WorldWideScience

Sample records for salam-weinberg gauge model

  1. Mass generation for gauge fields in the Salam-Weinberg theory without Higgs

    OpenAIRE

    Barcelos-Neto, J.; Rabello, S.

    1996-01-01

    We consider the Salam-Weinberg theory by introducing tensor gauge fields. When these fields are coupled in a topological way with the vector ones, the resulting system constitutes an alternative mechanism of mass generation for vector fields without the presence of Higgs bosons. We show that these masses are in agreement with the ones obtained by means of the spontaneous symmetry breaking.

  2. Gauge theories in particle physics a practical introduction

    CERN Document Server

    Aitchison, Ian J R

    2013-01-01

    The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field...

  3. Alternate Gauge Electroweak Model

    CERN Document Server

    Dalton, Bill

    2010-01-01

    We describe an alternate gauge electroweak model that permits neutrinos with mass, and at the same time explains why right-handed neutrinos do not appear in weak interactions. This is a local gauge theory involving a space [V ] of three scalar functions. The standard Lagrangian density for the Yang-Mills field part and Higgs doublet remain invariant. A ma jor change is made in the transformation and corresponding Lagrangian density parts involving the right-handed leptons. A picture involving two types of right-handed leptons emerges. A dichotomy of matter on the [V ] space corresponds to coupled and uncoupled right-handed Leptons. Here, we describe a covariant dipole-mode solution in which the neutral bosons A{\\mu} and Z{\\mu} produce precessions on [V ]. The W {\\pm} {\\mu} bosons provide nutations on [V ], and consequently, provide transitions between the coupled and uncoupled regions. To elucidate the [V ] space matter dichotomy, and to generate the boson masses, we also provide an alternate potential Lagran...

  4. Gauged multisoliton baby Skyrme model

    Science.gov (United States)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  5. Lattice gauge theories and spin models

    Science.gov (United States)

    Mathur, Manu; Sreeraj, T. P.

    2016-10-01

    The Wegner Z2 gauge theory-Z2 Ising spin model duality in (2 +1 ) dimensions is revisited and derived through a series of canonical transformations. The Kramers-Wannier duality is similarly obtained. The Wegner Z2 gauge-spin duality is directly generalized to SU(N) lattice gauge theory in (2 +1 ) dimensions to obtain the SU(N) spin model in terms of the SU(N) magnetic fields and their conjugate SU(N) electric scalar potentials. The exact and complete solutions of the Z2, U(1), SU(N) Gauss law constraints in terms of the corresponding spin or dual potential operators are given. The gauge-spin duality naturally leads to a new gauge invariant magnetic disorder operator for SU(N) lattice gauge theory which produces a magnetic vortex on the plaquette. A variational ground state of the SU(2) spin model with nearest neighbor interactions is constructed to analyze SU(2) gauge theory.

  6. Non-linear Abelian gauge model

    Science.gov (United States)

    Chauca, J.; Doria, R.; Soares, W.

    2012-10-01

    Based on the principle that nature acts together one proposes the presence of N-potential fields rotating under a same group. It introduces a new performance for the gauge approach. It yields a set of N-fields where each one is associated to a proper polynomial gauge transformation. As consequence, a non-linear abelian gauge model is obtained. It derives an abelian Lagrangian that beyond the usual case contains a longitudinal kinetic sector plus massive and interactive terms. This work establishes their gauge invariant conditions and writes the so-called Global Maxwell's equations and associated Global Lorentz force. Beyond Faraday lines, it yields physical lines of force in terms of potential fields.

  7. Flavor Gauge Models Below the Fermi Scale

    Energy Technology Data Exchange (ETDEWEB)

    Babu, K. S. [Oklahoma State U.; Friedland, A. [SLAC; Machado, P. A.N. [Madrid, IFT; Mocioiu, I. [Penn State U.

    2017-05-04

    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, $X$, corresponding to the $B-L$ symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, $D^+$ and Upsilon decays, $D-\\bar{D}^0$ mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling $g_X$ in the range $(10^{-2} - 10^{-4})$ the model is shown to be consistent with the data. Possible ways of testing the model in $b$ physics, top and $Z$ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.

  8. Approximate Noether gauge symmetries of the Bardeen model

    Energy Technology Data Exchange (ETDEWEB)

    Camci, U. [Akdeniz University, Department of Physics, Faculty of Science, Antalya (Turkey)

    2014-12-01

    We investigate the approximate Noether gauge symmetries of the geodesic Lagrangian for the Bardeen spacetime model. This is accommodated by a set of new approximate Noether gauge symmetry relations for the perturbed geodesic Lagrangian in the spacetime. A detailed analysis of the spacetime of the Bardeen model up to third-order approximate Noether gauge symmetries is presented. (orig.)

  9. Comparing the Rξ gauge and the unitary gauge for the standard model: An example

    Directory of Open Access Journals (Sweden)

    Tai Tsun Wu

    2017-01-01

    Full Text Available For gauge theory, the matrix element for any physical process is independent of the gauge used. However, since this is a formal statement, it does not guarantee this gauge independence in every case. An example is given here where, for a physical process in the standard model, the matrix elements calculated with two different gauge – the Rξ gauge and the unitary gauge – are explicitly verified to be different. This is accomplished by subtracting one matrix element from the other. This non-zero difference turns out to have a subtle origin. Two simple operators are found not to commute with each other: in one gauge these two operations are carried out in one order, while in the other gauge these same two operations are carried out in the opposite order. Because of this result, a series of question are raised such that the answers to these question may lead to a deeper understanding of the Yang–Mills non-Abelian gauge theory in general and the standard model in particular.

  10. Linear sigma model for multiflavor gauge theories

    Science.gov (United States)

    Meurice, Y.

    2017-12-01

    We consider a linear sigma model describing 2 Nf2 bosons (σ , a0 , η' and π ) as an approximate effective theory for a S U (3 ) local gauge theory with Nf Dirac fermions in the fundamental representation. The model has a renormalizable U (Nf)L⊗U (Nf)R invariant part, which has an approximate O (2 Nf2) symmetry, and two additional terms, one describing the effects of a S U (Nf)V invariant mass term and the other the effects of the axial anomaly. We calculate the spectrum for arbitrary Nf. Using preliminary and published lattice results from the LatKMI collaboration, we found combinations of the masses that vary slowly with the explicit chiral symmetry breaking and Nf. This suggests that the anomaly term plays a leading role in the mass spectrum and that simple formulas such as Mσ2≃(2 /Nf-Cσ)Mη' 2 should apply in the chiral limit. Lattice measurements of Mη'2 and of approximate constants such as Cσ could help in locating the boundary of the conformal window. We show that our calculation can be adapted for arbitrary representations of the gauge group and in particular to the minimal model with two sextets, where similar patterns are likely to apply.

  11. Gauge Anomalies and Neutrino Seesaw Models

    CERN Document Server

    Neves Cebola, Luis Manuel

    Despite the success of the Standard Model concerning theoretical predictions, there are several experimental results that cannot be explained and there are reasons to believe that there exists new physics beyond it. Neutrino oscillations, and hence their masses, are examples of this. Experimentally it is known that neutrinos masses are quite small, when compared to all Standard Model particle masses. Among the theoretical possibilities to explain these tiny masses, the seesaw mechanism is a simple and well-motivated framework. In its minimal version, heavy particles are introduced that decouple from the theory in the early universe. To build consistent theories, classical symmetries need to be preserved at quantum level, so that there are no anomalies. The cancellation of these anomalies leads to constraints in the parameters of the theory. One attractive solution is to realize the anomaly cancellation through the modication of the gauge symmetry. In this thesis we present a short review of some features of t...

  12. Unification of gauge couplings in radiative neutrino mass models

    DEFF Research Database (Denmark)

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella

    2016-01-01

    ), none of the models leads to gauge coupling unification. Regarding the scale of unification, we find values between 1014 GeV and 1016 GeV for models belonging to class (I) without dark matter, whereas models in class (I) with dark matter as well as models of class (II) prefer values in the range 5......We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively...... masses at one-loop level and (III) models with particles in the adjoint representation of SU(3). In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admits gauge coupling unification. In class (III...

  13. Gauge field entanglement in Kitaev's honeycomb model

    Science.gov (United States)

    Dóra, Balázs; Moessner, Roderich

    2018-01-01

    A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.

  14. Gauge invariance for a whole Abelian model

    Science.gov (United States)

    Chauca, J.; Doria, R.; Soares, W.

    2012-10-01

    Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the (1/2,1/2) representation there is a fields family {AμI} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is the effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.

  15. Gauge invariance for a whole Abelian model

    Energy Technology Data Exchange (ETDEWEB)

    Chauca, J.; Doria, R.; Soares, W. [CBPF, Rio de Janeiro (Brazil); Aprendanet, Petropolis, 25600 (Brazil)

    2012-09-24

    Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is the effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.

  16. Ideal walking dynamics via a gauged NJL model

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    2017-01-01

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu-Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. We therefore study the SU(2) g...

  17. Gauge-Higgs Unification Models in Six Dimensions with S2/Z2 Extra Space and GUT Gauge Symmetry

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Chiang

    2012-01-01

    Full Text Available We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12 gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6 gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with the SU(3×SU(2L×U(1Y(×U(12 symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.

  18. 2D Poisson sigma models with gauged vectorial supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bonezzi, Roberto [Dipartimento di Fisica ed Astronomia, Università di Bologna and INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Torres-Gomez, Alexander [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile-UACh,Valdivia (Chile)

    2015-08-12

    In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.

  19. A Model of Direct Gauge Mediation of Supersymmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, H. [Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, Berkeley, California 94720 (United States)

    1997-07-01

    We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m{sup 2}{sub {tilde q}} , m{sup 2}{sub {tilde l}} due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m{sup 2}{sub {tilde q}} and m{sup 2}{sub {tilde l}} can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed. {copyright} {ital 1997} {ital The American Physical Society}

  20. Compendium of Models from a Gauge U(1) Framework

    OpenAIRE

    Ma, Ernest

    2016-01-01

    A gauge U(1) framework was established in 2002 to extend the supersymmetric standard model. It has many possible realizations. Whereas all have the necessary and sufficient ingredients to explain the possible 750 GeV diphoton excess, observed recently by the ATLAS Collaboration at the Large Hadron Collider (LHC), they differ in other essential aspects. A compendium of such models is discussed.

  1. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Gasenzer, Thomas [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China); Pawlowski, Jan M.; Sexty, Dénes [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany)

    2014-10-15

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.

  2. New U(1) gauge extension of the supersymmetric standard model.

    Science.gov (United States)

    Ma, Ernest

    2002-07-22

    In extending the minimal standard model of quarks and leptons to include supersymmetry, the conservation of baryon and lepton numbers is no longer automatic. I show how the latter may be achieved with a new U(1) gauge symmetry and new supermultiplets at the TeV scale. Neutrino masses and a solution of the mu problem are essential features of this proposed extension.

  3. Tensor renormalization group methods for spin and gauge models

    Science.gov (United States)

    Zou, Haiyuan

    The analysis of the error of perturbative series by comparing it to the exact solution is an important tool to understand the non-perturbative physics of statistical models. For some toy models, a new method can be used to calculate higher order weak coupling expansion and modified perturbation theory can be constructed. However, it is nontrivial to generalize the new method to understand the critical behavior of high dimensional spin and gauge models. Actually, it is a big challenge in both high energy physics and condensed matter physics to develop accurate and efficient numerical algorithms to solve these problems. In this thesis, one systematic way named tensor renormalization group method is discussed. The applications of the method to several spin and gauge models on a lattice are investigated. theoretically, the new method allows one to write an exact representation of the partition function of models with local interactions. E.g. O(N) models, Z2 gauge models and U(1) gauge models. Practically, by using controllable approximations, results in both finite volume and the thermodynamic limit can be obtained. Another advantage of the new method is that it is insensitive to sign problems for models with complex coupling and chemical potential. Through the new approach, the Fisher's zeros of the 2D O(2) model in the complex coupling plane can be calculated and the finite size scaling of the results agrees well with the Kosterlitz-Thouless assumption. Applying the method to the O(2) model with a chemical potential, new phase diagram of the models can be obtained. The structure of the tensor language may provide a new tool to understand phase transition properties in general.

  4. Gauge coupling unification in a classically scale invariant model

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki; Ishida, Hiroyuki [Graduate School of Science and Engineering, Shimane University,Matsue 690-8504 (Japan); Takahashi, Ryo [Graduate School of Science, Tohoku University,Sendai, 980-8578 (Japan); Yamaguchi, Yuya [Graduate School of Science and Engineering, Shimane University,Matsue 690-8504 (Japan); Department of Physics, Faculty of Science, Hokkaido University,Sapporo 060-0810 (Japan)

    2016-02-08

    There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under SU(3){sub C} with masses lower than 1 TeV, and the SM singlet Majorana dark matter with mass lower than 2.6 TeV.

  5. Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chih-Lung

    2005-04-05

    The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.

  6. Topological phase transitions in the gauged BPS baby Skyrme model

    Science.gov (United States)

    Adam, C.; Naya, C.; Romanczukiewicz, T.; Sanchez-Guillen, J.; Wereszczynski, A.

    2015-05-01

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P, H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V = V( P,H) at zero temperature, where V is the "volume", i.e., area of the solitons.

  7. Topological phase transitions in the gauged BPS baby Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Naya, C. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Romanczukiewicz, T. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland); Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland)

    2015-05-29

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.

  8. The Standard Model is Natural as Magnetic Gauge Theory

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2011-01-01

    matter. The absence of scalars in the electric theory indicates that the associated magnetic theory is free from quadratic divergences. Our novel solution to the Standard Model hierarchy problem leads also to a new insight on the mystery of the observed number of fundamental fermion generations......We suggest that the Standard Model can be viewed as the magnetic dual of a gauge theory featuring only fermionic matter content. We show this by first introducing a Pati-Salam like extension of the Standard Model and then relating it to a possible dual electric theory featuring only fermionic...

  9. Gauged baby Skyrme model with a Chern-Simons term

    Science.gov (United States)

    Samoilenka, A.; Shnir, Ya.

    2017-02-01

    The properties of the multisoliton solutions of the (2 +1 )-dimensional Maxwell-Chern-Simons-Skyrme model are investigated numerically. Coupling to the Chern-Simons term allows for existence of the electrically charge solitons which may also carry magnetic fluxes. Two particular choices of the potential term is considered: (i) the weakly bounded potential and (ii) the double vacuum potential. In the absence of gauge interaction in the former case the individual constituents of the multisoliton configuration are well separated, while in the latter case the rotational invariance of the configuration remains unbroken. It is shown that coupling of the planar multi-Skyrmions to the electric and magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, the energies, angular momenta, electric and magnetic fields of the configurations on the gauge coupling constant g , and the electric potential. It is found that, generically, the coupling to the Chern-Simons term strongly affects the usual pattern of interaction between the skyrmions, in particular the electric repulsion between the solitons may break the multisoliton configuration into partons. We show that as the gauge coupling becomes strong, both the magnetic flux and the electric charge of the solutions become quantized although they are not topological numbers.

  10. Transferring model uncertainty estimates from gauged to ungauged catchments

    Science.gov (United States)

    Bourgin, F.; Andréassian, V.; Perrin, C.; Oudin, L.

    2014-07-01

    Predicting streamflow hydrographs in ungauged catchments is a challenging issue, and accompanying the estimates with realistic uncertainty bounds is an even more complex task. In this paper, we present a method to transfer model uncertainty estimates from gauged to ungauged catchments and we test it over a set of 907 catchments located in France. We evaluate the quality of the uncertainty estimates based on three expected qualities: reliability, sharpness, and overall skill. Our results show that the method holds interesting perspectives, providing in most cases reliable and sharp uncertainty bounds at ungauged locations.

  11. On introduction of additional gauge fields in the Weinberg model

    CERN Document Server

    Dolgov, A D; Okun, Lev Borisovich

    1973-01-01

    Introduction of new gauge fields in the Weinberg model makes it possible to realize locally all lepton symmetries of the Lagrangian. This procedure does not result in any contradiction between the experimentally observed conservation of the leptonic charge of leptons and the fact that a vector meson interacting with a leptonic charge becomes massive after spontaneous symmetry breaking. It is shown that in theories with a minimum number of scalar bosons (at a given number of vector bosons) the nu /sub mu /e axial constant g/sub A/ is still -/sup 1///sub 2/ as in the Weinberg model but in this case the variation range of the vector constant is more broad. The value g/sub A/ is not fixed in models with an excess of scalar fields. The practical method for diagonalizing the Lagrangian after spontaneous symmetry breaking is considered in detail. (6 refs).

  12. Lattice Gauge Theories Within and Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Gelzer, Zechariah John [Iowa U.

    2017-01-01

    The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involving $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($B \\to \\pi \\ell \

  13. Gauge-invariant inflaton in the minimal supersymmetric standard model.

    Science.gov (United States)

    Allahverdi, Rouzbeh; Enqvist, Kari; Garcia-Bellido, Juan; Mazumdar, Anupam

    2006-11-10

    We argue that all the necessary ingredients for successful inflation are present in the flat directions of the Minimally Supersymmetric Standard Model. We show that out of many gauge-invariant combinations of squarks, sleptons, and Higgs bosons, there are two directions, LLe and udd, which are promising candidates for the inflaton. The model predicts more than 10(3) e-foldings, with an inflationary scale of H(inf) approximately O(1-10) GeV, provides a tilted spectrum with an amplitude of delta(H) approximately 10(-5) and a negligible tensor perturbation. The temperature of the thermalized plasma could be as low as T(rh) approximately O(1-10) TeV. Parts of the inflaton potential can be determined independently of cosmology by future particle physics experiments.

  14. NC effective gauge model for multilayer FQH states

    CERN Document Server

    El-Rhalami, A

    2002-01-01

    We develop an effective field model for describing FQH states with rational filling factors that are not of Laughlin type. These kinds of systems, which concern single layer hierarchical states and multilayer ones, were observed experimentally; but have not yet a satisfactory non commutative effective field description like in the case of Susskind model. Using D brane analysis and fiber bundle techniques, we first classify such states in terms of representations characterized, amongst others, by the filling factor of the layers; but also by proper subgroups of the underlying U(n) gauge symmetry. Multilayer states in the lowest Landau level are interpreted in terms of systems of D2 branes; but hierarchical ones are realized as Fiber bundles on D2 which we construct explicitly. In this picture, Jain and Haldane series are recovered as special cases and have a remarkable interpretation in terms of Fiber bundles with specific intersection matrices. We also derive the general NC commutative effective field and mat...

  15. Dynamical Generation of the Gauged SU(2) Linear Sigma Model

    Science.gov (United States)

    Delbourgo, R.; Scadron, M. D.

    The fermion and meson sectors of the quark-level SU(2) linear sigma model are dynamically generated from a meson-quark Lagrangian, with the quark (q) and meson (σ, π) fields all treated as elementary, having neither bare masses nor expectation values. In the chiral limit, the masses are predicted to be mq = fπg, mπ = 0, mσ = 2mq, and we also find that the quark-meson coupling is g =2π /√ {Nc}, the three-meson coupling is g' =mσ 2 /2fπ =2gmq and the four-meson coupling is λ = 2g2 = g‧/fπ, where fπ ≃ 90 MeV is the pion decay constant and Nc = 3 is the color number. By gauging this model one can generate the couplings to the vector mesons ρ and A1, including the quark-vector coupling constant gρ = 2π, gρππ, gA1ρπ and the masses mρ 700 MeV, mA1˜= √ {3} mρ ; of course the vector and axial currents remain conserved throughout.

  16. A stringy perspective on the quantum integrable model/gauge correspondence

    CERN Document Server

    Orlando, Domenico

    2013-01-01

    We present a string theory realization for the correspondence between quantum integrable models and supersymmetric gauge theories. The quantization results from summing the effects of fundamental strings winding around a compact direction. We discuss the examples of the XXZ gauge/Bethe correspondence and five-dimensional \\Omega--deformed SYM on M x S^1.

  17. Model of unified gauge fields; Le modele des champs de jauge unifies

    Energy Technology Data Exchange (ETDEWEB)

    Leite Lopes, J. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1998-04-01

    In this work, we discuss the physical ideas which represents the basis for the unified gauge field model. Despite of the difficulties that we presently have for embodying in a natural manner muons and hadrons in that model, we have the feeling that we are on the way which seems to lead to the construction of a theory in which the Maxwell electromagnetic field and the Fermi weak interaction field are manifestations of a unique subjacent physical entity - the unified gauge fields. (author) 22 refs., 6 figs.

  18. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales

    Science.gov (United States)

    Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher-resolution data sources are...

  19. Atomic quantum simulation of a three-dimensional U(1) gauge-Higgs model

    CERN Document Server

    Kuno, Yoshihito; Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2016-01-01

    In this paper, we study atomic quantum simulations of a U(1) gauge-Higgs model on a three-dimensional (3D) spatial lattice. We start from an extended 3D Bose-Hubbard model with nearest-neighbor repulsions and show that it can simulate a U(1) gauge-Higgs model with next nearest-neighbor Higgs couplings. Here the phase of the boson variable on each site of the optical lattice describes the vector potential on each link of the gauge-model lattice. To determine the phase diagram of the gauge-Higgs model at a zero temperature, we perform Monte-Carlo simulations of the corresponding 3+1-dimensional U(1) gauge-Higgs model, and obtain the three phases, i.e., the confinement, Coulomb and Higgs phases. To investigate the dynamical properties of the gauge-Higgs model, we apply the Gross-Pitaevskii equations to the extended Bose-Hubbard model. We simulate the time-evolution of an electric flux initially put on a straight line connecting two external point charges. We also calculate the potential energy between this pair ...

  20. SU(3)F gauge family model and new symmetry breaking scale from FCNC processes

    National Research Council Canada - National Science Library

    Shou-Shan Bao; Zhuo Liu; Yue-Liang Wu

    2016-01-01

    Based on the SU(3)F gauge family symmetry model which was proposed to explain the observed mass and mixing pattern of neutrinos, we investigate the symmetry breaking, the mixing pattern in quark and lepton sectors...

  1. Evaluation of the value of radar QPE data and rain gauge data for hydrological modeling

    DEFF Research Database (Denmark)

    He, Xin; Sonnenborg, Torben Obel; Refsgaard, Jens Christian

    2013-01-01

    QPE data is in fact more obvious to groundwater than to surface water at daily scale. Moreover, substantial negative impact on the simulated hydrological responses is observed due to the cut down in operational rain gauge network between 2006 and 2010. The radar QPE based model demonstrates the added......Weather radar-based quantitative precipitation estimation (QPE) is in principle superior to the areal precipitation estimated by using rain gauge data only, and therefore has become increasingly popular in applications such as hydrological modeling. The present study investigates the potential...... of using multiannual radar QPE data in coupled surface water—groundwater modeling with emphasis given to the groundwater component. Since the radar QPE is partly dependent on the rain gauge observations, it is necessary to evaluate the impact of rain gauge network density on the quality of the estimated...

  2. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling

    Directory of Open Access Journals (Sweden)

    Mauro Rossi

    2017-12-01

    Full Text Available Landslides can be triggered by intense or prolonged rainfall. Rain gauge measurements are commonly used to predict landslides even if satellite rainfall estimates are available. Recent research focuses on the comparison of satellite estimates and gauge measurements. The rain gauge data from the Italian network (collected in the system database “Verifica Rischio Frana”, VRF are compared with the National Aeronautics and Space Administration (NASA Tropical Rainfall Measuring Mission (TRMM products. For the purpose, we couple point gauge and satellite rainfall estimates at individual grid cells, evaluating the correlation between gauge and satellite data in different morpho-climatological conditions. We then analyze the statistical distributions of both rainfall data types and the rainfall events derived from them. Results show that satellite data underestimates ground data, with the largest differences in mountainous areas. Power-law models, are more appropriate to correlate gauge and satellite data. The gauge and satellite-based products exhibit different statistical distributions and the rainfall events derived from them differ. In conclusion, satellite rainfall cannot be directly compared with ground data, requiring local investigation to account for specific morpho-climatological settings. Results suggest that satellite data can be used for forecasting landslides, only performing a local scaling between satellite and ground data.

  3. Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bum-Hoon [Department of Physics, Sogang University,Seoul 04107 (Korea, Republic of); Asia Pacific Center for Theoretical Physics, POSTECH,Pohang, Gyeongbuk 37673 (Korea, Republic of); Center for Quantum Spacetime, Sogang University,Seoul 04107 (Korea, Republic of); Ro, Daeho [Asia Pacific Center for Theoretical Physics, POSTECH,Pohang, Gyeongbuk 37673 (Korea, Republic of); Yang, Hyun Seok [Center for Quantum Spacetime, Sogang University,Seoul 04107 (Korea, Republic of)

    2017-01-10

    We study localization of five-dimensional supersymmetric U(1) gauge theory on S{sup 3}×ℝ{sub θ}{sup 2} where ℝ{sub θ}{sup 2} is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric U(N→∞) gauge theory on S{sup 3} using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space ℝ{sub θ}{sup 2} allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC U(1) gauge theory. The result shows a rich duality between NC U(1) gauge theories and large N matrix models in various dimensions.

  4. Supersymmetric model with an extra U(1) gauge symmetry forbidding proton decay

    Science.gov (United States)

    Aoki; Oshimo

    2000-06-05

    In the standard model the proton is protected from decay naturally by gauge symmetries, whereas in the ordinary minimal supersymmetric standard model an ad hoc discrete symmetry is imposed for the proton stability. We present a new supersymmetric model in which the proton decay is forbidden by an extra U(1) gauge symmetry. Particle contents are necessarily increased to be free from anomalies, incorporating right-handed neutrinos. Both Dirac and Majorana masses are generated for neutrinos, yielding nonvanishing but small masses. The superpotential consists only of trilinear couplings and the mass parameter &mgr; of the minimal model is induced by spontaneous breaking of the U(1) symmetry.

  5. Quantum groups as generalized gauge symmetries in WZNW models. Part I. The classical model

    Science.gov (United States)

    Hadjiivanov, L.; Furlan, P.

    2017-07-01

    Wess-Zumino-Novikov-Witten (WZNW) models over compact Lie groups G constitute the best studied class of (two dimensional, 2 D) rational conformal field theories (RCFTs). A WZNW chiral state space is a finite direct sum of integrable representations of the corresponding affine (current) algebra, and the correlation functions of primary fields are monodromy invariant combinations of left times right sector conformal blocks solving the Knizhnik-Zamolodchikov equation. However, even in this very well understood case of 2 D RCFT, the "internal" (gauge) symmetry that governs the ensuing fusion rules remains unclear. On the other hand, the canonical approach to the classical chiral WZNW theory developed by Faddeev, Alekseev, Shatashvili, Gawedzki and Falceto reveals its Poisson-Lie symmetry. After a covariant quantization, the latter gives rise to an associated quantum group symmetry which naturally requires an extension of the state space. This paper contains a review of earlier work on the subject with a special emphasis, in the case G = SU( n), on the emerging chiral "WZNW zero modes" which provide an adequate algebraic description of the internal symmetry structure of the model. Combining further left and right zero modes, one obtains a specific dynamical quantum group, the structure of its Fock representation resembling the axiomatic approach to gauge theories in which a "restricted" quantum group plays the role of a generalized gauge symmetry.

  6. Progress gauge symmetry breaking in SU(6) x SU(2) sub R model

    CERN Document Server

    Hayashi, T; Matsuda, M; Matsuoka, T

    2003-01-01

    In the SU(6) x SU(2) sub R string-inspired model, we describe the evolution of the couplings and the masses down from the string scale M sub s using the renormalization group equations and minimize the effective potential. This model possesses the flavor symmetry, including the binary dihedral group D tilde sub 4. We show that the scalar mass squared of the gauge non-singlet matter field possibly becomes negative slightly below the string scale. As a consequence, the precocious radiative breaking of the gauge symmetry down to the standard model gauge group can be realized. In the present model, the large Yukawa coupling, which plays an important role in the symmetry breaking, is identical to the colored Higgs coupling related to the longevity of the proton. (author)

  7. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling

    Directory of Open Access Journals (Sweden)

    H. E. Beck

    2017-12-01

    Full Text Available We undertook a comprehensive evaluation of 22 gridded (quasi-global (sub-daily precipitation (P datasets for the period 2000–2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086 gauges worldwide. Another nine gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the HBV conceptual model against streamflow records for each of 9053 small to medium-sized ( <  50 000 km2 catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR and the satellite- and reanalysis-based CHIRP V2.0 dataset, the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7 or near-surface soil moisture (SM2RAIN-ASCAT, and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS. Two of the three reanalyses (ERA-Interim and JRA-55 unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified, and MSWEP V1.2 and V2.0 generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU, which in turn outperformed the one indirectly incorporating gauge data through another multi-source dataset (PERSIANN-CDR V1R1. Our results highlight large differences in estimation accuracy

  8. Minimal gauged U(1) B-L model with spontaneous R parity violation.

    Science.gov (United States)

    Barger, Vernon; Pérez, Pavel Fileviez; Spinner, Sogee

    2009-05-08

    We study the minimal gauged U(1) B-L supersymmetric model and show that it provides an attractive theory for spontaneous R-parity violation. Both U(1) B-L and R parity are broken by the vacuum expectation value of the right-handed sneutrino (proportional to the soft supersymmetry masses), thereby linking the B-L and soft SUSY scales. In this context we find a consistent mechanism for generating neutrino masses and a realistic mass spectrum, all without extending the Higgs sector of the minimal supersymmetry standard model. We discuss the most relevant collider signals and the connection between the Z' gauge boson and R-parity violation.

  9. Fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)

    1983-04-28

    We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.

  10. Remarks on a B ∧ F model with topological mass from gauging spin

    Science.gov (United States)

    Gaete, Patricio; Helayël-Neto, José A.

    2017-10-01

    Aspects of screening and confinement are reassessed for a B \\wedge F model with topological mass with the gauging of spin. Our discussion is carried out using the gauge-invariant, but path-dependent, variables formalism. We explicitly show that the static potential profile is the sum of a Yukawa and a linear potential, leading to the confinement of static external charges. Interestingly enough, similar results are obtained in a theory of antisymmetric tensor fields that results from the condensation of topological defects as a consequence of the Julia-Toulouse mechanism.

  11. Quantized gauge theory on the fuzzy sphere as random matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold E-mail: harold.steinacker@physik.uni-muenchen.de

    2004-02-16

    U(n) Yang-Mills theory on the fuzzy sphere S{sup 2}{sub N} is quantized using random matrix methods. The gauge theory is formulated as a matrix model for a single Hermitian matrix subject to a constraint, and a potential with two degenerate minima. This allows to reduce the path integral over the gauge fields to an integral over eigenvalues, which can be evaluated for large N. The partition function of U(n) Yang-Mills theory on the classical sphere is recovered in the large N limit, as a sum over instanton contributions. The monopole solutions are found explicitly.

  12. Modeling Streamflow Using Gauge-Only Versus Radar-derived Rainfall

    Science.gov (United States)

    Sullivan, J. L.; Fuelberg, H. E.; Martinaitis, S. M.

    2007-12-01

    Rainfall in Florida is very dynamic in nature and is the greatest determining factor in hydrologic modeling studies. These studies traditionally have used gauge-only rainfall estimates despite their limitations and the advances in multi-sensor precipitation estimates. The convenience and familiarity with gauge data are a major factor leading to their continued use; however, there also have been questions about the statistical consistency and quality of radar-derived precipitation data. We previously reported on an intercomparison between gauge-only Thiessen polygon data with the gridded 4 × 4 km Florida State University (FSU) version of the National Weather Service (NWS) Multi-sensor Precipitation Estimator (MPE) scheme over several Florida basins. We showed that gauge-density within a basin is highly correlated with the magnitude of rainfall differences between the two datasets. The study also showed that seasonal characteristics of rainfall are an important factor leading to differences. The current paper evaluates the impacts of these input differences on streamflow by using a specialized, fully-distributed hydrologic model--the Watershed Assessment Model (WAM). Although WAM can model various water quality parameters, we focus on the streamflow produced by the different rainfall inputs. By describing differences in streamflow, we provide results that modelers can easily relate to--the impact of higher-resolution MPE rainfall data on their model's bottom-line. We have modeled the Suwannee River basin in North Florida between 1996 and 2005. Hourly rain gauge data used as input to the FSU MPE scheme were obtained from the National Climatic Data Center (NCDC) and the Suwannee River Water Management District (SRWMD). This combination provides the most reliably-dense gauge network possible. All of the rain gauge data were quality-controlled by FSU. Quality-controlled radar data were obtained from the NWS's Southeast River Forecast Center (SERFC). The FSU 4 × 4 km

  13. Gauge-Independent Scales Related to the Standard Model Vacuum Instability

    CERN Document Server

    Espinosa, Jose R.; Konstandin, Thomas; Riotto, Antonio

    2017-01-01

    The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about $10^{11}$ GeV. However, such a scale is unphysical as it is not gauge-invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.

  14. Early LHC bound on the W{sup Prime} boson mass in the nonuniversal gauge interaction model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Gyun [Department of Science Education, Gwangju National University of Education, Gwangju 500-703 (Korea, Republic of); Lee, Kang Young, E-mail: kylee14214@gmail.com [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2012-01-05

    We study the phenomenology of the heavy charged gauge boson and obtain the lower bounds on its mass with the early LHC data at 7 TeV center-of-mass energy in the nonuniversal gauge interaction model, in which the electroweak SU(2) gauge group depends upon the fermion family. We found that the direct bound with the early data of the LHC is already better than the indirect bound on the mass of the W{sup Prime} boson.

  15. 2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

    Energy Technology Data Exchange (ETDEWEB)

    Anber, Mohamed M.; Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.

    2012-08-16

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.

  16. Criticality of O (N ) symmetric models in the presence of discrete gauge symmetries

    Science.gov (United States)

    Pelissetto, Andrea; Tripodo, Antonio; Vicari, Ettore

    2018-01-01

    We investigate the critical properties of the three-dimensional antiferromagnetic RPN -1 model, which is characterized by a global O (N ) symmetry and a discrete Z2 gauge symmetry. We perform a field-theoretical analysis using the Landau-Ginzburg-Wilson (LGW) approach and a numerical Monte Carlo study. The LGW field-theoretical results are obtained by high-order perturbative analyses of the renormalization-group flow of the most general Φ4 theory with the same global symmetry as the model, assuming a gauge-invariant order-parameter field. For N =4 no stable fixed point is found, implying that any transition must necessarily be of first order. This is contradicted by the numerical results that provide strong evidence for a continuous transition. This suggests that gauge modes are not always irrelevant, as assumed by the LGW approach, but they may play an important role to determine the actual critical dynamics at the phase transition of O (N ) symmetric models with a discrete Z2 gauge symmetry.

  17. From integrable models to gauge theories Festschrift Matinyan (Sergei G)

    CERN Document Server

    Gurzadyan, V G

    2002-01-01

    This collection of twenty articles in honor of the noted physicist and mentor Sergei Matinyan focuses on topics that are of fundamental importance to high-energy physics, field theory and cosmology. The topics range from integrable quantum field theories, three-dimensional Ising models, parton models and tests of the Standard Model, to black holes in loop quantum gravity, the cosmological constant and magnetic fields in cosmology. A pedagogical essay by Lev Okun concentrates on the problem of fundamental units. The articles have been written by well-known experts and are addressed to graduate

  18. Discrete gauge theories

    NARCIS (Netherlands)

    de Wild Propitius, M.; Bais, F.A.; Semenoff, G.; Vinet, L.

    1999-01-01

    In these lectures, we present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group $H$ via the Higgs mechanism. The main focus is on the discrete $H$ gauge theory describing the long distance physics of such a model. The spectrum features global $H$

  19. Random gauge models of the superconductor-insulator transition in two-dimensional disordered superconductors

    Science.gov (United States)

    Granato, Enzo

    2017-11-01

    We study numerically the superconductor-insulator transition in two-dimensional inhomogeneous superconductors with gauge disorder, described by four different quantum rotor models: a gauge glass, a flux glass, a binary phase glass, and a Gaussian phase glass. The first two models describe the combined effect of geometrical disorder in the array of local superconducting islands and a uniform external magnetic field, while the last two describe the effects of random negative Josephson-junction couplings or π junctions. Monte Carlo simulations in the path-integral representation of the models are used to determine the critical exponents and the universal conductivity at the quantum phase transition. The gauge- and flux-glass models display the same critical behavior, within the estimated numerical uncertainties. Similar agreement is found for the binary and Gaussian phase-glass models. Despite the different symmetries and disorder correlations, we find that the universal conductivity of these models is approximately the same. In particular, the ratio of this value to that of the pure model agrees with recent experiments on nanohole thin-film superconductors in a magnetic field, in the large disorder limit.

  20. Compactification of gauge models and the effective potential

    Energy Technology Data Exchange (ETDEWEB)

    Shtykov, N.N. (Leningrad State University, Leningrad (SU))

    1989-07-01

    The one-loop potential for bosons and massive fermions in an Abelian model is obtained on the {ital M}{sup 2}{times}{ital S1}{times}{ital S1} manifold. Stability of the total potential against arbitrary homogeneous deformations of {ital S}{sup 1}{times}{ital S1} is studied. It is shown that attraction or repulsion depends on the relations connecting the radii of the spheres, the fermion masses, and the coupling constant.

  1. Condensed Cooper pairs and quasi particles in a gauge invariant finite temperature BCS-model

    Energy Technology Data Exchange (ETDEWEB)

    Rieckers, A.; Ullrich, M.

    1985-01-01

    The eigen-excitations of the strong coupling BCS-model are analyzed in the multi-phase representation by means of a gauge invariant Bogoliubov-Valatin transformation. The resulting quasi-particle states span the finite-temperature representation space only if tensorized with the condensed pair states. A strict two-fluid model emerges in which the particle-number, global density, and the effective Hamiltonian are decomposed unambiguously.

  2. A new tide model for the Mediterranean Sea based on altimetry and tide gauge assimilation

    Directory of Open Access Journals (Sweden)

    D. N. Arabelos

    2011-06-01

    Full Text Available The tides for the Mediterranean Sea are described through a high resolution model (MEDI10 developed by assimilation of tide-gauge data and T/P data into a barotropic ocean tide model. Tidal parameters from 56 coastal tide-gauge stations around the Mediterranean for eight principal constituents: M2, S2, N2, K2, K1, O1, P1 and Q1 and from 20 stations for M2, S2, K1, O1 are included in the model. TOPEX/Poseidon data with all corrections applied except for the ocean tides and bathymetry from TOPO 13.1 were used for development of the model. Numerical experiments were carried out for the estimation of the friction velocity and of the decorrelation length scale. The experiments related to the friction velocity showed that the use of spatially varying friction velocity, estimated as a function of position in the model domain, gives better results than a constant value. The experiments related to the estimation of the decorrelation length suggest that the results are not sensitive for lengths close to ten times the length of the grid cell. The assessment of the model is based on ten tide-gauge observations that are not used for the assimilation. Comparisons were carried out with contemporary published global or regional models. The final solution is computed using 76 selected coastal tide-gauge stations. The comparison between the observed and the model constituents results in a Root Sum of Squares (RSS equal to 1.3 cm.

  3. Gauging N=2 supersymmetric non-linear {sigma}-models in the Atiyah-Ward space-time

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.; Oliveira, M.W. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-11-01

    It was built up a class of N=2 supersymmetric non-linear {sigma}-models in an N=1 superspace based on the Atiyah-Ward space-time of (2+2)-signature metric. Is also discussed the gauging of isometries of the associated hyper-Kaehlerian target spaces and present the resulting gauge-covariant supersymmetric action functional. (author). 27 refs.

  4. Generalized Potts-Models and their Relevance for Gauge Theories

    Directory of Open Access Journals (Sweden)

    Andreas Wipf

    2007-01-01

    Full Text Available We study the Polyakov loop dynamics originating from finite-temperature Yang-Mills theory. The effective actions contain center-symmetric terms involving powers of the Polyakov loop, each with its own coupling. For a subclass with two couplings we perform a detailed analysis of the statistical mechanics involved. To this end we employ a modified mean field approximation and Monte Carlo simulations based on a novel cluster algorithm. We find excellent agreement of both approaches. The phase diagram exhibits both first and second order transitions between symmetric, ferromagnetic and antiferromagnetic phases with phase boundaries merging at three tricritical points. The critical exponents ν and γ at the continuous transition between symmetric and antiferromagnetic phases are the same as for the 3-state spin Potts model.

  5. Supersymmetric gauged matrix models from dimensional reduction on a sphere arXiv

    CERN Document Server

    Closset, Cyril; Seong, Rak-Kyeong

    It was recently proposed that N=1 supersymmetric gauged matrix models have a duality of order four - that is, a quadrality - reminiscent of infrared dualities of SQCD theories in higher dimensions. In this note, we show that the zero-dimensional quadrality proposal can be infered from the two-dimensional Gadde-Gukov-Putrov triality. We consider two-dimensional N=(0,2) SQCD compactified on a sphere with the half-topological twist. For a convenient choice of R-charge, the zero-mode sector on the sphere gives rise to a simple N=1 gauged matrix model. Triality on the sphere then implies a triality relation for the supersymmetric matrix model, which can be completed to the full quadrality.

  6. Gauge Group Contraction of Electroweak Model and its Natural Energy Limits

    Directory of Open Access Journals (Sweden)

    Nikolai A. Gromov

    2015-09-01

    Full Text Available The low and higher energy limits of the Electroweak Model are obtained from first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. The very weak neutrino-matter interaction is explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the Electroweak Model. At the infinite energy all particles lose masses, electroweak interactions become long-range and are mediated by the neutral currents. The limit model represents the development of the early Universe from the Big Bang up to the end of the first second.

  7. Natural Limits of Electroweak Model as Contraction of its Gauge Group

    CERN Document Server

    Gromov, Nikolay A

    2014-01-01

    The low and higher energy limits of the Electroweak Model are obtained from first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. The very weak neutrino-matter interactions is explained by zero tending contraction parameter, which depend on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the Electroweak Model. At the infinite energy all particles lose masses, electroweak interactions become long-range and are mediated by the neutral currents. The limit model represents the development of the early Universe from the Big Bang up to the end of the first second.

  8. Natural limits of electroweak model as contraction of its gauge group

    Science.gov (United States)

    Gromov, N. A.

    2015-06-01

    The low and higher energy limits of the electroweak model are obtained from the first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. Very weak neutrino-matter interactions are explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the electroweak model. At the infinite energy all particles lose mass, electroweak interactions become long-range and are mediated by neutral currents. The limit model represents the development of the early Universe from the big bang up to the end of the first second.

  9. Renormalization of the Abelian–Higgs model in the Rξ and Unitary gauges and the physicality of its scalar potential

    Directory of Open Access Journals (Sweden)

    Nikos Irges

    2017-11-01

    Full Text Available We perform an old school, one-loop renormalization of the Abelian–Higgs model in the Unitary and Rξ gauges, focused on the scalar potential and the gauge boson mass. Our goal is to demonstrate in this simple context the validity of the Unitary gauge at the quantum level, which could open the way for an until now (mostly avoided framework for loop computations. We indeed find that the Unitary gauge is consistent and equivalent to the Rξ gauge at the level of β-functions. Then we compare the renormalized, finite, one-loop Higgs potential in the two gauges and we again find equivalence. This equivalence needs not only a complete cancellation of the gauge fixing parameter ξ from the Rξ gauge potential but also requires its ξ-independent part to be equal to the Unitary gauge result. We follow the quantum behavior of the system by plotting Renormalization Group trajectories and Lines of Constant Physics, with the former the well known curves and with the latter, determined by the finite parts of the counter-terms, particularly well suited for a comparison with non-perturbative studies.

  10. Atomki anomaly and dark matter in a radiative seesaw model with gauged B -L symmetry

    Science.gov (United States)

    Seto, Osamu; Shimomura, Takashi

    2017-05-01

    Motivated by recently reported anomalies in a decay of an excited state of beryllium by the Atomki Collaboration, we study a radiative seesaw model with gauged B -L symmetry and a Z2 parity. Assuming that the anomalies originate from the decay of the B -L gauge boson followed by the nuclear decay, the mass of the lightest right-handed neutrino or the dark matter candidate can be determined below 10 GeV. We show that for this mass range, the model can explain the anomalies in the beryllium decay and the relic dark matter abundance consistent with neutrino masses. We also predict its spin-independent cross section in direct detection experiments for this mass range.

  11. Mathematical gauge theory with applications to the standard model of particle physics

    CERN Document Server

    Hamilton, Mark J D

    2017-01-01

    The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of d...

  12. Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields

    Science.gov (United States)

    Struck, J.; Weinberg, M.; Ölschläger, C.; Windpassinger, P.; Simonet, J.; Sengstock, K.; Höppner, R.; Hauke, P.; Eckardt, A.; Lewenstein, M.; Mathey, L.

    2013-11-01

    Magnetism plays a key role in modern science and technology, but still many open questions arise from the interplay of magnetic many-body interactions. Deeper insight into complex magnetic behaviour and the nature of magnetic phase transitions can be obtained from, for example, model systems of coupled XY and Ising spins. Here, we report on the experimental realization of such a coupled system with ultracold atoms in triangular optical lattices. This is accomplished by imposing an artificial gauge field on the neutral atoms, which acts on them as a magnetic field does on charged particles. As a result, the atoms show persistent circular currents, the direction of which provides an Ising variable. On this, the tunable staggered gauge field, generated by a periodic driving of the lattice, acts as a longitudinal field. Further, the superfluid ground state presents strong analogies with the paradigm example of the fully frustrated XY model on a triangular lattice.

  13. T-duality transformation of gauged linear sigma model with F-term

    Directory of Open Access Journals (Sweden)

    Tetsuji Kimura

    2014-10-01

    Full Text Available We develop the duality transformation rules in two-dimensional theories in the superfield formalism. Even if the chiral superfield which we dualize involves an F-term, we can dualize it by virtue of the property of chiral superfields. We apply the duality transformation rule of the neutral chiral superfield to the N=(4,4 gauged linear sigma model for five-branes. We also investigate the duality transformation rule of the charged chiral superfield in the N=(4,4 gauged linear sigma model for the A1-type ALE space. In both cases we obtain the dual Lagrangians in the superfield formalism. In the low energy limit we find that their duality transformations are interpreted as T-duality transformations consistent with the Buscher rule.

  14. Two species of vortices in massive gauged non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Izquierdo, A. [Departamento de Matemática Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales, Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. García [Departamento de Física, Universidad de Oviedo, Facultad de Ciencias, Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Física Fundamental, Universidad de Salamanca, Facultad de Ciencias, Plaza de la Merced, E-37008 Salamanca (Spain)

    2015-02-23

    Non-linear sigma models with scalar fields taking values on ℂℙ{sup n} complex manifolds are addressed. In the simplest n=1 case, where the target manifold is the S{sup 2} sphere, we describe the scalar fields by means of stereographic maps. In this case when the U(1) symmetry is gauged and Maxwell and mass terms are allowed, the model accommodates stable self-dual vortices of two kinds with different energies per unit length and where the Higgs field winds at the cores around the two opposite poles of the sphere. Allowing for dielectric functions in the magnetic field, similar and richer self-dual vortices of different species in the south and north charts can be found by slightly modifying the potential. Two different situations are envisaged: either the vacuum orbit lies on a parallel in the sphere, or one pole and the same parallel form the vacuum orbit. Besides the self-dual vortices of two species, there exist BPS domain walls in the second case. Replacing the Maxwell contribution of the gauge field to the action by the second Chern-Simons secondary class, only possible in (2+1)-dimensional Minkowski space-time, new BPS topological defects of two species appear. Namely, both BPS vortices and domain ribbons in the south and the north charts exist because the vacuum orbit consits of the two poles and one parallel. Formulation of the gauged ℂℙ{sup 2} model in a reference chart shows a self-dual structure such that BPS semi-local vortices exist. The transition functions to the second or third charts break the U(1)×SU(2) semi-local symmetry, but there is still room for standard self-dual vortices of the second species. The same structures encompassing N complex scalar fields are easily generalized to gauged ℂℙ{sup N} models.

  15. Extended gauge transformations and the physical dynamics in a finite temperature BCS-model

    Energy Technology Data Exchange (ETDEWEB)

    Rieckers, A.; Ullrich, M.

    1985-01-01

    In the finite temperature representation of the grand canonical limiting state the authors investigate the gauge transformations and the physical (in contradistinction to the reduced) dynamics for the strong coupling BCS-model. It is shown that both transformation groups act in a non-trivial manner on the centers of those von Neumann algebras which belong to temperature representations with ..beta.. > ..beta..sub(c). This gives a microscopic explanation for the macroscopic phase rotation in thermodynamic equilibrium at low temperatures.

  16. Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged and ungauged locations

    Science.gov (United States)

    Li, Yuan; Grimaldi, Stefania; Pauwels, Valentijn R. N.; Walker, Jeffrey P.

    2018-02-01

    The skill of hydrologic models, such as those used in operational flood prediction, is currently restricted by the availability of flow gauges and by the quality of the streamflow data used for calibration. The increased availability of remote sensing products provides the opportunity to further improve the model forecasting skill. A joint calibration scheme using streamflow measurements and remote sensing derived soil moisture values was examined and compared with a streamflow only calibration scheme. The efficacy of the two calibration schemes was tested in three modelling setups: 1) a lumped model; 2) a semi-distributed model with only the outlet gauge available for calibration; and 3) a semi-distributed model with multiple gauges available for calibration. The joint calibration scheme was found to slightly degrade the streamflow prediction at gauged sites during the calibration period compared with streamflow only calibration, but improvement was found at the same gauged sites during the independent validation period. A more consistent and statistically significant improvement was achieved at gauged sites not used in the calibration, due to the spatial information introduced by the remotely sensed soil moisture data. It was also found that the impact of using soil moisture for calibration tended to be stronger at the upstream and tributary sub-catchments than at the downstream sub-catchments.

  17. Integrating Long Tide Gauge Records with Projection Modelling Outputs. A Case Study: New York

    Directory of Open Access Journals (Sweden)

    Phil J. Watson

    2017-08-01

    Full Text Available Sea level rise is one of the key artefacts of a warming climate which is predicted to have profound impacts for coastal communities over the course of the 21st century and beyond. The IPCC provide regular updates (5–7 years on the global status of the science and projections of climate change to assist guide policy, adaptation and mitigation endeavours. Increasingly sophisticated climate modelling tools are being used to underpin these processes with demand for improved resolution of modelling output products (such as predicted sea level rise at a more localized scale. With a decade of common coverage between observational data and CMIP5 projection model outputs (2007–2016, this analysis provides an additional method by which to test the veracity of model outputs to replicate in-situ measurements using the case study site of New York. Results indicate that the mean relative velocity of the model projection products is of the order of 2.5–2.8 mm/year higher than the tide gauge results in 2016. In the event this phenomena is more spatially represented, there is a significant role for long tide gauge records to assist in evaluating climate model products to improve scientific rigour.

  18. Gauge coupling of non-linear σ-model and a generalized Mazur identity

    Science.gov (United States)

    Carter, B.

    An inversionsymmetric class of non-linear σ-models is constructed. The original pure model with field values in the coset space of a classical matrix group G with respect to an isotropy subgroup under the adjoint action is generalized to a minimally gauge coupled model in which the field is a section in a bundle with group G acting on the coset space as fibre with a nontrivial connection of (for example) Yang-Mills type. It is shown that the gauge coupled models admit a natural generalisation of the identities originally constructed by Mazur for the pure nonlinear σ-models whereby the divergence of a quantity whose surface integral vanishes when suitable boundary conditions are satisfied is shown to be equal to a functional of the difference between two sets of field variables that is positive definite in many relevant situation. In such cases, which occur when the base-space metric is positive definite (so that the system is of elliptic type) and the isotropy subgroup is compact, the identities lead directly to uniqueness theorems for the solutions.

  19. Cosmological Magnetic Fields from Gauge-Mediated Supersymmetry-Breaking Models

    CERN Document Server

    Kandus, A; Mazzitelli, F D; Wagner, C E M; Kandus, Alejandra; Calzetta, Esteban A.; Mazzitelli, Francisco D.; Wagner, Carlos E. M.

    2000-01-01

    We study the generation of primordial magnetic fields, coherent over cosmologically interesting scales, by cosmological creation of charged scalar particles during the reheating period. We show that magnetic fields consistent with those detected by observation may obtained if the particle mean life mechanism to minimal gauge mediated supersymmetry-breaking models, in the case in which the lightest stau \\tilde\\tau_1 is the next-to-lightest supersymmetric particle. We show that, for a large range of phenomenologically acceptable values of the supersymmetry-breaking scale \\sqrt{F}, the generated primordial magnetic field can be strong enough to seed the galactic dynamo.

  20. Phases and geometry of the N=1 A_2 quiver gauge theory and matrix models

    OpenAIRE

    Casero, Roberto; Trincherini, Enrico

    2003-01-01

    We study the phases and geometry of the N=1 A_2 quiver gauge theory using matrix models and a generalized Konishi anomaly. We consider the theory both in the Coulomb and Higgs phases. Solving the anomaly equations, we find that a meromorphic one-form sigma(z)dz is naturally defined on the curve Sigma associated to the theory. Using the Dijkgraaf-Vafa conjecture, we evaluate the effective low-energy superpotential and demonstrate that its equations of motion can be translated into a geometric ...

  1. Machine learning of explicit order parameters: From the Ising model to SU(2) lattice gauge theory

    Science.gov (United States)

    Wetzel, Sebastian J.; Scherzer, Manuel

    2017-11-01

    We present a solution to the problem of interpreting neural networks classifying phases of matter. We devise a procedure for reconstructing the decision function of an artificial neural network as a simple function of the input, provided the decision function is sufficiently symmetric. In this case one can easily deduce the quantity by which the neural network classifies the input. The method is applied to the Ising model and SU(2) lattice gauge theory. In both systems we deduce the explicit expressions of the order parameters from the decision functions of the neural networks. We assume no prior knowledge about the Hamiltonian or the order parameters except Monte Carlo-sampled configurations.

  2. Installation and operation manual on sea level gauge (Model: NIO_Ghana_2004)

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A; Pereira, A; VijayKumar, K.; Prabhudesai, S.; Methar, A; Dias, M.

    NIO sea level gauge is a pressure-based gauge that operates on 12 volts battery. The pressure-sensing element used in this gauge is a piezo-resistive programmable semiconductor transducer that provides pressure samples in RS-485 format...

  3. Calibration of HEC-Ras hydrodynamic model using gauged discharge data and flood inundation maps

    Science.gov (United States)

    Tong, Rui; Komma, Jürgen

    2017-04-01

    The estimation of flood is essential for disaster alleviation. Hydrodynamic models are implemented to predict the occurrence and variance of flood in different scales. In practice, the calibration of hydrodynamic models aims to search the best possible parameters for the representation the natural flow resistance. Recent years have seen the calibration of hydrodynamic models being more actual and faster following the advance of earth observation products and computer based optimization techniques. In this study, the Hydrologic Engineering River Analysis System (HEC-Ras) model was set up with high-resolution digital elevation model from Laser scanner for the river Inn in Tyrol, Austria. 10 largest flood events from 19 hourly discharge gauges and flood inundation maps were selected to calibrate the HEC-Ras model. Manning roughness values and lateral inflow factors as parameters were automatically optimized with the Shuffled complex with Principal component analysis (SP-UCI) algorithm developed from the Shuffled Complex Evolution (SCE-UA). Different objective functions (Nash-Sutcliffe model efficiency coefficient, the timing of peak, peak value and Root-mean-square deviation) were used in single or multiple way. It was found that the lateral inflow factor was the most sensitive parameter. SP-UCI algorithm could avoid the local optimal and achieve efficient and effective parameters in the calibration of HEC-Ras model using flood extension images. As results showed, calibration by means of gauged discharge data and flood inundation maps, together with objective function of Nash-Sutcliffe model efficiency coefficient, was very robust to obtain more reliable flood simulation, and also to catch up with the peak value and the timing of peak.

  4. Gauge-invariant implementation of the Abelian Higgs model on optical lattices

    CERN Document Server

    Bazavov, Alexei; Tsai, Shan-Wen; Unmuth-Yockey, Judah; Zhang, Jin

    2015-01-01

    We present a gauge-invariant effective action for the Abelian Higgs model (scalar electrodynamics) with a chemical potential $\\mu$ on a 1+1 dimensional lattice. This formulation provides an expansion in the hopping parameter $\\kappa$ which we test with Monte Carlo simulations for a broad range of the inverse gauge coupling $\\beta_{pl}$ and small values of the scalar self-coupling $\\lambda$. In the opposite limit of infinitely large $\\lambda$, the partition function can be written as a traced product of local tensors which allows us to write exact blocking formulas. Their numerical implementation requires truncations but there is no sign problem for arbitrary values of $\\mu$. We show that the time continuum limit of the blocked transfer matrix can be obtained numerically and, in the limit of infinite $\\beta_{pl}$ and with a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard model in the limit of large onsite repulsion. We extend this proced...

  5. From 6D superconformal field theories to dynamic gauged linear sigma models

    Science.gov (United States)

    Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.

    2017-09-01

    Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.

  6. Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Casana, R.; Cavalcante, A. [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Hora, E. da [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Coordenadoria Interdisciplinar de Ciência e Tecnologia, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)

    2016-12-14

    We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F{sub μν}F{sup μν}. We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol’nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with |ϕ|{sup 4}-potential or |ϕ|{sup 6}-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.

  7. Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges

    Science.gov (United States)

    Dedes, A.; Materkowska, W.; Paraskevas, M.; Rosiek, J.; Suxho, K.

    2017-06-01

    We assume that New Physics effects are parametrized within the Standard Model Effective Field Theory (SMEFT) written in a complete basis of gauge invariant operators up to dimension 6, commonly referred to as "Warsaw basis". We discuss all steps necessary to obtain a consistent transition to the spontaneously broken theory and several other important aspects, including the BRST-invariance of the SMEFT action for linear R ξ -gauges. The final theory is expressed in a basis characterized by SM-like propagators for all physical and unphysical fields. The effect of the non-renormalizable operators appears explicitly in triple or higher multiplicity vertices. In this mass basis we derive the complete set of Feynman rules, without resorting to any simplifying assumptions such as baryon-, lepton-number or CP conservation. As it turns out, for most SMEFT vertices the expressions are reasonably short, with a noticeable exception of those involving 4, 5 and 6 gluons. We have also supplemented our set of Feynman rules, given in an appendix here, with a publicly available Mathematica code working with the FeynRules package and producing output which can be integrated with other symbolic algebra or numerical codes for automatic SMEFT amplitude calculations.

  8. On the Gauged Kahler Isometry in Minimal Supergravity Models of Inflation

    CERN Document Server

    Ferrara, Sergio; Sorin, Alexander S.

    2014-01-01

    In this paper we address the question how to discriminate whether the gauged isometry group G_Sigma of the Kahler manifold Sigma that produces a D-type inflaton potential in a Minimal Supergravity Model is elliptic, hyperbolic or parabolic. We show that the classification of isometries of symmetric cosets can be extended to non symmetric Sigma.s if these manifolds satisfy additional mathematical restrictions. The classification criteria established in the mathematical literature are coherent with simple criteria formulated in terms of the asymptotic behavior of the Kahler potential K(C) = 2 J(C) where the real scalar field C encodes the inflaton field. As a by product of our analysis we show that all phenomenologically admissible potentials for the description of inflation and in particular alpha-attractors are mostly obtained from the gauging of a parabolic isometry. The requirement of regularity of the manifold Sigma poses strong constraints on the alpha-attractors and reduces their space considerably. Curi...

  9. (1+1-dimensional gauge symmetric gravity model and related exact black hole and cosmological solutions in string theory

    Directory of Open Access Journals (Sweden)

    S. Hoseinzadeh

    2017-10-01

    Full Text Available We introduce a four-dimensional extension of the Poincaré algebra (N in (1+1-dimensional space-time and obtain a (1+1-dimensional gauge symmetric gravity model using the algebra N. We show that the obtained gravity model is dual (canonically transformed to the (1+1-dimensional anti de Sitter (AdS gravity. We also obtain some black hole and Friedmann–Robertson–Walker (FRW solutions by solving its classical equations of motion. Then, we study A4,8A1⊗A1 gauged Wess–Zumino–Witten (WZW model and obtain some exact black hole and cosmological solutions in string theory. We show that some obtained black hole and cosmological metrics in string theory are same as the metrics obtained in solutions of our gauge symmetric gravity model.

  10. (1 + 1)-dimensional gauge symmetric gravity model and related exact black hole and cosmological solutions in string theory

    Science.gov (United States)

    Hoseinzadeh, S.; Rezaei-Aghdam, A.

    2017-10-01

    We introduce a four-dimensional extension of the Poincaré algebra (N) in (1 + 1)-dimensional space-time and obtain a (1 + 1)-dimensional gauge symmetric gravity model using the algebra N. We show that the obtained gravity model is dual (canonically transformed) to the (1 + 1)-dimensional anti de Sitter (AdS) gravity. We also obtain some black hole and Friedmann-Robertson-Walker (FRW) solutions by solving its classical equations of motion. Then, we study A4,8A1/⊗A1 gauged Wess-Zumino-Witten (WZW) model and obtain some exact black hole and cosmological solutions in string theory. We show that some obtained black hole and cosmological metrics in string theory are same as the metrics obtained in solutions of our gauge symmetric gravity model.

  11. Rain Gauges Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).

  12. Heavy neutral pseudoscalar decays into gauge bosons in the Littlest Higgs model

    Science.gov (United States)

    Aranda, J. I.; Cruz-Albaro, E.; Espinosa-Gómez, D.; Montaño, J.; Ramírez-Zavaleta, F.; Tututi, E. S.

    2017-10-01

    We study two-body decays of a new neutral pseudoscalar into standard model gauge bosons within the context of the Littlest Higgs model. The {{{Φ }}}{{P}}\\to {WW},{VV},{gg} processes induced at the one-loop level, with V=γ ,Z, are considered. Since the branching ratios of the {{{Φ }}}P\\to {VV} decays result were very suppressed, only the {{{Φ }}}{{P}}\\to {WW},{gg} processes are thoroughly studied. The branching ratios for the {{{Φ }}}{{P}}\\to {gg} and {{{Φ }}}{{P}}\\to {WW} decays are of the order of 10-5 and 10-7, respectively, for f around 3 TeV, which represents the global symmetry breaking scale of the theory. The production cross section of the {{{Φ }}}{{P}} boson via gluon fusion at the LHC is estimated.

  13. Classically conformal radiative neutrino model with gauged B−L symmetry

    Directory of Open Access Journals (Sweden)

    Hiroshi Okada

    2016-09-01

    Full Text Available We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B−L symmetry in the standard model that is essential in order to work the Coleman–Weinberg mechanism well that induces the B−L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman–Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ→eγ, the current bound on the Z′ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  14. A comparison of flood extent modelling approaches through constraining uncertainties on gauge data

    Directory of Open Access Journals (Sweden)

    M. G. F. Werner

    2004-01-01

    Full Text Available A comparison is made of 1D, 2D and integrated 1D-2D hydraulic models in predicting flood stages in a 17 km reach of the River Saar in Germany. The models perform comparably when calibrated against limited data available from a single gauge in the reach for three low to medium flood events. In validation against a larger event than those used in calibration, extrapolation with the 1D and particularly the integrated 1D-2D model is reliable, if uncertain, while the 2D model is unreliable. The difference stems from the way in which the models deal with flow in the main channel and in the floodplain and with turbulent momentum interchange between the two domains. The importance of using spatial calibration data for testing models giving spatial predictions is shown. Even simple binary (eye-witness observations on the presence or absence of flooding in establishing a reliable model structure to predict flood extent can be very valuable. Keywords: floods, hydraulic modelling, model calibration, uncertainty analysis

  15. Analytical solution to DGLAP integro-differential equation in a simple toy-model with a fixed gauge coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Gustavo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Concepcion Univ. (Chile). Dept. de Fisica; Cvetic, Gorazd [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio-Bio, Chillan (Chile). Grupo de Matematica Aplicada; Univ. del Bio-Bio, Chillan (Chile). Grupo de Fisica de Altas Energias; Parra-Ferrada, Ivan [Talca Univ. (Chile). Inst. de Matematica y Fisica

    2016-11-15

    We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be N=4 supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken x. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We study a result obtained for the realistic gluon distribution and find a singular Bessel-like behaviour in the vicinity of the point x=0 and a smooth behaviour in the vicinity of the point x=1.

  16. Finite Element Model of the Strain Gauge For Determining Uniaxial Tension

    Directory of Open Access Journals (Sweden)

    Vladimír GOGA

    2013-12-01

    Full Text Available Strain gauge is device used to measure the mechanical strains of solid bodies. Deformation of the strain gauge element causes changes its electrical resistance. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor. When the stains are known, it is possible to determined state of stress at a point of measured body using generalized Hooke`s law and Mohr`s circle. Finite element analysis of strain gauge measurement using ANSYS software is subject of this article.

  17. Areal rainfall estimation using moving cars as rain gauges – a modelling study

    Directory of Open Access Journals (Sweden)

    U. Haberlandt

    2010-07-01

    Full Text Available Optimal spatial assessment of short-time step precipitation for hydrological modelling is still an important research question considering the poor observation networks for high time resolution data. The main objective of this paper is to present a new approach for rainfall observation. The idea is to consider motorcars as moving rain gauges with windscreen wipers as sensors to detect precipitation. This idea is easily technically feasible if the cars are provided with GPS and a small memory chip for recording the coordinates, car speed and wiper frequency. This study explores theoretically the benefits of such an approach. For that a valid relationship between wiper speed and rainfall rate considering uncertainty was assumed here. A simple traffic model is applied to generate motorcars on roads in a river basin. Radar data are used as reference rainfall fields. Rainfall from these fields is sampled with a conventional rain gauge network and with several dynamic networks consisting of moving motorcars, using different assumptions such as accuracy levels for measurements and sensor equipment rates for the car networks. Those observed point rainfall data from the different networks are then used to calculate areal rainfall for different scales. Ordinary kriging and indicator kriging are applied for interpolation of the point data with the latter considering uncertain rainfall observation by cars e.g. according to a discrete number of windscreen wiper operation classes. The results are compared with the values from the radar observations. The study is carried out for the 3300 km2 Bode river basin located in the Harz Mountains in Northern Germany. The results show, that the idea is theoretically feasible and motivate practical experiments. Only a small portion of the cars needed to be equipped with sensors for sufficient areal rainfall estimation. Regarding the required sensitivity of the potential rain sensors in cars it could be shown

  18. Dynamic and Regression Modeling of Ocean Variability in the Tide-Gauge Record at Seasonal and Longer Periods

    Science.gov (United States)

    Hill, Emma M.; Ponte, Rui M.; Davis, James L.

    2007-01-01

    Comparison of monthly mean tide-gauge time series to corresponding model time series based on a static inverted barometer (IB) for pressure-driven fluctuations and a ocean general circulation model (OM) reveals that the combined model successfully reproduces seasonal and interannual changes in relative sea level at many stations. Removal of the OM and IB from the tide-gauge record produces residual time series with a mean global variance reduction of 53%. The OM is mis-scaled for certain regions, and 68% of the residual time series contain a significant seasonal variability after removal of the OM and IB from the tide-gauge data. Including OM admittance parameters and seasonal coefficients in a regression model for each station, with IB also removed, produces residual time series with mean global variance reduction of 71%. Examination of the regional improvement in variance caused by scaling the OM, including seasonal terms, or both, indicates weakness in the model at predicting sea-level variation for constricted ocean regions. The model is particularly effective at reproducing sea-level variation for stations in North America, Europe, and Japan. The RMS residual for many stations in these areas is 25-35 mm. The production of "cleaner" tide-gauge time series, with oceanographic variability removed, is important for future analysis of nonsecular and regionally differing sea-level variations. Understanding the ocean model's strengths and weaknesses will allow for future improvements of the model.

  19. Dual lattice simulation of the abelian gauge-Higgs model at finite density: an exploratory proof of concept study.

    Science.gov (United States)

    Delgado Mercado, Ydalia; Gattringer, Christof; Schmidt, Alexander

    2013-10-04

    The U(1) gauge-Higgs model with two flavors of opposite charge and a chemical potential is mapped exactly to a dual representation where matter fields correspond to loops of flux and the gauge fields are represented by surfaces. The complex action problem of the conventional formulation at finite chemical potential μ is overcome in the dual representation, and the partition sum has only real and nonzero contributions. We simulate the model in the dual representation using a generalized worm algorithm, explore the phase diagram, and study condensation phenomena at finite μ.

  20. Field-theoretic methods in strongly-coupled models of general gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Jean-François, E-mail: jean-francois.fortin@cern.ch [Theory Division, Department of Physics, CERN, CH-1211 Geneva 23 (Switzerland); Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 (United States); Stergiou, Andreas, E-mail: stergiou@physics.ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States)

    2013-08-01

    An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split.

  1. Gauge fields

    CERN Document Server

    Itzykson, C

    1978-01-01

    Some background on the theory of gauge fields, a subject of increasing popularity among particle physicists, is provided. The aim will be to stress those aspects which suggest that gauge fields may play some role in a future theory of strong interactions. (8 refs).

  2. Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation

    Science.gov (United States)

    Burzlaff, Jürgen

    1984-11-01

    We study finite-energy configurations in SO( N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.

  3. Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation

    Energy Technology Data Exchange (ETDEWEB)

    Burzlaff, J. (Dublin Inst. for Advanced Studies (Ireland). School of Theoretical Physics)

    1984-11-01

    We study finite-energy configurations in SO(N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.

  4. Long-gauge FBGs interrogated by DTR3 for dynamic distributed strain measurement of helicopter blade model

    Science.gov (United States)

    Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.

    2014-05-01

    In this paper, we describe characteristics of distributed strain sensing based on a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme with a long-gauge Fiber Bragg Grating (FBG), which is attractive to dynamic structural deformation monitoring such as a helicopter blade and an airplane wing. The DTR3 interrogator using the longgauge FBG has capability of detecting distributed strain with 50 cm spatial resolution in 100 Hz sampling rate. We evaluated distributed strain sensing characteristics of the long-gauge FBG attached on a 5.5 m helicopter blade model in static tests and free vibration dynamic tests.

  5. One-loop calculations and detailed analysis of the localized non-commutative p-2 U(1) Gauge model

    NARCIS (Netherlands)

    Blaschke, Daniel N.; Rofner, Arnold; Sedmik, René I P

    2010-01-01

    This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the θ-deformed non-commutative 1/p2 model originally introduced by Gurau et al. [Comm. Math. Phys. 287 (2009), 275-290]. It is shown that breaking terms of the form used by Vilar et al. [J.

  6. SU(2) Gauge Theory with Two Fundamental Flavours: a Minimal Template for Model Building

    CERN Document Server

    Arthur, Rudy; Hansen, Martin; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2016-01-01

    We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter, and by measuring the relevant renormalisation constants non-perturbatively in the RI'-MOM scheme. Our results for the lightest isovector states in the vector and axial channels, in units of the pseudoscalar decay constant, are $m_V/F_{\\rm{PS}}\\sim 13.1(2.2)$ and $m_A/F_{\\rm{PS}}\\sim 14.5(3.6)$ (combining statistical and systematic errors). In the context of the composite (Goldstone) Higgs models, our result for the spin-...

  7. Effective action for the Abelian-Higgs model for a gauge-invariant implementation on optical lattices

    CERN Document Server

    Bazavov, Alexei; Tsai, Shan-Wen; Unmuth-Yockey, Judah; Zhang, Jin

    2015-01-01

    We present a gauge-invariant effective action for the Abelian-Higgs model in 1+1 dimensions. It is constructed by integrating out the gauge field and then using the hopping parameter expansion. The latter is tested with Monte Carlo simulations for small values of the scalar self-coupling. In the opposite limit, at infinitely large self-coupling, the Higgs mode is frozen and the partition function can be written in terms of local tensors and the tensor renormalization group blocking can be applied. The numerical implementation requires truncations and the time continuum limit of the blocked transfer matrix can be obtained numerically. At zero gauge coupling and with a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard model in the limit of large onsite repulsion. The procedure is extended to finite gauge coupling and we derive a spin-1 approximation of the Hamiltonian which involves terms corresponding to transitions among the two species i...

  8. Geostatistical upscaling of rain gauge data to support uncertainty analysis of lumped urban hydrological models

    Science.gov (United States)

    Muthusamy, Manoranjan; Schellart, Alma; Tait, Simon; Heuvelink, Gerard B. M.

    2017-04-01

    Geostatistical methods have been used to analyse the spatial correlation structure of rainfall at various spatial scales, but its application to estimate the level of uncertainty in rainfall upscaling has not been fully explored mainly due to its inherent complexity and demanding data requirements. In this study we presented a method to overcome these challenges and predict AARI together with associated uncertainty using geostatistical upscaling. Rainfall data collected from a cluster of eight paired rain gauges in a 400 × 200 sq. m. urban catchment are used in combination with spatial stochastic simulation to obtain optimal predictions of the spatially averaged rainfall intensity at any point in time within the urban catchment. The uncertainty in the prediction of catchment average rainfall intensity is obtained for multiple combinations of intensity ranges and temporal averaging intervals. The two main challenges addressed in this study are scarcity of rainfall measurement locations and non-normality of rainfall data, both of which need to be considered when adopting a geostatistical approach. Scarcity of measurement points is dealt with by pooling sample variograms of repeated rainfall measurements with similar characteristics. Normality of rainfall data is achieved through the use of Normal Score Transformation. Geostatistical models in the form of variograms are derived for transformed rainfall intensity. Next spatial stochastic simulation which is robust to nonlinear data transformation is applied to produce realisations of rainfall fields. These realisations in transformed space are first back-transformed and next spatially aggregated to derive a random sample of the spatially averaged rainfall intensity. This study shows that for small time and space scales the use of a single geostatistical model based on a single variogram is not appropriate and a distinction between rainfall intensity classes and length of temporal averaging intervals should be made

  9. Gauging Through the Crowd: A Crowd-Sourcing Approach to Urban Rainfall Measurement and Storm Water Modeling Implications

    Science.gov (United States)

    Yang, Pan; Ng, Tze Ling

    2017-11-01

    Accurate rainfall measurement at high spatial and temporal resolutions is critical for the modeling and management of urban storm water. In this study, we conduct computer simulation experiments to test the potential of a crowd-sourcing approach, where smartphones, surveillance cameras, and other devices act as precipitation sensors, as an alternative to the traditional approach of using rain gauges to monitor urban rainfall. The crowd-sourcing approach is promising as it has the potential to provide high-density measurements, albeit with relatively large individual errors. We explore the potential of this approach for urban rainfall monitoring and the subsequent implications for storm water modeling through a series of simulation experiments involving synthetically generated crowd-sourced rainfall data and a storm water model. The results show that even under conservative assumptions, crowd-sourced rainfall data lead to more accurate modeling of storm water flows as compared to rain gauge data. We observe the relative superiority of the crowd-sourcing approach to vary depending on crowd participation rate, measurement accuracy, drainage area, choice of performance statistic, and crowd-sourced observation type. A possible reason for our findings is the differences between the error structures of crowd-sourced and rain gauge rainfall fields resulting from the differences between the errors and densities of the raw measurement data underlying the two field types.

  10. Geostatistical upscaling of rain gauge data to support uncertainty analysis of lumped urban hydrological models

    NARCIS (Netherlands)

    Muthusamy, Manoranjan; Schellart, Alma; Tait, Simon; Heuvelink, Gerard B.M.

    2017-01-01

    In this study we develop a method to estimate the spatially averaged rainfall intensity together with associated level of uncertainty using geostatistical upscaling. Rainfall data collected from a cluster of eight paired rain gauges in a 400 × 200m urban catchment are used in combination with

  11. Results of APL rain gauge network measurements in mid-Atlantic coast region and comparisons of distributions with CCIR models

    Science.gov (United States)

    Goldhirsh, Julius; Gebo, Norman; Rowland, John

    1988-01-01

    In this effort are described cumulative rain rate distributions for a network of nine tipping bucket rain gauge systems located in the mid-Atlantic coast region in the vicinity of the NASA Wallops Flight Facility, Wallops Island, Virginia. The rain gauges are situated within a gridded region of dimensions of 47 km east-west by 70 km north-south. Distributions are presented for the individual site measurements and the network average for the year period June 1, 1986 through May 31, 1987. A previous six year average distribution derived from measurements at one of the site locations is also presented. Comparisons are given of the network average, the CCIR (International Radio Consultative Committee) climatic zone, and the CCIR functional model distributions, the latter of which approximates a log normal at the lower rain rate and a gamma function at the higher rates.

  12. More about discrete gauge anomalies

    CERN Document Server

    Ibáñez, L E

    1993-01-01

    I discuss and extend several results concerning the cancellation of discrete gauge anomalies. I show how heavy fermions do not decouple in the presence of discrete gauge anomalies. As a consequence, in general, cancellation of discrete gauge anomalies cannot be described merely in terms of low energy operators involving only the light fermions. I also discuss cancellation of discrete gauge anomalies through a discrete version of the Green-Schwarz (GS) mechanism as well as the possibility of discrete gauge R-symmetries and their anomalies. Finally, some phenomenological applications are discussed. This includes symmetries guaranteeing absence of FCNC in two-Higgs models and generalized matter parities stabilizing the proton in the supersymmetric standard model. In the presence of a discrete GS mechanism or/and gauge R-symmetries, new possibilities for anomaly free such symmetries are found.

  13. Rabi lattice models with discrete gauge symmetry: Phase diagram and implementation in trapped-ion quantum simulators

    Science.gov (United States)

    Nevado, Pedro; Porras, Diego

    2015-07-01

    We study a spin-boson chain that exhibits a local Z2 symmetry. We investigate the quantum phase diagram of the model by means of perturbation theory, mean-field theory, and the density matrix renormalization group method. Our calculations show the existence of a first-order phase transition in the region where the boson quantum dynamics is slow compared to the spin-spin interactions. Our model can be implemented with trapped-ion quantum simulators, leading to a realization of minimal models showing local gauge invariance and first-order phase transitions.

  14. Extended Bose-Hubbard model and atomic quantum simulation of U(1) gauge-Higgs model in (1 + 1) dimensions

    CERN Document Server

    Kuno, Yoshihito; Sakane, Shinya; Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2016-01-01

    In this paper, we study atomic quantum simulations of $(1+1)$-dimensional($(1+1)$D) U(1) gauge-Higgs models (GHMs) defined on a lattice. We explain how U(1) lattice GHMs appear from an extended Bose-Hubbard model (EBHM) describing ultra-cold atoms with a nearest neighbor repulsion in a 1D optical lattice. We first study a phase diagram of the 1D EBHM at low fillings by means of a quantum Monte-Carlo(MC) simulation. Next, we study the EBHM at large fillings and also GHMs by the MC simulations in the path-integral formalism and show that there are four phases, i.e., the Higgs phase(superfluid), the confinement phase (Mott insulator), and phases corresponding to the density wave and the supersolid. With the obtained phase diagrams, we investigate the relationship between the two models. Finally, we study real-time dynamic of an electric flux in the GHMs by the Gross-Pitaevskii equations and the truncated Wigner approximation.

  15. BPS black holes in a non-homogeneous deformation of the stu model of N=2, D=4 gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Dietmar [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marrani, Alessio [Centro Studi e Ricerche ‘Enrico Fermi’, Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and INFN - Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Petri, Nicolò; Santoli, Camilla [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy)

    2015-09-29

    We consider a deformation of the well-known stu model of N=2, D=4 supergravity, characterized by a non-homogeneous special Kähler manifold, and by the smallest electric-magnetic duality Lie algebra consistent with its upliftability to five dimensions. We explicitly solve the BPS attractor equations and construct static supersymmetric black holes with radial symmetry, in the context of U(1) dyonic Fayet-Iliopoulos gauging, focussing on axion-free solutions. Due to non-homogeneity of the scalar manifold, the model evades the analysis recently given in the literature. The relevant physical properties of the resulting black hole solution are discussed.

  16. Gauge mechanics

    CERN Document Server

    Mangiarotti, L

    1998-01-01

    This book presents in a unified way modern geometric methods in analytical mechanics based on the application of fibre bundles, jet manifold formalism and the related concept of connection. Non-relativistic mechanics is seen as a particular field theory over a one-dimensional base. In fact, the concept of connection is the major link throughout the book. In the gauge scheme of mechanics, connections appear as reference frames, dynamic equations, and in Lagrangian and Hamiltonian formalisms. Inertial forces, energy conservation laws and other phenomena related to reference frames are analyzed;

  17. LHC di-photon excess and gauge coupling unification in extra Z{sup '} heterotic-string derived models

    Energy Technology Data Exchange (ETDEWEB)

    Ashfaque, J. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom); Delle Rose, L. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Faraggi, A.E. [Rutherford Appleton Laboratory, Department of Particle Physics, Chilton, Didcot (United Kingdom); Marzo, C. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' Ennio De Giorgi' ' , Lecce (Italy); INFN, Lecce (Italy)

    2016-10-15

    A di-photon excess at the LHC can be explained as a Standard Model singlet that is produced and decays by heavy vector-like colour triplets and electroweak doublets in one-loop diagrams. The characteristics of the required spectrum are well motivated in heterotic-string constructions that allow for a light Z{sup '}. Anomaly cancellation of the U(1){sub Z'} symmetry requires the existence of the Standard Model singlet and vector-like states in the vicinity of the U(1){sub Z'} breaking scale. In this paper we show that the agreement with the gauge coupling data at one-loop is identical to the case of the Minimal Supersymmetric Standard Model, owing to cancellations between the additional states. We further show that effects arising from heavy thresholds may push the supersymmetric spectrum beyond the reach of the LHC, while maintaining the agreement with the gauge coupling data. We show that the string-inspired model can indeed produce an observable signal and discuss the feasibility of obtaining viable scalar mass spectrum. (orig.)

  18. Probing CP-violating Higgs and gauge-boson couplings in the Standard Model effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Felipe [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Fuks, Benjamin [Sorbonne Universites, Universite Pierre et Marie Curie (Paris 06), UMR 7589, LPTHE, Paris (France); CNRS, UMR 7589, LPTHE, Paris (France); Institut Universitaire de France, Paris (France); Sanz, Veronica [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Sengupta, Dipan [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Michigan State University, Department of Physics and Astronomy, East Lansing (United States)

    2017-10-15

    We study the phenomenological consequences of several CP-violating structures that could arise in the Standard Model effective field theory framework. Focusing on operators involving electroweak gauge and/or Higgs bosons, we derive constraints originating from Run I LHC data. We then study the capabilities of the present and future LHC runs at higher energies to further probe associated CP-violating phenomena and we demonstrate how differential information can play a key role. We consider both traditional four-lepton probes of CP-violation in the Higgs sector and novel new physics handles based on varied angular and non-angular observables. (orig.)

  19. Loop induced type-II seesaw model and GeV dark matter with U(1)B - L gauge symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2017-11-01

    We propose a model with U(1) B - L gauge symmetry and several new fermions in no conflict with anomaly cancellation where the neutrino masses are given by the vacuum expectation value of Higgs triplet induced at the one-loop level. The new fermions are odd under discrete Z2 symmetry and the lightest one becomes dark matter candidate. We find that the mass of dark matter is typically O (1)- O (10) GeV. Then relic density of the dark matter is discussed.

  20. A coupled hydrological-hydraulic flood inundation model calibrated using post-event measurements and integrated uncertainty analysis in a poorly gauged Mediterranean basin

    Science.gov (United States)

    Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Colin, Francois

    2017-04-01

    Developing flood inundation maps of defined exceedance probabilities is required to provide information on the flood hazard and the associated risk. A methodology has been developed to model flood inundation in poorly gauged basins, where reliable information on the hydrological characteristics of floods are uncertain and partially captured by the traditional rain-gauge networks. Flood inundation is performed through coupling a hydrological rainfall-runoff (RR) model (HEC-HMS) with a hydraulic model (HEC-RAS). The RR model is calibrated against the January 2013 flood event in the Awali River basin, Lebanon (300 km2), whose flood peak discharge was estimated by post-event measurements. The resulting flows of the RR model are defined as boundary conditions of the hydraulic model, which is run to generate the corresponding water surface profiles and calibrated against 20 post-event surveyed cross sections after the January-2013 flood event. An uncertainty analysis is performed to assess the results of the models. Consequently, the coupled flood inundation model is simulated with design storms and flood inundation maps are generated of defined exceedance probabilities. The peak discharges estimated by the simulated RR model were in close agreement with the results from different empirical and statistical methods. This methodology can be extended to other poorly gauged basins facing common stage-gauge failure or characterized by floods with a stage exceeding the gauge measurement level, or higher than that defined by the rating curve.

  1. Optical Abelian lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Tagliacozzo, L., E-mail: luca.tagliacozzo@icfo.es [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Celi, A., E-mail: alessio.celi@gmail.com [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Zamora, A. [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Lewenstein, M. [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)

    2013-03-15

    We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.

  2. Chiral gauge theories with domain wall fermions

    OpenAIRE

    Golterman, M.; Jansen, K.; Petcher, D.; Vink, J.

    1993-01-01

    We have investigated a proposal to construct chiral gauge theories on the lattice using domain wall fermions. The model contains two opposite chirality zeromodes, which live on two domain walls. We couple only one of them to a gauge field, but find that mirror fermions which also couple to the gauge field always seem to exist.

  3. Theorems for asymptotic safety of gauge theories

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.

    2017-06-01

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.

  4. Dynamical Messengers for Gauge Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2011-08-17

    We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.

  5. One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p^{-2} U(1 Gauge Model

    Directory of Open Access Journals (Sweden)

    Daniel N. Blaschke

    2010-05-01

    Full Text Available This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the θ-deformed non-commutative p^{-2} model originally introduced by Gurau et al. [Comm. Math. Phys. 287 (2009, 275-290]. It is shown that breaking terms of the form used by Vilar et al. [J. Phys. A: Math. Theor. 43 (2010, 135401, 13 pages] and ourselves [Eur. Phys. J. C: Part. Fields 62 (2009, 433-443] to localize the BRST covariant operator (D^2θ^2D^2^{-1} lead to difficulties concerning renormalization. The reason is that this dimensionless operator is invariant with respect to any symmetry of the model, and can be inserted to arbitrary power. In the present article we discuss explicit one-loop calculations, and analyze the mechanism the mentioned problems originate from.

  6. Predictions for the neutrino parameters in the minimal gauged U(1)_{L_μ -L_τ } model

    Science.gov (United States)

    Asai, Kento; Hamaguchi, Koichi; Nagata, Natsumi

    2017-11-01

    We study the structure of the neutrino-mass matrix in the minimal gauged U(1)_{L_μ -L_τ } model, where three right-handed neutrinos are added to the Standard Model in order to obtain non-zero masses for the active neutrinos. Because of the U(1)_{L_μ -L_τ } gauge symmetry, the structure of both Dirac and Majorana mass terms of neutrinos is tightly restricted. In particular, the inverse of the neutrino-mass matrix has zeros in the (μ ,μ ) and (τ ,τ ) components, namely, this model offers a symmetric realization of the so-called two-zero-minor structure in the neutrino-mass matrix. Due to these constraints, all the CP phases - the Dirac CP phase δ and the Majorana CP phases α _2 and α _3 - as well as the mass eigenvalues of the light neutrinos m_i are uniquely determined as functions of the neutrino mixing angles θ _{12}, θ _{23}, and θ _{13}, and the squared mass differences Δ m_{21}^2 and Δ m_{31}^2. We find that this model predicts the Dirac CP phase δ to be δ ˜eq 1.59π -1.70π (1.54π -1.78π ), the sum of the neutrino masses to be \\sum im_i ˜eq 0.14-0.22 eV (0.12-0.40 eV), and the effective mass for the neutrinoless double-beta decay to be ˜eq 0.024-0.055 eV (0.017-0.12 eV) at 1σ (2σ ) level, which are totally consistent with the current experimental limits. These predictions can soon be tested in future neutrino experiments. Implications for leptogenesis are also discussed.

  7. Confinement as a dual Meissner effect, monopoles, matrix models and the unitary gauge of quantum chromodynamics. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, M. (Theory Div., CERN, Geneva (Switzerland))

    1993-03-01

    I show that the effective action, at large distances, of a pure SU(N) theory in d = 4 in the gauge F[sub 01][sup ch] = 0 is the action of N[sup 2] - N charged gluons and N - 1 photons coupled to N - 1 random magnetic fields, or equivalently to N - 1 kinds of closed monopoles lines lying in the (23) planes. In the large-N limit the a-priori distribution of the N - 1 random magnetic fields is the N-eigenvalues joint distribution of an associated 0-dimensional matrix model plus a constraint. However in d = 3 and d = 4 this distribution is renormalized by the addition of the effective action of the charged fields. (orig.)

  8. Radiative corrections to Higgs couplings with weak gauge bosons in custodial multi-Higgs models

    Science.gov (United States)

    Chiang, Cheng-Wei; Kuo, An-Li; Yagyu, Kei

    2017-11-01

    We calculate 1-loop radiative corrections to the hZZ and hWW couplings in models with next-to-simplest Higgs sectors satisfying the electroweak ρ parameter equal to 1 at tree level: the real Higgs singlet model, the two-Higgs doublet models, and the Georgi-Machacek model. Under theoretical and current experimental constraints, the three models have different correlations between the deviations in the hZZ and hWW couplings from the standard model predictions. In particular, we find for each model predictions with no overlap with the other two models.

  9. Remote Sensing of Storage Fluctuations of Poorly Gauged Reservoirs and State Space Model (SSM-Based Estimation

    Directory of Open Access Journals (Sweden)

    Alka Singh

    2015-12-01

    Full Text Available To reduce hydrological uncertainties in the regular monitoring of poorly gauged lakes and reservoirs, multi-dimensional remote sensing data have emerged as an excellent alternative. In this paper, we propose three methods to delineate the volume of such equipotential water bodies through a combination of altimetry (1D, Landsat (2D and bathymetry (2D data, namely an altimetry-bathymetry-volume method (ABV, a Landsat-bathymetry-volume method (LBV and an altimetry-Landsat-volume-variation method (ALVV. The first two data products are further merged by a Kalman-filter-based state space model (SSM to obtain a combined estimate (CSSME time series and near future prediction. To validate our methods, we tested them on the well-measured Lake Mead and further applied them on the poorly gauged Aral Sea, which has inaccurate bathymetry and very limited ground observation data. We updated the lake bathymetry of the Aral Sea, which was more than half a century old. The resultant remote sensing products have a very good long-term agreement among each other. The Lake Mead volume estimations are very highly coherent with the ground observations for all cases (R2 > 0.96 and NRMSE < 2.1%, except for the forecast (R2 = 0.75 and NRMSE = 3.7%. Due to lack of in situ data for the Aral Sea, the estimated volumes are compared, and the entire Aral Sea LBV and ABV have R2 = 0.91 and NRMSE = 5.5%, and the forecast compared to CSSME has R2 = 0.60 and NRMSE = 2.4%.

  10. Optical Rain Gauge Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility deploys several types of rain gauges (MET, RAIN, and optical rain gauge [ORG] datastreams) as well as disdrometers (DISD and VDIS datastreams) at the Southern Great Plains (SGP) Site. This handbook deals specifically with the independent analog ORG (i.e., the ORG datastream).

  11. The IR obstruction to UV completion for Dante’s Inferno model with higher-dimensional gauge theory origin

    Energy Technology Data Exchange (ETDEWEB)

    Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University,Manipal, Karnataka 576104 (India); Koyama, Yoji [National Center for Theoretical Sciences, National Tsing-Hua University,Hsinchu 30013, Taiwan R.O.C. (China)

    2016-06-21

    We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study http://dx.doi.org/10.1088/1475-7516/2015/02/031. We focus on Dante’s Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place in the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante’s Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.

  12. Statistical modelling of monthly mean sea level at coastal tide gauge stations along the Indian subcontinent

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, K.; Das, V.K.; DineshKumar, P.K.

    This study investigates the suitability of statistical models for their predictive potential for the monthly mean sea level at different stations along the west and east coasts of the Indian subcontinent. Statistical modelling of the monthly mean...

  13. Gauging Variational Inference

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2017-05-25

    Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.

  14. Developing an entropy-based model of spatial information estimation and its application in the design of precipitation gauge networks

    Science.gov (United States)

    Su, Ho-Ting; You, Gene Jiing-Yun

    2014-11-01

    This study proposed a spatial information estimation model for the analysis of precipitation gauge networks, to improve on previous methods based on information theory. The proposed model employs a two-dimensional transinformation-distance (T-D) relationship in conjunction with multivariate information approximation to estimate transinformation to ungauged locations from existing stations, while taking into consideration the influence of multiple stations and anisotropy. The proposed model is used to evaluate the spatial distribution of precipitation data and the characteristics of information transfer, which are then applied in a spatial optimization algorithm for the selection of additional station locations. This framework was implemented to investigate temporal and spatial patterns in information content in the Shihmen Reservoir watershed. The results demonstrate obvious anisotropy associated with the delivery of information. By comparing different cases, it was determined that the efficiency of information delivery dominates the spatial distribution of the information content, such that eccentricity is merely supplemental. Efficiency in information delivery is also heavily influenced by temporal scale. For data covering long intervals (monthly and annual), efficiency in the delivery of information is relatively high, while the uncertainty or heterogeneity of hourly or daily time series produces low spatial correlations due to the inefficient delivery of information. The proposed spatial optimization algorithm confirmed that the optimal location for new stations lies close to the center of low information zones. Additional stations could improve information content considerably; however, the margin of improvement decreases with the number of stations.

  15. Combining meteorological radar and network of rain gauges data for space–time model development

    OpenAIRE

    Pastoriza, Vicente; Núñez Fernández, Adolfo; Machado, Fernando; Mariño, Perfecto; Pérez Fontán, Fernando; Fiebig, Uwe-Carsten

    2009-01-01

    Technological developments and the trend to go higher and higher in frequency give rise to the need for true space–time rain field models for testing the dynamics of fade countermeasures. There are many models that capture the spatial correlation of rain fields. Worth mentioning are those models based on cell ensembles. However, the rain rate fields created in this way need the introduction of the time variable to reproduce their dynamics. In this paper, we have concentrated on ad...

  16. Don't blame it on the precipitation input: A hydrological modeling case study with a very dense and redundant rain gauge network in southern Germany

    Science.gov (United States)

    Chwala, Christian; Schlenk, Ulla; Fersch, Benjamin; Kunstmann, Harald

    2017-04-01

    Accurate rainfall input is the key component in hydrological modeling, in particular for model development. However, accurately capturing precipitation is a challenging, not to say impossible task, due to its high variability in time and space. Typical rain gauge networks are too coarse to deliver spatially representative measurements, while remote sensing techniques suffer from uncertainties of their indirect measurement principle. To rule out the uncertainty from rainfall input as good as possible, we have carried out two intensive measurements campaigns in 2015 and 2016, using 66 rain gauges, installed at 22 sites within a catchment of 70 km2 in the pre-alpine region of southern Germany. The rain gauge observations were part of the ScaleX campaign (http://scalex.imk-ifu.kit.edu), aiming at concertedly investigating atmospheric, hydrological and biogeochemical processes over a large range of scales. The average distance between the 22 observation sites was 2.5 km. We further improved the spatial representativeness of our data set using C-band weather radar data from the German Weather Service research radar, only 10 km away from our catchment. To account for the uncertainties of the radar observations, we adjusted the radar rainfall with data from our dense rain gauge network, providing the best possible estimation of ground rainfall for our catchment. We will present results from hydrological modeling in our catchment, using the stand-alone WRF-Hydro model, driven by different derived rainfall fields from rain gauge, radar and a combination of the two. We will highlight the advantage of having reliable ground rainfall to identify model inherent uncertainties and potential improvements.

  17. Class of gauge-invariant models of quantum electrodynamics with nonlocal interaction

    National Research Council Canada - National Science Library

    Tao Mei

    2017-01-01

    .... Finally, we employ a special choice of the models to calculate the vacuum polarization as an example to demonstrate the possibility of establishing a theory of quantum electrodynamics without divergence.

  18. Dynamic gauge adjustment of high-resolution X-band radar data for convective rain storms: Model-based evaluation against measured combined sewer overflow

    DEFF Research Database (Denmark)

    Borup, Morten; Grum, Morten; Linde, Jens Jørgen

    2016-01-01

    Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling...... overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5–30 min of rain data recorded by multiple rain gauges and propagating the rainfall...... estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable...

  19. Toward a General Theory for Multiphase Turbulence Part I: Development and Gauging of the Model Equations

    Energy Technology Data Exchange (ETDEWEB)

    B. A. Kashiwa; W. B. VanderHeyden

    2000-12-01

    A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients.

  20. LHC physics of extra gauge bosons in the 4D Composite Higgs Model

    Directory of Open Access Journals (Sweden)

    Barducci D.

    2013-11-01

    Full Text Available We study the phenomenology of both the Neutral Current (NC and Charged Current (CC Drell-Yan (DY processes at the Large Hadron Collider (LHC within a 4 Dimensional realization of a Composite Higgs model with partial compositness by estimating the integrated and differential event rates and taking into account the possible impact of the extra fermions present in the spectrum. We show that, in certain regions of the parameters space, the multiple neutral resonances present in the model can be distinguishable and experimentally accessible in the invariant or transverse mass distributions.

  1. 3D CMM strain-gauge triggering probe error characteristics modeling using fuzzy logic

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Wozniak, A; Fan, Zhun

    2008-01-01

    The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated...

  2. Anomalous Gauge Boson Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, Timothy L

    2003-06-16

    We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is {approx} 1 TeV, these low energy anomalous couplings are expected to be no larger than {Omicron}(10{sup -2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.

  3. Anomalous gauge boson interactions

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, H. [Lawrence Berkeley Lab., CA (United States); Barklow, T. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Baur, U. [State Univ. of New York, Buffalo, NY (United States). Dept. of Physics]|[Florida State Univ., Tallahassee, FL (United States). Dept. of Physics] [and others

    1995-03-01

    We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is {approximately} 1 TeV, these low energy anomalous couplings are expected to be no larger than {Omicron}(10{sup {minus}2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.

  4. Anomaly cancellation and gauge group of the standard model in NCG

    CERN Document Server

    Alvarez, Enrique; Martín, C P; Alvarez, Enrique

    1995-01-01

    It is well known that anomaly cancellation {\\it almost} determines the hypercharges in the standard model. A related (and somewhat more stronger) phenomenon takes place in Connes' NCG framework: unimodularity (a technical condition on elements of the algebra) is {\\it strictly} equivalent to anomaly cancellation (in the absence of right-handed neutrinos); and this in turn reduces the symmetry group of the theory to the standard SU(3)\\times SU(2) \\times U(1).

  5. Thermistor Pressure Gauge Design

    Science.gov (United States)

    Flanick, A. P.; Ainsworth, J. E.

    1961-01-01

    Thermistor pressure gauges are characterized by large pressure range, good accuracy and stability, fast measurement, insensitivity to over-pressure, negligible out-gassing, ease in cleaning, and physical and electrical simplicity and ruggedness. A number of excellent papers have been published describing these gauges. However, a detailed account of design procedure and characteristics for a specific gauge would eliminate much of the trial and error encountered in designing a gauge having prescribed range, sensitivity, and stability.

  6. 3D CMM Strain-Gauge Triggering Probe Error Characteristics Modeling

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Wozniak, Adam; Fan, Zhun

    2008-01-01

    The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated...... FKBs based on two optimization paradigms are used for the reconstruction of the directiondependent probe error w. The angles β and γ are used as input variables of the FKBs; they describe the spatial direction of probe triggering. The learning algorithm used to generate the FKBs is a real/ binary like...

  7. Gauge bosons production and properties

    CERN Document Server

    Rebassoo, Finn O'neill

    2015-01-01

    Studies of the production and decay of gauge bosons are an important probe of the electroweak sector of the standard model. Anomalies in these processes could be a sign of new physics, and are an indirect search for physics beyond the scale that can be directly measured at accelerators. The sensitivity to new physics depends on both the experimental uncertainty and standard model theoretical uncertainty, so reducing both of these is important for any discovery of new physics. This article will focus on the experimental measurements of these processes and specifically on results from the last year at the Tevatron and LHC, though relevant earlier measurements will be referenced. In addition to being sensitive to new physics, gauge boson production is a background to a lot of new physics models and Higgs measurements. Thus, measuring these processes precisely is of the utmost importance. Gauge boson production is also an important way to constrain parton distribution functions (pdfs), and test perturbative and n...

  8. Thermal Cook-off of an HMX Based Explosive: Pressure Gauge Experiments and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Urtiew, P A; Forbes, J W; Tarver, C M; Garcia, F; Greenwood, D W; Vandersall, K S

    2002-04-02

    Safety issues related to thermal cook-off are important for handling and storing explosive devices. Violence of event as a function of confinement is important for prediction of collateral events. There are major issues, which require an understanding of the following events: (1) transit to detonation of a pressure wave from a cook-off event, (2) sensitivity of HMX based explosives changes with thermally induced phase transitions and (3) the potential danger of neighboring explosive devices being affected by a cook-off reaction. Results of cook-off events of known size, confinement and thermal history allows for development and/or calibrating computer models for calculating events that are difficult to measure experimentally.

  9. Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Abishev, M.E. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation); Boshkayev, K.A. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Ivashchuk, V.D. [Center for Gravitation and Fundamental Metrology, VNIIMS, Moscow (Russian Federation); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation)

    2017-03-15

    Dilatonic black hole dyon-like solutions in the gravitational 4d model with a scalar field, two 2-forms, two dilatonic coupling constants λ{sub i} ≠ 0, i = 1,2, obeying λ{sub 1} ≠ -λ{sub 2} and the sign parameter ε = ±1 for scalar field kinetic term are considered. Here ε = -1 corresponds to a ghost scalar field. These solutions are defined up to solutions of two master equations for two moduli functions, when λ{sup 2}{sub i} ≠ 1/2 for ε = -1. Some physical parameters of the solutions are obtained: gravitational mass, scalar charge, Hawking temperature, black hole area entropy and parametrized post-Newtonian (PPN) parameters β and γ. The PPN parameters do not depend on the couplings λ{sub i} and ε. A set of bounds on the gravitational mass and scalar charge are found by using a certain conjecture on the parameters of solutions, when 1 + 2λ{sub i}{sup 2} ε > 0, i = 1,2. (orig.)

  10. Hadronic form factor models and spectroscopy within the gauge/gravity correspondence

    Energy Technology Data Exchange (ETDEWEB)

    de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC

    2012-03-20

    We show that the nonperturbative light-front dynamics of relativistic hadronic bound states has a dual semiclassical gravity description on a higher dimensional warped AdS space in the limit of zero quark masses. This mapping of AdS gravity theory to the boundary quantum field theory, quantized at fixed light-front time, allows one to establish a precise relation between holographic wave functions in AdS space and the light-front wavefunctions describing the internal structure of hadrons. The resulting AdS/QCD model gives a remarkably good accounting of the spectrum, elastic and transition form factors of the light-quark hadrons in terms of one parameter, the QCD gap scale. The light-front holographic approach described here thus provides a frame-independent first approximation to the light-front Hamiltonian problem for QCD. This article is based on lectures at the Niccolo Cabeo International School of Hadronic Physics, Ferrara, Italy, May 2011.

  11. Measuring Fluctuating Pressures With Recessed Gauges

    Science.gov (United States)

    Parrott, Tony L.; Jones, Michael G.

    1993-01-01

    Report discusses use of pressure gauges mounted in recesses in interior wall of model scramjet engine. Consists of brief memorandum plus excerpts from NASA Technical Paper 3189, "Unsteady Pressure Loads In A Generic High-Speed Engine Model." Focuses mainly on factors affecting accuracy of gauge readings.

  12. Dark Coupling and Gauge Invariance

    CERN Document Server

    Gavela, M B; Mena, O; Rigolin, S

    2010-01-01

    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.

  13. Gauged Lepton Flavour

    CERN Document Server

    Alonso, R.; Gavela, M.B.; Grinstein, B.; Merlo, L.; Quilez, P.

    2016-12-22

    The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; requiring in addition a phenomenologically viable setup leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplings are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavor Violation. In all cases, the $\\mu-\\tau$ flavour sector exhibits rich and promising phenomenological signals.

  14. Reducible gauge theories in very special relativity

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, 208016, Kanpur (India)

    2015-12-14

    In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb–Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb–Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin–Vilkovisy (BV) formulation in VSR.

  15. Reducible gauge theories in very special relativity

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India)

    2015-12-15

    In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb-Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb-Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin-Vilkovisy (BV) formulation in VSR. (orig.)

  16. A multi-decadal assessment of the performance of gauge- and model-based rainfall products over Saudi Arabia: Climatology, anomalies and trends

    KAUST Repository

    El Kenawy, Ahmed M.

    2015-05-15

    Many arid and semi-arid regions have sparse precipitation observing networks, which limits the capacity for detailed hydrological modelling, water resources management and flood forecasting efforts. The objective of this work is to evaluate the utility of relatively high-spatial resolution rainfall products to reproduce observed multi-decadal rainfall characteristics such as climatologies, anomalies and trends over Saudi Arabia. Our study compares the statistical characteristics of rainfall from 53 observatories over the reference period 1965-2005, with rainfall data from six widely used gauge-based products, including APHRODITE, GPCC, PRINCETON, UDEL, CRU and PREC/L. In addition, the performance of three global climate models (GCMs), including CCSM4, EC-EARTH and MRI-I-CGCM3, integrated as part of the Fifth Coupled Model Intercomparison Project (CMIP5), was also evaluated. Results indicate that the gauge-based products were generally skillful in reproducing rainfall characteristics in Saudi Arabia. In most cases, the gauge-based products were also able to capture the annual cycle, anomalies and climatologies of observed data, although significant inter-product variability was observed, depending on the assessment metric being used. In comparison, the GCM-based products generally exhibited poor performance, with larger biases and very weak correlations, particularly during the summertime. Importantly, all products generally failed to reproduce the observed long-term seasonal and annual trends in the region, particularly during the dry seasons (summer and autumn). Overall, this work suggests that selected gauge-based products with daily (APHRODITE and PRINCETON) and monthly (GPCC and CRU) resolutions show superior performance relative to other products, implying that they may be the most appropriate data source from which multi-decadal variations of rainfall can be investigated at the regional scale over Saudi Arabia. Discriminating these skillful products is

  17. Dynamics of gauge field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino, E-mail: stephon.alexander@dartmouth.edu, E-mail: dhrubo.jyoti@dartmouth.edu, E-mail: kosowsky@pitt.edu, E-mail: marciano@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)

    2015-05-01

    We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.

  18. Dynamics of gauge field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (Pitt-PACC), 420 Allen Hall, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)

    2015-05-05

    We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.

  19. Stream Gauges and Satellite Measurements

    Science.gov (United States)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  20. An introduction to gauge theories

    CERN Document Server

    Cabibbo, Nicola; Benhar, Omar

    2017-01-01

    Written by three of the world's leading experts on particle physics and the standard model, including an award-winning former director general of CERN, this book provides a completely up-to-date account of gauge theories. Starting from Feynman’s path integrals, Feynman rules are derived, gauge fixing and Faddeev-Popov ghosts are discussed, and renormalization group equations are derived. Several important applications to quantum electrodynamics and quantum chromodynamics (QCD) are discussed, including the one-loop derivation of asymptotic freedom for QCD.

  1. Gauge Theories of Vector Particles

    Science.gov (United States)

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  2. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  3. Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment

    DEFF Research Database (Denmark)

    Milzow, Christian; Krogh, Pernille Engelbredt; Bauer-Gottwein, Peter

    2011-01-01

    gauged Okavango catchment in Southern Africa: (i) surface soil moisture (SSM) estimates derived from radar measurements onboard the Envisat satellite; (ii) radar altimetry measurements by Envisat providing river stages in the tributaries of the Okavango catchment, down to a minimum river width of about....... GRACE data are used to validate the model and to condition model parameters related to various storage compartments in the hydrological model (e. g. soil, groundwater, bank storage etc.). As precipitation input the FEWS-Net RFE, TRMM 3B42 and ECMWF ERA-Interim datasets are considered and compared....

  4. A strain gauge

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction. The reinforce......The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....

  5. The relationship of the Laplacian gauge to the Landau gauge

    Science.gov (United States)

    Mandula, Jeffrey E.

    2002-03-01

    The Laplacian gauge for gauge group SU( N) is discussed in perturbation theory. It is shown that to the lowest non-trivial order ( O( g1), configurations in the Laplacian automatically satisfy the (finite difference) Landau gauge condition. Laplacian gauge fixed configurations are examined numerically and it is seen that to O( g2) they do not remain in the Landau gauge.

  6. Electrically tunable artificial gauge potential for polaritons

    Science.gov (United States)

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-02-01

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton-polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons.

  7. Conserved currents and gauge invariance in Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Barnich, G. [Universite Libre de Bruxelles (Belgium). Faculte des Sciences; Brandt, F. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H; Henneaux, M. [Universite Libre de Bruxelles (Belgium). Faculte des Sciences

    1994-12-31

    It is shown that in the absence of free abelian gauge fields, the conserved currents of (classical) Yang-Mills gauge models coupled to matter fields can be always redefined so as to be gauge invariant. This is a direct consequence of the general analysis of the Wess-Zumino consistency condition for Yang-Mills theory that we have provided recently. (orig.).

  8. New Methods in Supersymmetric Theories and Emergent Gauge Symmetry

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    It is remarkable that light or even massless spin 1 particles can be composite. Consequently, gauge invariance is not fundamental but emergent. This idea can be realized in detail in supersymmetric gauge theories. We will describe the recent development of non-perturbative methods that allow to test this idea. One finds that the emergence of gauge symmetry is linked to some results in contemporary mathematics. We speculate on the possible applications of the idea of emergent gauge symmetry to realistic models.

  9. Higgs Phase in a Gauge U(1 Non-Linear CP1-Model. Two Species of BPS Vortices and Their Zero Modes

    Directory of Open Access Journals (Sweden)

    Alberto Alonso-Izquierdo

    2016-09-01

    Full Text Available In this paper, zero modes of fluctuation are dissected around the two species of BPS vortices existing in the critical Higgs phase, where the scalar and vector meson masses are equal, of a gauged U ( 1 nonlinear CP 1 -model. If 2 π n , n ∈ Z , is the quantized magnetic flux of the two species of BPS vortex solutions, 2 n linearly-independent vortex zero modes for each species are found and described. The existence of two species of moduli spaces of dimension 2 n of these stringy topological defects is thus locally shown.

  10. Perturbative unitarity constraints on gauge portals

    Science.gov (United States)

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    2017-12-01

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs and dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. We briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.

  11. Gauge theory by canonical transformations

    Science.gov (United States)

    Koenigstein, Adrian; Kirsch, Johannes; Stoecker, Horst; Struckmeier, Juergen; Vasak, David; Hanauske, Matthias

    2016-06-01

    Electromagnetism, the strong and the weak interactions are commonly formulated as gauge theories in a Lagrangian description. In this paper, we present an alternative formal derivation of U(1)-gauge theory in a manifestly covariant Hamilton formalism. We make use of canonical transformations as our guiding tool to formalize the gauging procedure. The introduction of the gauge field, its transformation behavior and a dynamical gauge field Lagrangian/Hamiltonian are unavoidable consequences of this formalism, whereas the form of the free gauge Lagrangian/Hamiltonian depends on the selection of the gauge dependence of the canonically conjugate gauge fields.

  12. CogGauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cog-Gauge is a portable hand-held game that can be used by astronauts and crew members during space exploration missions to assess their cognitive workload...

  13. Viscous conformal gauge theories

    DEFF Research Database (Denmark)

    Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.

    2017-01-01

    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....

  14. Constraints on Gauge Field Production during Inflation

    DEFF Research Database (Denmark)

    Nurmi, Sami; Sloth, Martin Snoager

    2014-01-01

    In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum...... of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton...

  15. A New Fate of a Warped 5D FLRW Model with a U(1) Scalar Gauge Field

    Science.gov (United States)

    Slagter, Reinoud Jan; Pan, Supriya

    2016-09-01

    If we live on the weak brane with zero effective cosmological constant in a warped 5D bulk spacetime, gravitational waves and brane fluctuations can be generated by a part of the 5D Weyl tensor and carries information of the gravitational field outside the brane. We consider on a cylindrical symmetric warped FLRW background a U(1) self-gravitating scalar field coupled to a gauge field without bulk matter. It turns out that brane fluctuations can be formed dynamically, due to the modified energy-momentum tensor components of the scalar-gauge field ("cosmic string"). As a result, we find that the late-time behavior could significantly deviate from the standard evolution of the universe. The effect is triggered by the time-dependent warpfactor with two branches of the form ± 1/√{τ r}√{(c_1e^{√{2τ } t}+c_2e^{-√{2τ } t})(c_3e^{√{2τ } r}+c_4e^{-√{2τ } r})} ( with τ , c_i constants) and the modified brane equations comparable with a dark energy effect. This is a brane-world mechanism, not present in standard 4D FLRW, where the large disturbances are rapidly damped as the expansion proceed. Because gravity can propagate in the bulk, the cosmic string can build up a huge angle deficit (or mass per unit length) by the warpfactor and can induce massive KK-modes felt on the brane. Disturbances in the spatial components of the stress-energy tensor cause cylindrical symmetric waves, amplified due to the presence of the bulk space and warpfactor. They could survive the natural damping due to the expansion of the universe. It turns out that one of the metric components becomes singular at the moment the warp factor develops an extremum. This behavior could have influence on the possibility of a transition from acceleration to deceleration or vice versa.

  16. A gauge invariant multiscale approach to magnetic spectroscopies in condensed phase: general three-layer model, computational implementation and pilot applications.

    Science.gov (United States)

    Lipparini, Filippo; Cappelli, Chiara; Barone, Vincenzo

    2013-06-21

    Analytical equations to calculate second order electric and magnetic properties of a molecular system embedded into a polarizable environment are presented. The treatment is limited to molecules described at the self consistent field level of theory, including Hartree-Fock theory as well as Kohn-Sham density functional theory and is extended to the Gauge-Including Atomic Orbital method. The polarizable embedding is described by means of our already implemented polarizable quantum mechanical/molecular mechanical (MM) methodology, where the polarization in the MM layer is handled by means of the fluctuating charge (FQ) model. A further layer of description, i.e, the polarizable continuum model, can also be included. The FQ(/polarizable continuum model) contributions to the properties are derived, with reference to the calculation of the magnetic susceptibility, the nuclear magnetic resonance shielding tensor, electron spin resonance g-tensors, and hyperfine couplings.

  17. A gauge invariant multiscale approach to magnetic spectroscopies in condensed phase: General three-layer model, computational implementation and pilot applications

    Science.gov (United States)

    Lipparini, Filippo; Cappelli, Chiara; Barone, Vincenzo

    2013-06-01

    Analytical equations to calculate second order electric and magnetic properties of a molecular system embedded into a polarizable environment are presented. The treatment is limited to molecules described at the self consistent field level of theory, including Hartree-Fock theory as well as Kohn-Sham density functional theory and is extended to the Gauge-Including Atomic Orbital method. The polarizable embedding is described by means of our already implemented polarizable quantum mechanical/molecular mechanical (MM) methodology, where the polarization in the MM layer is handled by means of the fluctuating charge (FQ) model. A further layer of description, i.e, the polarizable continuum model, can also be included. The FQ(/polarizable continuum model) contributions to the properties are derived, with reference to the calculation of the magnetic susceptibility, the nuclear magnetic resonance shielding tensor, electron spin resonance g-tensors, and hyperfine couplings.

  18. The relationship of the Laplacian gauge to the Landau gauge

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, Jeffrey E

    2002-03-01

    The Laplacian gauge for gauge group SU(N) is discussed in perturbation theory. It is shown that to the lowest non-trivial order O(g{sup 1}), configurations in the Laplacian automatically satisfy the (finite difference) Landau gauge condition. Laplacian gauge fixed configurations are examined numerically and it is seen that to O(g{sup 2}) they do not remain in the Landau gauge.

  19. En-gauging naturalness

    Energy Technology Data Exchange (ETDEWEB)

    Bharucha, Aoife [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Technische Univ. Muenchen, Garching (Germany). Physik-Dept. T31; Goudelis, Andreas [Savoie Univ., CNRS, Annecy-le-Vieux (France). LAPTh; McGarrie, Moritz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-10-15

    The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space statisfying current direct and indirect constraints, employing state-of-the-art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncolored sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS.

  20. Algebraic formulation of higher gauge theory

    Science.gov (United States)

    Zucchini, Roberto

    2017-06-01

    In this paper, we present a purely algebraic formulation of higher gauge theory and gauged sigma models based on the abstract theory of graded commutative algebras and their morphisms. The formulation incorporates naturally Becchi - Rouet -Stora - Tyutin (BRST) symmetry and is also suitable for Alexandrov - Kontsevich - Schwartz-Zaboronsky (AKSZ) type constructions. It is also shown that for a full-fledged Batalin-Vilkovisky formulation including ghost degrees of freedom, higher gauge and gauged sigma model fields must be viewed as internal smooth functions on the shifted tangent bundle of a space-time manifold valued in a shifted L∞-algebroid encoding symmetry. The relationship to other formulations where the L∞-algebroid arises from a higher Lie groupoid by Lie differentiation is highlighted.

  1. Asymptotically Free Gauge Theories. I

    Science.gov (United States)

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  2. Gauge origin of discrete flavor symmetries in heterotic orbifolds

    Directory of Open Access Journals (Sweden)

    Florian Beye

    2014-09-01

    Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.

  3. Characterizing floods in the poorly gauged wetlands of the Tana River Delta, Kenya, using a water balance model and satellite data

    Directory of Open Access Journals (Sweden)

    C. Leauthaud

    2013-08-01

    Full Text Available Wetlands, such as those of the Tana River Delta in Kenya, are vital but threatened ecosystems. The flooding characteristics of wetlands largely determine their physical, chemical and biological properties, so their quantification is crucial for wetland management. This quantification can be achieved through hydrological modelling. In addition, the analysis of satellite imagery provides essential hydrological data to monitor floods in poorly gauged zones. The objective of this study was to quantify the main water fluxes and flooding characteristics (extent, duration and number of floods in the poorly gauged Tana River Delta in East Africa during 2002–2011. To do so, we constructed a lumped hydrological model (the Tana Inundation Model, TIM that was calibrated and validated with MODIS data. Further analysis of the MYD09A1 500 m composite product provided a map of the empirical probability of flooded state. In non-extreme years and for the current topology of the delta, the flood extent exceeded 300 km2. Floods over 200 km2 occurred on average once a year, with a mean duration of 18 days. River discharge from the upper basin counted for over 95% of the total water inflow. The results are discussed in the light of possible improvements of the models and wetland management issues. This study provides the first known quantification of spatial and temporal flooding characteristics in the Tana River Delta. As such, it is essential for the water and natural resource management of the Tana River basin. The water balance approach was pertinent to the study of this system, for which information on its internal properties and processes is limited. The methodology, a combination of hydrological modelling and flood mapping using MODIS products, should be applicable to other areas, including those for which data are scarce and cloud cover may be high, and where a medium spatial resolution is required.

  4. Relativistic gauge invariant potentials

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.J. (Valladolid Univ. (Spain). Dept. de Fisica Teorica); Negro, J. (Valladolid Univ. (Spain). Dept. de Fisica Teorica); Olmo, M.A. del (Valladolid Univ. (Spain). Dept. de Fisica Teorica)

    1995-01-01

    A global method characterizing the invariant connections on an abelian principal bundle under a group of transformations is applied in order to get gauge invariant electromagnetic (elm.) potentials in a systematic way. So, we have classified all the elm. gauge invariant potentials under the Poincare subgroups of dimensions 4, 5, and 6, up to conjugation. It is paid attention in particular to the situation where these subgroups do not act transitively on the space-time manifold. We have used the same procedure for some galilean subgroups to get nonrelativistic potentials and study the way they are related to their relativistic partners by means of contractions. Some conformal gauge invariant potentials have also been derived and considered when they are seen as consequence of an enlargement of the Poincare symmetries. (orig.)

  5. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  6. A New Fate of a Warped 5D FRW Model with a U(1) Scalar Gauge Field

    CERN Document Server

    Slagter, Reinoud Jan

    2015-01-01

    If we live on the weak brane with zero effective cosmological constant in a warped 5D bulk spacetime , gravitational waves and brane fluctuations can be generated by a part of the 5D Weyl tensor and carries information of the gravitational field outside the brane. We consider on a cylindrical symmetric warped FRW background the U(1) self-gravitating scalar-gauge field without bulk matter. It turns out that "branons" can be formed dynamically, due to the modified energy-momentum tensor components of the cosmic string. As a result, we find that the late-time behavior could be significant deviate from the standard evolution of the universe. The effect is triggered by the time-dependent warp factor, of the form $\\sqrt{ae^{\\tau t}+be^{-\\tau t}}$ and the modified brane equations, comparable with a dark energy effect. This is a brane-world mechanism, not present is standard 4D FRW, where the large disturbances are rapidly damped as the expansion proceed. Because gravity can propagate in the bulk, the cosmic string c...

  7. Quantum Critical Behaviour of Semisimple Gauge Theories

    DEFF Research Database (Denmark)

    Kamuk Esbensen, Jacob; Ryttov, Thomas A.; Sannino, Francesco

    2016-01-01

    We study the perturbative phase diagram of semi-simple fermionic gauge theories resembling the Standard Model. We investigate an $SU(N)$ gauge theory with $M$ Dirac flavors where we gauge first an $SU(M)_L$ and then an $SU(2)_L \\subset SU(M)_L$ of the original global symmetry $SU(M)_L\\times SU......(M)_R \\times U(1) $ of the theory. To avoid gauge anomalies we add lepton-like particles. At the two-loops level an intriguing phase diagram appears. We uncover phases in which one, two or three fixed points exist and discuss the associated flows of the coupling constants. We discover a phase featuring...

  8. Gauged BPS baby Skyrmions with quantized magnetic flux

    Science.gov (United States)

    Adam, C.; Wereszczynski, A.

    2017-06-01

    A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.

  9. Accelerating abelian gauge dynamics

    CERN Document Server

    Adler, Stephen Louis

    1991-01-01

    In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.

  10. Gauge theory and renormalization

    NARCIS (Netherlands)

    Hooft, G. 't

    1996-01-01

    Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in

  11. Finite quantum gauge theories

    Science.gov (United States)

    Modesto, Leonardo; Piva, Marco; Rachwał, Lesław

    2016-07-01

    We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).

  12. Neutral currents

    CERN Document Server

    AUTHOR|(CDS)2069482

    1986-01-01

    The present status of weak neutral currents is reviewed. F.mphasis is put on the comparison of recent experimental results with earlier ones, and with predictions of gauge models of the SU(Z) ® U(l) type. The coupling constants governing the weak neutral current interaction are given, and their quantitative agreement with the Salam-Weinberg model is critically examined. 1. INrRODUCT ION 25 The last year has been a period of consolidation for neutral current physics. Important new results and improvements of old results have been reported, but our picture of the neutral current interaction did not change compared to that of one year ago 1 • 2). Hence the emphasis of this review is put on recent experimental results, and on a critical discussion of the precision of those experiments which yield the most stringent constraints on model parameters. The processes which can occur via the weak neutral current interaction are depicted in the "Sakurai tetragon" 3) which is shown in Fig. 1. It is an analogue to the P...

  13. Simplicial gauge theory and quantum gauge theory simulation

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Tore Gunnar, E-mail: toregha@gmail.com [Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Sorensen, Torquil Macdonald, E-mail: t.m.sorensen@matnat.uio.no [Centre of Mathematics for Applications, University of Oslo, NO-0316 Oslo (Norway)

    2012-01-01

    We propose a general formulation of simplicial lattice gauge theory inspired by the finite element method. Numerical tests of convergence towards continuum results are performed for several SU(2) gauge fields. Additionally, we perform simplicial Monte Carlo quantum gauge field simulations involving measurements of the action as well as differently sized Wilson loops as functions of {beta}.

  14. Gauge symmetry breaking in gauge theories -- in search of clarification

    NARCIS (Netherlands)

    Friederich, Simon

    2013-01-01

    The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by

  15. Validation of global ocean tide models using the superconducting gravimeter data at Syowa Station, Antarctica, and in situ tide gauge and bottom-pressure observations

    Science.gov (United States)

    Kim, Tae-Hee; Shibuya, Kazuo; Doi, Koichiro; Aoyama, Yuichi; Hayakawa, Hideaki

    2011-04-01

    We performed a validation study of six ocean tide models (CSR4.0, GOT99.2b, NAO.99b, FES2004, TPXO7.1, and TPXO7.2) using superconducting gravity data recorded at Syowa Station. From comparison with the observed loading effects, the most optimum ocean tide model was found to be TPXO7.2, which had a combined root-mean-square (RMS) misfit of 0.194 μGal for the eight major (four diurnal and four semidiurnal) waves. The next best ocean tide model was NAO.99b, with a combined misfit of 0.277 μGal. To determine the effect of inclusion of regional tide gauge and bottom-pressure data around Syowa Station, we estimated the combined RMS error for all eight waves; incorporation of these regional data into the TPXO7.2 model resulted in a 5% reduction in the misfit. Our phase lag anomalies indicate that the scatter of the out-phase component was greater than that of the in-phase component in the final residuals; this tendency was especially clear for O1, K1 and M2 waves. Improvement of the phase differences was the key to determine the optimum ocean tide model.

  16. Gauged U(1Lμ−Lτ model in light of muon g−2 anomaly, neutrino mass and dark matter phenomenology

    Directory of Open Access Journals (Sweden)

    Sudhanwa Patra

    2017-04-01

    Full Text Available Gauged U(1Lμ−Lτ model has been advocated for a long time in light of muon g−2 anomaly, which is a more than 3σ discrepancy between the experimental measurement and the standard model prediction. We augment this model with three right-handed neutrinos (Ne,Nμ,Nτ and a vector-like singlet fermion (χ to explain simultaneously the non-zero neutrino masses and dark matter content of the Universe, while satisfying the anomalous muon g−2 constraints. We find that the model suffers stringent constraints from the simultaneous explanation of neutrino trident production and muon g−2 anomaly. In a large region of the parameter space, where contribution to muon g−2 anomaly comes partially and yet not ruled out by neutrino trident production, the model can explain the positron excess, observed at PAMELA, Fermi-LAT and AMS-02 through dark matter annihilation, while satisfying the relic density and direct detection limits.

  17. Family gauge boson production at the LHC

    Directory of Open Access Journals (Sweden)

    Yoshio Koide

    2015-11-01

    Full Text Available Family gauge boson production at the LHC is investigated according to a U(3 family gauge model with twisted family number assignment. In the model we study, a family gauge boson with the lowest mass, A11, interacts only with the first generation leptons and the third generation quarks. (The family numbers are assigned, for example, as (e1,e2,e3=(e−,μ−,τ− and (d1,d2,d3=(b,d,s [or (d1,d2,d3=(b,s,d]. In the model, the family gauge coupling constant is fixed by relating to the electroweak gauge coupling constant. Thus measurements of production cross sections and branching ratios of A11 clearly confirm or rule out the model. We calculate the cross sections of inclusive A11 production and bb¯(tt¯ associated A11 production at s=14 TeV and 100 TeV. With the dielectron production cross section, we discuss the determination of diagonalizing matrix of quark mass matrix, Uu and Ud, respectively.

  18. SU(3) gauge theory of nuclear rotations

    Science.gov (United States)

    Rosensteel, G.; Sparks, N.

    2017-09-01

    The legacy Bohr-Mottelson model of collective rotational modes has a hidden differential geometric structure that enables its natural generalization to a nuclear model that has the mathematical structure of Yang-Mills theory. The essential differential geometry ingredients for Yang-Mills are a base manifold, a gauge group, and a connection or covariant derivative. In this letter, the base manifold is the space of nuclear orientations and quadrupole-monopole deformations, the gauge group is either SO(3) or SU(3), and the covariant derivative determines a new gauge-invariant “magnetic-type” interaction. The high-lying energy states of the legacy irrotational flow model enter, as a direct result of gauge coupling, the domain of low-energy yrast rotational bands, as observed by experiment. Although the relevant SU(3) representation for a deformed nucleus is the same as the Elliott model, the non-Abelian SU(3) gauge group's physical interpretation is very different and concerns the Kelvin circulation.

  19. Weighing Rain Gauge Recording Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weighing rain gauge charts record the amount of precipitation that falls at a given location. The vast majority of the Weighing Rain Gauge Recording Charts...

  20. Dirac Gauginos, Gauge Mediation and Unification

    CERN Document Server

    Benakli, K

    2010-01-01

    We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings.

  1. Renormalisation group flows for gauge theories in axial gauges

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.

    2002-01-01

    Gauge theories in axial gauges are studied using Exact Renormalisation Group flows. We introduce a background field in the infrared regulator, but not in the gauge fixing, in contrast to the usual background field gauge. It is shown how heat-kernel methods can be used to obtain approximate solutions to the flow and the corresponding Ward identities. Expansion schemes are discussed, which are not applicable in covariant gauges. As an application, we derive the one-loop effective action for covariantly constant field strength, and the one-loop beta-function for arbitrary regulator.

  2. Safety of hydrogen pressure gauges.

    Science.gov (United States)

    Voth, R. O.

    1972-01-01

    Study of the relative safety afforded an operator by various hydrogen-pressure gauge case designs. It is shown that assurance of personnel safety, should a failure occur, requires careful selection of available gauge designs, together with proper mounting. Specific gauge case features and mounting requirements are recommended.

  3. Formulation of lattice gauge theories for quantum simulations

    DEFF Research Database (Denmark)

    Zohar, Erez; Burrello, Michele

    2015-01-01

    . This formulation allows for a natural scheme to achieve a consistent truncation of the Hilbert space for continuous groups, and provides helpful tools to study the connections of gauge theories with topological quantum double and string-net models for discrete groups. Several examples, including the case......We examine the Kogut-Susskind formulation of lattice gauge theories under the light of fermionic and bosonic degrees of freedom that provide a description useful to the development of quantum simulators of gauge-invariant models. We consider both discrete and continuous gauge groups and adopt...... a realistic multicomponent Fock space for the definition of matter degrees of freedom. In particular, we express the Hamiltonian of the gauge theory and the Gauss law in terms of Fock operators. The gauge fields are described in two different bases based on either group elements or group representations...

  4. Lattice gauge theories

    Science.gov (United States)

    Weisz, Peter; Majumdar, Pushan

    2012-03-01

    Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.

  5. Triple gauge boson couplings

    CERN Document Server

    Gounaris, George J; Zeppenfeld, Dieter; Ajaltouni, Ziad J; Arhrib, A; Bella, G; Berends, F A; Bilenky, S M; Blondel, A; Busenitz, J K; Choudhury, D; Clarke, P; Conboy, J E; Diehl, M; Fassouliotis, D; Frère, J M; Georgiopoulos, C H; Gibbs, M; Grünewald, M W; Hansen, J B; Hartmann, C; Jin, B N; Jousset, J; Kalinowski, Jan; Kocian, M L; Lahanas, Athanasios B; Layssac, J; Lieb, E H; Markou, C; Matteuzzi, C; Mättig, P; Moreno, J M; Moultaka, G; Nippe, A; Orloff, J; Papadopoulos, C G; Paschalis, J; Petridou, C; Phillips, H; Podlyski, F; Pohl, M; Renard, F M; Rossignol, J M; Rylko, R; Sekulin, R L; Van Sighem, A; Simopoulou, Errietta; Skillman, A; Spanos, V C; Tonazzo, A; Tytgat, M H G; Tzamarias, S; Verzegnassi, Claudio; Vlachos, N D; Zevgolatakos, E

    1996-01-01

    We present the results obtained by the "Triple Gauge Couplings" working group during the LEP2 Workshop (1994-1995). The report concentrates on the measurement of WW\\gamma and WWZ couplings in e^-e^+\\to W^-W^+ or, more generally, four-fermion production at LEP2. In addition the detection of new interactions in the bosonic sector via other production channels is discussed.

  6. Symmetries and symmetry breaking beyond the electroweak theory; Symetries et brisures de symetries au-dela de la theorie electrofaible

    Energy Technology Data Exchange (ETDEWEB)

    Grojean, Ch

    1999-05-04

    The Glashow-Salam-Weinberg theory describing electroweak interactions is one of the best successes of quantum field theory; it has passed all the experimental tests of particles physics with a high accuracy. However, this theory suffers from some deficiencies in the sense that some parameters, especially those involved in the generation of the mass of the elementary particles, are fixed to unnatural values. Moreover gravitation whose quantization cannot be achieved in ordinary quantum filed theory is hot taken into account. The aim of this PhD dissertation is to study some theories beyond the Standard Model and inspired by superstring theories. My endeavour has been to develop theoretical aspects of an effective dynamical description of one of the soltonic states of the strongly coupled strings. An important part of my results is also devoted to a more phenomenological analysis of the low energy effects of the symmetries that assure the coherence of the theories at high energy: these symmetries could explain the fermion mass hierarchy and could be directly observable in collider experiments. It is also shown how the geometrical properties of compactified spaces characterize the vacuum of string theory in a non-perturbative regime; such a vacuum can be used to construct a unified theory of gauge and gravitational interactions with a supersymmetry softy broken at a TcV scale. (author)

  7. Comparative Assessment of a New Hydrological Modelling Approach for Prediction of Runoff in Gauged and Ungauged Basins, and Climate Change Impacts Assessment: A Case Study from Benin.

    Science.gov (United States)

    GABA, C. O. U.; Alamou, E.; Afouda, A.; Diekkrüger, B.

    2016-12-01

    Assessing water resources is still an important challenge especially in the context of climatic changes. Although numerous hydrological models exist, new approaches are still under investigation. In this context, we investigate a new modelling approach based on the Physics Principle of Least Action which was first applied to the Bétérou catchment in Benin and gave very good results. The study presents new hypotheses to go further in the model development with a view of widening its application. The improved version of the model MODHYPMA was applied to sixteen (16) subcatchments in Bénin, West Africa. Its performance was compared to two well-known lumped conceptual models, the GR4J and HBV models. The model was successfully calibrated and validated and showed a good performance in most catchments. The analysis revealed that the three models have similar performance and timing errors. But in contrary to other models, MODHYMA is subject to a less loss of performance from calibration to validation. In order to evaluate the usefulness of our model for the prediction of runoff in ungauged basins, model parameters were estimated from the physical catchments characteristics. We relied on statistical methods applied on calibrated model parameters to deduce relationships between parameters and physical catchments characteristics. These relationships were further tested and validated on gauged basins that were considered ungauged. This regionalization was also performed for GR4J model.We obtained NSE values greater than 0.7 for MODHYPMA while the NSE values for GR4J were inferior to 0.5. In the presented study, the effects of climate change on water resources in the Ouémé catchment at the outlet of Savè (about 23 500 km2) are quantified. The output of a regional climate model was used as input to the hydrological models.Computed within the GLOWA-IMPETUS project, the future climate projections (describing a rainfall reduction of up to 15%) are derived from the regional

  8. Gauge symmetries and structure of proteins

    Directory of Open Access Journals (Sweden)

    Molochkov Alexander

    2017-01-01

    Full Text Available We discuss the gauge field theory approach to protein structure study, which allows a natural way to introduce collective degrees of freedom and nonlinear topological structures. Local symmetry of proteins and its breaking in the medium is considered, what allows to derive Abelian Higgs model of protein backbone, correct folding of which is defined by gauge symmetry breaking due hydrophobic forces. Within this model structure of protein backbone is defined by superposition of one-dimensional topological solitons (kinks, what allows to reproduce the three-dimensional structure of the protein backbone with precision up to 1A and to predict its dynamics.

  9. Unitarity in gauge symmetry breaking on an orbifold

    CERN Document Server

    Abe, Y; Higashide, Y; Kobayashi, K; Matsunaga, M

    2003-01-01

    We study the unitarity bounds of scattering amplitudes in extra-dimensional gauge theory, in which the gauge symmetry is broken by the boundary conditions. The evaluation of the amplitude of the diagram including four massive gauge bosons in the external lines shows that the asymptotic power behavior of the amplitude is canceled. The calculation is carried out with the 5-dimensional standard model and the SU(5) grand unified theory, whose 5th dimensional coordinate is compactified on S sup 1 /Z sub 2. The gauge theories broken through the orbifolding preserve unitarity a high energies, similarly to the broken gauge theories in which the gauge bosons acquire masses through the Higgs mechanism. We show that the contributions of the Kaluza-Klein states play a crucial role in conserving the unitarity. (author)

  10. Exact partition functions for gauge theories on Rλ3

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Wallet

    2016-11-01

    Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  11. Influence analysis of Arctic tide gauges using leverages

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    Reconstructions of historical sea level in the Arctic Ocean are fraught with difficulties related to lack of data, uneven distribution of tide gauges and seasonal ice cover. Considering the period from 1950 to the present, we attempt to identify conspicuous tide gauges in an automated way, using...... a calibration period, in this preliminary case Drakkar ocean model data, which are forced using historical tide gauge data from the PSMSL database. The resulting leverage for each tide gauge may indicate that it represents a distinct mode of variability, or that its time series is perturbed in a way...

  12. Influence analysis of Arctic tide gauges using leverages

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2014-01-01

    Reconstructions of historical sea level in the Arctic Ocean are fraught with difficulties related to lack of data, uneven distribution of tide gauges and seasonal ice cover. Considering the period from 1950 to the present, we attempt to identify conspicuous tide gauges in an automated way, using...... a calibration period, in this preliminary case Drakkar ocean model data, which are forced using historical tide gauge data from the PSMSL database. The resulting leverage for each tide gauge may indicate that it represents a distinct mode of variability, or that its time series is perturbed in a way...

  13. Local gauge coupling running in supersymmetric gauge theories on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbach, M.

    2007-11-21

    By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)

  14. A strain gauge

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... the measurement grid sections at their ends. The end loops at both ends of the measurement grid extend a length (L, 500) in the axial direction in millimetres of a factor times a ratio between a width of a grid section and the gap distance, wherein the factor is larger or equal to 1.5. The invention further...

  15. Gauge Trimming of Neutrino Masses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab

    2006-12-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.

  16. Light higgsino for gauge coupling unification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sik, E-mail: ksjeong@pusan.ac.kr

    2017-06-10

    We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  17. Light higgsino for gauge coupling unification

    Directory of Open Access Journals (Sweden)

    Kwang Sik Jeong

    2017-06-01

    Full Text Available We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  18. Ward identities and gauge independence in general chiral gauge theories

    Science.gov (United States)

    Anselmi, Damiano

    2015-07-01

    Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized Γ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized Γ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.

  19. Search for scalar top quark pair production in natural gauge mediated supersymmetry models with the ATLAS detector in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kennedy, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-07-16

    The results of a search for pair production of the lighter scalar partners of top quarks in 2.05 fb-1 of pp collisions at $\\sqrt{s}$ =7 TeV using the ATLAS experiment at the LHC are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons (electrons or muons) with invariant mass consistent with the Z boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a b-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of R-parity conserving, gauge mediated Supersymmetry breaking `natural' scenarios, where the neutralino is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310 GeV are excluded for the lightest neutralino mass between 115 GeV and 230 GeV at 95% confidence level, reaching an exclusion of the scalar top quark mass of 330 GeV for the lightest neutralino mass of 190 GeV. Scalar top quark masses below 240 GeV ar...

  20. Search for Scalar Top Quark Pair Production in Natural Gauge Mediated Supersymmetry Models with the ATLAS Detector in $pp$ Collisions at $\\sqrt{s}=$~7~TeV

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    The results of a search for pair production of the lighter scalar partners of top quarks ($\\tone$) in 2.05 fb-1 of $pp$ collisions at $\\sqrt{s}=7$~TeV using the ATLAS experiment are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons ($e,\\mu$) with invariant mass consistent with the $Z$ boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a $b$-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of $R$-parity conserving, gauge-mediated Supersymmetry breaking `natural' scenarios where the neutralino ($\\tilde{\\chi}_{1}^{0}$) is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310~GeV are excluded for 115~GeV~$< m_{\\tilde{\\chi}_{1}^{0}}<$~230~GeV at 95\\% confidence-level, reaching an exclusion of $m_{\\tone}<$~330~GeV for $m_{\\tilde{\\chi}_{1}^{0}}=190$~GeV.

  1. Solution of quantum integrable systems from quiver gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Dorey, Nick [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Cambridge (United Kingdom); Zhao, Peng [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook (United States)

    2017-02-23

    We construct new integrable systems describing particles with internal spin from four-dimensional N = 2 quiver gauge theories. The models can be quantized and solved exactly using the quantum inverse scattering method and also using the Bethe/Gauge correspondence.

  2. Loop calculus for lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Gambini, R.; Leal, L.; Trias, A.

    1989-05-15

    Hamiltonian calculations are performed using a loop-labeled basis where the full set of identities for the SU(/ital N/) gauge models has been incorporated. The loops are classified as clusterlike structures and the eigenvalue problem leads to a linear set of finite-difference equations easily amenable to numerical treatment. Encouraging results are reported for SU(2) at spatial dimension 2.

  3. Gauge Physics of Finance: simple introduction

    OpenAIRE

    Ilinski, Kirill N

    1998-01-01

    In this paper we state the fundamental principles of the gauge approach to financial economics and demonstrate the ways of its application. In particular, modelling of realistic price processes is considered for an example of S&P500 market index. Derivative pricing and portfolio theory are also briefly discussed.

  4. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  5. How can hydrological modeling help to understand process dynamics in sparsely gauged tropical regions - case study Mata Âtlantica, Brazil

    Science.gov (United States)

    Künne, Annika; Penedo, Santiago; Schuler, Azeneth; Bardy Prado, Rachel; Kralisch, Sven; Flügel, Wolfgang-Albert

    2015-04-01

    To ensure long-term water security for domestic, agricultural and industrial use in the emerging country of Brazil with fast-growing markets and technologies, understanding of catchment hydrology is essential. Yet, hydrological analysis, high resolution temporal and spatial monitoring and reliable meteo-hydrological data are insufficient to fully understand hydrological processes in the region and to predict future trends. Physically based hydrological modeling can help to expose uncertainties of measured data, predict future trends and contribute to physical understanding about the watershed. The Brazilian Atlantic rainforest (Mata Atlântica) is one of the world's biodiversity hotspots. After the Portuguese colonization, its original expansion of 1.5 million km² was reduced to only 7% of the former area. Due to forest fragmentation, overexploitation and soil degradation, pressure on water resources in the region has significantly increased. Climatically, the region possesses distinctive wet and dry periods. While extreme precipitation events in the rainy season cause floods and landslides, dry periods can lead to water shortages, especially in the agricultural and domestic supply sectors. To ensure both, the protection of the remnants of Atlantic rainforest biome as well as water supply, a hydrological understanding of this sparsely gauged region is essential. We will present hydrological models of two meso- to large-scale catchments (Rio Macacu and Rio Dois Rios) within the Mata Âtlantica in the state of Rio de Janeiro. The results show how physically based models can contribute to hydrological system understanding within the region and answer what-if scenarios, supporting regional planners and decision makers in integrated water resources management.

  6. GPM GROUND VALIDATION MET ONE RAIN GAUGE PAIRS IFLOODS V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Met One Rain Gauge Pairs IFloodS V2 data measures the amount of fallen precipitation collected by a Model 380 tipping bucket rain gauge...

  7. GPM GROUND VALIDATION MET ONE RAIN GAUGE PAIRS IPHEX V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Met One Rain Gauge Pairs IPHEx V2 data measured the amount of fallen precipitation collected by a Model 380 tipping bucket rain gauge made...

  8. Operator Gauge Symmetry in QED

    Directory of Open Access Journals (Sweden)

    Siamak Khademi

    2006-01-01

    Full Text Available In this paper, operator gauge transformation, first introduced by Kobe, is applied to Maxwell's equations and continuity equation in QED. The gauge invariance is satisfied after quantization of electromagnetic fields. Inherent nonlinearity in Maxwell's equations is obtained as a direct result due to the nonlinearity of the operator gauge transformations. The operator gauge invariant Maxwell's equations and corresponding charge conservation are obtained by defining the generalized derivatives of the first and second kinds. Conservation laws for the real and virtual charges are obtained too. The additional terms in the field strength tensor are interpreted as electric and magnetic polarization of the vacuum.

  9. Gauges for fine and high vacuum

    CERN Document Server

    Jousten, K

    2007-01-01

    Vacuum gauges for use in accelerators have to cover about 17 decades of pressure, from 10–12 Pa to 105 Pa. In this article we describe the history, measurement mode, design, accuracy and calibration of the gauges used down to 10–5 Pa. We focus on commercially available types of gauges, i.e., mechanical gauges, piezoresistive and capacitance diaphragm gauges, thermal conductivity gauges, and spinning rotor gauges.

  10. A non-perturbative study of massive gauge theories

    DEFF Research Database (Denmark)

    Della Morte, Michele; Hernandez, Pilar

    2013-01-01

    We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model...

  11. Non-perturbative Equivalences In Gauge Theories With Global Symmetries In The Limit Of Large N

    CERN Document Server

    Kovtun, P

    2004-01-01

    The thesis is devoted to the study of various types of equivalences in large N gauge theories. We are specifically interested in theories whose dynamics is not constrained by supersymmetry or conformal invariance, and we consider theories both at zero and at finite temperature. Specific examples include equivalences between gauge theories, gauge theories and matrix models, and between gauge theories and gravitational theories. The use of lattice regularization for zero temperature gauge theories and effective hydrodynamic description for finite temperature gauge theories made it possible to find generic equivalences which do not rely on any sort of small-parameter expansion.

  12. Gauge-independent Higgs mechanism and the implications for quark confinement

    Directory of Open Access Journals (Sweden)

    Kondo Kei-Ichi

    2017-01-01

    Full Text Available We propose a gauge-invariant description for the Higgs mechanism by which a gauge boson acquires the mass. We do not need to assume spontaneous breakdown of gauge symmetry signaled by a non-vanishing vacuum expectation value of the scalar field. In fact, we give a manifestly gauge-invariant description of the Higgs mechanism in the operator level, which does not rely on spontaneous symmetry breaking. For concreteness, we discuss the gauge-Higgs models with U(1 and SU(2 gauge groups explicitly. This enables us to discuss the confinement-Higgs complementarity from a new perspective.

  13. Light third-generation squarks from flavour gauge messengers

    CERN Document Server

    Brümmer, Felix; Weiler, Andreas

    2014-01-01

    We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3)_F symmetry acting on the quark superfields. If SU(3)_F is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3)_F breaking.

  14. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...... show that the reduced free energy changes sign, at the second, fifth and sixth order in the coupling, when decreasing the number of flavors from the upper end of the conformal window. If the change in sign is interpreted as signal of an instability of the system then we infer a critical number...... of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i...

  15. Tensor Networks for Lattice Gauge Theories with Continuous Groups

    Directory of Open Access Journals (Sweden)

    L. Tagliacozzo

    2014-11-01

    Full Text Available We discuss how to formulate lattice gauge theories in the tensor-network language. In this way, we obtain both a consistent-truncation scheme of the Kogut-Susskind lattice gauge theories and a tensor-network variational ansatz for gauge-invariant states that can be used in actual numerical computations. Our construction is also applied to the simplest realization of the quantum link models or gauge magnets and provides a clear way to understand their microscopic relation with the Kogut-Susskind lattice gauge theories. We also introduce a new set of gauge-invariant operators that modify continuously Rokhsar-Kivelson wave functions and can be used to extend the phase diagrams of known models. As an example, we characterize the transition between the deconfined phase of the Z_{2} lattice gauge theory and the Rokhsar-Kivelson point of the U(1 gauge magnet in 2D in terms of entanglement entropy. The topological entropy serves as an order parameter for the transition but not the Schmidt gap.

  16. Gauging away a big bang

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2017-08-01

    We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.

  17. Topological gauge theory, Cartan geometry, and gravity

    Science.gov (United States)

    Wise, Derek Keith

    2007-12-01

    We investigate the geometry of general relativity, and of related topological gauge theories, using Cartan geometry. Cartan geometry---an 'infinitesimal' version of Klein's Erlanger Programm---allows us to view physical spacetime as tangentially approximated by a homogeneous 'model spacetime', such as de Sitter or anti de Sitter spacetime. This idea leads to a common geometric foundation for 3d Chern-Simons gravity, as studied by Witten, and 4d MacDowell-Mansouri gravity. We describe certain topological gauge theories, including BF theory---a natural generalization of 3d gravity to higher dimensions---as 'Cartan gauge theories' in which the gauge field is replaced by a 'Cartan connection' modeled on some Klein geometry G/H. Cartan-type BF theory has solutions that say spacetime is locally isometric to G/H itself; in this case Cartan geometry reduces to the theory of 'geometric structures'. This leads to generalizations of 3d gravity based on other 3d Klein geometries, including those in Thurston's classification of 3d Riemannian model geometries. In 4d gravity, we generalize MacDowell-Mansouri gravity to other Cartan geometries. For BF theory in n-dimensional spacetime, we also describe codimension-2 'branes' as topological defects. These branes---particles in 3d spacetime, strings in 4d, and so on---are shown to be classified by conjugacy classes in the gauge group G of the theory. They also obey 'exotic statistics' which are neither Bose-Einstein nor Fermi-Dirac, but are governed by representations of generalizations of the braid group known as 'motion groups'. These representations come from a natural action of the motion group on the moduli space of flat G-bundles on space. We study this in particular detail in the case of strings in 4d BF theory, where Lin has called the motion group the 'loop braid group', LBn. This makes 4d BF theory with strings into a 'loop braided quantum field theory'. We also use ideas from 'higher gauge theory' to study particles as

  18. Local gauge symmetry on optical lattices?

    CERN Document Server

    Liu, Yuzhi; Tsai, Shan-Wen

    2012-01-01

    The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model and SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.

  19. Sea level reconstruction from satellite altimetry and tide gauge data

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2012-01-01

    Ocean satellite altimetry has provided global sets of sea level data for the last two decades, allowing determination of spatial patterns in global sea level. For reconstructions going back further than this period, tide gauge data can be used as a proxy. We examine different methods of combining...... satellite altimetry and tide gauge data using optimal weighting of tide gauge data, linear regression and EOFs, including automatic quality checks of the tide gauge time series. We attempt to augment the model using various proxies such as climate indices like the NAO and PDO, and investigate alternative...... of itself, whereas the desired signal will exhibit autocorrelation. This will be applied to a global dataset, necessitating wrap-around consideration of spatial shifts. Our focus is a timescale going back approximately 50 years, allowing reasonable global availability of tide gauge data. This allows...

  20. Neutrino and Z gauge boson physics

    Energy Technology Data Exchange (ETDEWEB)

    Larios, F. [Departamento de Fisica Aplicada, CINVESTAV-Merida, A.P. 73, 97310 Merida, Yucatan (Mexico); Perez, M. A. [Departamento de Fisica, CINVESTAV, A.P. 14-740, 07000, Mexico D.F (Mexico)

    2013-06-12

    We present a short review of the physics of neutrino-photon interactions and the rare decays of the Z and Z Prime gauge bosons. In particular, we emphasize on processes induced by the anomalous trilinear and quartic vertices VVV and VVVV, where V=Z,Z Prime or a photon, within the Standard Model (SM), the 331 model and some extensions of the SM. We also include the phenomenological and experimental limits reported for these couplings.

  1. Gauge invariants and correlators in flavoured quiver gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Mattioli, Paolo, E-mail: p.mattioli@qmul.ac.uk; Ramgoolam, Sanjaye, E-mail: s.ramgoolam@qmul.ac.uk

    2016-10-15

    In this paper we study the construction of holomorphic gauge invariant operators for general quiver gauge theories with flavour symmetries. Using a characterisation of the gauge invariants in terms of equivalence classes generated by permutation actions, along with representation theory results in symmetric groups and unitary groups, we give a diagonal basis for the 2-point functions of holomorphic and anti-holomorphic operators. This involves a generalisation of the previously constructed Quiver Restricted Schur operators to the flavoured case. The 3-point functions are derived and shown to be given in terms of networks of symmetric group branching coefficients. The networks are constructed through cutting and gluing operations on the quivers.

  2. Gauge concepts in theoretical applied physics

    Science.gov (United States)

    Tan, Seng Ghee; Jalil, Mansoor B. A.

    2016-01-01

    Gauge concept evolves in the course of nearly one century from Faraday’s rather obscure electrotonic state of matter to the physically significant Yang-Mills that underpin today’s standard model. As gauge theories improve, links are established with modern observations, e.g. in the Aharonov-Bohm effect, the Pancharatnam-Berry’s phase, superconductivity, and quantum Hall effects. In this century, emergent gauge theory is formulated in numerous fields of applied physics like topological insulators, spintronics, and graphene. We will show in this paper the application of gauge theory in two particularly useful spin-based phenomena, namely the spin orbit spin torque and the spin Hall effect. These are important fields of study in the engineering community due to great commercial interest in the technology of magnetic memory (MRAM), and magnetic field sensors. Both spin orbit torque and spin Hall perform magnetic switching at low power and high speed. Furthermore, spin Hall is also a promising source of pure spin current, as well as a reliable form of detection mechanism for the magnetic state of a material.

  3. A property of electric and magnetic flux in non-abelian gauge theories

    NARCIS (Netherlands)

    Hooft, G. 't

    1979-01-01

    Pure non-Abelian gauge models with gauge group SU(N) are considered in a box with periodic boundary conditions at various temperatures −1. Electric and magnetic flux are defined in a gauge-invariant way. The free energy of the system satisfies an exact duality equation, following from Euclidean

  4. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin

    2007-11-02

    The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of {radical}(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about {integral}Ldt=1 fb{sup -1}. Using this dataset, a search for a new heavy charged gauge boson W{sup '} and its subsequent decay into an electron and a neutrino is performed: p anti p{yields}W{sup '}+X{yields}e{nu}+X. Additional gauge bosons (including the equivalent to the Z, the Z{sup '}) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W{sup '} has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W{sup '} is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W{sup '} signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1{+-}2.1(stat){sup +6.0}{sub -3.7}(sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron

  5. The First Gauge Theory of Weak Interactions and the Prediction of Weak Neutral Currents

    OpenAIRE

    Bludman, S. A.

    1992-01-01

    The three theoretical and historical components of the Standard Model are the exact chiral gauge theory of weak interactions, electroweak unification, and the Higgs mechanism for spontaneous symmetry breaking. I put into historical perspective my 1958 invention of the first gauge theory of weak interactions, predicting weak neutral currents, and show how the fundamental differences between global and gauge symmetries and between partial flavour and exact gauge symmetries, emerged in the stron...

  6. NAMMA SENEGAL RAIN GAUGE NETWORK V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Senegal Rain Gauge Network consisted of 40 rain gauge sites (AMMA 1-40) located in various places throughout Senegal, West Africa. The Rain Gauge Network...

  7. Supersymmetry Breaking, Gauge Mediation, and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shih, David [Rutgers Univ., New Brunswick, NJ (United States)

    2015-04-14

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.

  8. Cosmic Gauge-Field Dark Energy

    Science.gov (United States)

    Devulder, Christopher; Caldwell, Robert

    2017-01-01

    We present a cosmological model in which dark energy consists of a cosmic gauge field. At early times it behaves like radiation; at late times it drives cosmic acceleration. By varying the number of fields, their coupling strength and handedness, a wide range of behavior is shown to emerge. Joint constraints on the model from SNe, BAO and CMB data are presented. We discuss the possibility that the gauge field may seed a spectrum of primordial gravitational waves with a distinct imprint on the power spectrum, as well as act like a dissipative medium for high frequency gravitational waves. We show that this model could have an impact on the B-mode polarization pattern in the CMB, as well as future probes that use standard sirens to constrain the energy budget of the Universe.

  9. Applications of noncovariant gauges in the algebraic renormalization procedure

    CERN Document Server

    Boresch, A; Schweda, Manfred

    1998-01-01

    This volume is a natural continuation of the book Algebraic Renormalization, Perturbative Renormalization, Symmetries and Anomalies, by O Piguet and S P Sorella, with the aim of applying the algebraic renormalization procedure to gauge field models quantized in nonstandard gauges. The main ingredient of the algebraic renormalization program is the quantum action principle, which allows one to control in a unique manner the breaking of a symmetry induced by a noninvariant subtraction scheme. In particular, the volume studies in-depth the following quantized gauge field models: QED, Yang-Mills t

  10. Renormalization of nonabelian gauge theories with tensor matter fields

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Vitor; Renan, Ricardo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, Silvio Paolo [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1996-03-01

    The renormalizability of a nonabelian model describing the coupling between antisymmetric second rank tensor matter fields and Yang-Mills gauge fields is discussed within the BRS algebraic framework. (author). 12 refs.

  11. A review of non-commutative gauge theories

    Indian Academy of Sciences (India)

    -commutative space-time operators is reviewed. Examples of 4 theory and QED are then discussed. Problems of extending the theories to () gauge theories and arbitrary charges in QED are considered. Construction of standard model ...

  12. Covariant gauges at finite temperature

    OpenAIRE

    Landshoff, P V; Rebhan, A

    1992-01-01

    A prescription is presented for real-time finite-temperature perturbation theory in covariant gauges, in which only the two physical degrees of freedom of the gauge-field propagator acquire thermal parts. The propagators for the unphysical degrees of freedom of the gauge field, and for the Faddeev-Popov ghost field, are independent of temperature. This prescription is applied to the calculation of the one-loop gluon self-energy and the two-loop interaction pressure, and is found to be simpler...

  13. Gauge Freedom in Astrodynamics

    Science.gov (United States)

    Efroimsky, Michael

    2006-11-01

    incompatible. Similarly, in spin dynamics the Andoyer elements come out non-osculating under angularvelocity-dependent perturbation (a switch to a noninertial frame being one such case). Amendment of the dynamical equations only with extra terms in the Hamiltonian makes the equations render nonosculating Andoyer elements. To make them osculating, more terms must enter the equations (and the equations will no longer be canonical). It is often convenient to deliberately deviate from osculation by substituting the Lagrange constraint with an arbitrary condition that gives birth to a family of nonosculating elements. The freedom in choosing this condition is analogous to the gauge freedom. Calculations in nonosculating variables are mathematically valid and sometimes highly advantageous, but their physical interpretation is nontrivial. For example, nonosculating orbital elements parameterise instantaneous conics not tangent to the orbit, so the nonosculating inclination will be different from the real inclination of the physical orbit. We present examples of situations in which ignoring of the gauge freedom (and of the unwanted loss of osculation) leads to oversights.

  14. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin [RWTH Aachen Univ. (Germany)

    2007-11-02

    Additional gauge bosons are introduced in many theoretical extensions to the Standard Model. A search for a new heavy charged gauge boson W' decaying into an electron and a neutrino is presented. The data used in this analysis was taken with the D0 detector at the Fermilab proton-antiproton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of about 1 fb-1. Since no significant excess is observed in the data, an upper limit is set on the production cross section times branching fraction σW'xBr (W' → ev). Using this limit, a W' boson with mass below ~1 TeV can be excluded at the 95% confidence level assuming that the new boson has the same couplings to fermions as the Standard Model W boson.

  15. A Propellant Mass Gauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Liquid-Oxygen Mass Gauge, (LMG) for In-Space cryogenic storage capable of continuous monitoring of...

  16. The Dyon Charge in Noncommutative Gauge Theories

    Directory of Open Access Journals (Sweden)

    L. Cieri

    2008-01-01

    Full Text Available We construct a dyon solution for the noncommutative version of the Yang-Mills-Higgs model with a ϑ-term. Extending the Noether method to the case of a noncommutative gauge theory, we analyze the effect of CP violation induced both by the ϑ-term and by noncommutativity proving that the Witten effect formula for the dyon charge remains the same as in ordinary space.

  17. The. delta. expansion and local gauge invariance

    Energy Technology Data Exchange (ETDEWEB)

    Bender, C.M. (Department of Physics, Washington University, St. Louis, Missouri 63130 (US)); Cooper, F. (Department of Physics, Brown University, Providence, Rhode Island 02912 Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexic o 87545); Milton, K.A. (Department of Physics, The Ohio State University, Columbus, Ohio 43210 Department of Physics and Astronomy, University of Oklahoma, Norman, Oklaho ma 73019)

    1989-08-15

    A recently proposed approximation method, called the {delta} expansion, was introduced in the context of a self-interacting scalar field theory. This approximation method offers the hope of obtaining nonperturbative information about a quantum field theory using perturbative techniques. In this paper we extend formally the {delta}-expansion methods to field theories having local gauge symmetry. We then compute the anomaly in the Schwinger model.

  18. Noncommutative Geometric Gauge Theory from Superconnections

    OpenAIRE

    Lee, Chang-Yeong

    1996-01-01

    Noncommutative geometric gauge theory is reconstructed based on the superconnection concept. The bosonic action of the Connes-Lott model including the symmetry breaking Higgs sector is obtained by using a new generalized derivative, which consists of the usual 1-form exterior derivative plus an extra element called the matrix derivative, for the curvatures. We first derive the matrix derivative based on superconnections and then show how the matrix derivative can give rise to spontaneous symm...

  19. VITREOUS INCARCERATION IN SCLEROTOMIES AFTER VALVED 23-, 25-, OR 27-GAUGE AND NONVALVED 23- OR 25-GAUGE MACULAR SURGERY.

    Science.gov (United States)

    Tosi, Gian Marco; Malandrini, Alex; Cevenini, Gabriele; Neri, Giovanni; Marigliani, Davide; Cerruto, Arianna; Virgili, Gianni

    2017-10-01

    To study the patterns of vitreous incarceration at sclerotomy sites by ultrasound biomicroscopy in patients subjected to valved or nonvalved small-gauge pars plana vitrectomy. A prospective comparative study of 88 eyes affected by epiretinal membrane and macular hole. Patients were divided into four groups: valved or nonvalved 23-gauge (16 eyes each) and valved or nonvalved 25-gauge (20 eyes each); their vitreal disposition was compared by ultrasound biomicroscopy. Vitreal disposition was also assessed in 16 eyes of 16 patients subjected to valved 27-gauge pars plana vitrectomy. Three vitreal patterns were identified: P0 (vitreous not visible or vitreous strand distant from the sclerotomy site), P1 (vitreous strand parallel to and in contact with the sclerotomy site), and P2 (vitreous strand entrapped in the sclerotomy site). The effect of valved trocar use on vitreous incarceration seemed to be somewhat beneficial, but no statistically significant effect could be shown (odds ratio: 0.85, 95% confidence interval: 0.42-1.74, P = 0.657). Similarly, no differences in vitreous incarceration were shown among vitrectomy gauges (23, 25, or 27) both in a model including valved trocars only (P = 0.858) and in a model with all available data (P = 0.935). In 23- and 25-gauge macular surgeries, postoperative vitreous incarceration does not seem to be reduced using valved cannulas and was similar to that observed in 27-gauge surgery.

  20. Search for gauge extensions of the MSSM at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Demir, Durmus A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Izmir Institute of Technology, IZTECH, Izmir (Turkey). Dept. of Physics; Frank, Mariana; Turan, Ismail [Montreal Univ., PQ (Canada). Dept. of Physics

    2009-02-15

    The extensions of the minimal supersymmetric model (MSSM), driving mainly from the need to solve the {mu} problem, involve novel matter species and gauge groups. These extended MSSM models can be searched for at the LHC via the effects of the gauge and Higgs bosons or their fermionic partners. Traditionally, the focus has been on the study of the extra forces induced by the new gauge and Higgs bosons present in such models. An alternative way of studying such effects is through the superpartners of matter species and the gauge forces. We thus consider a U(1)' gauge extension of the MSSM, and perform an extensive study of the signatures of the model through the production and decays of the scalar quarks and gluino, which are expected to be produced copiously at the LHC. After a detailed study of the distinctive features of such models with regard to the signatures at the LHC, we carry out a detailed Monte Carlo analysis of the signals from the process pp{yields}n leptons+m jets+E{sub T}, and compare the resulting distributions with those predicted by the MSSM. Our results show that the searches for the extra gauge interactions in the supersymmetric framework can proceed not only through the forces mediated by the gauge and Higgs bosons but also through the superpartner forces mediated by the gauge and Higgs fermions. Analysis of the events induced by the squark/gluino decays presented here is complementary to the direct Z' searches at the LHC. (orig.)

  1. 49 CFR 230.43 - Gauge siphon.

    Science.gov (United States)

    2010-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained steam...

  2. Renormalizations in softly broken SUSY gauge theories

    Science.gov (United States)

    Avdeev, L. V.; Kazakov, D. I.; Kondrashuk, I. N.

    1998-01-01

    The supergraph technique for calculations in supersymmetric gauge theories where supersymmetry is broken in a "soft" way (without introducing quadratic divergencies) is reviewed. By introducing an external spurion field the set of Feynman rules is formulated and explicit connections between the UV counterterms of a softly broken and rigid SUSY theories are found. It is shown that the renormalization constants of softly broken SUSY gauge theory also become external superfields depending on the spurion field. Their explicit form repeats that of the constants of a rigid theory with the redefinition of the couplings. The method allows us to reproduce all known results on the renormalization of soft couplings and masses in a softly broken theory. As an example the renormalization group functions for soft couplings and masses in the Minimal Supersymmetric Standard Model up to the three-loop level are calculated.

  3. Renormalizations in softly broken SUSY gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Avdeev, L.V.; Kazakov, D.I.; Kondrashuk, I.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics

    1998-01-19

    The supergraph technique for calculations in supersymmetric gauge theories where supersymmetry is broken in a ``soft`` way (without introducing quadratic divergencies) is reviewed. By introducing an external spurion field the set of Feynman rules is formulated and explicit connections between the UV counterterms of a softly broken and rigid SUSY theories are found. It is shown that the renormalization constants of softly broken SUSY gauge theory also become external superfields depending on the spurion field. Their explicit form repeats that of the constants of a rigid theory with the redefinition of the couplings. The method allows us to reproduce all known results on the renormalization of soft couplings and masses in a softly broken theory. As an example the renormalization group functions for soft couplings and masses in the minimal supersymmetric standard model up to the three-loop level are calculated. (orig.). 16 refs.

  4. Integrability in N=2 superconformal gauge theorie

    Energy Technology Data Exchange (ETDEWEB)

    Pomoni, Elli [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; National Technical Univ. of Athens (Greece). Physics Div.

    2013-10-15

    Any N=2 superconformal gauge theory (including N=4 SYM) contains a set of local operators made only out of fields in the N=2 vector multiplet that is closed under renormalization to all loops, namely the SU(2,1 vertical stroke 2) sector. For planar N=4 SYM the spectrum of local operators can be obtained by mapping the problem to an integrable model (a spin chain in perturbation theory), in principle for any value of the coupling constant. We present a diagrammatic argument that for any planar N=2 superconformal gauge theory the SU(2,1 vertical stroke 2) Hamiltonian acting on infinite spin chains is identical to all loops to that of N=4 SYM, up to a redefinition of the coupling constant. Thus, this sector is integrable and anomalous dimensions can be, in principle, read off from the N=4 ones up to this redefinition.

  5. Approximate gauge symemtry of composite vector bosons

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mahiko

    2010-06-01

    It can be shown in a solvable field theory model that the couplings of the composite vector mesons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in more an intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.

  6. Dark Matter and Gauged Flavor Symmetries

    CERN Document Server

    Bishara, Fady; Kamenik, Jernej F; Stamou, Emmanuel; Zupan, Jure

    2015-01-01

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental ${\\mathcal Z}_3$ symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly $0.5$ TeV and $5$ TeV if the DM multiplet mass is split only radiatively. In general, however, no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.

  7. Cosmology from a gauge induced gravity

    Science.gov (United States)

    Falciano, F. T.; Sadovski, G.; Sobreiro, R. F.; Tomaz, A. A.

    2017-09-01

    The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with { SO}(m,n) such that m+n=5 and m\\in {0,1,2} as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inönü-Wigner contraction in its infrared sector. As a consequence, the { SO}(m,n) algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a Λ CDM model. We argue that { SO}(m,n) induced gravities are promising effective theories to describe the early phase of the universe.

  8. General Aspects of Tree Level Gauge Mediation

    CERN Document Server

    Nardecchia, Marco; Ziegler, Robert

    2009-01-01

    Tree level gauge mediation (TGM) may be considered as the simplest way to communicate supersymmetry breaking: through the tree level renormalizable exchange of heavy gauge messengers. We study its general structure, in particular the general form of tree level sfermion masses and of one loop, but enhanced, gaugino masses. This allows us to set up general guidelines for model building and to identify the hypotheses underlying the phenomenological predictions. In the context of models based on the "minimal" gauge group SO(10), we show that only two "pure" embeddings of the MSSM fields are possible using $d< 120$ representations, each of them leading to specific predictions for the ratios of family universal sfermion masses at the GUT scale, $m^2_{\\bar{5}} = 2 m^2_{10}$ or $m^2_{\\bar{5}} = (3/4) m^2_{10}$ (in SU(5) notation). These ratios are determined by group factors and are peculiar enough to make this scheme testable at the LHC. We also discuss three possible approaches to the $\\mu$-problem, one of them ...

  9. Cosmology from a gauge induced gravity

    CERN Document Server

    Falciano, F T; Sobreiro, R F; Tomaz, A A

    2015-01-01

    The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with $SO(m,n)$ such that $m+n=5$ and $m\\in\\{0,1,2\\}$ as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an In\\"on\\"u-Wigner contraction in its infrared sector. As a consequence, the $SO(m,n)$ algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a $\\Lambda$CDM model. We argue that $SO(m,n)$ induced gravities are promi...

  10. Interplay of Infrared Divergences and Gauge-Dependence of the Effective Potential

    CERN Document Server

    Espinosa, J.R.; Konstandin, T.

    2016-01-01

    The perturbative effective potential suffers infrared (IR) divergences in gauges with massless Goldstones in their minima (like Landau or Fermi gauges) but the problem can be fixed by a suitable resummation of the Goldstone propagators. When the potential minimum is generated radiatively, gauge-independence of the potential at the minimum also requires resummation and we demonstrate that the resummation that solves the IR problem also cures the gauge-dependence issue, showing this explicitly in the Abelian Higgs model in Fermi gauge. In the process we find an IR divergence (in the location of the minimum) specific to Fermi gauge and not appreciated in recent literature. We show that physical observables can still be computed in this gauge and we further show how to get rid of this divergence by a field redefinition. All these results generalize to the Standard Model case.

  11. Statistical selection of tide gauges for Arctic sea-level reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2015-01-01

    In this paper, we seek an appropriate selection of tide gauges for Arctic Ocean sea-level reconstruction based on a combination of empirical criteria and statistical properties (leverages). Tide gauges provide the only in situ observations of sea level prior to the altimetry era. However, tide...... for the period 1950-2010 for the Arctic Ocean, constrained by tide gauge records, using the basic approach of Church et al. (2004). A major challenge is the sparsity of both satellite and tide gauge data beyond what can be covered with interpolation, necessitating a time-variable selection of tide gauges...... and the use of an ocean circulation model to provide gridded time series of sea level. As a surrogate for satellite altimetry, we have used the Drakkar ocean model to yield the EOFs. We initially evaluate the tide gauges through empirical criteria to reject obvious outlier gauges. Subsequently, we evaluate...

  12. Infrared divergences, mass shell singularities and gauge dependence of the dynamical fermion mass

    Energy Technology Data Exchange (ETDEWEB)

    Das, Ashok K., E-mail: das@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064 (India); Frenkel, J., E-mail: jfrenkel@fma.if.usp.br [Instituto de Física, Universidade de São Paulo, 05508-090, São Paulo, SP (Brazil); Schubert, C., E-mail: schubert@ifm.umich.mx [Institute for Physics, Michoacan University, C.P. 58040, Morelia, Michoacan (Mexico)

    2013-03-26

    We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagator is divergent and gauge dependent at one loop, but the leading singularities cancel in the quenched rainbow approximation. On the other hand, in physical gauges, we find that the dynamical fermion mass is finite and gauge independent at least up to one loop.

  13. Sequestering the Gravitino: Neutralino Dark Matter in Gauge Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Nathaniel J.; /Stanford U., Dept. Phys.; Green, Daniel; /SLAC /Stanford U., Dept. Phys.

    2008-08-15

    In conventional models of gauge-mediated supersymmetry breaking, the lightest supersymmetric particle (LSP) is invariably the gravitino. However, if the supersymmetry breaking sector is strongly coupled, conformal sequestering may raise the mass of the gravitino relative to the remaining soft supersymmetry-breaking masses. In this letter, we demonstrate that such conformal dynamics in gauge-mediated theories may give rise to satisfactory neutralino dark matter while simultaneously solving the flavor and {mu}/B{mu} problems.

  14. Artificial gauge fields in photonics and mechanical systems

    OpenAIRE

    Salerno, Grazia

    2016-01-01

    Recent technological advances in quantum simulators have proven that synthetic materials are very well suited to study and realise many condensed matter models. However, many of these synthetic systems are characterized by neutral particles that do not couple to real gauge fields. In order to simulate interesting electromagnetic phenomena, such as the topological insulators, or the Landau levels, there is the need for the implementation of artificial gauge fields. In particular, the topolo...

  15. String field theory in the Siegel gauge

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, M.

    1987-04-16

    We specialize the gauge-fixing procedure for the Witten action of the open bosonic string, given in a preceding paper, choosing the Siegel gauge. We find that the BRST-invariant gauge-fixed action is the gauge invariant one with ghost number unrestricted plus a gauge-fixing term. The BRST invariance of the measure in the functional integral is briefly discussed. As a technical tool the Hodge dual of a string functional is defined.

  16. An Improved Single-Plaquette Gauge Action

    CERN Document Server

    Banerjee, Debasish; Holland, Kieran; Niedermayer, Ferenc; Pepe, Michele; Wenger, Urs; Wiese, Uwe-Jens

    2015-01-01

    We describe and test a nonperturbatively improved single-plaquette lattice action for 4-d SU(2) and SU(3) pure gauge theory, which suppresses large fluctuations of the plaquette, without requiring the naive continuum limit for smooth fields. We tune the action parameters based on torelon masses in moderate cubic physical volumes, and investigate the size of cut-off effects in other physical quantities, including torelon masses in asymmetric spatial volumes, the static quark potential, and gradient flow observables. In 2-d O(N) models similarly constructed nearest-neighbor actions have led to a drastic reduction of cut-off effects, down to the permille level, in a wide variety of physical quantities. In the gauge theories, we find significant reduction of lattice artifacts, and for some observables, the coarsest lattice result is very close to the continuum value. We estimate an improvement factor of 40 compared to using the Wilson gauge action to achieve the same statistical accuracy and suppression of cut-of...

  17. Geometric phase and gauge connection in polyatomic molecules.

    Science.gov (United States)

    Wittig, Curt

    2012-05-14

    Geometric phase is an interesting topic that is germane to numerous and varied research areas: molecules, optics, quantum computing, quantum Hall effect, graphene, and so on. It exists only when the system of interest interacts with something it perceives as exterior. An isolated system cannot display geometric phase. This article addresses geometric phase in polyatomic molecules from a gauge field theory perspective. Gauge field theory was introduced in electrodynamics by Fock and examined assiduously by Weyl. It yields the gauge field A(μ), particle-field couplings, and the Aharonov-Bohm phase, while Yang-Mills theory, the cornerstone of the standard model of physics, is a template for non-Abelian gauge symmetries. Electronic structure theory, including nonadiabaticity, is a non-Abelian gauge field theory with matrix-valued covariant derivative. Because the wave function of an isolated molecule must be single-valued, its global U(1) symmetry cannot be gauged, i.e., products of nuclear and electron functions such as χ(n)ψ(n) are forbidden from undergoing local phase transformation on R, where R denotes nuclear degrees of freedom. On the other hand, the synchronous transformations (first noted by Mead and Truhlar): ψ(n)→ψ(n)e(iζ) and simultaneously χ(n)→χ(n)e(-iζ), preserve single-valuedness and enable wave functions in each subspace to undergo phase transformation on R. Thus, each subspace is compatible with a U(1) gauge field theory. The central mathematical object is Berry's adiabatic connection i, which serves as a communication link between the two subsystems. It is shown that additions to the connection according to the gauge principle are, in fact, manifestations of the synchronous (e(iζ)/e(-iζ)) nature of the ψ(n) and χ(n) phase transformations. Two important U(1) connections are reviewed: qA(μ) from electrodynamics and Berry's connection. The gauging of SU(2) and SU(3) is reviewed and then used with molecules. The largest gauge group

  18. Introduzione alle teorie di gauge

    CERN Document Server

    Cabibbo, Nicola; Benhar, Omar

    2016-01-01

    "Introduzione alle Teorie di Gauge" completa la serie di tre volumi basati sulle lezioni dei corsi di Meccanica Quantistica Relativistica, Interazioni Elettrodeboli e Teorie di Gauge, impartite dagli autori agli studenti delle Lauree Magistrali in Fisica e Astronomia & Astrofisica dell'Universita "La Sapienza" di Roma, nell'arco di qualche decennio. L'obiettivo principale del volume è di introdurre i concetti di base della rinormalizzazione nella teoria quantistica dei campi e i fondamenti delle moderne teorie di Gauge. Anche se collegato ai volumi precedenti, il libro si presta ad una lettura indipendente, che presume solo conoscenze generali di relativita speciale, della seconda quantizzazione e della fenomenologia delle interazioni elettrodeboli. Lo strumento di base è l'integrale sui cammini di Feynman, introdotto nei capitoli iniziali e sistematicamente impiegato nel seguito. L'esposizione segue un percorso pedagogico, che parte dal caso semplice dell'ampiezza di transizione in meccanica quantistic...

  19. Carbon nanotubes based vacuum gauge

    Science.gov (United States)

    Rudyk, N. N.; Il’in, O. I.; Il’ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  20. Air Gauge Characteristics Linearity Improvement

    Directory of Open Access Journals (Sweden)

    Cz. J. Jermak

    2016-01-01

    Full Text Available This paper discusses calibration uncertainty and linearity issues of the typical back-pressure air gauge. In this sort of air gauge, the correlation between the measured dimension (represented by the slot width and the air pressure in the measuring chamber is used in a proportional range. However, when high linearity is required (e.g., nonlinearity less than 1%, the measuring range should be shortened. In the proposed method, based on knowledge of the static characteristics of air gauges, the measuring range is kept unchanged but the nonlinearity is decreased. The static characteristics may be separated into two sections, each of them approximated with a different linear function. As a result, the nonlinearity is reduced from 5% down to 1% and even below.

  1. Gauge theory and variational principles

    CERN Document Server

    Bleecker, David

    2005-01-01

    This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas.Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field

  2. Some observations on interpolating gauges and non-covariant gauges

    Indian Academy of Sciences (India)

    tion that are not normally taken into account in the BRST formalism that ignores the ε-term, and that they are characteristic of the way the singularities in propagators are handled. We argue that a prescription, in general, will require renormalization; if at all it is to be viable. Keywords. Non-covariant gauges; interpolating ...

  3. Z'-gauge Bosons as Harbingers of Low Mass Strings

    CERN Document Server

    Anchordoqui, Luis A; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Taylor, Tomasz R

    2012-01-01

    Massive Z'-gauge bosons act as excellent harbingers for string compactifications with a low string scale. In D-brane models they are associated to U(1) gauge symmetries that are either anomalous in four dimensions or exhibit a hidden higher dimensional anomaly. We discuss the possible signals of massive Z'-gauge bosons at hadron collider machines (Tevatron, LHC) in a minimal D-brane model consisting out of four stacks of D-branes. In this construction, there are two massive gauge bosons, which can be naturally associated with baryon number B and B-L (L being lepton number). Here baryon number is always anomalous in four dimensions, whereas the presence of a four-dimensional B-L anomaly depends on the U(1)-charges of the right handed neutrinos. In case B-L is anomaly free, a mass hierarchy between the two associated Z'-gauge bosons can be explained. In our phenomenological discussion about the possible discovery of massive Z'-gauge bosons, we take as a benchmark scenario the dijet plus W signal, recently obser...

  4. U(1) Wilson lattice gauge theories in digital quantum simulators

    Science.gov (United States)

    Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter

    2017-10-01

    Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle–antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.

  5. Frobenius-Chern-Simons gauge theory

    Science.gov (United States)

    Bonezzi, Roberto; Boulanger, Nicolas; Sezgin, Ergin; Sundell, Per

    2017-02-01

    Given a set of differential forms on an odd-dimensional noncommutative manifold valued in an internal associative algebra H , we show that the most general cubic covariant Hamiltonian action, without mass terms, is controlled by an {{{Z}}2} -graded associative algebra F with a graded symmetric nondegenerate bilinear form. The resulting class of models provide a natural generalization of the Frobenius-Chern-Simons model (FCS) that was proposed in (arXiv:1505.04957) as an off-shell formulation of the minimal bosonic four-dimensional higher spin gravity theory. If F is unital and the {{{Z}}2} -grading is induced from a Klein operator that is outer to a proper Frobenius subalgebra, then the action can be written on a form akin to topological open string field theory in terms of a superconnection valued in H\\otimes F . We give a new model of this type based on a twisting of {C}≤ft[{{{Z}}2}× {{{Z}}4}\\right] , which leads to self-dual complexified gauge fields on AdS 4. If F is 3-graded, the FCS model can be truncated consistently as to contain no zero-form constraints on-shell. Two examples thereof are a twisting of {C}[{{({{{Z}}2})}3}] that yields the original model, and the Clifford algebra C{{\\ell}2n} which provides an FCS formulation of the bosonic Konstein-Vasiliev model with gauge algebra hu≤ft({{4}n-1},0\\right) .

  6. Two kinds of magnetic gauge potentials due to coherent effect in two-gap superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuguang, E-mail: shixg@bjfu.edu.cn

    2016-10-14

    Two-component Ginzburg–Landau model with one magnetic gauge potential can be used to describe the physical properties of two-gap superconductor. When the order parameters in two-gap superconductor have different phases, the gauge invariance will be destroyed. In order to preserve gauge invariance, two kinds of gauge potentials must be introduced. For seeking the origins of two kinds of gauge potentials, one suggests two kinds of order parameters are in the coherent state. Therefore, two different gauge potentials and masses of the order parameters arise through deducing the super-current of the coherent state. As a result, two different gauge potentials lead to different magnetic fields at the zero points of the order parameters. In other places, the gauge potentials have no contributions to the magnetic field. Moreover, the topological properties of two different gauge potentials are discussed in detail. - Highlights: • Order parameters in two-gap superconductor are in coherence. • Different gauge potentials originate from coherence of order parameters. • Gauge potentials are different only at zero points of order parameters.

  7. Quantum gauge freedom in very special relativity

    Directory of Open Access Journals (Sweden)

    Sudhaker Upadhyay

    2017-02-01

    Full Text Available We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell as well as for Abelian two-form gauge theory in the very special relativity (VSR framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.

  8. Quantum gauge freedom in very special relativity

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal (India); Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal (India)

    2017-02-15

    We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.

  9. Spacetime Metrics from Gauge Potentials

    Directory of Open Access Journals (Sweden)

    Ettore Minguzzi

    2014-03-01

    Full Text Available I present an approach to gravity in which the spacetime metric is constructed from a non-Abelian gauge potential with values in the Lie algebra of the group U(2 (or the Lie algebra of quaternions. If the curvature of this potential vanishes, the metric reduces to a canonical curved background form reminiscent of the Friedmann S3 cosmological metric.

  10. Noether gauge symmetry approach in quintom cosmology

    Science.gov (United States)

    Aslam, Adnan; Jamil, Mubasher; Momeni, Davood; Myrzakulov, Ratbay; Rashid, Muneer Ahmad; Raza, Muhammad

    2013-12-01

    In literature usual point like symmetries of the Lagrangian have been introduced to study the symmetries and the structure of the fields. This kind of Noether symmetry is a subclass of a more general family of symmetries, called Noether gauge symmetries (NGS). Motivated by this mathematical tool, in this paper, we study the generalized Noether symmetry of quintom model of dark energy, which is a two component fluid model with quintessence and phantom scalar fields. Our model is a generalization of the Noether symmetries of a single and multiple components which have been investigated in detail before. We found the general form of the quintom potential in which the whole dynamical system has a point like symmetry. We investigated different possible solutions of the system for diverse family of gauge function. Specially, we discovered two family of potentials, one corresponds to a free quintessence (phantom) and the second is in the form of quadratic interaction between two components. These two families of potential functions are proposed from the symmetry point of view, but in the quintom models they are used as phenomenological models without clear mathematical justification. From integrability point of view, we found two forms of the scale factor: one is power law and second is de-Sitter. Some cosmological implications of the solutions have been investigated.

  11. On magnetohydrodynamic gauge field theory

    Science.gov (United States)

    Webb, G. M.; Anco, S. C.

    2017-06-01

    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.

  12. Minimal realization of right-handed gauge symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-01-01

    We propose a minimally extended gauge symmetry model with U (1 )R , where only the right-handed fermions have nonzero charges in the fermion sector. To achieve both anomaly cancellations and minimality, three right-handed neutrinos are naturally required, and the standard model Higgs has to have nonzero charge under this symmetry. Then we find that its breaking scale(Λ ) is restricted by precise measurement of neutral gauge boson in the standard model; therefore, O (10 ) TeV ≲Λ . We also discuss its testability of the new gauge boson and discrimination of U (1 )R model from U (1 )B-L one at collider physics such as LHC and ILC.

  13. QCD Coulomb Gauge Approach to Exotic Hadrons

    OpenAIRE

    Cotanch, Stephen R.; General, Ignacio J.; Wang, Ping

    2006-01-01

    The Coulomb gauge Hamiltonian model is used to calculate masses for selected J^{PC} states consisting of exotic combinations of quarks and gluons: ggg glueballs (oddballs), q bar{q} g hybrid mesons and q bar{q} q bar{q} tetraquark systems. An odderon Regge trajectory is computed for the J^{--} glueballs with intercept much smaller than the pomeron, explaining its nonobservation. The lowest 1^{-+} hybrid meson mass is found to be just above 2.2 GeV while the lightest tetraquark state mass with...

  14. Strong Coupling Gauge Theories in LHC ERA

    Science.gov (United States)

    Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.

    2011-01-01

    AdS/QCD, light-front holography, and the nonperturbative running coupling / Stanley J. Brodsky, Guy de Teramond and Alexandre Deur -- New results on non-abelian vortices - Further insights into monopole, vortex and confinement / K. Konishi -- Study on exotic hadrons at B-factories / Toru Iijima -- Cold compressed baryonic matter with hidden local symmetry and holography / Mannque Rho -- Aspects of baryons in holographic QCD / T. Sakai -- Nuclear force from string theory / K. Hashimoto -- Integrating out holographic QCD back to hidden local symmetry / Masayasu Harada, Shinya Matsuzaki and Koichi Yamawaki -- Holographic heavy quarks and the giant Polyakov loop / Gianluca Grignani, Joanna Karczmarek and Gordon W. Semenoff -- Effect of vector-axial-vector mixing to dilepton spectrum in hot and/or dense matter / Masayasu Harada and Chihiro Sasaki -- Infrared behavior of ghost and gluon propagators compatible with color confinement in Yang-Mills theory with the Gribov horizon / Kei-Ichi Kondo -- Chiral symmetry breaking on the lattice / Hidenori Fukaya [for JLQCD and TWQCD collaborations] -- Gauge-Higgs unification: Stable Higgs bosons as cold dark matter / Yutaka Hosotani -- The limits of custodial symmetry / R. Sekhar Chivukula ... [et al.] -- Higgs searches at the tevatron / Kazuhiro Yamamoto [for the CDF and D[symbol] collaborations] -- The top triangle moose / R. S. Chivukula ... [et al.] -- Conformal phase transition in QCD like theories and beyond / V. A. Miransky -- Gauge-Higgs unification at LHC / Nobuhito Maru and Nobuchika Okada -- W[symbol]W[symbol] scattering in Higgsless models: Identifying better effective theories / Alexander S. Belyaev ... [et al.] -- Holographic estimate of Muon g - 2 / Deog Ki Hong -- Gauge-Higgs dark matter / T. Yamashita -- Topological and curvature effects in a multi-fermion interaction model / T. Inagaki and M. Hayashi -- A model of soft mass generation / J. Hosek -- TeV physics and conformality / Thomas Appelquist -- Conformal

  15. A precise determination of the electroweak mixing angle from semileptonic neutrino scattering

    CERN Document Server

    Lanceri, Livio

    1987-01-01

    After the discovery of the weak neutral current,' great efforts were undertaken to test the prediction of the Glashow-Salam-Weinberg model that stated that the coupling in all neutral current phenomena depends on one single parameter, $sin^{2}\\Theta_{w}$. Indeed, a unique value of this parameter can explain the couplings measured in many different processes, including leptonic and semileptonic neutrino scattering, asymmetries in electron-nucleon, electron-positron, and muon interactions, parity violating effects in atomic transitions, and the masses of the W and z bosons. $^{2}$

  16. NAMMA SENEGAL RAIN GAUGE NETWORK V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Senegal Rain Gauge Network consisted of 40 rain gauge sites (AMMA 1-40) located in various places throughout Senegal, West Africa. These data files were...

  17. Calibration of pressure gauge for Cherenkov detector

    CERN Document Server

    Saponjic, Nevena

    2013-01-01

    Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.

  18. Focus point gauge mediation in product group unification

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibe, Masahiro [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS; Tokyo Univ., Kashiwa (Japan). ICRR; Yanagida, Tsutomu T. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2013-03-15

    In certain models of gauge-mediated supersymmetry breaking with messenger fields in incomplete GUT multiplets, the radiative corrections to the Higgs potential cancel out during renormalization group running. This allows for relatively heavy superpartners and for a 125 GeV Higgs while the ne-tuning remains modest. In this paper, we show that such gauge mediation models with ''focus point'' behaviour can be naturally embedded into a model of SU(5) x U(3) product group unification.

  19. Gauge theory: form Physics to Geometry

    OpenAIRE

    Bruzzo, Ugo

    2010-01-01

    Maxwell theory may be regarded as a prototype of gauge theory and generalized to nonabelian gauge theory. We briefly sketch the history of gauge theories, from Maxwell to Yang-Mills theory, and the identification of gauge fields with connections on fibre bundles. We introduce the notion of instanton and consider the moduli spaces of such objects. Finally, we discuss some modern techniques for studying the topology of these moduli spaces.

  20. Split Dimensional Regularization for the Temporal Gauge

    OpenAIRE

    Chen, Yaw-Hwang; Hsieh, Ron-Jou; Lin, Chilong

    1996-01-01

    A split dimensional regularization, which was introduced for the Coulomb gauge by Leibbrandt and Williams, is used to regularize the spurious singularities of Yang-Mills theory in the temporal gauge. Typical one-loop split dimensionally regularized temporal gauge integrals, and hence the renormalization structure of the theory are shown to be the same as those calculated with some nonprincipal-value prescriptions.

  1. Primordial Spectrum of Gauge Fields from Inflation

    CERN Document Server

    Davis, A C; Prokopec, Tomislav; Tornkvist, O; Davis, Anne-Christine; Dimopoulos, Konstantinos; Prokopec, Tomislav; Tornkvist, Ola

    2001-01-01

    We show that conformal invariance of gauge fields is naturally broken in inflation, having as a consequence amplification of gauge fields. The resulting spectrum of the field strength is approximately B_L ~ L^(-1), where L is the relevant coherence scale. One realisation of our scenario is scalar electrodynamics with a scalar whose mass is large enough to evade observational constraints - the obvious candidates being supersymmetric partners of the standard-model fermions. Our mechanism also leads naturally to amplification of the standard-model Z-boson field due to its coupling to the electroweak Higgs field. At preheating, the spectrum of the Z field is transferred to the hypercharge field, which remains frozen in the plasma and is converted into a magnetic field at the electroweak phase transition. With a reasonable model of field evolution one obtains a magnetic field strength of the order of $10^{-29}$ Gauss on a scale of 100 pc, the size of the largest turbulent eddy in a virialised galaxy. Resonant ampl...

  2. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  3. Non-Abelian gauge fields

    Science.gov (United States)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another

  4. Differential renormalization of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)

    1998-10-01

    The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab

  5. On Magnetohydrodynamic Gauge Field Theory

    OpenAIRE

    Webb, G. M.; Anco, S. C.

    2017-01-01

    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963). It is shown how the polarization vector ${\\bf P}$ in Calkin's approach, naturally arises from the Lagrange multiplier constraint equation for Faraday's equation for the magnetic induction ${\\bf B}$, or alternatively from the magnetic vector potential form of Faraday's equation. Gauss's equation, (divergence of ${\\bf B}$ is zero), is incorporated in the variational principle...

  6. Helicity conservation in gauge boson scattering at high energy.

    Science.gov (United States)

    Gounaris, G J; Renard, F M

    2005-04-08

    We remark that the high energy gauge boson scattering processes involving two-body initial and final states satisfy certain selection rules described as helicity conservation of the gauge boson amplitudes (GBHC). These rules are valid at the Born level, as well as at the level of the leading and subleading 1-loop logarithmic corrections, in both the standard model and the minimal supersymmetric standard model (MSSM). A "fermionic equivalence" theorem is also proved, which suggests that GBHC is valid at all orders in the MSSM at sufficiently high energies, where the mass suppressed contributions are neglected.

  7. Polyakov loop percolation and deconfinement in SU(2) gauge theory

    Science.gov (United States)

    Fortunato, S.; Satz, H.

    2000-03-01

    The deconfinement transition in /SU(2) gauge theory and the magnetization transition in the Ising model belong to the same universality class. The critical behaviour of the Ising model can be characterized either as spontaneous breaking of the Z2 symmetry of spin states or as percolation of appropriately defined spin clusters. We show that deconfinement in /SU(2) gauge theory can be specified as percolation of Polyakov loop clusters with Fortuin-Kasteleyn bond weights, leading to the same (Onsager) critical exponents as the conventional order-disorder description based on the Polykov loop expectation value.

  8. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye-Sung [W& M

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  9. Gauge fixing and the gibbs phenomenon

    Science.gov (United States)

    Mandula, Jeffrey E.

    1999-03-01

    We address the question of why global gauge fixing, specifically to the lattice Landau gauge, becomes an extremely lengthy process for large lattices. We construct an artificial "gauge-fixing" problem which has the essential features encountered in actuality. In the limit in which the size of the system to be gauge fixed becomes infinite, the problem becomes equivalent to finding a series expansion in functions which are related to the Jacobi polynomials. The series converges slowly, as expected. It also converges non-uniformly, which is an observed characteristic of gauge fixing. In the limiting example, the non-uniformity arises through the Gibbs phenomenon.

  10. Gauge fixing and the gibbs phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, Jeffrey E

    1999-03-01

    We address the question of why global gauge fixing, specifically to the lattice Landau gauge, becomes an extremely lengthy process for large lattices. We construct an artificial 'gauge-fixing' problem which has the essential features encountered in actuality. In the limit in which the size of the system to be gauge fixed becomes infinite, the problem becomes equivalent to finding a series expansion in functions which are related to the Jacobi polynomials. The series converges slowly, as expected. It also converges non-uniformly, which is an observed characteristic of gauge fixing. In the limiting example, the non-uniformity arises through the Gibbs phenomenon.

  11. Gauge Theories in the Twentieth Century

    CERN Document Server

    2001-01-01

    By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups

  12. The Higgs Mechanism in Non-commutative Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Petriello, Frank J

    2001-01-17

    This paper investigates the non-commutative version of the Abelian Higgs model at the one loop level. We find that the BRST invariance of the theory is maintained at this order in perturbation theory, rendering the theory one-loop renormalizable. Upon removing the gauge field from the theory we also obtain a consistent continuum renormalization of the broken O(2) linear sigma model, contradicting results found in the literature. The beta functions for the various couplings of the gauged U(1) theory are presented, as are the divergent contributions to every one particle irreducible (1PI) function. We find that all physical couplings and masses are gauge independent. A brief discussion concerning the symmetries P, C, and T in this theory is also given.

  13. Upper bound on the Abelian gauge coupling from asymptotic safety

    Science.gov (United States)

    Eichhorn, Astrid; Versteegen, Fleur

    2018-01-01

    We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.

  14. A lattice formulation of chiral gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bodwin, G.T. [Argonne National Lab., IL (United States). High Energy Physics Div.

    1995-12-01

    The authors present a method for formulating gauge theories of chiral fermions in lattice field theory. The method makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the theory in two ways: the magnitude of the fermion determinant is replaced with the square root of the determinant for a fermion with vector-like couplings to the gauge field; a double limit is taken in which the lattice spacing associated with the fermion field is taken to zero before the lattice spacing associated with the gauge field. The method applies only to theories whose fermions are in an anomaly-free representation of the gauge group. They also present a related technique for computing matrix elements of operators involving fermion fields. Although the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that computational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configuration.

  15. Phase diagrams of exceptional and supersymmetric lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Wellegehausen, Bjoern-Hendrik

    2012-07-10

    In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.

  16. A gauge-invariant reorganization of thermal gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Nan

    2010-07-01

    This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)

  17. Renormalization of gauge theories in the background-field approach arXiv

    CERN Document Server

    Barvinsky, Andrei O.; Herrero-Valea, Mario; Sibiryakov, Sergey M.; Steinwachs, Christian F.

    Using the background-field method we demonstrate the Becchi-Rouet-Stora-Tyutin (BRST) structure of counterterms in a broad class of gauge theories. In other words, the renormalization procedure for these gauge theories is compatible with their gauge invariance. This class encompasses Yang-Mills theories (with possibly Abelian subgroups) and relativistic gravity, including both renormalizable and non-renormalizable (effective) theories. Our results also hold for non-relativistic models such as Yang-Mills theories with anisotropic scaling or Horava gravity. They strengthen and generalize the existing results in the literature concerning the renormalization of gauge systems. We illustrate our general approach with several explicit examples.

  18. Simple Z2 lattice gauge theories at finite fermion density

    Science.gov (United States)

    Prosko, Christian; Lee, Shu-Ping; Maciejko, Joseph

    2017-11-01

    Lattice gauge theories are a powerful language to theoretically describe a variety of strongly correlated systems, including frustrated magnets, high-Tc superconductors, and topological phases. However, in many cases gauge fields couple to gapless matter degrees of freedom, and such theories become notoriously difficult to analyze quantitatively. In this paper we study several examples of Z2 lattice gauge theories with gapless fermions at finite density, in one and two spatial dimensions, that are either exactly soluble or whose solution reduces to that of a known problem. We consider complex fermions (spinless and spinful) as well as Majorana fermions and study both theories where Gauss' law is strictly imposed and those where all background charge sectors are kept in the physical Hilbert space. We use a combination of duality mappings and the Z2 slave-spin representation to map our gauge theories to models of gauge-invariant fermions that are either free, or with on-site interactions of the Hubbard or Falicov-Kimball type that are amenable to further analysis. In 1D, the phase diagrams of these theories include free-fermion metals, insulators, and superconductors, Luttinger liquids, and correlated insulators. In 2D, we find a variety of gapped and gapless phases, the latter including uniform and spatially modulated flux phases featuring emergent Dirac fermions, some violating Luttinger's theorem.

  19. On gaugino condensation with field-dependent gauge couplings

    CERN Document Server

    Burgess, C P; Quevedo, Fernando; Quirós, Mariano

    1996-01-01

    We study in detail gaugino condensation in globally and locally supersymmetric Yang-Mills theories. We focus on models for which gauge-neutral matter couples to the gauge bosons only through nonminimal gauge kinetic terms, for the cases of one and several condensing gauge groups. Using only symmetry arguments, the low-energy expansion, and general properties of supersymmetry, we compute the low energy Wilson action, as well as the (2PI) effective action for the composite {\\it classical} superfield U\\equiv\\langle \\Tr\\WW \\rangle, with W_\\alpha the supersymmetric gauge field strength. The 2PI effective action provides a firmer foundation for the approach of Veneziano and Yankielowicz, who treated the composite superfield, U, as a quantum degree of freedom. We show how to rederive the Wilson action by minimizing the 2PI action with respect to U. We determine, in both formulations and for global and local supersymmetry, the effective superpotential, W, the non-perturbative contributions to the low-energy K\\"ahler ...

  20. Gauge Properties Of The Guiding Center Variational Symplectic Integrator

    Energy Technology Data Exchange (ETDEWEB)

    J. Squire, H. Qin and W. Tang

    2012-03-05

    Recently, variational symplectic algorithms have been developed for the long-time simulation of charged particles in magnetic fields1-3. As a direct consequence of their derivation from a discrete variational principle, these algorithms have very good long-time energy conservation, as well as exactly preserving discrete momenta. We present stability results for these algorithms, focusing on understanding how explicit variational integrators can be designed for this type of system. It is found that for explicit algorithms an instability arises because the discrete symplectic structure does not become the continuous structure in the t → 0 limit. We examine how a generalized gauge transformation can be used to put the Lagrangian in the "antisymmetric discretization gauge," in which the discrete symplectic structure has the correct form, thus eliminating the numerical instability. Finally, it is noted that the variational guiding center algorithms are not electromagnetically gauge invariant. By designing a model discrete Lagrangian, we show that the algorithms are approximately gauge invariant as long as A and are relatively smooth. A gauge invariant discrete Lagrangian is very important in a variational particle-in-cell algorithm where it ensures current continuity and preservation of Gauss's law4.

  1. So, how much of the Earth's surface is covered by rain gauges?

    Science.gov (United States)

    Kidd, Chris; Huffman, George; Kirschbaum, Dalia; Skofronick-Jackson, Gail; Joe, Paul; Muller, Catherine

    2014-05-01

    The measurement of global precipitation, both rainfall and snowfall, is of critical importance to a wide range of users and applications. The fundamental means of measuring precipitation is the rain gauge. Although rain gauges have many drawbacks (including not measuring snowfall well), they remain the de facto source of precipitation information across the Earth surface for hydro-meteorological purposes. While the accuracy and representative of each gauge can be assessed and monitored, a key limitation of rain and snow gauges is in their distribution across the globe. Gauges tend to be limited to the land surface where their distribution and density is very variable, while over the oceans very few gauges are available and measurements available at island locations may not truly represent those of the surrounding oceans. The total numbers of gauges across the Earth, as noted in the literature, varies greatly primarily due to temporal sampling resolutions, periods of operation, the latency of the data and the availability of the data. These numbers range from a few thousand which are available in near real time, to an estimated hundreds of thousands if one includes all available 'official' gauges (this number might swell more if all amateur gauges are included, with crowdsourcing capable of providing even more). Considering those gauges that are routinely used in the generation of global precipitation products (i.e. those available and of reasonable quality), the physical area covered by rain gauges varies by a factor of about 25. Calculations suggest that if all available rain gauges are included, they would cover between 120 and 3,000 m2. For comparison, equivalent areas range from 267 m2 for the centre circle of a football (soccer) pitch, or about 260 m2 for a tennis court to about 3,000 m2 for half a football pitch. Each gauge should represent more than just the orifice of the gauge itself, however, observations and modelling suggest that the correlation

  2. A generalization of gauge invariance

    Science.gov (United States)

    Grigore, Dan-Radu

    2017-08-01

    We consider perturbative quantum field theory in the causal framework. Gauge invariance is, in this framework, an identity involving chronological products of the interaction Lagrangian; it expresses the fact that the scattering matrix must leave invariant the sub-space of physical states. We are interested in generalizations of such identity involving Wick sub-monomials of the interaction Lagrangian. The analysis can be performed by direct computation in the lower orders of perturbation theory; guided by these computations, we conjecture a generalization for arbitrary orders.

  3. Numerical simulation of the pulsed Pirani gauges

    Science.gov (United States)

    Gospodinov, P.; Dankov, D.; Roussinov, V.; Mironova, M.

    2017-10-01

    The transient heat transfer process is studied in rarefied gas confined between two stationary concentric cylinders. The inner cylinder (filament) is subjected to a periodically heating-cooling cycle. The energy transfer is modeled with a continuous model based on Navier-Stokes-Fourier (NSF) equations of motion and energy transfer and with a statistical Direct Simulation Monte Carlo Method (DSMC). Numerical results for the temperature, thermodynamic pressure and pressure difference between thermodynamic pressure and radial stress tensor component are obtained for different circular frequencies of heating cooling cycle of filament and for different filament radii. The pressure variation at the end of any local heating stage of heating-cooling cycle is close to the value of equilibrium thermodynamic pressure. The results are applicable in designing the pulsed Pirani gauges.

  4. On Gauge Invariance and Minimal Coupling

    CERN Document Server

    Jenkins, Elizabeth E; Trott, Michael

    2013-01-01

    The principle of minimal coupling has been used in the study of Higgs boson interactions to argue that certain higher dimensional operators in the low-energy effective theory generalization of the Standard Model are suppressed by loop factors, and thus smaller than others. It also has been extensively used to analyze beyond-the-standard-model theories. We show that in field theory, and even in quantum mechanics, the concept of minimal coupling is ill-defined and inapplicable as a general principle, and give many pedagogical examples which illustrate this fact. We also clarify some related misconceptions about the dynamics of strongly coupled gauge theories. Many arguments in the literature on Higgs boson interactions that use minimal coupling, particularly in pseudo-Goldstone Higgs theories, are inherently flawed.

  5. Gauge invariance and geometric phase in nonequilibrium thermodynamics.

    Science.gov (United States)

    Borlenghi, Simone

    2016-01-01

    We show the link between U(1) lattice gauge theories and the off-equilibrium thermodynamics of a large class of nonlinear oscillators networks. The coupling between the oscillators plays the role of a gauge field, or connection, on the network. The thermodynamical forces that drive energy flows are expressed in terms of the curvature of the connection, analogous to a geometric phase. The model, which holds both close and far from equilibrium, predicts the existence of persistent energy and particle currents circulating in closed loops through the network. The predictions are confirmed by numerical simulations. Possible extension of the theory and experimental applications to nanoscale devices are briefly discussed.

  6. Full NLO massive gauge boson pair production at the LHC

    CERN Document Server

    Baglio, Julien; Weber, Marcus M

    2013-01-01

    Electroweak gauge boson pair production is a very important process at the LHC as it probes the non-abelian structure of electroweak interactions and is a background process for many searches. We present full next-to-leading order predictions for the production cross sections and distributions of on-shell massive gauge boson pair production in the Standard Model, including both QCD and electroweak corrections. The hierarchy between the ZZ, WW and WZ channels, observed in the transverse momentum distributions, will be analyzed. We will also present a comparison with experimental data for the total cross sections including a study of the theoretical uncertainties.

  7. P T -invariant Weyl semimetals in gauge-symmetric systems

    DEFF Research Database (Denmark)

    Lepori, L.; Fulga, I. C.; Trombettoni, A.

    2016-01-01

    Weyl semimetals typically appear in systems in which either time-reversal (T ) or inversion (P ) symmetry is broken. Here we show that in the presence of gauge potentials these topological states of matter can also arise in fermionic lattices preserving both T and P . We analyze in detail the case...... of a cubic lattice model with π fluxes, discussing the role of gauge symmetries in the formation of Weyl points and the difference between the physical and the canonical T and P symmetries. We examine the robustness of this P T -invariant Weyl semimetal phase against perturbations that remove the chiral...

  8. Applications of Jarzynski's relation in lattice gauge theories

    CERN Document Server

    Nada, Alessandro; Costagliola, Gianluca; Panero, Marco; Toniato, Arianna

    2016-01-01

    Jarzynski's equality is a well-known result in statistical mechanics, relating free-energy differences between equilibrium ensembles with fluctuations in the work performed during non-equilibrium transformations from one ensemble to the other. In this work, an extension of this relation to lattice gauge theory will be presented, along with numerical results for the $\\mathbb{Z}_2$ gauge model in three dimensions and for the equation of state in $\\mathrm{SU}(2)$ Yang-Mills theory in four dimensions. Then, further applications will be discussed, in particular for the Schr\\"odinger functional and for the study of QCD in strong magnetic fields.

  9. Nonlinear symmetries of black hole entropy in gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Dietmar [Dipartimento di Fisica, Università di Milano,and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marrani, Alessio [Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’,Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova,and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Petri, Nicolò; Rabbiosi, Marco [Dipartimento di Fisica, Università di Milano,and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy)

    2017-04-04

    Freudenthal duality in N=2, D=4 ungauged supergravity is generated by an anti-involutive operator that acts on the electromagnetic fluxes, and results to be a symmetry of the Bekenstein-Hawking entropy. We show that, with a suitable extension, this duality can be generalized to the abelian gauged case as well, even in presence of hypermultiplets. By defining Freudenthal duality along the scalar flow, one can prove that two configurations of charges and gaugings linked by the Freudenthal operator share the same set of values of the scalar fields at the black hole horizon. Consequently, Freudenthal duality is promoted to a nonlinear symmetry of the black hole entropy. We explicitly show this invariance for the model with prepotential F=−iX{sup 0}X{sup 1} and Fayet-Iliopoulos gauging.

  10. Knot operators in Chern-Simons gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Labastida, J.M.F.; Llatas, P.M. (European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.); Ramallo, A.V. (Universidad de Santiago de Compostela (Spain). Dept. de Particulas Elementales)

    1991-01-21

    The operator formalism for Chern-Simons gauge theory with gauge group SU(N) is presented. The connection with rational conformal field theory is shown explicitly by identifying a basis for the Hilbert space of the theory with the set of characters corresponding to a Wess-Zumino-Witten model for SU(N). Knot operators are constructed performing the calculation of matrix elements of Wilson line operators on this Hilbert space. Using these operators a representation of the Verlinde operators in the context of Chern-Simons gauge theory is obtained. As an application of the use of these operators to knot theory, the Jones polynomial for toral knots is explicitly computed. (orig.).

  11. Measurements of Gauge Boson Self-Interactions at CMS

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    A critical prediction of the Standard Model electroweak theory is the existence of triple and quartic gauge-boson self-interactions. The 2010-12 LHC run has resulted in a wealth of data in this sector, which can now be probed in many different production modes, both ordinary and potentially anomalous, with a sensitivity that is world-leading. In this seminar, recent CMS results are presented for: measurements of diboson production, with associated constraints on triple gauge boson couplings; the first LHC measurement of purely electroweak production of a Z with two forward jets; and two-photon production of W pairs, with the first LHC constraints on quartic gauge couplings.

  12. Family gauge bosons with an inverted mass hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Koide, Yoshio, E-mail: koide@het.phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); MISC, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Yamashita, Toshifumi, E-mail: tyamashi@cc.kyoto-su.ac.jp [MISC, Kyoto Sangyo University, Kyoto 603-8555 (Japan)

    2012-05-23

    A model that gives family gauge bosons with an inverted mass hierarchy is proposed, stimulated by Sumino's cancellation mechanism for the QED radiative correction to the charged lepton masses. The Sumino mechanism cannot straightforwardly be applied to SUSY models because of the nonrenormalization theorem. In this Letter, an alternative model which is applicable to a SUSY model is proposed. It is essential that family gauge boson masses m(A{sub i}{sup j}) in this model is given by an inverted mass hierarchy m(A{sub i}{sup i}){proportional_to}1/{radical}(m{sub ei}), in contrast to m(A{sub i}{sup i}){proportional_to}{radical}(m{sub ei}) in the original Sumino model. Phenomenological meaning of the model is also investigated. In particular, we notice a deviation from the e-{mu} universality in the tau decays.

  13. Charged current unitarity and extra neutral gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.; Sirling, A.

    1987-03-01

    The experimental status of the Kobayashi-Maskawa-Cabibbo (KMC) matrix is surveyed and shown to provide a precision test of the standard model at the level of its O(..cap alpha..) radiative corrections. Implications for new physics and constraints of extra neutral gauge bosons are described. 12 refs., 1 fig.

  14. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  15. Altered Maxwell equations in the length gauge

    CERN Document Server

    Reiss, H R

    2013-01-01

    The length gauge uses a scalar potential to describe a laser field, thus treating it as a longitudinal field rather than as a transverse field. This distinction is revealed in the fact that the Maxwell equations that relate to the length gauge are not the same as those for transverse fields. In particular, a source term is necessary in the length-gauge Maxwell equations, whereas the Coulomb-gauge description of plane waves possesses the basic property of transverse fields that they propagate with no source terms at all. This difference is shown to be importantly consequential in some previously unremarked circumstances; and it explains why the G\\"oppert-Mayer gauge transformation does not provide the security that might be expected of full gauge equivalence.

  16. Entanglement of Distillation for Lattice Gauge Theories.

    Science.gov (United States)

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B; Verstraete, Frank

    2016-09-23

    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws-including a topological correction-emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  17. Application of model studies for quality control of bottom pressure based GLOSS sea level gauge at Takoradi Harbour (Ghana, West Africa)

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Mehra, P.; Desai, R.G.P.; Dotse, J.; Odammetey, J.T.; Nkebi, E.K.; VijayKumar, K.; Prabhudesai, S.

    , which determines the effectiveness of the model, is incorporation of datasets from that tidal cycle which encompasses the largest span of water column height during spring tide. The model provides chart-datum-referenced sea level record directly from...

  18. Electroweak Measurements with Multiple Gauge Boson Interactions

    CERN Document Server

    Sood, A; The ATLAS collaboration

    2014-01-01

    This talk presents measurements from ATLAS and CMS that are sensitive interactions between EW gauge bosons. Included analyses sensitive to triple gauge couplings are EW $Z$ production, and $VV^{\\prime}$ cross sections where $V=W/Z$ and $V^{\\prime}=W/Z/\\gamma$, while $\\gamma\\gamma\\rightarrow WW$, $WV\\gamma$ where $V=W/Z$, and $W^{\\pm}W^{\\pm}jj$ production are present as probes of quartic gauge couplings.

  19. Alpha-particle Gas Pressure Gauge

    Science.gov (United States)

    Buehler, M. G.; Bell, L. D.; Hecht, M. H.

    1995-01-01

    Described are preliminary results obtained on a novel gas pressure gauge that operates between 0.1 and 1000 mb. This gauge uses a 1- micron Ci alpha particle source to ionize the gas in a small chamber with an electric field imposed between anode and cathode electrodes that drives positive ions to the cathode where they are collected electronically. This gauge could make Martian pressure measurements.

  20. Microminiature temperature-compensated magnetoelastic strain gauge

    Science.gov (United States)

    Arms, Steven W.; Townsend, Christopher P.

    2002-07-01

    Our objective was to demonstrate a microminiature magnetoelastic strain gauge that provides both strain and temperature signals without additional sensors. Iron based magnetoelastic materials were embedded within superelastic nickel/titanium (NiTi) tubing. NiTi stress was transferred to the ferrite, causing a permeability change sensed by a tiny coil. The coil/bridge was excited (70 KHz AC), synchronously demodulated, and amplified to produce a voltage output proportional to coil/ferrite impedance. A DC voltage was also applied and separately conditioned to provide an output proportional to coil resistance; this signal was used to provide thermal compensation. Controlled strains were applied and 6 Hz cyclic outputs recorded simultaneously from the magnetoelastic strain gauge and conventional foil strain gauges. The magnetoelastic strain gauge tracked the foil gauge with minimal hysteresis and good linearity over 600 microstrain; repeatability was approximately 1.5 microstrain. The magnetoelastic strain gauge's gauge factor was computed from delta inductance/original inductance under static strain conditions. Temperatures of 25-140 deg C resulted in an uncompensated shift of 15 microstrain/deg C, and compensated shift of 1.0 microstrain/deg C. A sensitive micro-magnetoelastic strain gauge was demonstrated using the same sensor to detect stress and temperature with no moving parts, high gauge factor, and good thermal stability.

  1. Gauge coupling unification and nonequilibrium thermal dark matter.

    Science.gov (United States)

    Mambrini, Yann; Olive, Keith A; Quevillon, Jérémie; Zaldívar, Bryan

    2013-06-14

    We study a new mechanism for the production of dark matter in the Universe which does not rely on thermal equilibrium. Dark matter is populated from the thermal bath subsequent to inflationary reheating via a massive mediator whose mass is above the reheating scale T(RH). To this end, we consider models with an extra U(1) gauge symmetry broken at some intermediate scale (M(int) ≃ 10(10)-10(12) GeV). We show that not only does the model allow for gauge coupling unification (at a higher scale associated with grand unification) but it can provide a dark matter candidate which is a standard model singlet but charged under the extra U(1). The intermediate scale gauge boson(s) which are predicted in several E6/SO(10) constructions can be a natural mediator between dark matter and the thermal bath. We show that the dark matter abundance, while never having achieved thermal equilibrium, is fixed shortly after the reheating epoch by the relation T(RH)(3)/M(int)(4). As a consequence, we show that the unification of gauge couplings which determines M(int) also fixes the reheating temperature, which can be as high as T(RH) ≃ 10(11) GeV.

  2. Integration of rain gauge measurement errors with the overall rainfall uncertainty estimation using kriging methods

    Science.gov (United States)

    Cecinati, Francesca; Moreno Ródenas, Antonio Manuel; Rico-Ramirez, Miguel Angel; ten Veldhuis, Marie-claire; Han, Dawei

    2016-04-01

    In many research studies rain gauges are used as a reference point measurement for rainfall, because they can reach very good accuracy, especially compared to radar or microwave links, and their use is very widespread. In some applications rain gauge uncertainty is assumed to be small enough to be neglected. This can be done when rain gauges are accurate and their data is correctly managed. Unfortunately, in many operational networks the importance of accurate rainfall data and of data quality control can be underestimated; budget and best practice knowledge can be limiting factors in a correct rain gauge network management. In these cases, the accuracy of rain gauges can drastically drop and the uncertainty associated with the measurements cannot be neglected. This work proposes an approach based on three different kriging methods to integrate rain gauge measurement errors in the overall rainfall uncertainty estimation. In particular, rainfall products of different complexity are derived through 1) block kriging on a single rain gauge 2) ordinary kriging on a network of different rain gauges 3) kriging with external drift to integrate all the available rain gauges with radar rainfall information. The study area is the Eindhoven catchment, contributing to the river Dommel, in the southern part of the Netherlands. The area, 590 km2, is covered by high quality rain gauge measurements by the Royal Netherlands Meteorological Institute (KNMI), which has one rain gauge inside the study area and six around it, and by lower quality rain gauge measurements by the Dommel Water Board and by the Eindhoven Municipality (six rain gauges in total). The integration of the rain gauge measurement error is accomplished in all the cases increasing the nugget of the semivariogram proportionally to the estimated error. Using different semivariogram models for the different networks allows for the separate characterisation of higher and lower quality rain gauges. For the kriging with

  3. Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.

    Science.gov (United States)

    2015-01-01

    This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...

  4. Gauge Mediation in Supergravity and Gravitino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Ibe, Masahiro; Kitano, Ryuichiro

    2006-12-01

    Gravitinos and hidden sector fields often cause a cosmological disaster in supersymmetric models. We find that a model with gravitational gauge mediation solves such a problem quite naturally. The {mu}-problem is also absent in the model. Moreover, the abundance of gravitinos explains correct amount of dark matter of the universe. The dark matter abundance can be calculated without detailed information on the thermal history of the universe such as the reheating temperature after inflation.

  5. Z(2) gauge neural network and its phase structure

    Science.gov (United States)

    Takafuji, Yusuke; Nakano, Yuki; Matsui, Tetsuo

    2012-11-01

    We study general phase structures of neural-network models that have Z(2) local gauge symmetry. The Z(2) spin variable Si=±1 on the i-th site describes a neuron state as in the Hopfield model, and the Z(2) gauge variable J=±1 describes a state of the synaptic connection between j-th and i-th neurons. The gauge symmetry allows for a self-coupling energy among J’s such as JJJ, which describes reverberation of signals. Explicitly, we consider the three models; (I) an annealed model with full and partial connections of J, (II) a quenched model with full connections where J is treated as a slow quenched variable, and (III) a quenched three-dimensional lattice model with the nearest-neighbor connections. By numerical simulations, we examine their phase structures paying attention to the effect of the reverberation term, and compare them with each other and with the annealed 3D lattice model which has been studied beforehand. By noting the dependence of thermodynamic quantities upon the total number of sites and the connectivity among sites, we obtain a coherent interpretation to understand these results. Among other things, we find that the Higgs phase of the annealed model is separated into two stable spin-glass phases in the quenched models (II) and (III).

  6. Vertical Motion Determined Using Satellite Altimetry and Tide Gauges

    Directory of Open Access Journals (Sweden)

    Chung-Yen Kuo

    2008-01-01

    Full Text Available A robust method to estimate vertical crustal motions by combining geocentric sea level measurements from decadal (1992 - 2003 TOPEX/POSEIDON satellite altimetry and long-term (> 40 years relative sea level records from tide gauges using a novel Gauss-Markov stochastic adjustment model is presented. These results represent an improvement over a prior study (Kuo et al. 2004 in Fennoscandia, where the observed vertical motions are primarily attributed to the incomplete Glacial Isostatic Adjustment (GIA in the region since the Last Glacial Maximum (LGM. The stochastic adjustment algorithm and results include a fully-populated a priori covariance matrix. The algorithm was extended to estimate vertical motion at tide gauge locations near open seas and around semi-enclosed seas and lakes. Estimation of nonlinear vertical motions, which could result from co- and postseismic deformations, has also been incorporated. The estimated uncertainties for the vertical motion solutions in coastal regions of the Baltic Sea and around the Great Lakes are in general < 0.5 mm yr-1, which is a significant improvement over existing studies. In the Baltic Sea, the comparisons of the vertical motion solution with 10 collocated GPS radial rates and with the BIFROST GIA model show differences of 0.2 _ 0.9 and 1.6 _ 1.8 mm yr-1, respectively. For the Great Lakes region, the comparisons with the ICE-3G model and with the relative vertical motion estimated using tide gauges only (Mainville and Craymer 2005 show differences of -0.2 _ 0.6 and -0.1 _ 0.5 mm yr-1, respectively. The Alaskan vertical motion solutions (linear and nonlinear models have an estimated uncertainty of ~1.2 - 1.6 mm yr-1, which agree qualitatively with GPS velocity and tide gauge-only solutions (Larsen et al. 2003. This innovative technique could potentially provide improved estimates of the vertical motion globally where long-term tide gauge records exist.

  7. Gauge choice in conformal gravity

    Science.gov (United States)

    Sultana, Joseph; Kazanas, Demosthenes

    2017-04-01

    In a recent paper, K. Horne examined the effect of a conformally coupled scalar field (referred to as Higgs field) on the Mannheim-Kazanas metric gμν, i.e. the static spherically symmetric metric within the context of conformal gravity, and studied its effect on the rotation curves of galaxies. He showed that for a Higgs field of the form S(r) = S0a/(r + a), where a is a radial length-scale, the equivalent Higgs-frame Mannheim-Kazanas metric \\tilde{g}_{μ ν } = Ω ^2 g_{μ ν }, with Ω = S(r)/S0, lacks the linear γr term, which has been employed in the fitting of the galactic rotation curves without the need to invoke dark matter. In this brief note, we point out that the representation of the Mannheim-Kazanas metric in a gauge, where it lacks the linear term, has already been presented by others, including Mannheim and Kazanas themselves, without the need to introduce a conformally coupled Higgs field. Furthermore, Horne argues that the absence of the linear term resolves the issue of light bending in the wrong direction, i.e. away from the gravitating mass, if γr > 0 in the Mannheim-Kazanas metric, a condition necessary to resolve the galactic dynamics in the absence of dark matter. In this case, we also point out that the elimination of the linear term is not even required because the sign of the γr term in the metric can be easily reversed by a simple gauge transformation, and also that the effects of this term are indeed too small to be observed.

  8. P-Cell Gauge Theories, Manifold Space, and Multi-Dimensional Integrability

    Science.gov (United States)

    Larsson, T. A.

    We construct lattice gauge theories where the gauge potentials live on p-cells, using ideas from the theory of multi-dimensional lattice integrability. The classical limit of these models can naturally be considered as chiral models in the space ΩPM of p-dimensional manifolds on M, or alternatively as gauge theories in ΩP-1M. The continuum models have an infinite set of functionally conserved currents in ΩPM, which are classical analogs of the simplex equations of lattice integrable systems.

  9. 27 CFR 19.319 - Production gauge.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production gauge. 19.319... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production § 19.319 Production gauge. (a) General... production is completed. Except as otherwise specifically provided in this section, quantities may be...

  10. Infrared behaviors of SU(2 gauge theory

    Directory of Open Access Journals (Sweden)

    Tuominen Kimmo

    2017-01-01

    Full Text Available We will discuss some recent results in the determination of the location of the conformal window in SU(2 gauge theory with Nf fermions in the fundamental representation of the gauge group. In particular, we will demonstrate that the long distance behavior of the continuum theory with Nf = 6 is governed by an infrared stable fixed point.

  11. Gauged matter coupling in N = 4 supergravity

    NARCIS (Netherlands)

    Roo, M. de; Wagemans, P.

    1985-01-01

    Gauged N = 4 supergravity with an arbitrary number of matter multiplets is constructed from a superconformal starting point. It includes both the SO(4) and SU(4) symmetric N = 4 supergravity theories, and all their gaugings. Noncompact Yang-Mills symmetries may mix the matter and supergravity vector

  12. Deformations, moduli stabilisation and gauge couplings at one-loop

    Energy Technology Data Exchange (ETDEWEB)

    Honecker, Gabriele; Koltermann, Isabel [PRISMA Cluster of Excellence, MITP & Institut für Physik (WA THEP),Johannes Gutenberg-Universität,Staudingerweg 9, 55128 Mainz (Germany); Staessens, Wieland [Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid Cantoblanco,Calle de Nicolás Cabrera 13-15, 28049 Madrid (Spain); Departamento de Física Teórica, Universidad Autónoma de Madrid Cantoblanco,Calle de Nicolás Cabrera 13-15, 28049 Madrid (Spain)

    2017-04-05

    We investigate deformations of ℤ{sub 2} orbifold singularities on the toroidal orbifold T{sup 6}/(ℤ{sub 2}×ℤ{sub 6}) with discrete torsion in the framework of Type IIA orientifold model building with intersecting D6-branes wrapping special Lagrangian cycles. To this aim, we employ the hypersurface formalism developed previously for the orbifold T{sup 6}/(ℤ{sub 2}×ℤ{sub 2}) with discrete torsion and adapt it to the (ℤ{sub 2}×ℤ{sub 6}×ΩR) point group by modding out the remaining ℤ{sub 3} subsymmetry and the orientifold projection ΩR. We first study the local behaviour of the ℤ{sub 3}×ΩR invariant deformation orbits under non-zero deformation and then develop methods to assess the deformation effects on the fractional three-cycle volumes globally. We confirm that D6-branes supporting USp(2N) or SO(2N) gauge groups do not constrain any deformation, while deformation parameters associated to cycles wrapped by D6-branes with U(N) gauge groups are constrained by D-term supersymmetry breaking. These features are exposed in global prototype MSSM, Left-Right symmetric and Pati-Salam models first constructed in (DOI: 10.1016/j.nuclphysb.2015.10.009; 10.1002/prop.201400066), for which we here count the number of stabilised moduli and study flat directions changing the values of some gauge couplings. Finally, we confront the behaviour of tree-level gauge couplings under non-vanishing deformations along flat directions with the one-loop gauge threshold corrections at the orbifold point and discuss phenomenological implications, in particular on possible LARGE volume scenarios and the corresponding value of the string scale M{sub string}, for the same global D6-brane models.

  13. Gauge-Invariant Formulation of Circular Dichroism.

    Science.gov (United States)

    Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A

    2016-07-12

    Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment.

  14. GEANT simulation of the $\\gamma$ nuclear gauge

    CERN Document Server

    Ouardi, A; Benchekroun, D; Hoummada, A

    2003-01-01

    The gamma nuclear gauging technique used for monitoring the sediment load suspended in water, is based on the detection of gamma rays emitted by a radioactive source. The GEANT321 Monte Carlo simulation tool, originally developed at CERN for high energy physics experiments, is used for the evaluation and calibration of gamma nuclear gauges. A set of parameters, principally the source energy, the source-detector separation, the lead block thickness and the energy threshold below which the sediments elemental composition affects the measurement or the energy corresponding to the Compton and photoelectric windows separation, are discussed and evaluated in the case of the gamma scattering gauge. For the gamma transmission gauge, the GEANT321 code has been used to define the optimal source detector distance interval, particularly for the Moroccan sediment samplers, and to check the influence of the radionuclide existing in the suspension, on the gauge response accuracy. Experimental calibration was also carried ou...

  15. Higher-dimensional analogue of the Blau-Thompson model and N{sub T}=8, D=2 Hodge-type cohomological gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, B. E-mail: geyer@itp.uni-leipzig.de; Muelsch, D. E-mail: muelsch@informatik.uni-leipzig.de

    2003-07-14

    The higher-dimensional analogue of the Blau-Thompson model in D=5 is constructed by a N{sub T}=1 topological twist of N=2, D=5 super-Yang-Mills theory. Its dimensional reduction to D=4 and D=3 gives rise to the B-model and the N{sub T}=4 equivariant extension of the Blau-Thompson model, respectively. A further dimensional reduction to D=2 provides another example of a N{sub T}=8 Hodge-type cohomological theory with global symmetry group SU(2)xSU(2)-bar. Moreover, it is shown that this theory possesses actually a larger global symmetry group SU(4) and that it agrees with the N{sub T}=8 topological twisting of N=16, D=2 super-Yang-Mills theory.

  16. Higher-dimensional analogue of the Blau-Thompson model and NT=8, /D=2 Hodge-type cohomological gauge theories

    Science.gov (United States)

    Geyer, B.; Mülsch, D.

    2003-07-01

    The higher-dimensional analogue of the Blau-Thompson model in D=5 is constructed by a NT=1 topological twist of N=2, D=5 super-Yang-Mills theory. Its dimensional reduction to D=4 and D=3 gives rise to the B-model and the NT=4 equivariant extension of the Blau-Thompson model, respectively. A further dimensional reduction to D=2 provides another example of a NT=8 Hodge-type cohomological theory with global symmetry group SU(2)⊗ overlineSU(2). Moreover, it is shown that this theory possesses actually a larger global symmetry group SU(4) and that it agrees with the NT=8 topological twisting of N=16, D=2 super-Yang-Mills theory.

  17. Rain rate and modeled fade distributions at 20 GHz and 30 GHz derived from five years of network rain gauge measurements

    Science.gov (United States)

    Goldhirsh, Julius; Krichevsky, Vladimir; Gebo, Norman

    1992-01-01

    Five years of rain rate and modeled slant path attenuation distributions at 20 GHz and 30 GHz derived from a network of 10 tipping bucket rain gages was examined. The rain gage network is located within a grid 70 km north-south and 47 km east-west in the Mid-Atlantic coast of the United States in the vicinity of Wallops Island, Virginia. Distributions were derived from the variable integration time data and from one minute averages. It was demonstrated that for realistic fade margins, the variable integration time results are adequate to estimate slant path attenuations at frequencies above 20 GHz using models which require one minute averages. An accurate empirical formula was developed to convert the variable integration time rain rates to one minute averages. Fade distributions at 20 GHz and 30 GHz were derived employing Crane's Global model because it was demonstrated to exhibit excellent accuracy with measured COMSTAR fades at 28.56 GHz.

  18. Numerical results for gauge theories near the conformal window

    CERN Document Server

    Lucini, Biagio

    2015-01-01

    A novel strong interaction beyond the standard model could provide a dynamical explanation of electroweak symmetry breaking. Experimental results strongly constrain properties of models that realise this mechanism. Whether these constraints are obeyed by any strongly interacting quantum field theory is a non-perturbative problem that needs to be addressed by first-principle calculations. Monte Carlo simulations of lattice regularised gauge theories is a powerful tool that enables us to address this question. Recently various lattice investigations have appeared that have studied candidate models of strongly interacting dynamics beyond the standard model. After a brief review of the main methods and of some recent results, we focus on the analysis of SU(2) gauge theory with one adjoint Dirac fermion flavour, which is shown to have a near-conformal behaviour with an anomalous dimension of order one. The implications of our findings are also discussed.

  19. GOCE++ Dynamical Coastal Topography and tide gauge unification using altimetry and GOCE

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Nielsen, Karina

    Mean Dynamic Topography (MDT) of the ocean along a coastline which contributes/requires reconciling altimetry, tide gauge and vertical land motion. The fundamental use of the MDT computed using altimetry, ocean models or through the use of tide gauges has values of between -2 and +1 meters at different...... processes and physics responsible for sea level changes on various temporal/spatial scales. The study runs from October 2015 to march 2017 and involves elements like: Develop an approach to estimate a consistent DT at tide gauges, coastal areas, and open ocean; Validate the approach in well-surveyed areas...... where DT can be determined at tide gauges; Determine a consistent MDT using GOCE with consistent error covariance fields; Connect measurements of a global set of tide gauges and investigate trends...

  20. Towards Scalable Strain Gauge-Based Joint Torque Sensors.

    Science.gov (United States)

    Khan, Hamza; D'Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G; Cuschieri, Alfred; Semini, Claudio

    2017-08-18

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR).

  1. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    Science.gov (United States)

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  2. On the origin of Poincaré gauge gravity

    Directory of Open Access Journals (Sweden)

    J.L. Chkareuli

    2017-06-01

    Full Text Available We argue that the origin of Poincaré gauge gravity (PGG may be related to spontaneous violation of underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are assumed to belong, respectively, to the adjoint (Aμij and vector (eμi representations of the starting global Lorentz symmetry. We propose that these prototype vector fields are covariantly constrained, AμijAijμ=±MA2 and eμieiμ=±Me2, that causes a spontaneous violation of the accompanying global symmetries (MA,e are their presumed violation scales. It then follows that the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudoGoldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein–Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.

  3. Bulk gauge fields in warped space and localized supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, Z.; Ponton, Eduardo

    2003-11-01

    We consider five dimensional supersymmetric warped scenarios in which the Standard Model quark and lepton fields are localized on the ultraviolet brane, while the Standard Model gauge fields propagate in the bulk. Supersymmetry is assumed to be broken on the infrared brane. The relative sizes of supersymmetry breaking effects are found to depend on the hierarchy between the infrared scale and the weak scale. If the infrared scale is much larger than the weak scale the leading supersymmetry breaking effect on the visible brane is given by gaugino mediation. The gaugino masses at the weak scale are proportional to the square of the corresponding gauge coupling, while the dominant contribution to the scalar masses arises from logarithmically enhanced radiative effects involving the gaugino mass that are cutoff at the infrared scale. While the LSP is the gravitino, the NLSP which is the stau is stable on collider time scales. If however the infrared scale is close to the weak scale then the effects of hard supersymmetry breaking operators on the scalar masses can become comparable to those from gaugino mediation. These operators alter the relative strengths of the couplings of gauge bosons and gauginos to matter, and give loop contributions to the scalar masses that are also cutoff at the infrared scale. The gaugino masses, while exhibiting a more complicated dependence on the corresponding gauge coupling, remain hierarchical and become proportional to the corresponding gauge coupling in the limit of strong supersymmetry breaking. The scalar masses are finite and a loop factor smaller than the gaugino masses. The LSP remains the gravitino.

  4. Massive Axial Gauge in the Exact Renormalization Group Approach

    Science.gov (United States)

    Panza, P.; Soldati, R.

    The Exact Renormalization Group (ERG) approach to massive gauge theories in the axial gauge is studied and the smoothness of the massless limit is analysed for a formally gauge invariant quantity such as the Euclidean Wilson loop.

  5. 49 CFR 230.42 - Location of gauges.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.42 Location of gauges. Every boiler shall have at least one steam gauge which will...

  6. GPM GROUND VALIDATION RAIN GAUGES NASA ACHIEVE IPHEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Rain Gauges NASA ACHIEVE IPHEx dataset includes data from the OSi Optical Rain Gauge (ORG815), and a standard tipping bucket rain gauge....

  7. Two-dimensional reconstruction of past sea level (1950-2003) from tide gauge data and an Ocean General Circulation Model

    OpenAIRE

    Llovel, W.; Cazenave, A.; Rogel, P.; Lombard, A.; Nguyen, M. B.

    2009-01-01

    ISI Document Delivery No.: 464XM Times Cited: 19 Cited Reference Count: 32 Cited References: Alvera-Azcarate A, 2005, OCEAN MODEL, V9, P325, DOI 10.1016/j.ocemod.2004.08.001 Berge-Nguyen M, 2008, GLOBAL PLANET CHANGE, V62, P1, DOI 10.1016/j.gloplacha.2007.11.007 Bindoff NL, 2007, CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P385 Cabanes C, 2001, SCIENCE, V294, P840, DOI 10.1126/science.1063556 CAZENAVE A, 2004, REV GEOPHYS, V42, DOI DOI 10.1029/2003RG000139 Chambers DP, 2002, PHYS CHEM EA...

  8. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Science.gov (United States)

    2010-10-01

    ... connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST... § 52.01-110 Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure.... (Modifies PG-60.3.) Gage glasses and gage cocks shall be connected directly to the head or shell of a boiler...

  9. Gauge-Higgs unification with brane kinetic terms

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, Alfredo [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima (Mexico)]. E-mail: fefo@ucol.mx; Diaz-Cruz, J. Lorenzo [Cuerpo Academico de Particulas, Campos y Relatividad, FCFM-BUAP, Puebla, Pue. 72570 (Mexico)]. E-mail: lorenzo.diaz@fcfm.buap.mx

    2006-02-16

    By identifying the Higgs field as an internal component of a higher-dimensional gauge field it is possible to solve the little hierarchy problem. The construction of a realistic model that incorporates such a gauge-Higgs unification is an important problem that demands attention. In fact, several attempts in this direction have already been put forward. In this Letter we single out one such attempt, a 6D SU(3) extended electroweak theory, where it is possible to obtain a Higgs mass prediction in accord with global fits. One shortcoming of the model is its prediction for the Weinberg angle, it is too large. We slightly modify the model by including brane kinetic terms in a way motivated by the orbifold action on the 6D fields. We show that in this way it is possible to obtain the correct Weinberg angle while keeping the desired results in the Higgs sector.

  10. Conformal Gauge Transformations in Thermodynamics

    Directory of Open Access Journals (Sweden)

    Alessandro Bravetti

    2015-09-01

    Full Text Available In this work, we show that the thermodynamic phase space is naturally endowed with a non-integrable connection, defined by all of those processes that annihilate the Gibbs one-form, i.e., reversible processes. We argue that such a connection is invariant under re-scalings of the connection one-form, whilst, as a consequence of the non-integrability of the connection, its curvature is not and, therefore, neither is the associated pseudo-Riemannian geometry. We claim that this is not surprising, since these two objects are associated with irreversible processes. Moreover, we provide the explicit form in which all of the elements of the geometric structure of the thermodynamic phase space change under a re-scaling of the connection one-form. We call this transformation of the geometric structure a conformal gauge transformation. As an example, we revisit the change of the thermodynamic representation and consider the resulting change between the two metrics on the thermodynamic phase space, which induce Weinhold’s energy metric and Ruppeiner’s entropy metric. As a by-product, we obtain a proof of the well-known conformal relation between Weinhold’s and Ruppeiner’s metrics along the equilibrium directions. Finally, we find interesting properties of the almost para-contact structure and of its eigenvectors, which may be of physical interest.

  11. Implications Of A Heavy Gauge Boson

    CERN Document Server

    Kang, J

    2005-01-01

    We study the implications of neutral heavy gauge bosons to electroweak (EW) baryogenesis, neutrino physics and the discovery limits at the Tevatron and LHC. For baryogenesis, we construct two anomaly free supersymmetric U(1)′ models with secluded U(1) ′-breaking sectors. In the framework of the one with E6 embedding, we study the one-loop effective potential at finite temperature, and show that there exist strong enough first order EW phase transition (EWPT) because of the large trilinear terms in the tree- level Higgs potentials. Unlike the Minimal Supersymmetric Standard Model (MSSM), the stop masses can be very heavy. We discuss possible large tree-level CP violation associated with the Higgs sector. Numerical calculations show that the contribution purely from the thin wall regime is big enough to explain the observed baryon number asymmetry for some of the parameter space. Our model is free of domain wall problems and does not introduce new contributions to electric dipole moments (...

  12. Gauged extended supergravity without cosmological constant no-scale structure and supersymmetry breaking

    CERN Document Server

    Andrianopoli, Laura; Ferrara, Sergio; Lledó, M A

    2003-01-01

    We consider the interplay of duality symmetries and gauged isometries of supergravity models giving N-extended, spontaneously broken supergravity with a no-scale structure. Some examples, motivated by superstring and M-theory compactifications are described.

  13. Expanding the Bethe/Gauge dictionary

    Science.gov (United States)

    Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz

    2017-11-01

    We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.

  14. Gauge Fields as Composite Boundary Excitations

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Fronsdal, Christian

    1998-01-01

    We investigate representations of the conformal group that describe "massless" particles in the interior and at the boundary of anti-de Sitter space. It turns out that massless gauge excitations in anti-de Sitter are gauge "current" operators at the boundary. Conversely, massless excitations at the boundary are topological singletons in the interior. These representations lie at the threshold of two "unitary bounds" that apply to any conformally invariant field theory. Gravity and Yang-Mills gauge symmetry in anti-De Sitter is translated to global translational symmetry and continuous R-symmetry of the boundary superconformal field theory.

  15. Origin of gauge invariance in string theory

    Science.gov (United States)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  16. Electroweak Measurements with Multiple Gauge Boson Interactions

    CERN Document Server

    Sood, Alexander; The ATLAS collaboration

    2014-01-01

    These proceedings present measurements from ATLAS and CMS using proton-proton collisions with center-of-mass energies of 7 TeV and 8 TeV at the LHC that are sensitive to interactions between EW gauge bosons. Included analyses sensitive to triple gauge couplings are EW Z production, and $VV^{\\prime}$ cross sections where $V=W,Z$ and $V^{\\prime}=W,Z,γ$, while $\\gamma\\gamma \\rightarrow WW$, $WV\\gamma$ where $V=W,Z$, and $W^{\\pm}W^{\\pm}jj$ production are presented as probes of quartic gauge couplings.

  17. Existence of topological multi-string solutions in Abelian gauge field theories

    Science.gov (United States)

    Han, Jongmin; Sohn, Juhee

    2017-11-01

    In this paper, we consider a general form of self-dual equations arising from Abelian gauge field theories coupled with the Einstein equations. By applying the super/subsolution method, we prove that topological multi-string solutions exist for any coupling constant, which improves previously known results. We provide two examples for application: the self-dual Einstein-Maxwell-Higgs model and the gravitational Maxwell gauged O(3) sigma model.

  18. Supersymmetric bulk-brane coupling with odd gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, D.V.

    2006-08-15

    Supersymmetric bulk-brane coupling in Horava-Witten and Randall-Sundrum scenarios, when considered in the orbifold (''upstairs'') picture, enjoys similar features: a modified Bianchi identity and a modified supersymmetry transformation for the ''orthogonal'' part of the gauge field. Using a toy model with a 5D vector multiplet in the bulk (like in Mirabelli-Peskin model, but with an odd gauge field A{sub m}), we explain how these features arise from the superfield formulation. We also show that the corresponding construction in the boundary (''downstairs'') picture requires introduction of a special ''compensator'' (super)field. (orig.)

  19. Probing diffractive production of gauge bosons at forward rapidities

    Science.gov (United States)

    Basso, Eduardo; Gonçalves, Victor P.; Rangel, Murilo S.

    2016-12-01

    Gauge boson production at forward rapidities in single diffractive events at the LHC is investigated considering pp collisions at √{s} = 8 and 13 TeV. The impact of gap survival effects is analysed using two different models for the soft rescattering contributions. We demonstrate that using the forward shower counter Project at LHCb-HERSCHEL, together with the Vertex Locator-VELO, it is possible to discriminate diffractive production of the gauge bosons {W} and {Z} from the non-diffractive processes and studies of the Pomeron structure and diffraction phenomenology are feasible. Moreover, we show that the analysis of this process can be useful to constrain the modelling of the gap survival effects.

  20. Probing diffractive production of gauge bosons at forward rapidities

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Eduardo; Rangel, Murilo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Caixa Postal 68528, Rio de Janeiro, RJ (Brazil); Goncalves, Victor P. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil)

    2016-12-15

    Gauge boson production at forward rapidities in single diffractive events at the LHC is investigated considering pp collisions at √(s) = 8 and 13 TeV. The impact of gap survival effects is analysed using two different models for the soft rescattering contributions. We demonstrate that using the forward shower counter Project at LHCb-HERSCHEL, together with the Vertex Locator-VELO, it is possible to discriminate diffractive production of the gauge bosons W and Z from the non-diffractive processes and studies of the Pomeron structure and diffraction phenomenology are feasible. Moreover, we show that the analysis of this process can be useful to constrain the modelling of the gap survival effects. (orig.)

  1. Trilinear gauge boson couplings in the MSSM

    CERN Document Server

    Argyres, E.N.; Papadopoulos, C.G.; Spanos, V.C.

    1996-01-01

    We study the C and P even WW\\gamma and WWZ trilinear gauge boson vertices (TGV's), in the context of the MSSM assuming that the external W's are on their mass shell. We find that for energies less than 200 GeV squark and slepton contributions to the aforementioned couplings are two orders of magnitude smaller than those of the Standard Model (SM). In the same energy range the bulk of the supersymmetric Higgs corrections to the TGV's is due to the lightest neutral Higgs, h_0, whose contribution is like that of a Standard Model Higgs of the same mass. The contributions of the Neutralinos and Charginos are sensitive to the input value for the soft gaugino mass M_{1/2}, being more pronounced for values M_{1/2} < 100 GeV. In this case and in the unphysical region, 0 < \\sqrt{s} < 2 M_W , their contributions are substantially enhanced resulting in large corrections to the static quantities of the W boson. However, such an enhancement is not observed in the physical region. In general for 2 M_W < \\sqrt{s}...

  2. Gauge invariance and Weyl-polymer quantization

    CERN Document Server

    Strocchi, Franco

    2016-01-01

    The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable.  The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...

  3. 77 FR 31894 - Portable Gauge Licenses

    Science.gov (United States)

    2012-05-30

    ... Gauge Licenses.'' The document has been updated to include safety culture, security of radioactive... and Environmental Management Programs; U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001... Materials and Environmental Management Programs. BILLING CODE 7590-01-P ...

  4. Toward a gauge field theory of gravity.

    Science.gov (United States)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  5. Advanced methods for scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Peraro, Tiziano

    2014-09-24

    We present new techniques for the evaluation of multi-loop scattering amplitudes and their application to gauge theories, with relevance to the Standard Model phenomenology. We define a mathematical framework for the multi-loop integrand reduction of arbitrary diagrams, and elaborate algebraic approaches, such as the Laurent expansion method, implemented in the software Ninja, and the multivariate polynomial division technique by means of Groebner bases.

  6. Mean distribution approach to spin and gauge theories

    CERN Document Server

    Akerlund, Oscar

    2016-01-01

    We formulate self-consistency equations for the distribution of links in spin models and of plaquettes in gauge theories. This improves upon known mean-field, mean-link, and mean-plaquette approximations in such that we self-consistently determine all moments of the considered variable instead of just the first. We give examples in both Abelian and non-Abelian cases.

  7. Duality and Confinement in Massive Antisymmetric Tensor Gauge Theories

    CERN Document Server

    Diamantini, M Cristina

    2001-01-01

    We extend the duality between massive and topologically massive antisymmetric tensor gauge theories in arbitrary space-time dimensions to include topological defects. We show explicitly that the condensation of these defects leads, in 4 dimensions, to confinement of electric strings in the two dual models. The dual phase, in which magnetic strings are confined is absent. The presence of the confinement phase explicitely found in the 4-dimensional case, is generalized, using duality arguments, to arbitrary space-time dimensions.

  8. Bethe/gauge correspondence on curved spaces

    Energy Technology Data Exchange (ETDEWEB)

    Nekrasov, Nikita [Simons Center for Geometry and Physics,Stony Brook, NY 11794-3636 (United States); Shatashvili, Samson [Simons Center for Geometry and Physics,Stony Brook, NY 11794-3636 (United States); Hamilton Mathematical Institute, Trinity College,Dublin 2 (Ireland); School of Mathematics, Trinity College,Dublin 2 (Ireland)

    2015-01-20

    Bethe/gauge correspondence identifies supersymmetric vacua of massive gauge theories invariant under the two dimensional N=2 Poincare supersymmetry with the stationary states of some quantum integrable system. The supersymmetric theory can be twisted in a number of ways, producing a topological field theory. For these theories we compute the handle gluing operator H. We also discuss the Gaudin conjecture on the norm of Bethe states and its connection to H.

  9. A Gauge Invariant Regulator for the ERG

    Science.gov (United States)

    Arnone, S.; Kubyshin, Yu. A.; Morris, T. R.; Tighe, J. F.

    A gauge invariant regularisation for dealing with pure Yang-Mills theories within the exact renormalization group approach is proposed. It is based on the regularisation via covariant higher derivatives and includes auxiliary Pauli-Villars fields which amounts to a spontaneously broken SU(N|N) super-gauge theory. We demonstrate perturbatively that the extended theory is ultra-violet finite in four dimensions and argue that it has a sensible limit when the regularization cutoff is removed.

  10. Gauge anomalies in Lorentz-violating QED

    Science.gov (United States)

    Santos, Tiago R. S.; Sobreiro, Rodrigo F.

    2016-12-01

    In this work we study the issue of gauge anomalies in Lorentz-violating QED. To do so, we opt to use the Becchi-Rouet-Stora-Tyutin formalism within the algebraic renormalization approach, reducing our study to a cohomology problem. Since this approach is independent of the renormalization scheme, the results obtained here are expected to be general. We find that the Lorentz-violating QED is free of gauge anomalies to all orders in perturbation theory.

  11. Diagrammatics of braided group gauge theory

    CERN Document Server

    Majid, S

    1996-01-01

    We develop a gauge theory or theory of bundles and connections on them at the level of braids and tangles. Extending recent algebraic work, we provide now a fully diagrammatic treatment of principal bundles, a theory of global gauge transformations, associated braided fiber bundles and covariant derivatives on them. We describe the local structure for a concrete Z_3-graded or `anyonic' realization of the theory.

  12. Supersymmetry of Bianchi attractors in gauged supergravity

    Science.gov (United States)

    Chakrabarty, Bidisha; Inbasekar, Karthik; Samanta, Rickmoy

    2017-09-01

    Bianchi attractors are near horizon geometries with homogeneous symmetries in spatial directions. We construct supersymmetric Bianchi attractors in N =2 ,d =4 , 5 gauged supergravity. In d =4 , we consider gauged supergravity coupled to vector and hypermultiplets. In d =5 , we consider gauged supergravity coupled to vector multiplets with a generic gauging of symmetries of the scalar manifold and the U (1 )R gauging of the R -symmetry. Analyzing the gaugino conditions, we show that when the fermionic shifts do not vanish, there are no supersymmetric Bianchi attractors. This is analogous to the known condition that for maximally supersymmetric solutions, all of the fermionic shifts must vanish. When the central charge satisfies an extremization condition, some of the fermionic shifts vanish and supersymmetry requires that the symmetries of the scalar manifold are not gauged. This allows supersymmetric Bianchi attractors sourced by massless gauge fields and a cosmological constant. In five dimensions in the Bianchi I class, we show that the anisotropic AdS3×R2 solution is 1 /2 BPS (Bogomol'nyi-Prasad-Sommerfield). We also construct a new class of 1 /2 BPS Bianchi III geometries labeled by the central charge. When the central charge takes a special value, the Bianchi III geometry reduces to the known AdS3×H2 solution. For the Bianchi V and VII classes, the radial spinor breaks all of supersymmetry. We briefly discuss the conditions for possible massive supersymmetric Bianchi solutions by generalizing the matter content to include tensor, hypermultiplets, and a generic gauging on the R -symmetry.

  13. New gaugings and non-geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kanghoon [Quantum Universe Center, Korea Institute for Advanced Study, Seoul (Korea, Republic of); Strickland-Constable, Charles [Institut de Physique Theorique, Universite Paris Saclay, CEA, CNRS, Gif-sur-Yvette (France); Waldram, Daniel [Department of Physics, Imperial College London (United Kingdom); Berkeley Center for Theoretical Physics, University of California, Berkeley, CA (United States)

    2017-10-15

    We discuss the possible realisation in string/M theory of the recently discovered family of four-dimensional maximal SO(8) gauged supergravities, and of an analogous family of seven-dimensional half-maximal SO(4) gauged supergravities. We first prove a no-go theorem that neither class of gaugings can be realised via a compactification that is locally described by ten- or eleven-dimensional supergravity. In the language of Double Field Theory and its M theory analogue, this implies that the section condition must be violated. Introducing the minimal number of additional coordinates possible, we then show that the standard S{sup 3} and S{sup 7} compactifications of ten- and eleven-dimensional supergravity admit a new class of section-violating generalised frames with a generalised Lie derivative algebra that reproduces the embedding tensor of the SO(4) and SO(8) gaugings respectively. The physical meaning, if any, of these constructions is unclear. They highlight a number of the issues that arise when attempting to apply the formalism of Double Field Theory to non-toroidal backgrounds. Using a naive brane charge quantisation to determine the periodicities of the additional coordinates restricts the SO(4) gaugings to an infinite discrete set and excludes all the SO(8) gaugings other than the standard one. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Gauge theory loop operators and Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-10-15

    We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)

  15. Novel circuits for energizing manganin stress gauges

    Science.gov (United States)

    Tasker, Douglas G.

    2017-01-01

    This paper describes the design of a novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. The Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 mΩ and are energized with pulsed currents of 50 A. Conventional pulsed, constant current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to changing load impedances. The new circuit corrects these issues. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory in explosive experiments. [LA-UR-15-24819

  16. Vector boson scattering, triple gauge-boson final states and limits on anomalous quartic gauge couplings with the ATLAS detector

    CERN Document Server

    Li, Bing; The ATLAS collaboration

    2018-01-01

    Measurements of the cross sections of the production of three electroweak gauge bosons and of vector-boson scattering processes at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration has recently searched for the production of three W bosons or of a W boson and a photon together with a Z or W boson at a center of mass energy of 8 TeV. We also present searches for the electroweak production of a Z boson and a photon together with two jets. The results are compared to state-of-the art theory predictions and have been used to constrain anomalous quartic gauge couplings.

  17. Vector boson scattering, triple gauge-boson final states and limits on anomalous quartic gauge couplings with the ATLAS detector

    CERN Document Server

    Li, Bing; The ATLAS collaboration

    2017-01-01

    Measurements of the cross sections of the production of three electroweak gauge bosons and of vector-boson scattering processes at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration has recently searched for the production of three $W$ bosons or of a $W$ boson and a photon together with a $Z$ or $W$ boson at a center of mass energy of 8 TeV. We also present searches for the electroweak production of a $Z$ boson and a photon together with two jets. The results are compared to state-of-the art theory predictions and have been used to constrain anomalous quartic gauge couplings.

  18. Vector boson scattering, triple gauge-boson final states and limits on anomalous quartic gauge couplings with the ATLAS detector

    CERN Document Server

    Li, Bing; The ATLAS collaboration

    2017-01-01

    Measurements of the cross sections of the production of three electroweak gauge bosons and of vector-boson scattering processes at the LHC constitute stringent tests of the electroweak sector of the Standard Model and provide a model-independent means to search for new physics at the TeV scale. The ATLAS collaboration has recently searched for the production of three W bosons or of a W boson and a photon together with a Z or W boson at a center of mass energy of 8 TeV. We also present searches for the electroweak production of a Z boson and a photon together with two jets. The results are compared to state-of-the art theory predictions and have been used to constrain anomalous quartic gauge couplings.

  19. Two-dimensional lattice gauge theories with superconducting quantum circuits.

    Science.gov (United States)

    Marcos, D; Widmer, P; Rico, E; Hafezi, M; Rabl, P; Wiese, U-J; Zoller, P

    2014-12-01

    A quantum simulator of [Formula: see text] lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.

  20. Strongly coupled gauge theories: What can lattice calculations teach us?

    Science.gov (United States)

    Hasenfratz, A.; Brower, R. C.; Rebbi, C.; Weinberg, E.; Witzel, O.

    2017-12-01

    The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it is important to understand the general properties and specific features of the different competing models. In this work we discuss many-flavor gauge-fermion systems that contain both massless (light) and massive fermions. The former provide Goldstone bosons and trigger electroweak symmetry breaking, while the latter indirectly influence the infrared dynamics. Numerical results reveal that such systems can exhibit a light 0++ isosinglet scalar, well separated from the rest of the spectrum. Further, when we set the scale via the vev of electroweak symmetry breaking, we predict a 2 TeV vector resonance which could be a generic feature of SU(3) gauge theories.

  1. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  2. Coulomb Solutions from Improper Pseudo-Unitary Free Gauge Field Operator Translations

    Directory of Open Access Journals (Sweden)

    Andreas Aste

    2014-12-01

    Full Text Available Fundamental problems of quantum field theory related to the representation problem of canonical commutation relations are discussed within a gauge field version of a van Hove-type model. The Coulomb field generated by a static charge distribution is described as a formal superposition of time-like pseudo-photons in Fock space with a Krein structure. In this context, a generalization of operator gauge transformations is introduced to generate coherent states of Abelian gauge fields interacting with a charged background.

  3. Time evolution of linearized gauge field fluctuations on a real-time lattice

    CERN Document Server

    Kurkela, Aleksi; Peuron, Jarkko

    2016-01-01

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss's law.

  4. Time evolution of linearized gauge field fluctuations on a real-time lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, A. [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Stavanger, Faculty of Science and Technology, Stavanger (Norway); Lappi, T. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland); University of Helsinki, Helsinki Institute of Physics, P.O. Box 64, Helsinki (Finland); Peuron, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland)

    2016-12-15

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss' law. (orig.)

  5. Non-perturbatively gauge-fixed compact U(1) lattice gauge theory

    Science.gov (United States)

    De, Asit K.; Sarkar, Mugdha

    2017-10-01

    An extensive study of the compact U(1) lattice gauge theory with a higher derivative gauge-fixing term and a suitable counter-term has been undertaken to determine the nature of the possible continuum limits for a wide range of the parameters, especially at strong gauge couplings ( g > 1), adding to our previous study at a single gauge coupling g = 1 .3 [1]. Our major conclusion is that a continuum limit of free massless photons(with the redundant pure gauge degrees of freedom decoupled) is achieved at any gauge coupling, not necessarily small, provided the coefficient \\tilde{κ} of the gauge-fixing term is sufficiently large. In fact, the region of continuous phase transition leading to the above physics in the strong gauge coupling region is found to be analytically connected to the point g = 0 and \\tilde{κ}\\to ∞ where the classical action has a global unique minimum, around which weak coupling perturbation theory in bare parameters is defined, controlling the physics of the whole region. A second major conclusion is that, local algorithms like Multihit Metropolis fail to produce faithful field configurations with large values of the coefficient \\tilde{κ} of the higher derivative gauge-fixing term and at large lattice volumes. A global algorithm like Hybrid Monte Carlo, although at times slow to move out of metastabilities, generally is able to produce faithful configurations and has been used extensively in the current study.

  6. 27 CFR 19.454 - Gauge for denaturation.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gauge for denaturation. 19... Denaturation § 19.454 Gauge for denaturation. The proprietor shall gauge spirits before denaturation and after denaturation and record each gauge on the record of denaturation as prescribed in § 19.752(b). However, spirits...

  7. Finite-representation approximation of lattice gauge theories at the continuum limit with tensor networks

    Science.gov (United States)

    Buyens, Boye; Montangero, Simone; Haegeman, Jutho; Verstraete, Frank; Van Acoleyen, Karel

    2017-05-01

    It has been established that matrix product states can be used to compute the ground state and single-particle excitations and their properties of lattice gauge theories at the continuum limit. However, by construction, in this formalism the Hilbert space of the gauge fields is truncated to a finite number of irreducible representations of the gauge group. We investigate quantitatively the influence of the truncation of the infinite number of representations in the Schwinger model, one-flavor QED2 , with a uniform electric background field. We compute the two-site reduced density matrix of the ground state and the weight of each of the representations. We find that this weight decays exponentially with the quadratic Casimir invariant of the representation which justifies the approach of truncating the Hilbert space of the gauge fields. Finally, we compute the single-particle spectrum of the model as a function of the electric background field.

  8. Gravitational leptogenesis in axion inflation with SU(2) gauge field

    Science.gov (United States)

    Maleknejad, Azadeh

    2016-12-01

    We present an intrinsic leptogenesis mechanism in models of axion inflation with a classical SU(2) gauge field. The gauge field is coupled to the axion with a Chern-Simons interaction and comprises a tiny fraction of the total energy, ρYM/ρtot lesssim epsilon2. However, it has spin-2 fluctuations which breaks the parity and leads to the generation of chiral gravitational waves during inflation. By the gravitational anomaly in SM, it naturally creates a net lepton number density, sufficient to explain the matter asymmetry. We show that this mechanism can generate the observed value of baryon to photon number density in a natural range of parameters and yet has a small chiral tensor power spectrum on large scales.

  9. a Complete and Minimal Catalogue of Mssm Gauge Invariant Monomials

    Science.gov (United States)

    Basbøll, Anders

    We present a complete and minimal catalogue of MSSM gauge invariant monomials. That is, the catalogue of Gherghetta, Kolda and Martin is elaborated to include generational structure for all monomials. Any gauge invariant operator can be built as a linear combination of elements of the catalogue lifted to nonnegative integer powers. And the removal of any one of the monomials would deprive the catalogue of this feature. It contains 712 monomials, plus 3 generations of right-handed neutrinos if one extends the model to the νMSSM. We note that νMSSM flat directions can all be lifted by the sixth-order superpotential compared to the ninth-order needed in MSSM.

  10. New Geometric Framework for SU(2) Gauge Theory

    CERN Document Server

    Turakulov, Z Ya

    1997-01-01

    An explicit model of fiber bundle with local fibers being disinct copies of vector 3-space is introduced. They are endowed with frames which are used as local isotopic ones. The field local of isotopic frames is considered as gauge field itself while the form of gauge connections is derived from it. A covariant equation for the field of local frames is found. It is shown that Yang-Mills equation follows from it, but variety of solutions of the new equation is highly reduced in such that no ambiguities (Yang-Wu and vacuum ones) arise. It is shown that Lagrangian for the field gives non-zero trace for the stress-energy tensor and zero value for spin of the field of plane wave. Some new solutions for the fields of punctual source and spherical wave are found.

  11. Leptogenesis and composite heavy neutrinos with gauge-mediated interactions

    Energy Technology Data Exchange (ETDEWEB)

    Biondini, S. [University of Bern, AEC, Institute for Theoretical Physics, Bern (Switzerland); Panella, O. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy)

    2017-09-15

    Leptogenesis is an appealing framework to account for the baryon asymmetry in the universe. To this end physics beyond the standard model is demanded. In this paper we investigate the possibility to attain successful leptogenesis with composite Majorana neutrinos. We work in the framework of effective gauge-mediated and contact interactions without any reference to an underlying compositeness theory. This approach is the one adopted in all current experimental searches for composite fermions at colliders. In the case of gauge-mediated interactions, we calculate the CP asymmetry in heavy composite neutrino decays. Both the direct and the indirect CP asymmetry are derived and resonant leptogenesis is also discussed. We find that the Sakharov conditions can be met and, for some choice of the parameters, the correct order of magnitude of the baryon asymmetry is reproduced. (orig.)

  12. Nernst branes with Lifshitz asymptotics in N=2 gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, G.L. [Center for Mathematical Analysis, Geometry and Dynamical Systems,Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Haack, M. [Arnold Sommerfeld Center for Theoretical Physics,Ludwig-Maximilians-Universität München,Theresienstrasse 37, 80333 München (Germany); Nampuri, S. [Center for Mathematical Analysis, Geometry and Dynamical Systems,Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2016-06-23

    We discuss two classes of non-supersymmetric interpolating solutions in N=2, D=4 gauged supergravity, that flow from either a z=2 Lifshitz geometry or a conformal AdS background to the near-horizon geometry of a Nernst brane. We obtain these solutions by constructing a z=2 supersymmetric Lifshitz solution in the STU model from a first-order rewriting of the action, then lifting it up to a five-dimensional background and subsequently modifying this five-dimensional solution by a two-parameter family of deformations. Under reduction, these give four-dimensional non-supersymmetric Nernst brane solutions. This is a step towards resolving the Lifshitz tidal force singularity in the context of N=2 gauged supergravity and suggests an approach to encoding the Nernst brane in terms of the Schrödinger symmetry group of the holographically dual field theory.

  13. Triple and quartic gauge boson couplings at the LHC

    CERN Document Server

    Kupco, Alexander; The ATLAS collaboration

    2017-01-01

    This report at the conference Physics in Collision 2017 reviews recent results from the ATLAS and CMS experiments on production of gauge boson pairs, triples, and vector boson scattering (VBS) processes. Large datasets from LHC proton-proton collisions at $\\sqrt{s}=8$ and $13\\,\\mathrm{TeV}$ allowed the first observations of rare processes: triboson production in channel $Z\\gamma\\gamma$ at $\\sqrt{s}=8\\,\\mathrm{TeV}$ and VBS of same signed WW at $\\sqrt{s}=13\\,\\mathrm{TeV}$. Both experiments observe good agreement with the Standard model (SM) predictions. The data were used to set new limits on anomalous triple and quartic gauge couplings not present in the SM.

  14. LHC constraints on gauge boson couplings to dark matter

    CERN Document Server

    Crivellin, Andreas; Hibbs, Anthony

    2015-01-01

    Collider searches for energetic particles recoiling against missing transverse energy allow to place strong bounds on the interactions between dark matter (DM) and standard model particles. In this article we update and extend LHC constraints on effective dimension-7 operators involving DM and electroweak gauge bosons. A concise comparison of the sensitivity of the mono-photon, mono-W, mono-Z, mono-W/Z, invisible Higgs-boson decays in the vector boson fusion mode and the mono-jet channel is presented. Depending on the parameter choices, either the mono-photon or the mono-jet data provide the most stringent bounds at the moment. We furthermore explore the potential of improving the current 8 TeV limits at 14 TeV. Future strategies capable of disentangling the effects of the different effective operators involving electroweak gauge bosons are discussed as well.

  15. Orbifold reduction and 2d (0,2) gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Sebastián [Physics Department, The City College of the CUNY,160 Convent Avenue, New York, NY 10031 (United States); The Graduate School and University Center, The City University of New York,365 Fifth Avenue, New York NY 10016 (United States); Lee, Sangmin [Center for Theoretical Physics, Seoul National University,Seoul 08826 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University,Seoul 08826 (Korea, Republic of); College of Liberal Studies, Seoul National University,Seoul 08826 (Korea, Republic of); Seong, Rak-Kyeong [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of)

    2017-03-03

    We introduce Orbifold Reduction, a new method for generating 2d(0,2) gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from 4dN=1 gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating 2d(0,2) theories with a brane realization. We present three practical applications of the new algorithm: the connection between 4d Seiberg duality and 2d triality, a combinatorial method for generating theories related by triality and a 2d(0,2) generalization of the Klebanov-Witten mass deformation.

  16. Superconducting circuits for quantum simulation of dynamical gauge fields.

    Science.gov (United States)

    Marcos, D; Rabl, P; Rico, E; Zoller, P

    2013-09-13

    We describe a superconducting-circuit lattice design for the implementation and simulation of dynamical lattice gauge theories. We illustrate our proposal by analyzing a one-dimensional U(1) quantum-link model, where superconducting qubits play the role of matter fields on the lattice sites and the gauge fields are represented by two coupled microwave resonators on each link between neighboring sites. A detailed analysis of a minimal experimental protocol for probing the physics related to string breaking effects shows that, despite the presence of decoherence in these systems, distinctive phenomena from condensed-matter and high-energy physics can be visualized with state-of-the-art technology in small superconducting-circuit arrays.

  17. Transferring global uncertainty estimates from gauged to ungauged catchments

    Science.gov (United States)

    Bourgin, F.; Andréassian, V.; Perrin, C.; Oudin, L.

    2015-05-01

    Predicting streamflow hydrographs in ungauged catchments is challenging, and accompanying the estimates with realistic uncertainty bounds is an even more complex task. In this paper, we present a method to transfer global uncertainty estimates from gauged to ungauged catchments and we test it over a set of 907 catchments located in France, using two rainfall-runoff models. We evaluate the quality of the uncertainty estimates based on three expected qualities: reliability, sharpness, and overall skill. The robustness of the method to the availability of information on gauged catchments was also evaluated using a hydrometrical desert approach. Our results show that the method presents advantageous perspectives, providing reliable and sharp uncertainty bounds at ungauged locations in a majority of cases.

  18. Three Instanton Computations In Gauge Theory And String Theory

    CERN Document Server

    Beasley, C E

    2005-01-01

    We employ a variety of ideas from geometry and topology to perform three new instanton computations in gauge theory and string theory. First, we consider supersymmetric QCD with gauge group SU( Nc) and with Nf flavors. In this theory, it is well known that instantons generate a superpotential if Nf = Nc − 1 and deform the moduli space of supersymmetric vacua if Nf = Nc. We extend these results to supersymmetric QCD with Nf > Nc flavors, for which we show that instantons generate a hierarchy of new, multi- fermion F-terms in the effective action. Second, we revisit the question of which Calabi-Yau compactifications of the heterotic string are stable under worldsheet instanton corrections to the effective space-time superpotential. For instance, compactifications described by (0, 2) linear sigma models are believed to be stable, suggesting a remarkable cancellation among the instanton effects in these theories. We show that this cancellation follows directly from a residue theorem, whose proof relie...

  19. Curvature-Restored Gauge Invariance and Ultraviolet Naturalness

    Directory of Open Access Journals (Sweden)

    Durmuş Ali Demir

    2016-01-01

    Full Text Available It is shown that (aΛ2+b|H|2R in a spacetime of curvature R is a natural ultraviolet (UV completion of (aΛ4+bΛ2|H|2 in the flat-spacetime Standard Model (SM with Higgs field H, UV scale Λ, and loop factors a and b. This curvature completion rests on the fact that Λ-mass gauge theory in flat spacetime turns, on the cut view R=4Λ2, into a massless gauge theory in curved spacetime. It provides a symmetry reason for curved spacetime, wherein gravity and matter are both low-energy effective phenomena. Gravity arises correctly if new physics exists with at least 63 more bosons than fermions, with no need to interact with the SM and with dark matter as a natural harbinger. It can source various cosmological, astrophysical, and collider phenomena depending on its spectrum and couplings to the SM.

  20. Implications of Gauge Invariance on a Heavy Diphoton Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Low, Ian [Northwestern U.; Lykken, Joseph [Fermilab

    2015-12-30

    Assuming a heavy electroweak singlet scalar, which couples to the Standard Model gauge bosons only through loop-induced couplings, SU(2)_L x U(1)_Y gauge invariance imposes interesting patterns on its decays into electroweak gauge bosons, which are dictated by only two free parameters. Therefore experimental measurements on any two of the four possible electroweak channels would determine the remaining two decay channels completely. Furthermore, searches in the WW/ZZ channels probe a complimentary region of parameter space from searches in the gamma-gamma/Z-gamma channels. We derive a model-independent upper bound on the branching fraction in each decay channel, which for the diphoton channel turns out to be about 61%. Including the coupling to gluons, the upper bound on the diphoton branching fraction implies an upper bound on the mass scale of additional colored particles mediating the gluon-fusion production. Using an event rate of about 5 fb for the reported 750 GeV diphoton excess, we find the new colored particle must be lighter than O(1.7 TeV) and O(2.6 TeV) for a pure CP-even and a pure CP-odd singlet scalar, respectively.

  1. Gauge Invariance and Broken Symmetries in Anyon Superfluids

    Science.gov (United States)

    Boyanovsky, Daniel

    We review aspects of broken symmetry and the nature of long range order in theories of anyons starting with bosons with a statistical interaction. We introduce a novel gauge invariant quantization scheme that allows the identification of local and gauge invariant order parameters. The connection between spin and statistics is reviewed and the consequences of broken symmetries in the anyon representation are discussed. An anyon gas is studied in the Bogoliubov approximation, it is determined that the ground state is a condensate of charge-flux composites with “quasi-long-range order” at zero temperature, a “weak” gap in the spectrum and finite helicity modulus. The system is disordered at nonzero temperatures. The disorder is not caused by Goldstone bosons but by the strong infrared behavior arising from the Coulomb interaction induced by the long-range statistical interaction. The properties of topological vortices in nonrelativistic and in relativistic Landau-Ginzburg theories are studied in detail. We study the physics of the mean-field ansatz and quasi-long range order in a simple exactly soluble relativistic model. This model exhibits a novel phenomenon of charge redistribution to the boundaries and restoration of translational invariance in the infinite volume limit. It also illuminates the physics of quasi-long-range order with a gap in the spectrum, statistical charge polarization by external magnetic fields and the role of “large” gauge transformations.

  2. Gauge fluxes in F-theory compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ling

    2016-07-13

    In this thesis, we study the geometry and physics of gauge fluxes in F-theory compactifications to four dimensions. Motivated by the phenomenological requirement of chiral matter in realistic model building scenarios, we develop methods for a systematic analysis of primary vertical G{sub 4}-fluxes on torus-fibred Calabi-Yau fourfolds. In particular, we extend the well-known description of fluxes on elliptic fibrations with sections to the more general set-up of genus-one fibrations with multi-sections. The latter are known to give rise to discrete abelian symmetries in F-theory. We test our proposal for constructing fluxes in such geometries on an explicit model with SU(5) x Z{sub 2} symmetry, which is connected to an ordinary elliptic fibration with SU(5) x U(1) symmetry by a conifold transition. With our methods we systematically verify anomaly cancellation and tadpole matching in both models. Along the way, we find a novel way of understanding anomaly cancellation in 4D F-theory in purely geometric terms. This observation is further strengthened by a similar analysis of an SU(3) x SU(2) x U(1){sup 2} model. The obvious connection of this particular model with the Standard Model is then investigated in a more phenomenologically motivated survey. There, we will first provide possible matchings of the geometric spectrum with the Standard Model states, which highlights the role of the additional U(1) factor as a selection rule. In a second step, we then utilise our novel methods on flux computations to set up a search algorithm for semi-realistic chiral spectra in our Standard- Model-like fibrations over specific base manifolds B. As a demonstration, we scan over three choices P{sup 3}, Bl{sub 1}P{sup 3} and Bl{sub 2}P{sup 3} for the base. As a result we find a consistent flux that gives the chiral Standard Model spectrum with a vector-like triplet exotic, which may be lifted by a Higgs mechanism.

  3. Analysis of the most recent data of Cascais Tide Gauge

    Science.gov (United States)

    Antunes, Carlos; Taborda, Rui; Mendes, Virgílio B.

    2010-05-01

    In order to meet international standards and to integrate sea level changes and tsunami monitoring networks, Cascais tide gauge, one of the oldest in the world, has been upgraded in 2003 with new acoustic equipment with digital data acquisition, temperature and air-pressure sensors, and internet connection for real time data. The new tide gauge is located very close to the old analogical gauge, which is still working. Datum links between both gauges and the permanent GPS station of Cascais were made and height differences between gauges and the GPS station have been monitored to verify site stability and to estimate the absolute vertical velocity of the site, and therefore, the absolute sea level changes. Tide gauge data from 2000 to 2009 has been analyzed and relative and absolute sea level rise rates have been estimated. The estimation of sea level rise rate with the short baseline of 10 years is made with the daily mean sea level data corrected from the inverse barometric effect. The relative sea level trend is obtained from a 60-day moving average run over the corrected daily mean sea level. The estimated rate has shown greater stability in contrast to the analysis of daily mean sea level raw data, which shows greater variability and uncertainty. Our results show a sea level rise rate of 2.6 mm/year (± 0.3 mm/year), higher than previous rates (2.1 mm/year for 1990 decade and 1.6 mm/year from 1920 to 2000), which is compatible with a sea level rise acceleration scenario. From the analysis of Cascais GPS data, for the period 1990.0 to 2010.0 we obtain an uplift rate of 0.3 mm/year leading to an absolute sea level rise of 2.9 mm/year for Cascais, under the assumption, as predicted by the ICE-5G model, that Cascais has no vertical displacement caused by the post-glacial isostatic adjustment.

  4. Measurement of triple gauge-boson couplings at 172 GeV

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Boix, G; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Vreeswijk, M; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Boccali, T; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Ward, J J; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Whelan, E P; Williams, M I; Giehl, I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Mannert, C; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kado, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Serin, L; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Coles, J; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Fabbro, B; Faïf, G; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Przysiezniak, H; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1998-01-01

    The triple gauge-boson couplings, Awp, Aw and Abp, have been measured using 34 semileptonically and 54 hadronically decaying WW candidate events. The events were selected in the data recorded during 1996 with the ALEPH detector at 172 GeV, corresponding to an integrated luminosity of 10.65 pb^-1. The triple gauge-boson couplings have been measured using optimal observables constructed from kinematic information of WW events. The results are in agreement with the Standard Model expectation.

  5. Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields

    Directory of Open Access Journals (Sweden)

    S. Vogl

    2012-07-01

    Full Text Available This study addresses the problem of combining radar information and gauge measurements. Gauge measurements are the best available source of absolute rainfall intensity albeit their spatial availability is limited. Precipitation information obtained by radar mimics well the spatial patterns but is biased for their absolute values.

    In this study copula models are used to describe the dependence structure between gauge observations and rainfall derived from radar reflectivity at the corresponding grid cells. After appropriate time series transformation to generate "iid" variates, only the positive pairs (radar >0, gauge >0 of the residuals are considered. As not each grid cell can be assigned to one gauge, the integration of point information, i.e. gauge rainfall intensities, is achieved by considering the structure and the strength of dependence between the radar pixels and all the gauges within the radar image. Two different approaches, namely Maximum Theta and Multiple Theta, are presented. They finally allow for generating precipitation fields that mimic the spatial patterns of the radar fields and correct them for biases in their absolute rainfall intensities. The performance of the approach, which can be seen as a bias-correction for radar fields, is demonstrated for the Bavarian Alps. The bias-corrected rainfall fields are compared to a field of interpolated gauge values (ordinary kriging and are validated with available gauge measurements. The simulated precipitation fields are compared to an operationally corrected radar precipitation field (RADOLAN. The copula-based approach performs similarly well as indicated by different validation measures and successfully corrects for errors in the radar precipitation.

  6. Evaluation of 25-gauge Quincke and 24 — gauge Gertie Marx ...

    African Journals Online (AJOL)

    Objective: To compare the insertion characteristics and rate of complications between 25-gauge Quincke and 24-gauge Gertie Marx needles. Design: Prospective, randomized. Setting: University of Benin Teaching Hospital; a university-affiliated tertiary centre. Subjects: Parturients (ASA 1 and 2) scheduled for elective ...

  7. Vertical Motion Determined Using Satellite Altimetry and Tide Gauges

    Directory of Open Access Journals (Sweden)

    Chung-Yen Kuo

    2008-01-01

    Full Text Available A robust method to estimate vertical crustal motions by combining geocentric sea level measurements from decadal (1992 - 2003 TOPEX/POSEIDON satellite altimetry and long-term (> 40 years relative sea level records from tide gauges using a novel Gauss-Markov stochastic adjustment model is presented. These results represent an improvement over a prior study (Kuo et al. 2004 in Fennoscandia, where the observed vertical motions are primarily attributed to the incomplete Glacial Isostatic Adjustment (GIA in the region since the Last Glacial Maximum (LGM. The stochastic adjustment algorithm and results include a fully-populated a priori covariance matrix. The algorithm was extended to estimate vertical motion at tide gauge locations near open seas and around semi-enclosed seas and lakes. Estimation of nonlinear vertical motions, which could result from co- and postseismic deformations, has also been incorporated. The estimated uncertainties for the vertical motion solutions in coastal regions of the Baltic Sea and around the Great Lakes are in general < 0.5 mm yr-1, which is a significant improvement over existing studies. In the Baltic Sea, the comparisons of the vertical motion solution with 10 collocated GPS radial rates and with the BIFROST GIA model show differences of 0.2 ¡_ 0.9 and 1.6 ¡_ 1.8 mm yr-1, respectively. For the Great Lakes region, the comparisons with the ICE-3G model and with the relative vertical motion estimated using tide gauges only (Mainville and Craymer 2005 show differences of -0.2 ¡_ 0.6 and -0.1 ¡_ 0.5 mm yr-1, respectively. The Alaskan vertical motion solutions (linear and nonlinear models have an estimated uncertainty of ~1.2 - 1.6 mm yr-1, which agree qualitatively with GPS velocity and tide gauge-only solutions (Larsen et al. 2003. This innovative technique could potentially provide improved estimates of the vertical motion globally where long-term tide gauge records exist.

  8. Entanglement entropy in lattice gauge theories

    Science.gov (United States)

    Buividovich, . P. V.

    We report on the recent progress in theoretical and numerical studies of entanglement entropy in lattice gauge theories. It is shown that the concept of quantum entanglement between gauge fields in two complementary regions of space can only be introduced if the Hilbert space of physical states is extended in a certain way. In the extended Hilbert space, the entanglement entropy can be partially interpreted as the classical Shannon entropy of the flux of the gauge fields through the boundary between the two regions. Such an extension leads to a reduction procedure which can be easily implemented in lattice simulations by constructing lattices with special topology. This enables us to measure the entanglement entropy in lattice Monte-Carlo simulations. On the simplest example of Z2 lattice gauge theory in (2 + 1) dimensions we demonstrate the relation between entanglement entropy and the classical entropy of the field flux. For SU (2) lattice gauge theory in four dimensions, we find a signature of non-analytic dependence of the entanglement entropy on the size of the region. We also comment on the holographic interpretation of the entanglement entropy.

  9. A gauge-theoretic approach to gravity

    Science.gov (United States)

    Krasnov, Kirill

    2012-01-01

    Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  10. Gauge theories in anti-selfdual variables

    Science.gov (United States)

    Bochicchio, Marco; Pilloni, Alessandro

    2013-09-01

    Some years ago the Nicolai map, viewed as a change of variables from the gauge connection in a fixed gauge to the anti-selfdual part of the curvature, has been extended by the first named author to pure Yang-Mills from its original definition in = 1 supersymmetric Yang-Mills. We study here the perturbative one-particle irreducible effective action in the anti-selfdual variables of any gauge theory, in particular pure Yang-Mills, QCD and = 1 supersymmetric Yang-Mills. We prove that the one-loop one-particle irreducible effective action of a gauge theory mapped to the anti-selfdual variables in any gauge is identical to the one of the original theory. This is due to the conspiracy between the Jacobian of the change to the anti-selfdual variables and an extra functional determinant that arises from the non-linearity of the coupling of the anti-selfdual curvature to an external source in the Legendre transform that defines the one-particle irreducible effective action. Hence we establish the one-loop perturbative equivalence of the mapped and original theories on the basis of the identity of the one-loop one-particle irreducible effective actions. Besides, we argue that the identity of the perturbative one-particle irreducible effective actions extends order by order in perturbation theory.

  11. MHD Gauge Fields: Helicities and Casimirs

    Science.gov (United States)

    Hu, Q.; Webb, G. M.; Zank, G. P.; Anco, S.

    2016-12-01

    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963). It is shown how the polarization vector P in Calkin's approach, naturally arises from the Lagrange multiplier constraint equation for Faraday's equation for the magnetic induction B, or alternatively from the magnetic vector potential form of Faraday's equation. Gauss's equation, (divergence of Bis zero), is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether's theorem, and gauge symmetries are used to derive the conservation laws for (a) magnetic helicity (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations, which applies to Faraday's equation and Gauss's equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for a non-barotropic gas. The cross helicity and fluid helicity conservation are nonlocal conservation laws, that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982) satisfy the Casimir equations.

  12. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    Science.gov (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  13. Vertical ground motion from tide gauges and satellite altimetry

    Science.gov (United States)

    Ostanciaux, Emilie; Husson, Laurent; Pedoja, Kevin

    2010-05-01

    Studying the evolution of Earth's shape which deforms in response to external processes such as erosion or sediment load and internal processes governed by mantle convection helps to better understand the Earth's internal dynamics. To do this one needs to study changes in relative and absolute sea level. Indeed, sea level is the intersection between the geoid and the solid Earth that are simultaneously deforming. Thus, sea level variations mirror the evolution of the Earth's shape. Tide gauges record apparent sea level since the XIXth century for oldest stations, relative to a terrestrial reference. They are attached to the coasts so part of the signal is due to vertical ground motion. Conversely, satellite altimetry only measures true sea level change, starting with TOPEX/POSEIDON since 1992. Subtraction of tide gauges measurements to those of satellites give an estimate of the magnitude of current vertical ground motion. Here we review the variety in methods of calculation and data selection. While some authors choose to use only data that corresponds to the recording period of TOPEX/POSEIDON (1992 to 2000) and work with the sea level height like Cazenave et al. (1999) and Nerem & Mitchum (2002), others like Kuo et al. (2008) and Bouin & Wöppelmann (2010) take into take advantage of the long record of tide gauges which provide estimates of apparent sea level change more accurately than those based on shorter timescales. All previous studies perform a drastic site selection for their quality. Because individual tide gauge records are nevertheless highly variable, we instead prefer the brute force approach to go towards a statistical evaluation of global ground motion and therefore consider all stations. We subsequently extract general trends by region, which indicate that vertical movements are not satisfactorily explained by estimates of glacio-hydro-isostatic readjustment (model ICE_5G, Peltier, 2004). Comparisons with previous methods and other records such as

  14. Thermalization and confinement in strongly coupled gauge theories

    Directory of Open Access Journals (Sweden)

    Ishii Takaaki

    2016-01-01

    Full Text Available Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which “real world” theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory’s confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the “abrupt quench” limit.

  15. Large- N volume independence in conformal and confining gauge theories

    Science.gov (United States)

    Ünsal, Mithat; Yaffe, Laurence G.

    2010-08-01

    Consequences of large N volume independence are examined in conformal and confining gauge theories. In the large N limit, gauge theories compactified on {mathbb{R}^{d - k}} × {left( {{S^1}} right)^k} are independent of the S 1 radii, provided the theory has unbroken center symmetry. In particular, this implies that a large N gauge theory which, on {mathbb{R}^d} , flowstoan IR fixed point, retains the infinite correlation length and other scale invariant properties of the decompactified theory even when compactified on {mathbb{R}^{d - k}} × {left( {{S^1}} right)^k} . In other words, finite volume effects are 1 /N suppressed. In lattice formulations of vector-like theories, this implies that numerical studies to determine the boundary between confined and conformal phases may be performed on one-site lattice models. In mathcal{N} = 4 supersymmetric Yang-Mills theory, the center symmetry realization is a matter of choice: the theory on {mathbb{R}^{4 - k}} × {left( {{S^1}} right)^k} has a moduli space which contains points with all possible realizations of center symmetry. Large N QCD with massive adjoint fermions and one or two compactified dimensions has a rich phase structure with an infinite number of phase transitions coalescing in the zero radius limit.

  16. Gauge invariance and the electromagnetic current of composite pions

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.R. [Hampton Univ., VA (United States). Dept. of Physics]|[Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Tandy, P.C. [Kent State Univ., OH (United States). Center for Nuclear Research

    1993-03-24

    The Global Color-symmetry Model of QCD is extended to deal with a background electromagnetic field, and the associated conserved current is identified for the finite size {bar q}q pion modes at tree level. A well-defined truncation issued that factorizes the bilocal pion field into a local field variable and a hadronic form factor having a ladder Bethe-Salpeter content. The associated pion charge form factor is formulated. These developments are used to provide an illustration of how an effective hadronic action containing form factors may be electromagnetically coupled in a gauge invariant way that is accountable to its field substructure. In particular, the Ward-Takahashi identity for the photon vertex appropriate to the localized pion fields is seen to contain the hadronic form factors. In this context, gauge invariance of the effective hadronic action also requires recognition of the fact that the free inverse propagator for the localized pion field gauge transforms due to the substructure field content that has been absorbed into it.

  17. Confinement in Polyakov gauge and the QCD phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Marc Florian

    2009-10-14

    We investigate Quantum Chromodynamics (QCD) in the framework of the functional renormalisation group (fRG). Thereby describing the phase transition from the phase with confined quarks into the quark-gluon-plasma phase. We focus on a physical gauge in which the mechanism driving the phase transition is discernible. We find results compatible with lattice QCD data, as well as with functional methods applied in different gauges. The phase transition is of the expected order and we computed critical exponents. Extensions of the model are discussed. When investigating the QCD phase diagram, we compute the effects of dynamical quarks at finite density on the running of the gauge coupling. Additionally, we calculate how these affect the deconfinement phase transition, also, dynamical quarks allow for the inclusion of a finite chemical potential. Concluding the investigation of the phase diagram, we establish a relation between confinement and chiral symmetry breaking, which is tied to the dynamical generation of hadron masses. In the investigations, we often encounter scale dependent fields. We investigate a footing on which these can be dealt with in a uniform way. (orig.)

  18. Time-frequency analyses of tide-gauge sensor data.

    Science.gov (United States)

    Erol, Serdar

    2011-01-01

    The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors' data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented.

  19. Gauge fields and infinite chains of dualities

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, Nicolas [Service de Mécanique et Gravitation, Université de Mons - UMONS,20 place du Parc, B-7000 Mons (Belgium); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello - UNAB,Av. República 252, Santiago (Chile); West, Peter [Department of Mathematics, King’s College,London WC2R 2LS (United Kingdom)

    2015-09-28

    We show that the particle states of Maxwell’s theory, in D dimensions, can be represented in an infinite number of ways by using different gauge fields. Using this result we formulate the dynamics in terms of an infinite set of duality relations which are first order in space-time derivatives. We derive a similar result for the three form in eleven dimensions where such a possibility was first observed in the context of E{sub 11}. We also give an action formulation for some of the gauge fields. In this paper we give a pedagogical account of the Lorentz and gauge covariant formulation of the irreducible representations of the Poincaré group, used previously in higher spin theories, as this plays a key role in our constructions. It is clear that our results can be generalised to any particle.

  20. Lattice Gauge Theories Have Gravitational Duals

    Energy Technology Data Exchange (ETDEWEB)

    Hellerman, Simeon

    2002-09-05

    In this paper we examine a certain threebrane solution of type IIB string theory whose long-wavelength dynamics are those of a supersymmetric gauge theory in 2+1 continuous and 1 discrete dimension, all of infinite extent. Low-energy processes in this background are described by dimensional deconstruction, a strict limit in which gravity decouples but the lattice spacing stays finite. Relating this limit to the near-horizon limit of our solution we obtain an exact, continuum gravitational dual of a lattice gauge theory with nonzero lattice spacing. H-flux in this translationally invariant background encodes the spatial discreteness of the gauge theory, and we relate the cutoff on allowed momenta to a giant graviton effect in the bulk.

  1. Renormalization of gauge theories without cohomology

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, Damiano [Universita di Pisa, Dipartimento di Fisica ' ' Enrico Fermi' ' , Pisa (Italy); INFN, Sezione di Pisa (Italy)

    2013-07-15

    We investigate the renormalization of gauge theories without assuming cohomological properties. We define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step and automatically extends the classical action till it contains sufficiently many independent parameters to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction is then generalized to the master functional and the field-covariant proper formalism for gauge theories. Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem. (orig.)

  2. Gauge field theories an introduction with applications

    CERN Document Server

    Guidry, Mike

    1991-01-01

    Acquaints readers with the main concepts and literature of elementary particle physics and quantum field theory. In particular, the book is concerned with the elaboration of gauge field theories in nuclear physics; the possibility of creating fundamental new states of matter such as an extended quark-gluon plasma in ultra-relativistic heavy ion collisions; and the relation of gauge theories to the creation and evolution of the universe. Divided into three parts, it opens with an introduction to the general principles of relativistic quantum field theory followed by the essential ingredients of gauge fields for weak and electromagnetic interactions, quantum chromodynamics and strong interactions. The third part is concerned with the interface between modern elementary particle physics and "applied disciplines" such as nuclear physics, astrophysics and cosmology. Includes references and numerous exercises

  3. Scattering amplitudes in gauge theories: progress and outlook Scattering amplitudes in gauge theories: progress and outlook

    Science.gov (United States)

    Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia

    2011-11-01

    This issue aims to serve as an introduction to our current understanding of the structure of scattering amplitudes in gauge theory, an area which has seen particularly rapid advances in recent years following decades of steady progress. The articles contained herein provide a snapshot of the latest developments which we hope will serve as a valuable resource for graduate students and other scientists wishing to learn about the current state of the field, even if our continually evolving understanding of the subject might soon render this compilation incomplete. Why the fascination with scattering amplitudes, which have attracted the imagination and dedicated effort of so many physicists? Part of it stems from the belief, supported now by numerous examples, that unexpected simplifications of otherwise apparently complicated calculations do not happen by accident. Instead they provide a strong motivation to seek out an underlying explanation. The insight thereby gained can subsequently be used to make the next class of seemingly impossible calculations not only possible, but in some cases even trivial. This two-pronged strategy of exploring and exploiting the structure of gauge theory amplitudes appeals to a wide audience from formal theorists interested in mathematical structure for the sake of its own beauty to more phenomenologically-minded physicists eager to speed up the next generation of analysis software. Understandably it is the maximally supersymmetric 𝒩 = 4 Yang-Mills theory (SYM) which has the simplest structure and has correspondingly received the most attention. Rarely in theoretical physics are we fortunate enough to encounter a toy model which is simple enough to be solved completely yet rich enough to possess interesting non-trivial structure while simultaneously, and most importantly, being applicable (even if only as a good approximation) to a wide range of 'real' systems. The canonical example in quantum mechanics is of course the harmonic

  4. Uplifting non-compact gauged supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Walter H.; Dall’Agata, Gianguido [Dipartimento di Fisica e Astronomia “Galileo Galilei”,Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN - Sezione di Padova Via Marzolo 8, 35131 Padova (Italy)

    2015-02-02

    We provide the M-theory uplift of de Sitter vacua of SO(5,3) and SO(4,4) gaugings of maximal supergravity in 4 dimensions. We find new non-compact backgrounds that are squashed hyperboloids with non-trivial flux for the 3-form potential. The uplift requires a new non-linear ansatz for the 11-dimensional metric and for the 3-form potential that reduces to the known one leading to the 7-sphere solution in the case of the SO(8) gauging.

  5. Jarzynski's theorem for lattice gauge theory

    CERN Document Server

    Caselle, Michele; Nada, Alessandro; Panero, Marco; Toniato, Arianna

    2016-01-01

    Jarzynski's theorem is a well-known equality in statistical mechanics, which relates fluctuations in the work performed during a non-equilibrium transformation of a system, to the free-energy difference between two equilibrium states. In this article, we extend Jarzynski's theorem to lattice gauge theory, and present examples of applications for two challenging computational problems, namely the calculation of interface free energies and the determination of the equation of state. We conclude with a discussion of further applications of interest in QCD and in other strongly coupled gauge theories, in particular for the Schroedinger functional and for simulations at finite density using reweighting techniques.

  6. Renormalization in the gauge theories with spontaneously broken supersymmetry

    CERN Document Server

    Kazakov, D I; Velizhanin, V N; Kondrashuk, I N

    2001-01-01

    A review of recent results on renormalizations in gauge theories with spontaneously broken supersymmetry is given. It is shown that the renormalizations in a broken theory are completely defined by those in a rigid theory and may be obtained with the help of expansion over the Grassmannian variables. New exact as well as suitable approximate analytic solutions of the renormalization group equations are obtained in some particular models: the Minimal Supersymmetric Standard Model, supersymmetric Grand Unified Theories, softly broken finite theories, and N=2 supersymmetric Seiberg-Witten theory

  7. Axion inflation with an SU(2) gauge field: detectable chiral gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Maleknejad, Azadeh [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)

    2016-07-20

    We study a single field axion inflation model in the presence of an SU(2) gauge field with a small vev. In order to make the analysis as model-independent as possible, we consider an arbitrary potential for the axion that is able to support the slow-roll inflation. The gauge field is coupled to the axion with a Chern-Simons interaction (λ/f)F{sub μν}{sup a}F̃{sub a}{sup μν} where (λ/f)∼((O(10))/(M{sub pl})). It has a negligible effect on the background evolution, ((ρ{sub YM})/(M{sub pl}{sup 2}H{sup 2}))≲ϵ{sup 2}. However, its quantum fluctuations make a significant contribution to the cosmic perturbation. In particular, the gauge field has a spin-2 fluctuation which explicitly breaks the parity between the left- and right-handed polarization states. The chiral tensor modes are linearly coupled to the gravitational waves and lead to a circularly polarized tensor power spectrum comparable to the unpolarized vacuum power spectrum. Moreover, the scalar sector is modified by the linear scalar fluctuations of the gauge field. Since the spin-0 and spin-2 fluctuations of the SU(2) gauge field are independent, the gauge field can, at the same time, generate a detectable chiral gravitational wave signal and have a negligible contribution to the scalar fluctuations, in agreement with the current CMB observations.

  8. Optimization of pressure gauge locations for water distribution systems using entropy theory.

    Science.gov (United States)

    Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon

    2012-12-01

    It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.

  9. Maximal Abelian gauge and a generalized BRST transformation

    Directory of Open Access Journals (Sweden)

    Shinichi Deguchi

    2016-05-01

    Full Text Available We apply a generalized Becchi–Rouet–Stora–Tyutin (BRST formulation to establish a connection between the gauge-fixed SU(2 Yang–Mills (YM theories formulated in the Lorenz gauge and in the Maximal Abelian (MA gauge. It is shown that the generating functional corresponding to the Faddeev–Popov (FP effective action in the MA gauge can be obtained from that in the Lorenz gauge by carrying out an appropriate finite and field-dependent BRST (FFBRST transformation. In this procedure, the FP effective action in the MA gauge is found from that in the Lorenz gauge by incorporating the contribution of non-trivial Jacobian due to the FFBRST transformation of the path integral measure. The present FFBRST formulation might be useful to see how Abelian dominance in the MA gauge is realized in the Lorenz gauge.

  10. Holography for general gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    McGarrie, Moritz

    2012-10-15

    We construct a holographic model of spontaneous supersymmetry breaking in analogy to AdS/QCD models. Integrating out the bulk theory one obtains an entirely four dimensional effective action that encodes spontaneous supersymmetry breaking effects, coupled to external sources. Using only this four dimensional action it is possible to compute soft masses, scattering cross sections and determine the form factors of vector mesons. This construction lends itself to a more natural comparison with operator product expansions.

  11. Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory.

    Science.gov (United States)

    Cucchieri, Attilio; Mendes, Tereza

    2017-05-12

    By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994)NUPBBO0550-321310.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.

  12. Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory

    Science.gov (United States)

    Cucchieri, Attilio; Mendes, Tereza

    2017-05-01

    By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994), 10.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.

  13. Performance of stem flow gauges in greenhouse and desert environments

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, D.G. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Simpson, J.R. [California Univ., Davis, CA (United States). Dept. of Environmental Horticulture; Tipton, J.L. [Arizona Univ., Tucson, AZ (United States). Dept. of Plant Sciences

    1995-06-01

    This study was conducted to evaluate the accuracy and general performance of a heat balance method for estimating transpirational sap flow through plant stems on two tree species in greenhouse and field experiments in Tucson, Arizona. Sap flow through 20-mm diameter stems of oak (Quercus virginiana `Heritage`) and mesquite (Prosopis alba `Colorado`.) trees in containers was measured using stem flow gauges and a precision balance, from January to October, 1991. Overall gauge accuracy, and the effects of gauge location on the tree stem, gauge ventilation, gauge insulation, sheath conductance factor (Ksh) selection method, and increased numbers of vertical thermocouple pairs on gauge performance were evaluated.

  14. Lattice Gauge Field Theory and Prismatic Sets

    DEFF Research Database (Denmark)

    Akyar, Bedia; Dupont, Johan Louis

    as and in particular the latter we use to study lattice gauge theory in the sense of Phillips and Stone. Thus for a Lie group and a set of parallel transport functions defining the transition over faces of the simplices, we define a classifying map from the prismatic star to a prismatic version of the classifying...

  15. Cellular-based sea level gauge

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.

    , is mounted within a cylindrical protective housing, which in turn is rigidly held within a mechanical structure. This structure is secured to a jetty. The gauge is powered by a battery, which is charged by solar panels. Battery, electronics, solar panels...

  16. Н(1) Gauge theory as quantum hydrodynamics

    Indian Academy of Sciences (India)

    January 2004 physics pp. 101-114. Н(1) Gauge theory as quantum hydrodynamics. GIRIsH s sETLUR ... there is work by Ceperley [4] using quantum Monte Carlo. The main point of this article is to highlight the ..... Fermi liquid theory break down in two or three dimensions?' In two dimensions, for the interaction νХ = const.

  17. National Computational Infrastructure for Lattice Gauge Theory

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Richard C.

    2014-04-15

    SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io

  18. Hydrodynamic Gradient Expansion in Gauge Theory Plasmas,

    NARCIS (Netherlands)

    Heller, M.P.; Janik, R.A.; Witaszczyk, P

    2013-01-01

    We utilize the fluid-gravity duality to investigate the large order behavior of hydrodynamic gradient expansion of the dynamics of a gauge theory plasma system. This corresponds to the inclusion of dissipative terms and transport coefficients of very high order. Using the dual gravity description,

  19. Recent advances in lattice gauge theories

    Indian Academy of Sciences (India)

    Recent progress in the field of lattice gauge theories is briefly reviewed for a nonspecialist audience. While the emphasis is on the latest and more definitive results that have emerged prior to this symposium, an effort has been made to provide them with minimal technicalities.

  20. Geometrical origin of supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, S.; Gambini, R.

    1989-01-15

    We show that the kinematical properties of any supersymmetric gauge theory may be obtained by mapping a geometric group structure of loops in superspace into some particular Lie group. The underlying group structure of the usual constrained supergauge theories turns out to be the group of even (bosonic) loops.

  1. Supersymmetry search via gauge boson fusion

    Indian Academy of Sciences (India)

    Abstract. We propose a novel method for the search of supersymmetry, especially for the elec- troweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to ...

  2. Gauge coupling renormalization in Ads5

    Indian Academy of Sciences (India)

    diverges depending linearly on cut-off A and 1 g20a and 1 g2πa diverges logarithmically. One-loop correction to the low energy gauge coupling also contains conventional logarithmic running in 4D effective theory and calculable threshold corrections from matching 5D theory to 4D effective theory. We parametrize them by.

  3. Supersymmetry search via gauge boson fusion

    Indian Academy of Sciences (India)

    We propose a novel method for the search of supersymmetry, especially for the electroweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to find the ...

  4. Nanocomposite Strain Gauges Having Small TCRs

    Science.gov (United States)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  5. QCD perturbation theory in the temporal gauge

    Science.gov (United States)

    Leroy, J. P.; Micheli, J.; Rossi, G. C.; Yoshida, K.

    1990-12-01

    In this paper we present a non-trivial check of the consistency of the quantization of a gauge theory with fermions (QCD) in the temporal gauge. We use the approach based on the finite time Feynman propagation kernel, in which the Gauss law is imposed as a constraint on the states by means of a functional integration over all the time independent gauge transformations acting on the boundary values of the fields. We spell out in detail the “Feynman rules” when fermions are present and we compute, as an example, the gauge invariant correlation function 10052_2005_Article_BF01614701_TeX2GIFE1.gif begin{gathered} G(t) = left< {bar ψ (0,t)(γ _5 γ _0 ){1 - γ _0 }/2P} right. \\ left. { \\cdot exp left( {igintlimits_0^t {A_0 (0,t')dt'} } right)(γ _5 γ _0 )^ + (0,0)} rightrangle \\ up to order g 2, obtaining the expected result.

  6. Gauge theory and renormalization (Erice, August 1994)

    OpenAIRE

    Hooft, G. 't

    1994-01-01

    Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in the world of elementary particles.

  7. Pure gauge spin-orbit couplings

    Science.gov (United States)

    Shikakhwa, M. S.

    2017-01-01

    Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2×2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but θ-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.

  8. 27 CFR 19.768 - Gauge record.

    Science.gov (United States)

    2010-04-01

    ... storage or processing account at the plant where produced; (2) Packaging of spirits or wine filled from a... formula number of denatured spirits; (f) Proof of distillation (not required for denatured spirits... gauge details, proof, and wine gallons; (2) Cooperage identification (“C” for charred, “REC” for...

  9. High resolution radar-rain gauge data merging for urban hydrology: current practice and beyond

    Science.gov (United States)

    Ochoa Rodriguez, Susana; Wang, Li-Pen; Bailey, Andy; Willems, Patrick; Onof, Christian

    2017-04-01

    In this work a thorough test is conducted of radar-rain gauge merging techniques at urban scales, under different climatological conditions and rain gauge density scenarios. The aim is to provide guidance regarding the suitability and application of merging methods at urban scales, which is lacking at present. The test is conducted based upon two pilot locations, i.e. the cities of Edinburgh (254 km^2) and Birmingham (431 km^2), for which a total of 96 and 84 tipping bucket rain gauges were respectively available, alongside radar QPEs, dense runoff records and urban drainage models. Three merging techniques, namely Mean Field Bias (MFB) adjustment, kriging with external (KED) and Bayesian (BAY) combination, were selected for testing on grounds of performance and common use. They were initially tested as they were originally formulated and as they are reportedly commonly applied using typically available radar and rain gauge data. Afterwards, they were tested in combination with two special treatments which were identified as having the potential to improve merging applicability for urban hydrology: (1) reduction of temporal sampling errors in radar QPEs through temporal interpolation and (2) singularity-based decomposition of radar QPEs prior to merging. These treatments ultimately aim at improving the consistency between radar and rain gauge records, which has been identified as the chief factor affecting merging performance and is particularly challenging at the fine spatial-temporal resolutions required for urban applications. The main findings of this study are the following: - All merging methods were found to improve the applicability of radar QPEs for urban hydrological applications, but the degree of improvement they provide and the added value of radar information vary for each merging method and are also a function of climatological conditions and rain gauge density scenarios. - Overall, KED displayed the best performance, with BAY being a close second

  10. Regionalization of patterns of flow intermittence from gauging station records

    Directory of Open Access Journals (Sweden)

    T. H. Snelder

    2013-07-01

    Full Text Available Understanding large-scale patterns in flow intermittence is important for effective river management. The duration and frequency of zero-flow periods are associated with the ecological characteristics of rivers and have important implications for water resources management. We used daily flow records from 628 gauging stations on rivers with minimally modified flows distributed throughout France to predict regional patterns of flow intermittence. For each station we calculated two annual times series describing flow intermittence; the frequency of zero-flow periods (consecutive days of zero flow in each year of record (FREQ; yr−1, and the total number of zero-flow days in each year of record (DUR; days. These time series were used to calculate two indices for each station, the mean annual frequency of zero-flow periods (mFREQ; yr−1, and the mean duration of zero-flow periods (mDUR; days. Approximately 20% of stations had recorded at least one zero-flow period in their record. Dissimilarities between pairs of gauges calculated from the annual times series (FREQ and DUR and geographic distances were weakly correlated, indicating that there was little spatial synchronization of zero flow. A flow-regime classification for the gauging stations discriminated intermittent and perennial stations, and an intermittence classification grouped intermittent stations into three classes based on the values of mFREQ and mDUR. We used random forest (RF models to relate the flow-regime and intermittence classifications to several environmental characteristics of the gauging station catchments. The RF model of the flow-regime classification had a cross-validated Cohen's kappa of 0.47, indicating fair performance and the intermittence classification had poor performance (cross-validated Cohen's kappa of 0.35. Both classification models identified significant environment-intermittence associations, in particular with regional-scale climate patterns and also

  11. Bounds on dark matter interactions with electroweak gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.

    2013-12-01

    We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z 0 . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m χ ≲ m Z / 2 or m χ ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.

  12. Quantum hydrodynamics from large-n supersymmetric gauge theories

    Science.gov (United States)

    Koroteev, Peter; Sciarappa, Antonio

    2017-09-01

    We study the connection between periodic finite-difference Intermediate Long Wave (Δ ILW ) hydrodynamical systems and integrable many-body models of Calogero and Ruijsenaars-type. The former describe quantum cohomology and quantum K-theory of the ADHM moduli space of Abelian instantons, while the latter arise in the instanton counting of four- and five-dimensional supersymmetric gauge theories with eight supercharges in the presence of defects. Using string theory dualities, we provide correspondences between hydrodynamical and many-body integrable systems. In particular, we match the energy spectra on both sides.

  13. Three instanton computations in gauge theory and string theory

    Science.gov (United States)

    Beasley, Christopher Edward

    We employ a variety of ideas from geometry and topology to perform three new instanton computations in gauge theory and string theory. First, we consider supersymmetric QCD with gauge group SU( Nc) and with Nf flavors. In this theory, it is well known that instantons generate a superpotential if Nf = Nc - 1 and deform the moduli space of supersymmetric vacua if Nf = Nc. We extend these results to supersymmetric QCD with Nf > Nc flavors, for which we show that instantons generate a hierarchy of new, multi-fermion F-terms in the effective action. Second, we revisit the question of which Calabi-Yau compactifications of the heterotic string are stable under worldsheet instanton corrections to the effective space-time superpotential. For instance, compactifications described by (0, 2) linear sigma models are believed to be stable, suggesting a remarkable cancellation among the instanton effects in these theories. We show that this cancellation follows directly from a residue theorem, whose proof relies only upon the right-moving worldsheet supersymmetries and suitable compactness properties of the (0, 2) linear sigma model. We also extend this residue theorem to a new class of "half-linear" sigma models. Using these half-linear models, we show that heterotic compactifications on the quintic hypersurface in CP4 for which the gauge bundle pulls back from a bundle on CP4 are stable. Third, we study Chern-Simons gauge theory on a Seifert manifold M (the total space of a nontrivial circle bundle over a Riemann surface). When M is a Seifert manifold, Lawrence and Rozansky have shown from the exact solution of Chern-Simons theory that the partition function has a remarkably simple structure and can be rewritten entirely as a sum of local "instanton" contributions from the flat connections on M. We explain how this empirical fact follows from the technique of non-abelian localization as applied to the Chern-Simons path integral. In the process, we show that the partition

  14. Quantum hydrodynamics from large- n supersymmetric gauge theories

    Science.gov (United States)

    Koroteev, Peter; Sciarappa, Antonio

    2018-01-01

    We study the connection between periodic finite-difference Intermediate Long Wave (Δ ILW) hydrodynamical systems and integrable many-body models of Calogero and Ruijsenaars-type. The former describe quantum cohomology and quantum K-theory of the ADHM moduli space of Abelian instantons, while the latter arise in the instanton counting of four- and five-dimensional supersymmetric gauge theories with eight supercharges in the presence of defects. Using string theory dualities, we provide correspondences between hydrodynamical and many-body integrable systems. In particular, we match the energy spectra on both sides.

  15. Novel measurements of anomalous triple gauge couplings for the LHC

    Science.gov (United States)

    Azatov, A.; Elias-Miró, J.; Reyimuaji, Y.; Venturini, E.

    2017-10-01

    Finding better ways to prove the Standard Model Effective Field Theory is a very important direction of research. This paper focuses on measurements of Electroweak triple gauge couplings, paying special attention on the regime of validity of the Effective Field Theory (EFT). In this regard, one of our goals is to find measurements leading to a large increase of the interference between the SM amplitude and the contribution of irrelevant operators in the EFT. We propose two such distributions that will lead to a better accuracy. Improvements compared to the traditional methods as well as LHC high luminosity prospects are discussed.

  16. CogGauge (A Cognitive Assessment Tool) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cognitive Gauge (CogGauge) tool aims to develop a portable gaming application that assesses cognitive state of astronaut crew members with the goal of...

  17. Some aspects of phenomenology of accelerators: the top quark and gauge boson couplings; Alguns aspectos da fenomenologia de aceleradores: o quark top e acoplamentos entre bosons de gauge

    Energy Technology Data Exchange (ETDEWEB)

    Mercadante, Pedro Galli

    1997-07-01

    In this work we show several aspects of collider physics. In the first part we begin with an introduction for the parton model which is necessary for studying hadronic collider. Then we present our study of top quark pair production with an extra gluon at Tevatron. In the second part we present our contribution to the search for new physics using effective Lagrangian to probe gauge boson couplings. Particularly, we present our study of anomalous gauge boson couplings in the reaction {gamma} {gamma} ->V V V, which will occur at NLC operating in the {gamma} {gamma} mode. (author)

  18. Small extra dimensions from the interplay of gauge and supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Catena, R. [International School for Advanced Studies, Trieste (Italy); Schmidt-Hoberg, K. [Technische Univ., Muenchen (Germany). Physik-Department

    2008-03-15

    Higher-dimensional theories provide a promising framework for unified extensions of the supersymmetric standard model. Compactifications to four dimensions often lead to U(1) symmetries beyond the standard model gauge group, whose breaking scale is classically undetermined. Without supersymmetry breaking, this is also the case for the size of the compact dimensions. Fayet-Iliopoulos terms generically fix the scale M of gauge symmetry breaking. The interplay with supersymmetry breaking can then stabilize the compact dimensions at a size 1/M, much smaller than the inverse supersymmetry breaking scale 1/{mu}. We illustrate this mechanism with an SO(10) model in six dimensions, compactified on an orbifold. (orig.)

  19. Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging

    Science.gov (United States)

    Zimmerli, Gregory A.; Buchanan, David A.; Follo, Jeffrey C.; Vaden, Karl R.; Wagner, James D.; Asipauskas, Marius; Herlacher, Michael D.

    2010-01-01

    Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank hardware, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for

  20. Gauge Fixing on the Lattice and the Gibbs Phenomenon

    OpenAIRE

    Mandula, Jeffrey E.

    1999-01-01

    We discuss global gauge fixing on the lattice, specifically to the lattice Landau gauge, with the goal of understanding the question of why the process becomes extremely slow for large lattices. We construct an artificial "gauge-fixing" problem which has the essential features encountered in actuality. In the limit in which the size of the system to be gauge fixed becomes infinite, the problem becomes equivalent to finding a series expansion in functions which are related to the Jacobi polyno...

  1. A gauge field theory of fermionic continuous-spin particles

    Directory of Open Access Journals (Sweden)

    X. Bekaert

    2016-09-01

    Full Text Available In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs. The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.

  2. Low-temperature strain gauges based on silicon whiskers

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2008-08-01

    Full Text Available To create low-temperature strain gauges based on p-type silicon whiskers tensoresistive characteristics of these crystals in 4,2—300 K temperature range were studied. On the basis of p-type Si whiskers with different resistivity the strain gauges for different materials operating at cryogenic temperatures with extremely high gauge factor at 4,2 K were developed, as well as strain gauges operating at liquid helium temperatures in high magnetic fields.

  3. 46 CFR 153.979 - Gauging with a sounding tube.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Gauging with a sounding tube. 153.979 Section 153.979... Procedures § 153.979 Gauging with a sounding tube. (a) No person may remove the cover of a sounding tube... cargo transfer may not authorize removal of the cover from a sounding tube gauge unless all tank...

  4. 46 CFR 151.15-10 - Cargo gauging devices.

    Science.gov (United States)

    2010-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... devices. (h) For pressure-vessel type tanks, each automatic float, continuous reading tape or similar type... tank, is used, a fixed tube gauge set in the range of 85 percent to 90 percent of the water capacity of...

  5. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass coronary pressure gauge... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing...

  6. Measurement of Low Level Explosives Reaction in Gauged Multi-Dimensional Steven Impact Tests

    Energy Technology Data Exchange (ETDEWEB)

    Niles, A M; Garcia, F; Greenwood, D W; Forbes, J W; Tarver, C M; Chidester, S K; Garza, R G; Swizter, L L

    2001-05-31

    The Steven Test was developed to determine relative impact sensitivity of metal encased solid high explosives and also be amenable to two-dimensional modeling. Low level reaction thresholds occur at impact velocities below those required for shock initiation. To assist in understanding this test, multi-dimensional gauge techniques utilizing carbon foil and carbon resistor gauges were used to measure pressure and event times. Carbon resistor gauges indicated late time low level reactions 200-540 {micro}s after projectile impact, creating 0.39-2.00 kb peak shocks centered in PBX 9501 explosives discs and a 0.60 kb peak shock in a LX-04 disk. Steven Test modeling results, based on ignition and growth criteria, are presented for two PBX 9501 scenarios: one with projectile impact velocity just under threshold (51 m/s) and one with projectile impact velocity just over threshold (55 m/s). Modeling results are presented and compared to experimental data.

  7. Gauge coupling unification, the GUT scale, and magic fields

    Energy Technology Data Exchange (ETDEWEB)

    Calibbi, L. [SISSA/ISAS and INFN, I-34013 Trieste (Italy)], E-mail: calibbi@sissa.it; Ferretti, L.; Romanino, A.; Ziegler, R. [SISSA/ISAS and INFN, I-34013 Trieste (Italy)

    2009-02-16

    We consider field sets that do not form complete SU(5) multiplets, but exactly preserve the one-loop MSSM prediction for {alpha}{sub 3}(M{sub Z}) independently of the value of their mass. Such fields can raise the unification scale in different ways, through a delayed convergence of the gauge couplings, a fake unified running below the GUT scale, or a postponed unification after a hoax crossing at a lower scale. The {alpha}{sub 3}(M{sub Z}) prediction is independent of the mass of the new fields, while the GUT scale often is not, which allows to vary the GUT scale. Such 'magic' fields represent a useful tool in GUT model building. For example, they can be used to fix gauge coupling unification in certain two step breakings of the unified group, to suppress large KK thresholds in models with extra dimensions, or they can be interpreted as messengers of supersymmetry breaking in GMSB models.

  8. A CFD study of the influence of turbulence on undercatch of precipitation gauges

    Science.gov (United States)

    Baghapour, Behzad; Sullivan, Pierre E.

    2017-11-01

    The response of precipitation to turbulent fluctuations near gauges is studied using time-averaged (RANS) and unsteady (LES) turbulence modeling. Updrafting effects on catch performance are analyzed for unshielded and shielded gauges. The effective precipitation catchment area of the gauge for both wind-induced effects and snowflake characteristics is found to reduce significantly for small particles in high winds but can be partly recovered by shielding. The variation in the amount of precipitation caught is quantified for different free-stream wind speeds using LES and RANS. The fluctuations, captured with LES are analyzed to determine the local structure of eddies near the orifice plane. Wind-induced drag on precipitates are modeled for a wide range of particle Reynolds numbers from low speed Stokes flow condition to high speed flows with inertial effects. Results show noticeable effect of drag-force model on catch performance calculation of precipitation gauges with uncertainties of up to 40% in high winds and large snowflake sizes. Finally, particle-wall collision on the catch performance is studied for different restitution conditions. These simulations have differences of up to 5% in catch performance for large particle sizes in high winds, dependent on whether the particles undergo elastic or plastic collisions. Comparing RANS and LES results, turbulence fluctuations show a considerable influence on shielding performance degeneration at high winds. Double shielding the gauge can improve efficiency by maintaining a lower fluctuation-to-mean catch ratio as wind speed increases.

  9. Family replicated gauge groups and large mixing angle solar neutrino solution

    Energy Technology Data Exchange (ETDEWEB)

    Froggatt, C.D. E-mail: c.froggatt@physics.gla.ac.uk; Nielsen, H.B. E-mail: hbech@mail.desy.dehbech@nbi.dk; Takanishi, Y. E-mail: yasutaka@mail.desy.deyasutaka@nbi.dk

    2002-06-03

    We present a modification of our previous family replicated gauge group model, which now generates the Large Mixing Angle MSW solution rather than the experimentally disfavoured Small Mixing Angle MSW solution to the solar neutrino oscillation problem. The model is based on each family of quarks and leptons having its own set of gauge fields, each containing a replica of the Standard Model gauge fields plus a (B-L)-coupled gauge field. By a careful choice of the Higgs field gauge quantum numbers, we avoid our previous prediction that the solar neutrino mixing angle is equal order of magnitudewise to the Cabibbo angle, replacing it and the well-known Fritzsch relation with the relation {theta}{sub c}{approx}({theta}{sub [odot]}){sup -1/3} (m{sub d}/m{sub s}){sup 2/3}. At the same time we retain a phenomenologically successful structure for the charged quark and lepton mass matrices. A fit of all the seventeen quark-lepton mass and mixing angle observables, using just six new Higgs field vacuum expectation values, agrees with the experimental data within the theoretically expected uncertainty of about 64%, i.e., it fits perfectly order of magnitudewise.

  10. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.

    Science.gov (United States)

    Martinez, Esteban A; Muschik, Christine A; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-23

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  11. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    Science.gov (United States)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  12. Generalized Attractor Points in Gauged Supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Kallosh, Renata; /Stanford U., Phys. Dept.; Shmakova, Marina; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.

    2011-08-15

    The attractor mechanism governs the near-horizon geometry of extremal black holes in ungauged 4D N=2 supergravity theories and in Calabi-Yau compactifications of string theory. In this paper, we study a natural generalization of this mechanism to solutions of arbitrary 4D N=2 gauged supergravities. We define generalized attractor points as solutions of an ansatz which reduces the Einstein, gauge field, and scalar equations of motion to algebraic equations. The simplest generalized attractor geometries are characterized by non-vanishing constant anholonomy coefficients in an orthonormal frame. Basic examples include Lifshitz and Schroedinger solutions, as well as AdS and dS vacua. There is a generalized attractor potential whose critical points are the attractor points, and its extremization explains the algebraic nature of the equations governing both supersymmetric and non-supersymmetric attractors.

  13. Conceptual Aspects of Gauge/Gravity Duality

    Science.gov (United States)

    De Haro, Sebastian; Mayerson, Daniel R.; Butterfield, Jeremy N.

    2016-11-01

    We give an introductory review of gauge/gravity duality, and associated ideas of holography, emphasising the conceptual aspects. The opening sections gather the ingredients, viz. anti-de Sitter spacetime, conformal field theory and string theory, that we need for presenting, in Sect. 5, the central and original example: Maldacena's AdS/CFT correspondence. Sections 6 and 7 develop the ideas of this example, also in applications to condensed matter systems, QCD, and hydrodynamics. Sections 8 and 9 discuss the possible extensions of holographic ideas to de Sitter spacetime and to black holes. Section 10 discusses the bearing of gauge/gravity duality on two philosophical topics: the equivalence of physical theories, and the idea that spacetime, or some features of it, are emergent.

  14. Topological resolution of gauge theory singularities

    Energy Technology Data Exchange (ETDEWEB)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  15. Constrained Gauge Fields from Spontaneous Lorentz Violation

    CERN Document Server

    Chkareuli, J L; Jejelava, J G; Nielsen, H B

    2008-01-01

    Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type $A_{\\mu}^{2}=M^{2}$ ($M$ is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and $CPT$) violating couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical ...

  16. Constrained gauge fields from spontaneous Lorentz violation

    DEFF Research Database (Denmark)

    Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.

    2008-01-01

    Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and CPT) violating...

  17. A better gauge of corporate performance.

    Science.gov (United States)

    Weber, D O

    2001-01-01

    Traditional methods of measuring organizational value aren't working very well. Instead, an organization's viability should be gauged from four perspectives, according to Robert S. Kaplan and David P. Norton, co-creators of the Balanced Scorecard. These perspectives--financial strength, customer service and satisfaction, internal operating efficiency, and learning and growth--become the underpinnings of a "balanced" tool with which leaders can assess corporate performance in the knowledge-based marketplace.

  18. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T

  19. Lattice Gauge Fields and Noncommutative Geometry

    OpenAIRE

    Balachandran, A. P.; Bimonte, G.; Landi, G.; Lizzi, F.; Teotonio-Sobrinho, P.

    1996-01-01

    Conventional approaches to lattice gauge theories do not properly consider the topology of spacetime or of its fields. In this paper, we develop a formulation which tries to remedy this defect. It starts from a cubical decomposition of the supporting manifold (compactified spacetime or spatial slice) interpreting it as a finite topological approximation in the sense of Sorkin. This finite space is entirely described by the algebra of cochains with the cup product. The methods of Connes and Lo...

  20. Subleading soft photons and large gauge transformations

    OpenAIRE

    Campiglia, Miguel; Laddha, Alok

    2016-01-01

    Lysov, Pasterski and Strominger have shown how Low's subleading soft photon theorem can be understood as Ward identities of new symmetries of massless QED. In this paper we offer a different perspective and show that there exists a class of large $U(1)$ gauge transformations such that (i) the associated (electric and magnetic) charges can be computed from first principles (ii) their Ward identities are equivalent to Low's theorem. Our framework paves the way to analyze the sub-subleading theo...