaneous protrusions from 2mm to 2cm in diameter. Tumors were moderately cellular unencapsulated masses that usually infiltrated the dermis and hypodermis with the destruction of intervening tissues. Some tumors were invading superficial bundles of the underlying skeletal muscle. Tumors consisted of mitotically active cells derived from a single lineage but showing a range of differentiation. Immature cells had nearly smooth to lightly cleft or folded basophilic nuclei bordered by a band of cytoplasm with few cytoplasmic processes and containing a few small uniform eccentric granules. Mature cells had basophilic nuclei with deep clefts or folds and abundant eosinophilic cytoplasm with multiple long intertwining cytoplasmic extensions packed with metachromatic granules. The axolotls were old individuals from an inbred laboratory colony. The tiger salamanders were wild animals from a single polluted pond. They could have been old and inbred. Both groups were neotenic. These are the first mastocytomas discovered in cold-blooded animals.

  10. Genetic Diversity of Black Salamanders (Aneides flavipunctatus across Watersheds in the Klamath Mountains

    Directory of Open Access Journals (Sweden)

    David B. Wake

    2013-08-01

    Full Text Available Here we characterize the genetic structure of Black Salamanders (Aneides flavipunctatus in the Klamath Mountains of northwestern California and southwestern Oregon using mitochondrial and nuclear DNA sequences. We hypothesized that the Sacramento, Smith, Klamath, and Rogue River watersheds would represent distinct genetic populations based on prior ecological results, which suggest that Black Salamanders avoid high elevations such as the ridges that separate watersheds. Our mitochondrial results revealed two major lineages, one in the Sacramento River watershed, and another containing the Klamath, Smith, and Rogue River watersheds. Clustering analyses of our thirteen nuclear loci show the Sacramento watershed population to be genetically distinctive. Populations in the Klamath, Smith, and Rogue watersheds are also distinctive but not as differentiated and their boundaries do not correspond to watersheds. Our historical demographic analyses suggest that the Sacramento population has been isolated from the Klamath populations since the mid-Pleistocene, with negligible subsequent gene flow (2 Nm ≤ 0.1. The Smith and Rogue River watershed populations show genetic signals of recent population expansion. These results suggest that the Sacramento River and Klamath River watersheds served as Pleistocene refugia, and that the Rogue and Smith River watersheds were colonized more recently by northward range expansion from the Klamath.

  11. Evaluation of Limb-Girdle Muscular Dystrophy

    Science.gov (United States)

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  12. Localization and characterization of STRO-1 cells in the deer pedicle and regenerating antler.

    Directory of Open Access Journals (Sweden)

    Hans J Rolf

    2008-04-01

    Full Text Available The annual regeneration of deer antlers is a unique developmental event in mammals, which as a rule possess only a very limited capacity to regenerate lost appendages. Studying antler regeneration can therefore provide a deeper insight into the mechanisms that prevent limb regeneration in humans and other mammals, and, with regard to medical treatments, may possibly even show ways how to overcome these limitations. Traditionally, antler regeneration has been characterized as a process involving the formation of a blastema from de-differentiated cells. More recently it has, however, been hypothesized that antler regeneration is a stem cell-based process. Thus far, direct evidence for the presence of stem cells in primary or regenerating antlers was lacking. Here we demonstrate the presence of cells positive for the mesenchymal stem cell marker STRO-1 in the chondrogenic growth zone and the perivascular tissue of the cartilaginous zone in primary and regenerating antlers as well as in the pedicle of fallow deer (Dama dama. In addition, cells positive for the stem cell/progenitor cell markers STRO-1, CD133 and CD271 (LNGFR were isolated from the growth zones of regenerating fallow deer antlers as well as the pedicle periosteum and cultivated for extended periods of time. We found evidence that STRO-1(+ cells isolated from the different locations are able to differentiate in vitro along the osteogenic and adipogenic lineages. Our results support the view that the annual process of antler regeneration might depend on the periodic activation of mesenchymal progenitor cells located in the pedicle periosteum. The findings of the present study indicate that not only limited tissue regeneration, but also extensive appendage regeneration in a postnatal mammal can occur as a stem cell-based process.

  13. Population estimate and distribution of the Cheat Mountain Salamander (Plethodon nettingi) in the Southern portion of Canaan Valley National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Cheat Mountain Salamander (Plethodon nettingi) is an endemic species native only to West Virginia. Besides being restricted to one state, Cheat Mountain...

  14. Potential use of artificial cover objects to facilitate movement of Cheat Mountain salamanders (Plethodon netdngi) across an old logging road in the Canaan Valley National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Cheat Mountain salamander (CMS; Plethodon nettingi) is endemic to high-elevation forests of the Allegheny Mountains in Tucker, Randolph, Pocahontas, Grant, and...

  15. Proposal: To Examine Potential Effects of Corridors such as Cross-County Ski Trials, Logging Roads, etc. on Populations of Cheat Mountain Salamanders

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Cheat Mountain Salamanders (Plethodon nettingi) are known to occur in only 5 counties and the western edge of Grant County along the Allegheny Front in the eastern...

  16. Exogenous Neuritin Promotes Nerve Regeneration After Acute Spinal Cord Injury in Rats.

    Science.gov (United States)

    Gao, Rui; Li, Xingyi; Xi, Shaosong; Wang, Haiyan; Zhang, Hong; Zhu, Jingling; Shan, Liya; Song, Xiaoming; Luo, Xing; Yang, Lei; Huang, Jin

    2016-07-01

    Insufficient local levels of neurotrophic factor after spinal cord injury (SCI) are the leading cause of secondary injury and limited axonal regeneration. Neuritin belongs to a family of neurotrophic factors that promote neurite outgrowth, maintain neuronal survival, and provide a favorable microenvironment for the regeneration and repair of nerve cells after injury. However, it is not known whether the exogenously applied neuritin protein has a positive effect on nerve repair after SCI. This was investigated in the present study using purified human recombinant neuritin expressed in and purified from Pichia pastoris, which was tested in a rat SCI model. A recombinant neuritin concentration of 60 μg/ml induced the recovery of hind limb motor function and stimulated nerve regeneration in rats with SCI. Continuous administration of neuritin at this dose at an early stage after SCI inhibited poly ADP ribose polymerase (PARP) protein degradation and decreased neuronal apoptosis. In addition, during the critical postinjury period of axonal regeneration, exogenous neuritin treatment increased the expression of neurofilament 200 and growth-associated protein 43 in the damaged tissue, which was associated with the restoration of hind limb movement. These results suggest that neuritin creates an environment that promotes nerve cell survival and neurite regeneration after SCI, which contribute to nerve regeneration and the recovery of motor function.

  17. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  18. Preliminary study of food habits in the Japanese clawed salamander larvae (Onychodactylus japonicus) in a mountain brook of the Kiso River system

    OpenAIRE

    Teruhiko, Takahara; Motomi, Genkai-Kato; Hitoshi, MIYASAKA; Yukihiro, Kohmatsu

    2011-01-01

    To evaluate food habits of the Japanese clawed salamander larvae (Onychodactylus japonicus), we examined stomach contents of 22 individuals collected from a natural mountain brook in a tributary of the Kurokawa River in Kiso Fukushima, Nagano Prefecture, central Japan. Their diet composition did not differ between fast and slow current conditions. The diet reflected the natural benthos communities of the brook, in which mayfly nymphs and caddisfly larvae accounted for 70–88%. The salamander l...

  19. New home, new life: The effect of shifts in the habitat choice of salamander larvae on population performance and their effect on pond invertebrate communities

    OpenAIRE

    Reinhardt, Timm

    2017-01-01

    Changes of habitats are amongst the main drivers of evolutionary processes. Corresponding shifts in the behaviour and life history traits of species might in turn also alter ecosystem attributes. The reproduction of Western European fire salamanders (Salamandra salamandra), in small pond habitats instead of first order streams, is one example of a recent local adaptation. Since fire salamander larvae are important top-predators in these fish free habitats, their presence likely changes variou...

  20. Phantom limbs and neural plasticity.

    Science.gov (United States)

    Ramachandran, V S; Rogers-Ramachandran, D

    2000-03-01

    The study of phantom limbs has received tremendous impetus from recent studies linking changes in cortical topography with perceptual experience. Systematic psychophysical testing and functional imaging studies on patients with phantom limbs provide 2 unique opportunities. First, they allow us to demonstrate neural plasticity in the adult human brain. Second, by tracking perceptual changes (such as referred sensations) and changes in cortical topography in individual patients, we can begin to explore how the activity of sensory maps gives rise to conscious experience. Finally, phantom limbs also allow us to explore intersensory effects and the manner in which the brain constructs and updates a "body image" throughout life.

  1. Management of Major Limb Injuries

    Science.gov (United States)

    Langer, Vijay

    2014-01-01

    Management of major limb injuries is a daunting challenge, especially as many of these patients have severe associated injuries. In trying to save life, often the limb is sacrificed. The existing guidelines on managing such trauma are often confusing. There is scope to lay down such protocols along with the need for urgent transfer of such patients to a multispecialty center equipped to salvage life and limb for maximizing outcome. This review article comprehensively deals with the issue of managing such major injuries. PMID:24511296

  2. Regenerated Fe is tasty!

    Science.gov (United States)

    Nuester, J.; Twining, B. S.

    2012-12-01

    Bioavailability of nutrients is an essential factor controlling primary productivity in the ocean. In addition to macronutrients such as nitrogen and phosphorous, availability of the trace element iron unequivocally affects growth rates and community structure of phytoplankton and thereby primary productivity in many ocean regions. External sources of iron such as Aeolian dust, upwelling of Fe-rich waters, and hydrothermal are reduced in high-nutrient low-chlorophyll regions, and most Fe used by phytoplankton has been regenerated by zooplankton. While zooplankton regeneration of Fe was first shown two decades ago, major factors controlling this process such as chemical composition of prey and grazer taxonomy are not well constrained. As pH varies significantly in digestive systems between protozoa and mesozooplankton, we hypothesize that the extent and the bioavailability of regenerated Fe is a function of the digestive physiology. Furthermore, major element components such as silica for diatoms and calcium carbonate for cocolithophores may be able to buffer the pH of digestive systems of different grazer taxa. Such effects may further influence the magnitude and bioavailability of regenerated Fe. In order to constrain the effect of grazer taxonomy and chemical composition of prey on Fe bioavailability, 55Fe-labeled phytoplankton were fed to different grazers and unlabeled phytoplankton were subsequently inoculated to the filtrate of the grazing experiment in the regrowth phase of the experiment, and the uptake of 55Fe into the phytoplankton biomass was monitored over time. A parallel uptake experiment using inorganic 55Fe was used to compare the bioavailability of regenerated and inorganic Fe to the same phytoplankton species. Furthermore, some samples of the inorganic and the regenerated uptake experiments were treated with an oxalate rinse to remove any adsorbed Fe. This allowed us to estimate the adsorption of 55Fe from either source to the cell walls of

  3. Prevalence and Characteristics of Phantom Limb Pain and Residual Limb Pain in the Long Term after Upper Limb Amputation

    Science.gov (United States)

    Desmond, Deirdre M.; MacLachlan, Malcolm

    2010-01-01

    This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence…

  4. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  5. Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice.

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    Full Text Available The ratio of matrix metalloproteinases (MMPs to the tissue inhibitors of metalloproteinases (TIMPs in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.

  6. Histochemical, Biochemical and Cell Biological aspects of tail regeneration in lizard, an amniote model for studies on tissue regeneration.

    Science.gov (United States)

    Alibardi, Lorenzo

    2014-01-01

    The present review summarizes biochemical, histochemical and immunocytochemical aspects of the process of tissue regeneration in lizards, non-mammalian amniotes with high regenerative power. The amputated tail initially mobilizes the glycogen and lipid reserves during wound healing. In the following stage of formation of the regenerative blastema tissue remodeling produces a typical embryonic tissue, initially increasing the amount of water and glycosaminoglycans such as jaluronate, which are later replaced by sulfated glycosaminoglycans and collagen during tail elongation. In blastematic and early differentiating stages the initial anaerobic metabolism utilizes glycolysis and hexose monophosphate pathways to sustain high RNA production and lipid catabolism for energy production. This stage, after formation of blood vessels, is replaced by the energy-efficient aerobic metabolism based on the Krebs' cycle that is needed for the differentiation and growth of the new tissues of the regenerating tail. Specific proteins of the cytoskeleton, extracellular matrix, cell junctions, transcriptional and growth factors are actively produced in the embryonic environment of early stages of regeneration and allow for cell movement, signaling and differentiation. During wound healing, the production of anti-microbial peptides in granulocytes is likely involved in limiting inflammation and stimulates tissue regeneration in the tail while the lasting inflammatory reaction of the limb and spinal cord limits their potential of regeneration. Activated hemopoiesis, circulating blood, endocrine glands, liver, kidney and spleen supply the regenerating tissues with metabolites and hormones but also with phagocytes and immuno-competent cells that can inhibit tissue regeneration after repetitive amputations that elicit chronic inflammation. The latter aspect shows how successful tissue regeneration in an amniote can be turned into scarring by the alteration of the initial microenvironment

  7. Describing severe limb trauma.

    Science.gov (United States)

    Arnez, Z M; Tyler, M P; Khan, U

    1999-06-01

    Seventy-nine severe limb injuries were retrospectively reviewed to compare the AO/ASIF and the Gustillo classifications. Specifically, the suitability of these classifications with respect to prognosis and management of these cases was compared. A healed and stable wound was the ultimate outcome measure. Surrogate outcome measures used were: the time to healing; the number of anaesthetics until the wounds were healed; and the number of operations until the wounds were healed. Any change in lifestyle following the injury was also assessed. The primary healing rates of the AO/ASIF groups showed significant (P Gustillo system, the primary healing rates did not show any differences between the groups. Also, differences in the other outcome measures were most pronounced when using the AO/ASIF system. Importantly, changes in lifestyle correlated with the injury score when using the AO/ASIF system (P Gustillo system was not applicable in 100% of cases. A modified AO/ASIF scoring system is proposed which provides a good predictor of outcome.

  8. The Importance of Maintaining Upland Forest Habitat Surrounding Salamander Breeding Ponds: Case Study of the Eastern Tiger Salamander in New York, USA

    Directory of Open Access Journals (Sweden)

    Valorie Titus

    2014-12-01

    Full Text Available Most amphibians use both wetland and upland habitats, but the extent of their movement in forested habitats is poorly known. We used radiotelemetry to observe the movements of adult and juvenile eastern tiger salamanders over a 4-year period. Females tended to move farther from the breeding ponds into upland forested habitat than males, while the distance a juvenile moved appeared to be related to body size, with the largest individuals moving as far as the adult females. Individuals chose refugia in native pitch pine—oak forested habitat and avoided open fields, roads, and developed areas. We also observed a difference in potential predation pressures in relation to the distance an individual moved from the edge of the pond. Our results support delineating forested wetland buffer zones on a case-by-case basis to reduce the impacts of concentrated predation, to increase and protect the availability of pitch pine—oak forests near the breeding pond, and to focus primarily on the habitat needs of the adult females and larger juveniles, which in turn will encompass habitat needs of adult males and smaller juveniles.

  9. Physiotherapy after amputation of the limb

    OpenAIRE

    Pospíšil, Daniel

    2010-01-01

    In this bachelor thesis the author considers physiotherapy after amputation of the lower limb. The theoretical section describes the anatomy of the lower limb, a procedure for amputation of the lower limb, occupational theraoy and prosthesis. The author then goes on to discuss physiotherapy in relation to two case studies of patients who have had their lower limbs removed.

  10. Phyllodistomum kanae sp. nov. (Trematoda: Gorgoderidae), a bladder fluke from the Ezo salamander Hynobius retardatus.

    Science.gov (United States)

    Nakao, Minoru

    2015-10-01

    The Ezo salamander, Hynobius retardatus, is endemic only to Hokkaido, the northernmost island of Japan. Gravid flukes of the family Gorgoderidae were discovered from the urinary bladder of H. retardatus. The parasites were identified as a new species named Phyllodistomum kanae sp. nov. In the neighboring Honshu island another bladder fluke, Phyllodistomum patellare, has already been found from the Japanese newt. The new species clearly differs from P. patellare in having a spherical ovary and very weakly lobed testes. The discovery of species of Phyllodistomum from urodelan amphibians is very uncommon in Eurasia. A molecular phylogeny based on 28S ribosomal DNA suggests that sphaeriid bivalves may serve as the first intermediate host for the new species. Copyright © 2015. Published by Elsevier Ireland Ltd.

  11. Plethodontid salamander mitochondrial genomics: A parsimonyevaluation of character conflict and implications for historicalbiogeography

    Energy Technology Data Exchange (ETDEWEB)

    Macey, J. Robert

    2005-01-19

    A new parsimony analysis of 27 complete mitochondrial genomic sequences is conducted to investigate the phylogenetic relationships of plethodontid salamanders. This analysis focuses on the amount of character conflict between phylogenetic trees recovered from newly conducted parsimony searches and the Bayesian and maximum likelihood topology reported by Mueller et al. (2004, PNAS, 101, 13820-13825). Strong support for Hemidactylium as the sister taxon to all other plethodontids is recovered from parsimony analyses. Plotting area relationships on the most parsimonious phylogenetic tree suggests that eastern North America is the origin of the family Plethodontidae supporting the ''Out of Appalachia'' hypothesis. A new taxonomy that recognizes clades recovered from phylogenetic analyses is proposed.

  12. Pigmentary system of the adult alpine salamander Salamandra atra atra (Laur., 1768).

    Science.gov (United States)

    Trevisan, P; Pederzoli, A; Barozzi, G

    1991-10-01

    The pigmentary system of the skin from adult specimens of the black alpine salamander Salamandra atra atra was investigated by light microscope, electron microscope, and biochemical studies. Results were compared with those obtained in previous study of the subspecies Salamandra atra aurorae. Unlike Salamandra atra aurorae, which presents epidermal xanthophores and iridophores, Salamandra atra atra is completely melanized, presenting only epidermal and dermal melanophores. The melanosomes in both the epidermis and the dermis appear to derive from a multivesicular premelanosome similar to that in the goldfish, and the epidermal melanosomes are smaller than those in the dermis. Premelanosomes with an internal lamellar matrix were not observed. The biochemical results have shown that in the ethanol extracts obtained from the skin in toto and from the melanosomes, pteridines and flavins are always present and are the same as those extracted from the black skin areas of Salamandra atra aurorae.

  13. Natural History Constrains the Macroevolution of Foot Morphology in European Plethodontid Salamanders.

    Science.gov (United States)

    Adams, Dean C; Korneisel, Dana; Young, Morgan; Nistri, Annamaria

    2017-08-01

    The natural history of organisms can have major effects on the tempo and mode of evolution, but few examples show how unique natural histories affect rates of evolution at macroevolutionary scales. European plethodontid salamanders (Plethodontidae: Hydromantes) display a particular natural history relative to other members of the family. Hydromantes commonly occupy caves and small crevices, where they cling to the walls and ceilings. On the basis of this unique and strongly selected behavior, we test the prediction that rates of phenotypic evolution will be lower in traits associated with climbing. We find that, within Hydromantes, foot morphological traits evolve at significantly lower rates than do other phenotypic traits. Additionally, Hydromantes displays a lower rate of foot morphology evolution than does a nonclimbing genus, Plethodon. Our findings suggest that macroevolutionary trends of phenotypic diversification can be mediated by the unique behavioral responses in taxa related to particular attributes of their natural history.

  14. Ethical issues in limb transplants.

    Science.gov (United States)

    Dickenson, D; Widdershoven, G

    2001-04-01

    On one view, limb transplants cross technological frontiers but not ethical ones; the only issues to be resolved concern professional competence, under the assumption of patient autonomy. Given that the benefits of limb transplant do not outweigh the risks, however, the autonomy and rationality of the patient are not necessarily self-evident. In addition to questions of resource allocation and informed consent, limb, and particularly hand, allograft also raises important issues of personal identity and bodily integrity. We present two linked schemas for exploring ethical issues in limb transplants. The first, relying on conventional concepts in biomedical ethics, asks whether the procedure is research or therapy, whether the costs outweigh the benefits, and whether it should be up to the patient to decide. The second introduces more speculative and theoretically challenging questions, including bodily integrity, the argument from unnaturalness, and the function of the hand in expressing personal identity and intimacy. We conclude that limb transplants are not ruled out a priori, unlike some procedures that are prima facie wrong to perform, such as amputation of healthy limbs to relieve body dysmorphic disorders. However, their legitimacy is not proven by appeals to the interests of scientific research, cost-benefit, or patient autonomy.

  15. miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events.

    Science.gov (United States)

    Sehm, Tina; Sachse, Christoph; Frenzel, Corina; Echeverri, Karen

    2009-10-15

    Salamanders have the remarkable ability to regenerate many body parts following catastrophic injuries, including a fully functional spinal cord following a tail amputation. The molecular basis for how this process is so exquisitely well-regulated, assuring a faithful replication of missing structures every time, remains poorly understood. Therefore a study of microRNA expression and function during regeneration in the axolotl, Ambystoma mexicanum, was undertaken. Using microarray-based profiling, it was found that 78 highly conserved microRNAs display significant changes in expression levels during the early stages of tail regeneration, as compared to mature tissue. The role of miR-196, which was highly upregulated in the early tail blastema and spinal cord, was then further analyzed. Inhibition of miR-196 expression in this context resulted in a defect in regeneration, yielding abnormally shortened tails with spinal cord defects in formation of the terminal vesicle. A more detailed characterization of this phenotype revealed downstream components of the miR-196 pathway to include key effectors/regulators of tissue patterning within the spinal cord, including BMP4 and Pax7. As such, our dataset establishes miR-196 as an essential regulator of tail regeneration, acting upstream of key BMP4 and Pax7-based patterning events within the spinal cord.

  16. Decision analysis for habitat conservation of an endangered, range-limited salamander

    Science.gov (United States)

    Robinson, Orin J.; McGowan, Conor P.; Apodaca, J.J.

    2016-01-01

    Many species of conservation concern are habitat limited and often a major focus of management for these species is habitat acquisition and/or restoration. Deciding the location of habitat restoration or acquisition to best benefit a protected species can be a complicated subject with competing management objectives, ecological uncertainties and stochasticity. Structured decision making (SDM) could be a useful approach for explicitly incorporating those complexities while still working toward species conservation and/or recovery. We applied an SDM approach to Red Hills salamander Phaeognathus hubrichti habitat conservation decision making. Phaeognathus hubrichti is a severely range-limited endemic species in south central Alabama and has highly specific habitat requirements. Many known populations live on private lands and the primary mode of habitat protection is habitat conservation planning, but such plans are non-binding and not permanent. Working with stakeholders, we developed an objectives hierarchy linking land acquisition or protection actions to fundamental objectives. We built a model to assess and compare the quality of the habitat in the known range of P. hubrichti. Our model evaluated key habitat attributes of 5814 pixels of 1 km2 each and ranked the pixels from best to worst with respect to P. hubrichti habitat requirements. Our results are a spatially explicit valuation of each pixel, with respect to its probable benefit to P. hubrichti populations. The results of this effort will be used to rank pixels from most to least beneficial, then identify land owners in the most useful areas for salamanders who are willing to sell or enter into a permanent easement agreement.

  17. Metabolism, gas exchange, and acid-base balance of giant salamanders.

    Science.gov (United States)

    Ultsch, Gordon R

    2012-08-01

    The giant salamanders are aquatic and paedomorphic urodeles including the genera Andrias and Cryptobranchus (Cryptobranchidae), Amphiuma (Amphiumidae), Siren (Sirenidae), and Necturus (Proteidae, of which only N. maculosus is considered 'a giant'). Species in the genera Cryptobranchus and Necturus are considered aquatic salamanders well adapted for breathing water, poorly adapted for breathing air, and with limited abilities to compensate acid-base disturbances. As such, they are water-breathing animals with a somewhat fish-like respiratory and acid-base physiology, whose habitat selection is limited to waters that do not typically become hypoxic or hypercarbic (although this assertion has been questioned for N. maculosus). Siren and Amphiuma species, by contrast, are dependent upon air-breathing, have excellent lungs, inefficient (Siren) or no (Amphiuma) gills, and are obligate air-breathers with an acid-base status more similar to that of terrestrial tetrapods. As such, they can be considered to be air-breathing animals that live in water. Their response to the aquatic hypercarbia that they often encounter is to maintain intracellular pH (pH(i) ) and abandon extracellular pH regulation, a process that has been referred to as preferential pH(i) regulation. The acid-base status of some present-day tropical air-breathing fishes, and of Siren and Amphiuma, suggests that the acid-base transition from a low PCO(2) -low [] system typical of water-breathing fishes to the high PCO(2) -high [] systems of terrestrial tetrapods may have been completed before emergence onto land, and likely occurred in habitats that were typically both hypoxic and hypercarbic. © 2011 The Author. Biological Reviews © 2011 Cambridge Philosophical Society.

  18. Habitat adaptation rather than genetic distance correlates with female preference in fire salamanders (Salamandra salamandra

    Directory of Open Access Journals (Sweden)

    Weitere Markus

    2009-06-01

    Full Text Available Abstract Background Although some mechanisms of habitat adaptation of conspecific populations have been recently elucidated, the evolution of female preference has rarely been addressed as a force driving habitat adaptation in natural settings. Habitat adaptation of fire salamanders (Salamandra salamandra, as found in Middle Europe (Germany, can be framed in an explicit phylogeographic framework that allows for the evolution of habitat adaptation between distinct populations to be traced. Typically, females of S. salamandra only deposit their larvae in small permanent streams. However, some populations of the western post-glacial recolonization lineage use small temporary ponds as larval habitats. Pond larvae display several habitat-specific adaptations that are absent in stream-adapted larvae. We conducted mate preference tests with females from three distinct German populations in order to determine the influence of habitat adaptation versus neutral genetic distance on female mate choice. Two populations that we tested belong to the western post-glacial recolonization group, but are adapted to either stream or pond habitats. The third population is adapted to streams but represents the eastern recolonization lineage. Results Despite large genetic distances with FST values around 0.5, the stream-adapted females preferred males from the same habitat type regardless of genetic distance. Conversely, pond-adapted females did not prefer males from their own population when compared to stream-adapted individuals of either lineage. Conclusion A comparative analysis of our data showed that habitat adaptation rather than neutral genetic distance correlates with female preference in these salamanders, and that habitat-dependent female preference of a specific pond-reproducing population may have been lost during adaptation to the novel environmental conditions of ponds.

  19. Habitat adaptation rather than genetic distance correlates with female preference in fire salamanders (Salamandra salamandra).

    Science.gov (United States)

    Caspers, Barbara A; Junge, Claudia; Weitere, Markus; Steinfartz, Sebastian

    2009-06-29

    Although some mechanisms of habitat adaptation of conspecific populations have been recently elucidated, the evolution of female preference has rarely been addressed as a force driving habitat adaptation in natural settings. Habitat adaptation of fire salamanders (Salamandra salamandra), as found in Middle Europe (Germany), can be framed in an explicit phylogeographic framework that allows for the evolution of habitat adaptation between distinct populations to be traced. Typically, females of S. salamandra only deposit their larvae in small permanent streams. However, some populations of the western post-glacial recolonization lineage use small temporary ponds as larval habitats. Pond larvae display several habitat-specific adaptations that are absent in stream-adapted larvae. We conducted mate preference tests with females from three distinct German populations in order to determine the influence of habitat adaptation versus neutral genetic distance on female mate choice. Two populations that we tested belong to the western post-glacial recolonization group, but are adapted to either stream or pond habitats. The third population is adapted to streams but represents the eastern recolonization lineage. Despite large genetic distances with FST values around 0.5, the stream-adapted females preferred males from the same habitat type regardless of genetic distance. Conversely, pond-adapted females did not prefer males from their own population when compared to stream-adapted individuals of either lineage. A comparative analysis of our data showed that habitat adaptation rather than neutral genetic distance correlates with female preference in these salamanders, and that habitat-dependent female preference of a specific pond-reproducing population may have been lost during adaptation to the novel environmental conditions of ponds.

  20. Interactions between fish and salamander larvae : Costs of predator avoidance or competition?

    Science.gov (United States)

    Semlitsch, R D

    1987-07-01

    Two species of salamander larvae (Ambystoma talpoideum and A. maculatum) were reared separately in the presence and absence of a fish (Lepomis macrochirus) in artificial ponds to measure the effects of a predator on the growth, survival, diet, and activity of larvae. The presence of L. macrochirus reduced body sizes of larvae by 18% in A. talpoideum and by 16% in A. maculatum. L. macrochirus apparently preyed on the smallest individuals. Survival in the presence of L. macrochirus decreased by 61% in A. talpoideum and by 97% in A. maculatum compared with larvae reared alone. Species identity did not significantly effect body size or survival, but an interaction effect suggested that A. maculatum was more severely affected by predators than was A. talpodeum. Activity of larvae in the water column was dramatically reduced in the presence of L. macrochirus, when larvae were restricted to the leaf litter of the benthic zone. There was overlap in the diets of fish and salamander larvae. Larvae reared in the presence of fish, however, consumed different taxa of prey as well as reduced number of prey compared to larvae reared alone. A. talpoideum larvae were more nocturnal than diurnal in the absence of fish, whereas A. maculatum larvae were equally active day and night. This experiment suggests that predator-prey relationships can change with shifts in species attributes and potentially confound apparent costs of predator avoidance with competition. Measuring the long-term dynamics of the cost-benefit relationship will help elucidate how prey balance the demands of their life history with the demands of predators.

  1. Morphological variation in a larval salamander: dietary induction of plasticity in head shape.

    Science.gov (United States)

    Walls, Susan C; Belanger, Secret S; Blaustein, Andrew R

    1993-11-01

    We examined diet-dependent plasticity in head shape in larvae of the eastern long-toed salamander, Ambystoma macrodactylum columbianum. Larvae in some populations of this species exhibit trophic polymorphism, with some individuals possessing exaggerated trophic features characteristic of a cannibalistic morphology in larval Ambystoma; e.g. a disproportionately broad head and hypertrophied vomerine teeth. We hypothesized that 1) head shape variation results from feeding upon different types of prey and that 2) cannibal morphs are induced by consumption of conspecifics. To induce variation, we fed three groups of larvae different diets: 1) brine shrimp nauplii only; 2) nauplii plus anuran tadpoles; 3) nauplii, tadpoles and conspecific larval salamanders. Comparisons of size (mass)-adjusted means revealed that this manipulation of diet induced significant variation in six measures of head shape, but not in the area of the vomerine tooth patch. For five of the six head traits, larvae that ate tadpoles and brine shrimp nauplii developed significantly broader, longer and deeper heads than did larvae that only ate brine shrimp nauplii. The ingestion of conspecifics, in addition to nauplii and tadpoles, significantly altered two head traits (interocular-width and head depth), compared to larvae only fed nauplii and tadpoles. Canonical discriminant function analysis detected two statistically reliable canonical variables: head depth was most highly associated with the first canonical variable, whereas three measures of head width (at the jaws, gills and eyes) and interocular width were most highly associated with the second canonical variable. Despite this diet-enhanced morphological variation, there was no indication that any of the three types of diet (including conspecific prey) induced the exaggerated trophic features of the "cannibal" morph in this species. These results illustrate that ingestion of different types of prey contributes to plasticity in head shape, but

  2. Limb-girdle muscular dystrophy subtypes: First-reported cohort from northeastern China

    Science.gov (United States)

    Mahmood, Omar Abdulmonem; Jiang, Xinmei; Zhang, Qi

    2013-01-01

    The relative frequencies of different subtypes of limb-girdle muscular dystrophies vary widely among different populations. We estimated the percentage of limb-girdle muscular dystrophy subtypes in Chinese people based on 68 patients with limb-girdle muscular dystrophy from the Myology Clinic, Neurology Department, First Hospital of Jilin University, China. A diagnosis of calpainopathy was made in 12 cases (17%), and dysferlin deficiency in 10 cases (15%). Two biopsies revealed α-sarcoglycan deficiency (3%), and two others revealed a lack of caveolin-3 (3%). A diagnosis of unclassified limb-girdle muscular dystrophy was made in the remaining patients (62%). The appearances of calpain 3- and dysferlin-deficient biopsies were similar, though rimmed vacuoles were unique to dysferlinopathy, while inflammatory infiltrates were present in both these limb-girdle muscular dystrophy type 2D biopsies. Macrophages were detected in seven dysferlinopathy biopsies. The results of this study suggest that the distribution of limb-girdle muscular dystrophy subtypes in the Han Chinese population is similar to that reported in the West. The less necrotic, regenerating and inflammatory appearance of limb-girdle muscular dystrophy type 2A, but with more lobulated fibers, supports the idea that calpainopathy is a less active, but more chronic disease than dysferlinopathy. Unusual features indicated an extended limb-girdle muscular dystrophy disease spectrum. The use of acid phosphatase stain should be considered in suspected dysferlinopathies. To the best of our knowledge, this is the first report to define the relative proportions of the various forms of limb-girdle muscular dystrophy in China, based on protein testing. PMID:25206500

  3. Bionanomaterials for skin regeneration

    CERN Document Server

    Leonida, Mihaela D

    2016-01-01

    This book gives a concise overview of bionanomaterials with applications for skin regeneration. The advantages and challenges of nanoscale materials are covered in detail, giving a basic view of the skin structure and conditions that require transdermal or topical applications. Medical applications, such as wound healing, care for burns, skin disease, and cosmetic care, such as aging of the skin and photodamage, and how they benefit from bionanomaterials, are described in detail. A final chapter is devoted to the ethical and social issues related to the use of bionanomaterials for skin regeneration. This is an ideal book for researchers in materials science, medical scientists specialized in dermatology, and cosmetic chemists working in formulations. It can also serve as a reference for nanotechnologists, dermatologists, microbiologists, engineers, and polymer chemists, as well as students studying in these fields.

  4. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  5. Low Temperature Regenerator Study.

    Science.gov (United States)

    1979-08-01

    program and as used in Table 4 is typical of well designed Stirling qycle or VM cycle machines, and the gross third-stage refrigeration of 2.785w is a...0. McMahon, "A New Refrigeration Process", Proc. 10th Int. Cong. of Refrig. (1959). 26. G. Walker, Stirling - Cycle Machines, Clarendon Press, Oxford...PERFORMANCE ............ 64 3.1 Introduction ..... 0 ... . ......... ... . 64 3.2 Stirling Cycle Analysis ................. 71 3.2.1 Simple Regenerator Model

  6. Regeneration of Optic Nerve

    Directory of Open Access Journals (Sweden)

    Kwok-Fai So

    2011-05-01

    Full Text Available The optic nerve is part of the central nervous system (CNS and has a structure similar to other CNS tracts. The axons that form the optic nerve originate in the ganglion cell layer of the retina and extend through the optic tract. As a tissue, the optic nerve has the same organization as the white matter of the brain in regard to its glia. There are three types of glial cells: Oligodendrocytes, astrocytes, and microglia. Little structural and functional regeneration of the CNS takes place spontaneously following injury in adult mammals. In contrast, the ability of the mammalian peripheral nervous system (PNS to regenerate axons after injury is well documented. A number of factors are involved in the lack of CNS regeneration, including: (i the response of neuronal cell bodies against the damage; (ii myelin-mediated inhibition by oligodendrocytes; (iii glial scarring, by astrocytes; (iv macrophage infiltration; and (v insufficient trophic factor support. The fundamental difference in the regenerative capacity between CNS and PNS neuronal cell bodies has been the subject of intensive research. In the CNS the target normally conveys a retrograde trophic signal to the cell body. CNS neurons die because of trophic deprivation. Damage to the optic nerve disconnects the neuronal cell body from its target-derived trophic peptides, leading to the death of retinal ganglion cells. Furthermore, the axontomized neurons become less responsive to the peptide trophic signals they do receive. On the other hand, adult PNS neurons are intrinsically responsive to neurotrophic factors and do not lose trophic responsiveness after axotomy. In this talk different strategies to promote optic-nerve regeneration in adult mammals are reviewed. Much work is still needed to resolve many issues. This is a very important area of neuroregeneration and neuroprotection, as currently there is no cure after traumatic optic nerve injury or retinal disease such as glaucoma, which

  7. Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses.

    Science.gov (United States)

    Fenolio, Danté B; Graening, G O; Collier, Bret A; Stout, Jim F

    2006-02-22

    During a two year population ecology study in a cave environment, 15 Eurycea (= Typhlotriton) spelaea were observed ingesting bat guano. Furthermore, E. spelaea capture numbers increased significantly during the time that grey bats (Myotis grisescens) deposited fresh guano. We investigated the hypothesis that this behaviour was not incidental to the capture of invertebrate prey, but a diet switch to an energy-rich detritus in an oligotrophic environment. Stable isotope assays determined that guano may be assimilated into salamander muscle tissue, and nutritional analyses revealed that guano is a comparable food source to potential invertebrate prey items. This is the first report of coprophagy in a salamander and in any amphibian for reasons other than intestinal inoculation. Because many temperate subterranean environments are often energy poor and this limitation is thought to select for increased diet breadth, we predict that coprophagy may be common in subterranean vertebrates where it is not currently recognized.

  8. Hepatic arginase activity in intra- and extrauterine larvae of the ovoviviparous salamander. Salamandra salamandra (L.) (Amphibia, Urodela).

    Science.gov (United States)

    Schindelmeiser, J; Schindelmeiser, I; Greven, H

    1983-01-01

    The hepatic arginase activity of Salamandra salamandra was determined at three different stages of intra- and extrauterine larval development and at fully metamorphosed juveniles. The highest enzymatic activity was found in intrauterine larvae in November, the lowest in intrauterine larvae in June of the following year. These data can be correlated with the ureotelism of intrauterine larvae previously described and are discussed with respect to the metabolism of larval and juvenile fire salamanders.

  9. First record of salamander predation by a Liophis (Wagler, 1830) snake in the Venezuelan Andes

    OpenAIRE

    Luis Felipe Esqueda; Marco Natera-Mumaw; Enrique La Marca

    2009-01-01

    Information available so far is exceedingly meagre about the diet of the snakes included in the genus Liophis, one of the most diverse groups that inhabit terrestrial ecosystems of South America. For the first time is documented the predation of a salamander by Liophis from Venezuela, including a brief overview on the alteration of montane and submontane Andean ecosystem and their effect on the natural dynamic.

  10. Interactive effects of temperature and glyphosate on the behavior of blue ridge two-lined salamanders (Eurycea wilderae).

    Science.gov (United States)

    Gandhi, Jaina S; Cecala, Kristen K

    2016-09-01

    The objective of the present study was to evaluate the potential interactive effects of stream temperatures and environmentally relevant glyphosate-based herbicide concentrations on movement and antipredator behaviors of larval Eurycea wilderae (Blue Ridge two-lined salamander). Larval salamanders were exposed to 1 of 4 environmentally relevant glyphosate concentrations (0.00 µg acid equivalent [a.e.]/L, 0.73 µg a.e./L, 1.46 µg a.e./L, and 2.92 µg a.e./L) at either ambient (12 °C) or elevated (23 °C) water temperature. Behaviors observed included the exploration of a novel habitat, use of refuge, habitat selection relative to a potential predator, and burst movement distance. In the absence of glyphosate, temperature consistently affected movement and refuge-use behavior, with individuals moving longer distances more frequently and using refuge less at warm temperatures; however, when glyphosate was added, the authors observed inconsistent effects of temperature that may have resulted from differential toxicity at various temperatures. Larval salamanders made shorter, more frequent movements and demonstrated reduced burst distance at higher glyphosate concentrations. The authors also found that lower glyphosate concentrations sometimes had stronger effects than higher concentrations (i.e., nonmonotonic dose responses), suggesting that standard safety tests conducted only at higher glyphosate concentrations might overlook important sublethal effects on salamander behavior. These data demonstrate that sublethal effects of glyphosate-based herbicides on natural behaviors of amphibians can occur with short-term exposure to environmentally relevant concentrations. Environ Toxicol Chem 2016;35:2297-2303. © 2016 SETAC. © 2016 SETAC.

  11. The phantom limb in dreams.

    Science.gov (United States)

    Brugger, Peter

    2008-12-01

    Mulder and colleagues [Mulder, T., Hochstenbach, J., Dijkstra, P. U., Geertzen, J. H. B. (2008). Born to adapt, but not in your dreams. Consciousness and Cognition, 17, 1266-1271.] report that a majority of amputees continue to experience a normally-limbed body during their night dreams. They interprete this observation as a failure of the body schema to adapt to the new body shape. The present note does not question this interpretation, but points to the already existing literature on the phenomenology of the phantom limb in dreams. A summary of published investigations is complemented by a note on phantom phenomena in the dreams of paraplegic patients and persons born without a limb. Integration of the available data allows the recommendation for prospective studies to consider dream content in more detail. For instance, "adaptation" to the loss of a limb can also manifest itself by seeing oneself surrounded by amputees. Such projective types of anosognosia ("transitivism") in nocturnal dreams should also be experimentally induced in normally-limbed individuals, and some relevant techniques are mentioned.

  12. Osteological Variation among Extreme Morphological Forms in the Mexican Salamander Genus Chiropterotriton (Amphibia: Plethodontidae: Morphological Evolution And Homoplasy.

    Directory of Open Access Journals (Sweden)

    David M Darda

    Full Text Available Osteological variation is recorded among and within four of the most distinctive species of the Mexican salamander genus Chiropterotriton. Analysis of the data is consistent with the monophyletic status of the genus and documents previously unrecorded intraspecific and interspecific variation. Most of the recorded variation involves qualitative and quantitative proportional differences, but four fixed differences constitute autapomorphic states that affirm and diagnose some species (C. dimidiatus, C. magnipes. Osteological variation in 15 characters is analyzed with respect to predictions generated from four hypotheses: 1 phylogeny, 2 adaptation to specific habitats (the four species include cave-dwelling, terrestrial, and arboreal forms, 3 size-free shape, and 4 size. High levels of intraspecific variation suggest that the characters studied are not subject to rigid functional constraints in salamanders, regardless of size. The pattern predicted by the hypothesis based on size differences seen among these four Chiropterotriton species matches most closely the observed pattern of relative skull robustness. Since size change and heterochrony are often associated in plethodontid evolution, it is likely that changes in developmental timing play a role in the morphological transitions among these morphologically diverse taxa. Webbed feet, miniaturization, body shape, and an unusual tarsal arrangement are morphologies exhibited in species of Chiropterotrition that are shown to be homoplastic with other clades of tropical plethodontids. Although extensive homoplasy in salamanders might be seen as a roadblock to unraveling phylogenetic hypotheses, the homologous developmental systems that appear to underlie such homoplasy may reveal common and consistent evolutionary processes at work.

  13. Osteological Variation among Extreme Morphological Forms in the Mexican Salamander Genus Chiropterotriton (Amphibia: Plethodontidae): Morphological Evolution And Homoplasy.

    Science.gov (United States)

    Darda, David M; Wake, David B

    2015-01-01

    Osteological variation is recorded among and within four of the most distinctive species of the Mexican salamander genus Chiropterotriton. Analysis of the data is consistent with the monophyletic status of the genus and documents previously unrecorded intraspecific and interspecific variation. Most of the recorded variation involves qualitative and quantitative proportional differences, but four fixed differences constitute autapomorphic states that affirm and diagnose some species (C. dimidiatus, C. magnipes). Osteological variation in 15 characters is analyzed with respect to predictions generated from four hypotheses: 1) phylogeny, 2) adaptation to specific habitats (the four species include cave-dwelling, terrestrial, and arboreal forms), 3) size-free shape, and 4) size. High levels of intraspecific variation suggest that the characters studied are not subject to rigid functional constraints in salamanders, regardless of size. The pattern predicted by the hypothesis based on size differences seen among these four Chiropterotriton species matches most closely the observed pattern of relative skull robustness. Since size change and heterochrony are often associated in plethodontid evolution, it is likely that changes in developmental timing play a role in the morphological transitions among these morphologically diverse taxa. Webbed feet, miniaturization, body shape, and an unusual tarsal arrangement are morphologies exhibited in species of Chiropterotrition that are shown to be homoplastic with other clades of tropical plethodontids. Although extensive homoplasy in salamanders might be seen as a roadblock to unraveling phylogenetic hypotheses, the homologous developmental systems that appear to underlie such homoplasy may reveal common and consistent evolutionary processes at work.

  14. Evolutionary response to global change: Climate and land use interact to shape color polymorphism in a woodland salamander.

    Science.gov (United States)

    Cosentino, Bradley J; Moore, Jean-David; Karraker, Nancy E; Ouellet, Martin; Gibbs, James P

    2017-07-01

    Evolutionary change has been demonstrated to occur rapidly in human-modified systems, yet understanding how multiple components of global change interact to affect adaptive evolution remains a critical knowledge gap. Climate change is predicted to impose directional selection on traits to reduce thermal stress, but the strength of directional selection may be mediated by changes in the thermal environment driven by land use. We examined how regional climatic conditions and land use interact to affect genetically based color polymorphism in the eastern red-backed salamander ( Plethodon cinereus ). P. cinereus is a woodland salamander with two primary discrete color morphs (striped, unstriped) that have been associated with macroclimatic conditions. Striped individuals are most common in colder regions, but morph frequencies can be variable within climate zones. We used path analysis to analyze morph frequencies among 238,591 individual salamanders across 1,170 sites in North America. Frequency of striped individuals was positively related to forest cover in populations occurring in warmer regions (>7°C annually), a relationship that was weak to nonexistent in populations located in colder regions (≤7°C annually). Our results suggest that directional selection imposed by climate warming at a regional scale may be amplified by forest loss and suppressed by forest persistence, with a mediating effect of land use that varies geographically. Our work highlights how the complex interaction of selection pressures imposed by different components of global change may lead to divergent evolutionary trajectories among populations.

  15. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration

    Science.gov (United States)

    2017-01-01

    Abstract This review provides a concise summary of the changing phenotypes of macrophages and fibroblastic cells during the local inflammatory response, the onset of tissue repair, and the resolution of inflammation which follow injury to an organ. Both cell populations respond directly to damage and present coordinated sequences of activation states which determine the reparative outcome, ranging from true regeneration of the organ to fibrosis and variable functional deficits. Recent work with mammalian models of organ regeneration, including regeneration of full‐thickness skin, hair follicles, ear punch tissues, and digit tips, is summarized and the roles of local immune cells in these systems are discussed. New investigations of the early phase of amphibian limb and tail regeneration, including the effects of pro‐inflammatory and anti‐inflammatory agents, are then briefly discussed, focusing on the transition from the normally covert inflammatory response to the initiation of the regeneration blastema by migrating fibroblasts and the expression of genes for limb patterning. PMID:28616244

  16. Biomaterial Selection for Tooth Regeneration

    OpenAIRE

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong; Chen, Lili(Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007, China); MAO, JEREMY J.

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or s...

  17. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  18. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study.

    Science.gov (United States)

    Kawasumi-Kita, Aiko; Hayashi, Toshinori; Kobayashi, Takuya; Nagayama, Chikashi; Hayashi, Shinichi; Kamei, Yasuhiro; Morishita, Yoshihiro; Takeuchi, Takashi; Tamura, Koji; Yokoyama, Hitoshi

    2015-12-01

    Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three-dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single-cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR-LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature-controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR-LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre-LoxP system as well as to analyze gene function in a target region or cells with less off-target effects in the study of amphibian regeneration. © 2015 Japanese Society of Developmental Biologists.

  19. Phylogenetic analysis of Common Garter Snake (Thamnophis sirtalis) stomach contents detects cryptic range of a secretive salamander (Ensatina eschscholtzii oregonensis) Herpetological Conservation and Biology 5(3):395–402

    Science.gov (United States)

    Sean B. Reilly; Andrew D Gottsho; Justin M. Garwood; Bryan. Jennings

    2010-01-01

    Given the current global amphibian decline, it is crucial to obtain accurate and current information regarding species distributions. Secretive amphibians such as plethodontid salamanders can be difficult to detect in many cases, especially in remote, high elevation areas. We used molecular phylogenetic analyses to identify three partially digested salamanders palped...

  20. Tetranectin is a novel marker for myogenesis during embryonic development, muscle regeneration, and muscle cell differentiation in vitro

    DEFF Research Database (Denmark)

    Wewer, U M; Iba, K; Durkin, M E

    1998-01-01

    Tetranectin, a plasminogen-binding protein with a C-type lectin domain, is found in both serum and the extracellular matrix. In the present study we report that tetranectin is closely associated with myogenesis during embryonic development, skeletal muscle regeneration, and muscle cell......, and both cytoplasmic and cell surface tetranectin immunostaining become apparent. Finally, we demonstrate that while tetranectin mRNA is translated to a similar degree in developing limbs and lung, the protein does not seem to be tissue associated in the lung as it is in the limbs. This indicates...... is observed in normal adult muscle. However, during skeletal muscle regeneration induced by the intramuscular injection of the myotoxic anesthetic Marcaine, myoblasts, myotubes, and the stumps of damaged myofibers exhibit intense tetranectin immunostaining. Tetranectin is also present in regenerating muscle...

  1. Deep divergences and extensive phylogeographic structure in a clade of lowland tropical salamanders

    Directory of Open Access Journals (Sweden)

    Rovito Sean M

    2012-12-01

    Full Text Available Abstract Background The complex geological history of Mesoamerica provides the opportunity to study the impact of multiple biogeographic barriers on population differentiation. We examine phylogeographic patterns in a clade of lowland salamanders (Bolitoglossa subgenus Nanotriton using two mitochondrial genes and one nuclear gene. We use several phylogeographic analyses to infer the history of this clade and test hypotheses regarding the geographic origin of species and location of genetic breaks within species. We compare our results to those for other taxa to determine if historical events impacted different species in a similar manner. Results Deep genetic divergence between species indicates that they are relatively old, and two of the three widespread species show strong phylogeographic structure. Comparison of mtDNA and nuclear gene trees shows no evidence of hybridization or introgression between species. Isolated populations of Bolitoglossa rufescens from Los Tuxtlas region constitute a separate lineage based on molecular data and morphology, and divergence between Los Tuxtlas and other areas appears to predate the arrival of B. rufescens in other areas west of the Isthmus of Tehuantepec. The Isthmus appears responsible for Pliocene vicariance within B. rufescens, as has been shown for other taxa. The Motagua-Polochic fault system does not appear to have caused population vicariance, unlike in other systems. Conclusions Species of Nanotriton have responded to some major geological events in the same manner as other taxa, particularly in the case of the Isthmus of Tehuantepec. The deep divergence of the Los Tuxtlas populations of B. rufescens from other populations highlights the contribution of this volcanic system to patterns of regional endemism, and morphological differences observed in the Los Tuxtlas populations suggests that they may represent an undescribed species of Bolitoglossa. The absence of phylogeographic structure in B

  2. Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches.

    Science.gov (United States)

    Rodríguez, Ariel; Burgon, James D; Lyra, Mariana; Irisarri, Iker; Baurain, Denis; Blaustein, Leon; Göçmen, Bayram; Künzel, Sven; Mable, Barbara K; Nolte, Arne W; Veith, Michael; Steinfartz, Sebastian; Elmer, Kathryn R; Philippe, Hervé; Vences, Miguel

    2017-10-01

    The rise of high-throughput sequencing techniques provides the unprecedented opportunity to analyse controversial phylogenetic relationships in great depth, but also introduces a risk of being misinterpreted by high node support values influenced by unevenly distributed missing data or unrealistic model assumptions. Here, we use three largely independent phylogenomic data sets to reconstruct the controversial phylogeny of true salamanders of the genus Salamandra, a group of amphibians providing an intriguing model to study the evolution of aposematism and viviparity. For all six species of the genus Salamandra, and two outgroup species from its sister genus Lyciasalamandra, we used RNA sequencing (RNAseq) and restriction site associated DNA sequencing (RADseq) to obtain data for: (1) 3070 nuclear protein-coding genes from RNAseq; (2) 7440 loci obtained by RADseq; and (3) full mitochondrial genomes. The RNAseq and RADseq data sets retrieved fully congruent topologies when each of them was analyzed in a concatenation approach, with high support for: (1) S. infraimmaculata being sister group to all other Salamandra species; (2) S. algira being sister to S. salamandra; (3) these two species being the sister group to a clade containing S. atra, S. corsica and S. lanzai; and (4) the alpine species S. atra and S. lanzai being sister taxa. The phylogeny inferred from the mitochondrial genome sequences differed from these results, most notably by strongly supporting a clade containing S. atra and S. corsica as sister taxa. A different placement of S. corsica was also retrieved when analysing the RNAseq and RADseq data under species tree approaches. Closer examination of gene trees derived from RNAseq revealed that only a low number of them supported each of the alternative placements of S. atra. Furthermore, gene jackknife support for the S. atra - S. lanzai node stabilized only with very large concatenated data sets. The phylogeny of true salamanders thus provides a

  3. Nanobiomaterials for neural regeneration

    Directory of Open Access Journals (Sweden)

    Nuan Chen

    2016-01-01

    Full Text Available Diseases and disorders associated with nervous system such as injuries by trauma and neurodegeneration are shown to be one of the most serious problems in medicine, requiring innovative strategies to trigger and enhance the nerve regeneration. Tissue engineering aims to provide a highly biomimetic environment by using a combination of cells, materials and suitable biological cues, by which the lost body part may be regenerated or even fully rebuilt. Electrospinning, being able to produce extracellular matrix (ECM-like nanostructures with great flexibility in design and choice of materials, have demonstrated their great potential for fabrication of nerve tissue engineered scaffolds. The review here begins with a brief description of the anatomy of native nervous system, which provides basic knowledge and ideas for the design of nerve tissue scaffolds, followed by five main parts in the design of electrospun nerve tissue engineered scaffolds including materials selection, structural design, in vitro bioreactor, functionalization and cellular support. Performances of biomimetic electrospun nanofibrous nerve implant devices are also reviewed. Finally, future directions for advanced electrospun nerve tissue engineered scaffolds are discussed.

  4. Manipulations to regenerate aspen ecosystems

    Science.gov (United States)

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  5. Lower-limb venous thrombosis

    African Journals Online (AJOL)

    307. Lower-limb venous thrombosis. July 2009 Vol.27 No.7 CME. Most DVTs arise in calf muscle veins, particularly within the gastrocnemius and soleus muscles (calf vein DVT). Many of these remain localised to the muscle and will not cause any clinical problem. If, however, the circumstances that initially caused the.

  6. Limb salvage in tibial hemimelia.

    Science.gov (United States)

    Eamsobhana, Perajit; Kaewpornsawan, Kamolporn

    2012-09-01

    To study the results of treatment of tibial hemimelia with limb salvage procedure in term of patient satisfaction, clinical results and complications. From 1993 to 2007 the authors treated six cases of tibial hemimelia with limb salvage procedures. Three legs of type Ia and four legs of type IV tibial hemimelia classified by Jones classification. The age at the operation ranged from 2 to 11 years. For type Ia cases, the Brown procedure,foot centralization and ilizarov lengthening of the fibula were used to correct limb length discrepancy. For type IV the foot centralization, soft tissue release and ilizarov lengthening were used to correct limb length discrepancy. The follow-up range from 4 to 10 years. In two patients with type Ia, one patient could bear weight without gait aids, the other walked with orthosis and axillary crutch because this patient had bilateral Ia type and knee instability with progressive flexion contracture due to weakness of the quadriceps muscle. All patients with type IV can walk independently without gait aids. Three patients were performed limb lengthening. One case was fibular lengthening following Brown procedure in Ia type. Two cases were tibial lengthening in type IV The mean lengthening was 5.1 cm. Mean lengthening index was 2.4. Satisfactory functional and cosmetic results were achieved in all patients with partial deficiency, whereas in patients with completely deficiency of the limbs, none of the 3 knees treated by fibular transfer achieved a satisfactory functional result because of insufficient quadriceps strength, progressive knee flexion contracture and persistent ligamentous instability. Nevertheless, in these 3 legs, all patients were ultimately able to withstand weight bearing. Patients and families were satisfied even though patients must have multiple surgery to correct deformities of the foot and the knee joint, as well as leg-length discrepancy and also a prolong treatment time. Limb salvage procedure in tibial

  7. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  8. The Basis of Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    Antonio Musarò

    2014-01-01

    Full Text Available Muscle regeneration recapitulates many aspects of embryonic myogenesis and is an important homeostatic process of the adult skeletal muscle, which, after development, retains the capacity to regenerate in response to appropriate stimuli, activating the muscle compartment of stem cells, namely, satellite cells, as well as other precursor cells. Moreover, significant evidence suggests that while stem cells represent an important determinant for tissue regeneration, a “qualified” environment is necessary to guarantee and achieve functional results. It is therefore plausible that the loss of control over these cell fate decisions could lead to a pathological transdifferentiation, leading to pathologic defects in the regenerative process. This review provides an overview about the general aspects of muscle development and discusses the cellular and molecular aspects that characterize the five interrelated and time-dependent phases of muscle regeneration, namely, degeneration, inflammation, regeneration, remodeling, and maturation/functional repair.

  9. [Phantom limb pain: from physiopathology to prevention].

    Science.gov (United States)

    Roullet, S; Nouette-Gaulain, K; Brochet, B; Sztark, F

    2009-05-01

    First described in 1545, phantom limb pain is a frequent complication after limb amputation, described by 60 to 85% of amputees. Stump pain, phantom limb sensation and phantom limb pain are often combined. Physiopathology is complex and peripheral, medullar and cortical mechanisms are combined. Pharmacological preventive treatments as well as regional anaesthesia techniques have equivalent results. Such treatments must be investigated more precisely as postoperative rehabilitation of amputees mostly depends on pain relief.

  10. Psychophysical correlates of phantom limb experience.

    Science.gov (United States)

    Katz, J

    1992-01-01

    Phantom limb phenomena were correlated with psychophysiological measures of peripheral sympathetic nervous system activity measured at the amputation stump and contralateral limb. Amputees were assigned to one of three groups depending on whether they reported phantom limb pain, non-painful phantom limb sensations, or no phantom limb at all. Skin conductance and skin temperature were recorded continuously during two 30 minute sessions while subjects continuously monitored and rated the intensity of any phantom limb sensation or pain they experienced. The results from both sessions showed that mean skin temperature was significantly lower at the stump than the contralateral limb in the groups with phantom limb pain and non-painful phantom limb sensations, but not among subjects with no phantom limb at all. In addition, stump skin conductance responses correlated significantly with the intensity of non-painful phantom limb paresthesiae but not other qualities of sensation or pain. Between-limb measures of pressure sensitivity were not significantly different in any group. The results suggest that the presence of a phantom limb, whether painful or painless, is related to the sympathetic-efferent outflow of cutaneous vasoconstrictor fibres in the stump and stump neuromas. The hypothesis of a sympathetic-efferent somatic-afferent mechanism involving both sudomotor and vasoconstrictor fibres is proposed to explain the relationship between stump skin conductance responses and non-painful phantom limb paresthesiae. It is suggested that increases in the intensity of phantom limb paresthesiae follow bursts of sympathetic activity due to neurotransmitter release onto apposing sprouts of large diameter primary afferents located in stump neuromas, and decreases correspond to periods of relative sympathetic inactivity. The results of the study agree with recent suggestions that phantom limb pain is not a unitary syndrome, but a symptom class with each class subserved by

  11. Homeomorphisms Between Limbs of the Mandelbrot Set

    DEFF Research Database (Denmark)

    Branner, Bodil; Fagella, Nuria

    1999-01-01

    Using a family of higher degree polynomials as a bridge, together with complex surgery techniques, we construct a homeomorphism between any two limbs of the Mandelbrot set of equal denominator. Induced by these homeomorphisms and complex conjugation, we obtain an involution between each limb...... of the limbs in the plane. As usual we plough in the dynamical planes and harvest in the parameter space....

  12. Skeletal callus formation is a nerve‐independent regenerative response to limb amputation in mice and Xenopus

    Science.gov (United States)

    Miura, Shinichirou; Takahashi, Yumiko; Satoh, Akira

    2015-01-01

    Abstract To clarify the mechanism of limb regeneration that differs between mammals (non‐regenerative) and amphibians (regenerative), responses to limb amputation and the accessory limb inducible surgery (accessory limb model, ALM) were compared between mice and Xenopus, focusing on the events leading to blastema formation. In both animals, cartilaginous calluses were formed around the cut edge of bones after limb amputation. They not only are morphologically similar but show other similarities, such as growth driven by undifferentiated cell proliferation and macrophage‐dependent and nerve‐independent induction. It appears that amputation callus formation is a common nerve‐independent regenerative response in mice and Xenopus. In contrast, the ALM revealed that the wound epithelium (WE) in Xenopus was innervated by many regenerating axons when a severed nerve ending was placed underneath it, whereas only a few axons were found within the WE in mice. Since nerves are involved in induction of the regeneration‐permissive WE in amphibians, whether or not nerves can interact with the WE might be one of the key processes separating successful nerve‐dependent blastema formation in Xenopus and failure in mice. PMID:27499875

  13. Cell Therapy in Patients with Critical Limb Ischemia

    Directory of Open Access Journals (Sweden)

    Rita Compagna

    2015-01-01

    Full Text Available Critical limb ischemia (CLI represents the most advanced stage of peripheral arterial obstructive disease (PAOD with a severe obstruction of the arteries which markedly reduces blood flow to the extremities and has progressed to the point of severe rest pain and/or even tissue loss. Recent therapeutic strategies have focused on restoring this balance in favor of tissue survival using exogenous molecular and cellular agents to promote regeneration of the vasculature. These are based on stimulation of angiogenesis by extracellular and cellular components. This review article carries out a systematic analysis of the most recent scientific literature on the application of stem cells in patients with CLI. The results obtained from the detailed analysis of the recent literature data have confirmed the beneficial role of cell therapy in reducing the rate of major amputations in patients with CLI and improving their quality of life.

  14. Population level differences in thermal sensitivity of energy assimilation in terrestrial salamanders.

    Science.gov (United States)

    Clay, Timothy A; Gifford, Matthew E

    2017-02-01

    Thermal adaptation predicts that thermal sensitivity of physiological traits should be optimized to thermal conditions most frequently experienced. Furthermore, thermodynamic constraints predict that species with higher thermal optima should have higher performance maxima and narrower performance breadths. We tested these predictions by examining the thermal sensitivity of energy assimilation between populations within two species of terrestrial-lungless salamanders, Plethodon albagula and P. montanus. Within P. albagula, we examined populations that were latitudinally separated by >450km. Within P. montanus, we examined populations that were elevationally separated by >900m. Thermal sensitivity of energy assimilation varied substantially between populations of P. albagula separated latitudinally, but did not vary between populations of P. montanus separated elevationally. Specifically, in P. albagula, the lower latitude population had a higher thermal optimum, higher maximal performance, and narrower performance breadth compared to the higher latitude population. Furthermore, across all individuals as thermal optima increased, performance maxima also increased, providing support for the theory that "hotter is better". Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sequencing and de novo transcriptome assembly of the Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2017-06-01

    Full Text Available Next-generation technologies for determination of genomics and transcriptomics composition have a wide range of applications. Andrias davidianus, has become an endangered amphibian species of salamander endemic in China. However, there is a lack of the molecular information. In this study, we obtained the RNA-Seq data from a pool of A. davidianus tissue including spleen, liver, muscle, kidney, skin, testis, gut and heart using Illumina HiSeq 2500 platform. A total of 15,398,997,600 bp were obtained, corresponding to 102,659,984 raw reads. A total of 102,659,984 reads were filtered after removing low-quality reads and trimming the adapter sequences. The Trinity program was used to de novo assemble 132,912 unigenes with an average length of 690 bp and N50 of 1263 bp. Unigenes were annotated through number of databases. These transcriptomic data of A. davidianus should open the door to molecular evolution studies based on the entire transcriptome or targeted genes of interest to sequence. The raw data in this study can be available in NCBI SRA database with accession number of SRP099564.

  16. Resistance to chytridiomycosis in European plethodontid salamanders of the genus Speleomantes.

    Directory of Open Access Journals (Sweden)

    Frank Pasmans

    Full Text Available North America and the neotropics harbor nearly all species of plethodontid salamanders. In contrast, this family of caudate amphibians is represented in Europe and Asia by two genera, Speleomantes and Karsenia, which are confined to small geographic ranges. Compared to neotropical and North American plethodontids, mortality attributed to chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd has not been reported for European plethodontids, despite the established presence of Bd in their geographic distribution. We determined the extent to which Bd is present in populations of all eight species of European Speleomantes and show that Bd was undetectable in 921 skin swabs. We then compared the susceptibility of one of these species, Speleomantes strinatii, to experimental infection with a highly virulent isolate of Bd (BdGPL, and compared this to the susceptible species Alytes muletensis. Whereas the inoculated A. muletensis developed increasing Bd-loads over a 4-week period, none of five exposed S. strinatii were colonized by Bd beyond 2 weeks post inoculation. Finally, we determined the extent to which skin secretions of Speleomantes species are capable of killing Bd. Skin secretions of seven Speleomantes species showed pronounced killing activity against Bd over 24 hours. In conclusion, the absence of Bd in Speleomantes combined with resistance to experimental chytridiomycosis and highly efficient skin defenses indicate that the genus Speleomantes is a taxon unlikely to decline due to Bd.

  17. Ancient DNA assessment of tiger salamander population in Yellowstone National Park.

    Directory of Open Access Journals (Sweden)

    Sarah K McMenamin

    Full Text Available Recent data indicates that blotched tiger salamanders (Ambystoma tigrinum melanostictum in northern regions of Yellowstone National Park are declining due to climate-related habitat changes. In this study, we used ancient and modern mitochondrial haplotype diversity to model the effective size of this amphibian population through recent geological time and to assess past responses to climatic changes in the region. Using subfossils collected from a cave in northern Yellowstone, we analyzed >700 base pairs of mitochondrial sequence from 16 samples ranging in age from 100 to 3300 years old and found that all shared an identical haplotype. Although mitochondrial diversity was extremely low within the living population, we still were able to detect geographic subdivision within the local area. Using serial coalescent modelling with Bayesian priors from both modern and ancient genetic data we simulated a range of probable population sizes and mutation rates through time. Our simulations suggest that regional mitochondrial diversity has remained relatively constant even through climatic fluctuations of recent millennia.

  18. Ancient DNA assessment of tiger salamander population in Yellowstone National Park.

    Science.gov (United States)

    McMenamin, Sarah K; Hadly, Elizabeth A

    2012-01-01

    Recent data indicates that blotched tiger salamanders (Ambystoma tigrinum melanostictum) in northern regions of Yellowstone National Park are declining due to climate-related habitat changes. In this study, we used ancient and modern mitochondrial haplotype diversity to model the effective size of this amphibian population through recent geological time and to assess past responses to climatic changes in the region. Using subfossils collected from a cave in northern Yellowstone, we analyzed >700 base pairs of mitochondrial sequence from 16 samples ranging in age from 100 to 3300 years old and found that all shared an identical haplotype. Although mitochondrial diversity was extremely low within the living population, we still were able to detect geographic subdivision within the local area. Using serial coalescent modelling with Bayesian priors from both modern and ancient genetic data we simulated a range of probable population sizes and mutation rates through time. Our simulations suggest that regional mitochondrial diversity has remained relatively constant even through climatic fluctuations of recent millennia.

  19. Temporal response of the tiger salamander (Ambystoma tigrinum to 3,000 years of climatic variation

    Directory of Open Access Journals (Sweden)

    Long Webb

    2005-09-01

    Full Text Available Abstract Background Amphibians are sensitive indicators of environmental conditions and show measurable responses, such as changes in phenology, abundance and range limits to local changes in precipitation and temperature regimes. Amphibians offer unique opportunities to study the important ecological and evolutionary implications of responses in life history characteristics to climatic change. We analyzed a late-Holocene fossil record of the Tiger Salamander (Ambystoma tigrinum for evidence of population-level changes in body size and paedomorphosis to climatic change over the last 3000 years. Results We found a significant difference in body size index between paedomorphic and metamorphic individuals during the time interval dominated by the Medieval Warm Period. There is a consistent ratio of paedomorphic to metamorphic specimens through the entire 3000 years, demonstrating that not all life history characteristics of the population were significantly altered by changes in climate on this timescale. Conclusion The fossil record of Ambystoma tigrinum we used spans an ecologically relevant timescale appropriate for understanding population and community response to projected climatic change. The population-level responses we documented are concordant with expectations based on modern environmental studies, and yield insight into population-level patterns across hundreds of generations, especially the independence of different life history characteristics. These conclusions lead us to offer general predictions about the future response of this species based on likely scenarios of climatic warming in the Rocky Mountain region.

  20. Temporal response of the tiger salamander (Ambystoma tigrinum) to 3,000 years of climatic variation.

    Science.gov (United States)

    Bruzgul, Judsen E; Long, Webb; Hadly, Elizabeth A

    2005-09-13

    Amphibians are sensitive indicators of environmental conditions and show measurable responses, such as changes in phenology, abundance and range limits to local changes in precipitation and temperature regimes. Amphibians offer unique opportunities to study the important ecological and evolutionary implications of responses in life history characteristics to climatic change. We analyzed a late-Holocene fossil record of the Tiger Salamander (Ambystoma tigrinum) for evidence of population-level changes in body size and paedomorphosis to climatic change over the last 3000 years. We found a significant difference in body size index between paedomorphic and metamorphic individuals during the time interval dominated by the Medieval Warm Period. There is a consistent ratio of paedomorphic to metamorphic specimens through the entire 3000 years, demonstrating that not all life history characteristics of the population were significantly altered by changes in climate on this timescale. The fossil record of Ambystoma tigrinum we used spans an ecologically relevant timescale appropriate for understanding population and community response to projected climatic change. The population-level responses we documented are concordant with expectations based on modern environmental studies, and yield insight into population-level patterns across hundreds of generations, especially the independence of different life history characteristics. These conclusions lead us to offer general predictions about the future response of this species based on likely scenarios of climatic warming in the Rocky Mountain region.

  1. Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rachel Lockridge; Macey, J. Robert; Jaekel, Martin; Wake, David B.; Boore, Jeffrey L.

    2004-08-01

    The evolutionary history of the largest salamander family (Plethodontidae) is characterized by extreme morphological homoplasy. Analysis of the mechanisms generating such homoplasy requires an independent, molecular phylogeny. To this end, we sequenced 24 complete mitochondrial genomes (22 plethodontids and two outgroup taxa), added data for three species from GenBank, and performed partitioned and unpartitioned Bayesian, ML, and MP phylogenetic analyses. We explored four dataset partitioning strategies to account for evolutionary process heterogeneity among genes and codon positions, all of which yielded increased model likelihoods and decreased numbers of supported nodes in the topologies (PP > 0.95) relative to the unpartitioned analysis. Our phylogenetic analyses yielded congruent trees that contrast with the traditional morphology-based taxonomy; the monophyly of three out of four major groups is rejected. Reanalysis of current hypotheses in light of these new evolutionary relationships suggests that (1) a larval life history stage re-evolved from a direct-developing ancestor multiple times, (2) there is no phylogenetic support for the ''Out of Appalachia'' hypothesis of plethodontid origins, and (3) novel scenarios must be reconstructed for the convergent evolution of projectile tongues, reduction in toe number, and specialization for defensive tail loss. Some of these novel scenarios imply morphological transformation series that proceed in the opposite direction than was previously thought. In addition, they suggest surprising evolutionary lability in traits previously interpreted to be conservative.

  2. Linking extinction–colonization dynamics to genetic structure in a salamander metapopulation

    Science.gov (United States)

    Cosentino, Bradley J.; Phillips, Christopher A.; Schooley, Robert L.; Lowe, Winsor H.; Douglas, Marlis R.

    2012-01-01

    Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction–colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction–colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations. PMID:22113029

  3. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations.

    Directory of Open Access Journals (Sweden)

    Rachael Y Dudaniec

    Full Text Available With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus in two core regions (Washington State, United States versus the species' northern peripheral region (British Columbia, Canada where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a 'flat' landscape, but at the periphery, topography (slope and elevation had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management.

  4. Extinction debt as a driver of amphibian declines: An example with imperiled flatwoods salamanders

    Science.gov (United States)

    Semiltsch, Raymond D; Walls, Susan; Barichivich, William J.; O'Donnell, Katherine

    2017-01-01

    A comprehensive view of population declines and their underlying causes is necessary to reverse species loss. Historically, in many cases, a narrow view may have allowed species declines to continue, virtually undetected, for long periods of time (perhaps even decades). We suggest that extinction debt is likely responsible for numerous (perhaps most) amphibian declines and that this perspective should be incorporated into the structure of amphibian research and management. Extinction debt, originally proposed to explain changes in species richness following environmental disturbance, also may refer to the proportion of populations of an individual species that is expected to eventually be lost because of habitat change. A conservation framework to address extinction debt focuses research on threats at the individual, population, and metapopulation levels. This approach will help enhance, restore, and protect specific processes and habitats at the proper scale by directing management to the most vulnerable level and stage of a species. We illustrate this approach using Flatwoods Salamanders, Ambystoma cingulatumand Ambystoma bishopi, which occurred historically throughout the Coastal Plain of the southeastern United States but have experienced a greater than 85% loss of populations in recent years. Reversal of these losses is possible only if conservation and recovery efforts encompass individual, population, and metapopulation levels. We illustrate our framework by outlining actions that could be taken at each of these levels to help guide conservation and management of amphibians with complex life cycles and provide options for how to prioritize conservation actions in the face of logistical and budgetary shortfalls.

  5. Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra).

    Science.gov (United States)

    Velo-Antón, G; Zamudio, K R; Cordero-Rivera, A

    2012-04-01

    Continental islands offer an excellent opportunity to investigate adaptive processes and to time microevolutionary changes that precede macroevolutionary events. We performed a population genetic study of the fire salamander (Salamandra salamandra), a species that displays unique intraspecific diversity of reproductive strategies, to address the microevolutionary processes leading to phenotypic and genetic differentiation of island, coastal and interior populations. We used eight microsatellite markers to estimate genetic diversity, population structure and demographic parameters in viviparous insular populations and ovoviviparous coastal and interior populations. Our results show considerable genetic differentiation (F(ST) range: 0.06-0.27), and no clear signs of gene flow among populations, except between the large and admixed interior populations. We find no support for island colonization by rafting or intentional/accidental anthropogenic introductions, indicating that rising sea levels were responsible for isolation of the island populations approximately 9000 years ago. Our study provides evidence of rapid genetic differentiation between island and coastal populations, and rapid evolution of viviparity driven by climatic selective pressures on island populations, geographic isolation with genetic drift, or a combination of these factors. Studies of these viviparous island populations in early stages of divergence help us better understand the microevolutionary processes involved in rapid phenotypic shifts.

  6. No Sexual Dimorphism Detected in Digit Ratios of the Fire Salamander (Salamandra salamandra).

    Science.gov (United States)

    Balogová, Monika; Nelson, Emma; Uhrin, Marcel; Figurová, Mária; Ledecký, Valent; Zyśk, Bartłomiej

    2015-10-01

    It has been proposed that digit ratio may be used as a biomarker of early developmental effects. Specifically, the second-to-fourth digit ratio (2D:4D) has been linked to the effects of sex hormones and their receptor genes, but other digit ratios have also been investigated. Across taxa, patterns of sexual dimorphism in digit ratios are ambiguous and a scarcity of studies in basal tetrapods makes it difficult to understand how ratios have evolved. Here, we focus on examining sex differences in digit ratios (2D:3D, 2D:4D, and 3D:4D) in a common amphibian, the fire salamander (Salamandra salamandra). We used graphic software to measure soft tissue digit length and digit bone length from X-rays. We found a nonsignificant tendency in males to have a lower 2D:3D than females; however, no sexual differences were detected in the other ratios. We discuss our results in the context of other studies of digit ratios, and how sex determination systems, as well as other factors, might impact patterns of sexual dimorphism, particularly in reptiles and in amphibians. Our findings suggest that caution is needed when using digit ratios as a potential indicator of prenatal hormonal effects in amphibians and highlight the need for more comparative studies to elucidate the evolutionary and genetic mechanisms implicated in sexually dimorphic patterns across taxonomic groups. © 2015 Wiley Periodicals, Inc.

  7. Generalisation within specialization: inter-individual diet variation in the only specialized salamander in the world.

    Science.gov (United States)

    Costa, Andrea; Salvidio, Sebastiano; Posillico, Mario; Matteucci, Giorgio; De Cinti, Bruno; Romano, Antonio

    2015-08-21

    Specialization is typically inferred at population and species level but in the last decade many authors highlighted this trait at the individual level, finding that generalist populations can be composed by both generalist and specialist individual. Despite hundreds of reported cases of individual specialization there is a complete lack of information on inter-individual diet variation in specialist species. We studied the diet of the Italian endemic Spectacled Salamander (Salamandrina perspicillata), in a temperate forest ecosystem, to disclose the realised trophic niche, prey selection strategy in function of phenotypic variation and inter-individual diet variation. Our results showed that Salamandrina is highly specialized on Collembola and the more specialized individuals are the better performing ones. Analyses of inter-individual diet variation showed that a subset of animals exhibited a broader trophic niche, adopting different foraging strategies. Our findings reflects the optimal foraging theory both at population and individual level, since animals in better physiological conditions are able to exploit the most profitable prey, suggesting that the two coexisting strategies are not equivalent. At last this species, feeding on decomposers of litter detritus, could play a key role determining litter retention rate, nutrient cycle and carbon sequestration.

  8. Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time.

    Science.gov (United States)

    Savage, Wesley K; Fremier, Alexander K; Shaffer, H Bradley

    2010-08-01

    Quantifying the influence of the landscape on the genetic structure of natural populations remains an important empirical challenge, particularly for poorly studied, ecologically cryptic species. We conducted an extensive microsatellite analysis to examine the population genetics of the southern long-toed salamander (Ambystoma macrodactylum sigillatum) in a naturally complex landscape. Using spatially explicit modelling, we investigated the influence of the Sierra Nevada topography on potential dispersal corridors between sampled populations. Our results indicate very high-genetic divergence among populations, high within-deme relatedness, and little evidence of recent migration or population admixture. We also discovered unexpectedly high between-year genetic differentiation (F(ST)) for breeding sites, suggesting that breeding groups vary over localized space and time. While environmental factors associated with high-elevation montane habitats apparently play an important role in shaping population differentiation, additional, species-specific biological processes must also be operating to account for observed deviations from temporal, among-year panmixia. Our study emphasizes the population-level insights that can be gained from high-density sampling in space and time, and the highly substructured population biology that may characterize amphibians in extreme montane habitats.

  9. Notes on cranial ontogeny and delayed metamorphosis in the hynobiid salamander Ranodon sibiricus Kessler, 1866 (Urodela).

    Science.gov (United States)

    Jömann, Norbert; Clemen, Günter; Greven, Hartmut

    2005-07-01

    The skull of larvae, juveniles and adults of the rare and primitive hynobiid salamander Ranodon sibiricus was re-examined using transparencies and illustrated by new graphics. The earliest larva available for investigations already had the dominant bones. The maxillary, however, was still lacking. Previous descriptions regarding the appearance and growth of bones could be largely confirmed. The vomer, first seen as a relatively small obliquely arranged dentate bar in the 3.8 cm long larva, became larger during ontogeny, but did not change its position remarkably. The vomerine pars dentalis with only a single tooth line was straight in larvae and juveniles, but was slightly curved in adults allowing for distinction of an outer and inner portion. This feature is typical and more pronounced in most other hynobiids. The significance of the vomer and vomerine dentition for systematic and phylogenetic purposes and its changes during metamorphosis are briefly discussed. Two of the specimens examined showed delayed metamorphosis very likely caused by low temperatures. Here the temporal course of transformation was "stretched" and therefore some alterations, e.g. regression of the palatinal portion of the palatopterygoid, were shown more clearly. Continuous growth of some skull elements in these individuals suggested a relative independence from metamorphosis perhaps due to variable thyroid activity and/or independent changes in individual tissue sensitivities. It is suggested that remodelling of the mouth roof could be used for staging urodele ontogeny.

  10. Biology of tiny animals: three new species of minute salamanders (Plethodontidae: Thorius) from Oaxaca, Mexico.

    Science.gov (United States)

    Parra-Olea, Gabriela; Rovito, Sean M; García-París, Mario; Maisano, Jessica A; Wake, David B; Hanken, James

    2016-01-01

    We describe three new species of minute salamanders, genus Thorius, from the Sierra Madre del Sur of Oaxaca, Mexico. Until now only a single species, T. minutissimus, has been reported from this region, although molecular data have long shown extensive genetic differentiation among geographically disjunct populations. Adult Thorius pinicola sp. nov., T. longicaudus sp. nov., and T. tlaxiacus sp. nov. are larger than T. minutissimus and possess elliptical rather than oval nostrils; T. pinicola and T. longicaudus also have longer tails. All three new species occur west of the range of T. minutissimus, which has the easternmost distribution of any member of the genus. The new species are distinguished from each other and from other named Thorius in Oaxaca by a combination of adult body size, external morphology and osteology, and by protein characters (allozymes) and differences in DNA sequences. In addition, we redescribe T. minutissimus and a related species, T. narisovalis, to further clarify the taxonomic status of Oaxacan populations and to facilitate future studies of the remaining genetically differentiated Thorius that cannot be satisfactorily assigned to any named species. Populations of all five species considered here appear to have declined dramatically over the last one or two decades and live specimens are difficult to find in nature. Thorius may be the most endangered genus of amphibians in the world. All species may go extinct before the end of this century.

  11. Biology of tiny animals: three new species of minute salamanders (Plethodontidae: Thorius from Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Gabriela Parra-Olea

    2016-11-01

    Full Text Available We describe three new species of minute salamanders, genus Thorius, from the Sierra Madre del Sur of Oaxaca, Mexico. Until now only a single species, T. minutissimus, has been reported from this region, although molecular data have long shown extensive genetic differentiation among geographically disjunct populations. Adult Thorius pinicola sp. nov., T. longicaudus sp. nov., and T. tlaxiacus sp. nov. are larger than T. minutissimus and possess elliptical rather than oval nostrils; T. pinicola and T. longicaudus also have longer tails. All three new species occur west of the range of T. minutissimus, which has the easternmost distribution of any member of the genus. The new species are distinguished from each other and from other named Thorius in Oaxaca by a combination of adult body size, external morphology and osteology, and by protein characters (allozymes and differences in DNA sequences. In addition, we redescribe T. minutissimus and a related species, T. narisovalis, to further clarify the taxonomic status of Oaxacan populations and to facilitate future studies of the remaining genetically differentiated Thorius that cannot be satisfactorily assigned to any named species. Populations of all five species considered here appear to have declined dramatically over the last one or two decades and live specimens are difficult to find in nature. Thorius may be the most endangered genus of amphibians in the world. All species may go extinct before the end of this century.

  12. Ultrastructure of previtellogene oocytes in the neotenic cave salamander Proteus anguinus anguinus (Amphibia, Urodela, Proteidae).

    Science.gov (United States)

    Mali, Lilijana Bizjak; Bulog, Boris

    2010-10-01

    Oogenesis in the neotenic, cave dwelling salamander Proteus anguinus anguinus has not been studied yet, and this study provides a detailed description of the early growth of the oocytes. Early previtellogene oocytes ranging from 100 to 600 µm in diameter were examined by light and transmission electron microscopy. The oocytes were divided into two stages based on size, color, and histology. Stage I oocytes can be identified by their transparent cytoplasm and a homogenous juxtanuclear mass, composed of numerous lipid droplets and mitochondria. Stage II oocytes are no longer transparent and have increased in diameter to 300- 600 µm, and many cortical alveoli differing in size have appeared. The common and most predominant ultrastructural characteristics of both stages of previtellogene oocytes are extensive quantities of smooth membrane, numerous mitochondria, and lipid droplets, as well as abundant free ribosomes. Myeline-like structures and remarkable annulate lamellae of closely packed membrane stacks are also frequently observed. Previtellogenic oocytes are the most predominant oocytes in the ovaries of Proteus, and while they possess certain structural characteristics typical for other amphibians, some features are unique and could result from adaptation to the subterranean environment.

  13. Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans.

    Science.gov (United States)

    Van Rooij, Pascale; Pasmans, Frank; Coen, Yanaika; Martel, An

    2017-01-01

    The recently emerged chytrid fungus Batrachochytrium salamandrivorans (Bsal) causes European salamander declines. Proper hygiene protocols including disinfection procedures are crucial to prevent disease transmission. Here, the efficacy of chemical disinfectants in killing Bsal was evaluated. At all tested conditions, Biocidal®, Chloramine-T®, Dettol medical®, Disolol®, ethanol, F10®, Hibiscrub®, potassium permanganate, Safe4®, sodium hypochlorite, and Virkon S®, were effective at killing Bsal. Concentrations of 5% sodium chloride or lower, 0.01% peracetic acid and 0.001-1% copper sulphate were inactive against Bsal. None of the conditions tested for hydrogen peroxide affected Bsal viability, while it did kill Batrachochytrium dendrobatidis (Bd). For Bsal, enzymatic breakdown of hydrogen peroxide by catalases and specific morphological features (clustering of sporangia, development of new sporangia within the original sporangium), were identified as fungal factors altering susceptibility to several of the disinfectants tested. Based on the in vitro results we recommend 1% Virkon S®, 4% sodium hypochlorite and 70% ethanol for disinfecting equipment in the field, lab or captive setting, with a minimal contact time of 5 minutes for 1% Virkon S® and 1 minute for the latter disinfectants. These conditions not only efficiently target Bsal, but also Bd and Ranavirus.

  14. Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans.

    Directory of Open Access Journals (Sweden)

    Pascale Van Rooij

    Full Text Available The recently emerged chytrid fungus Batrachochytrium salamandrivorans (Bsal causes European salamander declines. Proper hygiene protocols including disinfection procedures are crucial to prevent disease transmission. Here, the efficacy of chemical disinfectants in killing Bsal was evaluated. At all tested conditions, Biocidal®, Chloramine-T®, Dettol medical®, Disolol®, ethanol, F10®, Hibiscrub®, potassium permanganate, Safe4®, sodium hypochlorite, and Virkon S®, were effective at killing Bsal. Concentrations of 5% sodium chloride or lower, 0.01% peracetic acid and 0.001-1% copper sulphate were inactive against Bsal. None of the conditions tested for hydrogen peroxide affected Bsal viability, while it did kill Batrachochytrium dendrobatidis (Bd. For Bsal, enzymatic breakdown of hydrogen peroxide by catalases and specific morphological features (clustering of sporangia, development of new sporangia within the original sporangium, were identified as fungal factors altering susceptibility to several of the disinfectants tested. Based on the in vitro results we recommend 1% Virkon S®, 4% sodium hypochlorite and 70% ethanol for disinfecting equipment in the field, lab or captive setting, with a minimal contact time of 5 minutes for 1% Virkon S® and 1 minute for the latter disinfectants. These conditions not only efficiently target Bsal, but also Bd and Ranavirus.

  15. The naris muscles in tiger salamander. I. Potential functions and innervation as revealed by biocytin tracing.

    Science.gov (United States)

    Wirsig-Wiechmann, Celeste R; Holliday, Katherine R

    2002-06-01

    The naris constrictor muscle, along with naris dilator and naris accessory muscles, controls the opening and closing of the external naris in tiger salamanders. It has been hypothesized that contraction of the naris constrictor muscle also causes the external nasal gland to secrete its contents inside the lateral wall of the external naris opening. This location is just rostral to vomeronasal organ and thus secretion in this region may be important for access of odorous compounds to vomeronasal organ. Little is known about the innervation of the naris muscles. To elucidate the neural control of these muscles, their innervation was examined using retrograde tract tracing with biocytin. Following application of biocytin to the naris constrictor muscle, labeling was observed in a ventral axonal plexus of the palatine nerve and numerous neuronal cell bodies distributed along this peripheral nerve plexus and within the main portion of the palatine ganglion. If the naris accessory and/or dilator muscles were also exposed to the tracer, the lateral-most branch of the palatine nerve and its associated neural cell bodies were labeled. To confirm the functional innervation of the muscles by the palatine nerve, the nerve was cut and the contraction of the muscles was eliminated. These findings demonstrate that the muscles controlling the external naris are under the control of palatine ganglion neurons. We hypothesize that this innervation of the naris constrictor muscle controls both muscle contraction and glandular secretion that may facilitate access of chemosensory substances to the vomeronasal organ.

  16. Effects of copper exposure on hatching success and early larval survival in marbled salamanders, Ambystoma opacum.

    Science.gov (United States)

    Soteropoulos, Diana L; Lance, Stacey L; Flynn, R Wesley; Scott, David E

    2014-07-01

    The creation of wetlands, such as urban and industrial ponds, has increased in recent decades, and these wetlands often become enriched in pollutants over time. One metal contaminant trapped in created wetlands is copper (Cu(2+)). Copper concentrations in sediments and overlying water may affect amphibian species that breed in created wetlands. The authors analyzed the Cu concentration in dried sediments from a contaminated wetland and the levels of aqueous Cu released after flooding the sediments with different volumes of water, mimicking low, medium, and high pond-filling events. Eggs and larvae of Ambystoma opacum Gravenhorst, a salamander that lays eggs on the sediments in dry pond beds that hatch on pond-filling, were exposed to a range of Cu concentrations that bracketed potential aqueous Cu levels in created wetlands. Embryo survival varied among clutches, but increased Cu levels did not affect embryo survival. At Cu concentrations of 500 µg/L or greater, however, embryos hatched earlier, and the aquatic larvae died shortly after hatching. Because Cu concentrations in sediments increase over time in created wetlands, even relatively tolerant species such as A. opacum may be affected by Cu levels in the posthatching environment. © 2014 SETAC.

  17. Bone regeneration in dentistry

    Science.gov (United States)

    Tonelli, Paolo; Duvina, Marco; Barbato, Luigi; Biondi, Eleonora; Nuti, Niccolò; Brancato, Leila; Rose, Giovanna Delle

    2011-01-01

    Summary The edentulism of the jaws and the periodontal disease represent conditions that frequently leads to disruption of the alveolar bone. The loss of the tooth and of its bone of support lead to the creation of crestal defects or situation of maxillary atrophy. The restoration of a functional condition involves the use of endosseous implants who require adequate bone volume, to deal with the masticatory load. In such situations the bone need to be regenerated, taking advantage of the biological principles of osteogenesis, osteoinduction and osteoconduction. Several techniques combine these principles with different results, due to the condition of the bone base on which we operate changes, the surgical technique that we use, and finally for the bone metabolic conditions of the patient who can be in a state of systemic osteopenia or osteoporosis; these can also affect the result of jaw bone reconstruction. PMID:22461825

  18. The periosteal requirement and temporal dynamics of BMP2‐induced middle phalanx regeneration in the adult mouse

    Science.gov (United States)

    Dawson, Lindsay A.; Yu, Ling; Yan, Mingquan; Marrero, Luis; Schanes, Paula P.; Dolan, Connor; Pela, Maegan; Petersen, Britta; Han, Manjong

    2017-01-01

    Abstract Regeneration of mammalian limbs is restricted to amputation of the distal digit tip, the terminal phalanx (P3). The adjacent skeletal element, the middle phalanx (P2), has emerged as a model system to investigate regenerative failure and as a site to test approaches aimed at enhancing regeneration. We report that exogenous application of bone morphogenetic protein 2 (BMP2) stimulates the formation of a transient cartilaginous callus distal to the amputation plane that mediates the regeneration of the amputated P2 bone. BMP2 initiates a significant regeneration response during the periosteal‐derived cartilaginous healing phase of P2 bone repair, yet fails to induce regeneration in the absence of periosteal tissue, or after boney callus formation. We provide evidence that a temporal component exists in the induced regeneration of P2 that we define as the “regeneration window.” In this window, cells are transiently responsive to BMP2 after the amputation injury. Simple re‐injury of the healed P2 stump acts to reinitiate endogenous bone repair, complete with periosteal chondrogenesis, thus reopening the “regeneration window” and thereby recreating a regeneration‐permissive environment that is responsive to exogenous BMP2 treatment. PMID:28975034

  19. Biomaterial selection for tooth regeneration.

    Science.gov (United States)

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y; Zhou, Hong; Chen, Lili; Mao, Jeremy J

    2011-10-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. © Mary Ann Liebert, Inc.

  20. Biomaterial Selection for Tooth Regeneration

    Science.gov (United States)

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  1. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Xiaoti Xu

    2015-09-01

    Full Text Available Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications.

  2. Spinal cord regeneration in a tail autotomizing urodele.

    Science.gov (United States)

    Dawley, Ellen M; O Samson, Shoji; Woodard, Kenton T; Matthias, Kathryn A

    2012-02-01

    Adult urodele amphibians possess extensive regenerative abilities, including lens, jaws, limbs, and tails. In this study, we examined the cellular events and time course of spinal cord regeneration in a species, Plethodon cinereus, that has the ability to autotomize its tail as an antipredator strategy. We propose that this species may have enhanced regenerative abilities as further coadaptations with this antipredator strategy. We examined the expression of nestin, vimentin, and glial fibrillary acidic protein (GFAP) after autotomy as markers of neural precursor cells and astroglia; we also traced the appearance of new neurons using 5-bromo-2'-deoxyuridine/neuronal nuclei (BrdU/NeuN) double labeling. As expected, the regenerating ependymal tube was a major source of new neurons; however, the spinal cord cranial to the plane of autotomy showed significant mitotic activity, more extensive than what is reported for other urodeles that cannot autotomize their tails. In addition, this species shows upregulation of nestin, vimentin, and GFAP within days after tail autotomy; further, this expression is upregulated within the spinal cord cranial to the plane of autotomy, not just within the extending ependymal tube, as reported in other urodeles. We suggest that enhanced survival of the spinal cord cranial to autotomy allows this portion to participate in the enhanced recovery and regeneration of the spinal cord. Copyright © 2011 Wiley Periodicals, Inc.

  3. Skeletal muscle degeneration and regeneration in mice and flies.

    Science.gov (United States)

    Rai, Mamta; Nongthomba, Upendra; Grounds, Miranda D

    2014-01-01

    Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models. © 2014 Elsevier Inc. All rights reserved.

  4. Effects of corticosterone on infection and disease in salamanders exposed to the amphibian fungal pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Fonner, Chris W; Patel, Shreya A; Boord, Shelby M; Venesky, Matthew D; Woodley, Sarah K

    2017-03-06

    Although it is well established that glucocorticoid hormones (GCs) alter immune function and disease resistance in humans and laboratory animal models, fewer studies have linked elevated GCs to altered immune function and disease resistance in wild animals. The chytrid fungal pathogen Batrachochytrium dendrobatidis (Bd) infects amphibians and can cause the disease chytridiomycosis, which is responsible for worldwide amphibian declines. It is hypothesized that long-term exposure to environmental stressors reduces host resistance to Bd by suppressing host immunity via stress-induced release of GCs such as corticosterone (CORT). We tested whether elevation of CORT would reduce resistance to Bd and chytridiomycosis development in the red-legged salamander Plethodon shermani. Plasma CORT was elevated daily in animals for 9 d, after which animals were inoculated with Bd and subsequently tested for infection loads and clinical signs of disease. On average, Bd-inoculated animals treated with CORT had higher infection abundance compared to Bd-inoculated animals not treated with CORT. However, salamanders that received CORT prior to Bd did not experience any increase in clinical signs of chytridiomycosis compared to salamanders not treated with CORT. The lack of congruence between CORT effects on infection abundance versus disease may be due to threshold effects. Nonetheless, our results show that elevation of plasma CORT prior to Bd inoculation decreases resistance to infection by Bd. More studies are needed to better understand the effects of CORT on animals exposed to Bd and whether CORT variation contributes to differential responses to Bd observed across amphibian species and populations.

  5. Nuclear and mitochondrial multilocus phylogeny and survey of alkaloid content in true salamanders of the genus Salamandra (Salamandridae).

    Science.gov (United States)

    Vences, Miguel; Sanchez, Eugenia; Hauswaldt, J Susanne; Eikelmann, Daniel; Rodríguez, Ariel; Carranza, Salvador; Donaire, David; Gehara, Marcelo; Helfer, Véronique; Lötters, Stefan; Werner, Philine; Schulz, Stefan; Steinfartz, Sebastian

    2014-04-01

    The genus Salamandra represents a clade of six species of Palearctic salamanders of either contrasted black-yellow, or uniformly black coloration, known to contain steroidal alkaloid toxins in high concentrations in their skin secretions. This study reconstructs the phylogeny of the genus Salamandra based on DNA sequences of segments of 10 mitochondrial and 13 nuclear genes from 31 individual samples representing all Salamandra species and most of the commonly recognized subspecies. The concatenated analysis of the complete dataset produced a fully resolved tree with most nodes strongly supported, suggesting that a clade composed of the Alpine salamander (S. atra) and the Corsican fire salamander (S. corsica) is the sister taxon to a clade containing the remaining species, among which S. algira and S. salamandra are sister species. Separate analyses of mitochondrial and nuclear data partitions disagreed regarding basal nodes and in the position of the root but concordantly recovered the S. atra/S. corsica as well as the S. salamandra/S. algira relationship. A species-tree analysis suggested almost simultaneous temporal splits between these pairs of species, which we hypothesize was caused by vicariance events after the Messinian salinity crisis (from late Miocene to early Pliocene). A survey of toxins with combined gas chromatography/mass spectroscopy confirmed the presence of samandarine and/or samandarone steroidal alkaloids in all species of Salamandra as well as in representatives of their sister group, Lyciasalamandra. Samandarone was also detected in lower concentrations in other salamandrids including Calotriton, Euproctus, Lissotriton, and Triturus, suggesting that the presence and possible biosynthesis of this alkaloid is plesiomorphic within the Salamandridae. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Detecting a hierarchical genetic population structure: the case study of the Fire Salamander (Salamandra salamandra) in Northern Italy.

    Science.gov (United States)

    Pisa, Giulia; Orioli, Valerio; Spilotros, Giulia; Fabbri, Elena; Randi, Ettore; Bani, Luciano

    2015-02-01

    The multistep method here applied in studying the genetic structure of a low dispersal and philopatric species, such as the Fire Salamander Salamandra salamandra, was proved to be effective in identifying the hierarchical structure of populations living in broad-leaved forest ecosystems in Northern Italy. In this study, 477 salamander larvae, collected in 28 sampling populations (SPs) in the Prealpine and in the foothill areas of Northern Italy, were genotyped at 16 specie-specific microsatellites. SPs showed a significant overall genetic variation (Global F ST = 0.032, P < 0.001). The genetic population structure was assessed by using STRUCTURE 2.3.4. We found two main genetic groups, one represented by SPs inhabiting the Prealpine belt, which maintain connections with those of the Eastern foothill lowland (PEF), and a second group with the SPs of the Western foothill lowland (WF). The two groups were significantly distinct with a Global F ST of 0.010 (P < 0.001). While the first group showed a moderate structure, with only one divergent SP (Global F ST = 0.006, P < 0.001), the second group proved more structured being divided in four clusters (Global F ST = 0.017, P = 0.058). This genetic population structure should be due to the large conurbations and main roads that separate the WF group from the Prealpine belt and the Eastern foothill lowland. The adopted methods allowed the analysis of the genetic population structure of Fire Salamander from wide to local scale, identifying different degrees of genetic divergence of their populations derived from forest fragmentation induced by urban and infrastructure sprawl.

  7. Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders

    Directory of Open Access Journals (Sweden)

    Shaffer H Bradley

    2009-07-01

    Full Text Available Abstract Background Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders. Results At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1 showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects. Conclusion While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to

  8. Pattern Formation in Vertebrate Limbs

    Science.gov (United States)

    1995-05-08

    embryological systems was sporadic. A resurgence of interest occurred in the 1960 ’ s. It was at this time that Wolpert presented his concept of positional...as are changes in receptors on the plasma membrane (Hood, Huang, & Dreyer, 1977) . 11 DEVELOPMENT AND PATTERNS IN THE EMBRYONIC CHICKEN LIMB The...Development i. Stages 1 to 6 The period of gestation for the chicken is 20 to 21 days and is divided into a series of stages identified by

  9. Comparison of Callus induction and plant regeneration

    African Journals Online (AJOL)

    Sang-Hoon Lee

    2012-02-21

    Feb 21, 2012 ... regeneration frequency from transgenic callus, but also useful for molecular breeding of tall fescue through ... Plant regeneration. The plant regeneration culture medium (Lee et al., 2007) was used to regenerate plants from the mature seed-derived calluses. It was ..... bioassays with tobacco tissue cultures.

  10. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool...... and mobilizes CD45(+)CD11b(+) proangiogenic, myeloid cells, a process dependent on vascular endothelial growth factor-A (VEGF-A) and Kit ligand signaling. tPA improves the incorporation of CD11b(+) cells into ischemic tissues and increases expression of neoangiogenesis-related genes, including VEGF......-A. Remarkably, transplantation of BM-derived tPA-mobilized CD11b(+) cells and VEGFR-1(+) cells, but not carrier-mobilized cells or CD11b(-) cells, accelerates neovascularization and ischemic tissue regeneration. Inhibition of VEGF signaling suppresses tPA-induced neovascularization in a model of hind limb...

  11. Major limb amputation in Ibadan.

    Science.gov (United States)

    Ogunlade, S O; Alonge, T O; Omololu, A B O; Gana, J Y; Salawu, S A

    2002-12-01

    A prospective study of patients who had major limb amputation at the University College Hospital Ibadan over a 5-year period is presented. One hundred and one major limb amputations were performed within this period (71 Males, 30 Females, M:F = 2.3:1). Trauma accounted for 48% of the cases followed by diabetes in 26%, soft tissue infection in 13% and tumours also in 13%. The major post-op complication was wound infection. In accordance with the findings in other centers, a higher proportion of the amputations (69%) were carried out in the lower limbs. Patient's refusal to accept amputation resulted in a delay in amputation in 49 patients. This delay (before surgery) ranged from 1 day to 150 days, with a mean of 15.49 (SD 9.V). From this study, we found that a reduction in vehicular accidents and increasing emphasis on efficient foot care (and glycaemic control) in the diabetic may significantly reduce the rate of amputations in our environment.

  12. Waterborne amitrole affects the predator-prey relationship between common frog tadpoles (Rana temporaria) and larval spotted salamander (Salamandra salamandra).

    Science.gov (United States)

    Mandrillon, Anne-Lise; Saglio, Philippe

    2007-08-01

    Within their aquatic habitats, larval amphibians are often subjected to multiple natural and anthropic stressors. Among these, predation and waterborne pollution represent two types of stressing factor that frequently co-occur. In this connection, the present laboratory study was designed to investigate the effects of amitrole, a commonly used triazole herbicide, on the predator-prey relationship between common frog tadpoles (Rana temporaria) and larval spotted salamander (Salamandra salamandra). Tadpoles were exposed for 3 days to 0, 0.01, 0.1, 1, and 10 mg/L amitrole, either in the absence or in the presence of larval salamanders. Tadpole behavior (refuge use, movements) was monitored every day, and the predation efficiency was assessed at the end of the experiment by counting the number of surviving tadpoles. In the absence of the predator, amitrole-exposed tadpoles (at 0.01, 0.1, and 1 mg/L) increased their refuge use and decreased their rate of movements. In the presence of the predator, amitrole contamination did not affect tadpole behavior, except on the first day, where tadpoles exposed to 10 mg/L were found to be significantly more active than unexposed control tadpoles. Throughout the experiment, control tadpoles were the only group to show significant reductions of activity and visibility in response to the predator's presence. In contrast, tadpoles exposed to 0.01 and 0.1 mg/L amitrole increased their refuge use in response to the predator, whereas their rate of movements remained unaffected. Furthermore, exposures of tadpoles to the two highest amitrole concentrations (1 and 10 mg/L) resulted in the loss of both behavioral responses to the predator's presence. Interestingly, the lack of antipredator behavior in amitrole-exposed tadpoles did not enhance their vulnerability to predation by the larval salamander. Moreover, tadpoles exposed to the two highest herbicide concentrations showed a better survival than unexposed controls, indicating that

  13. Diet of larval Ambystoma rivulare (Caudata: Ambystomatidae), a threatened salamander from the Volcán Nevado de Toluca, Mexico

    OpenAIRE

    JULIO A LEMOS-ESPINAL; Smith, Geoffrey R.; Guillermo A. Woolrich-Piña; Raymundo Montoya-Ayala

    2015-01-01

    Several species of salamander in the genus Ambystoma occur in the mountains surrounding Mexico City and are considered at risk of extinction. However, little is known about their ecology and natural history. The Toluca Stream Siredon (Ambystoma rivulare) is classified as “Data Deficient” by the IUCN, and considered “Threatened” under Mexican law. From October 2013 to September 2014, we examined the diet of larval A. rivulare from a stream on the Volcán Nevado de Toluca in Mexico to provide in...

  14. An active magnetic regenerator device

    DEFF Research Database (Denmark)

    2015-01-01

    A rotating active magnetic regenerator (AMR) device comprising two or more regenerator beds, a magnet arrangement and a valve arrangement. The valve arrangement comprises a plurality of valve elements arranged substantially immovably with respect to the regenerator beds along a rotational direction....... A cam surface is arranged substantially immovably with respect to the magnet arrangement along the rotational direction, and comprises a plurality of cam elements arranged to cooperate with the valve elements in order to control opening degrees of the valve elements, in accordance with a relative...... position of the cam elements and the valve elements. Thereby the opening degree of each valve element is controlled in accordance with a relative angular position of the regenerator beds and the magnet arrangement....

  15. DECOLORIZATION AND CHEMICAL REGENERATION OF ...

    African Journals Online (AJOL)

    Preferred Customer

    2006-09-26

    Received September 26, 2006; revised September 22, 2008). ABSTRACT. Citric acid fermentation (CAF) liquor decolorization by granular activated carbon (GAC) was studied and an improved chemical regeneration method of the exhausted ...

  16. Regenerable Contaminant Removal System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regenerable Contaminant Removal System (RCRS) is an innovative method to remove sulfur and halide compounds from contaminated gas streams to part-per-billion...

  17. DECOLORIZATION AND CHEMICAL REGENERATION OF ...

    African Journals Online (AJOL)

    GAC) was studied and an improved chemical regeneration method of the exhausted GAC by the color of CAF liquor was investigated. The effects of the GAC dosage, time and temperature on the decoloring efficiency (DE %) were studied.

  18. Engineering membranes for bone regeneration.

    Science.gov (United States)

    Caridade, Sofia Glória Ferreira; Mano, João Filipe Colardelle da Luz

    2017-09-13

    This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess in order to improve the regeneration of bone. Afterwards, several techniques to engineer bone membranes by using "bulk"-like methods are discussed where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach are discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.

  19. BubR1 insufficiency impairs angiogenesis in aging and in experimental critical limb ischemic mice.

    Science.gov (United States)

    Okadome, Jun; Matsumoto, Takuya; Yoshiya, Keiji; Matsuda, Daisuke; Tamada, Kouji; Onimaru, Mitsuho; Nakano, Kaku; Egashira, Kensuke; Yonemitsu, Yoshikazu; Maehara, Yoshihiko

    2017-09-30

    Budding uninhibited by benzimidazole-related 1 (BubR1), a cell cycle-related protein, is an essential component of the spindle checkpoint that regulates cell division. Mice in which BubR1 expression is reduced to 10% of the normal level display the phenotypic features of progeria. However, the role of BubR1 in vascular diseases and angiogenesis remains unknown. To investigate the influence of BubR1 on angiogenesis, we generated a low-null-BubR1-expressing (BubR1L/-) mouse strain with reduced BubR1 expression as low as 15% of the normal level without any abnormalities in appearance. To elucidate the role of BubR1 in angiogenesis, we used a hind limb ischemia model induced in BubR1L/- mice and age-matched wild-type (WT) littermates. To evaluate the pathologic influence of BubR1 on angiogenesis, we measured the blood flow before and after hind limb ischemia surgery, and the expression of typical angiogenic factors in vivo and in vitro. In WT mice, blood flow in the ischemic left limb gradually recovered to approximately 80%, 14 days after surgery. Conversely, in the BubR1L/- group, blood flow in the left ischemic limb recovered to at most 30% (14 days after surgery, P calf muscles from BubR1L/- mice, regenerated muscle bundles, granulation tissue, and inflammatory cell invasion were more evident than in calf muscles from WT mice at 14 days after surgery. All WT mice at 14 days after surgery had complete limb salvage, but loss of limbs was observed in approximately 70% of BubR1L/- mice (P muscles was lower in BubR1L/- mice compared with WT mice (P muscle cells treated with BubR1 knockdown siRNA were lower compared with scramble siRNA under hypoxic conditions (P muscles after hind limb ischemia surgery were also significantly lower in BubR1L/- mice compared with WT mice (P < .05). BubR1 insufficiency impairs angiogenesis and results in limb loss in ischemic hind limbs. BubR1 may be a crucial angiogenic factor and might be beneficial for the treatment of limb

  20. In situ measurement of Larval Salamander growth using individuals marked with acrylic polymers

    Science.gov (United States)

    Brent R. Johnson; J. Bruce Wallace

    2002-01-01

    Mark-recapture studies are often used to provide valuable life history information for animal populations. However, long-term marking of larval amphibians has been problematic because of their small size, delicate skin, and ability to regenerate tissues (Cecil and Just 1978; Donnelly et al. 1994; Seale and Boraas 1974). Procedures that have been used to mark larvae...

  1. Approaches towards endogenous pancreatic regeneration.

    Science.gov (United States)

    Banerjee, Meenal; Kanitkar, Meghana; Bhonde, Ramesh R

    2005-01-01

    The phenomenon of pancreatic regeneration in mammals has been well documented. It has been shown that pancreatic tissue is able to regenerate in several species of mammal after surgical insult. This tissue is also known to have the potential to maintain or increase its beta-cell mass in response to metabolic demands during pregnancy and obesity. Since deficiency in beta-cell mass is the hallmark of most forms of diabetes, it is worthwhile understanding pancreatic regeneration in the context of this disease. With this view in mind, this article aims to discuss the potential use in clinical strategies of knowledge that we obtained from studies carried out in animal models of diabetes. Approaches to achieve this goal involve the use of biomolecules, adult stem cells and gene therapy. Various molecules, such as glucagon-like peptide-1, beta-cellulin, nicotinamide, gastrin, epidermal growth factor-1 and thyroid hormone, play major roles in the initiation of endogenous islet regeneration in diabetes. The most accepted hypothesis is that these molecules stimulate islet precursor cells to undergo neogenesis or to induce replication of existing beta-cells, emphasizing the importance of pancreas-resident stem/progenitor cells in islet regeneration. Moreover, the potential of adult stem cell population from bone marrow, umbilical cord blood, liver, spleen, or amniotic membrane, is also discussed with regard to their potential to induce pancreatic regeneration.

  2. Functional Tooth Regeneration.

    Science.gov (United States)

    Oshima, Masamitsu; Ogawa, Miho; Tsuji, Takashi

    2017-01-01

    Three-dimensional organogenesis in vivo is principally regulated by the spatiotemporal developmental process that relies on the cellular behavior such as cell growth, migration, differentiation, and cell-to-cell interaction. Organ development and morphogenesis have been elucidated to be regulated by the proper transient expression of various signaling molecules including cytokines, extracellular matrix, and adhesion molecules based on the epithelial and mesenchymal interactions. Current bioengineering technology for regenerating three-dimensional organ has progressed to the replication of organogenesis, thereby enabling the development of fully functional bioengineered organs using bioengineered organ germs that are generated from immature stem cells via tissue engineering technology in vitro.To achieve precise replication of organogenesis, we have developed a novel three-dimensional cell manipulation method designated the organ germ method, and enabled the generation of a structurally correct and fully functional bioengineered tooth in vivo. This method is also expected to be utilized for analyzing gene and protein functions during organogenesis. Here, we describe protocols for the tooth germ reconstitution by using the organ germ method and for the functional analysis of tooth development in vitro and in vivo.

  3. Regenerable biocide delivery unit

    Science.gov (United States)

    Sauer, Richard L. (Inventor); Colombo, Gerald V. (Inventor); Jolly, Clifford D. (Inventor)

    1993-01-01

    A method and apparatus are disclosed for maintaining continuous, long-term microbial control in the water supply for potable, hygiene, and experimental water for space activities, as well as treatment of water supplies on Earth. The water purification is accomplished by introduction of molecular iodine into the water supply to impart a desired iodine residual. The water is passed through an iodinated anion exchange resin bed. The iodine is bound as I-(sub n) at the anion exchange sites and releases I(sub 2) into the water stream flowing through the bed. The concentration of I(sub 2) in the flowing water gradually decreases and, in the prior art, the ion-exchange bed has had to be replaced. In a preferred embodiment, a bed of iodine crystals is provided with connections for flowing water therethrough to produce a concentrated (substantially saturated) aqueous iodine solution which is passed through the iodinated resin bed to recharge the bed with bound iodine. The bed of iodine crystals is connected in parallel with the iodinated resin bed and is activated periodically (e.g., by timer, by measured flow of water, or by iodine residual level) to recharge the bed. Novelty resides in the capability of inexpensively and repeatedly regenerating the ion-exchange bed in situ.

  4. Ecological connectivity assessment in a strongly structured fire salamander (Salamandra salamandra) population.

    Science.gov (United States)

    Bani, Luciano; Pisa, Giulia; Luppi, Massimiliano; Spilotros, Giulia; Fabbri, Elena; Randi, Ettore; Orioli, Valerio

    2015-08-01

    Small populations are more prone to extinction if the dispersal among them is not adequately maintained by ecological connections. The degree of isolation between populations could be evaluated measuring their genetic distance, which depends on the respective geographic (isolation by distance, IBD) and/or ecological (isolation by resistance, IBR) distances. The aim of this study was to assess the ecological connectivity of fire salamander Salamandra salamandra populations by means of a landscape genetic approach. The species lives in broad-leaved forest ecosystems and is particularly affected by fragmentation due to its habitat selectivity and low dispersal capability. We analyzed 477 biological samples collected in 47 sampling locations (SLs) in the mainly continuous populations of the Prealpine and Eastern foothill lowland (PEF) and 10 SLs in the fragmented populations of the Western foothill (WF) lowland of Lombardy (northern Italy). Pairwise genetic distances (Chord distance, DC) were estimated from allele frequencies of 16 microsatellites loci. Ecological distances were calculated using one of the most promising methodology in landscape genetics studies, the circuit theory, applied to habitat suitability maps. We realized two habitat suitability models: one without barriers (EcoD) and a second one accounting for the possible barrier effect of main roads (EcoDb). Mantel tests between distance matrices highlighted how the Log-DC in PEF populations was related to log-transformed geographic distance (confirming a prevalence of IBD), while it was explained by the Log-EcoD, and particularly by the Log-EcoDb, in WF populations, even when accounting for the confounding effect of geographic distance (highlighting a prevalence of IBR). Moreover, we also demonstrated how considering the overall population, the effect of Euclidean or ecological distances on genetic distances acting at the level of a single group (PEF or WF populations) could not be detected, when

  5. Effects of Photoperiod and Temperature on Growth and Development in Clouded Salamander (Hynobius nebulosus) Larvae.

    Science.gov (United States)

    Kukita, Sayuri; Gouda, Mika; Ikeda, Sakiko; Ishibashi, Sakiko; Furuya, Tatsunori; Nakamura, Keiji

    2015-06-01

    Day length is one of the most important factors that organisms use to predict seasonal changes in their environment. Several amphibians regulate their growth and development in response to photoperiod. However, many studies have not focused on the ecological effects of the photoperiodic response on growth and development because they use tropical animals, animals from a commercial source or from unknown localities, or extreme light regimens for experiments. In the present study, we examined the effects of photoperiod on growth and development in the clouded salamander (Hynobius nebulosus) by raising larvae under different photoperiods and at different temperatures in the laboratory. The average larval period under a long-day photoperiod of L16:D8 was longer than that under L12:D12 at 15°C or 20°C, although the difference between the photoperiods was only significant for 15°C. Juveniles weighed more at metamorphosis under L16:D8 than those under L12:D12, irrespective of temperature, suggesting that a longer developmental period results in a heavier body weight. The head width of juveniles did not differ for different photoperiods at either temperature. However, the growth rate of the head width under L12:D12 was faster than that under L16:D8 at 15°C. Long day length appears to produce larger H. nebulosus juveniles in a relatively stable aquatic environment with a low population density. Thus, development may be accelerated when the day length becomes shorter as winter approaches, and larvae may have increased the growth rate of their head widths to compensate for the shorter growing period under shorter day lengths.

  6. Comparative anatomy and phylogeny of the cloacae of salamanders (Amphibia: Caudata). IV. Salamandridae.

    Science.gov (United States)

    Sever, D M

    1992-06-01

    Cloacae were examined from male and female salamanders representing 12 genera and 22 species in the Salamandridae. All female salamandrids possess numerous sperm storage glands, spermathecae, in the roof of the cloaca, but intergeneric variation exists in the occurrence of additional cloacal glands. Pleurodeles and Tylototriton possess both vent and anterior ventral glands, and secondary loss has occurred of vent glands in all other genera and anterior ventral glands in Chioglossa, Cynops, Paramesotriton, and Triturus The most highly derived cloaca occurs in Euproctus asper, in which the cloacal tube extends through a conical projection, and ventral glands secrete onto the dorsolateral surface of the projection rather than into the cloaca. Marked intergeneric variation occurs in males in conformation of the cloacal cavities and in extent of the dorsal gland. In Cynops, Euproctus, Pachytriton, Paramesotriton, Taricha, and Triturus, the pseudopenis (a broad, posteriorly projecting evagination of the dorsal roof) fills much of the cavity of the anterior cloacal chamber. In most salamandrids, distal ends of the dorsal glands occur lateral to pelvic glands in the anterior end of the cloaca, and dorsal gland tubules descend to secretory sites at the posterior end of the vent. Salamandra and Mertensiella possess a unique, bifurcated dorsal gland in which distal ends of tubules lie dorsal to the other cloacal glands, and proximal ends curve ventrally in the anterior end of the cloaca to secretory sites along the cloacal orifice. Cladistic analyses indicate that the variation in presence of anterior ventral glands is due to homoplasy. The occurrence of female vent glands, bifurcated dorsal glands, and the pseudopenis supports a phylogeny based upon non-cloacal characters.

  7. Isolation of Giant Lampbrush Chromosomes from Living Oocytes of Frogs and Salamanders.

    Science.gov (United States)

    Gall, Joseph G; Nizami, Zehra F

    2016-12-05

    We describe methods for studying the giant transcriptionally active lampbrush chromosomes (LBCs) found in the oocyte, or unlaid egg, of frogs and salamanders. Individual LBCs can be up to 1 mm in length and they reside in a gigantic nucleus, itself up to 0.5 mm in diameter. The large size of the chromosomes permits unparalleled observations of active genes by light optical microscopy, but at the same time special techniques are required for isolating the nucleus, removing the nuclear envelope, and spreading the chromosomes on a microscope slide. The oocyte nucleus, also called the germinal vesicle (GV), is isolated in a medium that allows partial gelling of the nuclear actin and preserves the delicate structure of the LBCs. This step is carried out manually under a dissecting microscope using jeweler's forceps. Next, the nuclear envelope is removed, again manually with jeweler's forceps. The nuclear contents are quickly transferred to a medium that disperses the actin gel and allows the undamaged LBCs to settle onto a microscope slide. At this point the LBCs and other nuclear organelles can be viewed by phase contrast or differential interference contrast microscopy, although finer details are obscured by Brownian motion. For high resolution microscopical observation or molecular analysis, the whole preparation is centrifuged to attach the delicate LBCs firmly to the slide. A brief fixation in paraformaldehyde is then followed by immunofluorescent staining or in situ hybridization. LBCs are in a transcriptionally active state and their enormous size permits molecular analysis at the individual gene level using confocal or super-resolution microscopy.

  8. Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae

    Directory of Open Access Journals (Sweden)

    Nistri Annamaria

    2010-07-01

    Full Text Available Abstract Background A major goal in evolutionary biology is to understand the evolution of phenotypic diversity. Both natural and sexual selection play a large role in generating phenotypic adaptations, with biomechanical requirements and developmental mechanisms mediating patterns of phenotypic evolution. For many traits, the relative importance of selective and developmental components remains understudied. Results We investigated ontogenetic trajectories of foot morphology in the eight species of European plethodontid cave salamander to test the hypothesis that adult foot morphology was adapted for climbing. Using geometric morphometrics and other approaches, we found that developmental patterns in five species displayed little morphological change during growth (isometry, where the extensive interdigital webbing in adults was best explained as the retention of the juvenile morphological state. By contrast, three species exhibited significant allometry, with an increase in interdigital webbing during growth. Phylogenetic analyses revealed that multiple evolutionary transitions between isometry and allometry of foot webbing have occurred in this lineage. Allometric parameters of foot growth were most similar to those of a tropical species previously shown to be adapted for climbing. Finally, interspecific variation in adult foot morphology was significantly reduced as compared to variation among juveniles, indicating that ontogenetic convergence had resulted in a common adult foot morphology across species. Conclusions The results presented here provide evidence of a complex history of phenotypic evolution in this clade. The common adult phenotype exhibited among species reveals that selection plays an important part in generating patterns of foot diversity in the group. However, developmental trajectories arriving at this common morphology are distinct; with some species displaying developmental stasis (isometry, while others show an increase

  9. Pseudo-immunolabelling with the avidin-biotin-peroxidase complex (ABC) due to the presence of endogenous biotin in retinal Müller cells of goldfish and salamander

    NARCIS (Netherlands)

    Bhattacharjee, J.; Nunes Cardozo, B.; Kamphuis, W.; Kamermans, M.; Vrensen, G. F.

    1997-01-01

    Immunodetection techniques are dependent on enzyme-protein conjugates for the visualisation of antigen-antibody complexes. One of the most widely used is the avidin-biotin-peroxidase complex (ABC) method. The present study demonstrates that direct treatment of goldfish and salamander retinal

  10. Site-level habitat models for the endemic, threatened Cheat Mountain salamander (Plethodon nettingi): the importance of geophysical and biotic attributes for predicting occurrence

    Science.gov (United States)

    Lester O. Dillard; Kevin R. Russell; W. Mark Ford

    2008-01-01

    The federally threatened Cheat Mountain salamander (Plethodon nettingi; hereafter CMS) is known to occur in approximately 70 small, scattered populations in the Allegheny Mountains of eastern West Virginia, USA. Current conservation and management efforts on federal, state, and private lands involving CMS largely rely on small scale, largely...

  11. 3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese giant salamander Andrias davidianus (Amphibia:Urodela.

    Directory of Open Access Journals (Sweden)

    Josep Fortuny

    Full Text Available Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their "conservative" morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints.

  12. The influence of a water current on the larval deposition pattern of females of a diverging fire salamander population (Salamandra salamandra)

    NARCIS (Netherlands)

    Krause, E.T.; Caspers, B.A.

    2015-01-01

    Fire salamanders are amphibians that exhibit a highly specific reproductive mode termed ovo-viviparity. The eggs develop inside their mothers, and the females give birth to fully developed larvae. The larvae in our study area cluster in two distinct genetic groups that can be linked directly to the

  13. Habitat utilization, density, and growth of steelhead trout, coho salmon, and Pacific giant salamander in relation to habitat types in a small coastal redwood stream

    Science.gov (United States)

    Michael Roy Lau

    1994-01-01

    Abstract - Small Pacific northwestern coastal streams are nurseries for populations of young of the year coho salmon, steelhead trout, and the Pacific giant salamander larvae. Previous field studies suggest that the habitats of the juveniles of these species were similar to one another. Few habitat utilization studies focus on the juvenile stages of these species...

  14. 3D Bite Modeling and Feeding Mechanics of the Largest Living Amphibian, the Chinese Giant Salamander Andrias davidianus (Amphibia:Urodela)

    Science.gov (United States)

    Fortuny, Josep; Marcé-Nogué, Jordi; Heiss, Egon; Sanchez, Montserrat; Gil, Lluis; Galobart, Àngel

    2015-01-01

    Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their “conservative” morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints. PMID:25853557

  15. Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest.

    Science.gov (United States)

    Steinfartz, Sebastian; Weitere, Markus; Tautz, Diethard

    2007-11-01

    Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals.

  16. Diet of larval Ambystoma rivulare (Caudata: Ambystomatidae, a threatened salamander from the Volcán Nevado de Toluca, Mexico

    Directory of Open Access Journals (Sweden)

    Julio A. Lemos-Espinal

    2015-06-01

    Full Text Available Several species of salamander in the genus Ambystoma occur in the mountains surrounding Mexico City and are considered at risk of extinction. However, little is known about their ecology and natural history. The Toluca Stream Siredon (Ambystoma rivulare is classified as “Data Deficient” by the IUCN, and considered “Threatened” under Mexican law. From October 2013 to September 2014, we examined the diet of larval A. rivulare from a stream on the Volcán Nevado de Toluca in Mexico to provide insight into the suitability of the habitat to support this population of salamanders. Ostracods accounted for approximately 90% of all prey items consumed by larval A. rivulare. The number of ostracods found in stomachs increased with individual body size, but the proportion of ostracods in stomachs did not vary with body size. Nematodes were observed in approximately one third of the stomachs we examined. The diversity of prey in the diet of A. rivulare in the stream we studied is low and dominated by a single prey taxon, ostracods. Our results suggest that if environmental conditions in the stream change such that ostracods are negatively affected then the long-term persistence of this population of A. rivulare might be in jeopardy.

  17. Danhong Promotes Angiogenesis in Diabetic Mice after Critical Limb Ischemia by Activation of CSE-H2S-VEGF Axis

    Directory of Open Access Journals (Sweden)

    Feng Wu

    2015-01-01

    Full Text Available The aim of this paper is to investigate effect and mechanism of Danhong injection (DH on angiogenesis in the diabetic hind limb ischemia mouse model. Thirty diabetic hind limb ischemic model mice and ten normal mice, established by intraperitoneal (i.p. injection of streptozotocin (STZ or PBS and ligation/excision of femoral artery, and then twenty diabetic hind limb ischemic model mice of all were evenly randomized to saline (control, n=10 and DH i.p. injection (2 mL/kg weight for 7 days, n=10 groups. Limb perfusion recovery and femoral blood hydrogen sulfide (H2S and vessel regeneration and lower limb vascular endothelial growth factor (VEGF/cystathionine γ-lyase (CSE expression were evaluated during intervention and after euthanasia, respectively. DH i.p. increased ischemic limb perfusion and promoted collateral circulation generation without decreasing blood glucose level. Increased local CSE-H2S-VEGF expression contributed to beneficial effects of DH injection. In conclusion, activation of local CSE-H2S-VEGF axis might participate in proangiogenesis effects of DH injection in diabetic hind limb ischemia model mice, suggesting a potential therapy for diabetic patients with critical limb ischemia.

  18. Lower limb amputation for diabetic foot.

    Science.gov (United States)

    Ohsawa, S; Inamori, Y; Fukuda, K; Hirotuji, M

    2001-01-01

    We amputated 35 limbs of 27 patients with diabetic foot from March 1988 to March 1998. The mean age of the patients at the time of operation was 67 years, and the mean follow-up period was 27 months. Thirteen patients died in the period from 1 day to 39 months after the operation. All patients suffering from diabetic foot were referred to our department for surgical procedures after failure of conservative treatment conducted elsewhere. Their feet were classified into grade 2-3 in 18 limbs, grade 4-5 in 11 limbs, and gangrene of the lower leg and entire foot in 2 limbs, as classified by the Wagner system. Two patients had cellulitis of the foot and two other limbs had infectious gonarthritis. All patients had type 2 diabetes with poor blood sugar control, and 90% were treated by insulin. All patients suffered from diabetic neuropathy. Half of the patients were put on hemodialysis because of diabetic nephropathy. More than 60% of the patients suffered from arteriosclerosis obliterans. The amputation level of the limb was determined by skin thermography, but the patient's will was critical. The initial amputation levels were: débridement and synovectomy in 4 limbs, toe and digital ray in 15 limbs, transmetatarsal in 3 limbs, transtibial in 9 limbs, transfemoral amputations in 4 limbs. Upper level reamputation was conducted on 15 limbs. Logistic regression analysis revealed that lower temperature of the amputation site, being female, and being elderly were significant risk factors in reamputation. Skin thermography was one of the effective determinants of amputation level, in order to avoid reamputation.

  19. Customizable Rehabilitation Lower Limb Exoskeleton System

    OpenAIRE

    Riaan Stopforth

    2012-01-01

    Disabled people require assistance with the motion of their lower limbs to improve rehabilitation. Exoskeletons used for lower limb rehabilitation are highly priced and are not affordable to the lowerincome sector of the population. This paper describes an exoskeleton lower limb system that was designed keeping in mind that the cost must be as low as possible. The forward kinematic system that is used must be a simplified model to decrease computational time, yet allow the exoskeleton to be a...

  20. LIMB SALVAGE IN DIABETIC FOOT INFECTION

    OpenAIRE

    J. Ramanaiah; M. Pavani; N. Dinesh Kumar Reddy; Sai Subrahmanyam

    2017-01-01

    BACKGROUND Diabetic foot infections are a frequent clinical problem. About 50% of patients with diabetic foot infections who have foot amputations die within five years. Properly managed most can be cured, but many patients needlessly undergo amputations because of improper diagnostic and therapeutic approaches. Limb salvage procedures may prevent eventual limb loss, the need of a major limb amputation, decrease total cost and may restore full ambulation earlier. MATERIALS ...

  1. Angular Limb Deformities: Growth Retardation.

    Science.gov (United States)

    McCarrel, Taralyn M

    2017-08-01

    Angular limb deformities are common in foals; however, the importance of the deformity and if treatment is required depend on the degree of deformity relative to normal conformation for stage of growth, the breed and discipline expectations, age, and response to conservative therapies. This article addresses the importance of the foal conformation examination to determine which foals need surgical intervention to correct an angular deformity and when. Techniques for surgical growth retardation include the transphyseal staple, screw and wire transphyseal bridge, and transphyseal screw. Appropriate timing for intervention for each location and complications associated with each procedure are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Endograft Limb Occlusion in EVAR

    DEFF Research Database (Denmark)

    Taudorf, M; Jensen, L P; Vogt, K C

    2014-01-01

    occlusions were recorded and compared with a defined control group. Three different indices were used to describe the tortuosity of the iliac vessels based on preoperative CTA: pelvic artery index of tortuosity (PAI), common iliac artery index of tortuosity (CAI), and a visual description of vessel......% at 3 years. Logistic regression showed that iliac artery tortuosity (DIS) (p = .001) and body mass index (p = .007) had a significant impact on graft patency. CONCLUSION: A tortuous vessel on the preoperative CTA is associated with an increased risk of limb occlusion after EVAR. Adjunctive stenting...

  3. COMBINATION OF DISTRACTION OSTEOSYNTHESIS AND BONE PLASTIC AT TREATMENT OF CHILDREN WITH CONGENITAL LOW LIMB-LENGTH DISCREPANCY

    Directory of Open Access Journals (Sweden)

    A. P. Pozdeev

    2010-01-01

    Full Text Available Research objective was the estimation of combination distraction osteosynthesis with bone plastic in treatment of children with congenital lower limb discrepancy. Results of surgical treatment of 26 children (17 girl and 9 boys with congenital lower limb-length discrepancy are analyzed. The method consists in creation of superfluous osteogenesis in the field of prospective lengthening. The control group included 10 patients with whom lengthening was carried out by typical way. Results: at the analysis of roentgenograms faster formation of a new bone has been revealed in basic group (on the average for 7,8 days faster on each centimetre of lengthening. Combination of distraction osteosynthesis and combined bone plastics shortened the treatment period by accelerating new bone regeneration during distraction osteogenesis of the children with congenital low limb-length discrepancy.

  4. Origin of directionally tuned responses in lower limb muscles to unpredictable upper limb disturbances

    OpenAIRE

    Forghani, Ali; Milner, Theodore E.

    2017-01-01

    Unpredictable forces which perturb balance are frequently applied to the body through interaction between the upper limb and the environment. Lower limb muscles respond rapidly to these postural disturbances in a highly specific manner. We have shown that the muscle activation patterns of lower limb muscles are organized in a direction specific manner which changes with lower limb stability. Ankle muscles change their activity within 80 ms of the onset of a force perturbation applied to the h...

  5. Bone morphogenetic proteins: periodontal regeneration.

    Science.gov (United States)

    Rao, Subramaniam M; Ugale, Gauri M; Warad, Shivaraj B

    2013-03-01

    Periodontitis is an infectious inflammatory disease that results in attachment loss and bone loss. Regeneration of the periodontal tissues entails de novo formation of cementum, periodontal ligament, and alveolar bone. Several different approaches are currently being explored to achieve complete, reliable, and reproducible regeneration of periodontal tissues. The therapeutic management of new bone formation is one of the key issues in successful periodontal regeneration. Bone morphogenetic proteins form a unique group of proteins within the transforming growth factor superfamily of genes and have a vital role in the regulation in the bone induction and maintenance. The activity of bone morphogenetic proteins was first identified in the 1960s, but the proteins responsible for bone induction were unknown until the purification and cloning of human bone morphogenetic proteins in the 1980s, because of their osteoinductive potential. Bone morphogenetic proteins have gained a lot of interest as therapeutic agents for treating periodontal defects. A systematic search for data related to the use of bone morphogenetic proteins for the regeneration of periodontal defects was performed to recognize studies on animals and human (PUBMED, MEDLINE, COCHRANE, and Google search). All the studies included showed noticeable regeneration of periodontal tissues with the use of BMP.

  6. Limb apraxia in corticobasal syndrome.

    Science.gov (United States)

    Stamenova, Vessela; Roy, Eric A; Black, Sandra E

    2011-04-01

    Corticobasal syndrome (CBS) is a progressive neurodegenerative disorder with asymmetric presentation and course characterized by degeneration of basal ganglia and cortical structures. Limb apraxia is a commonly observed deficit in CBS. Few studies have examined comprehensively the nature of deficits in limb apraxia. The goal of our study was to investigate the severity of deficits in various conceptual and gesture production task modalities. CBS patients were divided in two groups based on the side of brain that was initially affected by the disease. Ten patients with right hemisphere presentation (RHP) and seven with left hemisphere presentation (LHP) were included. The results showed that while selective conceptual tasks deficits were present in both groups, the overall picture suggests preserved conceptual representations of tools and actions in CBS patients with either LHP or RHP. Both groups were impaired relative to controls on gesture production tasks. Performance on transitive gestures was more severely affected in both groups than intransitive gestures. Imitation was more severely affected than pantomime, suggesting deficits in visuomotor transformations. The addition of verbal cuing during concurrent imitation affected only the LHP patients, rendering them more impaired relative to controls in their imitation with verbal cuing as opposed to their imitation only performance. Imitation of non-representational gestures was least accurate and intransitive gestures were most accurate. Patients were more severely impaired relative to controls when holding the object and when they were shown pictures of tools to pantomime. Copyright © 2010 Elsevier Srl. All rights reserved.

  7. Adjustments to amputation and an artificial limb in lower limb amputees

    NARCIS (Netherlands)

    Sinha, Richa; van den Heuvel, Wim J. A.; Arokiasamy, Perianayagam

    Background: Positive adjustments to amputation and an artificial limb play important roles in the rehabilitation process. Objectives: To study the different facets of adjustments to amputation and an artificial limb in lower limb amputees and to assess the possible role of different background and

  8. Delivery of Placenta-Derived Mesenchymal Stem Cells Ameliorates Ischemia Induced Limb Injury by Immunomodulation

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-11-01

    Full Text Available Background: Peripheral artery disease (PAD is a major health burden in the world. Stem cell-based therapy has emerged as an attractive treatment option in regenerative medicine. In this study, we sought to test the hypothesis that stem cell-based therapy can ameliorate ischemia induced limb injury. Methods: We isolated mesenchymal stem cells derived from human placentas (PMSCs and intramuscularly transplanted them into injured hind limbs. Treatment with PMSCs reduced acute muscle fibers apoptosis induced by ischemia. Results: PMSC treatment significantly enhanced regeneration of the injured hind limb by reducing fibrosis and enhancing running capacity when the animals were subjected to treadmill training. Mechanistically, injected PMSCs can modulate acute inflammatory responses by reducing neutrophil and macrophage infiltration following limb ischemia. ELISA assays further confirmed that PMSC treatment can also reduce pro-inflammatory cytokines, TNF-α and IL-6, and enhance anti-inflammatory cytokine, IL-10 at the injury sites. Conclusion: Taken together, our results demonstrated that PMSCs can be a potential effective therapy for treatment of PAD via immunomodulation.

  9. dlx and sp6-9 Control optic cup regeneration in a prototypic eye.

    Directory of Open Access Journals (Sweden)

    Sylvain W Lapan

    2011-08-01

    Full Text Available Optic cups are a structural feature of diverse eyes, from simple pit eyes to camera eyes of vertebrates and cephalopods. We used the planarian prototypic eye as a model to study the genetic control of optic cup formation and regeneration. We identified two genes encoding transcription factors, sp6-9 and dlx, that were expressed in the eye specifically in the optic cup and not the photoreceptor neurons. RNAi of these genes prevented formation of visible optic cups during regeneration. Planarian regeneration requires an adult proliferative cell population with stem cell-like properties called the neoblasts. We found that optic cup formation occurred only after migration of progressively differentiating progenitor cells from the neoblast population. The eye regeneration defect caused by dlx and sp6-9 RNAi can be explained by a failure to generate these early optic cup progenitors. Dlx and Sp6-9 genes function as a module during the development of diverse animal appendages, including vertebrate and insect limbs. Our work reveals a novel function for this gene pair in the development of a fundamental eye component, and it utilizes these genes to demonstrate a mechanism for total organ regeneration in which extensive cell movement separates new cell specification from organ morphogenesis.

  10. Histological image data of limb skeletal tissue from larval and adult Ambystoma mexicanum

    Directory of Open Access Journals (Sweden)

    Catherine D. McCusker

    2016-09-01

    Full Text Available The data presented in this article are related to the article entitled “Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs” [1]. Here we present image data of the post-embryonic development of the forelimb skeletal tissue of Ambystoma Mexicanum. Histological staining was performed on sections from the intact limbs of young (6.5 cm and old (25 cm animals, and on dissected skeletal tissues (cartilage, bone, and periosteum from these animals.

  11. Bone regeneration during distraction osteogenesis.

    Science.gov (United States)

    Amir, Lisa R; Everts, Vincent; Bronckers, Antonius L J J

    2009-07-01

    Bone has the capacity to regenerate in response to injury. During distraction osteogenesis, the renewal of bone is enhanced by gradual stretching of the soft connective tissues in the gap area between two separated bone segments. This procedure has received much clinical attention as a way to correct congenital growth retardation of bone tissue or to generate bone to fill skeletal defects. The process of bone regeneration involves a complex system of biological changes whereby mechanical stress is converted into a cascade of signals that activate cellular behavior resulting in (enhanced) formation of bone. Over the last decade, significant progress has been made in understanding the bone regeneration process during distraction osteogenesis. The mechanical and biological factors that are important for the success of the distraction treatment have been partially characterized and are discussed in this review.

  12. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice.

    Science.gov (United States)

    Park, In-Su; Chung, Phil-Sang; Ahn, Jin Chul

    2014-11-01

    The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on transplanted human adipose-derived mesenchymal stem cells (hASCs) spheroid in a hind limb ischemia animal model. LLLT, hASCs spheroid and hASCs spheroid transplantation with LLLT (spheroid + LLLT) were applied to the ischemic hind limbs in athymic mice. The survival, differentiation and secretion of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), and hepatocyte growth factor (HGF) of the spheroid ASCs were evaluated by immunohistochemistry and western blots. Spheroid + LLLT group had enhanced the tissue regeneration, including angiogenesis, compared with the ASC group. The spheroid ASCs contributed to tissue regeneration via differentiation and secretion of growth factors. In the spheroid + LLLT group, the survival of spheroid hASCs increased with a concomitant decrease in apoptosis of spheroid hASCs in the ischemic hind limb. The secretion of growth factors was stimulated in the spheroid + LLLT group compared with the ASCs and spheroid group. These data suggested that LLLT is an effective biostimulator of spheroid hASCs in tissue regeneration that enhanced the survival of ASCs and stimulated the secretion of growth factors in the ischemic hind limb. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The heart in limb girdle muscular dystrophy

    NARCIS (Netherlands)

    van der Kooi, A. J.; de Voogt, W. G.; Barth, P. G.; Busch, H. F.; Jennekens, F. G.; Jongen, P. J.; de Visser, M.

    1998-01-01

    OBJECTIVE: To assess the frequency, nature, and severity of cardiac abnormalities in limb girdle muscular dystrophy, and its relation to age and weakness in various genotypes. DESIGN: In 26 autosomal dominant, 38 autosomal recessive, and 33 sporadic strictly defined patients with limb girdle

  14. Lower Limb Disabilities Following Motorcyle Crashes | Kortor ...

    African Journals Online (AJOL)

    ... caused by amputation, fracture, post traumatic arthritis and joint stiffness. The objective of this study was to assess the nature and severity of lower limb disability resulting from motorcycle crashes. Methodology: All victims of motorcycle accident with lower limb injuries who were treated at NKST Rehabilitation Hospital from ...

  15. Claimed walking distance of lower limb amputees

    NARCIS (Netherlands)

    Geertzen, JHB; Bosmans, JC; Van der Schans, CP; Dijkstra, PU

    2005-01-01

    Purpose: Walking ability in general and specifically for lower limb amputees is of major importance for social mobility and ADL independence. Walking determines prosthesis prescription. The aim of this study was to mathematically analyse factors influencing claimed walking distance of lower limb

  16. Update on embryology of the upper limb.

    Science.gov (United States)

    Al-Qattan, Mohammad M; Kozin, Scott H

    2013-09-01

    Current concepts in the steps of upper limb development and the way the limb is patterned along its 3 spatial axes are reviewed. Finally, the embryogenesis of various congenital hand anomalies is delineated with an emphasis on the pathogenetic basis for each anomaly. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  17. Sports participation of Dutch lower limb amputees

    NARCIS (Netherlands)

    Bragaru, Mihail; Meulenbelt, Hendrik; Dijkstra, Pieter U.; Geertzen, Jan H.B.; Dekker, Rienk

    2013-01-01

    Objective: To analyze sports participation of Dutch lower limb amputees and factors influencing sports participation. Study design: A cross-sectional survey was performed. Dutch lower limb amputees (N = 2039) were invited to participate in a postal survey addressing personal and amputation

  18. Limb-segment selection in drawing behaviour

    NARCIS (Netherlands)

    Meulenbroek, R G; Rosenbaum, D A; Thomassen, A.J.W.M.; Schomaker, L R

    How do we select combinations of limb segments to carry out physical tasks? Three possible determinants of limb-segment selection are hypothesized here: (1) optimal amplitudes and frequencies of motion for the effectors; (2) preferred movement axes for the effectors; and (3) a tendency to continue

  19. LIMB-SEGMENT SELECTION IN DRAWING BEHAVIOR

    NARCIS (Netherlands)

    MEULENBROEK, RGJ; ROSENBAUM, DA; THOMASSEN, AJWM; SCHOMAKER, LRB; Schomaker, Lambertus

    How do we select combinations of limb segments to carry out physical tasks? Three possible determinants of limb-segment selection are hypothesized here: (1) optimal amplitudes and frequencies of motion for the effectors; (2) preferred movement axes for the effectors; and (3) a tendency to continue

  20. Reptile and amphibian response to oak regeneration treatments in productive southern Appalachian hardwood forest

    Science.gov (United States)

    Cathryn H. Greenberg; Christopher E. Moorman; Amy L. Raybuck; Chad Sundol; Tara L. Keyser; Janis Bush; Dean M. Simon; Gordon S. Warburton

    2016-01-01

    Forest restoration efforts commonly employ silvicultural methods that alter light and competition to influence species composition. Changes to forest structure and microclimate may adversely affect some taxa (e.g., terrestrial salamanders), but positively affect others (e.g., early successional birds). Salamanders are cited as indicators of ecosystem health because of...

  1. QPSK regeneration without active phase-locking

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Da Ros, Francesco; Røge, Kasper Meldgaard

    2016-01-01

    QPSK regeneration without active phase stabilization is investigated in numerical simulations. We propose an improved scheme for phase-locking free QPSK regeneration showing significant improvements in the error vector magnitude of the signal....

  2. Economics and policy environments for forest regeneration.

    Science.gov (United States)

    Donald F. Flora

    1970-01-01

    MOST OF YOUR DAILY CONCERNS IN FOREST REGENERATION are biologic, technologic, and mechanical. But periodically, perhaps once a year, many of you must consider regeneration in a context that includes alternative uses for the financial resources you have.

  3. Genetics Home Reference: limb-girdle muscular dystrophy

    Science.gov (United States)

    ... Health Conditions Limb-girdle muscular dystrophy Limb-girdle muscular dystrophy Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Limb-girdle muscular dystrophy is a term for a group of diseases ...

  4. [Thalidomide (Contergan) induced limb deficiency in Hungary?].

    Science.gov (United States)

    Gidai, János; Bács, Eva; Czeizel, Endre

    2009-06-21

    A 47 year old female with severe deficiency of three limbs visited our Genetic Counselling Clinic and asked us to give her a certificate that her complex limb deficiency was caused by thalidomide (Contergan). According to her explanation, her mother used this drug during pregnancy which was given to her by her sister, who lived in West Germany. The characteristic signs of thalidomide embryopathy are: radial type limb deficiency including most severe forms of phocomelia and amelia, ear abnormalities. In the case of this woman, however, FFU (femoral-fibula-ulna) complex was found: bilateral femur hypoplasia (F), and fibular hypoplasia (F) with the lack of Vth and IVth toes, in addition with ulnar hypoplasia (U) with the deficiency of Vth and IVth fingers in her right upper limb. The left upper limb was not affected. Besides that, she was treated with schizophrenia. In conclusion, there is no association between the supposed thalidomide use during pregnancy and FFU complex.

  5. Phantom Limb Sensation (PLS) and Phantom Limb Pain (PLP) among Young Landmine Amputees.

    Science.gov (United States)

    Poor Zamany Nejatkermany, Mahtab; Modirian, Ehsan; Soroush, Mohammadreza; Masoumi, Mehdi; Hosseini, Maryam

    2016-01-01

    To determine the frequency of phantom limb sensation (PLS) and phantom limb pain (PLP) in children and young adults suffering landmine-related amputation. All youths with amputation due to landmine explosions participated in this study. The proportions of patients with phantom limb sensation/pain, intensity and frequency of pain were reported. Chi square test was used to examine the relationship between variables. Comparison of PLP and PLS between upper and lower amputation was done by unpaired t-test. There were 38 male and 3 female with the mean age of 15.8±2.4yr. The mean interval between injury and follow-up was 90.7±39.6 months. Twelve (44.4%) upper limb amputees and 11 (26.8%) lower limb amputees had PLS. Nine (33.3%) upper limb amputees and 7 (17.1%) lower limb amputees experienced PLP. Of 27 upper limb amputees, 6 (14.6%) and among 15 lower limb amputees, 6 (14.6%) had both PLS and PLP. One case suffered amputation of upper and lower limbs and was experiencing PLS and PLP in both parts. PLS had a significant difference between the upper and lower amputated groups. Significant relationship was observed between age of casualty and duration of injury with PLP. Phantom limb sensation and pain in young survivors of landmine explosions appear to be common, even years after amputation.

  6. Limb Laterality Recognition Score: A Reliable Clinical Measure Related to Phantom Limb Pain.

    Science.gov (United States)

    Wong, Christopher Kevin; Wong, Caitlin Kimberly

    2017-08-24

    To explore the usefulness of the limb laterality recognition score as a clinical measure of phantom limb pain, regarding test-retest reliability and association of limb laterality recognition scores with phantom limb pain measures. Retrospective cohort. Community support group. Eleven adults who averaged 4.8 years since lower limb amputation due to vascular pathologies (N = 9), trauma (N = 1), and cancer (N = 1). Subjects self-reported amputated limb pain using the sensation subsection of the Prosthetic Evaluation Questionnaire and back and sound limb pain. Using numbered iPads that corresponded to the self-reports, subjects played the Recognise Foot game to assess limb laterality recognition ability. Subjects identified the laterality of 20 foot images, within two seconds each. The software collected accuracy and speed scores in basic, vanilla, and context conditions for two rounds in random order. Basic showed feet against black backgrounds, vanilla showed feet with various monochromatic backgrounds, and context showed feet in clothed or environmental contexts. So that greater accuracy in less time meant a better score, accuracy scores were divided by completion speed. Intraclass correlation coefficient (ICC)3,1 assessed test-retest reliability. Correlations between accuracy/speed and phantom limb pain measures were assessed with Spearman's rho (categorical) and Pearson coefficients (continuous). Accuracy/speed test-retest reliability was strong (ICC = 0.72) and inversely associated with phantom limb pain frequency (context rho = 0.72). Limb laterality recognition accuracy/speed in the context condition had good test-retest reliability and correlated strongly with phantom limb pain frequency. Accuracy/speed limb laterality recognition ability relates to phantom limb pain and may be a valid clinical or research measure.

  7. Regeneration of southern hardwoods: some ecological concepts

    Science.gov (United States)

    David L. Loftis

    1989-01-01

    Classical concepts of post-disturbance succession through well-defined seral stages to a well-defined ,climax stage( s) are not a useful conceptual framework for predicting species composition of regeneration resulting from the application of regeneration treatments in complex southern hardwood forests. Hardwood regeneration can be better understood, and more useful...

  8. Semiconductor devices for all-optical regeneration

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne

    2003-01-01

    We review different implementations of semiconductor devices for all-optical regeneration. A general model will be presented for all-optical regeneration in fiber links, taking into consideration the trade-off between non-linearity and noise. Furthermore we discuss a novel regenerator type, based...

  9. All optical regeneration using semiconductor devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Tromborg, Bjarne

    All-optical regeneration is a key functionality for implementing all-optical networks. We present a simple theory for the bit-error-rate in links employing all-optical regenerators, which elucidates the interplay between the noise and and nonlinearity of the regenerator. A novel device structure ...... is analyzed, emphasizing general aspects of active semiconductor waveguides....

  10. An experimental study of passive regenerator geometries

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Nielsen, Kaspar Kirstein; Pryds, Nini

    2011-01-01

    experimental uncertainty associated with magnetocaloric material properties, all regenerators are made of aluminum. The performance of corrugated plates and dimpled plates are compared to traditional flat plate regenerators for a range of cycle times and utilizations. Each regenerator is built using 18...

  11. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.

    Directory of Open Access Journals (Sweden)

    Christopher M Weber

    Full Text Available The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these

  12. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.

    Science.gov (United States)

    Weber, Christopher M; Martindale, Mark Q; Tapscott, Stephen J; Unguez, Graciela A

    2012-01-01

    The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes) revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these progenitor cells

  13. MECHANICAL REGENERATION OF SAND WASTE

    Directory of Open Access Journals (Sweden)

    D. I. Gnir

    2005-01-01

    Full Text Available The experimental activation of the sand regenerator of the firm SINTO is carried out at ОАО “MZOO". It is shown that sand grains are cleared from films of binding agents, that allows to use the treated sand for preparation of agglutinant and core sands.

  14. Bone regeneration during distraction osteogenesis

    NARCIS (Netherlands)

    Amir, L.R.; Everts, V.; Bronckers, A.L.J.J.

    2009-01-01

    Bone has the capacity to regenerate in response to injury. During distraction osteogenesis, the renewal of bone is enhanced by gradual stretching of the soft connec- tive tissues in the gap area between two separated bone segments. This procedure has received much clinical atten- tion as a way to

  15. Skeletal muscle development and regeneration.

    NARCIS (Netherlands)

    Grefte, S.; Kuijpers-Jagtman, A.M.; Torensma, R.; Hoff, J.W. Von den

    2007-01-01

    In the late stages of muscle development, a unique cell population emerges that is a key player in postnatal muscle growth and muscle regeneration. The location of these cells next to the muscle fibers triggers their designation as satellite cells. During the healing of injured muscle tissue,

  16. Nonwoven scaffolds for bone regeneration

    OpenAIRE

    Durham, Elaine R.; Tronci, Giuseppe; Yang,Xuebin; Wood, David J.; Russell, Stephen J.

    2016-01-01

    Developing successful scaffolds requires clinicians to adopt a multidisciplinary approach in order to understand and stimulate the natural bone regeneration process. A variety of natural and synthetic biomaterials, including naturally extracted, chemically functionalised collagen and synthetic Poly(epsilon-caprolactone) (PCL), can be manufactured into fibres, enabling the formation of nonwoven scaffolds. Many different nonwoven architectures and structural features can then be introduced, dep...

  17. Gene therapy for tissue regeneration.

    Science.gov (United States)

    Cutroneo, Kenneth R

    2003-02-01

    Tissue repair and regeneration are the normal biological responses of many different tissues in the body to injury. During the healing process, profound changes occur in cell composition and extracellular matrix (ECM) formation. Fibroblasts and equivalent reparative cells migrate to the wounded area and subsequently proliferate. These cells and reparative cells from the surrounding tissue are responsible for the rapid repair which results in tissue regeneration. Growth factors, one of which is transforming growth factor-beta (TGF-beta), stimulate fibroblasts and smooth muscle cells to proliferate and synthesize ECM proteins. This process of early repair provides a rapid way to restore new tissue and mechanical integrity. This early tissue repair process is normally followed by involution, which requires the production and activation of proteases, tissue maturation and remodeling, reorganization and finally regeneration. Alternately, failure to replace the critical components of the ECM, including elastin and basement membrane, results in abnormal regeneration of the epithelial cell layer. Although remodeling should occur during healing, provisional repair may be followed by excessive synthesis and deposition of collagen, which results in irreversible fibrosis and scarring. This excessive fibrosis which occurs in aberrant healing is at least in part mediated by persistent TGF-beta. Because of the central role of collagen in the wound healing process, the pharmacological control of collagen synthesis has been of paramount importance as a possible way to abrogate aberrant healing and prevent irreversible fibrosis. Fibrosis is an abnormal response to tissue injury. Copyright 2002 Wiley-Liss, Inc.

  18. Mechanical device for tissue regeneration

    NARCIS (Netherlands)

    Herder, J.L.; Maij, E.

    2010-01-01

    The invention relates to a mechanical device for tissue- regeneration inside a patient, comprising means (2, 3) to place a scaffold for the tissue under mechanical stress. Said means comprise a first device-part (2) and a second device-part (3) which parts are arranged to be movable with respect to

  19. An electron microscope study of the respiratory epithelium in the lungs of the fire salamander (Salamandra salamandra).

    Science.gov (United States)

    Meban, C

    1979-01-01

    The respiratory epithelium in the lungs of the common fire salamander (Salamandra salamandra) has been studied by electron microscopy. The entire pulmonary gas-exchange area is covered by a continuous epithelium, the cells of which are all of the same type and are termed 'pneumonocytes'. Typically, each pneumonocyte is squamous and has attenuated sheets of cytoplasm which extend over the pulmonary capillaries. Its free surface bears squat microvilli, and osmiophilic inclusion bodies and other organelles are prominent in the cytoplasm. The lateral cell walls have numerous desmosomes and interdigitating cytoplasmic processes. Many cells send cytoplasmic processes deep into the substance of the lung septa. The morphological evidence suggests that the pneumonocytes are responsible for the secretion of pulmonary surface-active agents and for maintaining the integrity of the gaseous diffusion membrane. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:422482

  20. Phylogeography of the Alpine salamander, Salamandra atra (Salamandridae) and the influence of the Pleistocene climatic oscillations on population divergence.

    Science.gov (United States)

    Riberon, A; Miaud, C; Grossenbacher, K; Taberlet, P

    2001-10-01

    Fifty individuals of the endemic Alpine salamander, Salamandra atra, representing 13 populations throughout the range of the two currently recognized subspecies, atra and aurorae, were examined for sequence variation in a large portion (1050 bp) of the mitochondrial cytochrome b gene. We revealed a large number of mitochondrial DNA (mtDNA) haplotypes (10). Interpopulation sequence divergence was very low, ranging from 0 to 3.1%. The relationships among haplotypes were poorly resolved. The divergence time estimate between several mtDNA haplotypes suggested a pre-Pleistocene differentiation approximately 3 million years ago. Moreover, the impact of the Pleistocene glaciations on the phylogeographical patterns appears to have been secondary, although a somewhat reduced genetic variability was found in populations living in areas that were directly affected by the glaciation.

  1. Genesis and morphogenesis of limb synovial joints and articular cartilage.

    Science.gov (United States)

    Decker, Rebekah S; Koyama, Eiki; Pacifici, Maurizio

    2014-10-01

    Limb synovial joints are intricate structures composed of articular cartilage, synovial membranes, ligaments and an articular capsule. Together, these tissues give each joint its unique shape, organization and biomechanical function. Articular cartilage itself is rather complex and organized in distinct zones, including the superficial zone that produces lubricants and contains stem/progenitor cells. For many years there has been great interest in deciphering the mechanisms by which the joints form and come to acquire such unique structural features and diversity. Decades ago, classic embryologists discovered that the first overt sign of joint formation at each prescribed limb site was the appearance of a dense and compact population of mesenchymal cells collectively called the interzone. Work carried out since then by several groups has provided evidence that the interzone cells actively participate in joint tissue formation over developmental time. This minireview provides a succinct but comprehensive description of the many important recent advances in this field of research. These include studies using various conditional reporter mice to genetically trace and track the origin, fate and possible function of joint progenitor cells; studies on the involvement and roles in signaling pathways and transcription factors in joint cell determination and functioning; and studies using advanced methods of gene expression analyses to uncover novel genetic determinants of joint formation and diversity. The overall advances are impressive, and the findings are not only of obvious interest and importance but also have major implications in the conception of future translational medicine tools to repair and regenerate defective, overused or aging joints. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  2. Molecular detection of vertebrates in stream water: A demonstration using rocky mountain tailed frogs and Idaho giant salamanders

    Science.gov (United States)

    Goldberg, C.S.; Pilliod, D.S.; Arkle, R.S.; Waits, L.P.

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  3. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change.

    Directory of Open Access Journals (Sweden)

    Houston C Chandler

    Full Text Available The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi, a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006-2014 of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896-2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis. Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions.

  4. Individual (co)variation in standard metabolic rate, feeding rate, and exploratory behavior in wild-caught semiaquatic salamanders.

    Science.gov (United States)

    Gifford, Matthew E; Clay, Timothy A; Careau, Vincent

    2014-01-01

    Repeatability is an important concept in evolutionary analyses because it provides information regarding the benefit of repeated measurements and, in most cases, a putative upper limit to heritability estimates. Repeatability (R) of different aspects of energy metabolism and behavior has been demonstrated in a variety of organisms over short and long time intervals. Recent research suggests that consistent individual differences in behavior and energy metabolism might covary. Here we present new data on the repeatability of body mass, standard metabolic rate (SMR), voluntary exploratory behavior, and feeding rate in a semiaquatic salamander and ask whether individual variation in behavioral traits is correlated with individual variation in metabolism on a whole-animal basis and after conditioning on body mass. All measured traits were repeatable, but the repeatability estimates ranged from very high for body mass (R = 0.98), to intermediate for SMR (R = 0.39) and food intake (R = 0.58), to low for exploratory behavior (R = 0.25). Moreover, repeatability estimates for all traits except body mass declined over time (i.e., from 3 to 9 wk), although this pattern could be a consequence of the relatively low sample size used in this study. Despite significant repeatability in all traits, we find little evidence that behaviors are correlated with SMR at the phenotypic and among-individual levels when conditioned on body mass. Specifically, the phenotypic correlations between SMR and exploratory behavior were negative in all trials but significantly so in one trial only. Salamanders in this study showed individual variation in how their exploratory behavior changed across trials (but not body mass, SMR, and feed intake), which might have contributed to observed changing correlations across trials.

  5. Parallel habitat acclimatization is realized by the expression of different genes in two closely related salamander species (genus Salamandra).

    Science.gov (United States)

    Goedbloed, D J; Czypionka, T; Altmüller, J; Rodriguez, A; Küpfer, E; Segev, O; Blaustein, L; Templeton, A R; Nolte, A W; Steinfartz, S

    2017-12-01

    The utilization of similar habitats by different species provides an ideal opportunity to identify genes underlying adaptation and acclimatization. Here, we analysed the gene expression of two closely related salamander species: Salamandra salamandra in Central Europe and Salamandra infraimmaculata in the Near East. These species inhabit similar habitat types: 'temporary ponds' and 'permanent streams' during larval development. We developed two species-specific gene expression microarrays, each targeting over 12 000 transcripts, including an overlapping subset of 8331 orthologues. Gene expression was examined for systematic differences between temporary ponds and permanent streams in larvae from both salamander species to establish gene sets and functions associated with these two habitat types. Only 20 orthologues were associated with a habitat in both species, but these orthologues did not show parallel expression patterns across species more than expected by chance. Functional annotation of a set of 106 genes with the highest effect size for a habitat suggested four putative gene function categories associated with a habitat in both species: cell proliferation, neural development, oxygen responses and muscle capacity. Among these high effect size genes was a single orthologue (14-3-3 protein zeta/YWHAZ) that was downregulated in temporary ponds in both species. The emergence of four gene function categories combined with a lack of parallel expression of orthologues (except 14-3-3 protein zeta) suggests that parallel habitat adaptation or acclimatization by larvae from S. salamandra and S. infraimmaculata to temporary ponds and permanent streams is mainly realized by different genes with a converging functionality.

  6. Cross-limb interference during motor learning.

    Directory of Open Access Journals (Sweden)

    Benedikt Lauber

    Full Text Available It is well known that following skill learning, improvements in motor performance may transfer to the untrained contralateral limb. It is also well known that retention of a newly learned task A can be degraded when learning a competing task B that takes place directly after learning A. Here we investigate if this interference effect can also be observed in the limb contralateral to the trained one. Therefore, five different groups practiced a ballistic finger flexion task followed by an interfering visuomotor accuracy task with the same limb. Performance in the ballistic task was tested before the training, after the training and in an immediate retention test after the practice of the interference task for both the trained and the untrained hand. After training, subjects showed not only significant learning and interference effects for the trained limb but also for the contralateral untrained limb. Importantly, the interference effect in the untrained limb was dependent on the level of skill acquisition in the interfering motor task. These behavioural results of the untrained limb were accompanied by training specific changes in corticospinal excitability, which increased for the hemisphere ipsilateral to the trained hand following ballistic training and decreased during accuracy training of the ipsilateral hand. The results demonstrate that contralateral interference effects may occur, and that interference depends on the level of skill acquisition in the interfering motor task. This finding might be particularly relevant for rehabilitation.

  7. Functionality of i-LIMB and i-LIMB pulse hands: case report.

    Science.gov (United States)

    van der Niet, Olga; Bongers, Raoul M; van der Sluis, Corry K

    2013-01-01

    The availability of various multiarticulated prosthetic hands makes determining differences in functionality between these hands relevant. The current study asked whether the functionality of these hands increased with time of use and whether grip force and robustness improved. A 45-year-old man with wrist disarticulation used the i-LIMB and the i-LIMB Pulse hands in a series of tests covering all functional levels as described in the framework of the International Classification of Functioning, Disability and Health. Using the i-LIMB for 1 yr improved Southampton Hand Assessment Procedure function scores. However, the i-LIMB Pulse did not improve much over 5 mo of training, possibly because of the intense training in the month prior to the first i-LIMB Pulse tests. The i-LIMB Pulse hand generally showed higher scores on the tests and better grip strength and robustness than the i-LIMB. The i-LIMB Pulse has overcome the shortcomings of the i-LIMB hand. The preset grip patterns simplified the complex control of the multiarticulated i-LIMB hand, which contributed to patient satisfaction.

  8. Observation of limb movements reduces phantom limb pain in bilateral amputees

    Science.gov (United States)

    Tung, Monica L; Murphy, Ian C; Griffin, Sarah C; Alphonso, Aimee L; Hussey-Anderson, Lindsey; Hughes, Katie E; Weeks, Sharon R; Merritt, Victoria; Yetto, Joseph M; Pasquina, Paul F; Tsao, Jack W

    2014-01-01

    Background Mirror therapy has been demonstrated to reduce phantom limb pain (PLP) experienced by unilateral limb amputees. Research suggests that the visual feedback of observing a limb moving in the mirror is critical for therapeutic efficacy. Objective Since mirror therapy is not an option for bilateral lower limb amputees, the purpose of this study was to determine if direct observation of another person’s limbs could be used to relieve PLP. Methods We randomly assigned 20 bilateral lower limb amputees with PLP to visual observation (n = 11) or mental visualization (n = 9) treatment. Treatment consisted of seven discrete movements which were mimicked by the amputee’s phantom limbs moving while visually observing the experimenter’s limbs moving, or closing the eyes while visualizing and attempting the movements with their phantom limbs, respectively. Participants performed movements for 20 min daily for 1 month. Response to therapy was measured using a 100-mm visual analog scale (VAS) and the McGill Short-Form Pain Questionnaire (SF-MPQ). Results Direct visual observation significantly reduced PLP in both legs (P < 0.05). Amputees assigned to the mental visualization condition did not show a significant reduction in PLP. Interpretation Direct visual observation therapy is an inexpensive and effective treatment for PLP that is accessible to bilateral lower limb amputees. PMID:25493277

  9. Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration.

    Directory of Open Access Journals (Sweden)

    Qian-Shi Zhang

    Full Text Available Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1, also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5, after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1, the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93, or the downstream target, c-Jun N-terminal kinase (SP600125 also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580 had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration.

  10. Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration.

    Science.gov (United States)

    Zhang, Qian-Shi; Kurpad, Deepa S; Mahoney, My G; Steinbeck, Marla J; Freeman, Theresa A

    2017-01-01

    Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1), the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93), or the downstream target, c-Jun N-terminal kinase (SP600125) also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580) had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration.

  11. Sensorimotor incongruence alters limb perception and movement.

    Science.gov (United States)

    Osumi, Michihiro; Nobusako, Satoshi; Zama, Takuro; Taniguchi, Megumi; Shimada, Sotaro; Morioka, Shu

    2017-09-21

    Altered limb ownership or heaviness has been observed in patients with hemiplegia, chronic pain, and several other conditions. Although these sensations are thought to be caused by sensorimotor incongruence, few studies have systematically verified this relationship. In addition, it remains unclear whether these subjective sensations affect movement execution. In a psychophysical experiment, we systematically investigated the relationships between sensorimotor integration and subjective limb perception, such as sense of ownership/heaviness, and verified the relationship between subjective limb perception and movement execution. Thirty-nine healthy participants were enrolled, and a visual feedback delay system was used to systematically evoke sensorimotor incongruence. Participants periodically flexed and extended their wrist while seeing a delayed image of their hand under five delay conditions (0, 150, 250, 350, 600ms). During wrist movement, electromyography (EMG) activity in flexor carpi radialis (FCR) was recorded. Also, to analyze the change in muscle activity and movement speed, the values of integral and peak frequency were calculated. To record changes in the subjective limb perception of the altered limb ownership and heaviness, we used a 7-point Likert scale for each participant. We found that altered ownership and heaviness increased with increasing feedback delay. Also, muscle activity and movement speed decreased with visual feedback delay. There was no significant correlation between subjective altered limb perception (i.e., altered limb ownership and heaviness) and muscle activity or movement speed. We systematically demonstrated that limb ownership, heaviness, muscle activation and movement speed were altered by sensorimotor incongruence. However, our study did not reveal the relationships between these factors. These results indicate the existence of different mechanisms governing subjective limb perception and movement execution. In the future, we

  12. Protein Turnover and Cellular Stress in Mildly and Severely Affected Muscles from Patients with Limb Girdle Muscular Dystrophy Type 2I

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Vissing, John

    2013-01-01

    Patients with Limb girdle muscular dystrophy type 2I (LGMD2I) are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal...... highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy....

  13. Gene expression analysis of zebrafish heart regeneration.

    Directory of Open Access Journals (Sweden)

    Ching-Ling Lien

    2006-08-01

    Full Text Available Mammalian hearts cannot regenerate. In contrast, zebrafish hearts regenerate even when up to 20% of the ventricle is amputated. The mechanism of zebrafish heart regeneration is not understood. To systematically characterize this process at the molecular level, we generated transcriptional profiles of zebrafish cardiac regeneration by microarray analyses. Distinct gene clusters were identified based on temporal expression patterns. Genes coding for wound response/inflammatory factors, secreted molecules, and matrix metalloproteinases are expressed in regenerating heart in sequential patterns. Comparisons of gene expression profiles between heart and fin regeneration revealed a set of regeneration core molecules as well as tissue-specific factors. The expression patterns of several secreted molecules around the wound suggest that they play important roles in heart regeneration. We found that both platelet-derived growth factor-a and -b (pdgf-a and pdgf-b are upregulated in regenerating zebrafish hearts. PDGF-B homodimers induce DNA synthesis in adult zebrafish cardiomyocytes. In addition, we demonstrate that a chemical inhibitor of PDGF receptor decreases DNA synthesis of cardiomyocytes both in vitro and in vivo during regeneration. Our data indicate that zebrafish heart regeneration is associated with sequentially upregulated wound healing genes and growth factors and suggest that PDGF signaling is required.

  14. Customizable Rehabilitation Lower Limb Exoskeleton System

    Directory of Open Access Journals (Sweden)

    Riaan Stopforth

    2012-10-01

    Full Text Available Disabled people require assistance with the motion of their lower limbs to improve rehabilitation. Exoskeletons used for lower limb rehabilitation are highly priced and are not affordable to the lowerincome sector of the population. This paper describes an exoskeleton lower limb system that was designed keeping in mind that the cost must be as low as possible. The forward kinematic system that is used must be a simplified model to decrease computational time, yet allow the exoskeleton to be adjustable according to the patient's leg dimensions.

  15. Muscle Selection for Focal Limb Dystonia

    Directory of Open Access Journals (Sweden)

    Barbara Illowsky Karp

    2017-12-01

    Full Text Available Selection of muscles for botulinum toxin injection for limb dystonia is particularly challenging. Limb dystonias vary more widely in the pattern of dystonic movement and involved muscles than cervical dystonia or blepharospasm. The large variation in how healthy individuals perform skilled hand movements, the large number of muscles in the hand and forearm, and the presence of compensatory actions in patients with dystonia add to the complexity of choosing muscles for injection. In this article, we discuss approaches to selecting upper and lower extremity muscles for chemodenervation treatment of limb dystonia.

  16. Muscle Selection for Focal Limb Dystonia.

    Science.gov (United States)

    Karp, Barbara Illowsky; Alter, Katharine

    2017-12-29

    Selection of muscles for botulinum toxin injection for limb dystonia is particularly challenging. Limb dystonias vary more widely in the pattern of dystonic movement and involved muscles than cervical dystonia or blepharospasm. The large variation in how healthy individuals perform skilled hand movements, the large number of muscles in the hand and forearm, and the presence of compensatory actions in patients with dystonia add to the complexity of choosing muscles for injection. In this article, we discuss approaches to selecting upper and lower extremity muscles for chemodenervation treatment of limb dystonia.

  17. Molecular and evolutionary basis of limb field specification and limb initiation.

    Science.gov (United States)

    Tanaka, Mikiko

    2013-01-01

    Specification of limb field and initiation of limb development involve multiple steps, each of which is tightly regulated both spatially and temporally. Recent developmental analyses on various vertebrates have provided insights into the molecular mechanisms that specify limb field and have revealed several genetic interactions of signals involved in limb initiation processes. Furthermore, new approaches to the study of the developmental mechanisms of the lateral plate mesoderm of amphioxus and lamprey embryos have given us clues to understand the evolutionary scenarios that led to the acquisition of paired appendages during evolution. This review highlights such recent findings and discusses the mechanisms of limb field specification and limb bud initiation during development and evolution. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  18. The regeneration capacity of the flatworm Macrostomum lignano--on repeated regeneration, rejuvenation, and the minimal size needed for regeneration.

    Science.gov (United States)

    Egger, B; Ladurner, P; Nimeth, K; Gschwentner, R; Rieger, R

    2006-10-01

    The lion's share of studies on regeneration in Plathelminthes (flatworms) has been so far carried out on a derived taxon of rhabditophorans, the freshwater planarians (Tricladida), and has shown this group's outstanding regeneration capabilities in detail. Sharing a likely totipotent stem cell system, many other flatworm taxa are capable of regeneration as well. In this paper, we present the regeneration capacity of Macrostomum lignano, a representative of the Macrostomorpha, the basal-most taxon of rhabditophoran flatworms and one of the most basal extant bilaterian protostomes. Amputated or incised transversally, obliquely, and longitudinally at various cutting levels, M. lignano is able to regenerate the anterior-most body part (the rostrum) and any part posterior of the pharynx, but cannot regenerate a head. Repeated regeneration was observed for 29 successive amputations over a period of almost 12 months. Besides adults, also first-day hatchlings and older juveniles were shown to regenerate after transversal cutting. The minimum number of cells required for regeneration in adults (with a total of 25,000 cells) is 4,000, including 160 neoblasts. In hatchlings only 1,500 cells, including 50 neoblasts, are needed for regeneration. The life span of untreated M. lignano was determined to be about 10 months.

  19. The regeneration capacity of the flatworm Macrostomum lignano—on repeated regeneration, rejuvenation, and the minimal size needed for regeneration

    Science.gov (United States)

    Ladurner, P.; Nimeth, K.; Gschwentner, R.; Rieger, R.

    2006-01-01

    The lion’s share of studies on regeneration in Plathelminthes (flatworms) has been so far carried out on a derived taxon of rhabditophorans, the freshwater planarians (Tricladida), and has shown this group’s outstanding regeneration capabilities in detail. Sharing a likely totipotent stem cell system, many other flatworm taxa are capable of regeneration as well. In this paper, we present the regeneration capacity of Macrostomum lignano, a representative of the Macrostomorpha, the basal-most taxon of rhabditophoran flatworms and one of the most basal extant bilaterian protostomes. Amputated or incised transversally, obliquely, and longitudinally at various cutting levels, M. lignano is able to regenerate the anterior-most body part (the rostrum) and any part posterior of the pharynx, but cannot regenerate a head. Repeated regeneration was observed for 29 successive amputations over a period of almost 12 months. Besides adults, also first-day hatchlings and older juveniles were shown to regenerate after transversal cutting. The minimum number of cells required for regeneration in adults (with a total of 25,000 cells) is 4,000, including 160 neoblasts. In hatchlings only 1,500 cells, including 50 neoblasts, are needed for regeneration. The life span of untreated M. lignano was determined to be about 10 months. PMID:16604349

  20. A review of the biology and conservation of the Cope's giant salamander Dicamptodon copei Nussbaum, 1970 (Amphibia: Caudata: Dicamptodontidae) in the Pacific northwestern region of the USA

    Science.gov (United States)

    Alex D. Foster; Deanna H. Olson; Lawrence L.C. Jones

    2015-01-01

    The Cope’s Giant Salamander Dicamptodon copei is a stream dwelling amphibian reliant on cool streams, native to forested areas primarily west of the crest of the Cascade Range in the Pacific Northwest region, USA. Unlike other members of the genus, adult D. copei are most often found in a paedomorphic form, and rarely transforms to a terrestrial stage. As a result,...

  1. Plasticity in the timing of a major life-history transition and resulting changes in the age structure of populations of the salamander Hynobius retardatus

    OpenAIRE

    Michimae, Hirofumi

    2011-01-01

    Variation in age and size at life-history transitions is a reflection of the diversifying influence of biotic or abiotic environmental change. Examples abound, but it is not well understood how such environmental changes influence the age structure of a population. I experimentally investigated the effects of water temperature and food type on age and body size at metamorphosis in larvae of the salamander Hynobius retardatus. In individuals grown at a cold temperature (15 °C) or given Chirono...

  2. Individual and seasonal variation in the diet of the endangered Barton Springs Salamander (Eurycea sosorum): An application of stable isotope analysis to the conservation of an endangered species

    OpenAIRE

    J. Hayley Gillespie

    2009-01-01

    It is well known that many species show strong temporal variation in diet. Long-term dietary trends may be important in assessing the effects of ecological change such as global warming, land use change, or introductions of invasive species. Short-term variation in food sources or prey selection may be crucial for understanding population dynamics in poorly understood species. The Barton Springs Salamander (_Eurycea sosorum_) is an endangered species endemic to four small spring outflows in d...

  3. The Mouse Limb Anatomy Atlas: An interactive 3D tool for studying embryonic limb patterning

    OpenAIRE

    DeLaurier April; Burton Nicholas; Bennett Michael; Baldock Richard; Davidson Duncan; Mohun Timothy J; Logan Malcolm PO

    2008-01-01

    Abstract Background The developing mouse limb is widely used as a model system for studying tissue patterning. Despite this, few references are available that can be used for the correct identification of developing limb structures, such as muscles and tendons. Existing textual references consist of two-dimensional (2D) illustrations of the adult rat or mouse limb that can be difficult to apply when attempting to describe the complex three-dimensional (3D) relationship between tissues. Result...

  4. Ways Children Adjust to Limb Loss

    Science.gov (United States)

    ... children learn these skills so well. About younger children Parents, do not be surprised if your young child ... Kellye Campbell, RN, ARNP published in the magazine, Expectations: Parenting Children and Teens With Limb Differences Atlas of Amputations ...

  5. Limb-effect of rapidly rotating stars

    Directory of Open Access Journals (Sweden)

    A.B. Morcos

    2013-06-01

    Full Text Available Kerr metric is used to study the limb-effect phenomenon for axially rotating massive stars. The limb-effect phenomenon is concerned by the variation of the red-shift from the center to the limb of star. This phenomenon has been studied before for the sun. The solar gravitational field is assumed to be given by Schwarzschild and Lense-Thirring fields. In this trial, a study of the limb-effect for a massive axially symmetric rotating star is done. The line of site of inclination and the motion of the observer are taken into consideration to interpret a formula for this phenomenon using a general relativistic red-shift formula. A comparison between the obtained formula and previous formulae is given.

  6. Upper limb injuries associated with rock climbing.

    OpenAIRE

    Bannister, P; Foster, P

    1986-01-01

    Four cases of upper limb injuries secondary to rock-climbing or training for rock climbing are presented. All four cases had diagnosis and treatment delayed because of unawareness of the range of injuries seen in high grade rock climbing.

  7. Acupuncture treatment of phantom limb pain and phantom limb sensation in a primary care setting.

    Science.gov (United States)

    Davies, Arwel

    2013-03-01

    A 45-year-old man presented with phantom limb pain and phantom limb sensation 12 weeks after an above-elbow amputation of his right arm. He underwent seven sessions of acupuncture at weekly intervals carried out by his general practitioner on his intact left arm, with complete relief of the phantom limb pain and considerable improvement of the phantom limb sensation of his right arm. This case demonstrates the possible benefits from the use of short acupuncture sessions for a potentially chronic condition undertaken within the constraints of a busy general medical practice.

  8. Mirror Therapy for Phantom Limb Pain

    OpenAIRE

    Kim, Sae Young; Kim, Yun Young

    2012-01-01

    Phantom limb pain is a painful sensation that is perceived in a body part that no longer exists. To control this pain, many methods have been used such as medication, physical treatment, nerve block, neuromodulation, surgical treatment and mirror therapy. However, until now, there effects have been uncertain. We report the successful reduction of phantom limb pain using mirror therapy when other treatments initially failed to control the pain.

  9. Muscle Selection for Focal Limb Dystonia

    OpenAIRE

    Barbara Illowsky Karp; Katharine Alter

    2017-01-01

    Selection of muscles for botulinum toxin injection for limb dystonia is particularly challenging. Limb dystonias vary more widely in the pattern of dystonic movement and involved muscles than cervical dystonia or blepharospasm. The large variation in how healthy individuals perform skilled hand movements, the large number of muscles in the hand and forearm, and the presence of compensatory actions in patients with dystonia add to the complexity of choosing muscles for injection. In this artic...

  10. Van Nes rotationplasty with segmental limb resection.

    Science.gov (United States)

    Krajbich, J I; Carroll, N C

    1990-07-01

    Segmental limb resection is becoming a practical alternative to limb ablation in tumor surgery. The addition of Van Nes rotationplasty to provide a pseudo knee joint has been found to be a practical, functional addition facilitating prosthesis use. This procedure has now been used successfully in 21 children with malignant neoplasms, with few complications. The surgical technique, as outlined, produces significantly improved functional results over an above-knee amputation or hip disarticulation.

  11. 21 CFR 890.3420 - External limb prosthetic component.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External limb prosthetic component. 890.3420... External limb prosthetic component. (a) Identification. An external limb prosthetic component is a device... total prosthesis. Examples of external limb prosthetic components include the following: Ankle, foot...

  12. Isolated primary lymphedema tarda of the upper limb.

    Science.gov (United States)

    Shariati, Farzaneh; Ravari, Hasan; Kazemzadeh, Gholamhossein; Sadeghi, Ramin

    2013-03-01

    Primary lymphedema tarda is considered as a congenital disease with late presentation. Primary lymphedema tarda usually affects lower limbs, and primary lymphedema tarda of the upper limbs usually accompanies lower limb lymphedema. In the current case report, we present an 80-year-old male patient with isolated left upper limb swelling that lymphoscintigraphy imaging proved to be lymphedema.

  13. Fire salamander (Salamandra salamandra in Larzac plateau: low occurrence, pond-breeding and cohabitation of larvae with paedomorphic palmate newts (Lissotriton helveticus

    Directory of Open Access Journals (Sweden)

    Mathieu Denoël

    2014-06-01

    Full Text Available Alternative reproductive strategies are widespread in caudate amphibians. Among them, fire salamanders (Salamandra salamandra usually rely on streams to give birth to aquatic larvae but also use ponds, whereas palmate newt larvae (Lissotriton helveticus typically metamorphose into terrestrial juveniles, but can also reproduce in retaining their gills, a process known as paedomorphosis. Here we report repeated observations of an unusual case of coexistence of these two alternative traits in the same pond (Larzac, France. The prevalence of fire salamanders in Southern Larzac was very low (pond occupancy: 0.36%. The observed abundance of fire salamander larvae and paedomorphic newts was also low in the studied pond. On one hand, the rarity of this coexistence pattern may suggest that habitat characteristics may not be optimal or that competition or predation processes might be operating. However, these hypotheses remain to be tested. On the other hand, as this is the only known case of breeding in Southern Larzac, it could be considered to be at a high risk of extirpation.

  14. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... by a dystrophic morphology. The results add to the complexity of the pathogenesis underlying mitochondrial myopathies, and expand the knowledge about the impact of energy deficiency on another aspect of muscle structure and function....

  15. MHD (Magnetohydrodynamics) recovery and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)

    1988-10-01

    A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.

  16. LOWER LIMB ASYMMETRIES IN RHYTHMIC GYMNASTICS ATHLETES.

    Science.gov (United States)

    Frutuoso, Anderson Simas; Diefenthaeler, Fernando; Vaz, Marco Aurélio; Freitas, Cintia de la Rocha

    2016-02-01

    Different limb training demands and limb preference may determine anthropometric and muscle force inter-limb asymmetries in Rhythmic Gymnastics (RG) athletes. The purpose of this study was to evaluate the influence of lateral preference of the lower extremity on anthropometric, range of motion, and isokinetic torque measurements of RG athletes. Cross sectional study. Lower limb anthropometric measurements (girth, estimated anatomical cross-sectional area), hip, knee and ankle range of motion, flexor and extensor isokinetic torques (angular velocities = 60, 180, e 240 °·s(-1)) and bilateral asymmetry index were evaluated in 11 international level Rhythmic Gymnastics athletes (17.9 ± 4.0 years of age; 9.1 ± 5,1 years of experience; 26.8 ± 6.0 weekly training hours). The preferred limb showed larger thigh girth and anatomical cross-sectional area, higher ankle dorsiflexor range of motion, higher hip flexor torque at 60 °·s(-1) and higher plantarflexor torque at 180 °·s(-1) compared to the non-preferred limb. The observed differences seem to be strictly related to lateral preference and rhythmic gymnastics training. 3.

  17. LIMB SALVAGE IN DIABETIC FOOT INFECTION

    Directory of Open Access Journals (Sweden)

    J. Ramanaiah

    2017-02-01

    Full Text Available BACKGROUND Diabetic foot infections are a frequent clinical problem. About 50% of patients with diabetic foot infections who have foot amputations die within five years. Properly managed most can be cured, but many patients needlessly undergo amputations because of improper diagnostic and therapeutic approaches. Limb salvage procedures may prevent eventual limb loss, the need of a major limb amputation, decrease total cost and may restore full ambulation earlier. MATERIALS AND METHODS Seventy five septic diabetic feet were treated with NPWT between 2014 and 2016. Debridement with or without partial foot amputation was followed. Wound progress was measured using a digital scanner. A limb was considered salvaged if complete healing was achieved without any or with minor amputation through or below the ankle. RESULTS In this series, 33 cases were managed initially by debridement and slough excision, 11 patients underwent incision and drainage for abscess and three patients underwent fasciotomy. Seven cases who presented with gangrene of toes were treated with ray amputation. Below-knee amputation was done in 21 cases. In most of the cases, limb salvage was possible. CONCLUSION A comprehensive treatment approach incorporating surgical and nonsurgical therapies are required to avoid major limb amputations in severe diabetic foot infections.

  18. LIMB Demonstration Project Extension and Coolside Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  19. Poststroke hypertonicity: upper limb assessment and treatment.

    Science.gov (United States)

    Marciniak, Christina

    2011-01-01

    Hypertonicity is common in patients with upper limb dysfunction following hemiplegic stroke and is associated with greater impairment, worse function, and lower health-related quality of life. In addition to increased rest activity, abnormal patterns of muscle activation, such as spastic co-contraction, may contribute to disability. In the upper limb, flexor muscles are more commonly involved distally, and at the shoulder, spasticity of adductors, flexors, and internal rotators is most often observed. Prior to interventions, a history regarding prior interventions, comorbid diagnoses, and limitations imposed by abnormal tone should be elicited. Commonly used scales to assess hypertonicity include the Modified Ashworth, the Modified Tardieu, the Spasm Frequency, the Disability Assessment, the Fugl-Meyer, and the Motor Assessment Scales. Treatment interventions for upper limb hypertonicity include stretching, splinting, strengthening of antagonist muscles, oral medications, and focal injections (phenol or botulinum toxins). Intrathecal baclofen may also impact upper limb tone. For focal injections, correct identification of muscles contributing to problematic tone is evaluated by eliciting resistance to movement at rest and observation of patterns of tightness as the limb is used functionally. The botulinum toxins have been shown to decrease tone in stroke survivors and improve active and passive functioning. Because secondary changes such as contractures and weakness may occur with prolonged hypertonicity, therapy to improve range of motion, strengthen weakened muscles, and incorporate use of the limb should be considered following focal injections, oral medications, or intrathecal pump placement.

  20. Zebrafish heart regeneration: 15 years of discoveries

    Science.gov (United States)

    González‐Rosa, Juan Manuel; Burns, Caroline E.

    2017-01-01

    Abstract Cardiovascular disease is the leading cause of death worldwide. Compared to other organs such as the liver, the adult human heart lacks the capacity to regenerate on a macroscopic scale after injury. As a result, myocardial infarctions are responsible for approximately half of all cardiovascular related deaths. In contrast, the zebrafish heart regenerates efficiently upon injury through robust myocardial proliferation. Therefore, deciphering the mechanisms that underlie the zebrafish heart's endogenous regenerative capacity represents an exciting avenue to identify novel therapeutic strategies for inducing regeneration of the human heart. This review provides a historical overview of adult zebrafish heart regeneration. We summarize 15 years of research, with a special focus on recent developments from this fascinating field. We discuss experimental findings that address fundamental questions of regeneration research. What is the origin of regenerated muscle? How is regeneration controlled from a genetic and molecular perspective? How do different cell types interact to achieve organ regeneration? Understanding natural models of heart regeneration will bring us closer to answering the ultimate question: how can we stimulate myocardial regeneration in humans? PMID:28979788