WorldWideScience

Sample records for salah co2 storage

  1. Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project.

    Science.gov (United States)

    White, Joshua A; Chiaramonte, Laura; Ezzedine, Souheil; Foxall, William; Hao, Yue; Ramirez, Abelardo; McNab, Walt

    2014-06-17

    Almost 4 million metric tons of CO2 were injected at the In Salah CO2 storage site between 2004 and 2011. Storage integrity at the site is provided by a 950-m-thick caprock that sits above the injection interval. This caprock consists of a number of low-permeability units that work together to limit vertical fluid migration. These are grouped into main caprock units, providing the primary seal, and lower caprock units, providing an additional buffer and some secondary storage capacity. Monitoring observations at the site indirectly suggest that pressure, and probably CO2, have migrated upward into the lower portion of the caprock. Although there are no indications that the overall storage integrity has been compromised, these observations raise interesting questions about the geomechanical behavior of the system. Several hypotheses have been put forward to explain the measured pressure, seismic, and surface deformation behavior. These include fault leakage, flow through preexisting fractures, and the possibility that injection pressures induced hydraulic fractures. This work evaluates these hypotheses in light of the available data. We suggest that the simplest and most likely explanation for the observations is that a portion of the lower caprock was hydrofractured, although interaction with preexisting fractures may have played a significant role. There are no indications, however, that the overall storage complex has been compromised, and several independent data sets demonstrate that CO2 is contained in the confinement zone.

  2. Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah.

    Science.gov (United States)

    Verdon, James P; Kendall, J-Michael; Stork, Anna L; Chadwick, R Andy; White, Don J; Bissell, Rob C

    2013-07-23

    Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ~1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site.

  3. Geomechanical modeling of surface uplift around well KB-502 at the in Salah CO2 storage site

    NARCIS (Netherlands)

    Fokker, P.A.; Orlic, B.; Meer, L.G.H. van der; Geel, C.R.

    2011-01-01

    Injection of CO2 in the InSalah field has caused uplift of the surface, as observed by satellite geodetic techniques (InSAR). Around one of the wells, KB-502, the uplift shows anomalous behaviour: a two-lobe pattern develops in the direction of the preferred fracture orientation. This indicates the

  4. Leakage risk assessment of the In Salah CO2 storage project: Applying the Certification Framework in a dynamic context.

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Jordan, P.D.; Nicot, J.-P.; Mazzoldi, A.; Gupta, A.K.; Bryant, S.L.

    2010-08-01

    The Certification Framework (CF) is a simple risk assessment approach for evaluating CO{sub 2} and brine leakage risk at geologic carbon sequestration (GCS) sites. In the In Salah CO{sub 2} storage project assessed here, five wells at Krechba produce natural gas from the Carboniferous C10.2 reservoir with 1.7-2% CO{sub 2} that is delivered to the Krechba gas processing plant, which also receives high-CO{sub 2} natural gas ({approx}10% by mole fraction) from additional deeper gas reservoirs and fields to the south. The gas processing plant strips CO{sub 2} from the natural gas that is then injected through three long horizontal wells into the water leg of the Carboniferous gas reservoir at a depth of approximately 1,800 m. This injection process has been going on successfully since 2004. The stored CO{sub 2} has been monitored over the last five years by a Joint Industry Project (JIP) - a collaboration of BP, Sonatrach, and Statoil with co-funding from US DOE and EU DG Research. Over the years the JIP has carried out extensive analyses of the Krechba system including two risk assessment efforts, one before injection started, and one carried out by URS Corporation in September 2008. The long history of injection at Krechba, and the accompanying characterization, modeling, and performance data provide a unique opportunity to test and evaluate risk assessment approaches. We apply the CF to the In Salah CO{sub 2} storage project at two different stages in the state of knowledge of the project: (1) at the pre-injection stage, using data available just prior to injection around mid-2004; and (2) after four years of injection (September 2008) to be comparable to the other risk assessments. The main risk drivers for the project are CO{sub 2} leakage into potable groundwater and into the natural gas cap. Both well leakage and fault/fracture leakage are likely under some conditions, but overall the risk is low due to ongoing mitigation and monitoring activities. Results of

  5. Hydromechanical Simulations of Surface Uplift due to CO2 Injection at In Salah (Invited)

    Science.gov (United States)

    Morris, J. P.; Hao, Y.; Foxall, W.; McNab, W. W.

    2009-12-01

    We present recent simulations of the hydromechanical response of the reservoir and overburden associated with CO2 injection at In Salah. Using the best available field data for the reservoir and fault network properties, we are able to demonstrate excellent agreement between simulation and observation. These results are providing new insight into the fate of the CO2 about one of the injectors where intriguing morphology was observed in surface uplift. Additionally, this work is helping to better establish the advantages and limitations of interpreting surface displacements to guide our understanding of fluid fate. The In Salah Project (a joint venture of BP, StatoilHydro and Sonatrach) includes a CO2 sequestration effort that has successfully injected millions of tons of CO2 into a deep saline formation close to a producing gas field in Algeria. We have been funded by the Joint Industry Project (A consortium consisting of BP, StatoilHydro and Sonatrach, hereafter the JIP) and the U.S. Department of Energy to investigate the role of injection induced mechanical deformation and geochemical alteration at the In Salah CO2 storage project. Here we focus upon the hydromechanical portion of the study. We have performed detailed simulations of the hydromechanical response in the vicinity of the KB-502 CO2 injector specifically because the morphology of the observed surface deformation differed from that above the other injectors at the field. First we performed a geomechanical analysis to predict which faults are flow conduits and which are flow barriers. NUFT simulations were performed based upon this information using permeability fields for the reservoir provided by the JIP. These results indicate that the presence of faults in the vicinity of the KB-502 injector may be responsible for the early breakthrough of CO2 observed at a nearby well, KB-5. We have simulated the mm-scale uplift of the overburden and compared the results with observed deformation using InSAR data

  6. CO2 storage in Sweden

    International Nuclear Information System (INIS)

    Ekstroem, Clas; Andersson, Annika; Kling, Aasa; Bernstone, Christian; Carlsson, Anders; Liljemark, Stefan; Wall, Caroline; Erstedt, Thomas; Lindroth, Maria; Tengborg, Per; Edstroem, Mikael

    2004-07-01

    This study considers options, that could be feasible for Sweden, to transport and geologically store CO 2 , providing that technology for electricity production with CO 2 capture will be available in the future and also acceptable from cost- and reliability point of view. As a starting point, it is assumed that a new 600-1000 MW power plant, fired with coal or natural gas, will be constructed with CO 2 capture and localised to the Stockholm, Malmoe or Goeteborg areas. Of vital importance for storage of carbon dioxide in a reservoir is the possibility to monitor its distribution, i.e. its migration within the reservoir. It has been shown in the SACS-project that the distribution of carbon dioxide within the reservoir can be monitored successfully, mainly by seismic methods. Suitable geologic conditions and a large storage potential seems to exist mainly in South West Scania, where additional knowledge on geology/hydrogeology has been obtained since the year 2000 in connection to geothermal energy projects, and in the Eastern part of Denmark, bordering on South West Scania. Storage of carbon dioxide from the Stockholm area should not be excluded, but more studies are needed to clarify the storage options within this area. The possibilities to use CO 2 for enhanced oil recovery, EOR, in i.a. the North Sea should be investigated, in order to receive incomes from the CO 2 and shared costs for infrastructure, and by this also make the CO 2 regarded as a trading commodity, and thereby achieving a more favourable position concerning acceptance, legal issues and regulations. The dimensions of CO 2 -pipelines should be similar to those for natural natural gas, although regarding some aspects they have different design and construction prerequisites. To obtain cost efficiency, the transport distances should be kept short, and possibilities for co-ordinated networks with short distribution pipelines connected to common main pipelines, should be searched for. Also, synergies

  7. Modeling of CO2 storage in aquifers

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Santos, Juan E

    2011-01-01

    Storage of CO 2 in geological formations is a means of mitigating the greenhouse effect. Saline aquifers are a good alternative as storage sites due to their large volume and their common occurrence in nature. The first commercial CO 2 injection project is that of the Sleipner field in the Utsira Sand aquifer (North Sea). Nevertheless, very little was known about the effectiveness of CO 2 sequestration over very long periods of time. In this way, numerical modeling of CO 2 injection and seismic monitoring is an important tool to understand the behavior of CO 2 after injection and to make long term predictions in order to prevent CO 2 leaks from the storage into the atmosphere. The description of CO 2 injection into subsurface formations requires an accurate fluid-flow model. To simulate the simultaneous flow of brine and CO 2 we apply the Black-Oil formulation for two phase flow in porous media, which uses the PVT data as a simplified thermodynamic model. Seismic monitoring is modeled using Biot's equations of motion describing wave propagation in fluid-saturated poroviscoelastic solids. Numerical examples of CO 2 injection and time-lapse seismics using data of the Utsira formation show the capability of this methodology to monitor the migration and dispersal of CO 2 after injection.

  8. CO2 sequestration: Storage capacity guideline needed

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.; Hickman, T.S.

    2006-01-01

    Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.

  9. Monitoring Options for CO2 Storage

    NARCIS (Netherlands)

    Arts, R.; Winthaegen, P.

    2005-01-01

    This chapter provides an overview of various monitoring techniques for CO2 storage that is structured into three categories-instrumentation in a well (monitoring well); instrumentation at the (near) surface (surface geophysical methods); and sampling at the (near) surface measuring CO2

  10. Capture and geological storage of CO2

    International Nuclear Information System (INIS)

    2013-03-01

    Capture and geological storage of CO 2 could be a contribution to reduce CO 2 emissions, and also a way to meet the factor 4 objective of reduction of greenhouse gas emissions. This publication briefly presents the capture and storage definitions and principles, and comments some key data related to CO 2 emissions, and their natural trapping by oceans, soils and forests. It discusses strengths (a massive and perennial reduction of CO 2 emissions, a well defined regulatory framework) and weaknesses (high costs and uncertain cost reduction perspectives, a technology which still consumes a lot of energy, geological storage capacities still to be determined, health environmental impacts and risks to be controlled, a necessary consultation of population for planned projects) of this option. Actions undertaken by the ADEME are briefly reviewed

  11. Natural Analogues of CO2 Geological Storage

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-01-01

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  12. Increasing CO2 storage in oil recovery

    International Nuclear Information System (INIS)

    Jessen, Kristian; Kovscek, Anthony R.; Orr, Franklin M.

    2005-01-01

    Oil fields offer a significant potential for storing CO 2 and will most likely be the first large scale geological targets for sequestration as the infrastructure, experience and permitting procedures already exist. The problem of co-optimizing oil production and CO 2 storage differs significantly from current gas injection practice due to the cost-benefit imbalance resulting from buying CO 2 for enhanced oil recovery projects. Consequently, operators aim to minimize the amount of CO 2 required to sweep an oil reservoir. For sequestration purposes, where high availability of low cost CO 2 is assumed, the design parameters of enhanced oil recovery processes must be re-defined to optimize the amount of CO 2 left in the reservoir at the time of abandonment. To redefine properly the design parameters, thorough insight into the mechanisms controlling the pore scale displacement efficiency and the overall sweep efficiency is essential. We demonstrate by calculation examples the different mechanisms controlling the displacement behavior of CO 2 sequestration schemes, the interaction between flow and phase equilibrium and how proper design of the injection gas composition and well completion are required to co-optimize oil production and CO 2 storage

  13. Large-scale CO2 storage — Is it feasible?

    Science.gov (United States)

    Johansen, H.

    2013-06-01

    CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit). The large-scale storage challenge (several Gigatons of CO2 per year) is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1) finding reservoirs with adequate storage capacity, 2) make sure that the sealing capacity above the reservoir is sufficient, 3) build the infrastructure for transport, drilling and injection, and 4) set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1) the storage activity results in pressure increase in the subsurface, 2) there is no production of fluids that give important feedback on reservoir performance, and 3) the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples close to the

  14. Large-scale CO2 storage — Is it feasible?

    Directory of Open Access Journals (Sweden)

    Johansen H.

    2013-06-01

    Full Text Available CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit. The large-scale storage challenge (several Gigatons of CO2 per year is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1 finding reservoirs with adequate storage capacity, 2 make sure that the sealing capacity above the reservoir is sufficient, 3 build the infrastructure for transport, drilling and injection, and 4 set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1 the storage activity results in pressure increase in the subsurface, 2 there is no production of fluids that give important feedback on reservoir performance, and 3 the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples

  15. Capture and Geological Storage of CO2

    International Nuclear Information System (INIS)

    Kerr, T.; Brockett, S.; Hegan, L.; Barbucci, P.; Tullius, K.; Scott, J.; Otter, N.; Cook, P.; Hill, G.; Dino, R.; Aimard, N.; Giese, R.; Christensen, N.P.; Munier, G.; Paelinck, Ph.; Rayna, L.; Stromberg, L.; Birat, J.P.; Audigane, P.; Loizzo, M.; Arts, R.; Fabriol, H.; Radgen, P.; Hartwell, J.; Wartmann, S.; Drosin, E.; Willnow, K.; Moisan, F.

    2009-01-01

    To build on the growing success of the first two international symposia on emission reduction and CO 2 capture and geological storage, held in Paris in 2005 and again in 2007, IFP, ADEME and BRGM organised a third event on the same topic the 5-6 November 2009. This time, the focus was on the urgency of industrial deployment. Indeed, the IPCC 4. assessment report indicates that the world must achieve a 50 to 85% reduction in CO 2 emissions by 2050 compared to 2000, in order to limit the global temperature increase to around 2 deg. C. Moreover, IPCC stresses that a 'business as usual' scenario could lead to a temperature increase of between 4 deg. C to 7 deg. C across the planet. The symposium was organized in 4 sessions: Session I - Regulatory framework and strategies for enabling CCS deployment: - CCS: international status of political, regulatory and financing issues (Tom Kerr, IEA); - EC regulatory framework (Scott Brockett, European Commission, DG ENV); - Canada's investments towards implementation of CCS in Canada (Larry Hegan, Office of Energy Research and Development - Government of Canada); - A power company perspective (Pietro Barbucci, ENEL); - EC CCS demonstration network (Kai Tullius, European Commission, DG TREN); - Strategies and policies for accelerating global CCS deployment (Jesse Scott, E3G); - The global CCS Institute, a major initiative to facilitate the rapid deployment of CCS (Nick Otter, GCCSI); Session II - From pilot to demonstration projects: - Otway project, Australia (David Hilditch, CO2 CRC); - US regional partnerships (Gerald Hill, Southeast Regional Carbon Sequestration Partnership - SECARB); - CCS activities in Brazil (Rodolfo Dino, Petrobras); - Lessons learnt from Ketzin CO2Sink project in Germany (Ruediger Giese, GFZ); - CO 2 storage - from laboratory to reality (Niels-Peter Christensen, Vattenfall); - Valuation and storage of CO 2 : A global project for carbon management in South-East France (Gilles Munier, Geogreen); Session III

  16. Capture and geological storage of CO2. Innovation, industrial stakes and realizations

    International Nuclear Information System (INIS)

    Lavergne, R.; Podkanski, J.; Rohner, H.; Otter, N.; Swift, J.; Dance, T.; Vesseron, Ph.; Reich, J.P.; Reynen, B.; Wright, L.; Marliave, L. de; Stromberg, L.; Aimard, N.; Wendel, H.; Erdol, E.; Dino, R.; Renzenbrink, W.; Birat, J.P.; Czernichowski-Lauriol, I.; Christensen, N.P.; Le Thiez, P.; Paelinck, Ph.; David, M.; Pappalardo, M.; Moisan, F.; Marston, Ph.; Law, M.; Zakkour, P.; Singer, St.; Philippe, Th.; Philippe, Th.

    2007-01-01

    The awareness of the international community and the convergence of scientific data about the global warming confirm the urgency of implementing greenhouse gases abatement technologies at the world scale. The growth of world energy demand will not allow to rapidly get rid of the use of fossil fuels which are the main sources of greenhouse gases. Therefore, the capture and disposal of CO 2 is a promising way to conciliate the use of fossil fuels and the abatement of pollutants responsible for the global warming. The economical and industrial stakes of this technique are enormous. In front of the success of a first international colloquium on this topic held in Paris in 2005, the IFP, the BRGM and the Ademe have jointly organized a second colloquium in October 2007, in particular to present the first experience feedbacks of several pilot experiments all over the world. This document gathers the transparencies of 27 presentations given at this colloquium and dealing with: the 4. IPCC report on the stakes of CO 2 capture and storage; the factor 4: how to organize the French economy transition from now to 2050; the technology perspectives, scenarios and strategies up to 2050; the European technological platform on 'zero-emission thermal plants'; the CO 2 capture and storage road-map in the USA; research, development and implementation of CO 2 capture and storage in Australia; the Canadian experience; ten years of CO 2 capture and storage in Norway; the In Salah operations (Algeria); CO 2 capture and storage: from vision to realisation; the oxi-combustion and storage pilot unit of Lacq (France); the Altmark gas field (Germany): analysis of CO 2 capture and storage potentialities in the framework of a gas assisted recovery project; oil assisted recovery and CO 2 related storage activities in Brazil: the Buracica and Miranga fields experience; carbon capture and storage, an option for coal power generation; steel-making industries and their CO 2 capture and storage needs

  17. Public Acceptance for Geological CO2-Storage

    Science.gov (United States)

    Schilling, F.; Ossing, F.; Würdemann, H.; Co2SINK Team

    2009-04-01

    Public acceptance is one of the fundamental prerequisites for geological CO2 storage. In highly populated areas like central Europe, especially in the vicinity of metropolitan areas like Berlin, underground operations are in the focus of the people living next to the site, the media, and politics. To gain acceptance, all these groups - the people in the neighbourhood, journalists, and authorities - need to be confident of the security of the planned storage operation as well as the long term security of storage. A very important point is to show that the technical risks of CO2 storage can be managed with the help of a proper short and long term monitoring concept, as well as appropriate mitigation technologies e.g adequate abandonment procedures for leaking wells. To better explain the possible risks examples for leakage scenarios help the public to assess and to accept the technical risks of CO2 storage. At Ketzin we tried the following approach that can be summed up on the basis: Always tell the truth! This might be self-evident but it has to be stressed that credibility is of vital importance. Suspiciousness and distrust are best friends of fear. Undefined fear seems to be the major risk in public acceptance of geological CO2-storage. Misinformation and missing communication further enhance the denial of geological CO2 storage. When we started to plan and establish the Ketzin storage site, we ensured a forward directed communication. Offensive information activities, an information centre on site, active media politics and open information about the activities taking place are basics. Some of the measures were: - information of the competent authorities through meetings (mayor, governmental authorities) - information of the local public, e.g. hearings (while also inviting local, regional and nation wide media) - we always treated the local people and press first! - organizing of bigger events to inform the public on site, e.g. start of drilling activities (open

  18. CO2-based hydrogen storage: CO2 hydrogenation to formic acid, formaldehyde and methanol

    Science.gov (United States)

    Schaub, Thomas

    2018-02-01

    The storage of hydrogen via hydrogenation of CO2 to small organic molecules can be attractive for mobile applications. In this article, the state of the art regarding hydrogen storage in Methanol, Formic Acid as well as Formaldehyde and derivates based on CO2 hydrogenation is summarized. The reverse reaction, the release of hydrogen from these molecules is also crucial and described in the articles together with possible concepts for the use of hydrogen storage by CO2 hydrogenation.

  19. Comparison of Dry Gas Seasonal Storage with CO2 Storage and Re-Use Potential

    OpenAIRE

    Killerud, Marie

    2013-01-01

    To make large-scale CO2 storage economic, many groups have proposed using CO2in EOR projects to create value for CO2 storage. However, CO2 EOR projectsgenerally require a large and variable supply of CO2 and consequently may requiretemporary storage of CO2 in geological formations. In order to store CO2 atoffshore sites as a source for CO2 EOR projects, the CO2 needs to be extractedfrom a storage site to a certain extent. Alternatively, CO2 EOR projects maybe developed alongside saline aquife...

  20. The challenges of monitoring CO2 storage

    NARCIS (Netherlands)

    Arts, R.; Vandeweijer, V.

    2011-01-01

    At present there is an increasing consensus that the global climate is changing as a result of increased atmospheric concentration of greenhouse gases such as CO2. The emissions of CO2 are directly linked to the abundant application of fossil energy sources. © 2011 Society of Exploration

  1. What does CO2 geological storage really mean?

    International Nuclear Information System (INIS)

    2008-01-01

    It is now accepted that human activities are disturbing the carbon cycle of the planet. CO 2 , a greenhouse gas, has accumulated in the atmosphere where it contributes to climate change. Amongst the spectrum of short term measures that need to be urgently implemented to mitigate climate change, CO 2 capture and storage can play a decisive role as it could contribute 33% of the CO 2 reduction needed by 2050. This document aims to explain this solution by answering the following questions: where and how much CO 2 can we store underground, How can we transport and inject large quantities of CO 2 , What happens to the CO 2 once in the storage reservoir? Could CO 2 leak from the reservoir and if so, what might be the consequences? How can we monitor the storage site at depth and at the surface? What safety criteria need to be imposed and respected? (A.L.B.)

  2. AMESCO General Study Environmental Impacts CO2-storage. Public summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-15

    The AMESCO study aims to supply environmental background information on CO2-storage in the Netherlands for the broad group of initiators and other stakeholders. By bringing together the information from the scientific world, companies and authorities and by analysing relevant policies it is intended to eludicate: which are the possible environmental effects of CO2-injection and storage; which are the possibilities for risk reduction or mitigation; which existing legislation is of relevance for CO2-storage in the deep surface; where are the gaps in knowledge and legislation with regard to CO2-storage. The report produced during the AMESCO study should be seen as a broad answer to the four questions mentioned above. In specific projects the report can be used as a background document during permitting procedures. This background information has to be supplemented with location specific information. The report can also be used as input for an environmental impact assessment (EIA). For practical reasons the AMESCO study was performed with the following scope limitations: (1) Focus on potential impacts and risks resulting from the storage of CO2; (2) Only consider CO2-storage in gas reservoirs; (3) Only consider onshore projects; (4) Only consider permanent storage; (5) Consider alternative options for CO2-storage in gas reservoirs; but not other forms of CO2-emission reduction. The scope is limited to depleted gas fields, from which the economically recoverable resources have already been taken.

  3. Natural Analogues of CO2 Geological Storage; Analogos Naturales del Almacenamiento Geologico de CO2

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-07-20

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  4. Behavior of CO2/water flow in porous media for CO2geological storage.

    Science.gov (United States)

    Jiang, Lanlan; Yu, Minghao; Liu, Yu; Yang, Mingjun; Zhang, Yi; Xue, Ziqiu; Suekane, Tetsuya; Song, Yongchen

    2017-04-01

    A clear understanding of two-phase fluid flow properties in porous media is of importance to CO 2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO 2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO 2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8mLmin -1 . For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO 2 and water became miscible in the beginning of CO 2 injection. CO 2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO 2 and water to invade into small pore spaces more easily. The study also showed CO 2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO 2 slightly decreases with the increase of capillary number. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. System-level modeling for geological storage of CO2

    OpenAIRE

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO2) from industrial sources into deep geological formations such as brine formations or depleted oil or gas reservoirs. Research has and is being conducted to improve understanding of factors affecting particular aspects of geological CO2 storage, such as performance, capacity, and health, safety and environmental (HSE) issues, as well as to lower the cost of CO2 capture and related p...

  6. Corrosion studies on casing steel in CO2 storage environments

    NARCIS (Netherlands)

    Zhang, X.; Zevenbergen, J.F.; Benedictus, T.

    2013-01-01

    The corrosion behavior of casing steel N80 in brine plus CO2 was studied in autoclave to simulate the CO2 storage environment. The brine solution used in the study contained 130 g/l NaCl, 22.2 g/l CaCl2 and 4 g/l MgCl2. The CO2 was charged in the autoclave at different pressures (60, 80 and 100 bar)

  7. CO2 storage capacity calculations for the Dutch subsurface

    NARCIS (Netherlands)

    Meer, L.G.H. van der; Yavuz, F.

    2009-01-01

    Estimating the capacity of a geological formation to store CO2 is not a straightforward or simple process. Bradshaw [1] has recently listed various estimations for both regional and global CO2 storage capacity. The estimations were quoted as "very large" with ranges for the estimates in the order of

  8. Possible impacts of CO2 storage on the marine environment

    International Nuclear Information System (INIS)

    Poremski, H.J.

    2005-01-01

    This study examined the potential impacts of deep-sea carbon dioxide (CO 2 ) sequestration on the marine environment. The upper layers of oceans are currently saturated with CO 2 , while deeper ocean waters remain undersaturated. Arctic and Antarctic waters have higher uptake rates of CO 2 due to their lower temperatures. CO 2 deposited in Arctic and Antarctic waters sinks to the bottom of the ocean, and is then transported to equatorial latitudes, where stored amounts of CO 2 that are not fixed by biochemical processes will be released and enter the atmosphere again after a period of approximately 1000 years. Nearly 50 per cent of CO 2 fixation occurs as a result of phytoplankton growth, which is dependent on the availability of a range of nutrients, essential trace metals, and optimal physical conditions. Fertilization-induced CO 2 fixation in the sediments of southern oceans will result in nutrient depletion of bottom layers, which will in turn result in lower primary production levels at equatorial latitudes. Current modelling approaches to CO 2 injection assume that the injected CO 2 will dissolve in a plume extending 100 m around a riser. Retention times of several hundred years are anticipated. However, further research is needed to investigate the efficacy of CO 2 deep ocean storage technologies. Increased CO 2 uptake can also increase the formation of bicarbonate (HCO 3 ) acidification, decrease pH values, and inhibit the formation of biomass in addition to impacting on the calcification of many organisms. It was concluded that ocean storage by injection or deep storage is an untenable option at present due to the fact that the effects of excessive CO 2 in marine environments are not fully understood. 22 refs., 2 tabs

  9. CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway

    International Nuclear Information System (INIS)

    Boee, Reidulv; Magnus, Christian; Osmundsen, Per Terje; Rindstad, Bjoern Ivar

    2002-01-01

    The GESTCO project comprises a study of the distribution and coincidence of thermal CO 2 emission sources and location/quality of geological storage capacity in Europe. Four of the most promising types of geological storage are being studied. 1. Onshore/offshore saline aquifers with or without lateral seal. 2. Low entalpy geothermal reservoirs. 3. Deep methane-bearing coal beds and abandoned coal and salt mines. 4. Exhausted or near exhausted hydrocarbon structures. In this report we present an inventory of CO 2 point sources in Norway (1999) and the results of the work within Study Area C: Deep saline aquifers offshore/near shore Northern and Central Norway. Also offshore/near shore Southern Norway has been included while the Barents Sea is not described in any detail. The most detailed studies are on the Tilje and Aare Formations on the Troendelag Platform off Mid-Norway and on the Sognefjord, Fensfjord and Krossfjord Formations, southeast of the Troll Field off Western Norway. The Tilje Formation has been chosen as one of the cases to be studied in greater detail (numerical modelling) in the project. This report shows that offshore Norway, there are concentrations of large CO 2 point sources in the Haltenbanken, the Viking Graben/Tampen Spur area, the Southern Viking Graben and the central Trough, while onshore Norway there are concentrations of point sources in the Oslofjord/Porsgrund area, along the coast of western Norway and in the Troendelag. A number of aquifers with large theoretical CO 2 storage potential are pointed out in the North Sea, the Norwegian Sea and in the Southern Barents Sea. The storage capacity in the depth interval 0.8 - 4 km below sea level is estimated to be ca. 13 Gt (13000000000 tonnes) CO 2 in geological traps (outside hydrocarbon fields), while the storage capacity in aquifers not confined to traps is estimated to be at least 280 Gt CO 2 . (Author)

  10. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs

  11. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref

  12. CO2 store: the Valleys case study on CO2 capture, transport and storage

    International Nuclear Information System (INIS)

    2006-01-01

    This report summarises results of a study of the potential to capture and store underground the emissions from the proposed Valleys power plant, a 450MW IGCC plant, fuelled by a mixture of petroleum coke (petcoke) and locally mined anthracite, to be constructed at Onllwyn, near Drym, in the South Wales Coalfield. The study is based upon 85% of the total carbon dioxide (CO 2 ) emissions, approximately 2.45 million tonnes of CO 2 per year, being captured annually from the Valleys power plant, compressed to 110bar pressure and sent by pipeline for storage in an underground geological reservoir. Fitted for CO 2 capture, the net output of the power plant would be 400MW. Feedstock utilisation would be around 1.05Mt/year based on an annual load factor for the gasification plant of 87.5%. The plant would be economically viable providing carbon credits of 20 Euros per tonne of CO 2 avoided were available, e.g. from the European Union (EU) Emission Trading Scheme (ETS). This is approximately the current price of EU ETS credits at the time of writing. The CO 2 would be captured pre-combustion, using a physical solvent process. The pipeline would be constructed of carbon steel and would consist of an onshore leg of around 90km and an offshore leg of around 45km. Pipeline capital costs are assessed at between 50-70MEuros. Annual pipeline operation and maintenance costs are assessed as 3% of the capital cost, at around 1.8MEuros. Geological investigations demonstrated that the opportunities for geological storage of CO 2 in the Welsh coalfield and the Bristol Channel are limited, and the best potential for a geological CO 2 storage site for the CO 2 captured from the Valleys power plant is in the St George's Channel Basin (SGCB), off the NW coast of Pembrokeshire. An outline risk assessment of CO 2 storage at this site was undertaken. The reservoir consists of relatively thin fluvial sands that occur near the base of the Cainozoic succession. The distribution of these sands in 3

  13. Rapid solubility and mineral storage of CO2 in basalt

    DEFF Research Database (Denmark)

    Gislason, Sigurdur R.; Broecker, W.S.; Gunnlaugsson, E.

    2014-01-01

    rich in divalent metal cations such as basalts and ultra-mafic rocks. We have demonstrated the dissolution of CO2 into water during its injection into basalt leading to its geologic solubility storage in less than five minutes and potential geologic mineral storage within few years after injection [1...

  14. CO2 underground storage and potential of CDM

    International Nuclear Information System (INIS)

    Shigetomi, N.; Shibuya, Y.; Nakano, M.; Akai, M.

    2005-01-01

    Carbon dioxide (CO 2 ) underground storage technologies are being used as a means to mitigate the increase in CO 2 concentration in the atmosphere. Indonesia is an oil producing and exporting country. Its reserve-production ratio which is estimated based on the current production volume is approximately 19 years. Energy demand in the future is expected to be on the rise in Indonesia. In addition, in light of the interest in enhanced oil recovery (EOR), CO 2 underground storage is also being explored. Activities to initiate the Clean Development Mechanism (CDM), which is one of the Kyoto Mechanisms, have also been actively promoted in developing countries. This paper examined an EOR operation which used CO 2 separated and recovered from waste gas at coal-fired power plants which have the highest CO 2 emission rates among human-induced CO 2 emission sources in Indonesia. The paper discussed EOR, its characteristics and features as well as case studies with specific sites in order to clarify issues and conditions for promoting CO 2 underground storage technologies into CDM. It was concluded that it is necessary to conduct additional studies on the profitability of the operation while conducting verification at the CO 2 separation and recovery site and the CO 2 storage site and consulting with relevant stakeholders of EOR operation. In addition, it was suggested that procedures should be put in place to promote the EOR operation into a CDM project by coordinating with the host country and offering it incentives. 3 refs., 1 tab., 2 figs

  15. Experimental Investigations into CO2 Interactions with Injection Well Infrastructure for CO2 Storage

    Science.gov (United States)

    Syed, Amer; Shi, Ji-Quan; Durucan, Sevket; Nash, Graham; Korre, Anna

    2013-04-01

    Wellbore integrity is an essential requirement to ensure the success of a CO2 Storage project as leakage of CO2 from the injection or any other abandoned well in the storage complex, could not only severely impede the efficiency of CO2 injection and storage but also may result in potential adverse impact on the surrounding environment. Early research has revealed that in case of improper well completions and/or significant changes in operating bottomhole pressure and temperature could lead to the creation of microannulus at cement-casing interface which may constitute a preferential pathway for potential CO2 leakage during and post injection period. As a part of a European Commission funded CO2CARE project, the current research investigates the sealing behaviour of such microannulus at the cement-casing interface under simulated subsurface reservoir pressure and temperature conditions and uses the findings to develop a methodology to assess the overall integrity of CO2 storage. A full scale wellbore experimental test set up was constructed for use under elevated pressure and temperature conditions as encountered in typical CO2 storage sites. The wellbore cell consists of an assembly of concentric elements of full scale casing (Diameter= 0.1524m), cement sheath and an outer casing. The stainless steel outer ring is intended to simulate the stiffness offered by the reservoir rock to the displacement applied at the wellbore. The Central Loading Mechanism (CLM) consists of four case hardened shoes that can impart radial load onto the well casing. The radial movement of the shoes is powered through the synchronised movement of four precision jacks controlled hydraulically which could impart radial pressures up to 15 MPa. The cell body is a gas tight enclosure that houses the wellbore and the central loading mechanism. The setup is enclosed in a laboratory oven which acts both as temperature and safety enclosure. Prior to a test, cement mix is set between the casing and

  16. Classification of CO2 Geologic Storage: Resource and Capacity

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.

    2009-01-01

    The use of the term capacity to describe possible geologic storage implies a realistic or likely volume of CO2 to be sequestered. Poor data quantity and quality may lead to very high uncertainty in the storage estimate. Use of the term "storage resource" alleviates the implied certainty of the term "storage capacity". This is especially important to non- scientists (e.g. policy makers) because "capacity" is commonly used to describe the very specific and more certain quantities such as volume of a gas tank or a hotel's overnight guest limit. Resource is a term used in the classification of oil and gas accumulations to infer lesser certainty in the commercial production of oil and gas. Likewise for CO2 sequestration, a suspected porous and permeable zone can be classified as a resource, but capacity can only be estimated after a well is drilled into the formation and a relatively higher degree of economic and regulatory certainty is established. Storage capacity estimates are lower risk or higher certainty compared to storage resource estimates. In the oil and gas industry, prospective resource and contingent resource are used for estimates with less data and certainty. Oil and gas reserves are classified as Proved and Unproved, and by analogy, capacity can be classified similarly. The highest degree of certainty for an oil or gas accumulation is Proved, Developed Producing (PDP) Reserves. For CO2 sequestration this could be Proved Developed Injecting (PDI) Capacity. A geologic sequestration storage classification system is developed by analogy to that used by the oil and gas industry. When a CO2 sequestration industry emerges, storage resource and capacity estimates will be considered a company asset and consequently regulated by the Securities and Exchange Commission. Additionally, storage accounting and auditing protocols will be required to confirm projected storage estimates and assignment of credits from actual injection. An example illustrates the use of

  17. CO2 storage capacity estimation: Issues and development of standards

    Science.gov (United States)

    Bradshaw, J.; Bachu, S.; Bonijoly, D.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M.

    2007-01-01

    Associated with the endeavours of geoscientists to pursue the promise that geological storage of CO2 has of potentially making deep cuts into greenhouse gas emissions, Governments around the world are dependent on reliable estimates of CO2 storage capacity and insightful indications of the viability of geological storage in their respective jurisdictions. Similarly, industry needs reliable estimates for business decisions regarding site selection and development. If such estimates are unreliable, and decisions are made based on poor advice, then valuable resources and time could be wasted. Policies that have been put in place to address CO2 emissions could be jeopardised. Estimates need to clearly state the limitations that existed (data, time, knowledge) at the time of making the assessment and indicate the purpose and future use to which the estimates should be applied. A set of guidelines for estimation of storage capacity will greatly assist future deliberations by government and industry on the appropriateness of geological storage of CO2 in different geological settings and political jurisdictions. This work has been initiated under the auspices of the Carbon Sequestration Leadership Forum (www.cslforum.org), and it is intended that it will be an ongoing taskforce to further examine issues associated with storage capacity estimation. Crown Copyright ?? 2007.

  18. SUBTASK 2.19 – OPERATIONAL FLEXIBILITY OF CO2 TRANSPORT AND STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Melanie; Schlasner, Steven; Sorensen, James; Hamling, John

    2014-12-31

    Carbon dioxide (CO2) is produced in large quantities during electricity generation and by industrial processes. These CO2 streams vary in terms of both composition and mass flow rate, sometimes substantially. The impact of a varying CO2 stream on pipeline and storage operation is not fully understood in terms of either operability or infrastructure robustness. This study was performed to summarize basic background from the literature on the topic of operational flexibility of CO2 transport and storage, but the primary focus was on compiling real-world lessons learned about flexible operation of CO2 pipelines and storage from both large-scale field demonstrations and commercial operating experience. Modeling and pilot-scale results of research in this area were included to illustrate some of the questions that exist relative to operation of carbon capture and storage (CCS) projects with variable CO2 streams. It is hoped that this report’s real-world findings provide readers with useful information on the topic of transport and storage of variable CO2 streams. The real-world results were obtained from two sources. The first source consisted of five full-scale, commercial transport–storage projects: Sleipner, Snøhvit, In Salah, Weyburn, and Illinois Basin–Decatur. These scenarios were reviewed to determine the information that is available about CO2 stream variability/intermittency on these demonstration-scale projects. The five projects all experienced mass flow variability or an interruption in flow. In each case, pipeline and/or injection engineers were able to accommodate any issues that arose. Significant variability in composition has not been an issue at these five sites. The second source of real- world results was telephone interviews conducted with experts in CO2 pipeline transport, injection, and storage during which commercial anecdotal information was acquired to augment that found during the literature search of the five full-scale projects. The

  19. CO2 Storage Feasibility: A Workflow for Site Characterisation

    Directory of Open Access Journals (Sweden)

    Nepveu Manuel

    2015-04-01

    Full Text Available In this paper, we present an overview of the SiteChar workflow model for site characterisation and assessment for CO2 storage. Site characterisation and assessment is required when permits are requested from the legal authorities in the process of starting a CO2 storage process at a given site. The goal is to assess whether a proposed CO2 storage site can indeed be used for permanent storage while meeting the safety requirements demanded by the European Commission (EC Storage Directive (9, Storage Directive 2009/31/EC. Many issues have to be scrutinised, and the workflow presented here is put forward to help efficiently organise this complex task. Three issues are highlighted: communication within the working team and with the authorities; interdependencies in the workflow and feedback loops; and the risk-based character of the workflow. A general overview (helicopter view of the workflow is given; the issues involved in communication and the risk assessment process are described in more detail. The workflow as described has been tested within the SiteChar project on five potential storage sites throughout Europe. This resulted in a list of key aspects of site characterisation which can help prepare and focus new site characterisation studies.

  20. IEA GHG Weyburn CO2 monitoring and storage project

    International Nuclear Information System (INIS)

    This paper presents an integrated overview of the results from over 50 individual technical research projects conducted under the auspices of the International Energy Agency Greenhouse Gas R and D Programme (International Energy Agency Greenhouse Gas R and D Programme, http://www.ieagreen.org.uk). The overall project, called the IEA GHG Weyburn CO 2 Monitoring and Storage Project (IEA GHG Weyburn CO 2 Monitoring and Storage Project, http://www.ieagreen.org.uk), was created to predict and verify the ability of an oil reservoir to securely and economically store CO 2 . Research activities in the project were divided into four 'themes' that applied leading-edge science and engineering in geophysics, geomechanics, geochemistry, geology, reservoir engineering, risk assessment, and economics. (author)

  1. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    Introduction Carbon capture and storage (CCS) in deep geological formations is one possible option to mitigate the greenhouse gas effect by reducing CO2 emissions into the atmosphere. The assessment of the risks related to CO2 storage is an important task. Events such as CO2 leakage and brine...... present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water...... production well. In this approach the salt concentrations at water production wells depending on different parameters are determined for the assumption of a 2D model domain accounting for groundwater flow. Recognized ignorance resulting from grid resolution is qualitatively studied and statistical...

  2. Monitoring CO2 storage using seismic-interferometry ghost reflections

    NARCIS (Netherlands)

    Draganov, D.S.; Heller, H.K.J.; Ghose, R.

    2013-01-01

    Time-lapse seismic monitoring is a fundamental part in most monitoring programmes involving CO2 storage. Even though the seismic method has proven its applicability for monitoring, there are two major causes of uncertainty in the estimation of changes in the reservoir properties: non-repeatability

  3. Risk Assessment Methodology for CO2 Storage: The Scenario Approach

    NARCIS (Netherlands)

    Wildenborg, A.F.B.; Leijnse, A.L.; Kreft, E.; Nepveu, M.N.; Obdam, A.N.M.; Orlic, B.; Wipfler, E.L.; Grift, B. van der; Kesteren, W. van; Gaus, I.; Czernichowski-Lauriol, I.; Torfs, P.; Wójcik, R.

    2005-01-01

    This chapter introduces a "scenario approach," which is used as a methodology for the long-term safety assessment of underground CO2 storage and to demonstrate its applicability in an example of safety assessment. This developed methodology consists of three main parts-scenario analysis, model

  4. European resource assessment for geothermal energy and CO2 storage

    NARCIS (Netherlands)

    Wees, J.D. van; Neele, F.

    2013-01-01

    Geothermal Energy and CO2 Capture and Storage (CCS) are both considered major contributors to the global energy transition. Their success critically depends on subsurface resource quality, which in turn depends on specific subsurface parameters. For CCS and Geothermal Energy these in some respect

  5. Natural analogue study of CO2 storage monitoring using probability statistics of CO2-rich groundwater chemistry

    Science.gov (United States)

    Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.

    2016-12-01

    For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).

  6. Coupled Model for CO2 Leaks from Geological Storage: Geomechanics, Fluid Flow and Phase Transitions

    Science.gov (United States)

    Gor, G.; Prevost, J.

    2013-12-01

    ), 1981. [2] M. Preisig, J.H. Prevost, Coupled multi-phase thermo-poromechanical effects. Case study: CO2 injection at In Salah, Algeria, International Journal of Greenhouse Gas Control, 5 (2011) 1055-1064. [3] G.Y. Gor, T.R. Elliot, J.H. Prevost, Effects of thermal stresses on caprock integrity during CO2 storage, International Journal of Greenhouse Gas Control, 12 (2013) 300-309. [4] M.L. Michelsen, J.M. Mollerup, Thermodynamic Models: Fundamentals and Computational Aspects. 2nd Edition, Tie-Line Publications, 2007.

  7. Geological Storage od CO2 in the Southern Baltic Sea

    Science.gov (United States)

    Vernon, Richard; O'Neill, Nick; Pasquali, Riccardo; Niemi, Auli

    2014-05-01

    Geological Storage of CO2 in the Southern Baltic Sea Region The BASTOR project identifies and characterises the potential CO2 storage sites in the southern Baltic Sea. A regional theoretical storage capacity of 16Gt of CO2 in the Middle Cambrian sandstone beneath 900 metres of cap rock was estimated. 1.9Gt of this storage potential is estimated in the Dalders Monocline with some 743Mt CO2 in individual hydrocarbon and saline aquifer structures located mainly offshore Latvia and 128Mt in the Dalders Structure. Although the study has established a relatively large theoretical storage capacity, there is no effective capacity proven within these totals. Dynamic modelling undertaken in the Southern Swedish sector suggests that the relatively poor permeability and porosity characteristics would limit the injection rate to 0.5Mt per well per annum and restrict the reservoir pressure increase to 50% above the hydrostatic pressure for an injection period of 50 years. The dynamic modelling for this area suggests that an injection strategy for this sector would be limited to 5 injection wells giving a total injection capacity of 2.5 Mt per annum. Based on these results, the potential of the Southern Swedish offshore sector to sustain injection rates of CO2 required for regional industrial capture, even when using horizontal wells, brine extraction and hydraulic fracturing, would appear to be very low. Areas to the north east of the Monocline, such as offshore Latvia have been identified as having better reservoir quality despite limited data being available. These areas could sustain higher rates of injection and prove suitable areas for commercial storage. Furthermore, the regional storage capacity assessment demonstrated that there are sweet spots in the Cambrian reservoir such as onshore Latvia, where there is commercial gas storage, and both onshore and offshore Kaliningrad, where there is ongoing hydrocarbon production. The potential for seal failure was investigated as

  8. Noble gas geochemistry to monitor CO2 geological storages

    International Nuclear Information System (INIS)

    Lafortune, St.

    2007-11-01

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO 2 emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO 2 could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO 2 in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO 2 storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO 2 accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  9. Impacts of fluvial sedimentary heterogeneities on CO2 storage performance

    Science.gov (United States)

    Issautier, B. H.; Viseur, S.; Audigane, P. D.

    2011-12-01

    The heterogeneity of fluvial systems is a key parameter in sedimentology due to the associated impacts on flow performance. In a broader context, fluvial reservoirs are now targets for CO2 storage projects in several sedimentary basins (Paris Basin, North German Basin), thus calling for detailed characterization of reservoir behaviour and capacity. Fluvial reservoirs are a complex layout of highly heterogeneous sedimentary bodies with varying connectivity, depending on the sedimentary history of the system. Reservoir characterization must determine (a) the nature and dimension of the sedimentary bodies, and (b) the connectivity drivers and their evolution throughout the stratigraphic succession. Based on reservoir characterization, geological modelling must account for this information and can be used as a predictive tool for capacity estimation. Flow simulation, however, describes the reservoir behaviour with respect to CO2 injection. The present work focuses on fluvial reservoir performance and was carried out as part of a PhD (2008-2011) dedicated to the impact of sedimentary heterogeneity on CO2 storage performance. The work comprises three steps: ? Reservoir characterization based on detailed fieldwork (sedimentology and sequence stratigraphy) carried out in Central Arabia on the Minjur Sandstone. Twelve depositional environments and their associated heterogeneity are identified, and their layout is presented in a high-resolution sequence stratigraphy analysis. This step is summed up in a 3D geological model. ? Conceptual modelling based on this field data, using gOcad software and an in-house python code. The purpose was to study, for a given architecture, the impact of sedimentary heterogeneity on storage capacity estimations using two models: one with heterogeneity within the sedimentary fill (model A); the other without heterogeneity within the sedimentary fill (model B). A workflow was designed to estimate and compare the storage capacities for a series

  10. Techno-Economic Assessment of Four CO2 Storage Sites

    Directory of Open Access Journals (Sweden)

    Gruson J.-F.

    2015-04-01

    Full Text Available Carbon Capture and Storage (CCS should be a key technology in order to achieve a decline in the CO2 emissions intensity of the power sector and other intensive industry, but this potential deployment could be restricted by cost issues as the International Energy Agency (IEA in their last projections (World Energy Outlook 2013 has considered only around 1% of global fossil fuel-fired power plants could be equipped with CCS by 2035. The SiteChar project funded by 7th Framework Programme of European Commission gives the opportunity to evaluate the most influential parameters of techno-economic evaluations of four feasible European projects for CO2 geological storage located onshore and offshore and related to aquifer storage or oil and gas reservoirs, at different stages of characterization. Four potential CO2 storage sites have been assessed in terms of storage costs per tonne of CO2 permanently stored (equivalent cost based. They are located offshore UK, onshore Denmark, offshore Norway and offshore Italy. The four SiteChar techno-economic evaluations confirm it is not possible to derive any meaningful average cost for a CO2 storage site. The results demonstrate that the structure of costs for a project is heterogeneous and the storage cost is consequently site dependent. The strategy of the site development is fundamental, the technical choices such as the timing, rate and duration of injection are also important. The way monitoring is managed, using observation wells and logging has a strong impact on the estimated monitoring costs. Options to lower monitoring costs, such as permanent surveys, exist and should be further investigated. Table 1 below summarizes the cost range in Euro per tonne (Discount Rate (DR at 8% for the different sites, which illustrates the various orders of magnitude due to the specificities of each site. These figures have how to be considered with care. In particular the Italian and Norwegian sites present very specific

  11. Microorganisms implication in the CO2 geologic storage processes

    International Nuclear Information System (INIS)

    Dupraz, S.

    2008-01-01

    A first result of this thesis is the building and validation of a circulation reactor named BCC (Bio-mineralization Control Cell). The reactor has the functionality of a biological reactor and allows a monitoring of physico-chemical characteristics such as Eh, pH, electrical conductivity, spectro-photochemical parameters. It also has a capability of percolation through rock cores. It is a first step toward an analogical modeling of interactions between injected CO 2 and deep bio-spheric components. Moreover, a new spectro-photochemical method for monitoring reduced sulfur species has been developed which allows efficient monitoring of sulfate-reducing metabolisms. In the thesis, we have tested four metabolisms relevant to bio-mineralisation or biological assimilation of CO 2 : a reference ureolytic aerobic strain, Bacillus pasteurii, a sulfate-reducing bacterium, Desulfovibrio longus, a sulfate-reducing consortium (DVcons) and an homoacetogenic bacterium, Acetobacterium carbinolicum. In the case of Bacillus pasteurii, which is considered as a model for non photosynthetic prokaryotic carbonate bio-mineralization, we have demonstrated that the biological basification and carbonate bio-mineralization processes can be modelled accurately both analogically and numerically under conditions relevant to deep CO 2 storage, using a synthetic saline groundwater. We have shown that salinity has a positive effect on CO 2 mineral trapping by this bacterium; we have measured the limits of the system in terms of CO 2 pressure and we have shown that the carbonates that nucleate on intracellular calcium phosphates have specific carbon isotope signatures. The studied deep-subsurface strains (Desulfovibrio longus and Acetobacterium carbinolicum) as well as the sulfate-reducing consortium also have capabilities of converting CO 2 into solid carbonates, much less efficient though than in the case of Bacillus pasteurii. However, once inoculated in synthetic saline groundwater and

  12. Biomass burial and storage to reduce atmospheric CO2

    Science.gov (United States)

    Zeng, N.

    2012-04-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a theoretical carbon sequestration potential for wood burial is 10 ± 5 GtC/y, but probably 1-3 GtC/y can be realized in practice. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from forest industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  13. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  14. International Symposium on Site Characterization for CO2Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  15. WEB-GIS Decision Support System for CO2 storage

    Science.gov (United States)

    Gaitanaru, Dragos; Leonard, Anghel; Radu Gogu, Constantin; Le Guen, Yvi; Scradeanu, Daniel; Pagnejer, Mihaela

    2013-04-01

    Environmental decision support systems (DSS) paradigm evolves and changes as more knowledge and technology become available to the environmental community. Geographic Information Systems (GIS) can be used to extract, assess and disseminate some types of information, which are otherwise difficult to access by traditional methods. In the same time, with the help of the Internet and accompanying tools, creating and publishing online interactive maps has become easier and rich with options. The Decision Support System (MDSS) developed for the MUSTANG (A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe) project is a user friendly web based application that uses the GIS capabilities. MDSS can be exploited by the experts for CO2 injection and storage in deep saline aquifers. The main objective of the MDSS is to help the experts to take decisions based large structured types of data and information. In order to achieve this objective the MDSS has a geospatial objected-orientated database structure for a wide variety of data and information. The entire application is based on several principles leading to a series of capabilities and specific characteristics: (i) Open-Source - the entire platform (MDSS) is based on open-source technologies - (1) database engine, (2) application server, (3) geospatial server, (4) user interfaces, (5) add-ons, etc. (ii) Multiple database connections - MDSS is capable to connect to different databases that are located on different server machines. (iii)Desktop user experience - MDSS architecture and design follows the structure of a desktop software. (iv)Communication - the server side and the desktop are bound together by series functions that allows the user to upload, use, modify and download data within the application. The architecture of the system involves one database and a modular application composed by: (1) a visualization module, (2) an analysis module, (3) a guidelines module

  16. CO2 Capture and Storage in Coal Gasification Projects

    Science.gov (United States)

    Rao, Anand B.; Phadke, Pranav C.

    2017-07-01

    In response to the global climate change problem, the world community today is in search for an effective means of carbon mitigation. India is a major developing economy and the economic growth is driven by ever-increasing consumption of energy. Coal is the only fossil fuel that is available in abundance in India and contributes to the major share of the total primary energy supply (TPES) in the country. Owing to the large unmet demand for affordable energy, primarily driven by the need for infrastructure development and increasing incomes and aspirations of people, as well as the energy security concerns, India is expected to have continued dependence on coal. Coal is not only the backbone of the electric power generation, but many major industries like cement, iron and steel, bricks, fertilizers also consume large quantities of coal. India has very low carbon emissions (˜ 1.5 tCO2 per capita) as compared to the world average (4.7 tCO2 per capita) and the developed world (11.2 tCO2 per capita). Although the aggregate emissions of the country are increasing with the rising population and fossil energy use, India has a very little contribution to the historical GHG accumulation in the atmosphere linked to the climate change problem. However, a large fraction of the Indian society is vulnerable to the impacts of climate change - due to its geographical location, large dependence on monsoon-based agriculture and limited technical, financial and institutional capacity. Today, India holds a large potential to offer cost-effective carbon mitigation to tackle the climate change problem. Carbon Capture and Storage (CCS) is the process of extraction of Carbon Dioxide (CO2) from industrial and energy related sources, transport to storage locations and long-term isolation from the atmosphere. It is a technology that has been developed in recent times and is considered as a bridging technology as we move towards carbon-neutral energy sources in response to the growing

  17. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Seleccion de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-07-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref.

  18. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Selecci0n de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-09-18

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs.

  19. CO2 storage in saline aquifers: In the Southern North Sea and Northern Germany

    NARCIS (Netherlands)

    Weijer, V. van de; Meer, B. van der; Kramers, L.; Neele, F.; Maurand, N.; Gallo, Y. le; Bossie-Codré, D.; Schäfer, F.; Evans, D.; Kirk, K.; Bernstone, C.; Stiff, S.; Hull, W.

    2009-01-01

    CO2 storage in depleted gas fields is attractive but gas fields are unequally distributed geographically and can be utilized only within a restricted window of opportunity. Therefore, CO2 storage in saline aquifers can be expected to become an important element of CO2 capture and storage (CCS)

  20. Directed technical change and the adoption of CO2 abatement technology. The case of CO2 capture and storage

    International Nuclear Information System (INIS)

    Otto, Vincent M.; Reilly, John

    2008-01-01

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO 2 -trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO 2 abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO 2 emissions associated with energy use, directed technical change and the economy. We specify CO 2 capture and storage (CCS) as a discrete CO 2 abatement technology. We find that combining CO 2 -trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  1. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    Science.gov (United States)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These

  2. The Value of CO2-Geothermal Bulk Energy Storage to Reducing CO2 Emissions Compared to Conventional Bulk Energy Storage Technologies

    Science.gov (United States)

    Ogland-Hand, J.; Bielicki, J. M.; Buscheck, T. A.

    2016-12-01

    Sedimentary basin geothermal resources and CO2 that is captured from large point sources can be used for bulk energy storage (BES) in order to accommodate higher penetration and utilization of variable renewable energy resources. Excess energy is stored by pressurizing and injecting CO2 into deep, porous, and permeable aquifers that are ubiquitous throughout the United States. When electricity demand exceeds supply, some of the pressurized and geothermally-heated CO2 can be produced and used to generate electricity. This CO2-BES approach reduces CO2 emissions directly by storing CO2 and indirectly by using some of that CO2 to time-shift over-generation and displace CO2 emissions from fossil-fueled power plants that would have otherwise provided electricity. As such, CO2-BES may create more value to regional electricity systems than conventional pumped hydro energy storage (PHES) or compressed air energy storage (CAES) approaches that may only create value by time-shifting energy and indirectly reducing CO2 emissions. We developed and implemented a method to estimate the value that BES has to reducing CO2 emissions from regional electricity systems. The method minimizes the dispatch of electricity system components to meet exogenous demand subject to various CO2 prices, so that the value of CO2 emissions reductions can be estimated. We applied this method to estimate the performance and value of CO2-BES, PHES, and CAES within real data for electricity systems in California and Texas over the course of a full year to account for seasonal fluctuations in electricity demand and variable renewable resource availability. Our results suggest that the value of CO2-BES to reducing CO2 emissions may be as much as twice that of PHES or CAES and thus CO2-BES may be a more favorable approach to energy storage in regional electricity systems, especially those where the topography is not amenable to PHES or the subsurface is not amenable to CAES.

  3. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 STORAGE

    Science.gov (United States)

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  4. Evaluating cubic equations of state for calculation of vapor-liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes

    International Nuclear Information System (INIS)

    Li, H.; Yan, J.

    2009-01-01

    Proper solution of vapor liquid equilibrium (VLE) is essential to the design and operation of CO 2 capture and storage system (CCS). According to the requirements of engineering applications, cubic equations of state (EOS) are preferable to predict VLE properties. This paper evaluates the reliabilities of five cubic EOSs, including PR, PT, RK, SRK and 3P1T for predicting VLE of CO 2 and binary CO 2 -mixtures containing CH 4 , H 2 S, SO 2 , Ar, N 2 or O 2 , based on the comparisons with the collected experimental data. Results show that SRK is superior in the calculations about the saturated pressure of pure CO 2 ; while for the VLE properties of binary CO 2 -mixtures, PR, PT and SRK are generally superior to RK and 3P1T. The impacts of binary interaction parameter k ij were also analyzed. k ij has very clear effects on the calculating accuracy of an EOS in the property calculations of CO 2 -mixtures. In order to improve the calculation accuracy, the binary interaction parameter was calibrated for all of the studied EOSs regarding every binary CO 2 -mixture. (author)

  5. CO2 capture by biomimetic adsorption: enzyme mediated co2 absorption for post-combustion carbon sequestration and storage process

    NARCIS (Netherlands)

    Russo, M.E.; Olivieri, G.; Salatino, P.; Marzocchella, A.

    2013-01-01

    The huge emission of greenhouse gases from fossil-fuelled power plants is emphasizing the need for efficient Carbon Capture and Storage (CCS) technologies. The biomimetic CO2 absorption in aqueous solutions has been recently investigated as a promising innovative alternative for post-combustion CCS.

  6. Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis

    NARCIS (Netherlands)

    Castellani, Beatrice; Gambelli, Alberto Maria; Morini, Elena; Nastasi, B.; Presciutti, Andrea; Filipponi, Mirko; Nicolini, Andrea; Rossi, Federico

    2017-01-01

    The utilization of the captured CO2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and

  7. Framing and bias in CO2 capture and storage communication films: Reflections from a CO2 capture and storage research group.

    Science.gov (United States)

    Maynard, Carly M; Shackley, Simon

    2017-03-01

    There has been a growing trend towards incorporating short, educational films as part of research funding and project proposals. Researchers and developers in CO 2 capture and storage are using films to communicate outcomes, but such films can be influenced by experiences and values of the producers. We document the content and presentation of seven online CO 2 capture and storage films to determine how framing occurs and its influence on the tone of films. The core frame presents CO 2 capture and storage as a potential solution to an imminent crisis in climatic warming and lack of a sustainable energy supply. Three subsidiary frames represent CO 2 capture and storage as (1) the only option, (2) a partial option or (3) a scientific curiosity. The results demonstrate that an understanding of the nuanced explicit and implicit messages portrayed by films is essential both for effective framing according to one's intention and for wider public understanding of a field.

  8. Study of shale wettability for CO2 storage

    NARCIS (Netherlands)

    Shojai Kaveh, N.; Barnhoorn, A.; Schoemaker, F.C.; Wolf, K.H.A.A.

    2015-01-01

    For a water-saturated cap-rock, which consists of a low-permeability porous material, the wettability of the reservoir rock-connate water- CO2 system and the interfacial tension (IFT) between CO2 and connate water are the significant parameters for the evaluation of the capillary sealing. Also, the

  9. Assessment of CO2 storage performance of the Enhanced Coalbed Methane pilot site in Kaniow

    NARCIS (Netherlands)

    Bergen, F. van; Winthaegen, P.; Pagnier, H.; Krzystolik, P.; Jura, B.; Skiba, J.; Wageningen, N. van

    2009-01-01

    A pilot site for CO2 storage in coal seams was set-up in Poland, as has been reported on previous GHGT conferences. This site consisted of one injection and one production well. About 760 ton of CO2 has been injected into the reservoir from August 2004 to June 2005. Breakthrough of the injected CO2

  10. In situ carbonation of peridotite for CO2 storage

    Science.gov (United States)

    Kelemen, Peter B.; Matter, Jürg

    2008-01-01

    The rate of natural carbonation of tectonically exposed mantle peridotite during weathering and low-temperature alteration can be enhanced to develop a significant sink for atmospheric CO2. Natural carbonation of peridotite in the Samail ophiolite, an uplifted slice of oceanic crust and upper mantle in the Sultanate of Oman, is surprisingly rapid. Carbonate veins in mantle peridotite in Oman have an average 14C age of ≈26,000 years, and are not 30–95 million years old as previously believed. These data and reconnaissance mapping show that ≈104 to 105 tons per year of atmospheric CO2 are converted to solid carbonate minerals via peridotite weathering in Oman. Peridotite carbonation can be accelerated via drilling, hydraulic fracture, input of purified CO2 at elevated pressure, and, in particular, increased temperature at depth. After an initial heating step, CO2 pumped at 25 or 30 °C can be heated by exothermic carbonation reactions that sustain high temperature and rapid reaction rates at depth with little expenditure of energy. In situ carbonation of peridotite could consume >1 billion tons of CO2 per year in Oman alone, affording a low-cost, safe, and permanent method to capture and store atmospheric CO2.

  11. Numerical investigation of CO2 storage in hydrocarbon field using a geomechanical-fluid coupling model

    Directory of Open Access Journals (Sweden)

    Guang Li

    2016-09-01

    Full Text Available Increasing pore pressure due to CO2 injection can lead to stress and strain changes of the reservoir. One of the safely standards for long term CO2 storage is whether stress and strain changes caused by CO2 injection will lead to irreversible mechanical damages of the reservoir and impact the integrity of caprock which could lead to CO2 leakage through previously sealing structures. Leakage from storage will compromise both the storage capacity and the perceived security of the project, therefore, a successful CO2 storage project requires large volumes of CO2 to be injected into storage site in a reliable and secure manner. Yougou hydrocarbon field located in Orods basin was chosen as storage site based on it's stable geological structure and low leakage risks. In this paper, we present a fluid pressure and stress-strain variations analysis for CO2 geological storage based on a geomechanical-fluid coupling model. Using nonlinear elasticity theory to describe the geomechanical part of the model, while using the Darcy's law to describe the fluid flow. Two parts are coupled together using the poroelasticity theory. The objectives of our work were: 1 evaluation of the geomechanical response of the reservoir to different CO2 injection scenarios. 2 assessment of the potential leakage risk of the reservoir caused by CO2 injection.

  12. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    Energy Technology Data Exchange (ETDEWEB)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  13. Reduction of emissions and geological storage of CO2. Innovation an industrial stakes

    International Nuclear Information System (INIS)

    Mandil, C.; Podkanski, J.; Socolow, R.; Dron, D.; Reiner, D.; Horrocks, P.; Fernandez Ruiz, P.; Dechamps, P.; Stromberg, L.; Wright, I.; Gazeau, J.C.; Wiederkehr, P.; Morcheoine, A.; Vesseron, P.; Feron, P.; Feraud, A.; Torp, N.T.; Christensen, N.P.; Le Thiez, P.; Czernichowski, I.; Hartman, J.; Roulet, C.; Roberts, J.; Zakkour, P.; Von Goerne, G.; Armand, R.; Allinson, G.; Segalen, L.; Gires, J.M.; Metz, B.; Brillet, B.

    2005-01-01

    An international symposium on the reduction of emissions and geological storage of CO 2 was held in Paris from 15 to 16 September 2005. The event, jointly organized by IFP, ADEME and BRGM, brought together over 400 people from more than 25 countries. It was an opportunity to review the international stakes related to global warming and also to debate ways of reducing CO 2 emissions, taking examples from the energy and transport sectors. The last day was dedicated to technological advances in the capture and geological storage of CO 2 and their regulatory and economic implications. This document gathers the available transparencies and talks presented during the colloquium: Opening address by F. Loos, French Minister-delegate for Industry; Session I - Greenhouse gas emissions: the international stakes. Outlook for global CO 2 emissions. The global and regional scenarios: Alternative scenarios for energy use and CO 2 emissions until 2050 by C. Mandil and J. Podkanski (IEA), The stabilization of CO 2 emissions in the coming 50 years by R. Socolow (Princeton University). Evolution of the international context: the stakes and 'factor 4' issues: Costs of climate impacts and ways towards 'factor 4' by D. Dron (ENS Mines de Paris), CO 2 emissions reduction policy: the situation in the United States by D. Reiner (MIT/Cambridge University), Post-Kyoto scenarios by P. Horrocks (European Commission), Possibilities for R and D in CO 2 capture and storage in the future FP7 program by P. Fernandez Ruiz and P. Dechamps (European Commission). Session II - CO 2 emission reductions in the energy and transport sectors. Reducing CO 2 emissions during the production and conversion of fossil energies (fixed installations): Combined cycles using hydrogen by G. Haupt (Siemens), CO 2 emission reductions in the oil and gas industry by I. Wright (BP). Reducing CO 2 emissions in the transport sector: Sustainable transport systems by P. Wiederkehr (EST International), The prospects for reducing

  14. Economic Operation of Supercritical CO2 Refrigeration Energy Storage Technology

    Science.gov (United States)

    Hay, Ryan

    With increasing penetration of intermittent renewable energy resources, improved methods of energy storage are becoming a crucial stepping stone in the path toward a smarter, greener grid. SuperCritical Technologies is a company based in Bremerton, WA that is developing a storage technology that can operate entirely on waste heat, a resource that is otherwise dispelled into the environment. The following research models this storage technology in several electricity spot markets around the US to determine if it is economically viable. A modification to the storage dispatch scheme is then presented which allows the storage unit to increase its profit in real-time markets by taking advantage of extreme price fluctuations. Next, the technology is modeled in combination with an industrial load profile on two different utility rate schedules to determine potential cost savings. The forecast of facility load has a significant impact on savings from the storage dispatch, so an exploration into this relationship is then presented.

  15. Canadian CO2 Capture and Storage Technology Network : promoting zero emissions technologies

    International Nuclear Information System (INIS)

    2004-11-01

    This brochure provided information on some Canadian initiatives in carbon dioxide (CO 2 ) capture and storage. There has been growing interest in the implementation of components of CO 2 capture, storage and utilization technologies in Canada. Technology developments by the CANMET Energy Technology Centre concerning CO 2 capture using oxy-fuel combustion and amine separation were examined. Techniques concerning gasification of coal for electricity production and CO 2 capture were reviewed. Details of a study of acid gas underground injection were presented. A review of monitoring technologies in CO 2 storage in enhanced oil recovery was provided. Issues concerning the enhancement of methane recovery through the monitoring of CO 2 injected into deep coal beds were discussed. Storage capacity assessment of Canadian sedimentary basins, coal seams and oil and gas reservoirs were reviewed, in relation to their suitability for CO 2 sequestration. Details of the International Test Centre for Carbon Dioxide Capture in Regina, Saskatchewan were presented, as well as issues concerning the sequestration of CO 2 in oil sands tailings streams. A research project concerning the geologic sequestration of CO 2 and simultaneous CO 2 and methane production from natural gs hydrate reservoirs was also discussed. 12 figs.

  16. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  17. CO2 Storage Capacity for Multi-Well Pads Scheme in Depleted Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhan Meng

    2017-10-01

    Full Text Available As a promising technology to improve shale gas (SG recovery and CO2 storage capacity, the multi-well pads (MWPs scheme has gained more and more attention. The semi-analytical pressure-buildup method has been used to estimate CO2 storage capacity. It focuses on single multi-fractured horizontal wells (SMFHWs and does not consider multi-well pressure interference (MWPI induced by the MWPs scheme. This severely limits the application of this method as incidences of multi-well pressure interference have been widely reported. This paper proposed a new methodology to optimize the injection strategy of the MWPs scheme and maximize CO2 storage capacity. The new method implements numerical discretization, the superposition theory, Gauss elimination, and the Stehfest numerical algorithm to obtain pressure-buildup solutions for the MWPs scheme. The solution by the new method was validated with numerical simulation and pressure-buildup curves were generated to identify MWPI. Using the new method, we observed that the fracture number and fracture half-length have a positive influence on CO2 storage capacity. Both can be approximately related to the CO2 storage capacity by a linear correlation. For a given injection pressure, there is an optimal fracture number; the bigger the limited injection pressure, the smaller the optimal fracture number. Stress sensitivity has positive influences on CO2 storage capacity, thus extending the injection period would improve CO2 storage capacity. This work gains some insights into the CO2 storage capacity of the MWPs scheme in depleted SG reservoirs, and provides considerable guidance on injection strategies to maximize CO2 storage capacity in depleted SG reservoirs.

  18. Subsurface impact of CO2: Response of carbonate rocks and wellbore cement to supercritical CO2 injection and long-term storage. Geologica Ultraiectina (310)

    NARCIS (Netherlands)

    Liteanu, E.

    2009-01-01

    Capture of CO2 at fossil fuel power station coupled with geological storage in empty oil and gas reservoirs is widely viewed as the most promising option for reducing CO2 emissions to the atmosphere, i.e. for climate change mitigation. Injection of CO2 into such reservoirs will change their chemical

  19. Influence of shale-total organic content on CO2 geo-storage potential

    Science.gov (United States)

    Arif, Muhammad; Lebedev, Maxim; Barifcani, Ahmed; Iglauer, Stefan

    2017-09-01

    Shale CO2 wettability is a key factor which determines the structural trapping capacity of a caprock. However, the influence of shale-total organic content (TOC) on wettability (and thus on storage potential) has not been evaluated despite the fact that naturally occurring shale formations can vary dramatically in TOC, and that even minute TOC strongly affects storage capacities and containment security. Thus, there is a serious lack of understanding in terms of how shale, with varying organic content, performs in a CO2 geo-storage context. We demonstrate here that CO2-wettability scales with shale-TOC at storage conditions, and we propose that if TOC is low, shale is suitable as a caprock in conventional structural trapping scenarios, while if TOC is ultrahigh to medium, the shale itself is suitable as a storage medium (via adsorption trapping after CO2 injection through fractured horizontal wells).

  20. On CO2 Behavior in the Subsurface, Following Leakage from aGeologic Storage Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten

    2006-02-09

    The amounts of CO2 that would need to be injected intogeologic storage reservoirs to achieve a significant reduction ofatmospheric emissions are very large. A 1000 MWe coal-fired power plantemits approximately 30,000 tonnes of CO2 per day, 10 Mt per year(Hitchon, 1996). When injected underground over a typical lifetime of 30years of such a plant, the CO2 plume may occupy a large area of order 100km2 or more, and fluid pressure increase in excess of 1 bar(corresponding to 10 m water head) may extend over an area of more than2,500 km2 (Pruess, et al., 2003). The large areal extent expected for CO2plumes makes it likely that caprock imperfections will be encountered,such as fault zones or fractures, which may allow some CO2 to escape fromthe primary storage reservoir. Under most subsurface conditions oftemperature and pressure, CO2 is buoyant relative to groundwaters. If(sub-)vertical pathways are available, CO2 will tend to flow upward and,depending on geologic conditions, may eventually reach potablegroundwater aquifers or even the land surface. Leakage of CO2 could alsooccur along wellbores, including pre-existing and improperly abandonedwells, or wells drilled in connection with the CO2 storage operations.The pressure increases accompanying CO2 injection will give rise tochanges in effective stress that could cause movement along faults,increasing permeability and potential for leakage.Escape of CO2 from aprimary geologic storage reservoir and potential hazards associated withits discharge at the land surface raise a number of concerns, including(1) acidification of groundwater resources, (2) asphyxiation hazard whenleaking CO2 is discharged at the land surface, (3) increase inatmospheric concentrations of CO2, and (4) damage from a high-energy,eruptive discharge (if such discharge is physically possible). In orderto gain public acceptance for geologic storage as a viable technology forreducing atmospheric emissions of CO2, it is necessary to address theseissues

  1. Influence of methane in CO2 transport and storage for CCS technology.

    Science.gov (United States)

    Blanco, Sofía T; Rivas, Clara; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2012-12-04

    CO(2) Capture and Storage (CCS) is a good strategy to mitigate levels of atmospheric greenhouse gases. The type and quantity of impurities influence the properties and behavior of the anthropogenic CO(2), and so must be considered in the design and operation of CCS technology facilities. Their study is necessary for CO(2) transport and storage, and to develop theoretical models for specific engineering applications to CCS technology. In this work we determined the influence of CH(4), an important impurity of anthropogenic CO(2), within different steps of CCS technology: transport, injection, and geological storage. For this, we obtained new pressure-density-temperature (PρT) and vapor-liquid equilibrium (VLE) experimental data for six CO(2) + CH(4) mixtures at compositions which represent emissions from the main sources in the European Union and United States. The P and T ranges studied are within those estimated for CO(2) pipelines and geological storage sites. From these data we evaluated the minimal pressures for transport, regarding the density and pipeline's capacity requirements, and values for the solubility parameter of the mixtures, a factor which governs the solubility of substances present in the reservoir before injection. We concluded that the presence of CH(4) reduces the storage capacity and increases the buoyancy of the CO(2) plume, which diminishes the efficiency of solubility and residual trapping of CO(2), and reduces the injectivity into geological formations.

  2. Leakage of CO2 from geologic storage: Role of secondaryaccumulation at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2007-05-31

    Geologic storage of CO2 can be a viable technology forreducing atmospheric emissions of greenhouse gases only if it can bedemonstrated that leakage from proposed storage reservoirs and associatedhazards are small or can be mitigated. Risk assessment must evaluatepotential leakage scenarios and develop a rational, mechanisticunderstanding of CO2 behavior during leakage. Flow of CO2 may be subjectto positive feedbacks that could amplify leakage risks and hazards,placing a premium on identifying and avoiding adverse conditions andmechanisms. A scenario that is unfavorable in terms of leakage behavioris formation of a secondary CO2 accumulation at shallow depth. This paperdevelops a detailed numerical simulation model to investigate CO2discharge from a secondary accumulation, and evaluates the role ofdifferent thermodynamic and hydrogeologic conditions. Our simulationsdemonstrate self-enhancing as well as self-limiting feedbacks.Condensation of gaseous CO2, 3-phase flow of aqueous phase -- liquid CO2-- gaseous CO2, and cooling from Joule-Thomson expansion and boiling ofliquid CO2 are found to play important roles in the behavior of a CO2leakage system. We find no evidence that a subsurface accumulation of CO2at ambient temperatures could give rise to a high-energy discharge, aso-called "pneumatic eruption."

  3. Cost implications of uncertainty in CO2 storage resource estimates: A review

    Science.gov (United States)

    Anderson, Steven T.

    2017-01-01

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO2) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO2 storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO2, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO2 storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO2 injection will be mitigated by reservoir pressure management, estimates of the costs of CO2 storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO2 storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO2 storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO2

  4. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2007-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006, http://www.goldsim.com]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  5. Preliminary Study of Favourable Formations for CO2 Subsurface Storage in Spain

    International Nuclear Information System (INIS)

    Zapatero, M. A.; Reyes, J. L.; Martinez, R.; Suarez, I.; Arenillas, A.; Perucha, M. A.

    2009-01-01

    This report is a synthesis of the possibilities of CO 2 storage in the Spanish subsurface. Compilation and analysis of geological information has been carried out, looking at surface and subsurface, in order to make a pre-selection of potential favourable units for CO 2 storage, taking in account that each of this storages needs a confining formation to seal the storage. Before the storage selection, a general description of the great geological units of the Iberian Peninsula is done. Afterwards, borehole logging from petroleum exploration is analysed in these units, formations and areas of interest. The aim is to finally obtain a description of selected units and their possibilities of CO 2 storage. (Author) 17 refs

  6. Electrokinetic and Poroelastic Characterization of Porous Media : Application to CO2 storage monitoring

    NARCIS (Netherlands)

    Kirichek, O.J.

    2018-01-01

    Monitoring the properties of a CO2 storage reservoir is important for two main reasons: firstly, to verify that the injected CO2 is safely contained in the reservoir rock as planned, and secondly, to provide data which can be used to update the existing reservoir models and support eventual

  7. GHGT-10 : Assessing the integrity of fault- and top seals at CO2 storage sites

    NARCIS (Netherlands)

    Orlic, B.; Heege J.H. ter; Wassing, B.

    2011-01-01

    Induced stress changes due to CO2 injection into geological reservoirs can mechanically damage bounding fault- and top seals creating preferential pathways for CO2 migration from the containment or trigger existing faults causing seismic activity at storage sites. In this paper we present

  8. Tackling CO2 reduction in India through use of CO2 capture and storage (CCS): Prospects and challenges

    International Nuclear Information System (INIS)

    Shackley, Simon; Verma, Preeti

    2008-01-01

    CO 2 capture and storage (CCS) is not currently a priority for the Government of India (GOI) because, whilst a signatory to the UNFCCC and Kyoto Protocol, there are no existing greenhouse gas emission reduction targets and most commentators do not envisage compulsory targets for India in the post-2012 phase. The overwhelming priority for the GOI is to sustain a high level of economic growth (8%+) and provision of secure, reliable energy (especially electricity) is one of the widely recognised bottlenecks in maintaining a high growth rate. In such a supply-starved context, it is not easy to envisage adoption of CCS-which increases overall generation capacity and demand for coal without increasing actual electricity supply-as being acceptable. Anything which increases costs-even slightly-is very unlikely to happen, unless it is fully paid for by the international community. The majority viewpoint of the industry and GOI interviewees towards CCS appears to be that it is a frontier technology, which needs to be developed further in the Annex-1 countries to bring down the cost through RD and D and deployment. More RD and D is required to assess in further detail the potential for CO 2 storage in geological reservoirs in India and the international community has an important role to play in cultivating such research

  9. CO2 Leakage, Storage and Injection Monitoring by Using Experimental, Numerical and Analytical Methods

    Directory of Open Access Journals (Sweden)

    A. Namdar

    2014-09-01

    Full Text Available The maintaining environment is priority to any plan in human life. It is planned for monitoring CO2 injection, storage and leakage by using geophysical, numerical and analytical methods in seismic zone. In this regard the mineralogy, chemical composite, lithology, seismic wave propagation, small earthquake, accelerating natural earthquake, thermal stress-strain modeling, ground movement level and fault activation will be consider. It is expected to better understand CO2 leakage, storage and injection process and problems.

  10. Status of Geological Storage of CO2 as Part of Negative Emissions Strategy

    Science.gov (United States)

    Benson, S. M.

    2014-12-01

    Recent analyses show that many GHG stabilization scenarios require technologies that permanently extract CO2 from the atmosphere -so-called "net negative emissions." Among the most promising negative emissions approaches is bioenergy with carbon capture and storage (BECCS). The most mature options for CO2 storage are in sedimentary rocks located in thick sedimentary basins. Within those basins, CO2 can be stored either in depleted or depleting hydrocarbon formations or in so-called saline aquifers. In addition to the economic costs of bioenergy with CO2 capture, key to the success of and scale at which BECCS can contribute to negative emissions is the ability to store quantities on the order of 1 Gt per year of CO2. Today, about 65 Mt of CO2 per year are injected underground for the purposes of enhancing oil recovery (CO2-EOR) or for CO2 storage, the vast majority being for CO2-EOR. Achieving 1 Gt per year of negative emissions will require a 15-fold scale up of the current injection operations. This paper will review the conditions necessary for storage at this scale, identify what has been learned from nearly 2 decades of experience with CO2 storage that provides insight into the feasibility of CO2 storage on this scale, and identify critical issues that remain to be resolved to meet these ambitious negative emissions targets. Critical technological issues include but are not limited to: the amount of CO2 storage capacity that is available and where it is located in relation to biomass energy resources; identification of sustainable injection rates and how this depends on the properties of the geological formation; the extent to which water extraction will be required to manage the magnitude of pressure buildup; identification of regions at high risk for induced seismicity that could damage structures and infrastructure; and selection of sites with a adequate seals to permanently contain CO2. Social, economic and political issues are also important: including the

  11. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems

    DEFF Research Database (Denmark)

    Patil, Ravi; Colls, Jeremy J; Steven, Michael D

    2010-01-01

    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO2 leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response...... detection field facility developed at the University of Nottingham was used to inject CO2 gas at a controlled flow rate (1 l min-1) into soil to simulate build-up of soil CO2 concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO2...

  12. Geological investigation for CO2 storage: from seismic and well data to storage design

    Science.gov (United States)

    Chapuis, Flavie; Bauer, Hugues; Grataloup, Sandrine; Leynet, Aurélien; Bourgine, Bernard; Castagnac, Claire; Fillacier, Simon; Lecomte, Antony; Le Gallo, Yann; Bonijoly, Didier

    2010-05-01

    Geological investigation for CO2 storage: from seismic and well data to storage design Chapuis F.1, Bauer H.1, Grataloup S.1, Leynet A.1, Bourgine B.1, Castagnac C.1, Fillacier, S.2, Lecomte A.2, Le Gallo Y.2, Bonijoly D.1. 1 BRGM, 3 av Claude Guillemin, 45060 Orléans Cedex, France, f.chapuis@brgm.fr, d.bonijoly@brgm.fr 2 Geogreen, 7, rue E. et A. Peugeot, 92563 Rueil-Malmaison Cedex, France, ylg@greogreen.fr The main purpose of this study is to evaluate the techno-economical potential of storing 200 000 tCO2 per year produced by a sugar beat distillery. To reach this goal, an accurate hydro-geological characterisation of a CO2 injection site is of primary importance because it will strongly influence the site selection, the storage design and the risk management. Geological investigation for CO2 storage is usually set in the center or deepest part of sedimentary basins. However, CO2 producers do not always match with the geological settings, and so other geological configurations have to be studied. This is the aim of this project, which is located near the South-West border of the Paris Basin, in the Orléans region. Special geometries such as onlaps and pinch out of formation against the basement are likely to be observed and so have to be taken into account. Two deep saline aquifers are potentially good candidates for CO2 storage. The Triassic continental deposits capped by the Upper Triassic/Lower Jurassic continental shales and the Dogger carbonate deposits capped by the Callovian and Oxfordian shales. First, a data review was undertaken, to provide the palaeogeographical settings and ideas about the facies, thicknesses and depth of the targeted formations. It was followed by a seismic interpretation. Three hundred kilometres of seismic lines were reprocessed and interpreted to characterize the geometry of the studied area. The main structure identified is the Étampes fault that affects all the formations. Apart from the vicinity of the fault where drag

  13. Methods to Assess Geological CO2 Storage Capacity: Status and Best Practice

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    To understand the emission reduction potential of carbon capture and storage (CCS), decision makers need to understand the amount of CO2 that can be safely stored in the subsurface and the geographical distribution of storage resources. Estimates of storage resources need to be made using reliable and consistent methods. Previous estimates of CO2 storage potential for a range of countries and regions have been based on a variety of methodologies resulting in a correspondingly wide range of estimates. Consequently, there has been uncertainty about which of the methodologies were most appropriate in given settings, and whether the estimates produced by these methods were useful to policy makers trying to determine the appropriate role of CCS. In 2011, the IEA convened two workshops which brought together experts for six national surveys organisations to review CO2 storage assessment methodologies and make recommendations on how to harmonise CO2 storage estimates worldwide. This report presents the findings of these workshops and an internationally shared guideline for quantifying CO2 storage resources.

  14. Utilization of Integrated Assessment Modeling for determining geologic CO2 storage security

    Science.gov (United States)

    Pawar, R.

    2017-12-01

    Geologic storage of carbon dioxide (CO2) has been extensively studied as a potential technology to mitigate atmospheric concentration of CO2. Multiple international research & development efforts, large-scale demonstration and commercial projects are helping advance the technology. One of the critical areas of active investigation is prediction of long-term CO2 storage security and risks. A quantitative methodology for predicting a storage site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale projects where projects will require quantitative assessments of potential long-term liabilities. These predictions are challenging given that they require simulating CO2 and in-situ fluid movements as well as interactions through the primary storage reservoir, potential leakage pathways (such as wellbores, faults, etc.) and shallow resources such as groundwater aquifers. They need to take into account the inherent variability and uncertainties at geologic sites. This talk will provide an overview of an approach based on integrated assessment modeling (IAM) to predict long-term performance of a geologic storage site including, storage reservoir, potential leakage pathways and shallow groundwater aquifers. The approach utilizes reduced order models (ROMs) to capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. Applicability of the approach will be demonstrated through examples that are focused on key storage security questions such as what is the probability of leakage of CO2 from a storage reservoir? how does storage security vary for different geologic environments and operational conditions? how site parameter variability and uncertainties affect storage security, etc.

  15. CO 2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage

    KAUST Repository

    Espinoza, D. Nicolas

    2017-10-23

    Small pores in high specific surface clay-rich caprocks give rise to high capillary entry pressures and high viscous drag that hinder the migration of buoyant carbon dioxide CO2. We measured the breakthrough pressure and ensuing CO2 permeability through sediment plugs prepared with sand, silt, kaolinite and smectite, and monitored their volumetric deformation using high-pressure oedometer cells. The data show water expulsion and volumetric contraction prior to CO2 breakthrough, followed by preferential CO2 flow thereafter. Our experimental results and data gathered from previous studies highlight the inverse relationship between breakthrough pressure and pore size, as anticipated by Laplace’s equation. In terms of macro-scale parameters, the breakthrough pressure increases as the sediment specific surface increases and the porosity decreases. The breakthrough pressure is usually lower than the values predicted with average pore size estimations; it can reach ∼6.2MPa in argillaceous formations, and 11.2MPa in evaporites. The CO2 permeability after breakthrough is significantly lower than the absolute permeability, but it may increase in time due to water displacement and desiccation. Leakage will be advection-controlled once percolation takes place at most storage sites currently being considered. Diffusive and advective CO2 leaks through non-fractured caprocks will be minor and will not compromise the storage capacity at CO2 injection sites. The “sealing number” and the “stability number” combine the initial fluid pressure, the buoyant pressure caused by the CO2 plume, the capillary breakthrough pressure of the caprock, and the stress conditions at the reservoir depth; these two numbers provide a rapid assessment of potential storage sites. Unexpected CO2 migration patterns emerge due to the inherent spatial variability and structural discontinuities in geological formations; sites with redundant seal layers should be sought for the safe and long

  16. Measurement of residual CO2 saturation at a geological storage site using hydraulic tests

    Science.gov (United States)

    Rötting, T. S.; Martinez-Landa, L.; Carrera, J.; Russian, A.; Dentz, M.; Cubillo, B.

    2012-12-01

    Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, a methodology is presented to interpret these tests and analyze which parameters can be estimated. Numerical and analytical solutions are used to simulate a continuous injection in a porous medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storativity over a finite thickness (a few meters) skin around the injection well. The model results are interpreted using conventional pressure build-up and diagnostic plots (a plot of the drawdown s and the logarithmic derivative d s / d ln t of the drawdown as a function of time). The methodology is applied using the hydraulic parameters estimated for the Hontomin site (Northern Spain) where a Technology Demonstration Plant (TDP) for geological CO2 storage is planned to be set up. The reduction of hydraulic conductivity causes an increase in observed drawdowns, the increased storativity in the CO2 zone causes a delay in the drawdown curve with respect to the reference curve measured before CO2 injection. The duration (characteristic time) of these effects can be used to estimate the radius of the CO2 zone. The effects of reduced permeability and increased storativity are well separated from wellbore storage and natural formation responses, even if the CO2-brine interface is inclined (i.e. the CO2 forms a cone around the well). We find that both skin hydraulic conductivity and storativity (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head build

  17. Impact of CO2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO2 Leakage

    International Nuclear Information System (INIS)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    2016-01-01

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2 ) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2 ) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 2 concentration and will create CO 2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site

  18. Large temporal scale and capacity subsurface bulk energy storage with CO2

    Science.gov (United States)

    Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.

    2017-12-01

    Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.

  19. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock

    International Nuclear Information System (INIS)

    Streit, J.E.; Hillis, R.R.

    2004-01-01

    Geomechanical modelling of fault stability is an integral part of Australia's GEODISC research program to ensure the safe storage of carbon dioxide in subsurface reservoirs. Storage of CO 2 in deep saline formations or depleted hydrocarbon reservoirs requires estimates of sustainable fluid pressures that will not induce fracturing or create fault permeability that could lead to CO 2 escape. Analyses of fault stability require the determination of fault orientations, ambient pore fluid pressures and in situ stresses in a potential storage site. The calculation of effective stresses that act on faults and reservoir rocks lead then to estimates of fault slip tendency and fluid pressures sustainable during CO 2 storage. These parameters can be visualized on 3D images of fault surfaces or in 2D projections. Faults that are unfavourably oriented for reactivation can be identified from failure plots. In depleted oil and gas fields, modelling of fault and rock stability needs to incorporate changes of the pre-production stresses that were induced by hydrocarbon production and associated pore pressure depletion. Such induced stress changes influence the maximum sustainable formation pressures and CO 2 storage volumes. Hence, determination of in situ stresses and modelling of fault stability are essential prerequisites for the safe engineering of subsurface CO 2 injection and the modelling of storage capacity. (author)

  20. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  1. Southern Adriatic sea as a potential area for CO2 geological storage

    International Nuclear Information System (INIS)

    Volpi, V.; Forlin, F.; Donda, F.; Civile, D.; Facchin, L.; Sauli, L.; Merson, B.; Sinza-Mendieta, K.; Shams, A.

    2015-01-01

    The Southern Adriatic Sea is one of the five prospective areas for CO 2 storage being evaluated under the three year (FP7) European SiteChar project dedicated to the characterization of European CO 2 storage sites. The potential reservoir for CO 2 storage is represented by a carbonate formation, the wackstones and packstones of the Scaglia Formation (Upper Cretaceous-Paleogene). In this paper, we present the geological characterization and the 3D modeling that led to the identification of three sites, named Grazia, Rovesti and Grifone, where the Scaglia Formation, with an average thickness of 50 m, reveals good petrophysical characteristics and is overlain by an up to 1 200 thick cap-rock. The vicinity of the selected sites to the Enel - Federico II power plant (one of the major Italian CO 2 emitter) where a pilot plant for CO 2 capture has been already started in April 2010, represents a good opportunity to launch the first Carbon Capture and Storage (CCS) pilot project in Italy and to apply this technology at industrial level, strongly contributing at the same time at reducing the national CO 2 emissions. (authors)

  2. Environmental considerations for subseabed geological storage of CO2: A review

    Science.gov (United States)

    Carroll, A. G.; Przeslawski, R.; Radke, L. C.; Black, J. R.; Picard, K.; Moreau, J. W.; Haese, R. R.; Nichol, S.

    2014-07-01

    Many countries are now using or investigating offshore geological storage of CO2 as a means to reduce atmospheric CO2 emissions. Although associated research often focuses on deep-basin geology (e.g. seismic, geomagnetics), environmental data on the seabed and shallow subseabed is also crucial to (1) detect and characterise potential indicators of fluid seeps and their potential connectivity to targeted storage reserves, (2) obtain baseline environmental data for use in future monitoring, and (3) acquire information to facilitate an improved understanding of ecosystem processes for use in impact prediction. This study reviews the environmental considerations, including potential ecological impacts, associated with subseabed geological storage of CO2. Due to natural variations in CO2 levels in seafloor sediments, baseline CO2 measurements and knowledge of physical-chemical processes affecting the regional distribution of CO2 and pH are critical for the design of appropriate monitoring strategies to assess potential impacts of CO2 seepage from subseabed storage reservoirs. Surficial geological and geophysical information, such as that acquired from multibeam sonar and sub-bottom profiling, can be used to investigate the connectivity between the deep reservoirs and the surface, which is essential in establishing the reservoir containment properties. CO2 leakage can have a pronounced effect on sediments and rocks which in turn can have carryover effects to biogeochemical cycles. The effects of elevated CO2 on marine organisms are variable and species-specific but can also have cascading effects on communities and ecosystems, with marine benthic communities at some natural analogue sites (e.g. volcanic vents) showing decreased diversity, biomass, and trophic complexity. Despite their potential applications, environmental surveys and data are still not a standard and integral part of subseabed CO2 storage projects. However, the habitat mapping and seabed characterisation

  3. Using noble gas fingerprints at the Kerr Farm to assess CO2 leakage allegations linked to the Weyburn-Midale CO2 Monitoring and Storage Project

    OpenAIRE

    Gilfillan, Stuart; Sherk, George Williams; Poreda, Robert J.; Haszeldine, Robert

    2017-01-01

    For carbon capture and storage technology to successfully contribute to climate mitigation efforts, the stored CO2 must be securely isolated from the atmosphere and oceans. Hence, there is a need to establish and verify monitoring techniques that can detect unplanned migration of injected CO2 from a storage site to the near surface. Noble gases are sensitive tracers of crustal fluid input in the subsurface due to their low concentrations and unreactive nature. Several studies have identified ...

  4. Environmental Assessment for Potential Impacts of Ocean CO2 Storage on Marine Biogeochemical Cycles

    Science.gov (United States)

    Yamada, N.; Tsurushima, N.; Suzumura, M.; Shibamoto, Y.; Harada, K.

    2008-12-01

    Ocean CO2 storage that actively utilizes the ocean potential to dissolve extremely large amounts of CO2 is a useful option with the intent of diminishing atmospheric CO2 concentration. CO2 storage into sub-seabed geological formations is also considered as the option which has been already put to practical reconnaissance in some projects. Direct release of CO2 in the ocean storage and potential CO2 leakage from geological formations into the bottom water can alter carbonate system as well as pH of seawater. It is essential to examine to what direction and extent chemistry change of seawater induced by CO2 can affect the marine environments. Previous studies have shown direct and acute effects by increasing CO2 concentrations on physiology of marine organisms. It is also a serious concern that chemistry change can affect the rates of chemical, biochemical and microbial processes in seawater resulting in significant influences on marine biogeochemical cycles of the bioelements including carbon, nutrients and trace metals. We, AIST, have conducted a series of basic researches to assess the potential impacts of ocean CO2 storage on marine biogeochemical processes including CaCO3 dissolution, and bacterial and enzymatic decomposition of organic matter. By laboratory experiments using a special high pressure apparatus, the improved empirical equation was obtained for CaCO3 dissolution rate in the high CO2 concentrations. Based on the experimentally obtained kinetics with a numerical simulation for a practical scenario of oceanic CO2 sequestration where 50 Mton CO2 per year is continuously injected to 1,000-2,500 m depth within 100 x 333 km area for 30 years, we could illustrate precise 3-D maps for the predicted distributions of the saturation depth of CaCO3, in situ Ω value and CaCO3 dissolution rate in the western North Pacific. The result showed no significant change in the bathypelagic CaCO3 flux due to chemistry change induced by ocean CO2 sequestration. Both

  5. CO2 capture and storage in Greece: A case study from komotini ngcc power plant

    Directory of Open Access Journals (Sweden)

    Koukouzas Nikolaos

    2006-01-01

    Full Text Available The aim of this paper is to examine the possibilities for the abatement of CO2 emissions in the Greek fossil fuel power generation sector. An overview of CO2 capture, transportation, and storage concepts, on which the R&D community is focused, is presented. The implementation of post-combustion CO2 capture options in an existing fossil fuel power plant is then examined and the consequences on the overall plant performance are determined. Finally, the possibilities of transportation and then underground storage of the pure CO2 stream are analyzed taking into account both technical and economical factors. The results of this analysis show that CO2 sequestration is technically feasible for existing fossil fuel fired power plants in Greece. However, substantial reduction in plant efficiency is observed due to increased energy demand of the technologies used as well as in electricity production cost due to capital and operation costs of capture, transport, and storage of CO2. .

  6. Element mobilization and immobilization from carbonate rocks between CO2storage reservoirs and the overlying aquifers during a potential CO2leakage.

    Science.gov (United States)

    Lawter, Amanda R; Qafoku, Nikolla P; Asmussen, R Matthew; Kukkadapu, Ravi K; Qafoku, Odeta; Bacon, Diana H; Brown, Christopher F

    2018-04-01

    Despite the numerous studies on changes within the reservoir following CO 2 injection and the effects of CO 2 release into overlying aquifers, little or no literature is available on the effect of CO 2 release on rock between the storage reservoirs and subsurface. This is important, because the interactions that occur in this zone between the CO 2 storage reservoir and the subsurface may have a significant impact on risk analysis for CO 2 storage projects. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO 2 -acidified 0.01 M NaCl, liquid analysis showed an increase of major elements (e.g., Ca and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower aqueous concentrations of these elements were observed in N 2 control experiments, likely due to differences in pH between the CO 2 and N 2 experiments. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO 2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO 2 -reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO 2 -laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-01-01

    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  8. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    Science.gov (United States)

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  9. Assessment of Ademe's R and D actions for the CO2 capture and storage sector

    International Nuclear Information System (INIS)

    2015-05-01

    This publication presents research actions and projects supported by the ADEME in the field of CO 2 capture and storage. This programme aims at promoting the emergence of significant innovations, at developing the national technology portfolio, at identifying and reducing uncertainties related to exploitation, and at developing and strengthening its technological integration in manufacturing industry and energy sectors. While indicating the invested amount, research demonstrator projects are mentioned. Results obtained between 2007 and 2013 in different fields are briefly described: technical-economic studies or pre-feasibility studies, CO 2 capture (capture in post-combustion or in oxy-combustion), CO 2 geological storage (site selection, knowledge development on storage site sustainability, safety of CO 2 storage sites, monitoring of CO 2 storage sites, environmental impacts of storage sites), and issue of social feasibility of CO 2 capture and storage

  10. One-Dimensional Reactive Transport Modeling of CO2 Storage Systems - Change in Cap Rock Porosity Triggered by Pressure and Temperature Dependent CO2-Water-Rock Interactions

    Science.gov (United States)

    Hemme, C.; van Berk, W.

    2015-12-01

    In carbon capture and storage (CCS) systems supercritical CO2 is injected into a reservoir and dissolves in the reservoir brine. Subsequently, CO2(aq) diffuses into the cap rock to regions of lower total pressure and temperature and triggers CO2-water-rock interactions that are coupled with mass transport and result in precipitation and/or dissolution of minerals along the CO2 migration path. Such hydrogeochemical interactions change porosities and are responsible for the improvement or deterioration of the long term integrity of the system. This study presents a semi-generic hydrogeochemical model based on chemical equilibrium thermodynamics, data from several CO2 storage systems, and plausible assumptions regarding non-available data. One-dimensional reactive transport modeling is performed by using the U.S.G.S. PHREEQC code (3.1.4-8929; phreeqc.dat database) to identify and quantify the loss or gain of total porosity affected by hydrogeochemical reactions driven by diffusive mass transport exposed to pressure and temperature gradients. A fine spatial and temporal discretization, the use of non-reactive tracers, and a broad variety of modeling scenarios enable the calculation of the relevant timescale for simulations of long-term storage of CO2 and the consideration of the pressure dependent mass action law constants along the CO2 migration path. Modeling results show that the relevant timescale for simulations of long-term storage of CO2 is in the range of 106 years, and that pressure/temperature conditions, heterogeneities (veins and fractures) and the mineralogical composition of the cap rock have the strongest influence on the increase in cap rock porosity (maximum increase from initial 5 % to 7.5 %). Critical parameter combinations - total pressure effects are crucial - could put long-term integrity at risks. Nevertheless, a wide range of conditions and parameter combinations for safe CO2 storage is identified by other modeling scenarios.

  11. Next generation of CO2 enhanced water recovery with subsurface energy storage in China

    Science.gov (United States)

    Li, Qi; Kühn, Michael; Ma, Jianli; Niu, Zhiyong

    2017-04-01

    Carbon dioxide (CO2) utilization and storage (CCUS) is very popular in comparison with traditional CO2 capture and storage (CCS) in China. In particular, CO2 storage in deep saline aquifers with enhanced water recovery (CO2-EWR) [1] is gaining more and more attention as a cleaner production technology. The CO2-EWR was written into the "U.S.-China Joint Announcement on Climate Change" released November 11, 2014. "Both sides will work to manage climate change by demonstrating a new frontier for CO2 use through a carbon capture, use, and sequestration (CCUS) project that will capture and store CO2 while producing fresh water, thus demonstrating power generation as a net producer of water instead of a water consumer. This CCUS project with enhanced water recovery will eventually inject about 1.0 million tonnes of CO2 and create approximately 1.4 million cubic meters of freshwater per year." In this article, at first we reviewed the history of the CO2-EWR and addressed its current status in China. Then, we put forth a new generation of the CO2-EWR with emphasizing the collaborative solutions between carbon emission reductions and subsurface energy storage or renewable energy cycle [2]. Furthermore, we figured out the key challenging problems such as water-CCUS nexus when integrating the CO2-EWR with the coal chemical industry in the Junggar Basin, Xinjiang, China [3-5]. Finally, we addressed some crucial problems and strategic consideration of the CO2-EWR in China with focuses on its technical bottleneck, relative advantage, early opportunities, environmental synergies and other related issues. This research is not only very useful for the current development of CCUS in the relative "cold season" but also beneficial for the energy security and clean production in China. [1] Li Q, Wei Y-N, Liu G, Shi H (2015) CO2-EWR: a cleaner solution for coal chemical industry in China. Journal of Cleaner Production 103:330-337. doi:10.1016/j.jclepro.2014.09.073 [2] Streibel M

  12. Microbial community response to the CO2 injection and storage in the saline aquifer, Ketzin, Germany

    Science.gov (United States)

    Morozova, Daria; Zettlitzer, Michael; Vieth, Andrea; Würdemann, Hilke

    2010-05-01

    The concept of CO2 capture and storage in the deep underground is currently receiving great attention as a consequence of the effects of global warming due to the accumulation of carbon dioxide gas in the atmosphere. The EU funded CO2SINK project is aimed as a pilot storage of CO2 in a saline aquifer located near Ketzin, Germany. One of the main aims of the project is to develop efficient monitoring procedures for assessing the processes that are triggered in the reservoir by CO2 injection. This study reveals analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer and its response to CO2 injection. The availability of CO2 has an influence on the metabolism of both heterotrophic microorganisms, which are involved in carbon cycle, and lithoautotrophic microorganisms, which are able to use CO2 as the sole carbon source and electron acceptor. Injection of CO2 in the supercritical state (temperature above 31.1 °C, pressure above 72.9 atm) may induce metabolic shifts in the microbial communities. Furthermore, bacterial population and activity can be strongly influenced by changes in pH value, pressure, temperature, salinity and other abiotic factors, which will be all influenced by CO2 injection into the deep subsurface. Analyses of the composition of microbial communities and its changes should contribute to an evaluation of the effectiveness and reliability of the long-term CO2 storage technique. The interactions between microorganisms and the minerals of both the reservoir and the cap rock may cause major changes to the structure and chemical composition of the rock formations, which would influence the permeability within the reservoir. In addition, precipitation and corrosion may occur around the well affecting the casing and the casing cement. By using Fluorescence in situ Hybridisation (FISH) and molecular fingerprinting such as Polymerase-Chain-Reaction Single-Strand-Conformation Polymorphism (PCR-SSCP) and Denaturing

  13. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  14. Evaluating Potential for Large Releases from CO2 Storage Reservoirs: Analogs, Scenarios, and Modeling Needs

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Tsang, Chin-Fu; Karimjee, Anhar

    2005-01-01

    While the purpose of geologic storage of CO 2 in deep saline formations is to trap greenhouse gases underground, the potential exists for CO 2 to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. Such discharge is not necessarily a serious concern, as CO 2 is a naturally abundant and relatively benign gas in low concentrations. However, there is a potential risk to health, safety and environment (HSE) in the event that large localized fluxes of CO 2 were to occur at the land surface, especially where CO 2 could accumulate. In this paper, we develop possible scenarios for large CO 2 fluxes based on the analysis of natural analogues, where large releases of gas have been observed. We are particularly interested in scenarios which could generate sudden, possibly self-enhancing, or even eruptive release events. The probability for such events may be low, but the circumstances under which they might occur and potential consequences need to be evaluated in order to design appropriate site selection and risk management strategies. Numerical modeling of hypothetical test cases is needed to determine critical conditions for such events, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential HSE impacts of such events and design appropriate mitigation strategies

  15. Crucial thermophysical mechanisms for the safety of CO2 geological storage

    International Nuclear Information System (INIS)

    Chiquet, P.

    2006-09-01

    CO 2 underground storage as an option for reducing greenhouse gases emissions consists of trapping industrial CO 2 and injecting it into deep geological formations such as saline aquifers and hydrocarbons reservoirs. This study aims at assessing leakage processes and evaluating storage capacities. To this end, two leakage phenomena were considered, cap-rock capillary breakthrough and diffusional transport. The former involves interfacial properties of the brine/CO 2 /mineral system: brine/CO 2 interfacial tension and rock wettability under dense CO 2 . Chapter one presents a series of IFT measurements performed at temperatures and pressures up to 4 5 MPa-110 C. Results show a great decrease of IFT with pressure in the 0-to-20 MPa range beyond what it tends to stabilize at values in the order of 25-30 mN.m -1 . Chapter two deals with rock wettability. Dynamic contact angles were measured on muscovite mica and quartz up to 10 MPa. Results highlight an alteration of wettability with pressure that was accounted for by means of a DLVO based model. Direct capillary entry pressures on a clay stone sample are proposed in chapter three. Diffusion, is treated in chapter four. We used the Taylor dispersion method to measure D up to 40 MPa. Results indicate low values in the order of 2.10 -9 m 2 .s -1 . Chapter five discusses the consequences of the previous parameters in terms of storage capacity. (author)

  16. Mineral storage of CO2/H2S gas mixture injection in basaltic rocks

    Science.gov (United States)

    Clark, D. E.; Gunnarsson, I.; Aradottir, E. S.; Oelkers, E. H.; Sigfússon, B.; Snæbjörnsdottír, S. Ó.; Matter, J. M.; Stute, M.; Júlíusson, B. M.; Gíslason, S. R.

    2017-12-01

    Carbon capture and storage is one solution to reducing CO2 emissions in the atmosphere. The long-term geological storage of buoyant supercritical CO2 requires high integrity cap rock. Some of the risk associated with CO2 buoyancy can be overcome by dissolving CO2 into water during its injection, thus eliminating its buoyancy. This enables injection into fractured rocks, such as basaltic rocks along oceanic ridges and on continents. Basaltic rocks are rich in divalent cations, Ca2+, Mg2+ and Fe2+, which react with CO2 dissolved in water to form stable carbonate minerals. This possibility has been successfully tested as a part of the CarbFix CO2storage pilot project at the Hellisheiði geothermal power plant in Iceland, where they have shown mineralization occurs in less than two years [1, 2]. Reykjavik Energy and the CarbFix group has been injecting a mixture of CO2 and H2S at 750 m depth and 240-250°C since June 2014; by 1 January 2016, 6290 tons of CO2 and 3530 tons of H2S had been injected. Once in the geothermal reservoir, the heat exchange and sufficient dissolution of the host rock neutralizes the gas-charged water and saturates the formation water respecting carbonate and sulfur minerals. A thermally stable inert tracer was also mixed into the stream to monitor the subsurface transport and to assess the degree of subsurface carbonation and sulfide precipitation [3]. Water and gas samples have been continuously collected from three monitoring wells and geochemically analyzed. Based on the results, mineral saturation stages have been defined. These results and tracer mass balance calculations are used to evaluate the rate and magnitude of CO2 and H2S mineralization in the subsurface, with indications that mineralization of carbon and sulfur occurs within months. [1] Gunnsarsson, I., et al. (2017). Rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur. Manuscript submitted for publication. [2] Matter, J., et al. (2016). Rapid

  17. Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands

    International Nuclear Information System (INIS)

    Vijgen, L.; Nitert, M.; Buijtendijk, B.; Van Dalen, A.

    2009-10-01

    The DCMR Environmental Protection Agency Rijnmond in the Netherlands conducted an Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands, in cooperation with the involved safety and supervision authorities. The following aspects of the entire storage project and its safety issues have been examined: the compressor station in Pernis; the underground pipes between the compressor station and the injection locations; and the injection locations Barendrecht-Ziedewij and Barendrecht. [nl

  18. Your View or Mine: Spatially Quantifying CO2 Storage Risk from Various Stakeholder Perspectives

    Science.gov (United States)

    Bielicki, J. M.; Pollak, M.; Wilson, E.; Elliot, T. R.; Guo, B.; Nogues, J. P.; Peters, C. A.

    2011-12-01

    CO2 capture and storage involves injecting captured CO2 into geologic formations, such as deep saline aquifers. This injected CO2 is to be "stored" within the rock matrix for hundreds to thousands of years, but injected CO2, or the brine it displaces, may leak from the target reservoir. Such leakage could interfere with other subsurface activities-water production, energy production, energy storage, and waste disposal-or migrate to the surface. Each of these interferences will incur multiple costs to a variety of stakeholders. Even if injected or displaced fluids do not interfere with other subsurface activities or make their way to the surface, costs will be incurred to find and fix the leak. Consequently, the suitability of a site for CO2 storage must therefore include an assessment of the risk of leakage and interference with various other activities within a three-dimensional proximity of where CO2 is being injected. We present a spatial analysis of leakage and interference risk associated with injecting CO2 into a portion of the Mount Simon sandstone in the Michigan Basin. Risk is the probability of an outcome multiplied by the impact of that outcome (Ro=po*Io). An outcome is the result of the leakage (e.g., interference with oil production), and the impact is the cost associated with the outcome. Each outcome has costs that will vary by stakeholder. Our analysis presents CO2 storage risk for multiple outcomes in a spatially explicit manner that varies by stakeholder. We use the ELSA semi-analytical model for estimating CO2 and brine leakage from aquifers to determine plume and pressure front radii, and CO2 and brine leakage probabilities for the Mount Simon sandstone and multiple units above it. Results of ELSA simulations are incorporated into RISCS: the Risk Interference Subsurface CO2 Storage model. RISCS uses three-dimensional data on subsurface geology and the locations of wells and boreholes to spatially estimate risks associated with CO2 leakage from

  19. 3rd Sino-German Conference “Underground Storage of CO2 and Energy”

    CERN Document Server

    Xie, Heping; Were, Patrick

    2013-01-01

    Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group “Underground Storage of CO2 and Energy”, is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3rd Sino-German conference on the theme “Clean Energy Systems in the Subsurface: Production, Storage and Conversion”.   This volume is a collection of diverse quality scientific works from different perspectives elucidating on the current developments in CO2 geologic sequestration research to reduce greenhouse emissions including measures to monitor surface leakage, groundwater quality and the integrity of caprock, while ensuring a sufficient supply of clean energy. The contributions herein have been structured into 6 major thematic research themes: Integrated Energy and Environmental Utilization of Geo-reservoirs: Law, Risk Management & Monitoring CO2 for Enhanced Gas and Oil Recovery, Coa...

  20. Element mobilization and immobilization from carbonate rocks between CO 2 storage reservoirs and the overlying aquifers during a potential CO 2 leakage

    Energy Technology Data Exchange (ETDEWEB)

    Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew; Kukkadapu, Ravi K.; Qafoku, Odeta; Bacon, Diana H.; Brown, Christopher F.

    2018-04-01

    Despite the numerous studies on changes within the reservoir following CO2 injection and the effects of CO2 release into overlying aquifers, little or no literature is available on the effect of CO2 release on rock between the storage reservoirs and subsurface. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO2, liquid analysis showed an increase of major elements (e.g., Ca, and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower concentrations were observed in N2 controls. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.

  1. Optimising geological storage of CO2 by development of multiple injection sites in regionally extensive storage sandstones

    Science.gov (United States)

    Akhurst, Maxine; McDermott, Christopher; Williams, John; Mackay, Eric; Jin, Min; Tucker, Owain; Mallows, Tom; Hannis, Sarah; Pearce, Jonathan

    2016-04-01

    Carbon capture, transport and storage (CCS) is considered a key technology to provide secure, low-carbon energy supply and industrial processes to reduce the greenhouse gas emissions that contribute to the adverse effects of climatic change. Geological storage of carbon dioxide (CO2), captured during hydrocarbon production at the Sleipner Field, in strata beneath the Norwegian sector of the North Sea has been in operation since 1996. Projects to store CO2 captured at power plants in strata underlying the North Sea are currently in design. Storage of the CO2 is planned in depleted hydrocarbon fields or regionally extensive sandstones containing brine (saline aquifer sandstones). The vast majority of the UK potential storage resource is within brine-saturated sandstone formations. The sandstone formations are each hundreds to thousands of square kilometres in extent and underlie all sectors of the North Sea. The immense potential to store CO2 in these rocks can only be fully achieved by the operation of more than one injection site within each formation. Here we report an investigation into the operation of more than one injection site within a storage formation using a UK North Sea case study of the Captain Sandstone and the included Goldeneye Field, which is part of the mature hydrocarbon province offshore Scotland. Research by the CO2MultiStore project was targeted to increase understanding and confidence in the operation of two sites within the Captain Sandstone. Methods were implemented to reduce the effort and resources needed to characterise the sandstone, and increase understanding of its stability and performance during operation of more than one injection site. Generic learning was captured throughout the research relevant to the characterisation of extensive storage sandstones, management of the planned injection operations and monitoring of CO2 injection at two (or more) sites within any connected sandstone formation. The storage of CO2 can be optimised

  2. Frictional and transport properties of simulated faults in CO2 storage reservoirs and clay-rich caprocks

    NARCIS (Netherlands)

    Bakker, Elisenda

    2017-01-01

    In order to mitigate and meet CO2 emission regulations, long-term CO2 storage in hydrocarbon reservoirs is one of the most attractive large-scale options. To ensure save anthropogenic storage, it is important to maintain the sealing integrity of potential storage complexes. It is therefore

  3. Near-future perspective of CO2 aquifer storage in Japan: Site selection and capacity

    International Nuclear Information System (INIS)

    Xiaochun Li; Ohsumi, T.; Koide, H.; Akimoto, K.; Kotsubo, H.

    2005-01-01

    Japan has started a 5-year national R and D project titled 'Underground Storage of Carbon Dioxide' to reduce CO 2 emissions into the atmosphere. One of the targets of the project is to select a few preferred storage sites as candidates for large-scale demonstration tests in the next phase, and for commercial use in the near future. For this purpose, we have ranked the sites in terms of capacity potential and CO 2 supply potential, both of which significantly affect the storage economics. Here, the supply potential for a storage site is characterized by the annual amount of the stationary emission sources and the site-source distance; that is, how much CO 2 is available and how far away it is. In total, 69 sites on land and offshore and 113 fossil fuel fired power plants are being considered. Finally, using the data on capacities and supply potentials, the sites are graded into three ranks. As a result, a map that shows the rankings of each site has been made. The sites in rank 1 are recommended as near-future candidate sites. These sites have a comparatively large capacity and can obtain a reasonable amount of CO 2 from nearby sources without requiring a main pipeline. (author)

  4. Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS)

    International Nuclear Information System (INIS)

    Garg, Amit; Shukla, P.R.

    2009-01-01

    Coal is the abundant domestic energy resource in India and is projected to remain so in future under a business-as-usual scenario. Using domestic coal mitigates national energy security risks. However coal use exacerbates global climate change. Under a strict climate change regime, coal use is projected to decline in future. However this would increase imports of energy sources like natural gas (NG) and nuclear and consequent energy security risks for India. The paper shows that carbon dioxide (CO 2 ) capture and storage (CCS) can mitigate CO 2 emissions from coal-based large point source (LPS) clusters and therefore would play a key role in mitigating both energy security risks for India and global climate change risks. This paper estimates future CO 2 emission projections from LPS in India, identifies the potential CO 2 storage types at aggregate level and matches the two into the future using Asia-Pacific Integrated Model (AIM/Local model) with a Geographical Information System (GIS) interface. The paper argues that clustering LPS that are close to potential storage sites could provide reasonable economic opportunities for CCS in future if storage sites of different types are further explored and found to have adequate capacity. The paper also indicates possible LPS locations to utilize CCS opportunities economically in future, especially since India is projected to add over 220,000 MW of thermal power generation capacity by 2030.

  5. Climate, CO2 storage, biofuels and nuclear energy. Media analysis April 2010

    International Nuclear Information System (INIS)

    Siraa, T.

    2010-01-01

    This media analysis focuses on the discussions that are held about climate policy, CO2 storage, biofuels and nuclear energy in the written press in the month of April. It is a qualitative analysis that focuses on the viewpoints of various social actors as expressed in the media. The sources used include the daily newspapers and opinion newspapers. [nl

  6. MiReCOL: developing corrective measures for CO2 storage

    NARCIS (Netherlands)

    Neele, F.P.; Grimstadt, A.A.; Fleury, M.; Liebscher, A.; Korre, A.; Wilkinson, M.

    2014-01-01

    CO2 capture, transport and storage (CCS) has the potential to significantly reduce the carbon emission that follows from the use of fossil fuels in power production and industry. Integrated demo-scale projects are currently being developed to demonstrate the feasibility of CCS and the first such

  7. Comparing CO2 storage and advection conditions at night at different carboeuroflux sites

    Czech Academy of Sciences Publication Activity Database

    Aubinet, M.; Berbigier, P.; Bernhofer, Ch.; Cescatti, A.; Feigenwinter, C.; Granier, A.; Grunwald, TH; Havránková, Kateřina; Heinesch, B.; Longdoz, B.; Marcolla, B.; Montagnani, L.; Sedlák, Pavel

    2005-01-01

    Roč. 116, č. 1 (2005), s. 63-94 ISSN 0006-8314 Institutional research plan: CEZ:AV0Z60870520 Keywords : advection * CO2 storage * forest ecosystems Subject RIV: GK - Forestry Impact factor: 1.414, year: 2005

  8. Leak detection of CO2 pipelines with simple atmospheric CO2 sensors for carbon capture and storage

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Hensen, Arjan; Meijer, Harro A. J.

    2013-01-01

    This paper presents a field test performed with five relatively simple CO2 sensors (Vaisala Carbocap GMP343) that were placed for more than one year in a field in Ten Post, Groningen, The Netherlands. Aim was to investigate their potential use in monitoring pipelines transporting CO2 for carbon

  9. Clean coal technologies. The capture and geological storage of CO2 - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    There is no longer any doubt about the connection between carbon dioxide emissions of human origin and global warming. Nearly 40% of world CO 2 emissions are generated by the electricity production sector, in which the combustion of coal - developing at a roaring pace, especially in China - accounts for a good proportion of the total. At a time when the reduction of greenhouse gases has become an international priority, this growth is a problem. Unless CO 2 capture and storage technologies are implemented, it will be very difficult to contain global warming

  10. Simplified models of transport and reactions in conditions of CO2 storage in saline aquifers

    Science.gov (United States)

    Suchodolska, Katarzyna; Labus, Krzysztof

    2016-04-01

    Simple hydrogeochemical models may serve as tools of preliminary assessment of CO2 injection and sequestraton impact on the aquifer and cap-rocks. In order to create models of reaction and transport in conditions of CO2 injection and storage, the TOUGHREACT simulator, and the Geochemist's Workbench software were applied. The chemical composition of waters for kinetic transport models based on the water - rock equilibrium calculations. Analyses of reaction and transport of substances during CO2 injection and storage period were carried out in three scenarios: one-dimensional radial model, and two-dimensional model of CO2 injection and sequestration, and one-dimensional model of aquifer - cap-rock interface. Modeling was performed in two stages. The first one simulated the immediate changes in the aquifer and insulating rocks impacted by CO2 injection (100 days in case of reaction model and 30 years in transport and reaction model), the second - enabled assessment of long-term effects of sequestration (20000 years). Reactions' quality and progress were monitored and their effects on formation porosity and sequestration capacity in form of mineral, residual and free phase of CO2 were calculated. Calibration of numerical models (including precipitation of secondary minerals, and correction of kinetics parameters) describing the initial stage of injection, was based on the experimental results. Modeling allowed to evaluate the pore space saturation with gas, changes in the composition and pH of pore waters, relationships between porosity and permeability changes and crystallization or dissolution minerals. We assessed the temporal and spatial extent of crystallization processes, and the amount of carbonates trapping. CO2 in mineral form. The calculated sequestration capacity of analyzed formations reached n·100 kg/m3 for the: dissolved phase - CO(aq), gas phase - CO2(g) and mineral phase, but as much as 101 kg/m3 for the supercritical phase - SCCO2. Processes of gas

  11. The potential of geological storage of CO2 in Austria: a techno-economic assessment

    Science.gov (United States)

    Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy

    2014-05-01

    An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a combined emission of just over 20Mt/y. According to the IEA, CO2 capture and geological storage (CCS) can reduce the global CO2 emission until 2050 by 17%. A correct assessment of CCS needs to start with the storage potential. Prior to this study, only general estimates of the theoretical capacity of Austrian reservoirs were available, thus, up until now, the realistic potential for CCS technology has not been assessed. Both for policy and industry, an assessment of the matched capacity is required, which is the capacity that actually will be used in CCS projects. This hurdle can be taken by applying a recently developed methodology (Welkenhuysen et al., 2013). This policy support system (PSS) consists of two parts, PSS Explorer and PSS III simulator. In brief, the methodology is based on expert judgements of potential reservoirs. These assessments can provide the best available data, including the expert's experience and possibly confidential data, without disclosing specific data. The geo-techno-economic calculation scheme PSS Explorer uses the expert input to calculate for each individual reservoir an assessment of the practical capacity (as probability density functions), in function of an acceptable price for storage. This practical capacity can then be used by the techno-economic PSS III simulator to perform advanced source-sink matching until 2050 and thus provide the matched reservoir capacity. The analysed reservoirs are 7 active or abandoned oil and gas reservoirs in Austria. The simulation of the electricity and iron & steel sector of Austria resulted in the estimation of the geological storage potential, taking into account geological, technological and

  12. Geochemistry and Age Dating of Ancient and Modern CO2 -rich Hydrothermal Systems as Natural Analogues for CO2 storage: Examples from Australia and Eastern Mediterranean

    Science.gov (United States)

    Uysal, I.; Golding, S.; Esterle, J.; Feng, Y.; Zhao, J.

    2008-12-01

    We investigated physico-chemical conditions during mineral authigenesis in CO2-rich ancient and recent hydrothermal environments in Eastern Australia (Gunnedah and Bowen Basins) and Turkey, respectively. We performed Rb-Sr and U-series dating of clay-carbonate associations and travertine veins respectively to evaluate the degassing and storage history of CO2. Intense carbonate veining and coal seam cleat mineralisation in the Gunnedah Basin took place as a result of heat and CO2 release associated with magmatism during the breakup of Gondwana in the Late Cretaceous. Widespread carbonate veining and cementation in the Bowen Basin occurred as products of basin-wide CO2 rich meteoric hydrothermal fluids during the Late Triassic extension. CO2 has largely been used for carbonate precipitation (calcite, siderite, ankerite and dawsonite) in eastern Australian basins; however, some high proportion of CO2 has been stored in coal seams as adsorbed molecules on coal. Significant CO2 degassing is common in geothermal fields in Turkey, as manifested by recent deposition of travertine pools and terraces as well as travertine vein networks in damage zones of active major fault systems. Trace element geochemistry indicates that transient ascent of CO2-bearing fluids during seismic strain cycles without significant interaction with basement and host rocks resulted in rapid precipitation of the vein travertine near the surface. Such veins and associated breccias formed by hydraulic fracturing in response to overpressure of CO2-rich fluids. Correlation of high-precision U-series ages with global/regional climate events indicates that late Quaternary climate variability may have controlled the geothermal water circulation that regulates CO2 accumulation and the generation of CO2 over-pressurised reservoirs and their behaviour during seismic events.

  13. Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide

    International Nuclear Information System (INIS)

    Holloway, S.; Pearce, J.M.; Hards, V.L.; Ohsumi, T.; Gale, J.

    2007-01-01

    Carbon dioxide (CO 2 ) capture and storage has the potential to reduce CO 2 emissions from fossil fuel combustion. Although leakage from monitored CO 2 injection sites has been minimal to non-existent, experience from the natural gas storage industry suggests that, if it becomes a widely deployed technology, leaks may be expected from some storage sites. Natural occurrences of CO 2 in the geosphere, some of which have been exploited, provide insights into the types of emissions that might be expected from anthropogenic CO 2 storage sites. CO 2 emission sites are commonly found in clusters in CO 2 -prone geological provinces: the most common natural emissions sites in sedimentary basins consist of carbonated springs and mofettes. These represent at worst only a local hazard. In volcanic and hydrothermal provinces, more energetic emissions may occur due to active supply from degassing magma. These include rare, sudden emissions from fissures and craters that have caused fatalities. It is unlikely that such provinces would be considered for CO 2 storage. Major lake overturn events such as occurred at Lake Nyos in 1986 are considered highly unlikely to occur as a result of CO 2 storage, not least because CO 2 levels in lake waters can be monitored and remediated. Natural CO 2 fields indicate that under favourable conditions CO 2 can be retained in the subsurface for millions of years. The main risk from man-made CO 2 storage sites that does not have any close analogy in nature is considered to be a well blowout. A blowout that took place at a natural CO 2 field provides some indication of the likely hazard. (author)

  14. Current Travertines Precipitation from CO2-rich Groundwaters as an alert of CO2 Leakages from a Natural CO2 Storage at Ganuelas-Mazarron Tertiary Basin (Murcia, Spain)

    International Nuclear Information System (INIS)

    Rodrigo-Naharro, J.; Delgado, A.; Herrero, M. J.; Granados, A.; Perez del Villar, L.

    2013-01-01

    Carbon capture and storage technologies represent the most suitable solutions related to the high anthropogenic CO 2 emissions to the atmosphere. As a consequence, monitoring of the possible CO 2 leakages from an artificial deep geological CO 2 storage is indispensable to guarantee its safety. Fast surficial travertine precipitation related to these CO 2 leakages can be used as an alert for these escapes. Since few studies exist focusing on the long-term behaviour of an artificial CO 2 DGS, natural CO 2 storage affected by natural or artificial escapes must be studied as natural analogues for predicting the long-term behaviour of an artificial CO 2 storage. In this context, a natural CO 2 reservoir affected by artificial CO 2 escapes has been studied in this work. This study has mainly focused on the current travertines precipitation associated with the upwelling CO 2 -rich waters from several hydrogeological wells drilled in the Ganuelas-Mazarron Tertiary basin (SE Spain), and consists of a comprehensive characterisation of parent-waters and their associated carbonates, including elemental and isotopic geochemistry, mineralogy and petrography. Geochemical characterisation of groundwaters has led to recognise 4 hydrofacies from 3 different aquifers. These groundwaters have very high salinity and electrical conductivity; are slightly acid; present high dissolved inorganic carbon (DIC) and free CO 2 ; are oversaturated in both aragonite and calcite; and dissolve, mobilize and transport low quantities of heavy and/or toxic elements. Isotopic values indicate that: i) the origin of parent-waters is related to rainfalls from clouds originated in the Mediterranean Sea or continental areas; ii) the origin of C is mainly inorganic; and iii) sulphate anions come mainly from the dissolution of the Messinian gypsum from the Tertiary Basin sediments. Current travertines precipitation seems to be controlled by a combination of several factors, such as: i) a fast decrease of the

  15. ULTimateCO2 - State of the art report. Dealing with uncertainty associated with long-term CO2 geological storage

    International Nuclear Information System (INIS)

    2014-01-01

    ULTimateCO2, a four-year collaborative project financed by the 7. Framework Programme and coordinated by BRGM, aims to shed more light on the long-term processes associated with the geological storage of CO 2 . ULTimateCO2 unites 12 partners (research institutes, universities, industrialists) and a varied panel of experts (NGOs, national authority representatives, IEAGHG,...). Based on a multidisciplinary approach, and bringing together laboratory experiments, numerical modelling and natural analogue field studies, ULTimateCO2 will increase our understanding of the long-term effects of CO 2 Capture and Storage (CCS) in terms of hydrodynamics, geochemistry, mechanics of the storage formations and their vicinity. The report contains the partners' pooled knowledge and provides a view of the current state-of-the-art for the issues addressed by this project: - The long-term reservoir trapping efficiency (WP3); - The long-term sealing integrity of faulted and fractured cap-rock (WP4); - The near-well leakage characterisation and chemical processes (WP5); - The long-term behavior of stored CO 2 looking at the basin scale (WP2); - Uncertainty assessment (WP6). Each chapter is divided into two sections: (i) a summary which explains in 'simple words' the main issues and objectives of the WP, and (ii) a current state of the art section which provides a more sound review on the specific studied processes. The aim is to provide answers to pertinent questions from a variety of users, particularly project owners, site operators and national authorities, about their exposure to uncertainty downstream of closure of a CO 2 geological storage site

  16. Impact of capillary hysteresis and trapping on vertically integrated models for CO2 storage

    Science.gov (United States)

    Doster, F.; Nordbotten, J. M.; Celia, M. A.

    2013-12-01

    Vertically integrated models are frequently applied to study subsurface flow related to CO2 storage scenarios in saline aquifers. In this paper, we study the impact of capillary-pressure hysteresis and CO2 trapping on the integrated constitutive parameter functions. Our results show that for the initial drainage and a subsequent imbibition, trapping is the dominant contributor to hysteresis in integrated models. We also find that for advective processes like injection and plume migration in a sloped aquifer the correct treatment of the hysteretic nature of the capillary fringe is likely of secondary importance. However, for diffusive/dispersive processes such as a redistribution of the CO2 plume due to buoyancy and capillary forces, the hysteretic nature of the capillary fringe may significantly impact the final distribution of the fluids and the timescale of the redistribution.

  17. Preliminary assessments of CO2 storage in carbonate formations: a case study from Malaysia

    Science.gov (United States)

    Raza, Arshad; Gholami, Raoof; Rezaee, Reza; Bing, Chua Han; Nagarajan, Ramasamy; Hamid, Mohamed Ali

    2017-06-01

    The preliminary assessment of depleted reservoirs prior to the injection of CO2 is an essential step to ensure the safety and success of storage projects. Several studies have provided a preliminary assessment of depleted reservoirs as a sequestration practice. However, the screening criteria used in these studies were not able to consider all of the aspects of a storage site. The aim of this paper is to provide a reservoir-scale evaluation approach for long-term storage practice in an offshore carbonate field located in Malaysia. Recently developed screening criteria that cover the key aspects of storage sites, such as capacity, injectivity, trapping mechanisms, and containment, are taken into consideration for the purpose of this study. The results obtained suggest that the reservoir has good potential to be a storage place for CO2, although the compaction behavior and aquifer supports of the reservoir might cause some difficulties. It is, therefore, recommended that a series of experimental and numerical studies on different aspects of storage sites be performed to ensure that injectivity is not a problem when it comes to the implementation stage.

  18. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    Science.gov (United States)

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with

  19. The Baltic Basin: structure, properties of reservoir rocks, and capacity for geological storage of CO2

    Directory of Open Access Journals (Sweden)

    Vaher, Rein

    2009-12-01

    Full Text Available Baltic countries are located in the limits of the Baltic sedimentary basin, a 700 km long and 500 km wide synclinal structure. The axis of the syneclise plunges to the southwest. In Poland the Precambrian basement occurs at a depth of 5 km. The Baltic Basin includes the Neoproterozoic Ediacaran (Vendian at the base and all Phanerozoic systems. Two aquifers, the lower Devonian and Cambrian reservoirs, meet the basic requirements for CO2 storage. The porosity and permeability of sandstone decrease with depth. The average porosity of Cambrian sandstone at depths of 80–800, 800–1800, and 1800–2300 m is 18.6, 14.2, and 5.5%, respectively. The average permeability is, respectively, 311, 251, and 12 mD. Devonian sandstone has an average porosity of 26% and permeability in the range of 0.5–2 D. Prospective Cambrian structural traps occur only in Latvia. The 16 largest ones have CO2 storage capacity in the range of 2–74 Mt, with total capacity exceeding 400 Mt. The structural trapping is not an option for Lithuania as the uplifts there are too small. Another option is utilization of CO2 for enhanced oil recovery (EOR. The estimated total EOR net volume of CO2 (part of CO2 remaining in the formation in Lithuania is 5.6 Mt. Solubility and mineral trapping are a long-term option. The calculated total solubility trapping capacity of the Cambrian reservoir is as high as 11 Gt of CO2 within the area of the supercritical state of carbon dioxide.

  20. Pore-scale modeling of wettability effects on CO2-brine displacement during geological storage

    Science.gov (United States)

    Basirat, Farzad; Yang, Zhibing; Niemi, Auli

    2017-11-01

    Wetting properties of reservoir rocks and caprocks can vary significantly, and they strongly influence geological storage of carbon dioxide in deep saline aquifers, during which CO2 is supposed to displace the resident brine and to become permanently trapped. Fundamental understanding of the effect of wettability on CO2-brine displacement is thus important for improving storage efficiency and security. In this study, we investigate the influence of wetting properties on two-phase flow of CO2 and brine at the pore scale. A numerical model based on the phase field method is implemented to simulate the two-phase flow of CO2-brine in a realistic pore geometry. Our focus is to study the pore-scale fluid-fluid displacement mechanisms under different wetting conditions and to quantify the effect of wettability on macroscopic parameters such as residual brine saturation, capillary pressure, relative permeability, and specific interfacial area. Our simulation results confirm that both the trapped wetting phase saturation and the normalized interfacial area increase with decreasing contact angle. However, the wetting condition does not appear to influence the CO2 breakthrough time and saturation. We also show that the macroscopic capillary pressures based on the pressure difference between inlet and outlet can differ significantly from the phase averaging capillary pressures for all contact angles when the capillary number is high (log Ca > -5). This indicates that the inlet-outlet pressure difference may not be a good measure of the continuum-scale capillary pressure. In addition, the results show that the relative permeability of CO2 can be significantly lower in strongly water-wet conditions than in the intermediate-wet conditions.

  1. Applications of geological labs on chip for CO2 storage issues

    International Nuclear Information System (INIS)

    Morais, Sandy

    2016-01-01

    CO 2 geological storage in deep saline aquifers represents a mediation solution for reducing the anthropogenic CO 2 emissions. Consequently, this kind of storage requires adequate scientific knowledge to evaluate injection scenarios, estimate reservoir capacity and assess leakage risks. In this context, we have developed and used high pressure/high temperature micro-fluidic tools to investigate the different mechanisms associated with CO 2 geological storage in deep saline aquifers. The silicon-Pyrex 2D porous networks (Geological Labs On Chips) can replicate the reservoir p,T conditions (25 ≤ T ≤ 50 C, 50 ≤ p ≤ 10 MPa), geological and topological properties. This thesis manuscript first highlights the strategies developed during this work to fabricate the GLoCs and to access to global characteristics of our porous media such as porosity and permeability, which are later compared to numerical modelling results. The carbon dioxide detection in GLoCs mimicking p,T conditions of geological reservoirs by using the direct integration of optical fiber for IR spectroscopy is presented. I then detail the strategies for following the dissolution of carbonates in GLoCs with X-rays laminography experiments.Then, the manuscript focuses on the use of GLoCs to investigate each CO 2 trapping mechanism at the pore scale. The direct optical visualization and image processing allow us to follow the evolution of the injected CO 2 /aqueous phase within the reservoir, including displacement mechanisms and pore saturation levels. Eventually, I present the ongoing works such as experiments with reactive brines and hydrates formations in porous media [fr

  2. CO2 capture and storage in the subsurface - A technological pathway for combating climate change

    International Nuclear Information System (INIS)

    2007-10-01

    The Earth is warning abnormally. The guilty parties are so-called 'greenhouse gases' (GHG), the main one being carbon dioxide (CO 2 ). Produced in large quantities by human activities such as transportation, domestic uses and industry, this gas is essentially given off when fossil fuels - coal, oil or gas - are burned. In addition to efforts to reduce energy consumption and develop renewable energy sources, CO 2 capture and storage emerges as an option insofar as fossil fuels will continue to be exploited. Since release of the IPCC special report in 2005, mobilization has flourished worldwide for the development of this technological pathway enabling the use of fossil fuels without CO 2 emissions, thus biding time until the arrival of alternate energy resources. This brochure goes back over the context of greenhouse gas emissions reductions and addresses at length the achievements and projects in the field of CO 2 capture and storage. It also provides a detailed description of on-going technological research and development programmes, highlighting both accomplishments and orientations where progress is expected. It takes stock of recent progress, particularly in France and Europe: - the consideration by political bodies of this option that contributes to reducing greenhouse gas emissions, - the first industrial operations worldwide, - the new European demonstration projects in Europe to generate electricity and produce hydrogen or steam, - the mounting interest amongst France's industry outside the energy sector: steel sector, cement production, waste processing, bio-fuel production, - the most pertinent achievements and new research initiatives in Europe for CO 2 capture, transport and storage, - the appropriate regulations and legal framework as well as economic incentives for cutting the costs and increasing the commitments of States

  3. Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage

    Science.gov (United States)

    María Gómez Castro, Berta; Fernández López, Sheila; Carrera, Jesús; de Simone, Silvia; Martínez, Lurdes; Roetting, Tobias; Soler, Joaquim; Ortiz, Gema; de Dios, Carlos; Huber, Christophe

    2014-05-01

    Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage Berta Gómez, Sheila Fernández, Tobias Roetting, Lurdes Martínez, Silvia de Simone, Joaquim Soler, Jesus Carrera, Gema Ortiz, Christophe Huber, Carlos de Dios Proper design of CO2 geological storage facilities requires knowledge of the reservoir hydraulic parameters. Specifically, permeability controls the flux of CO2, the rate at which it dissolves, local and regional pressure buildup and the likelihood of induced seismicity. Permeability is obtained from hydraulic tests, which may yield local permeability, which controls injectivity, and large scale permeability, which controls pressure buildup at the large scale. If pressure response measurements are obtained at different elevations, hydraulic tests may also yield vertical permeability, which controls the rate at which CO2 dissolves. The objective of this work is to discuss the interpretation of hydraulic tests at deep reservoirs and the conditions under which these permeabilities can be obtained. To achieve this objective, we have built a radially symmetric model, including a skin and radial as well as vertical heterogeneity. We use this model to simulate hydraulic tests with increasing degrees of complexity about the medium response. We start by assuming Darcy flow, then add coupled mechanical effects (fractures opening) and, finally, we add thermal effects. We discuss how these affect the conventional interpretation of the tests and how to identify their presence. We apply these findings to the interpretation of hydraulic tests at Hontomin.

  4. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    Science.gov (United States)

    Zheng, Y.; Yang, Y.; Rogowska, M.; Gundlach, C.

    2017-09-01

    To achieve the 2°C target made in the 2016 Paris Agreement, it is essential to reduce the emission of CO2 into the atmosphere. Carbon Capture and Storage (CCS) has been given increasing importance over the last decade. One of the suggested methods for CCS is to inject CO2 into geologic settings such as the carbonate reservoirs in the North Sea. The final aim of our project is to find out how to control the evolution of petrophysical parameters during CO2 injection using an optimal combination of flow rate, injection pressure and chemical composition of the influent. The first step to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection. The advance in lab source based micro-CT has made it capable of in situ experiments. We used a commercial bench top micro-CT (Zeiss Versa XRM410) to study the microstructure changes of chalk during liquid injection. Flexible temporal CT resolution is essential in this study because that the time scales of coupled physical and chemical processes can be very different. The results validated the feasibility of using a bench top CT system with a pressure cell to monitor the mesoscale multiphase interactions in chalk.

  5. Dynamic Behavior of CO2 in a Wellbore and Storage Formation: Wellbore-Coupled and Salt-Precipitation Processes during Geologic CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jize Piao

    2018-01-01

    Full Text Available For investigating the wellbore flow process in CO2 injection scenarios, coupled wellbore-reservoir (WR and conventional equivalent porous media (EPM models were compared with each other. In WR model, during the injection, conditions for the wellbore including pressure and temperature were dynamically changed from the initial pressure (7.45–8.33 MPa and temperature (52.0–55.9°C of the storage formation. After 3.35 days, the wellbore flow reached the steady state with adiabatic condition; temperature linearly increased from the well-head (35°C to the well-bottom (52°C. In contrast, the EPM model neglecting the wellbore process revealed that CO2 temperature was consistently 35°C at the screen interval. Differences in temperature from WR and EPM models resulted in density contrast of CO2 that entered the storage formation (~200 and ~600 kg/m3, resp.. Subsequently, the WR model causing greater density difference between CO2 and brine revealed more vertical CO2 migration and counterflow of brine and also developed the localized salt-precipitation. Finally, a series of sensitivity analyses for the WR model was conducted to assess how the injection conditions influenced interplay between flow system and the localized salt-precipitation in the storage formation.

  6. Geological storage of CO2: risks analysis, monitoring and measures. Final report

    International Nuclear Information System (INIS)

    Abou Akar, A.; Audibert, N.; Audigane, P.; Baranger, P.; Bonijoly, D.; Carnec, C.; Czernichowski, I.; Debeglia, N.; Fabriol, H.; Foerster, E.; Gaus, I.; Le Nindre, Y.; Michel, K.; Morin, D.; Roy, S.; Sanjuan, B.; Sayedi, D.

    2005-01-01

    To use the CO 2 geological storage as a coherent solution in the greenhouse gases reduction it needs to answer to safety and monitoring conditions. In this framework the BRGM presents this study in six chapters: risks analysis, the monitoring methods (geochemistry, geophysics, aerial monitoring, biochemistry, hydrogeology), the metrology, the corrosion problems, the thermal, hydrodynamical, geochemical and mechanical simulation and the today and future regulations. (A.L.B.)

  7. Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites

    Czech Academy of Sciences Publication Activity Database

    Aubinet, M.; Berbigier, P.; Bernhofer, C.; Cescatti, A.; Feigenwinter, C.; Granier, A.; Grünwald, T.; Havránková, Kateřina; Heinesch, B.; Longdoz, B.; Marcolla, B.; Montagnani, L.; Sedlák, Pavel

    2005-01-01

    Roč. 116, - (2005), s. 63-94 ISSN 0006-8314 R&D Projects: GA AV ČR(CZ) KJB3087301 Grant - others:Carboeuroflux(XE) EVK-2-CT-1999-00032 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z6087904 Keywords : Advection * CO2 storage * Forest ecosystems Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.414, year: 2005

  8. Reactive Transport Analysis of Fault 'Self-sealing' Associated with CO2 Storage

    Science.gov (United States)

    Patil, V.; McPherson, B. J. O. L.; Priewisch, A.; Franz, R. J.

    2014-12-01

    We present an extensive hydrologic and reactive transport analysis of the Little Grand Wash fault zone (LGWF), a natural analog of fault-associated leakage from an engineered CO2 repository. Injecting anthropogenic CO2 into the subsurface is suggested for climate change mitigation. However, leakage of CO2 from its target storage formation into unintended areas is considered as a major risk involved in CO2 sequestration. In the event of leakage, permeability in leakage pathways like faults may get sealed (reduced) due to precipitation or enhanced (increased) due to dissolution reactions induced by CO2-enriched water, thus influencing migration and fate of the CO2. We hypothesize that faults which act as leakage pathways can seal over time in presence of CO2-enriched waters. An example of such a fault 'self-sealing' is found in the LGWF near Green River, Utah in the Paradox basin, where fault outcrop shows surface and sub-surface fractures filled with calcium carbonate (CaCO3). The LGWF cuts through multiple reservoirs and seal layers piercing a reservoir of naturally occurring CO2, allowing it to leak into overlying aquifers. As the CO2-charged water from shallower aquifers migrates towards atmosphere, a decrease in pCO2 leads to supersaturation of water with respect to CaCO3, which precipitates in the fractures of the fault damage zone. In order to test the nature, extent and time-frame of the fault sealing, we developed reactive flow simulations of the LGWF. Model parameters were chosen based on hydrologic measurements from literature. Model geochemistry was constrained by water analysis of the adjacent Crystal Geyser and observations from a scientific drilling test conducted at the site. Precipitation of calcite in the top portion of the fault model led to a decrease in the porosity value of the damage zone, while clay precipitation led to a decrease in the porosity value of the fault core. We found that the results were sensitive to the fault architecture

  9. A data driven model for the impact of IFT and density variations on CO2 storage capacity in geologic formations

    Science.gov (United States)

    Nomeli, Mohammad A.; Riaz, Amir

    2017-09-01

    Carbon dioxide (CO2) storage in depleted hydrocarbon reservoirs and deep saline aquifers is one of the most promising solutions for decreasing CO2 concentration in the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. Though we focus on the effect of IFT in this study as a factor influencing sealing efficiency or storage capacity, other factors such as interfacial interactions, wettability, pore radius and interfacial mass transfer also affect the mobility and storage capacity of CO2 phase in the pore space. The study of the variation of IFT is however important because the pressure needed to penetrate a pore depends on both the pore size and the interfacial tension. Hence small variations in IFT can affect flow across a large population of pores. A novel model is proposed to find the IFT of the ternary systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a multi-variant non-linear regression of experimental data. The method uses a general empirical model for the quaternary system CO2/brine-salts that can be made to coincide with experimental data for a variety of solutions. We introduce correction parameters into the model, which compensates for uncertainties, and enforce agreement with experimental data. The results for IFT show a strong dependence on temperature, pressure, and salinity. The model has been found to describe the experimental data in the appropriate parameter space with reasonable precision. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity increases with reservoir depth.

  10. Change in cap rock porosity triggered by pressure and temperature dependent CO2–water–rock interactions in CO2 storage systems

    Directory of Open Access Journals (Sweden)

    Christina Hemme

    2017-03-01

    Full Text Available Carbon capture and storage in deep geological formations is a method to reduce greenhouse gas emissions. Supercritical CO2 is injected into a reservoir and dissolves in the brine. Under the impact of pressure and temperature (P–T the aqueous species of the CO2-acidified brine diffuse through the cap rock where they trigger CO2–water–rock interactions. These geochemical reactions result in mineral dissolution and precipitation along the CO2 migration path and are responsible for a change in porosity and therefore for the sealing capacity of the cap rock. This study focuses on the diffusive mass transport of CO2 along a gradient of decreasing P–T conditions. The process is retraced with a one-dimensional hydrogeochemical reactive mass transport model. The semi-generic hydrogeochemical model is based on chemical equilibrium thermodynamics. Based on a broad variety of scenarios, including different initial mineralogical, chemical and physical parameters, the hydrogeochemical parameters that are most sensitive for safe long-term CO2 storage are identified. The results demonstrate that P–T conditions have the strongest effect on the change in porosity and the effect of both is stronger at high P–T conditions because the solubility of the mineral phases involved depends on P–T conditions. Furthermore, modeling results indicate that the change in porosity depends strongly on the initial mineralogical composition of the reservoir and cap rock as well as on the brine compositions. Nevertheless, a wide range of conditions for safe CO2 storage is identified.

  11. The effect of CO2 on the mechanical properties of the Captain Sandstone: Geological storage of CO2 at the Goldeneye field (UK)

    NARCIS (Netherlands)

    Hangx, Suzanne|info:eu-repo/dai/nl/30483579X; van der Linden, A.; Marcelis, F.; Bauer, A.

    2013-01-01

    Geological storage of CO2 in clastic reservoirs is expected to have a variety of coupled chemical-mechanical effects, which may damage the overlying caprock and/or the near-wellbore area. We performed conventional triaxial creep experiments, combined with fluid flow-through experiments (brine and

  12. ULTimateCO2 project: Field experiment in an underground rock laboratory to study the well integrity in the context of CO2 geological storage

    NARCIS (Netherlands)

    Manceau, J.C.; Audigane, P.; Claret, F.; Parmentier, M.; Tambach, T.J.; Wasch, L.; Gherardi, F.; Dimier, A.; Ukelis, O.; Jeandel, E.; Cladt, F.; Zorn, R.; Yalamas, T.; Nussbaum, C.; Laurent, A.; Fierz, T.; Pieedevache, M.

    2013-01-01

    Wells drilled through low-permeable caprock are potential connections between the CO2 storage reservoir and overlying sensitive targets like aquifers and targets located at the surface. The wellbore integrity can be compromised due to in situ operations, including drilling, completion, operations

  13. Techno-economic assessment of four CO2 storage sites = Évaluation technico-économique de quatre sites de stockage de CO2

    NARCIS (Netherlands)

    Gruson, J.F.; Serbutoviez, S.; Delprat-Jannaud, F.; Akhurst, M.; Nielsen, C.; Dalhoff, F.; Bergmo, P.; Bos, C.; Volpi, V.; Iacobellis, S.

    2015-01-01

    Carbon Capture and Storage (CCS) should be a key technology in order to achieve a decline in the CO2 emissions intensity of the power sector and other intensive industry, but this potential deployment could be restricted by cost issues as the International Energy Agency (IEA) in their last

  14. The Ca-looping process for CO2 capture and energy storage: role of nanoparticle technology

    Science.gov (United States)

    Valverde, Jose Manuel

    2018-02-01

    The calcium looping (CaL) process, based on the cyclic carbonation/calcination of CaO, has come into scene in the last years with a high potential to be used in large-scale technologies aimed at mitigating global warming. In the CaL process for CO2 capture, the CO2-loaded flue gas is used to fluidize a bed of CaO particles at temperatures around 650 °C. The carbonated particles are then circulated into a calciner reactor wherein the CaO solids are regenerated at temperatures near 950 °C under high CO2 concentration. Calcination at such harsh conditions causes a marked sintering and loss of reactivity of the regenerated CaO. This main drawback could be however compensated from the very low cost of natural CaO precursors such as limestone or dolomite. Another emerging application of the CaL process is thermochemical energy storage (TCES) in concentrated solar power (CSP) plants. Importantly, carbonation/calcination conditions to maximize the global CaL-CSP plant efficiency could differ radically from those used for CO2 capture. Thus, carbonation could be carried out at high temperatures under high CO2 partial pressure for maximum efficiency, whereas the solids could be calcined at relatively low temperatures in the absence of CO2 to promote calcination. Our work highlights the critical role of carbonation/calcination conditions on the performance of CaO derived from natural precursors. While conditions in the CaL process for CO2 capture lead to a severe CaO deactivation with the number of cycles, the same material may exhibit a high and stable conversion at optimum CaL-CSP conditions. Moreover, the type of CaL conditions influences critically the reaction kinetics, which plays a main role on the optimization of relevant operation parameters such as the residence time in the reactors. This paper is devoted to a brief review on the latest research activity in our group concerning these issues as well as the possible role of nanoparticle technology to enhance the

  15. Case study - Dynamic pressure-limited capacity and costs of CO2 storage in the Mount Simon sandstone

    Science.gov (United States)

    Anderson, Steven T.; Jahediesfanjani, Hossein

    2017-01-01

    Widespread deployment of carbon capture and storage (CCS) is likely necessary to be able to satisfy baseload electricity demand, to maintain diversity in the energy mix, and to achieve climate and other objectives at the lowest cost. If all of the carbon dioxide (CO2) emissions from stationary sources (such as fossil-fuel burning power plants, and other industrial plants) in the United States needed to be captured and stored, it could be possible to store only a small fraction of this CO2 in oil and natural gas reservoirs, including as a result of CO2 utilization for enhanced oil recovery. The vast majority would have to be stored in saline-filled reservoirs (Dahowski et al., 2005). Given a lack of long-term commercial-scale CCS projects, there is considerable uncertainty in the risks, dynamic capacity, and their cost implications for geologic storage of CO2. Pressure buildup in the storage reservoir is expected to be a primary source of risk associated with CO2 storage, and could severely limit CO2 injection rates (dynamic storage capacities). Most cost estimates for commercial-scale deployment of CCS estimate CO2 storage costs under assumed availability of a theoretical capacity to store tens, hundreds, or even thousands of gigatons of CO2, without considering geologic heterogeneities, pressure limitations, or the time dimension. This could lead to underestimation of the costs of CO2 storage (Anderson, 2017). This paper considers the impacts of pressure limitations and geologic heterogeneity on the dynamic CO2 storage capacity and storage (injection) costs. In the U.S. Geological Survey (USGS)’s National Assessment of Geologic CO2 Storage Resources (USGS, 2013), the mean estimate of the theoretical storage capacity in the Mount Simon Sandstone was about 94 billion metric tons of CO2. However, our results suggest that the pressure-limited capacity after 50 years of injection could be only about 4% of the theoretical geologic storage capacity in this formation

  16. Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. Palmiéri

    2015-02-01

    Full Text Available Constraints on the Mediterranean Sea's storage of anthropogenic CO2 are limited, coming only from data-based approaches that disagree by more than a factor of two. Here we simulate this marginal sea's anthropogenic carbon storage by applying a perturbation approach in a high-resolution regional model. Our model simulates that, between 1800 and 2001, basin-wide CO2 storage by the Mediterranean Sea has increased by 1.0 Pg C, a lower limit based on the model's weak deep-water ventilation, as revealed by evaluation with CFC-12. Furthermore, by testing a data-based approach (transit time distribution in our model, comparing simulated anthropogenic CO2 to values computed from simulated CFC-12 and physical variables, we conclude that the associated basin-wide storage of 1.7 Pg, published previously, must be an upper bound. Out of the total simulated storage of 1.0 Pg C, 75% comes from the air–sea flux into the Mediterranean Sea and 25% comes from net transport from the Atlantic across the Strait of Gibraltar. Sensitivity tests indicate that the Mediterranean Sea's higher total alkalinity, relative to the global-ocean mean, enhances the Mediterranean's total inventory of anthropogenic carbon by 10%. Yet the corresponding average anthropogenic change in surface pH does not differ significantly from the global-ocean average, despite higher total alkalinity. In Mediterranean deep waters, the pH change is estimated to be between −0.005 and −0.06 pH units.

  17. Value chain analysis of CO2 storage by using the Ecco tool: Storage economics

    NARCIS (Netherlands)

    Loeve, D.; Bos, C.; Chitu, A.; Loveseth, S.; Wahl, P.E.; Coussy, P.; Eickhoff, C.

    2013-01-01

    The ECCO Tool [1, 2] has been developed in the “ECCO – European value chain for CO2” project [3]. ECCO was a collaborating project under the 7th framework programme for research of the EU. The ECCO Tool is a software program designed to evaluate quantitatively the post-tax economics of Carbon

  18. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  19. Probabilistic modelling of rock damage: application to geological storage of CO2

    International Nuclear Information System (INIS)

    Guy, N.

    2010-01-01

    The storage of CO 2 in deep geological formations is considered as a possible way to reduce emissions of greenhouse gases in the atmosphere. The condition of the rocks constituting the reservoir is a key parameter on which rely both storage safety and efficiency. The objective of this thesis is to characterize the risks generated by a possible change of mechanical and transfer properties of the material of the basement after an injection of CO 2 . Large-scale simulations aiming at representing the process of injection of CO 2 at the supercritical state into an underground reservoir were performed. An analysis of the obtained stress fields shows the possibility of generating various forms of material degradation for high injection rates. The work is devoted to the study of the emergence of opened cracks. Following an analytical and simplified study of the initiation and growth of opened cracks based on a probabilistic model, it is shown that the formation of a crack network is possible. The focus is then to develop in the finite element code Code Aster a numerical tool to simulate the formation of crack networks. A nonlocal model based on stress regularization is proposed. A test on the stress intensity factor is used to describe crack propagation. The initiation of new cracks is modeled by a Poisson-Weibull process. The used parameters are identified by an experimental campaign conducted on samples from an actual geological site for CO 2 storage. The model developed is then validated on numerical cases, and also against experimental results carried out herein. (author)

  20. Intelligent monitoring system for real-time geologic CO2 storage, optimization and reservoir managemen

    Science.gov (United States)

    Dou, S.; Commer, M.; Ajo Franklin, J. B.; Freifeld, B. M.; Robertson, M.; Wood, T.; McDonald, S.

    2017-12-01

    Archer Daniels Midland Company's (ADM) world-scale agricultural processing and biofuels production complex located in Decatur, Illinois, is host to two industrial-scale carbon capture and storage projects. The first operation within the Illinois Basin-Decatur Project (IBDP) is a large-scale pilot that injected 1,000,000 metric tons of CO2 over a three year period (2011-2014) in order to validate the Illinois Basin's capacity to permanently store CO2. Injection for the second operation, the Illinois Industrial Carbon Capture and Storage Project (ICCS), started in April 2017, with the purpose of demonstrating the integration of carbon capture and storage (CCS) technology at an ethanol plant. The capacity to store over 1,000,000 metric tons of CO2 per year is anticipated. The latter project is accompanied by the development of an intelligent monitoring system (IMS) that will, among other tasks, perform hydrogeophysical joint analysis of pressure, temperature and seismic reflection data. Using a preliminary radial model assumption, we carry out synthetic joint inversion studies of these data combinations. We validate the history-matching process to be applied to field data once CO2-breakthrough at observation wells occurs. This process will aid the estimation of permeability and porosity for a reservoir model that best matches monitoring observations. The reservoir model will further be used for forecasting studies in order to evaluate different leakage scenarios and develop appropriate early-warning mechanisms. Both the inversion and forecasting studies aim at building an IMS that will use the seismic and pressure-temperature data feeds for providing continuous model calibration and reservoir status updates.

  1. A fast and robust TOUGH2 module to simulate geological CO2 storage in saline aquifers

    Science.gov (United States)

    Shabani, Babak; Vilcáez, Javier

    2018-02-01

    A new TOUGH2 module to simulate geological CO2 storage (GCS) in saline aquifers is developed based on the widely employed ECO2N module of TOUGH2. The newly developed TOUGH2 module uses a new non-iterative fugacity-activity thermodynamic model to obtain the partitioning of CO2 and H2O between the aqueous and gas phases. Simple but robust thermophysical correlations are used to obtain density, viscosity, and enthalpy of the gas phase. The implementation and accuracy of the employed thermophysical correlations are verified by comparisons against the national institute of standards and technology (NIST) online thermophysical database. To assess the computation accuracy and efficiency, simulation results obtained with the new TOUGH2 module for a one-dimensional non-isothermal radial and a three-dimensional isothermal system are compared against the simulation results obtained with the ECO2N module. Treating salt mass fraction in the aqueous phase as a constant, along with the inclusion of a non-iterative fugacity-activity thermodynamic model, and simple thermophysical correlations, resulted in simulations much faster than simulations with ECO2N module, without losing numerical accuracy. Both modules yield virtually identical results. Additional field-scale simulations of CO2 injection into an actual non-isothermal and heterogeneous geological formation confirmed that the new module is much faster than the ECO2N module in simulating complex field-scale conditions. Owing to its capability to handle CO2-CH4-H2S-N2 gas mixtures and its compatibility with TOUGHREACT, this new TOUGH2 module offers the possibility of developing a fast and robust TOUGHREACT module to predict the fate of CO2 in GCS sites under biotic conditions where CO2, CH4, H2S, and N2 gases can be formed.

  2. The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints

    NARCIS (Netherlands)

    Van Den Broek, Machteld; Berghout, Niels; Rubin, Edward S.

    2015-01-01

    The costs of intermittent renewable energy systems (IRES) and power storage technologies are compared on a level playing field to those of natural gas combined cycle power plants with CO2 capture and storage (NGCC-CCS). To account for technological progress over time, an "experience

  3. Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage

    Science.gov (United States)

    Zhu, C.; Ji, X.; Lu, P.

    2013-12-01

    The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15 concentration of NaCl up to 6 mol/kgH2O. The EoS allows us to predict equilibrium composition in both liquid and vapor phases, fugacity coefficients of components, and phase densities. Predictions show that inclusion of H2S in CO2 streams may lead to two-phase flow in pipelines. For H2S-CO2 mixtures at a given temperature the bubble and dew pressures decrease with increasing H2S content, while the mass density increases at low pressures and decreases at high pressures. Furthermore, the EoS can be incorporated into reservoir simulators so that the dynamic development of mixed fluid plumes in the reservoir can be simulated. Accurate modeling of fluid-mineral interactions must confront unresolved uncertainties of silicate dissolution - precipitation reaction kinetics. Most prominent among these uncertainties is the well-known lab-field apparent discrepancy in dissolution rates. Although reactive transport models that simulate the interactions between reservoir rocks and brine, and their attendant effects on porosity and permeability changes, have proliferated, whether these results have acceptable uncertainties are unknown. We have conducted a series of batch experiments at elevated temperatures and numerical simulations of coupled dissolution and precipitation reactions. The results show that taking into account of reaction coupling is able

  4. Probabilistic modeling and global sensitivity analysis for CO 2 storage in geological formations: a spectral approach

    KAUST Repository

    Saad, Bilal Mohammed

    2017-09-18

    This work focuses on the simulation of CO2 storage in deep underground formations under uncertainty and seeks to understand the impact of uncertainties in reservoir properties on CO2 leakage. To simulate the process, a non-isothermal two-phase two-component flow system with equilibrium phase exchange is used. Since model evaluations are computationally intensive, instead of traditional Monte Carlo methods, we rely on polynomial chaos (PC) expansions for representation of the stochastic model response. A non-intrusive approach is used to determine the PC coefficients. We establish the accuracy of the PC representations within a reasonable error threshold through systematic convergence studies. In addition to characterizing the distributions of model observables, we compute probabilities of excess CO2 leakage. Moreover, we consider the injection rate as a design parameter and compute an optimum injection rate that ensures that the risk of excess pressure buildup at the leaky well remains below acceptable levels. We also provide a comprehensive analysis of sensitivities of CO2 leakage, where we compute the contributions of the random parameters, and their interactions, to the variance by computing first, second, and total order Sobol’ indices.

  5. Geoelectrical image of the subsurface for CO2 geological storage in the Changhua site, Taiwan

    Science.gov (United States)

    Chiang, C. W.; Chiao, C. H.; Yang, M. W.; Yu, C. W.; Yang, C. H.; Chen, C. C.

    2016-12-01

    Global warming has recently become an important worldwide issue. Reduction of carbon dioxide (CO2) emission is recommended by Intergovernmental Panel on Climate Change, which geological storage is one of possible way to reduce the CO2 issue. The Taichung Power Plant is a coal-fired power plant operated by the Taiwan Power Company in Taichung, Taiwan, which is the largest coal-fired power station in the world. The power plant emits approximately 40 million tons annually which is also the world's largest CO2 emitter. Geophysical techniques are presented as the most useful tool to characterize the reservoir. The electrical resistivity tool was carried out applying audio-magnetotelluric (AMT) method, which could provide the depth resolution for evaluating the subsurface. A first survey of 20 AMT soundings was acquired to study the viability of the method to characterize the subsurface. Stations were deployed at approximately 500 m intervals and the data were recorded in the frequency range of 104-100 Hz. The dimensionality analysis proved the validity of the 1-D or 2-D assumption. The visualized model shows a layered electrical resistivity structure from shallow to depth of 3000 m. The preliminary result corresponds to seismic reflection and geological investigations that suggests a simple geological structure without complex geological processes in the area. It could be a suitable site for geological storage.

  6. A natural site for CO2 storage in the Little Hungarian Plain (western Hungary)

    Science.gov (United States)

    Király, C.; Berta, M.; Szamosfalvi, Á.; Falus, G.; Szabó, C.

    2012-04-01

    Reducing anthropogenic CO2 emissions is one of the greatest goals of the present and future environmental scientists. A measureable decrease in the atmospheric CO2 level can be achieved only by applying different solutions at the same time. Carbon capture and sequestration is considered to be an efficient technology in eliminating carbon-dioxide at large, stationary carbon-emitting industrial sources. To ensure the long term stability of the geologically trapped CO2, behavior of the CO2-reservoir-porewater system should be predictable on geological timescales. One of the suitable methods to describe a potential future CCS system is to approach it from an accessible system similar in extensions, geophysical and geochemical properties, and characteristic interactions. These are called natural sites; one of them is located in the western part of Hungary: this is the Répcelak-Mihályi Field. However the carbon dioxide is produced since the early 20th century for industrial purposes, the studied system is composed by 38 fields (26 CO2, 10 hydrocarbon, and 2 mixed gas). The CO2 is situated in a depth of about 1400 m in the Pannonian sedimentary sequence. These formations are formed by mainly sandstone, siltstone and clay; and were deposited in the late Miocene. In this ongoing research we are summarizing all the available databases from this area, provided by hydrocarbon exploration well logs, and core samples from the studied layers. We are collecting information to have the input data for further modeling projects. These data are about basic petrophysical properties (porosity and permeability), surface and deep zone gas analysis, and pore fluid contents. Concerning this group of information, we will be able to identify which major processes were taking place in the past in this natural CO2-H2O-rock system. These are expected to be mainly fluid-rock interactions. As a result, we have a close view on what reactions and at what rates are expected at a future CCS storage

  7. Caprock compressibility and permeability and the consequences for pressure development in CO2 storage sites

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Frykman, Peter; Nielsen, Carsten Møller

    2014-01-01

    of site qualification, as overpressure can push brine into the fresh water zone and thereby affecting aquifer performance. Pressure transmission from the reservoir into the surrounding formations, when fractures and faults are ignored, will depend on the properties and thickness of the sealing rock......Large scale CO2 storage has previously been considered for the Vedsted structure located in the Northern part of Jylland in Denmark. Pressure buildup in the Gassum reservoir and transmission to the shallower Chalk Group where the brine-fresh water interface resides need to be investigated as part...... Formation from the samples measured. The sensitivity of pressure development for the caprock permeability has been studied by varying from one to three orders of magnitude higher and one to two orders of magnitude lower than the measured permeability of 0.1μD. Injecting 60 million tons (Mt) of CO2 at a rate...

  8. CO2. Separation, storage, use. Holistic assessment in the range of energy sector and industry

    International Nuclear Information System (INIS)

    Fischedick, Manfred; Goerner, Klaus

    2015-01-01

    The technology for CO 2 capture and storage (CCS) and CO 2 usage (CCR) is illuminated in this reference book comprehensively and from different perspectives. Experts from research and industry present the CCS and CCR technology based on the scientific and technical foundations and describe the state-of-the-art. They compare energy balances for different techniques and discuss legal, economic and socio-political aspects. In scenario analyzes they demonstrate the future contribution of the technologies and present the views of the different stakeholder groups. The authors claim to inform value-free. They disclose the criteria for the assessment of individual perspectives. An important work on a current and controversial discussed technology. [de

  9. Correction: Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2017-01-01

    Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479.......Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479....

  10. Mesoscale Assessment of CO2 Storage Potential and Geological Suitability for Target Area Selection in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yujie Diao

    2017-01-01

    Full Text Available In China, south of the Yangtze River, there are a large number of carbon sources, while the Sichuan Basin is the largest sedimentary basin; it makes sense to select the targets for CO2 geological storage (CGUS early demonstration. For CO2 enhanced oil and gas, coal bed methane recovery (CO2-EOR, EGR, and ECBM, or storage in these depleted fields, the existing oil, gas fields, or coal seams could be the target areas in the mesoscale. This paper proposed a methodology of GIS superimposed multisource information assessment of geological suitability for CO2 enhanced water recovery (CO2-EWR or only storage in deep saline aquifers. The potential per unit area of deep saline aquifers CO2 storage in Central Sichuan is generally greater than 50 × 104 t/km2 at P50 probability level, with Xujiahe group being the main reservoir. CO2 storage potential of depleted gas fields is 53.73 × 108 t, while it is 33.85 × 108 t by using CO2-EGR technology. This paper recommended that early implementation of CGUS could be carried out in the deep saline aquifers and depleted gas fields in the Sichuan Basin, especially that of the latter because of excellent traps, rich geological data, and well-run infrastructures.

  11. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  12. Monitoring CO2 penetration and storage in the brine-saturated low permeable sandstone by the geophysical exploration technologies

    Science.gov (United States)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Imasato, M.

    2017-12-01

    Carbon dioxide (CO2) capture and storage (CCS) plays a vital role in reducing greenhouse gas emissions. In the northern part of Kyushu region of Japan, complex geological structure (Coalfield) is existed near the CO2 emission source and has 1.06 Gt of CO2 storage capacity. The geological survey shows that these layers are formed by low permeable sandstone. It is necessary to monitor the CO2 behavior and clear the mechanisms of CO2 penetration and storage in the low permeable sandstone. In this study, measurements of complex electrical impedance (Z) and elastic wave velocity (P-wave velocity: Vp) were conducted during the supercritical CO2 injection experiment into the brine-saturated low permeable sandstone. The experiment conditions were as follows; Confining pressure: 20 MPa, Initial pore pressure: 10 MPa, 40 °, CO2 injection rate: 0.01 to 0.5 mL/min. Z was measured in the center of the specimen and Vp were measured at three different heights of the specimen at constant intervals. In addition, we measured the longitudinal and lateral strain at the center of the specimen, the pore pressure and CO2 injection volume (CO2 saturation). During the CO2 injection, the change of Z and Vp were confirmed. In the drainage terms, Vp decreased drastically once CO2 reached the measurement cross section.Vp showed the little change even if the flow rate increased (CO2 saturation increased). On the other hand, before the CO2 front reached, Z decreased with CO2-dissolved brine. After that, Z showed continuously increased as the CO2 saturation increased. From the multi-parameter (Hydraulic and Rock-physics parameters), we revealed the detail CO2 behavior in the specimen. In the brine-saturated low permeable sandstone, the slow penetration of CO2 was observed. However, once CO2 has passed, the penetration of CO2 became easy in even for brine-remainded low permeable sandstone. We conclude low permeable sandstone has not only structural storage capacity but also residual tapping

  13. Facile and controllable synthesis of BaCO3 crystals superstructures using a CO2-storage material

    Directory of Open Access Journals (Sweden)

    Feng Sha

    2017-10-01

    Full Text Available We here report a new CO2 capture and storage method that converts CO2 into a novel alkyl carbonate salt, denoted as CO2SM, by a system consisting of equimolar 1,4-butanediol (BDO and 1,2-ethylenediamine (EDA. This novel CO2SM was then used to prepare BaCO3 crystals through a simple and fast hydrothermal synthesis under mild conditions. The CO2SM was both the source of CO2 and the modifier to regulate the nucleation and growth of BaCO3 crystals. The morphology of the BaCO3 crystals could be tuned from rod to shuttle by adjusting the key influencing factors, including CO2SM concentration, mineralization temperature, and mineralization time. A possible mechanism for the synthesis of BaCO3 crystals from the CO2SM was also presented. After the BaCO3 crystals were isolated, the filtrate of the hydrothermal reaction could be recycled to again absorb CO2 and prepare BaCO3 crystals of the same polymorph. This novel approach appears promising for preparing well-formed metal carbonates. Keywords: BaCO3, CO2-storage material, Morphology control, CO2 capture and utilization

  14. CO2 Storage Potential of the Eocene Tay Sandstone, Central North Sea, UK

    Science.gov (United States)

    Gent, Christopher; Williams, John

    2017-04-01

    Carbon Capture and Storage (CCS) is crucial for low-carbon industry, climate mitigation and a sustainable energy future. The offshore capacity of the UK is substantial and has been estimated at 78 Gt of CO2 in saline aquifers and hydrocarbon fields. The early-mid Eocene Tay Sandstone Member of the Central North Sea (CNS) is a submarine-fan system and potential storage reservoir with a theoretical capacity of 123 Mt of CO2. The Tay Sandstone comprises of 4 sequences, amalgamating into a fan complex 125km long and 40 km at a minimum of 1500 m depth striking NW-SE, hosting several hydrocarbon fields including Gannett A, B, D and Pict. In order to better understand the storage potential and characteristics, the Tay Sandstone over Quadrant 21 has been interpreted using log correlation and 3D seismic. Understanding the internal and external geometry of the sandstone as well as the lateral extent of the unit is essential when considering CO2 vertical and horizontal fluid flow pathways and storage security. 3D seismic mapping of a clear mounded feature has revealed the youngest sequence of the Tay complex; a homogenous sand-rich channel 12 km long, 1.5 km wide and on average 100 m thick. The sandstone has porosity >35%, permeability >5 D and a net to gross of 0.8, giving a total pore volume of 927x106 m3. The remaining three sequences are a series of stacked channels and interbedded mudstones which are more quiescent on the seismic, however, well logs indicate each subsequent sequence reduce in net to gross with age as mud has a greater influence in the early fan system. Nevertheless, the sandstone properties remain relatively consistent and are far more laterally extensive than the youngest sequence. The Tay Sandstone spatially overlaps several other potential storage sites including the older Tertiary sandstones of the Cromarty, Forties and Mey Members and deeper Jurassic reservoirs. This favours the Tay Sandstone to be considered in a secondary or multiple stacked

  15. Performance Analysis of Cold Energy Recovery from CO2 Injection in Ship-Based Carbon Capture and Storage (CCS

    Directory of Open Access Journals (Sweden)

    Hwalong You

    2014-11-01

    Full Text Available Carbon capture and storage (CCS technology is one of the practical solutions for mitigating the effects of global warming. When captured CO2 is injected into storage sites, the CO2 is subjected to a heating process. In a conventional CO2 injection system, CO2 cold energy is wasted during this heating process. This study proposes a new CO2 injection system that takes advantage of the cold energy using the Rankine cycle. The study compared the conventional system with the new CO2 injection system in terms of specific net power consumption, exergy efficiency, and life-cycle cost (LCC to estimate the economic effects. The results showed that the new system reduced specific net power consumption and yielded higher exergy efficiency. The LCC of the new system was more economical. Several cases were examined corresponding to different conditions, specifically, discharge pressure and seawater temperature. This information may affect decision-making when CCS projects are implemented.

  16. Natural CO2 migrations in the South-Eastern Basin of France: implications for the CO2 storage in sedimentary formations

    International Nuclear Information System (INIS)

    Rubert, Y.

    2009-03-01

    Study of natural CO 2 analogues brings key informations on the factors governing the long term stability/instability of future anthropogenic CO 2 storages. The main objective of this work, through the study of cores from V.Mo.2 well crosscutting the Montmiral natural reservoir (Valence Basin, France), is to trace the deep CO 2 migrations in fractures. Petrographic, geochemical and micro-thermometric studies of the V.Mo.2 cores were thus performed in order: 1) to describe the reservoir filling conditions and 2) to detect possible CO 2 -leakage through the sediments overlying the reservoir. Fluid inclusions from the Paleozoic crystalline basement record the progressive unmixing of a hot homogeneous aquo-carbonic fluid. The Montmiral reservoir was therefore probably fed by a CO 2 -enriched gas component at the Late Cretaceous-Paleogene. The study of the sedimentary column in V.Mo.2 well, demonstrates that the CO 2 did not migrate towards the surface through the thick marly unit (Domerian-Middle Oxfordian). These marls have acted as an impermeable barrier that prevented the upward migration of fluids. Two main stages of fluid circulation have been recognized: 1) an ante- Callovian one related to the Tethysian extension 2) a tertiary stage during which the upper units underwent a karstification, with CO 2 leakage related but which remained confined into the deeper parts of the Valence Basin. Since the Paleogene, the Montmiral reservoir has apparently remained stable, despite the Pyrenean and alpine orogeneses. This is mainly due to the efficient seal formed by the thick marly levels and also to the local structuration in faulted blocks which apparently acted as efficient lateral barriers. (author)

  17. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    Science.gov (United States)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios

  18. Experimental characterization and modelling of the alteration of fractured cement under CO2 storage conditions

    International Nuclear Information System (INIS)

    Abdoulghafour, Halidi

    2012-01-01

    The main purpose of this thesis was to characterize and to model the hydrodynamic and thermochemical processes leading to the alteration of the wellbore cement materials under borehole conditions. Percolation experiments were performed on fractured cement samples under CO 2 storage conditions (60 C and 10 MPa). Injection flow rate was dictated by the fracture aperture of each sample. CO 2 enriched brine was flowed along the fracture aperture, and permeability changes as well as chemical evolution of major cations were continuously acquired during the experiment time. Reaction paths developed by the alteration of the cement were characterized using microtomography and ESEM images. The experiments conducted using samples presenting large fracture apertures during 5 h showed that permeability was maintained constant during the experiment time. Three reacted layers were displaying by the alteration of portlandite and CSH. Long term experiment (26 h) conducted with large initial fracture aperture showed a decrease of the permeability after 15 hours of CO 2 exposure. Otherwise, experiments performed on samples presenting narrow apertures indicated the conversion of portlandite and CSH to calcite leading to the permeability reduction and the fracture clogging. Assemblages of phases and chemical changes were modelled using GEMS-PSI speciation code. We studied also using a coupled transport-reactive model the conditions leading to the cement alteration and the formation of associated layers. (author)

  19. Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage

    International Nuclear Information System (INIS)

    Rashidi, Ali Morad; Kazemi, Davood; Izadi, Nosrat; Pourkhalil, Mahnaz; Jorsaraei, Abbas; Lotfi, Roghayeh; Ganji, Enseyeh

    2016-01-01

    Nanoporous activated carbons, as adsorbent for CO 2 storage, were prepared from walnut shells via two chemical processes including phosphoric acid treatment and KOH activation at high temperature. Specific surface area and porosities were controlled by KOH concentration and activation temperature. The obtained adsorbents were characterized by N2 adsorption at 77.3 K. Their carbon dioxide adsorption capacities were measured at different pressures at 290 K by using volumetric adsorption equipment. The KOH-treated nanoporous carbons typically led to the production of high specific surface areas and high micropore volumes and showed better performance for CO 2 adsorptions. The maximum experimental value for adsorption capacity happened when pressure increased from 5 to 10 bar (1.861- 2.873mmol·g -1 ). It was found that in order to improve the highest capacity of CO 2 adsorption for KOH-modified carbon (9.830-18.208mmol·g -1 ), a KOH: C weight ratio of 3.5 and activation temperature of 973 K were more suitable for pore development and micro-mesopore volume enhancement.

  20. Assessing the potential of utilisation and storage strategies for post-combustion CO2 emissions reduction

    Directory of Open Access Journals (Sweden)

    Peter eStyring

    2015-03-01

    Full Text Available The emissions reduction potential of three carbon dioxide handling strategies for post-combustion capture are considered. These are carbon capture and sequestration/storage (CCS, enhanced hydrocarbon recovery (EHR and carbon dioxide utilization (CDU to produce synthetic oil. This is performed using common and comparable boundary conditions including net CO2 sequestered based on equivalent boundary conditions. This is achieved using a 'cradle to grave approach' where the final destination and fate of any product is considered. The input boundary is pure CO2 that has been produced using a post-combustion capture process as this is common between all processes. The output boundary is the emissions resulting from any product produced with the assumption that the majority of the oil will go to combustion processes. We also consider the 'cradle to gate' approach where the ultimate fate of the oil is not considered as this is a boundary condition often applied to EHR processes. Results show that while CCS can make an impact on CO2 emissions, CDU will have a comparable effect whilst generating income while EHR will ultimately increase net emissions. The global capacity for CDU is also compared against CCS using data based on current and planned CCS projects. Analysis shows that current CDU represent a greater volume of capture than CCS processes and that this gap is likely to remain well beyond 2020 which is the limit of the CCS projects in the database.

  1. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    Schlesinger, W.H.; Lichter, J.

    2001-01-01

    The current rise in atmospheric CO 2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO 2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO 2 concentrations (565 μ l 1 ). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  2. Uncertainty studies and risk assessment for CO2 storage in geological formations

    International Nuclear Information System (INIS)

    Walter, Lena Sophie

    2013-01-01

    Carbon capture and storage (CCS) in deep geological formations is one possible option to mitigate the greenhouse gas effect by reducing CO 2 emissions into the atmosphere. The assessment of the risks related to CO 2 storage is an important task. Events such as CO 2 leakage and brine displacement could result in hazards for human health and the environment. In this thesis, a systematic and comprehensive risk assessment concept is presented to investigate various levels of uncertainties and to assess risks using numerical simulations. Depending on the risk and the processes, which should be assessed, very complex models, large model domains, large time scales, and many simulations runs for estimating probabilities are required. To reduce the resulting high computational costs, a model reduction technique (the arbitrary polynomial chaos expansion) and a method for model coupling in space are applied. The different levels of uncertainties are: statistical uncertainty in parameter distributions, scenario uncertainty, e.g. different geological features, and recognized ignorance due to assumptions in the conceptual model set-up. Recognized ignorance and scenario uncertainty are investigated by simulating well defined model set-ups and scenarios. According to damage values, which are defined as a model output, the set-ups and scenarios can be compared and ranked. For statistical uncertainty probabilities can be determined by running Monte Carlo simulations with the reduced model. The results are presented in various ways: e.g., mean damage, probability density function, cumulative distribution function, or an overall risk value by multiplying the damage with the probability. If the model output (damage) cannot be compared to provided criteria (e.g. water quality criteria), analytical approximations are presented to translate the damage into comparable values. The overall concept is applied for the risks related to brine displacement and infiltration into drinking water

  3. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Directory of Open Access Journals (Sweden)

    Sergio E Morales

    Full Text Available Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2 emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA and activity (mRNA of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface CO2 using FACE (Free-Air CO2 Enrichment systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  4. Reaction and transport in wellbore interfaces under CO2 storage conditions: Experiments simulating debonded cement-casing interfaces

    NARCIS (Netherlands)

    Wolterbeek, T.K.T.|info:eu-repo/dai/nl/357401387; Peach, C.J.|info:eu-repo/dai/nl/082101906; Spiers, C.J.|info:eu-repo/dai/nl/304829323

    2013-01-01

    Debonding-defects at the interfaces between wellbore casing and cement are widely recognized as providing potential pathways for CO2 escape from geological storage systems. This study addresses how chemical reaction between CO2, cement and steel may affect the transport properties of such defects

  5. Diffusive leakage of brine from aquifers during CO2 geological storage

    Science.gov (United States)

    Dejam, Morteza; Hassanzadeh, Hassan

    2018-01-01

    The area of investigation in this study is designed around an improved understanding of fundamentals of the diffusive leakage of brine from a storage aquifer into overlying and underlying low permeability layers during geosequestration of carbon dioxide (CO2) through development of a theoretical model. Here, we consider a two-dimensional domain in cylindrical coordinates, comprised of an aquifer and an overburden, where the interaction between the two media is handled by imposing the continuities of pressures and fluid fluxes at the aquifer-overburden interface. This coupled problem is solved by successive implementation of the Laplace and finite Hankel transforms. The developed solutions can be used to analyze diffusive leakage of brine from the aquifer into overburden and generate type curves for average pressures in the aquifer and overburden during injection and post injection periods. The results show that the leakage rate at early times is scaled with t1/2 while it remains constant at late times. It is also shown that the average pressure in the aquifer is scaled with t for short and long times. Moreover, the average pressure in the overburden is scaled with t at late times while it is scaled with t3/2 at early times. In addition, the results reveal that factors affecting diffusive leakage rate through intact overburden during CO2 storage are, in decreasing order of significance, thickness of overburden, thickness of aquifer, aquifer to overburden permeability ratio, and aquifer to overburden porosity ratio. However, thickness of aquifer has minimal effect on diffusive leakage of brine within post injection period. To evaluate the theoretical model, case studies for two potential sites in United Kingdom, one in Lincolnshire and the other one in the Firth of Forth, are conducted. The field studies show that the diffusive leakage from the aquifer into the overburden diminishes ∼40 years after the injection has ceased for Lincolnshire while it stops after

  6. Evaluating the uncertainty in geochemical modelling for CO2 storage. The example of Ketzin.

    Science.gov (United States)

    De Lucia, Marco; Audigane, Pascal; Jacquemet, Nicolas; Kühn, Michael

    2010-05-01

    Several sources of uncertainty are associated with geochemical modelling of reservoirs considered for CO2 storage : on one hand only few available data are generally available for a particular reservoir, which are affected by measure errors, and whose representativity is in most cases questionable; on the other hand, the phenomenological description itself of the chemical fluid-rock interactions relies heavily on experimental determination of physical observables, which are summarized in a thermodynamical and chemical databases used by the numerical simulators. The latter is for example the case of the CO2 disposal in saline aquifer, where the high ionic strength of the formation fluid requires a Pitzer ion interaction model to evaluate with sufficient accuracy the activities of the considered species. Typically, parameters for Pitzer model are discordant following different authors and data related to a conspicous number of relevant ions are often unavailable or unreliable -i.e. derived for different P/T conditions or ionic strength of the solution -, which makes very difficult to estimate the accuracy of the predictions. This contribution presents our effort in evaluating the reliability of chemical simulations in the case of Ketzin on-shore CO2 storage project. Based on available fluid and mineralogic analysis, an initial equilibrium model was determined, i.e. matching both the observed fluid composition and the saturation with the mineral phases present in the sandstone layer of the Stuttgart formation which constitutes the reservoir. A sensitivity analisys based on small perturbations of such initial model was then performed, in order to assess the influence of measurement errors and possibly define a compositional range which can be assumed in spatially variable simulations. This step is then followed by the sensitivity to the Pitzer parameters that are collected in the chemical database used throughout this study; both the parameters themselves and their

  7. Characterization and modelling of a naturally fractured reservoir-caprock unit targeted for CO2 storage in arctic Norway

    NARCIS (Netherlands)

    Senger, K.; Mulrooney, M.; Schaaf, N.; Tveranger, J.; Braathen, A.; Ogata, K.; Olaussen, S.

    2017-01-01

    Successfully storing CO2 underground requires a good understanding of the subsurface at the storage site, and its robust representation in geological models. Geological models, and related simulations, provide important quantitative information on critical parameters for the optimal utilisation of

  8. The environmental impact and risk assessment of CO2 capture, transport and storage - an evaluation of the knowledge base

    NARCIS (Netherlands)

    Koornneef, J.M.; Ramirez, C.A.; Turkenburg, W.C.; Faaij, A.P.C.

    2012-01-01

    In this study, we identify and characterize known and new environmental consequences associated with CO2 capture from power plants, transport by pipeline and storage in geological formations. We have reviewed (analogous) environmental impact assessment procedures and scientific literature on

  9. The importance of CO2 capture and storage: A geopolitical discussion

    Directory of Open Access Journals (Sweden)

    Johnsson Filip

    2012-01-01

    Full Text Available The CO2 capture and storage (CCS technology is since more than ten years considered one of the key options for the future climate change mitigation. This paper discusses the implications for the further development of CCS, particularly with respect to climate change policy in an international geopolitics context. The rationale for developing CCS should be the over-abundance of fossil fuel reserves (and resources in a climate change context. From a geopolitical point, it can be argued that the most important outcome from the successful commercialisation of CCS will be that fossil fuel-dependent economies with large fossil fuel resources will find it easier to comply with stringent greenhouse gas (GHG reduction targets (i.e. to attach a price to CO2 emissions. This should be of great importance since, from a geopolitical view, the curbing on GHG emissions cannot be isolated from security of supply and economic competition between regions. Thus, successful application of CCS may moderate geopolitical risks related to regional differences in the possibilities and thereby willingness to comply with large emission cuts. In Europe, application of CCS will enhance security of supply by fuel diversification from continued use of coal, especially domestic lignite. Introduction of CCS will also make possible negative emissions when using biomass as a fuel, i.e. in so called Biomass Energy CCS (BECCS. Yet, the development of BECCS relies on the successful development of fossil fuelled CCS since BECCS in itself is unlikely to be sufficient for establishing a cost efficient CCS infrastructure for transport and storage and because BECCS does not solve the problem with the abundant resources of fossil fuels. Results from research and development of capture, transport and storage of CO2 indicate that the barriers for commercialization of CCS should not be technical. Instead, the main barriers for implementation of CCS seem to be how to reach public acceptance

  10. A Framework to Estimate CO2 Leakage associated with Geological Storage in Mature Sedimentary Basins

    Science.gov (United States)

    Celia, M. A.; Bachu, S.; Gasda, S.

    2002-12-01

    Geological storage of carbon dioxide requires careful risk analysis to avoid unintended consequences associated with the subsurface injection. Most negative consequences of subsurface injection are associated with leakage of the injected CO2 out of the geological formation into which it is injected. Such leakage may occur through natural geological features, including fractures and faults, or it may occur through human-created pathways such as existing wells. Possible leakage of CO2 through existing wells appears to be especially important in mature sedimentary basins that have been explored intensively and exploited for hydrocarbon production. In the Alberta Basin of western Canada, more than 300,000 oil and gas wells have been drilled, while in the state of Texas in the United States, more than 1,500,000 wells have been drilled. Many of these wells have been abandoned, and the information available to describe their current state is highly variable and sometimes nonexistent. Because these wells represent possible direct conduits from the injection zone to the land surface, a comprehensive assessment of leakage potential associated with these wells needs to be pursued. Analysis of leakage potential associated with existing wells must combine a data mining component with a multi-level modeling effort to assess leakage potential in a probabilistic framework. Information available for existing wells must be categorized and analyzed, and general leakage characteristics associated with wells of varying properties must be quantified. One example of a realistic target formation is the Viking Formation in Alberta, which is overlain by a thick shale layer and contains hydrocarbon in some locations. The existence of hydrocarbon in the formation indicates that the overlying shale layer is an effective barrier to flow, and therefore this is a good candidate formation for CO2 storage. However, the formation and its cap rock are punctured by approximately 180,000 wells, with

  11. Transcriptome changes in apple peel tissues during CO2 injury?symptom development under controlled atmosphere storage regimens

    OpenAIRE

    Johnson, Franklin T; Zhu, Yanmin

    2015-01-01

    Apple (Malus ? domestica Borkh.) is one of the most widely cultivated tree crops, and fruit storability is vital to the profitability of the apple fruit industry. Fruit of many apple cultivars can be stored for an extended period due to the introduction of advanced storage technologies, such as controlled atmosphere (CA) and 1-methylcyclopropane (1-MCP). However, CA storage can cause external CO2 injury for some apple cultivars. The molecular changes associated with the development of CO2 inj...

  12. Acceptability of CO2 capture and storage. A review of legal, regulatory, economic and social aspects of CO2 capture and storage

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Groenenberg, H.; Anderson, J.; Curnow, P.; Flach, T.; Flagstad, O.A.; Norton, C.; Reiner, D.; Shackley, S.

    2006-05-01

    Capture and storage of CO2 (CCS) has been studied as an option in the portfolio of climate change mitigation strategies for about 20 years. Although the technical maturity of CCS is generally less than other mitigation options, such as renewable energy or energy efficiency, many of the CCS components are generally regarded as mature enough for deployment. CCS, however, has a number of other aspects that may inhibit its deployment. The aim of the ACCSEPT project is to identify the main gaps in knowledge in the non-technical aspects of CCS, to research them, and to propose recommendations to address them. Although in the recent past several large and influential reports have been published in the field of CCS, many of them have focussed on the technical aspects of CCS. The IPCC Special Report on CCS did not have the mandate to address policy aspects and could only touch upon public perception issues. An IEA report focussed on the costs and economic aspects of CCS and touched upon regulatory and risk issues, but was at the time of publication unable to dive deep into it. This report provides a critical literature review for the non-technical aspects of CCS in the following categories: (a) Legal issues: National and international legislation relevant to CCS. Examples include national drinking water and mining laws, and the London Convention (Chapter 2). (b) Regulatory issues: National and international policies in the field of energy or climate change that can act as support mechanisms for CCS (Chapter 3). (c) Costs and economics: Addresses the question whether the current costs assumed for CCS are interpreted correctly, and reviews the assumptions made in economic models informing the policymaking process (Chapter 4). (d) Social and acceptability issues: A review of all studies currently done that focus on public perception of CCS. Methods used are questionnaires with lay public, focal group discussions, and expert polls (Chapter 5). (e) Crosscutting issues: CCS as a

  13. Integrated underground gas storage of CO2 and CH4 for renewable energy storage for a test case in China

    Science.gov (United States)

    Kühn, Michael; Li, Qi; Nakaten, Natalie, Christine; Kempka, Thomas

    2017-04-01

    Integration and further development of the energy supply system in China is a major challenge for the years to come. Part of the strategy is the implementation of a low carbon energy system based on carbon dioxide capture and storage (CCS). The innovative idea presented here is based on an extension of the power-to-gas-to-power (PGP) technology by establishing a closed carbon dioxide cycle [1]. Thereto, hydrogen generated from excess renewable energy is transformed into methane for combustion in a combined cycle gas power plant. To comply with the fluctuating energy demand, carbon dioxide produced during methane combustion and required for the methanation process as well as excess methane are temporarily stored in two underground reservoirs located close to each other [2]. Consequently, renewable energy generation units can be operated even if energy demand is below consumption, while stored energy can be fed into the grid as energy demand exceeds production [3]. We studied a show case for Xinjiang in China [4] to determine the energy demand of the entire process chain based on numerical computer simulations for the operation of the CO2 and CH4 storage reservoirs, and to ascertain the pressure regimes present in the storage formations during the injection and production phases of the annual cycle. [1] Streibel M., Nakaten N., Kempka T., Kühn M. (2013) Analysis of an integrated carbon cycle for storage of renewables. Energy Procedia 40, 202-211. doi: 10.1016/j.egypro.2013.08.024. [2] Kühn M., Streibel M., Nakaten N.C., Kempka T. (2014) Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the "Power-to-gas-to-gas-to-power" Technology. Energy Procedia 59, 9-15. doi: 10.1016/j.egypro.2014.10.342 [3] Kühn M., Nakaten N.C., Streibel M., Kempka T. (2014) CO2 Geological Storage and Utilization for a Carbon Neutral "Power-to-gas-to-power" Cycle to Even Out Fluctuations of Renewable Energy Provision. Energy Procedia 63, 8044-8049. doi: 10.1016/j.egypro.2014

  14. High Throughput Strontium Isotope Method for Monitoring Fluid Flow Related to Geological CO2 Storage

    Science.gov (United States)

    Capo, R. C.; Wall, A. J.; Stewart, B. W.; Phan, T. T.; Jain, J. C.; Hakala, J. A.; Guthrie, G. D.

    2012-12-01

    Natural isotope tracers, such as strontium (Sr), can be a unique and powerful component of a monitoring strategy at a CO2 storage site, facilitating both the quantification of reaction progress for fluid-rock interactions and the tracking of brine migration caused by CO2 injection. Several challenges must be overcome, however, to enable the routine use of isotopic tracers, including the ability to rapidly analyze numerous aqueous samples with potentially complex chemical compositions. In a field situation, it might be necessary to analyze tens of samples over a short period of time to identify subsurface reactions and respond to unexpected fluid movement in the host formation. These conditions require streamlined Sr separation chemistry for samples ranging from pristine groundwaters to those containing high total dissolved solids, followed by rapid measurement of isotope ratios with high analytical precision. We have optimized Sr separation chemistry and MC-ICP-MS methods to provide rapid and precise measurements of isotope ratios in geologic, hydrologic, and environmental samples. These improvements will allow an operator to independently prepare samples for Sr isotope analysis off-site using fast, low cost chemical separation procedures and commercially available components. Existing vacuum-assisted Sr separation procedures were modified by using inexpensive disposable parts to eliminate cross contamination. Experimental results indicate that the modified columns provide excellent separation of Sr from chemically complex samples and that Sr can be effectively isolated from problematic matrix elements (e.g., Ca, Ba, K) associated with oilfield brines and formation waters. The separation procedure is designed for high sample throughput in which batches of 24 samples can be processed in approximately 2 hours, and are ready for Sr isotope measurements by MC-ICP-MS immediately after collection from the columns. Precise Sr isotope results can be achieved by MC

  15. Experimental investigation of the Heletz shale caprocks sealing capacity: implication for CO2 geological storage integrity

    Science.gov (United States)

    Abdoulghafour, Halidi; Gouze, Philippe; Luquot, Linda; Arif, Mohamed; Iglauer, Stefan

    2017-04-01

    Using a combination of core flooding experiments and wettability measurements, we evaluate the sealing efficiency of Heletz caprock under CO2 sequestration conditions. The flow through experiments consisted of flowing CO2 enriched fluid into two micro-fractured cylindrical cores (15 mm length - 9 mm diameter, with hydraulic aperture: 2.7 µm for the sample named H18A and 13 µm for sample named H18B) and monitoring the permeability changes, the evolution of the chemistry from the inlet and outlet fluid. The changes in microstructures and mineralogy were also studied using an environmental scanning electrons microscope (ESEM) and X-ray micro-tomography (XRMT) images. The fracture permeability was found to decrease significantly in the two experiments from 14.1×10-12 m2 to 5.0×10-12 m2 for experiment H18B and from 6.5×10-13 m2 to 2.8×10-13 m2 for experiment H18A. Calcite dissolution and reconversion of k-feldspar to illite and kaolinite were the main reaction on sample H18B while "calcite precipitation" in batch condition was the dominant reaction on sample H18A. Accordingly, the decrease in permeability was induced by the dispersion of dissolution products and the re-organization of clay particles within the fracture for sample H18B as shown by micro-tomography and ESEM images. The fracture healing due to the calcite and clay mineral precipitation along the fracture was attested by ESEM image for sample H18A. The results of capillary pressure breakthrough calculated by applying the Washburn equation and the reservoir scaling method from intrusion of mercury are approximately 380 kPa and 310 kPa for H18B and H18A respectively. Although, these values are sensibly different but close to each other and in good agreement to indicate the weak storage capacity of the heletz caprock. Subsequently less than 90 m of CO2 column height can be efficiently stored in the Heletz reservoir. Thus the self-mitigation of the CO2 leakage is expected only when few quantity of CO2

  16. Could a geological storage of the CO2 emissions from Romanian power plants become a joint implementation project?

    International Nuclear Information System (INIS)

    Matei, Magdalena; Ene, Simona; Necula, Catalina; Matei, Lucian; Marinescu, Mihai

    2006-01-01

    Full text: Emissions trading is a solution that is most compatible with deregulated electricity markets. The Directive 2003/87/CE referring to CO 2 emission trading within Europe entered into force and till 31 March 2004 all the countries had to present to the Commission their national plan to comply with Directive's rules. Recent predictions of the Intergovernmental Panel on Climate Change indicate that global warming will accelerate within this century. CO 2 emitted by the burning of fossil fuels is thought to be a main driving factor of climate change. With the potential to produce power without releasing CO 2 into the atmosphere, CO 2 capturing may become an important part of the post- Kyoto strategies of many countries. Underground storage of CO 2 seems to be one of the most attractive alternative. Potential targets for CO 2 injection are: - depleted oil reservoirs, possibly in combination with enhanced oil recovery - former gas fields, possibly with additional gas production - deep aquifers containing saline, non-drinkable water - deep and unminable coal seams (exchange of absorbed methane by CO 2 with simultaneous gas production) - geothermal wells, after heat extraction from the aquifers - residual volumes of former deep coal and salt mines. An environmental political decision about the option of CO 2 underground storage has to consider forecasts about developments of global climate, societies, and economics. Due to the forthcoming emission trading there is a growing interest in underground storage options for CO 2 in Europe now. Flexible mechanisms agreed by Kyoto Protocol, namely the Project-based Joint Implementation (Art. 6) and the Emission Trading (Art. 17) could help Romania to attract investment with a long term impact on emissions reduction. The brief identification of major CO 2 emissions sources and of possible CO 2 geological storage capacities (coal mines, aquifers, geothermal wells, oil and gas fields) shows that it is very probable to

  17. Advice on health complaints with regard to CO2 storage in Barendrecht, Netherlands; Advies gezondheidsklachten naar aanleiding van CO2 opslag in Barendrecht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    The CCS project organization wants to gain insight in the measures that can be taken to prevent and treat psychosomatic complaints resulting from the intended CO2 storage in Barendrecht. The advice should contain information on how governments and the initiator should act in their communications with residents in the practical set-up of their project. Moreover, the client asked for an assessment of the nature and number of complaints to be expected. [Dutch] De projectorganisatie CCS wil inzicht in maatregelen die kunnen worden genomen ter voorkoming en behandeling van psychosomatische klachten als gevolg van de voorgenomen CO2-opslag in Barendrecht. In een advies moet tot uitdrukking komen hoe overheden en initiatiefnemer bijvoorbeeld in hun communicatie met de bewoners, bij de praktische inrichting van hun project, het beste kunnen handelen. Verder vraagt de opdrachtgever om een inschatting van de aard en omvang van de te verwachten klachten.

  18. CO2 geological storage into a lateral aquifer of an offshore gas field in the South China Sea: storage safety and project design

    Science.gov (United States)

    Zhang, Liang; Li, Dexiang; Ezekiel, Justin; Zhang, Weidong; Mi, Honggang; Ren, Shaoran

    2015-06-01

    The DF1-1 gas field, located in the western South China Sea, contains a high concentration of CO2, thus there is great concern about the need to reduce the CO2 emissions. Many options have been considered in recent years to dispose of the CO2 separated from the natural gas stream on the Hainan Island. In this study, the feasibility of CO2 storage in the lateral saline aquifer of the DF1-1 gas field is assessed, including aquifer selection and geological assessment, CO2 migration and storage safety, project design, and economic analysis. Six offshore aquifers have been investigated for CO2 geological storage. The lateral aquifer of the DF1-1 gas field has been selected as the best target for CO2 injection and storage because of its proven sealing ability, and the large storage capacity of the combined aquifer and hydrocarbon reservoir geological structure. The separated CO2 will be dehydrated on the Hainan Island and transported by a long-distance subsea pipeline in supercritical or liquid state to the central platform of the DF1-1 gas field for pressure adjustment. The CO2 will then be injected into the lateral aquifer via a subsea well-head through a horizontal well. Reservoir simulations suggest that the injected CO2 will migrate slowly upwards in the aquifer without disturbing the natural gas production. The scoping economic analysis shows that the unit storage cost of the project is approximately US26-31/ton CO2 with the subsea pipeline as the main contributor to capital expenditure (CAPEX), and the dehydration system as the main factor of operating expenditure (OPEX).

  19. The global carbon nation: Status of CO2 capture, storage and utilization

    Science.gov (United States)

    Kocs, Elizabeth A.

    2017-07-01

    As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS) plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG) emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today's global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.

  20. The global carbon nation: Status of CO2 capture, storage and utilization

    Directory of Open Access Journals (Sweden)

    Kocs Elizabeth A.

    2017-01-01

    Full Text Available As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today’s global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.

  1. Effect of salinity and pressure on the rate of mass transfer in aquifer storage of CO2

    NARCIS (Netherlands)

    Khosrokhavar, R.; Eftekhari, A.A.; Farajzadeh, R.; Wolf, K.H.A.A.; Bruining, J.

    2015-01-01

    The growing concern about global warming has increased interest in improving the technology for the geological storage of CO2 in aquifers. One important aspect for aquifer storage is the rate of transfer between the overlying gas layer and the aquifer below. It is generally accepted that density

  2. ‘Fuji’ apple (Malus domestica Borkh) volatile production during high pCO2 controlled atmosphere storage

    Science.gov (United States)

    ‘Fuji’apple [Malus sylvestris var. domestica (Borkh.) Mansf.] volatile compound dynamics were characterized during cold storage in air or at low pO2 controlled atmosphere (CA) with up to 5 kPa CO2. Volatile compounds in storage chambers were adsorbed onto solid sorbent traps and analyzed by GC-MS....

  3. A contribution to risk analysis for leakage through abandoned wells in geological CO2 storage

    DEFF Research Database (Denmark)

    Kopp, Andreas; Binning, Philip John; Johannsen, K.

    2010-01-01

    The selection and the subsequent design of a subsurface CO2 storage system are subject to considerable uncertainty. It is therefore important to assess the potential risks for health, safety and environment. This study contributes to the development of methods for quantitative risk assessment of CO...... Community Grid' was used, which allows the execution of many parallel simulations simultaneously. The individual realizations are set up by randomly choosing reservoir properties from statistical distributions. The statistical characteristics of these distributions have been calculated from a large...... reservoir database, holding data from over 1200 reservoirs An analytical risk equation is given, allowing the calculation of average risk due to multiple leaky wells with varying distance in the surrounding of the injection well. The reservoir parameters most affecting risk are identified. Using...

  4. Mineralogical controls on porosity and water chemistry during O2-SO2-CO2 reaction of CO2 storage reservoir and cap-rock core

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Golab, Alexandra; Dawson, Grant K.W.; Knuefing, Lydia; Goodwin, Carley; Golding, Suzanne D.

    2016-01-01

    Reservoir and cap-rock core samples with variable lithology's representative of siliciclastic reservoirs used for CO 2 storage have been characterized and reacted at reservoir conditions with an impure CO 2 stream and low salinity brine. Cores from a target CO 2 storage site in Queensland, Australia were tested. Mineralogical controls on the resulting changes to porosity and water chemistry have been identified. The tested siliciclastic reservoir core samples can be grouped generally into three responses to impure CO 2 -brine reaction, dependent on mineralogy. The mineralogically clean quartzose reservoir cores had high porosities, with negligible change after reaction, in resolvable porosity or mineralogy, calculated using X-ray micro computed tomography and QEMSCAN. However, strong brine acidification and a high concentration of dissolved sulphate were generated in experiments owing to minimal mineral buffering. Also, the movement of kaolin has the potential to block pore throats and reduce permeability. The reaction of the impure CO 2 -brine with calcite-cemented cap-rock core samples caused the largest porosity changes after reaction through calcite dissolution; to the extent that one sample developed a connection of open pores that extended into the core sub-plug. This has the potential to both favor injectivity but also affect CO 2 migration. The dissolution of calcite caused the buffering of acidity resulting in no significant observable silicate dissolution. Clay-rich cap-rock core samples with minor amounts of carbonate minerals had only small changes after reaction. Created porosity appeared mainly disconnected. Changes were instead associated with decreases in density from Fe-leaching of chlorite or dissolution of minor amounts of carbonates and plagioclase. The interbedded sandstone and shale core also developed increased porosity parallel to bedding through dissolution of carbonates and reactive silicates in the sandy layers. Tight interbedded cap

  5. The European FP7 ULTimateCO2 project: A comprehensive approach to study the long term fate of CO2 geological storage sites

    Science.gov (United States)

    Audigane, P.; Brown, S.; Dimier, A.; Pearce, J.; Frykman, P.; Maurand, N.; Le Gallo, Y.; Spiers, C. J.; Cremer, H.; Rutters, H.; Yalamas, T.

    2013-12-01

    The European FP7 ULTimateCO2 project aims at significantly advance our knowledge of specific processes that could influence the long-term fate of geologically stored CO2: i) trapping mechanisms, ii) fluid-rock interactions and effects on mechanical integrity of fractured caprock and faulted systems and iii) leakage due to mechanical and chemical damage in the well vicinity, iv) brine displacement and fluid mixing at regional scale. A realistic framework is ensured through collaboration with two demonstration sites in deep saline sandstone formations: the onshore former NER300 West Lorraine candidate in France (ArcelorMittal GeoLorraine) and the offshore EEPR Don Valley (former Hatfield) site in UK operated by National Grid. Static earth models have been generated at reservoir and basin scale to evaluate both trapping mechanisms and fluid displacement at short (injection) and long (post injection) time scales. Geochemical trapping and reservoir behaviour is addressed through experimental approaches using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions and through geochemical simulations. Collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland) (OPA), an analogue for caprock well investigated in the past for nuclear waste disposal purpose: - Characterization of elastic parameters in intact samples by measuring strain during an axial experiment, - A recording of hydraulic fracture flow properties by loading and shearing samples in order to create a 'realistic

  6. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    Science.gov (United States)

    Tian, H.; Melillo, J. M.; Kicklighter, D. W.; McGuire, A. D.; Helfrich, J.

    1999-04-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900 1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2Pg C) and soil organic carbon decreasing by 1.9% (1.1Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7Pg C

  7. In situ studies of materials for high temperature CO2 capture and storage.

    Science.gov (United States)

    Dunstan, Matthew T; Maugeri, Serena A; Liu, Wen; Tucker, Matthew G; Taiwo, Oluwadamilola O; Gonzalez, Belen; Allan, Phoebe K; Gaultois, Michael W; Shearing, Paul R; Keen, David A; Phillips, Anthony E; Dove, Martin T; Scott, Stuart A; Dennis, John S; Grey, Clare P

    2016-10-20

    Carbon capture and storage (CCS) offers a possible solution to curb the CO 2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty. The use of alternative sorbents for CO 2 capture, such as the CaO-CaCO 3 system, has been investigated extensively in recent years. However there are significant problems associated with the use of CaO based sorbents, the most challenging one being the deactivation of the sorbent material. When sorbents such as natural limestone are used, the capture capacity of the solid sorbent can fall by as much as 90 mol% after the first 20 carbonation-regeneration cycles. In this study a variety of techniques were employed to understand better the cause of this deterioration from both a structural and morphological standpoint. X-ray and neutron PDF studies were employed to understand better the local surface and interfacial structures formed upon reaction, finding that after carbonation the surface roughness is decreased for CaO. In situ synchrotron X-ray diffraction studies showed that carbonation with added steam leads to a faster and more complete conversion of CaO than under conditions without steam, as evidenced by the phases seen at different depths within the sample. Finally, in situ X-ray tomography experiments were employed to track the morphological changes in the sorbents during carbonation, observing directly the reduction in porosity and increase in tortuosity of the pore network over multiple calcination reactions.

  8. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee

    2015-08-19

    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  9. Spatial Persistence of Macropores and Authigenic Clays in a Reservoir Sandstone: Implications for Enhanced Oil Recovery and CO2 Storage

    Science.gov (United States)

    Dewers, T. A.

    2015-12-01

    Multiphase flow in clay-rich sandstone reservoirs is important to enhanced oil recovery (EOR) and the geologic storage of CO2. Understanding geologic controls on pore structure allows for better identification of lithofacies that can contain, storage, and/or transmit hydrocarbons and CO2, and may result in better designs for EOR-CO2 storage. We examine three-dimensional pore structure and connectivity of sandstone samples from the Farnsworth Unit, Texas, the site of a combined EOR-CO2 storage project by the Southwest Regional Partnership on Carbon Sequestration (SWP). We employ a unique set of methods, including: robotic serial polishing and reflected-light imaging for digital pore-structure reconstruction; electron microscopy; laser scanning confocal microscopy; mercury intrusion-extrusion porosimetry; and relative permeability and capillary pressure measurements using CO2 and synthetic formation fluid. Our results link pore size distributions, topology of porosity and clay-rich phases, and spatial persistence of connected flow paths to multiphase flow behavior. The authors gratefully acknowledge the U.S. Department of Energy's National Energy Technology Laboratory for sponsoring this project through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. On-board co2 capture and storage with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-17

    In general, this disclosure describes method of capturing and storing CO2 on a vehicle. The method includes contacting an vehicle exhaust gas with one or more of a first metal organic framework (MOF) composition sufficient to separate CO2 from the exhaust gas, contacting the separated CO2 with one or more of a second MOF composition sufficient to store the CO2 and wherein the one or more first MOF composition comprises one or more SIFSIX-n-M MOF and wherein M is a metal and n is 2 or 3. Embodiments also describe an apparatus or system for capturing and storing CO2 onboard a vehicle.

  11. Dynamic fluid flow and geomechanical coupling to assess the CO2 storage integrity in faulted structures

    International Nuclear Information System (INIS)

    Baroni, A.; Estublier, A.; Vincke, O.; Delprat-Jannaud, F.; Nauroy, J.F.

    2015-01-01

    The SiteChar research on the Southern Adriatic Sea site focused on the investigation of the geomechanical and hydrodynamic behaviour of the storage complex in the case of CO 2 injection in a reservoir consisting of fractured carbonate formations. Special attention was paid to the effects that natural faults and fractures might have on CO 2 migration, and the effects that injection might have on the stability of faults. This assessment was originally performed via a hydro-geomechanical one way coupling which relies on an adequate representation of faults in the model, allowing one to simulate fluid flow along the fault plane and inside faults as well as evolution of the stress state due to CO 2 injection. The geological model was populated with petrophysical and geomechanical parameters derived either from laboratory measurements performed on samples from a reservoir analogue, or published literature. Since only sparse data were available, various scenarios were simulated to take into account the uncertainties in the fluid flow and geomechanical properties of the model: the different state of faults ( i.e., open or closed) and various in situ stress state, commonly named geo-static stresses as the earth's crust deformation is assumed to be slow regarding the short term study. Various fluid flow parameters were also considered, although only one set of petrophysical data corresponding to the most realistic ones is considered here. Faults modeled as volumetric elements behave as flow pathways for fluids when they are conductive. The injected CO 2 migrates inside and through the Rovesti fault, which is located near the injection well. The fluid flow also induces overpressure in the faults. The overpressure in the Rovesti fault reaches 2.2 MPa while it reaches 4.4 MPa at the bottom hole of the injector. Extending to about 30 km, the pore pressure field reaches the Gondola fault located at 15 km from the injection zone but the overpressure does not exceed 0.1 MPa at

  12. Social Site Characterisation for CO2 storage operations to inform public engagement in Poland and Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Brunsting, S.; Pol, M.; Mastop, J. [Energy research Centre of the Netherlands ECN, Policy Studies, Petten (Netherlands); Kaiser, M.; Zimmer, R. [UfU - Independent Institute for Environmental Issues, Berlin (Germany); Shackley, S.; Mabon, L.; Howell, R. [The University of Edinburgh - School of Geosciences, Edinburgh, Scotland (United Kingdom); Hepplewhite, F.; Loveridge, R. [Scottish Government, Edinburgh, Scotland (United Kingdom); Mazurowski, M. [PGNiG - Polskie Gornictwo Naftowe i Gazownictwo SA, Warszawa (Poland); Rybicki, C. [AGH - University of Science and Technology, Krakow (Poland)

    2013-05-01

    Public support has proven crucial to the implementation of CO2 capture and storage (CCS) demonstration projects. Whereas no method exists to guarantee local public acceptability of any project, a constructive stakeholder engagement process does increase the likelihood thereof. Social site characterisation can be used as an instrument to plan and evaluate an approach for actively engaging local stakeholders. Social site characterisation is the process of repeatedly investigating local public awareness and opinions of a specific CCS project, changes therein over time, and underlying factors shaping public opinion as a parallel activity to technical site characterization. This paper presents results from the EU FP7 SiteChar project in which social site characterisation (a.o. surveys) and public participation activities (focus conferences) were conducted by a multidisciplinary team at two prospective CCS sites in in Poland (onshore) and Scotland (offshore). Results demonstrate that social site characterization and focus conferences are powerful tools to raise public awareness about complex issues such as CCS and to initiate local discussion and planning processes with the appropriate type of information, through appropriate media, and involving all relevant stakeholders. Application and the duration of effects in real-life project settings will be discussed.

  13. CO2 abatement in the iron and steel industry - the case for carbon capture and storage (CCS

    Directory of Open Access Journals (Sweden)

    A.V. Todorut

    2017-01-01

    Full Text Available The steel industry is amongst the most energy-intensive industries also consuming large amounts of coal and emitting significant volumes of carbon dioxide (CO2. Studies indicate that steelmaking accounts for 6 - 7 % of world anthropogenic CO2 emissions, and 27 % of the total emissions of the world’s manufacturing sector. Steel manufacturers have responded to sustainable resource use and development adopting several measures attaining a reduction in energy consumption of 60 % in the last 50 years. The paper discusses Carbon Capture and Storage (CCS as a CO2 mitigation option, after the 2015 Paris Climate Conference (COP 21 and in relation to the European Regulation for CO2 measurement, reporting and verification.

  14. CO2leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments.

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2016-12-01

    Carbon dioxide capture and storage (CCS), involving the injection of CO 2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO 2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO 2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO 2 -enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO 2 -enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO 2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO 2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO 2 . Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO 2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO 2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be

  15. One strategy for estimating the potential soil carbon storage due to CO2 fertilization

    International Nuclear Information System (INIS)

    Harrison, K.G.; Bonani, G.

    1994-01-01

    Soil radiocarbon measurements can be used to estimate soil carbon turnover rates and inventories. A labile component of soil carbon has the potential to respond to perturbations such as CO 2 fertilization, changing climate, and changing land use. Soil carbon has influenced past and present atmospheric CO 2 levels and will influence future levels. A model is used to calculate the amount of additional carbon stored in soil because of CO 2 fertilization

  16. Physicochemical effects of discrete CO2-SO2 mixtures on injection and storage in a sandstone aquifer

    NARCIS (Netherlands)

    Waldmann, S.; Hofstee, C.; Koenen, M.; Loeve, D.

    2016-01-01

    Geological storage of captured CO2, which typically will contain certain amounts of impurities, in salineaquifers is of potential to reduce greenhouse gas emissions into the atmosphere. The co-injection of theimpurity SO2has an effect on the chemical reactivity of the fluid and solid phases as well

  17. Characteristics of mechanical wellbore failure and damage: Insights of discrete element modelling and application to CO2 storage

    NARCIS (Netherlands)

    Heege, J.H. ter; Orlic, B.; Hoedeman, G.C.

    2015-01-01

    Wellbore zonal isolation is particularly important for subsurface storage of CO2, where well integrity must be ensured for very long time spans. In this study, three dimensional discrete element models of wellbore systems have been used to simulate failure and damage of wellbore cement and

  18. Caprock and overburden processes in geological CO2 storage: An experimental study on sealing efficiency and mineral alterations

    NARCIS (Netherlands)

    Wollenweber, J.; Alles, S.a.; Kronimus, A.; Busch, A.; Stanjek, H.; Krooss, B.M.

    2009-01-01

    A comprehensive set of experimental and analytical methods has been used to characterise the sealing and fluid -transport properties of fine-grained (pelitic) sedimentary rocks under the pressure and temperature conditions of geological CO2 storage. The flow experiments were carried out on

  19. Effects of elevated CO2 and trace ethylene present throughout the storage season on the processing colour of stored potatoes

    NARCIS (Netherlands)

    Daniels-Lake, B.J.

    2012-01-01

    Previous short-term trials (9-week duration) have shown that the fry colour of stored potatoes (Solanum tuberosum L.) can be negatively affected by simultaneous exposure to elevated CO2 plus a trace concentration of ethylene gas. In the present study, trials were conducted during each of two storage

  20. Preliminary Safety and Risk HSE Assessment. Application to the Potential Locations of a CO2 Geological Storage Pilot

    International Nuclear Information System (INIS)

    Recreo, F.; Eguilior, S.; Ruiz, C.; Lomba, L.; Hurtado, A.

    2015-01-01

    The location of a site safe and able to sequester CO2 for long periods of time is essential to gain public acceptance. This requires a long-term safety assessment developed in a robust and reliable framework. Site selection is the first step and requires specific research. This paper describes the application of the Selection and Classification Method of Geological Formations (SCF) developed to assess the potential of geological formations to CO2 storage. This assessment is based in the analysis of risks to Health, Safety and Environment (HSE) derived from potential CO2 leakage. Comparisons of the results obtained from a number of potential sites can help to select the best candidate for CO2 injection. The potential impact will be related to three key potential features of CO2 geological storage: the potential of the target geological formation for long term CO2 containment; the potential for secondary containment on containment failure of the target formation; and the site's potential to mitigate and/or disperse CO2 leakage if the primary and secondary containments fail. The methodology assesses each of these three characteristics through an analysis and assessment of properties of certain attributes of them. Uncertainty will remain as an input and output value of the methodology due to the usual lack of data in most site selection processes. The global uncertainty reports on the trust on the knowledge of the site characteristics. Therefore, the methodology enables comparing sites taking into account both the HSE risk expectation and the estimation of the quality of knowledge concerning such risk. The objective is to contribute to the selection of potential sites for a CO2 injection pilot plant in the Iberian Peninsula from the perspective of Safety and Risk Analysis.

  1. Surface-downhole and crosshole geoelectrics for monitoring of brine injection at the Ketzin CO2 storage site

    Science.gov (United States)

    Rippe, Dennis; Bergmann, Peter; Labitzke, Tim; Wagner, Florian; Schmidt-Hattenberger, Cornelia

    2016-04-01

    The Ketzin pilot site in Germany is the longest operating on-shore CO2 storage site in Europe. From June 2008 till August 2013, a total of ˜67,000 tonnes of CO2 were safely stored in a saline aquifer at depths of 630 m to 650 m. The storage site has now entered the abandonment phase, and continuation of the multi-disciplinary monitoring as part of the national project "CO2 post-injection monitoring and post-closure phase at the Ketzin pilot site" (COMPLETE) provides the unique chance to participate in the conclusion of the complete life cycle of a CO2 storage site. As part of the continuous evaluation of the functionality and integrity of the CO2 storage in Ketzin, from October 12, 2015 till January 6, 2015 a total of ˜2,900 tonnes of brine were successfully injected into the CO2 reservoir, hereby simulating in time-lapse the natural backflow of brine and the associated displacement of CO2. The main objectives of this brine injection experiment include investigation of how much of the CO2 in the pore space can be displaced by brine and if this displacement of CO2 during the brine injection differs from the displacement of formation fluid during the initial CO2 injection. Geophysical monitoring of the brine injection included continuous geoelectric measurements accompanied by monitoring of pressure and temperature conditions in the injection well and two adjacent observation wells. During the previous CO2 injection, the geoelectrical monitoring concept at the Ketzin pilot site consisted of permanent crosshole measurements and non-permanent large-scale surveys (Kiessling et al., 2010). Time-lapse geoelectrical tomographies derived from the weekly crosshole data at near-wellbore scale complemented by six surface-downhole surveys at a scale of 1.5 km showed a noticeable resistivity signature within the target storage zone, which was attributed to the CO2 plume (Schmidt-Hattenberger et al., 2011) and interpreted in terms of relative CO2 and brine saturations (Bergmann

  2. Removal of CO2 by storage in the deep underground, chemical utilization and biofixation. Options for the Netherlands

    International Nuclear Information System (INIS)

    Over, J.A.; De Vries, J.E.; Stork, J.

    1999-07-01

    The Utrecht University in Utrecht, Netherlands, initially put the subject of CO2-storage on the agenda as a possible necessary policy element. During 1990/1991 a number of research institutes and engineering consultants carried out several studies. Also in 1991 the lEA Greenhouse Gas Group (IEA GHG) was initiated, including participation from The Netherlands. The Netherlands Agency for Energy and the Environment (Novem) and the Dutch Ministry of Economic Affairs both attended the meetings of the Executive Committee (ExCo) from the start. This Group started paying attention to the subject of CO2-capturing at large point sources (electricity stations). They then went subsequently from capturing from other (smaller and/or more diffuse) sources, ranking relative to other large scale options to combat or reduce CO2-emissions (i.e. vast areas of forest) to influence and controlling other 'greenhouse gases' such as methane. During 1992/1993 Novem prepared - on request of the Ministry of Economic Affairs - research proposals for investigations and demonstration projects, having a 10 to 15 year horizon, with regard to CO2-capturing technologies. In the beginning of 1994, the Dutch Ministry of Environment (VROM) put more emphasis on demonstration of the feasibility of CO2-storage. When the first 'Kok-government' (the so-called 'Purple Cabinet') came into being, attention shifted to studies on CO2-storage; the central question being whether there would be sufficient potential capacity if the necessity to store CO2 would ever occur. Within this framework Novem was authorized by the Ministry of Economic Affairs to carry out an investigation program on possibilities of CO2-storage. The present publication deals with the results of these studies. The main subject of investigation were: Storage in underground formations (depleted gas fields and aquifers) and the conditions under which this is feasible; Possibilities for enhanced gas recovery by carbon dioxide injection and its

  3. Verification of geomechanical integrity and prediction of long-term mineral trapping for the Ketzin CO2 storage pilot site

    Science.gov (United States)

    Kempka, Thomas; De Lucia, Marco; Kühn, Michael

    2014-05-01

    Static and dynamic numerical modelling generally accompany the entire CO2 storage site life cycle. Thereto, it is required to match the employed models with field observations on a regular basis in order to predict future site behaviour. We investigated the coupled processes at the Ketzin CO2 storage pilot site [1] using a model coupling concept focusing on the temporal relevance of processes involved (hydraulic, chemical and mechanical) at given time-scales (site operation, abandonment and long-term stabilization). For that purpose, long-term dynamic multi-phase flow simulations [2], [3] established the basis for all simulations discussed in the following. Hereby, pressure changes resulting in geomechanical effects are largest during site operation, whereas geochemical reactions are governed by slow kinetics resulting in a long-term stabilization. To account for mechanical integrity, which may be mainly affected during site operation, we incorporated a regional-scale coupled hydro-mechanical model. Our simulation results show maximum ground surface displacements of about 4 mm, whereas shear and tensile failure are not observed. Consequently, the CO2 storage operation at the Ketzin pilot site does not compromise reservoir, caprock and fault integrity. Chemical processes responsible for mineral trapping are expected to mainly occur during long-term stabilization at the Ketzin pilot site [4]. Hence, our previous assessment [3] was extended by integrating two long-term mineral trapping scenarios. Thereby, mineral trapping contributes to the trapping mechanisms with 11.7 % after 16,000 years of simulation in our conservative and with 30.9 % in our maximum reactivity scenarios. Dynamic flow simulations indicate that only 0.2 % of the CO2 injected (about 67,270 t CO2 in total) is in gaseous state, but structurally trapped after 16,000 years. Depending on the studied long-term scenario, CO2 dissolution is the dominating trapping mechanism with 68.9 % and 88

  4. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    Science.gov (United States)

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-07

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.

  5. A Comparison of national CCS strategies for Northwest Europe, with a focus on the potential of common CO2 storage at the Utsira formation

    DEFF Research Database (Denmark)

    Ramirez, Andrea; Hoefnagels, Ric; van den Broek, Machteld

    2011-01-01

    distance to Utsira while the Netherlands utilise the Utsira formation due to limited domestic low cost storage fields and the use of the country as a regional hub for CO2. In Germany and Denmark, the competitiveness of CO2storage in Utsira is determined by the availability of domestic onshore saline......Mega structures for CO2 storage, such as the Utsira formation in the North Sea, could theoretically supply CO2 storage capacity for several countries for a period of several decades. Their use could increase the cost-effectiveness of CCS in a region while minimizing opposition from the public to CO......2 storage. However, this will not only depend on their potential available capacity to store CO2 flows but also on the cost effectiveness of such an option within national portfolios of mitigation measures. This article shows key results of a research project aiming to assess the potentials...

  6. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    DEFF Research Database (Denmark)

    Zheng, Yi; Yang, Yan; Rogowska, M.

    2017-01-01

    settings such as the carbonate reservoirs in the North Sea. The final aim of our project is to find out how to control the evolution of petrophysical parameters during CO2 injection using an optimal combination of flow rate, injection pressure and chemical composition of the influent. The first step...... to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection...

  7. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  8. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part B: Chain analysis of promising CCS options

    NARCIS (Netherlands)

    Damen, K.J.; van Troost, M.M.; Faaij, A.P.C.; Turkenburg, W.C.

    2007-01-01

    Promising electricity and hydrogen production chains with CO2 capture, transport and storage (CCS) and energy carrier transmission, distribution and end-use are analysed to assess (avoided) CO2 emissions, energy production costs and CO2 mitigation costs. For electricity chains, the performance is

  9. Experimental determination of trace element mobility in UK North Sea sandstones under conditions of geological CO2 storage

    Science.gov (United States)

    Carruthers, Kit; Wilkinson, Mark; Butler, Ian B.

    2016-04-01

    Offshore UK geological formations have the capacity to store > 100 years' worth of UK CO2 output from industry and power generation, if utilised for carbon capture and storage (CCS) schemes. During CO2 storage or CO2-Enhanced Oil Recovery (CO2-EOR), formation waters may be produced at the surface to be disposed of into the marine environment. Laboratory and field scale studies, with an emphasis on the effects on onshore shallow potable groundwaters, have shown that CO2 dissolution in formation waters during injection and storage acidifies the waters and promotes mobilisation from the reservoir sandstones of major and trace elements into solution. Of relevance to the UK context, eight of these elements are specifically identified as potentially hazardous to the marine environment: As, Cd, Cr, Cu, Hg, Ni, Pb, Zn. Batch experiments using simple borosilicate flasks sat on heating mantles were used in this study to determine concentrations of these 8 elements which could be leached from selected North Sea sandstones with bubbled CO2 and saline solutions, at formation temperatures. These concentration data were compared with produced water data from current UK offshore hydrocarbon extraction activities. The comparison showed that, taking the North Sea as a whole, the experimental results fall within the range of concentrations of current oil and gas activities. However, on a field-by-field basis, concentrations may be enhanced with CO2 storage, such that they are higher than waters normally produced from a particular field. Lead, nickel and zinc showed the greatest concentration increases in the experiments with the addition of CO2, with the other five elements of interest not showing any strong trends with respect to enhanced CO2. The origin of the increased trace element concentrations was investigated using sequential leaching experiments. A six step method of increasingly aggressive leaching was developed, based on modification of methods outlined by Tessier et al

  10. State of the art and risk analysis for CO2 storage in a saline aquifer. Investigation report

    International Nuclear Information System (INIS)

    Farret, R.; Gombert, P.; Hulot, C.; BOUR, Olivier; Thoraval, Alain

    2010-01-01

    This study deals with the impact of supercritical CO 2 injection in deep saline aquifer, but also addresses the case of depleted hydrocarbons fields. After a general presentation of the carbon capture and storage (CCS) technique, this report presents the main principles of risk analysis and defines an analysis method applicable to the whole CCS sector. It is based on practices coming from the field of industrial risk analysis, on the knowledge of underground processes, and on the state of the art of health risk analysis in the case of chemical species. The main considered risks are hydraulic risks (fluid pressurization), mechanical risks (cracking, soil rising and induced seismicity), CO 2 migration or leakages towards aquifers and surface, and migration of other species than CO 2 . The report addresses the characterisation of fluids and of possible geochemical evolutions, the characterisation of scenarios of fluid migration, and the hierarchy of health impacts related to fluid leakages

  11. Clayey cap-rocks reactivity in presence of CO2 in deep geological storage conditions: experimentation/modeling integrated approach

    International Nuclear Information System (INIS)

    Credoz, A.

    2009-10-01

    CO 2 capture, transport and geological storage is one of the main solutions considered in the short and medium term to reduce CO 2 and others greenhouse gases emissions towards the atmosphere, by storing CO 2 in deeper geological reservoirs during 100 to 10 000 years. This Ph-D study offers a multi-scale vision of complex clayey cap-rocks reactivity and evolution. These formations are identified for the CO 2 containment and sealing into the reservoir. From the experimental scale on purified clay minerals to integrative modeling at high space and time scales, the strategy developed allowed identifying the main geochemical processes, to check the good agreement between experiment and modeling, and to lay emphasis the operational impacts on long-term cap-rocks integrity. Carbonated cements alteration is likely to open cap-rock porosity and to create preferential reactive pathway for reactive fluid flow. Besides, this could alter the cap-rock structure and the global geo-mechanic properties. Clay minerals alteration, including the illitization process, reduces the clay fraction volume but considerably limits the porosity increase. The illitization process in acidic conditions determined experimentally and by modeling at low and high scale, is coupled with silica precipitation. The final porosity increase control results of these two reactive processes balance. By a fundamental side, this study reveals new kinetic parameters of clay minerals and highlights new structural transformations. By an operational side, this study contributes to the acquisition of qualitative data (long-term reactive pathways of clayey cap-rocks, coupled reactivity carbonates/clays) and quantitative data (CO 2 penetration distance into the cap-rock) to partly answer to the performance and safety assessment CO 2 capture and geological storage. (author)

  12. Quantification of oil recovery efficiency, CO 2 storage potential, and fluid-rock interactions by CWI in heterogeneous sandstone oil reservoirs

    DEFF Research Database (Denmark)

    Seyyedi, Mojtaba; Sohrabi, Mehran; Sisson, Adam

    2017-01-01

    Significant interest exists in improving recovery from oil reservoirs while addressing concerns about increasing CO2 concentrations in the atmosphere. The combination of Enhanced Oil Recovery (EOR) and safe geologic storage of CO2 in oil reservoirs is appealing and can be achieved by carbonated (...... for oil recovery and CO2 storage potential on heterogeneous cores. Since not all the oil reservoirs are homogenous, understanding the potential of CWI as an integrated EOR and CO2 storage scenario in heterogeneous oil reservoirs is essential.......Significant interest exists in improving recovery from oil reservoirs while addressing concerns about increasing CO2 concentrations in the atmosphere. The combination of Enhanced Oil Recovery (EOR) and safe geologic storage of CO2 in oil reservoirs is appealing and can be achieved by carbonated (CO...

  13. High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers

    International Nuclear Information System (INIS)

    Lu, C; Lichtner, P C

    2007-01-01

    CO 2 sequestration (capture, separation, and long term storage) in various geologic media including depleted oil reservoirs, saline aquifers, and oceanic sediments is being considered as a possible solution to reduce green house gas emissions. Dissolution of supercritical CO 2 in formation brines is considered an important storage mechanism to prevent possible leakage. Accurate prediction of the plume dissolution rate and migration is essential. Analytical analysis and numerical experiments have demonstrated that convective instability (Rayleigh instability) has a crucial effect on the dissolution behavior and subsequent mineralization reactions. Global stability analysis indicates that a certain grid resolution is needed to capture the features of density-driven fingering phenomena. For 3-D field scale simulations, high resolution leads to large numbers of grid nodes, unfeasible for a single workstation. In this study, we investigate the effects of convective instability on geologic sequestration of CO 2 by taking advantage of parallel computing using the code PFLOTRAN, a massively parallel 3-D reservoir simulator for modeling subsurface multiphase, multicomponent reactive flow and transport based on continuum scale mass and energy conservation equations. The onset, development and long-term fate of a supercritical CO 2 plume will be resolved with high resolution numerical simulations to investigate the rate of plume dissolution caused by fingering phenomena

  14. Nitrogen-rich porous adsorbents for CO2 capture and storage.

    Science.gov (United States)

    Li, Pei-Zhou; Zhao, Yanli

    2013-08-01

    The construction of physical or chemical adsorbents for CO2 capture and sequestration (CCS) is a vital technology in the interim period on the way towards a sustainable low-carbon future. The search for efficient materials to satisfy the increasing demand for CCS has become extremely important. Porous materials, including porous silica, porous carbons, and newly developed metal-organic frameworks and porous organic polymers, possessing regular and well-defined porous geometry and having a high surface area and pore volume, have been widely studied for separations on laboratory scale. On account of the dipole-quadrupole interactions between the polarizable CO2 molecule and the accessible nitrogen site, the investigations have indicated that the incorporation of accessible nitrogen-donor groups into the pore walls of porous materials can improve the affinity to CO2 and increase the CO2 uptake capacity and selectivity. The CO2 -adsorption process based on solid nitrogen-rich porous adsorbents does generally not require heating of a large amount of water (60-70 wt%) for regeneration, while such a heating approach cannot be avoided in the regeneration of amine-based solution absorption processes. Thus, nitrogen-rich porous adsorbents show good regeneration properties without sacrificing high separation efficiency. As such, nitrogen-rich porous materials as highly promising CO2 adsorbents have been broadly fabricated and intensively investigated. This Focus Review highlights recent significant advances in nitrogen-rich porous materials for CCS. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. SiteChar – Methodology for a Fit-for-Purpose Assessment of CO2 Storage Sites in Europe

    Directory of Open Access Journals (Sweden)

    Delprat-Jannaud F.

    2015-04-01

    Full Text Available The FP7-funded SiteChar project examined the entire CO2 geological storage site characterisation process, from the initial feasibility studies through to the final stage of application for a CO2 storage permit based on criteria defined by the relevant European legislation. The SiteChar workflow for CO2 geological storage site characterisation provides a description of all elements of a site characterisation study, as well as guidance to streamline the site characterisation process and make sure that the output covers the aspects mentioned in the European Community (EC Storage Directive. Five potential European storage sites, representative of prospective geological contexts, were considered as test sites for the research work: a North Sea multi-store site (hydrocarbon field and aquifer offshore Scotland; an onshore aquifer in Denmark; an onshore gas field in Poland; an aquifer offshore in Norway; and an aquifer in the Southern Adriatic Sea. This portfolio combines complementary sites that allowed to encompass the different steps of the characterisation workflow. A key innovation was the development of internal ‘dry-run’ permit applications at the Danish and Scottish sites and their review by relevant regulatory authorities. This process helped to refine the site characterisation workflow, and aimed to identify remaining gaps in site-specific characterisation, needed to secure storage permits under the EC Storage Directive as implemented in ‘host’ Member States. SiteChar considered the important aspect of the public awareness and public opinions of these new technologies, in parallel to technical issues, on the onshore Polish and offshore Scottish sites. A new format to assist public opinion-forming processes was tested involving a small sample of local communities. Generic as well as site-specific information was made available to the general and local public via the internet and at information meetings. These exercises provide insight

  16. A Dynamic Programming Model for Optimizing Frequency of Time-Lapse Seismic Monitoring in Geological CO2 Storage

    Science.gov (United States)

    Bhattacharjya, D.; Mukerji, T.; Mascarenhas, O.; Weyant, J.

    2005-12-01

    Designing a cost-effective and reliable monitoring program is crucial to the success of any geological CO2 storage project. Effective design entails determining both, the optimal measurement modality, as well as the frequency of monitoring the site. Time-lapse seismic provides the best spatial coverage and resolution for reservoir monitoring. Initial results from Sleipner (Norway) have demonstrated effective monitoring of CO2 plume movement. However, time-lapse seismic is an expensive monitoring technique especially over the long term life of a storage project and should be used judiciously. We present a mathematical model based on dynamic programming that can be used to estimate site-specific optimal frequency of time-lapse surveys. The dynamics of the CO2 sequestration process are simplified and modeled as a four state Markov process with transition probabilities. The states are M: injected CO2 safely migrating within the target zone; L: leakage from the target zone to the adjacent geosphere; R: safe migration after recovery from leakage state; and S: seepage from geosphere to the biosphere. The states are observed only when a monitoring survey is performed. We assume that the system may go to state S only from state L. We also assume that once observed to be in state L, remedial measures are always taken to bring it back to state R. Remediation benefits are captured by calculating the expected penalty if CO2 seeped into the biosphere. There is a trade-off between the conflicting objectives of minimum discounted costs of performing the next time-lapse survey and minimum risk of seepage and its associated costly consequences. A survey performed earlier would spot the leakage earlier. Remediation methods would have been utilized earlier, resulting in savings in costs attributed to excessive seepage. On the other hand, there are also costs for the survey and remedial measures. The problem is solved numerically using Bellman's optimality principal of dynamic

  17. Werkendam, the Dutch natural analogue for CO2 storage – long-term mineral reactions

    NARCIS (Netherlands)

    Koenen, M.; Wasch, L.J.; Zalinge, M.E. van; Nelskamp, S.

    2013-01-01

    The Werkendam (WED) and Barendrecht-Ziedewij (BRTZ) gas fields are CO2- and CH4-bearing stratigraphic equivalents in the Netherlands. A comparison in petrographic characteristics and burial histories of the two fields is performed to investigate long-term mineral reactions induced by the presence of

  18. Sensitivity of CO2 storage performance to varying rates and dynamic injectivity in the Bunter Sandstone, UK

    Science.gov (United States)

    Kolster, C.; Mac Dowell, N.; Krevor, S. C.; Agada, S.

    2016-12-01

    Carbon capture and storage (CCS) is needed for meeting legally binding greenhouse gas emissions targets in the UK (ECCC 2016). Energy systems models have been key to identifying the importance of CCS but they tend to impose few constraints on the availability and use of geologic CO2 storage reservoirs. Our aim is to develop simple models that use dynamic representations of limits on CO2 storage resources. This will allow for a first order representation of the storage reservoir for use in systems models with CCS. We use the ECLIPSE reservoir simulator and a model of the Southern North Sea Bunter Sandstone saline aquifer. We analyse reservoir performance sensitivities to scenarios of varying CO2 injection demand for a future UK low carbon energy market. With 12 injection sites, we compare the impact of injecting at a constant 2MtCO2/year per site and varying this rate by a factor of 1.8 and 0.2 cyclically every 5 and 2.5 years over 50 years of injection. The results show a maximum difference in average reservoir pressure of 3% amongst each case and a similar variation in plume migration extent. This suggests that simplified models can maintain accuracy by using average rates of injection over similar time periods. Meanwhile, by initiating injection at rates limited by pressurization at the wellhead we find that injectivity steadily increases. As a result, dynamic capacity increases. We find that instead of injecting into sites on a need basis, we can strategically inject the CO2 into 6 of the deepest sites increasing injectivity for the first 15 years by 13%. Our results show injectivity as highly dependent on reservoir heterogeneity near the injection site. Injecting 1MTCO2/year into a shallow, low permeability and porosity site instead of into a deep injection site with high permeability and porosity reduces injectivity in the first 5 years by 52%. ECCC. 2016. Future of Carbon Capture and Storage in the UK. UK Parliament House of Commons, Energy and Climate Change

  19. Tagging CO2 to Enable Quantitative Inventories of Geological Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Klaus; Matter, Juerg; Park, Ah-Hyung; Stute, Martin; Carson, Cantwell; Ji, Yinghuang

    2014-06-30

    In the wake of concerns about the long term integrity and containment of sub-surface CO2 sequestration reservoirs, many efforts have been made to improve the monitoring, verification, and accounting methods for geo-sequestered CO2. Our project aimed to demonstrate the feasibility of a system designed to tag CO2 with carbon isotope 14C immediately prior to sequestration to a level that is normal on the surface (one part per trillion). Because carbon found at depth is naturally free of 14C, this tag would easily differentiate pre-existing carbon from anthropogenic injected carbon and provide an excellent handle for monitoring its whereabouts in the subsurface. It also creates an excellent handle for adding up anthropogenic carbon inventories. Future inventories in effect count 14C atoms. Accordingly, we have developed a 14C tagging system suitable for use at the part-per-trillion level. This system consists of a gas-exchange apparatus to make disposable cartridges ready for controlled injection into a fast flowing stream of pressurized CO2. We built a high-pressure injection and tagging system, and a 14C detection system. The disposable cartridge and injection system have been successfully demonstrated in the lab with a high-pressure flow reactor, as well as in the field at the CarbFix CO2 sequestration site in Iceland. The laser-based 14C detection system originally conceived has been shown to possess inadequate sensitivity for ambient levels. Alternative methods for detecting 14C, such as saturated cavity absorption ringdown spectroscopy and scintillation counting, may still be suitable. KEYWORDS

  20. Identification and determination of trapping parameters as key site parameters for CO2 storage for the active CO2 storage site in Ketzin (Germany) - Comparison of different experimental approaches and analysis of field data

    Science.gov (United States)

    Zemke, Kornelia; Liebscher, Axel

    2015-04-01

    Petrophysical properties like porosity and permeability are key parameters for a safe long-term storage of CO2 but also for the injection operation itself. The accurate quantification of residual trapping is difficult, but very important for both storage containment security and storage capacity; it is also an important parameter for dynamic simulation. The German CO2 pilot storage in Ketzin is a Triassic saline aquifer with initial conditions of the target sandstone horizon of 33.5 ° C/6.1 MPa at 630 m. One injection and two observation wells were drilled in 2007 and nearly 200 m of core material was recovered for site characterization. From June 2008 to September 2013, slightly more than 67 kt food-grade CO2 has been injected and continuously monitored. A fourth observation well has been drilled after 61 kt injected CO2 in summer 2012 at only 25 m distance to the injection well and new core material was recovered that allow study CO2 induced changes in petrophysical properties. The observed only minor differences between pre-injection and post-injection petrophysical parameters of the heterogeneous formation have no severe consequences on reservoir and cap rock integrity or on the injection behavior. Residual brine saturation for the Ketzin reservoir core material was estimated by different methods. Brine-CO2 flooding experiments for two reservoir samples resulted in 36% and 55% residual brine saturation (Kiessling, 2011). Centrifuge capillary pressure measurements (pc = 0.22 MPa) yielded the smallest residual brine saturation values with ~20% for the lower part of the reservoir sandstone and ~28% for the upper part (Fleury, 2010). The method by Cerepi (2002), which calculates the residual mercury saturation after pressure release on the imbibition path as trapped porosity and the retracted mercury volume as free porosity, yielded unrealistic low free porosity values of only a few percent, because over 80% of the penetrated mercury remained in the samples after

  1. Improved Characterization and Modeling of Tight Oil Formations for CO2 Enhanced Oil Recovery Potential and Storage Capacity Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, James; Smith, Steven; Kurz, Bethany; Hawthorne, Steven; Jin, Lu; Bosshart, Nicholas; Torres, Jose; Nyberg, Carolyn; Heebink, Loreal; Hurley, John

    2018-03-09

    Tight oil formations such as those in the Bakken petroleum system are known to hold hundreds of billions of barrels of oil in place; however, the primary recovery factor for these plays is typically less than 10%. Tight oil formations, including the Bakken Formation, therefore, may be attractive candidates for enhanced oil recovery (EOR) using CO2. Multiphase fluid behavior and flow in fluid-rich shales can vary substantially depending on the size of pore throats, and properties such as fluid viscosity and density are much different in nanoscale pores than in macroscale pores. Thus it is critical to understand the nature and distribution of nano-, micro-, and macroscale pores and fracture networks. To address these issues, the Energy & Environmental Research Center (EERC) has been conducting a research program entitled “Improved Characterization and Modeling of Tight Oil Formations for CO2 Enhanced Oil Recovery Potential and Storage Capacity Estimation.” The objectives of the project are 1) the use of advanced characterization methods to better understand and quantify the petrophysical and geomechanical factors that control CO2 and oil mobility within tight oil formation samples, 2) the determination of CO2 permeation and oil extraction rates in tight reservoir rocks and organic-rich shales of the Bakken, and 3) the integration of the laboratory-based CO2 permeation and oil extraction data and the characterization data into geologic models and dynamic simulations to develop predictions of CO2 storage resource and EOR in the Bakken tight oil formation. A combination of standard and advanced petrophysical characterization techniques were applied to characterize samples of Bakken Formation tight reservoir rock and shales from multiple wells. Techniques included advanced computer tomography (CT) imaging, scanning electron microscopy (SEM) techniques, whole-core and micro x-ray CT imaging, field emission (FE) SEM, and focused ion beam (FIB) SEM. Selected samples

  2. CO2 storage in depleted gas reservoirs: A study on the effect of residual gas saturation

    Directory of Open Access Journals (Sweden)

    Arshad Raza

    2018-03-01

    Full Text Available Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage. Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices. This strategy, however, depends on the injection strategy, reservoir characteristics and operational parameters. There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas. In this paper, an attempt was made to highlight the importance of residual gas on the capacity, injectivity, reservoir pressurization, and trapping mechanisms of storage sites through the use of numerical simulation. The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes. Therefore, it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium. Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose, more studies are required to confirm the finding presented in this paper.

  3. Forestry and biomass energy projects: bottom-up comparisons of CO2 storage and costs

    International Nuclear Information System (INIS)

    Swisher, J.N.

    1994-01-01

    This paper presents a comprehensive and consistent methodology to account for the costs and net carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO 2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction. The methodology allows consistent comparisons of the costs and quantities of carbon stored in different types of projects and/or national programs, facilitating the inclusion of forestry and biomass energy projects in a possible CO 2 emission reduction regime. (Author)

  4. Bottom-up comparisons of CO2 storage and costs in forestry and biomass energy projects

    International Nuclear Information System (INIS)

    Swisher, J.N.

    1993-01-01

    In order to include forestry and biomass energy projects in a possible CO 2 emission reduction regime, and to compare the costs of individual projects or national programs, it is necessary to determine the rate of equivalency between carbon in fossil fuel emissions and carbon stored in different types of forestry, biomass and renewable energy projects. This paper presents a comprehensive and consistent methodology to account for the costs and carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO 2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction

  5. Preliminary results of continuous GPS monitoring of surface deformation at the Aquistore underground CO2 storage site

    Science.gov (United States)

    Craymer, M. R.; Henton, J. A.; Piraszewski, M.; Silliker, J.; Samsonov, S. V.

    2013-12-01

    Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS monitoring of surface deformation. Five of the planned thirteen GPS monitoring stations were installed in November 2012 and results subsequently processed on a weekly basis. The first GPS results prior to CO2 injection have just been determined using both precise point positioning (PPP) and baseline processing with the Bernese GPS Software. The time series of the five sites are examined, compared and analysed with respect to monument stability, seasonal signals and estimates of expected regional ground motion. The individual weekly network solutions are combined together in a cumulative 4D network solution to provide a preliminary local velocity field in the immediately vicinity of the injection well. The results are compared to those from InSAR.

  6. A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.

    2006-02-23

    Conventional coal-burning power plants are major contributors of excess CO2 to the atmospheric inventory. Because such plants are stationary, they are particularly amenable to CO2 capture and disposal by deep injection into confined geologic formations. However, the energy penalty for CO2 separation and compression is steep, and could lead to a 30-40 percent reduction in useable power output. Integrated gas combined cycle (IGCC) plants are thermodynamically more efficient, i.e.,produce less CO2 for a given power output, and are more suitable for CO2 capture. Therefore, if CO2 capture and deep subsurface disposal were to be considered seriously, the preferred approach would be to build replacement IGCC plants with integrated CO2 capture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and nitrogen compounds, which are of concern, as their release into the atmosphere leads to the formation of urban ozone and acid rain, the destruction of stratospheric ozone, and global warming. Coal also contains many trace elements that are potentially hazardous to human health and the environment. During CO2 separation and capture, these constituents could inadvertently contaminate the separated CO2 and be co-injected. The concentrations and speciation of the co-injected contaminants would differ markedly, depending on whether CO2 is captured during the operation of a conventional or an IGCC plant, and the specific nature of the plant design and CO2 separation technology. However, regardless of plant design or separation procedures, most of the hazardous constituents effectively partition into the solid waste residue. This would lead to an approximately two order of magnitude reduction in contaminant concentration compared with that present in the coal. Potential exceptions are Hg in conventional plants, and Hg and possibly Cd, Mo and Pb in IGCC plants. CO2 capture and injection disposal could afford an opportunity to deliberately capture

  7. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    Science.gov (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    Flux stations have been widely used to monitor emission rates of CO2 from various ecosystems for climate research for over 30 years [1]. The stations provide accurate and continuous measurements of CO2 emissions with high temporal resolution. Time scales range from 20 times per second for gas concentrations, to 15-minute, hourly, daily, and multi-year periods. The emissions are measured from the upwind area ranging from thousands of square meters to multiple square kilometers, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in emissions due to weather events, as well as changes caused by variations in human-triggered events (pressure leaks, control releases, etc.). Stations can also detect any slow changes related to seasonal dynamics and human-triggered low-frequency processes (leakage diffusion, etc.). In the past, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular research group. In the last 3-5 years, due to significant efforts of global and regional CO2 monitoring networks (e.g., FluxNet, Ameriflux, Carbo-Europe, ICOS, etc.) and technological developments, the flux station methodology became fairly standardized and processing protocols became quite uniform [1]. A majority of current stations compute CO2 emission rates using the eddy covariance method, one of the most direct and defensible micrometeorological techniques [1]. Presently, over 600 such flux stations are in operation in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, and airplanes). Atmospheric monitoring of emission rates using such stations is now recognized as an effective method in regulatory and industrial applications, including carbon storage [2-8]. Emerging projects utilize flux stations to continuously monitor large areas before and after the injections, to locate and

  8. The Potential of CO2 Capture and Storage Technology in South Africa’s Coal-Fired Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Kelvin O. Yoro

    2016-09-01

    Full Text Available The global atmospheric concentration of anthropogenic gases, such as carbon dioxide, has increased substantially over the past few decades due to the high level of industrialization and urbanization that is occurring in developing countries, like South Africa. This has escalated the challenges of global warming. In South Africa, carbon capture and storage (CCS from coal-fired power plants is attracting increasing attention as an alternative approach towards the mitigation of carbon dioxide emission. Therefore, innovative strategies and process optimization of CCS systems is essential in order to improve the process efficiency of this technology in South Africa. This review assesses the potential of CCS as an alternative approach to reducing the amount CO2 emitted from the South African coal-fired power plants. It examines the various CCS processes that could be used for capturing the emitted CO2. Finally, it proposes the use of new adsorbents that could be incorporated towards the improvement of CCS technology.

  9. The DELPHI expert process of the German umbrella project AUGE as basis for recommendations to CO2 storage in Germany

    Science.gov (United States)

    Pilz, Peter; Schoebel, Birgit; Liebscher, Axel

    2016-04-01

    Within the GEOTECHNOLOGIEN funding scheme for geological CO2 storage by the Federal Ministry of Education and Research (BMBF) in Germany 33 projects (135 subprojects) have been funded with a total budget of 58 Mio € (excluding industry funds) from 2005 to 2014. In 2012, the German parliament passed the transposition of the EU CCS Directive 2009/31/EG into the national "Carbon Dioxide Storage Law" (KSpG). Annex 1 of the KSpG provides a description of criteria for the characterization and assessment of a potential CO2 storage site. Annex 2 describes the expected monitoring system of a CO2 storage site. The criteria given in the appendices are of general nature, which reflects (1) that the CO2 storage technology is still being developed and (2) that site specific aspects needs to be considered. In 2012 an umbrella project called AUGE has been launched in order to compile and summarize the results of the GEOTECHNOLOGIEN projects to underpin the two Annexes scientifically. By integration of the individual project results AUGE aims at derive recommendations for the review and implementation of the KSpG. The recommendations shall be drafted based on a common ground of science, public authorities and industry. Therefore, the AUGE project includes a Delphi expert process as an essential part. It is realized in cooperation with the company COMPARE Consulting, Göppingen. The implementation of the Delphi-Process is organized in three steps: • After the technical preparation of a standardized questionnaire (2014/2015) it was sent to 129 experts from science, industry and public authorities in Germany. After a few weeks of consideration time, 40 persons (30 %) had decided to participate actively in this inquiry. • Following the results of the first interrogation campaign, the second survey campaign started at the end of 2015. The same list of questions was used, complemented with the results of the first inquiry campaign. The intention is reduce the variance of the

  10. Overview on geophysical monitoring at the Ketzin CO2 storage site (Germany) using seismic and geoelectric methods (Invited)

    Science.gov (United States)

    Bergmann, P.; Ivandic, M.; Ivanova, A.; Juhlin, C.; Lueth, S.; Schmidt-Hattenberger, C.

    2013-12-01

    At Ketzin, a town close to Berlin, the first European onshore pilot scale project was initiated in 2004. After baseline characterization and drilling, CO2 injection was commenced in June 2008. As of August 2013, ~67 kilotons have been injected. Using one injection well, the CO2 is injected in a super-critical state into sandstones of the Stuttgart Formation, a saline aquifer at 620 m to 650 m depth. The depth of the Ketzin reservoir and injected mass of CO2 are not representative for CCS activities at an industrial scale. However, due to the relatively small amount of CO2 injected, combined with a complex storage reservoir, the site poses qualified conditions for testing of monitoring approaches. Consequently, a wide range of geophysical methods are in operation at the Ketzin site. Asides from well logging, both seismic methods and electric resistivity tomography (ERT) are being extensively applied. The applied survey setups comprise surface measurements, borehole measurements, and combined surface-downhole measurements. So far, the most comprehensive view onto the CO2 migration in the Ketzin reservoir is provided by two repeat 3D seismic surveys acquired in 2009 and 2012. They revealed a time-lapse seismic signal from the reservoir which indicates that the CO2 has progressively expanded to distances of 400-600 m away from the injection well by 2012. The apparent westward component of the plume migration observed in the 2009 data, is confirmed by a more pronounced westward component in the 2012 data. Consistent with the seismic monitoring, an increase in electrical resistivity around the injector was mapped by means of repeated surface-downhole ERT which indicates the presence of the injected CO2. These ERT surveys consist of current injections at the surface and voltage registration at the storage reservoir by means of a permanent electrode array that is installed in three wells (injector plus two monitoring wells). The imaged resistivity increase is consistent

  11. CO2 Reaction Induced Wettability Alteration and its Impacts on CO2 Storage: Pore to Core Scale Reservoir Condition Experimental Studies

    Science.gov (United States)

    Wan, J.; Tokunaga, T. K.; Kim, Y.; Jung, J.; Kim, T.; Dong, W.

    2013-12-01

    Wettability of the mineral surfaces plays an important role in subsurface multiphase flow and transport. Wettability affects the capillary pressure-saturation (Pc- S) relations, relative permeability (kr) of each fluid phase, and relative phase occupancy in reservoir pores. Although wettability issues have been studied extensively in other fields, significant knowledge gaps remain when applying the existing understanding to geological carbon sequestration; due largely to the unique physical-chemical properties of supercritical (sc) CO2 relative to other common non-wetting fluids such as air and oil. Here, we report our recent progress on wettability alteration upon reaction with CO2 and the resulting differences in capillary trapping of CO2 versus air. (1) Pore Scale Studies. There are conflict predictions in the literature concerning the effect of wettability on capillary trapping; some find that larger contact angles lead to lower capillary trapping while others have found opposite behavior. We hypothesized that spontaneous imbibition becomes energetically unfavorable with decreased wettability, so that increased residual trapping of scCO2 should occur during the post-injection inbibition stage. We developed a laboratory high-pressure and elevated temperature microscopic-micromodel system that is capable of controlling fine scale capillary pressure of scCO2-brine, and enabled us to conduct imbibition under controlled capillary pressures at the pore scale. We found that the de-wetting enhanced scCO2 capillary trapping is significant. These results suggest that scCO2 reaction induced dewetting can result in higher degrees of CO2 residual trapping in the post-injection stage than previously predicted. (2) Core Scale Studies. Capillary scaling is used routinely to predict Pc(S) relations for scCO2-brine systems at field scale, based on relations measured with air-water or mercury porosimetry. However, scaling-based predictions for CO2-brine systems have not been

  12. Exploratory Simulation Studies of Caprock Alteration Induced byStorage of CO2 in Depleted Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Gherardi, Fabrizio; Xu, Tianfu; Pruess, Karsten

    2005-11-23

    This report presents numerical simulations of isothermalreactive flows which might be induced in the caprock of an Italiandepleted gas reservoir by the geological sequestration of carbon dioxide.Our objective is to verify that CO2 geological disposal activitiesalready planned for the study area are safe and do not induce anyundesired environmental impact.Gas-water-rock interactions have beenmodelled under two different intial conditions, i.e., assuming that i)caprock is perfectly sealed, or ii) partially fractured. Field conditionsare better approximated in terms of the "sealed caprock model". Thefractured caprock model has been implemented because it permits toexplore the geochemical beahvior of the system under particularly severeconditions which are not currently encountered in the field, and then todelineate a sort of hypothetical maximum risk scenario.Major evidencessupporting the assumption of a sealed caprock stem from the fact that nogas leakages have been detected during the exploitation phase, subsequentreservoir repressurization due to the ingression of a lateral aquifer,and during several cycles of gas storage in the latest life of reservoirmanagement.An extensive program of multidisciplinary laboratory tests onrock properties, geochemical and microseismic monitoring, and reservoirsimulation studies is underway to better characterize the reservoir andcap-rock behavior before the performance of a planned CO2 sequestrationpilot test.In our models, fluid flow and mineral alteration are inducedin the caprock by penetration of high CO2 concentrations from theunderlying reservoir, i.e., it was assumed that large amounts of CO2 havebeen already injected at depth. The main focus is on the potential effectof these geochemical transformations on the sealing efficiency of caprockformations. Batch and multi-dimensional 1D and 2D modeling has been usedto investigate multicomponent geochemical processes. Our simulationsaccount for fracture-matrix interactions, gas

  13. The Sulcis Storage Project: Status of the First Italian Initiative for Pilot-Scale Geological Sequestration of CO2

    Science.gov (United States)

    Plaisant, A.; Maggio, E.; Pettinau, A.

    2016-12-01

    The deep aquifer located at a depth of about 1000-1500 m within fractured carbonate in the Sulcis coal basin (South-West Sardinia, Italy) constitutes a potential reservoir to develop a pilot-scale CO2 storage site. The occurrence of several coal mines and the geology of the basin also provide favourable condition to install a permanent infrastructures where advanced CO2 storage technologies can be developed. Overall, the Sulcis project will allow to characterize the Sulcis coal basin (South West Sardinia, Italy) and to develop a permanent infrastructure (know-how, equipment, laboratories, etc.) for advanced international studies on CO2 storage. The research activities are structured in two different phases: (i) site characterization, including the construction of an underground and a fault laboratories and (ii) the installation of a test site for small-scale injection of CO2. In particular, the underground laboratory will host geochemical and geophysical experiments on rocks, taking advantages of the buried environment and the very well confined conditions in the galleries; in parallel, the fault laboratory will be constructed to study CO2 leakage phenomena in a selected fault. The project is currently ongoing and some preliminary results will be presented in this work as well as the structure of the project as a whole. More in detail, preliminary activities comprise: (i) geochemical monitoring; (ii) the minero-petrographycal, physical and geophysical characterization of the rock samples; (iii) the development of both static and dynamic geological models of the reservoir; (iv) the structural geology and fault analysis; (v) the assessment of natural seismicity through a monitoring network (vi) the re-processing and the analysis of the reflection seismic data. Future activities will comprise: (i) the drilling of shallow exploration wells near the faults; (ii) the construction of both the above mentioned laboratories; (iii) drilling of a deep exploration well (1,500 m

  14. Research and development of CO2 Capture and Storage Technologies in Fossil Fuel Power Plants

    Directory of Open Access Journals (Sweden)

    Lukáš Pilař

    2012-01-01

    Full Text Available This paper presents the results of a research project on the suitability of post-combustion CCS technology in the Czech Republic. It describes the ammonia CO2 separation method and its advantages and disadvantages. The paper evaluates its impact on the recent technology of a 250 MWe lignite coal fired power plant. The main result is a decrease in electric efficiency by 11 percentage points, a decrease in net electricity production by 62 MWe, and an increase in the amount of waste water. In addition, more consumables are needed.

  15. Multi-scales modeling of reactive transport mechanisms. Impact on petrophysical properties during CO2 storage

    International Nuclear Information System (INIS)

    Varloteaux, C.

    2012-01-01

    The geo-sequestration of carbon dioxide (CO 2 ) is an attractive option to reduce the emission of greenhouse gases. Within carbonate reservoirs, acidification of brine in place can occur during CO 2 injection. This acidification leads to mineral dissolution which can modify the transport properties of a solute in porous media. The aim of this study is to quantify the impact of reactive transport on a solute distribution and on the structural modification induced by the reaction from the pore to the reservoir scale. This study is focused on reactive transport problem in the case of single phase flow in the limit of long time. To do so, we used a multi-scale up-scaling method that takes into account (i) the local scale, where flow, reaction and transport are known; (ii) the pore scale, where the reactive transport is addressed by using averaged formulation of the local equations; (iii) the Darcy scale (also called core scale), where the structure of the rock is taken into account by using a three-dimensions network of pore-bodies connected by pore-throats; and (iv) the reservoir scale, where physical phenomenon, within each cell of the reservoir model, are taken into account by introducing macroscopic coefficients deduced from the study of these phenomenon at the Darcy scale, such as the permeability, the apparent reaction rate, the solute apparent velocity and dispersion. (author)

  16. Have We Overestimated Saline Aquifer CO2 Storage Capacities? Avons-nous surestimé les capacités de stockage de CO2 des aquifères salins ?

    Directory of Open Access Journals (Sweden)

    Thibeau S.

    2011-03-01

    Full Text Available During future, large scale CO2 geological storage in saline aquifers, fluid pressure is expected to rise as a consequence of CO2 injection, but the pressure build up will have to stay below specified values to ensure a safe and long term containment of the CO2 in the storage site. The pressure build up is the result of two different effects. The first effect is a local overpressure around the injectors, which is due to the high CO2 velocities around the injectors, and which can be mitigated by adding CO2 injectors. The second effect is a regional scale pressure build up that will take place if the storage aquifer is closed or if the formation water that flows away from the pressurised area is not large enough to compensate volumetrically the CO2 injection. This second effect cannot be mitigated by adding additional injectors. In the first section of this paper, we review some major global and regional assessments of CO2 storage capacities in deep saline aquifers, in term of mass and storage efficiency. These storage capacities are primarily based on a volumetric approach: storage capacity is the volumetric sum of the CO2 that can be stored through various trapping mechanisms. We then discuss in Section 2 storage efficiencies derived from a pressure build up approach, as stated in the CO2STORE final report (Chadwick A. et al. (eds (2008 Best Practice for the Storage of CO2 in Saline Aquifers, Observations and Guidelines from the SACS and CO2STORE Projects, Keyworth, Nottingham, BGS Occasional Publication No. 14 and detailed by Van der Meer and Egberts (van der Meer L.G.H., Egberts P.J.P. (2008 A General Method for Calculating Subsurface CO2 Storage Capacity, OTC Paper 19309, presented at the OTC Conference held in Houston, Texas, USA, 5-8 May. A quantitative range of such storage efficiency is presented, based on a review of orders of magnitudes of pore and water compressibilities and allowable pressure increase. To illustrate the relevance of

  17. Brine/CO2 Interfacial Properties and Effects on CO2 Storage in Deep Saline Aquifers Propriétés interfaciales saumure/CO2 et effets sur le stockage du CO2 dans des aquifères salins profonds

    Directory of Open Access Journals (Sweden)

    Chalbaud C.

    2010-05-01

    Full Text Available It has been long recognized that interfacial interactions (interfacial tension, wettability, capillarity and interfacial mass transfer govern fluid distribution and behaviour in porous media. Therefore the interfacial interactions between CO2, brine and reservoir oil and/or gas have an important influence on the effectiveness of any CO2 storage operation. There is a lack of experimental data related to interfacial properties for all the geological storage options (oil & gas reservoirs, coalbeds, deep saline aquifers. In the case of deep saline aquifers, there is a gap in data and knowledge of brine-CO2 interfacial properties at storage conditions. More specifically, experimental interfacial tension values and experimental tests in porous media are necessary to better understand the wettability evolution as a function of thermodynamic conditions and it’s effects on fluid flow in the porous media. In this paper, a complete set of experimental values of brine-CO2 Interfaciale Tension (IFT at pressure, temperature and salt concentration conditions representative of those of a CO2 storage operation. A correlation is derived from experimental data published in a companion paper [Chalbaud C., Robin M., Lombard J.-M., Egermann P., Bertin H. (2009 Interfacial Tension Measurements and Wettability Evaluation for Geological CO2 Storage, Adv. Water Resour. 32, 1, 1-109] to model IFT values. This paper pays particular attention to coreflooding experiments showing that the CO2 partially wets the surface in a Intermediate-Wet (IW or Oil-Wet (OW limestone rock. This wetting behavior of CO2 is coherent with observations at the pore scale in glass micromodels and presents a negative impact on the storage capacity of a given site. Il est admis depuis longtemps que les propriétés interfaciales (tension interfaciale, mouillabilité, capillarité et transfert de masse régissent la distribution et le comportement des fluides au sein des milieux poreux. Par cons

  18. Geophysical and Geochemical Aspects of Pressure and CO2 Saturation Modeling due to Migration of Fluids into the Above Zone Monitoring Interval of a Geologic Carbon Storage Site

    Science.gov (United States)

    Zhang, L.; Namhata, A.; Dilmore, R. M.; Bromhal, G. S.

    2016-12-01

    An increasing emphasis on the industrial scale implementation of CO2 storage into geological formations has led to the development of whole-system models to evaluate performance of candidate geologic storage sites, and the environmental risk associated with them. The components of that engineered geologic system include the storage reservoir, primary and secondary seals, and the overlying formations above primary and secondary seals (above-zone monitoring interval, AZMI). Leakage of CO2 and brine through the seal to the AZMI may occur due to the presence of natural or induced fractures in the seal. In this work, an AZMI model that simulates pressure and CO2 saturation responses through time to migration of fluids (here, CO2 and brine) from the primary seal to the AZMI is developed. A hypothetical case is examined wherein CO2 is injected into a storage reservoir for 30 years and a heterogeneous primary seal exists above the reservoir with some permeable zones. The total simulation period is 200 years (30 years of CO2 injection period and 170 years of post CO2 injection period). Key geophysical parameters such as permeability of the AZMI, thickness of the AZMI and porosity of the AZMI have significant impact on pressure evolution in the AZMI. arbitrary Polynomial Chaos (aPC) Expansion analysis shows that permeability of the AZMI has the most significant impact on pressure build up in the AZMI above the injection well at t=200 years, followed by thickness of the AZMI and porosity of the AZMI. Geochemical reactions have no impact on pressure and CO2 saturation evolution in the AZMI during the CO2 injection period. After the CO2 injection stops, precipitation of secondary minerals (e.g., amorphous silica and kaolinite) at the CO2 plume/brine interface in the AZMI formation may cause permeability reduction of the AZMI, which restrains horizontal migration of CO2 in the AZMI.

  19. Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.T.; Zhou, Q.

    2009-04-02

    Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2} per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2

  20. Clean fossil or refuse dump. Results of focus groups with citizens on CO2-storage in depleted natural gas fields

    International Nuclear Information System (INIS)

    Ganzevles, J.H.; Kets, A.; Van Est, Q.C.

    2008-09-01

    This report gives an account of a meeting with four focus groups - 31 citizens in Total - held at the Rathenau Institute on 7 July 2007. Carbon capture and storage (CCS) in depleted natural gas fields was the main topic. The goal of this meeting was to explore the public opinion on CCS, to gauge their attitude towards new technology and to examine the influence of information services on their opinion. The analysis has resulted in a comprehensive overview of arguments in favor of and against the development of CO2 capture and storage in the Netherlands. The study illustrates how all questions and points of interest can be classified based on three different angles, i.e. (1) the promise of CCS as instrument for handling environmental problems, energy problems and offering economic opportunities for the Netherlands; (2) the implementation process of CCS; and (3) possible side effects of CCS. [mk] [nl

  1. Diverse perspectives on governance on the very long term. Biodiversity, climatic change, CO2 storage, radioactive wastes, space wastes

    International Nuclear Information System (INIS)

    Boeuf, Gilles; Gouyon, Pierre Henry; Rollinger, Francois; Besnus, Francois; Heriard Dubreuil, Gilles; Dahan, Amy; Alby, Fernand; Arnould, Jacques; Fabriol, Hubert; Hoummady, Moussa; Demarcq, Francois; Farret, Regis; Hubert, Philippe; Weber, Jacques; Charton, Patrick; Boissier, Fabrice; Lopez, Mirelle; Devisse, Jean-Jacques; Mathy, Sandrine; Hourcade, Jean-Charles; Le Roux, Xavier; Bourcier, Danielle; Roure, Francoise; Henry, Claude; Bartet, Jean Hughes; Calame, Mathieu; Biteau, Benoit; Kastler, Guy; Ducret, Pierre; Berest, Pierre; Charron, Sylvie; Clin, Francois; Gadbois, Serge; Gueritte, Michel; Heriard-Dubreuil, Bertrand; Laville, Bettina; Marie, Michel; Marignac, Yves; Ollagnon, Henry; Pelegrin, Flora; Roure, Francoise; Rouyer, Michel; Schellenberger, Thomas; Toussaint, Jean-Francois

    2013-03-01

    This bibliographical note contains the program of a workshop and a presentation of a book based on the contributions to this workshop proposed by experts, representatives of institutional bodies and associations, or local representatives. This workshop addressed the issue of the governance on the very long term with respect to the management of resources such as climate, geology, biodiversity or space. How to make a possible usage of these resources while ensuring their protection and durability? What are the solutions or new challenges are raising these usages on the very long term? The first part addresses the main challenges and ethical issues for governance on the very long term for each of the examined topics: biodiversity, climatic change, CO 2 storage, radioactive waste storage, and space debris). The next parts propose contributions from different origins and disciplines, present relevant data, and report evidences

  2. A Workflow for Subsurface Pressure Control in Geological CO2 Storage: Optimization of Brine Extraction

    Science.gov (United States)

    Birkholzer, J. T.; Gonzalez-Nicolas, A.; Cihan, A.

    2017-12-01

    Industrial-scale injection of CO2 into the subsurface increases the fluid pressure in the reservoir, sometimes to the point that the resulting stress increases must be properly controlled to prevent potential damaging impacts such as fault activation, leakage through abandoned wells, or caprock fracturing. Brine extraction is one approach for managing formation pressure, effective stress, and plume movement in response to CO2 injection. However, the management of the extracted brine adds cost to the carbon capture and sequestration operations; therefore optimizing (minimizing) the extraction volume of brine is of great importance. In this study, we apply an adaptive management approach that optimizes extraction rates of brine for pressure control in an integrated optimization framework involving site monitoring, model calibration, and optimization. We investigate the optimization performance as affected by initial site characterization data and introduction of newly acquired data during the injection phase. More accurate initial reservoir characterization data reduce the risk of pressure buildup damage with better estimations of initial extraction rates, which results in better control of pressure during the overall injection time periods. Results also show that low frequencies of model calibration and optimization with the new data, especially at early injection periods, may lead to optimization problems, either that pressure buildup constraints are violated or excessively high extraction rates are proposed. These optimization problems can be eliminated if more frequent data collection and model calibration are conducted, especially at early injection time periods. Approaches such as adaptive pressure management may constitute an effective tool to manage pressure buildup under uncertain and unknown reservoir conditions by minimizing the brine extraction volumes while not exceeding critical pressure buildups of the reservoir.

  3. Southeast Offshore Storage Resource Assessment (SOSRA): Evaluation of CO2 Storage Potential on the Continental Shelf from North Carolina to Florida

    Science.gov (United States)

    Knapp, J. H.; Knapp, C. C.; Brantley, D.; Lakshmi, V.; Howard, S.

    2016-12-01

    The Southeast Offshore Storage Resource Assessment (SOSRA) project is part of a major new program, funded by the U.S. Department of Energy for the next two and a half years, to evaluate the Atlantic and Gulf of Mexico offshore margins of the United States for geologic storage capacity of CO2. Collaborating organizations include the Southern States Energy Board, Virginia Polytechnic Institute, University of South Carolina, Oklahoma State University, Virginia Department of Mines, Minerals, and Energy, South Carolina Geological Survey, and Geological Survey of Alabama. Team members from South Carolina are focused on the Atlantic offshore, from North Carolina to Florida. Geologic sequestration of CO2 is a major research focus globally, and requires robust knowledge of the porosity and permeability distribution in upper crustal sediments. Using legacy seismic reflection, refraction, and well data from a previous phase of offshore petroleum exploration on the Atlantic margin, we are analyzing the rock physics characteristics of the offshore Mesozoic and Cenozoic stratigraphy on a regional scale from North Carolina to Florida. Major features of the margin include the Carolina Trough, the Southeast Georgia Embayment, the Blake Plateau basin, and the Blake Outer Ridge. Previous studies indicate sediment accumulations on this margin may be as thick as 12-15 km. The study will apply a diverse suite of data analysis techniques designed to meet the goal of predicting storage capacity to within ±30%. Synthetic seismograms and checkshot surveys will be used to tie well and seismic data. Seismic interpretation and geophysical log analysis will employ leading-edge software technology and state-of-the art techniques for stratigraphic and structural interpretation and the definition of storage units and their physical and chemical properties. This approach will result in a robust characterization of offshore CO2 storage opportunities, as well as a volumetric analysis that is

  4. First Results of Continuous GPS Monitoring of Surface Deformation at the Aquistore Underground CO2 Storage Site

    Science.gov (United States)

    Craymer, M. R.; Ferland, R.; Piraszewski, M.; Samsonov, S. V.; Czarnogorska, M.

    2014-12-01

    Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS monitoring of surface deformation. Five GPS monitoring stations were installed in 2012 and another six in 2013, some collocated on top of InSAR retroreflectors. The GPS data from these stations have been processed on a weekly basis in both baseline processing mode using the Bernese GPS Software and precise point positioning mode using CSRS-PPP. Here we present the first complete results with 1-2 years of data at all sites prior to CO2 injection. The time series of these sites are examined, compared and analysed with respect to monument stability, seasonal signals and estimates of expected regional ground motion. The individual weekly network solutions have also been combined together in a cumulative 4D network solution to provide a preliminary local velocity field in the immediately vicinity of the injection well. These results are also compared to those obtained independently from InSAR, in particular the direct comparison of GPS and InSAR at the retroreflectors.

  5. Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America

    International Nuclear Information System (INIS)

    Oldenburg, C.; Birkholzer, J.T.

    2010-01-01

    Aside from the target storage regions being underground, geologic carbon sequestration and radioactive waste disposal share little in common in North America. The large volume of carbon dioxide (CO 2 ) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste. There is well-documented capacity in North America for 100 years or more of sequestration of CO 2 from coal-fired power plants. Aside from economics, the challenges of geologic carbon sequestration include lack of fully established legal and regulatory framework for ownership of injected CO 2 , the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for radioactive waste, the U.S. has proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level radioactive waste disposal site. The Canadian radioactive waste program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the U.S. and Canada have established legal and regulatory frameworks for radioactive waste disposal. The most challenging technical issue for radioactive waste disposal is the need to predict repository performance on extremely long time scales (10 4 - 10 6 years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening radioactive waste repositories. Because of the many significant differences between radioactive waste disposal and geologic carbon sequestration, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both geologic carbon sequestration and radioactive waste disposal

  6. Toolbox of Effects of CO2 Impurities on CO2 Transport and Storage Systems: 13th International Conference on Greenhouse Gas Control Technologies, GHGT 2016. 14 November 2016 through 18 November 2016

    NARCIS (Netherlands)

    Neele, F.; Koornneef, J.; Jakobsen, J.P.; Brunsvold, A.; Eickhoff, C.

    2017-01-01

    There is a need to gather new knowledge on the fundamental properties of CO2 mixtures with impurities and their impact on the chain integrity and economics of Carbon Capture & Storage (CCS) chains. One of the main results from the FP7 IMPACTS project is the IMPACTS toolbox, which comprises new

  7. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  8. An integrated petrophysical-geophysical approach for the characterization of a potential caprock-reservoir system for CO2 storage.

    Science.gov (United States)

    Fais, Silvana; Ligas, Paola; Cuccuru, Francesco; Casula, Giuseppe; Giovanna Bianchi, Maria; Maggio, Enrico; Plaisant, Alberto; Pettinau, Alberto

    2016-04-01

    The selection of a CO2 geologic storage site requires the choice of a study site suitable for the characterization in order to create a robust experimental database especially regarding the spatial petrophysical heterogeneities and elasto-mechanical properties of the rocks that make up a potential caprock-reservoir system. In our study the petrophysical and elasto-mechanical characterization began in a previously well drilled area in the northern part of the Sulcis coal basin (Nuraxi Figus area - SW Sardinia - Italy) where crucial geologic data were recovered from high-quality samples from stratigraphic wells and from mining galleries. The basin represents one of the most important Italian carbon reserves characterized by a great mining potential. In the study area, the Middle Eocene - Lower Oligocene Cixerri Fm. made up of terrigeneous continental rocks and the Upper Thanetian - Lower Ypresian Miliolitico Carbonate Complex in the Sulcis coal basin have been identified respectively as potential caprock and reservoir for CO2 storage. Petrophysical and geophysical investigations were carried out by a great number of laboratory tests on the core samples and in situ measurements on a mining gallery in order to characterize the potential caprock-reservoir system and to substantially reduce geologic uncertainty in the storage site characterization and in the geological and numerical modelling for the evaluation of CO2 storage capacity. In order to better define the spatial distribution of the petrophysical heterogeneity, the seismic responses from the caprock-reservoir system formations were also analysed and correlated with the petrophysical and elasto-mechanical properties In a second step of this work, we also analysed the tectonic stability of the study area by the integrated application of remote-sensing monitoring spatial geodetic techniques. In particular, the global positioning system (GPS) and interferometric synthetic aperture radar (inSAR) were considered

  9. Mathematical models as tools for probing long-term safety of CO2 storage

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten; Birkholzer, Jens; Zhou, Quanlin

    2009-02-01

    Subsurface reservoirs being considered for storing CO{sub 2} include saline aquifers, oil and gas reservoirs, and unmineable coal seams (Baines and Worden, 2004; IPCC, 2005). By far the greatest storage capacity is in saline aquifers (Dooley et al., 2004), and our discussion will focus primarily on CO{sub 2} storage in saline formations. Most issues for safety and security of CO{sub 2} storage arise from the fact that, at typical temperature and pressure conditions encountered in terrestrial crust, CO{sub 2} is less dense than aqueous fluids. Accordingly, CO{sub 2} will experience an upward buoyancy force in most subsurface environments, and will tend to migrate upwards whenever (sub-)vertical permeable pathways are available, such as fracture zones, faults, or improperly abandoned wells (Bachu, 2008; Pruess, 2008a, b; Tsang et al., 2008). CO{sub 2} injection will increase fluid pressures in the target formation, thereby altering effective stress distributions, and potentially triggering movement along fractures and faults that could increase their permeability and reduce the effectiveness of a caprock in containing CO{sub 2} (Rutqvist et al., 2008; Chiaramonte et al., 2008). Induced seismicity as a consequence of fluid injection is also a concern (Healy et al., 1968; Raleigh et al., 1976; Majer et al., 2007). Dissolution of CO{sub 2} in the aqueous phase generates carbonic acid, which may induce chemical corrosion (dissolution) of minerals with associated increase in formation porosity and permeability, and may also mediate sequestration of CO{sub 2} as solid carbonate (Gaus et al., 2008). Chemical dissolution of caprock minerals could promote leakage of CO{sub 2} from a storage reservoir (Gherardi et al., 2007). Chemical dissolution and geomechanical effects could reinforce one another in compromising CO{sub 2} containment. Additional issues arise from the potential of CO{sub 2} to mobilize hazardous chemical species (Kharaka et al., 2006), and from migration of

  10. CLEAN - Large-Scale CO2 Storage for Enhanced Gas Recovery in a depleted German Gasfield

    Science.gov (United States)

    Kuehn, M.; Förster, A.; Grossmann, J.; Meyer, R.; Pilz, P.; Reinicke, K.; Schaefer, D.; Tesmer, M.; Wendel, H.

    2011-12-01

    ) baseline stress conditions, (10) monitoring set-up comprising reservoir, cap rock and shallow aquifer compartments as well as the unsaturated zone and ground surface, (11) implementation of monitoring for the purpose of determining natural variations for the parameters, and (12) assessment of various methods with regard to temporal and spatial scales for the parameters recorded. The joint research project developed technologies and methods to be used for a CO2 based EGR within the Altmark. Furthermore, this work is a major step forward understanding the behavior of CO2 injected into a depleted gas field. The findings support the definition of national and international standards, the development of best practice guidelines and built up expertise for this new technology. Acknowledgement: CLEAN is part of the geoscientific R&D program "GEOTECHNOLOGIEN" funded by the German Federal Ministry of Education and Research (BMBF) and GDF SUEZ.

  11. Leakage Risk Assessment for a Potential CO2 Storage Project in Saskatchewan, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Houseworth, J.E.; Oldenburg, C.M.; Mazzoldi, A.; Gupta, A.K.; Nicot, J.-P.; Bryant, S.L.

    2011-05-01

    A CO{sub 2} sequestration project is being considered to (1) capture CO{sub 2} emissions from the Consumers Cooperative Refineries Limited at Regina, Saskatchewan and (2) geologically sequester the captured CO{sub 2} locally in a deep saline aquifer. This project is a collaboration of several industrial and governmental organizations, including the Petroleum Technology Research Centre (PTRC), Sustainable Development Technology Canada (SDTC), SaskEnvironment Go Green Fund, SaskPower, CCRL, Schlumberger Carbon Services, and Enbridge. The project objective is to sequester 600 tonnes CO{sub 2}/day. Injection is planned to start in 2012 or 2013 for a period of 25 years for a total storage of approximately 5.5 million tonnes CO{sub 2}. This report presents an assessment of the leakage risk of the proposed project using a methodology known as the Certification Framework (CF). The CF is used for evaluating CO{sub 2} leakage risk associated with geologic carbon sequestration (GCS), as well as brine leakage risk owing to displacement and pressurization of brine by the injected CO{sub 2}. We follow the CF methodology by defining the entities (so-called Compartments) that could be impacted by CO{sub 2} leakage, the CO{sub 2} storage region, the potential for leakage along well and fault pathways, and the consequences of such leakage. An understanding of the likelihood and consequences of leakage forms the basis for understanding CO{sub 2} leakage risk, and forms the basis for recommendations of additional data collection and analysis to increase confidence in the risk assessment.

  12. How to Characterize a Potential Site for CO2 Storage with Sparse Data Coverage – a Danish Onshore Site Case

    Directory of Open Access Journals (Sweden)

    Nielsen Carsten Møller

    2015-04-01

    Full Text Available The paper demonstrates how a potential site for CO2 storage can be evaluated up to a sufficient level of characterization for compiling a storage permit application, even if the site is only sparsely explored. The focus of the paper is on a risk driven characterization procedure. In the initial state of a site characterization process with sparse data coverage, the regional geological and stratigraphic understanding of the area of interest can help strengthen a first model construction for predictive modeling. Static and dynamic modeling in combination with a comprehensive risk assessment can guide the different elements needed to be evaluated for fulfilling a permit application. Several essential parameters must be evaluated; the storage capacity for the site must be acceptable for the project life of the operation, the trap configuration must be efficient to secure long term containment, the injectivity must be sufficient to secure a longstanding stable operation and finally a satisfactory and operational measuring strategy must be designed. The characterization procedure is demonstrated for a deep onshore aquifer in the northern part of Denmark, the Vedsted site. The site is an anticlinal structural closure in an Upper Triassic – Lower Jurassic sandstone formation at 1 800-1 900 m depth.

  13. Simulation of a Potential CO2 Storage in the West Paris Basin: Site Characterization and Assessment of the Long-Term Hydrodynamical and Geochemical Impacts Induced by the CO2 Injection

    Directory of Open Access Journals (Sweden)

    Estublier Audrey

    2017-07-01

    Full Text Available This article presents the preliminary results of a study carried out as part of a demonstration project of CO2 storage in the Paris Basin. This project funded by ADEME (French Environment and Energy Management Agency and several industrial partners (TOTAL, ENGIE, EDF, Lafarge, Air Liquide, Vallourec aimed to study the possibility to set up an experimental infrastructure of CO2 transport and storage. Regarding the storage, the objectives were: (1 to characterize the selected site by optimizing the number of wells in a CO2 injection case of 200 Mt over 50 years in the Trias, (2 to simulate over time the CO2 migration and the induced pressure field, and (3 to analyze the geochemical behavior of the rock over the long term (1,000 years. The preliminary site characterization study revealed that only the southern area of Keuper succeeds to satisfy this injection criterion using only four injectors. However, a complementary study based on a refined fluid flow model with additional secondary faults concluded that this zone presents the highest potential of CO2 injection but without reaching the objective of 200 Mt with a reasonable number of wells. The simulation of the base scenario, carried out before the model refinement, showed that the overpressure above 0.1 MPa covers an area of 51,869 km2 in the Chaunoy formation, 1,000 years after the end of the injection, which corresponds to the whole West Paris Basin, whereas the CO2 plume extension remains small (524 km2. This overpressure causes brine flows at the domain boundaries and a local overpressure in the studied oil fields. Regarding the preliminary risk analysis of this project, the geochemical effects induced by the CO2 injection were studied by simulating the fluid-rock interactions with a coupled geochemical and fluid flow model in a domain limited to the storage complex. A one-way coupling of two models based on two domains fitting into each other was developed using dynamic boundary

  14. Remaining gaps for "safe" CO2 storage: the INGV CO2GAPS vision of "learning by doing" monitoring geogas leakage, reservoirs contamination/mixing and induced/triggered seismicity

    Science.gov (United States)

    Quattrocchi, F.; Vinciguerra, S.; Chiarabba, C.; Boschi, E.; Anselmi, M.; Burrato, P.; Buttinelli, M.; Cantucci, B.; Cinti, D.; Galli, G.; Improta, L.; Nazzari, M.; Pischiutta, M.; Pizzino, L.; Procesi, M.; Rovelli, A.; Sciarra, A.; Voltattorni, N.

    2012-12-01

    The CO2GAPS project proposed by INGV is intended to build up an European Proposal for a new kind of research strategy in the field of the geogas storage. Aim of the project would be to fill such key GAPS concerning the main risks associated to CO2 storage and their implications on the entire Carbon Capture and Storage (CCS) process, which are: i) the geogas leakage both in soils and shallow aquifers, up to indoor seepage; ii) the reservoirs contamination/mixing by hydrocarbons and heavy metals; iii) induced or triggered seismicity and microseismicity, especially for seismogenic blind faults. In order to consider such risks and make the CCS public acceptance easier, a new kind of research approach should be performed by: i) a better multi-disciplinary and "site specific" risk assessment; ii) the development of more reliable multi-disciplinary monitoring protocols. In this view robust pre-injection base-lines (seismicity and degassing) as well as identification and discrimination criteria for potential anomalies are mandatory. CO2 injection dynamic modelling presently not consider reservoirs geomechanical properties during reactive mass-transport large scale simulations. Complex simulations of the contemporaneous physic-chemical processes involving CO2-rich plumes which move, react and help to crack the reservoir rocks are not totally performed. These activities should not be accomplished only by the oil-gas/electric companies, since the experienced know-how should be shared among the CCS industrial operators and research institutions, with the governments support and overview, also flanked by a transparent and "peer reviewed" scientific popularization process. In this context, a preliminary and reliable 3D modelling of the entire "storage complex" as defined by the European Directive 31/2009 is strictly necessary, taking into account the above mentioned geological, geochemical and geophysical risks. New scientific results could also highlighting such opportunities

  15. Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism

    Directory of Open Access Journals (Sweden)

    Ribooga Chang

    2017-07-01

    Full Text Available The transformation of CO2 into a precipitated mineral carbonate through an ex situ mineral carbonation route is considered a promising option for carbon capture and storage (CCS since (i the captured CO2 can be stored permanently and (ii industrial wastes (i.e., coal fly ash, steel and stainless-steel slags, and cement and lime kiln dusts can be recycled and converted into value-added carbonate materials by controlling polymorphs and properties of the mineral carbonates. The final products produced by the ex situ mineral carbonation route can be divided into two categories—low-end high-volume and high-end low-volume mineral carbonates—in terms of their market needs as well as their properties (i.e., purity. Therefore, it is expected that this can partially offset the total cost of the CCS processes. Polymorphs and physicochemical properties of CaCO3 strongly rely on the synthesis variables such as temperature, pH of the solution, reaction time, ion concentration and ratio, stirring, and the concentration of additives. Various efforts to control and fabricate polymorphs of CaCO3 have been made to date. In this review, we present a summary of current knowledge and recent investigations entailing mechanistic studies on the formation of the precipitated CaCO3 and the influences of the synthesis factors on the polymorphs.

  16. Formation of graphene-like 2D spinel MnCo2O4 and its lithium storage properties

    DEFF Research Database (Denmark)

    Huang, Guoyong; Guo, Xueyi; Cao, Xiao

    2017-01-01

    Two-dimensional (2D) materials fulfill the requirements for fast lithium storage due to the large exposed surface area and the open shortened path for Li insertion/extraction. Novel graphene-like 2D spinel MnCo2O4 powders have been synthesized, which inherit the morphology and structure of special.......0 mAhg-1 at 0.4 Ag-1 after 200 cycles). Remarkably, the 2D layered structure is retained perfectly after 200 cycles at 0.4 Ag-1. Hence, the type of unique self-assembly metal-organic precursors could provide a flexible and general way to synthesize 2D layered metal oxides as templates for high-performance lithium...

  17. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2006-01-23

    As part of the Department of Energy's (DOE) initiative on developing new technologies for storage of carbon dioxide in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, The Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the October through December 2005 period of the project. As discussed in the following report, the main field activity was reservoir testing in the Copper Ridge ''B-zone'' in the AEP No.1 well. In addition reservoir simulations were completed to assess feasibility of CO{sub 2} injection for the Mountaineer site. These reservoir testing and computer simulation results suggest that injection potential may be substantially more than anticipated for the Mountaineer site. Work also continued on development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. Overall, the current design feasibility phase project is proceeding according to plans.

  18. Monitoring of injected CO2 at two commercial geologic storage sites with significant pressure depletion and/or re-pressurization histories: A case study

    Directory of Open Access Journals (Sweden)

    Dayanand Saini

    2017-03-01

    The monitoring technologies that have been used/deployed/tested at both the normally pressured West Hastings and the subnormally pressured Bell Creek storage sites appear to adequately address any of the potential “out of zone migration” of injected CO2 at these sites. It would be interesting to see if any of the collected monitoring data at the West Hastings and the Bell Creek storage sites could also be used in future to better understand the viability of initially subnormally pressured and subsequently depleted and re-pressurized oil fields as secure geologic CO2 storage sites with relatively large storage CO2 capacities compared to the depleted and re-pressurized oil fields that were initially discovered as normally pressured.

  19. Evolution of the Petrophysical and Mineralogical Properties of Two Reservoir Rocks Under Thermodynamic Conditions Relevant for CO2 Geological Storage at 3 km Depth

    International Nuclear Information System (INIS)

    Rimmel, G.; Barlet-Gouedard, V.; Renard, F.

    2010-01-01

    Injection of carbon dioxide (CO 2 ) underground, for long-term geological storage purposes, is considered as an economically viable option to reduce greenhouse gas emissions in the atmosphere. The chemical interactions between supercritical CO 2 and the potential reservoir rock need to be thoroughly investigated under thermodynamic conditions relevant for geological storage. In the present study, 40 samples of Lavoux limestone and Adamswiller sandstone, both collected from reservoir rocks in the Paris basin, were experimentally exposed to CO 2 in laboratory autoclaves specially built to simulate CO 2 -storage-reservoir conditions. The two types of rock were exposed to wet supercritical CO 2 and CO 2 -saturated water for one month, at 28 MPa and 90 C, corresponding to conditions for a burial depth approximating 3 km. The changes in mineralogy and micro-texture of the samples were measured using X-ray diffraction analyses, Raman spectroscopy, scanning-electron microscopy, and energy-dispersion spectroscopy microanalysis. The petrophysical properties were monitored by measuring the weight, density, mechanical properties, permeability, global porosity, and local porosity gradients through the samples. Both rocks maintained their mechanical and mineralogical properties after CO 2 exposure despite an increase of porosity and permeability. Microscopic zones of calcite dissolution observed in the limestone are more likely to be responsible for such increase. In the sandstone, an alteration of the petro-fabric is assumed to have occurred due to clay minerals reacting with CO 2 . All samples of Lavoux limestone and Adamswiller sandstone showed a measurable alteration when immersed either in wet supercritical CO 2 or in CO 2 -saturated water. These batch experiments were performed using distilled water and thus simulate more severe conditions than using formation water (brine). (authors)

  20. Hydro-mechanical simulations of well abandonment at the Ketzin pilot site for CO2 storage verify wellbore system integrity

    Science.gov (United States)

    Unger, Victoria; Kempka, Thomas

    2015-04-01

    In geological underground utilisation, operating and abandoned wells have been identified as a main potential leakage pathways for reservoir fluids. In the scope of the well abandonment procedure currently carried out at the Ketzin pilot site for CO2 storage in Germany, a hydro-mechanical model was built to carry out a coupled analysis of the integrity in the entire wellbore system. The main aim of the present study was to assess the impacts of stress changes associated with CO2 injection as well as the cement backfill undertaken in the scope of well abandonment. A numerical model comprising cement sheaths, steel casings, tubing, multiple packers and wellbore annuli was implemented to enable a detailed representation of the entire wellbore system. The numerical model grid has a horizontal discretisation of 5 m x 5 m to focus on near wellbore effects, whereby element sizes increase with increasing distance from the wellbore. Vertical grid discretisation uses a tartan grid type over the entire model thickness of 1,500 m to ensure a sufficient discretisation of all wellbore system elements as well as of the reservoir unit. The total number of elements amounts to 210,672. Mechanical model parameters were taken from geological, drilling, logging and laboratory test data based on Ketzin pilot site-specific information as well as related literature (Kempka et al., 2014). The coupled calculations were performed using an elasto-plastic constitutive law, whereby an initial simulation run ensured a static mechanical equilibrium to represent the initial state before the start of CO2 injection. Thereto, gravitational load of the overburden rocks and pore pressure distribution following available well logs were integrated for initial model parameterisation including a normal faulting stress regime defined by a horizontal to vertical total stress ratio of 0.85. A correction accounting for the temperature and pressure dependent CO2 density was carried out in advance of each

  1. Technical support for an enabling policy framework for carbon dioxide capture and geological storage. Task 3. Incentivising CO2 capture and storage in the EU

    International Nuclear Information System (INIS)

    De Coninck, H.; Groenenberg, H.

    2007-03-01

    To date CO2 capture and storage (CCS) is not deployed at a commercial scale, and a range of policy instruments could be used to provide adequate incentives for large scale deployment of CCS in the European Union. Five groups of incentives are discussed: (1) the EU Emissions Trading Scheme (weak and strong version); (2) Member-State-based public financial support through investment support, feed-in subsidies or a CO2 price guarantee; (3) an EU-level low-carbon portfolio standard with tradable certificates; (4) an EU-wide CCS obligation for all new fossil-fuel-based power capacity, and (5) public-private partnerships for realizing a CO2 pipeline infrastructure. The nature of the policy, mainly in case the scale of the instrument matters and much public financial is involved, determines whether it will be implemented by the EU or at the Member-State level. Support for CCS projects at the Member-State level, however, will require amendment of the Community Guidelines for State Aid for Environmental Protection

  2. ''No smoking''. CO2-low power generation in a sustainable German energy system. A comparison of CO2 abatement costs of renewable energy sources and carbon capture and storage

    International Nuclear Information System (INIS)

    Trittin, Tom

    2012-05-01

    Significant reduction of CO 2 -emissions is essential in order to prevent a worsening of ongoing climate change. This thesis analyses two different pathways for the mitigation of CO 2 -emissions in electricity generation. It focuses on the calculation of CO 2 -mitigation costs of renewable energy sources (RES) as well as of power plants with carbon capture and storage (CCS). Under the frame of long-term CO 2 reductions targets for the German electricity sector future CO 2 -mitigation costs are calculated on a system-based and a technology-based approach. The calculations show that RES have lower system-based mitigation costs in all scenarios compared to a system based on CCS. If the retrofit of power plants is taken into consideration, the results are even more clearly in favour of RES. Further, the thesis investigates whether CCS can serve as a bridge towards a sustainable energy system based on RES. Findings of different scientific disciplines suggest that CCS is not the optimal choice. These findings lead to the conclusion that CCS cannot support an easier integration of RES. CCS rather has the potential to further strengthen the fossil pathway and delaying the large-scale integration of RES. Hence, CCS is rather unsuited as a bridging technology towards a system mainly based on RES.

  3. Science in bullet points: How to compile scientific results to underpin guidelines for CO2 storage for the German transposition of the European CCS Directive

    Science.gov (United States)

    Streibel, Martin

    2015-04-01

    In 2012 the German Parliament passed the transposition of the EC Directive 2009/31/EC the "Carbon Dioxide Storage Law" (KSpG). The law focuses on the demonstration of the CO2 storage technology and mainly regulates the storage part of the Carbon Capture and Storage (CCS) chain. As the law has a conceptual character, appendix 1 provides a description of criteria for the characterisation and assessment of a potential CO2 storage site starting with field data ending with requirements for dynamic modelling of the storage complex. Appendix 2 describes the expected monitoring system during all relevant phases of a life cycle of a CO2 storage site. The criteria given in the appendices are of general nature, which reflects on one hand that the CO2 storage technology is still being developed and on the other hand that site specific aspects needs to be considered. In 2004 the Federal Ministry of Education and Research of Germany launched the programme GEOTECHNOLOGIEN with one key aspect being the development of technologies for a sustainable storage of carbon dioxide in geological formations. Within this research field more than 30 projects in three phases have been funded until the end of 2014. In order to benefit from the gathered knowledge and use the experiences for the policy/law making process the umbrella project AUGE has been launched in October 2012 with a life time of three years. The aim of the project is to review and compile all results of projects funded during the three phases to underpin the appendices of the KSpG. In the first part of the paper the most important findings of the project with regard to the overall risk of a geological CO2 storage and the procedure of compiling the guidance document will be discussed. Milestones of this project were • the compilation of the results of national, European and international projects; • interviews with stakeholders; • a workshops to define state of the art for certain involved technologies and existing gaps

  4. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    Science.gov (United States)

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  5. Stable large-scale CO2 storage in defiance of an energy system based on renewable energy - Modelling the impact of varying CO2 injection rates on reservoir behavior

    Science.gov (United States)

    Bannach, Andreas; Hauer, Rene; Martin, Streibel; Stienstra, Gerard; Kühn, Michael

    2015-04-01

    The IPCC Report 2014 strengthens the need for CO2 storage as part of CCS or BECCS to reach ambitious climate goals despite growing energy demand in the future. The further expansion of renewable energy sources is a second major pillar. As it is today in Germany the weather becomes the controlling factor for electricity production by fossil fuelled power plants which lead to significant fluctuations of CO2-emissions which can be traced in injection rates if the CO2 were captured and stored. To analyse the impact of such changing injection rates on a CO2 storage reservoir. two reservoir simulation models are applied: a. An (smaller) reservoir model approved by gas storage activities for decades, to investigate the dynamic effects in the early stage of storage filling (initial aquifer displacement). b. An anticline structure big enough to accommodate a total amount of ≥ 100 Mega tons CO2 to investigate the dynamic effects for the entire operational life time of the storage under particular consideration of very high filling levels (highest aquifer compression). Therefore a reservoir model was generated. The defined yearly injection rate schedule is based on a study performed on behalf of IZ Klima (DNV GL, 2014). According to this study the exclusive consideration of a pool of coal-fired power plants causes the most intensive dynamically changing CO2 emissions and hence accounts for variations of a system which includes industry driven CO2 production. Besides short-term changes (daily & weekly cycles) seasonal influences are also taken into account. Simulation runs cover a variation of injection points (well locations at the top vs. locations at the flank of the structure) and some other largely unknown reservoir parameters as aquifer size and aquifer mobility. Simulation of a 20 year storage operation is followed by a post-operational shut-in phase which covers approximately 500 years to assess possible effects of changing injection rates on the long-term reservoir

  6. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  7. The system-wide economics of a carbon dioxide capture, utilization, and storage network: Texas Gulf Coast with pure CO2-EOR flood

    Science.gov (United States)

    King, Carey W.; Gülen, Gürcan; Cohen, Stuart M.; Nuñez-Lopez, Vanessa

    2013-09-01

    This letter compares several bounding cases for understanding the economic viability of capturing large quantities of anthropogenic CO2 from coal-fired power generators within the Electric Reliability Council of Texas electric grid and using it for pure CO2 enhanced oil recovery (EOR) in the onshore coastal region of Texas along the Gulf of Mexico. All captured CO2 in excess of that needed for EOR is sequestered in saline formations at the same geographic locations as the oil reservoirs but at a different depth. We analyze the extraction of oil from the same set of ten reservoirs within 20- and five-year time frames to describe how the scale of the carbon dioxide capture, utilization, and storage (CCUS) network changes to meet the rate of CO2 demand for oil recovery. Our analysis shows that there is a negative system-wide net present value (NPV) for all modeled scenarios. The system comes close to breakeven economics when capturing CO2 from three coal-fired power plants to produce oil via CO2-EOR over 20 years and assuming no CO2 emissions penalty. The NPV drops when we consider a larger network to produce oil more quickly (21 coal-fired generators with CO2 capture to produce 80% of the oil within five years). Upon applying a CO2 emissions penalty of 602009/tCO2 to fossil fuel emissions to ensure that coal-fired power plants with CO2 capture remain in baseload operation, the system economics drop significantly. We show near profitability for the cash flow of the EOR operations only; however, this situation requires relatively cheap electricity prices during operation.

  8. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites

    Science.gov (United States)

    Sauer, U.; Schuetze, C.; Dietrich, P.

    2013-12-01

    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The

  9. Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS reservoirs on benthic virus-prokaryote interactions and functions

    Directory of Open Access Journals (Sweden)

    Eugenio eRastelli

    2015-09-01

    Full Text Available Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning and human life. Among the proposed mitigation strategies, CO2 capture and storage (CCS, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus-host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality. We found that exposure to levels of CO2 in the overlying seawater from 1,000 ppm to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of virus-induced prokaryotic mortality, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems.

  10. Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS) reservoirs on benthic virus–prokaryote interactions and functions

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell’Anno, Antonio; Amaro, Teresa; Queirós, Ana M.; Widdicombe, Stephen; Danovaro, Roberto

    2015-01-01

    Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning, and human life. Among the proposed mitigation strategies, CO2 capture and storage, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus–host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality (VIPM). We found that exposure to levels of CO2 in the overlying seawater from 1,000 to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of VIPM, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems. PMID:26441872

  11. Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS) reservoirs on benthic virus-prokaryote interactions and functions.

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2015-01-01

    Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning, and human life. Among the proposed mitigation strategies, CO2 capture and storage, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus-host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality (VIPM). We found that exposure to levels of CO2 in the overlying seawater from 1,000 to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of VIPM, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems.

  12. Determining Carbon and Oxygen Stable Isotope Systematics in Brines at Elevated p/T Conditions to Enhance Monitoring of CO2 Induced Processes in Carbon Storage Reservoirs

    Science.gov (United States)

    Becker, V.; Myrttinen, A.; Mayer, B.; Barth, J. A.

    2012-12-01

    Stable carbon isotope ratios (δ13C) are a powerful tool for inferring carbon sources and mixing ratios of injected and baseline CO2 in storage reservoirs. Furthermore, CO2 releasing and consuming processes can be deduced if the isotopic compositions of end-members are known. At low CO2 pressures (pCO2), oxygen isotope ratios (δ18O) of CO2 usually assume the δ18O of the water plus a temperature-dependent isotope fractionation factor. However, at very high CO2 pressures as they occur in CO2 storage reservoirs, the δ18O of the injected CO2 may in fact change the δ18O of the reservoir brine. Hence, changing δ18O of brine constitutes an additional tracer for reservoir-internal carbon dynamics and allows the determination of the amount of free phase CO2 present in the reservoir (Johnson et al. 2011). Further systematic research to quantify carbon and oxygen isotope fractionation between the involved inorganic carbon species (CO2, H2CO3, HCO3-, CO32-, carbonate minerals) and kinetic and equilibrium isotope effects during gas-water-rock interactions is necessary because p/T conditions and salinities in CO2 storage reservoirs may exceed the boundary conditions of typical environmental isotope applications, thereby limiting the accuracy of stable isotope monitoring approaches in deep saline formations (Becker et al. 2011). In doing so, it is crucial to compare isotopic patterns observed in laboratory experiments with artificial brines to similar experiments with original fluids from representative field sites to account for reactions of dissolved inorganic carbon (DIC) with minor brine components. In the CO2ISO-LABEL project, funded by the German Ministry for Education and Research, multiple series of laboratory experiments are conducted to determine the influence of pressure, temperature and brine composition on the δ13C of DIC and the δ18O of brines in water-CO2-rock reactions with special focus placed on kinetics and stable oxygen and carbon isotope fractionation

  13. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

    2008-10-01

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water

  14. A workflow for handling heterogeneous 3D models with the TOUGH2 family of codes: Applications to numerical modeling of CO 2 geological storage

    Science.gov (United States)

    Audigane, Pascal; Chiaberge, Christophe; Mathurin, Frédéric; Lions, Julie; Picot-Colbeaux, Géraldine

    2011-04-01

    This paper is addressed to the TOUGH2 user community. It presents a new tool for handling simulations run with the TOUGH2 code with specific application to CO 2 geological storage. This tool is composed of separate FORTRAN subroutines (or modules) that can be run independently, using input and output files in ASCII format for TOUGH2. These modules have been developed specifically for modeling of carbon dioxide geological storage and their use with TOUGH2 and the Equation of State module ECO2N, dedicated to CO 2-water-salt mixture systems, with TOUGHREACT, which is an adaptation of TOUGH2 with ECO2N and geochemical fluid-rock interactions, and with TOUGH2 and the EOS7C module dedicated to CO 2-CH 4 gas mixture is described. The objective is to save time for the pre-processing, execution and visualization of complex geometry for geological system representation. The workflow is rapid and user-friendly and future implementation to other TOUGH2 EOS modules for other contexts (e.g. nuclear waste disposal, geothermal production) is straightforward. Three examples are shown for validation: (i) leakage of CO 2 up through an abandoned well; (ii) 3D reactive transport modeling of CO 2 in a sandy aquifer formation in the Sleipner gas Field, (North Sea, Norway); and (iii) an estimation of enhanced gas recovery technology using CO 2 as the injected and stored gas to produce methane in the K12B Gas Field (North Sea, Denmark).

  15. Synthesis of INERIS works in 2006-2008 on the issue: gaseous phase geochemical monitoring at the surface and in the intermediate roofing of storage sites. CO2 capture and storage 2005 ANR program - Geo-carbon Monitoring Convention ANR-05-CO2-008-05. Investigation report

    International Nuclear Information System (INIS)

    Pokryszka, Zbigniew; Charmoille, Arnaud; Bentivegna, Gaetan

    2008-01-01

    Within the frame of the project of CO 2 capture and storage as a way to struggle against the greenhouse effect, this report proposes a synthesis of works performed by the INERIS in the field of gaseous phase geochemical monitoring, and more particularly on some parts of a larger programme, i.e. leakage detection in storage roofing and aquifers, leakage detection at the surface and at its vicinity (development of means of detection and direct measurement of CO 2 flows at the soil/atmosphere interface, assessment of leakages at the surface on the basis of point measurements), and testing of methods of direct measurement of CO 2 flows on sites

  16. Risk Assessment-Led Characterisation of the SiteChar UK North Sea Site for the Geological Storage of CO2

    Directory of Open Access Journals (Sweden)

    Akhurst Maxine

    2015-04-01

    Full Text Available Risk assessment-led characterisation of a site for the geological storage of CO2 in the UK northern North Sea was performed for the EU SiteChar research project as one of a portfolio of sites. Implementation and testing of the SiteChar project site characterisation workflow has produced a ‘dry-run’ storage permit application that is compliant with regulatory requirements. A site suitable for commercial-scale storage was characterised, compatible with current and future industrial carbon dioxide (CO2 sources in the northern UK. Pre-characterisation of the site, based on existing information acquired during hydrocarbon exploration and production, has been achieved from publicly available data. The project concept is to store captured CO2 at a rate of 5 Mt per year for 20 years in the Blake Oil Field and surrounding Captain Sandstone saline aquifer. This commercial-scale storage of 100 Mt CO2 can be achieved through a storage scenario combining injection of CO2 into the oil field and concurrent water production down-dip of the field. There would be no encroachment of supercritical phase CO2 for more than two kilometres beyond the field boundary and no adverse influence on operating hydrocarbon fields provided there is pressure management. Components of a storage permit application for the site are presented, developed as far as possible within a research project. Characterisation and technical investigations were guided by an initial assessment of perceived risks to the prospective site and a need to provide the information required for the storage permit application. The emphasis throughout was to reduce risks and uncertainty on the subsurface containment of stored CO2, particularly with respect to site technical performance, monitoring and regulatory issues, and effects on other resources. The results of selected risk assessment-led site characterisation investigations and the subsequent risk reassessments are described together with their

  17. Thermodynamic System Studies for a Natural Gas Combined Cycle (NGCC) Plant with CO2 Capture and Hydrogen Storage with Metal Hydrides

    OpenAIRE

    Thallam Thattai, A.; Wittebrood, B.J.; Woudstra, T.; Geerlings, J.J.C.; Aravind, P.V.

    2014-01-01

    Flexibility in natural gas combined cycle power plants (NGCC) with pre-combustion CO2 capture could be introduced with co-production of hydrogen and subsequent hydrogen storage with metal hydrides (MH). The current work presents a thermodynamic analysis and comparison between steady state ASPEN Plus models of a reference case NGCC plant with no capture and H2 storage, an NGCC plant with pre-combustion capture using gas heated - auto thermal reformer (GHR-ATR) combined with a sorption enhanced...

  18. Thermodynamic System Studies for a Natural Gas Combined Cycle (NGCC) Plant with CO2 Capture and Hydrogen Storage with Metal Hydrides

    NARCIS (Netherlands)

    Thallam Thattai, A.; Wittebrood, B.J.; Woudstra, T.; Geerlings, J.J.C.; Aravind, P.V.

    2014-01-01

    Flexibility in natural gas combined cycle power plants (NGCC) with pre-combustion CO2 capture could be introduced with co-production of hydrogen and subsequent hydrogen storage with metal hydrides (MH). The current work presents a thermodynamic analysis and comparison between steady state ASPEN Plus

  19. Communicating CCS : Effects of text-only and text-and-visual depictions of CO2 storage on risk perceptions and attitudes.

    NARCIS (Netherlands)

    Brunsting, S.; de Best-Waldhober, M.; Brouwer, A. S.; Riesch, H.; Reiner, D.

    2013-01-01

    This experiment aims to increase understanding of the conditions under which combining textual and visual information on CO, storage fosters comprehension of the technology. Specifically, it is investigated if and how precision in indicating the depth of CO2 injection in either text, visual, or

  20. 1:1 scale wellbore experiment and associated modeling for a better understanding of well integrity in the context of CO2 geological storage

    NARCIS (Netherlands)

    Manceau, J.C.; Trémosa, J.; Audigane, P.; Claret, F.; Wasch, L.J.; Gherardi, F.; Ukelis, O.; Dimier, A.; Nussbaum, C.; Lettry, Y.; Fierz, T.

    2014-01-01

    In this study, we present a new experiment for following the evolution of the well integrity over time due to different changes in well conditions (pressure, temperature and fluids in contact with the well) in the context of CO2 geological storage. A small section of a wellbore is reproduced in the

  1. Reaction-driven cracking during hydration and carbonation of olivine: Implications for in situ CO2 capture and storage

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.

    2011-12-01

    Reactions forming serpentine and/or Mg-carbonates via reaction of fluid with olivine may increase the solid volume, due to increasing solid mass and decreasing solid density, provided that fluid is supplied in an open system, and that dissolution does not remove significant solid mass. Increasing solid volume can create deviatoric stress within a rock, potentially causing fracture. In turn, this can provide a positive feedback to the alteration process, maintaining or increasing permeability and reactive surface area. This could be important - or even essential - for proposed in situ mineral carbonation for CO2 storage, and potentially for geological CO2 capture from surface waters. We use several methods to estimate the 'force of crystallization' during hydration and carbonation of olivine. The free energy changes driving these processes can potentially generate overpressures of 100's to 1000's of MPa. These potential stresses are larger for a given temperature for carbonation compared to serpentinization. Thermodynamic upper bounds can be compared to estimates based on microstructure in natural samples. Evans (Int Geol Rev 2004) and Jamtveit et al. (EPSL 2008) provide microphotographs of igneous troctolites, with interstitial plagioclase surrounding rounded olivine grains. The olivine grains are partially serpentinized, and the plagioclase has closely spaced fractures interpreted as a result of expansion during serpentinization. Strain energy due to expansion should be greater than surface energy on new fractures. Spacing and length of fractures in plagioclase yields a minimum of about 260 MPa for the differential stress. Alternatively, if fractures did not form, elastic stress in the plagioclase resulting from expansion during serpentinization should be proportional to the strain. Because some strain could be accommodated by irreversible mechanisms, such as friction and dilation on cracks and/or viscous flow, this yields a maximum stress of 270 MPa. The close

  2. Time-lapse downhole electrical resistivity monitoring of subsurface CO2 storage at the Maguelone shallow experimental site (Languedoc, France)

    Science.gov (United States)

    Denchik, Nataliya; Pezard, Philippe; Lofi, Johanna; Perroud, Hervé; Neyens, Denis; Luquot, Linda

    2015-04-01

    A shallow field experimental site for CO2 injection was established at Maguelone (Languedoc,France), in order to test in an integrated manner a suite of surface and downhole hydrogeophysical monitoring methods. The objective is to improve our understanding of gas transport in the shallow subsurface and to determine the sensitivity of CO2 monitoring systems for leakage detection. The site offers a natural laboratory to study the processes associated with CO2 injection in a clastic and clay-rich context saturated with saline fluids. Prior to CO2injection, three nitrogen (N2) injections were undertaken in 2012 to measure the site response to neutral gas injection. In 2013, a volume of 111 m3 of CO2 was injected during 3.5 hours at 15 meter depth. During each experiment, the gas plumes were successfully detected from pressure monitoring, time-lapse induction logging and downhole resistivity monitoring with downhole dipole-dipole arrays. Increases in resistivity are attributed to free gas propagation (either N2 or CO2) whereas decreases in resistivity correlate with CO2 dissolution in the pore fluid. Chemical analyses confirm this hypothesis with a decrease in pH and an increase in the concentration of dissolved species in the later case. The next stage of the project will be performing the CO2 injection experiments with improved monitoring schema using results of the present study. In perspective, besides of improving our understanding of gas transport in the shallow subsurface, the additional issues could not just show a capability of used geophysical and geochemical techniques to monitor the CO2 plume and to detect near-surface CO2 migration pathways, but to help quantifying potential CO2 migration.

  3. Status of knowledge on risks related to CO2 geological storage. Report nr 1: risks during the injection phase. Investigation report

    International Nuclear Information System (INIS)

    Gombert, Philippe; Thoraval, Alain

    2010-01-01

    Carbon capture and storage (CCS) is considered as a possibility to struggle against greenhouse effect and therefore against climate change. This process is here presented as comprising three main periods: exploitation during 40 to 50 years which itself comprises three phases (design, injection and closure), memory during about 300 years, and a long term period (700 to 800 years during which the existence of the storage and its associated risks will be forgotten). This study concerns the injection phase of the first period and some of its associated risks: leakages, thermal-hydro-mechanical-chemical disturbances at the vicinity of the storage. The report gives an overview of CO 2 geological capture and storage (capture, transport, injection, storage, foreseen storage media, nature of the injected fluid, regulations, returns on experience), identifies the associated risks, discusses issues of assessment of risks related to well leakages and to disturbances at the vicinity of the well (mechanical, physical and chemical, bacteriological risks)

  4. SiteChar. Characterisation of European CO2 storage. Deliverable D8.1. Qualitative and quantitative social site characterisations

    Energy Technology Data Exchange (ETDEWEB)

    Brunsting, S.; Pol, M.; Paukovic, M. [ECN Policy Studies, Energy research Centre of the Netherlands ECN, Amsterdam (Netherlands); Kaiser, M.; Zimmer, R. [Unabhaengiges Institut fuer Umweltfragen UfU, Berlin (Germany); Shackley, S.; Mabon, L. [Scottish Carbon Capture and Storage SCCS, Edinburg, Scotland (United Kingdom); Hepplewhite, F.; Loveridge, R. [Energy Markets Unit, Scottish Government, Edinburg, Scotland (United Kingdom); Mazurowski, M.; Polak-Osiniak, D. [Polish Oil and Gas Company PGNiG, Warszawa (Poland); Rybicki, C. [AGH University of Science and Technology, Krakow (Poland)

    2012-10-15

    At local level, public support has proven crucial to the implementation of CO2 capture and storage (CCS) demonstration projects. Whereas no method exists to guarantee public acceptability of any project, a constructive stakeholder engagement process does increase the likelihood thereof. Social site characterisation can be used as an instrument to explore, plan and evaluate a process of active and constructive local stakeholder engagement in a prospective CCS project as a parallel activity to technical site characterisation. It roughly consists of a formative research phase to get acquainted with the area followed by a series of public information and engagement activities. This deliverable presents results from the first phase for the social site characterisations of a prospective CCS site in Poland (onshore) and the UK (offshore), using qualitative as well as quantitative research methods, as a first step to planning of local public engagement activities and evaluation of these activities that will be undertaken by this consortium at both sites in the near future. Although the term social site characterisation actually refers to the entire process of formative research and subsequent public outreach, and hence to the complete package of awareness work undertaken as part of SiteChar, in the present deliverable the term only refers to the formative research activities as undertaken up to now and as described in this deliverable. The qualitative part of the social site characterisation consisted of (1) a description of relevant social site characteristics such as local history; (2) interviews with relevant local stakeholders; (3) a media analysis of local newspapers. The quantitative part of the social site characterisation consisted of surveys using representative samples to characterise the local population in terms of awareness, knowledge and perceptions of CCS, felt involvement in decision making, extent of local activism, level of trust in representatives and

  5. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Science.gov (United States)

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  6. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Directory of Open Access Journals (Sweden)

    Jing Peng

    Full Text Available Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5, we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet. The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  7. Sensitivity of Global and Regional Terrestrial Carbon Storage to the Direct CO2 Effect and Climate Change Based on the CMIP5 Model Intercomparison

    Science.gov (United States)

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics. PMID:24748331

  8. SiteChar. Characterisation of European CO2 storage. Deliverable D8.2. Trust building and raising public awareness

    Energy Technology Data Exchange (ETDEWEB)

    Brunsting, S.; Pol, M.; Mastop, E.A. [ECN Policy Studies, Energy research Centre of the Netherlands ECN, Amsterdam (Netherlands); Kaiser, M.; Zimmer, R. [Unabhaengiges Institut fuer Umweltfragen UfU, Berlin (Germany); Shackley, S.; Mabon, L.; Howell, R. [Scottish Carbon Capture and Storage SCCS, Edinburg, Scotland (United Kingdom)

    2012-08-15

    At local level, public support has proven crucial to the implementation of CO2 capture and storage (CCS) demonstration projects. Whereas no method exists to guarantee public acceptability of any project, a constructive stakeholder and community engagement process does increase the likelihood thereof. This deliverable is a follow-up to deliverable D8.1 'Social site characterisation'. Social site characterisation can be used as an instrument to explore, plan and evaluate a process of active and constructive local stakeholder and citizen engagement in a prospective CCS project as a parallel activity to technical site characterisation. It serves as an analytical tool to describe the local social circumstances in the area and to design and evaluate stakeholder and community engagement efforts with the aims of building trust and raising public awareness. Using results from the social site characterisation of the area, the present deliverable focuses on the second purpose. It presents results from public engagement activities designed to raise public awareness and inform public opinion of a prospective CCS site in Poland (onshore) and the UK (offshore): focus conferences. Furthermore, by initiating an enhanced cooperation in planning of new storage sites between project developers, authorities and the local public, focus conferences aim to serve as a 'hinge' between social site characterisation as a research effort and application to real-life project settings. The focus conferences are part of a range of public engagement activities including the setup of public information websites on generic and site-specific CCS, information meetings. A second survey eventually shall evaluate the results of the public engagement activities. The aim of the focus conferences was to raise public awareness and assist public opinion forming processes of a prospective CCS site in Poland (onshore) and the UK (offshore). At the same time, it aimed to present and test a

  9. On the potential for CO2 mineral storage in continental flood basalts - PHREEQC batch- and 1D diffusion-reaction simulations.

    Science.gov (United States)

    Van Pham, Thi Hai; Aagaard, Per; Hellevang, Helge

    2012-06-14

    Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources.Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar.Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 - 100 C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt.

  10. On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    Science.gov (United States)

    2012-01-01

    Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar. Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt

  11. On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    Directory of Open Access Journals (Sweden)

    Van Pham Thi

    2012-06-01

    Full Text Available Abstract Continental flood basalts (CFB are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass and the local equilibrium assumption for secondary phases (weathering products. The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar. Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C, magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present

  12. Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, Colleen M [ORNL; Keller, Dr. Jason K. [Chapman University; Garten Jr, Charles T [ORNL; Norby, Richard J [ORNL

    2012-01-01

    Increased partitioning of carbon (C) to fine roots under elevated [CO2], especially deep in the soil profile, could alter soil C and nitrogen (N) cycling in forests. After more than 11 years of free-Air CO2 enrichment in a Liquidambar styraciflua L. (sweetgum) plantation in Oak Ridge, TN, USA, greater inputs of fine roots resulted in the incorporation of new C (i.e., C with a depleted 13C) into root-derived particulate organic matter (POM) pools to 90-cm depth. Even though production in the sweetgum stand was limited by soil N availability, soil C and N content increased over time, and were greater throughout the soil profile under elevated [CO2] at the conclusion of the experiment. However, greater C inputs under elevated [CO2] did not result in increased net N immobilization or C mineralization rates in long-term laboratory incubations, and did not appear to prime the decomposition of older SOM. The 13CO2 of the C mineralized from the incubated soil closely tracked the 13C of the labile POM pool in the elevated [CO2] treatment, especially in shallower soil, and did not indicate the decomposition of older (i.e., pre-experiment) SOM. While potential C mineralization rates were positively and linearly related to total soil organic matter (SOM) C content in the top 30 cm of soil, this relationship did not hold in deeper soil. Taken together with an increased mean residence time of C in deeper soil pools, these findings indicate that C inputs from relatively deep roots under elevated [CO2] may have increased potential for long-term storage. Expanded representation of biogeochemical cycling throughout the soil profile may improve model projections of future forest responses to rising atmospheric [CO2].

  13. Public Perception of Carbon Capture and Storage. Qualitative Study Results; Percepcion Publica de la captura y almacenamiento de CO2. Resultados de un Estudio Cualitativo

    Energy Technology Data Exchange (ETDEWEB)

    Sola, R.; Sala, R.; Oltra, C.

    2007-09-27

    In recent years, public perception and acceptance of Carbon Capture and Storage has become a key issue for research as technological projects have been initiated in USA, Canada and Europe. It has been considered that public opposition could be an important barrier for technological deployment. This report is part of the sub project Acceptability and Governance of CO2 storage processes, started in 2005 as a part of the technological project Advanced technologies of CO2 generation, capture and storage. The study is based on the application of focus groups with lay people. This qualitative social research technique was applied to get a deeper knowledge of the elements influencing the public acceptability of CO2 storage sites. Results indicate that there exists a low level of awareness about the technology among participants. After providing some information about the technology, the initial reaction stays between rejection and ambivalence. A reluctant acceptance appears when significant importance is given to the perceived benefits. The perception of risk from climate change plays an essential role. (Author) 25 refs.

  14. Simulation of coupled geochemical reactions and hydrodynamical processes in porous media - application to CO2 storage and uranium exploitation

    International Nuclear Information System (INIS)

    Lagneau, Vincent

    2013-01-01

    This report is a snapshot after sixteen years of research in the field of reactive transport, since the beginning of my Ph.D. in 1997. The research revolves around two poles: on the one hand the development of the reactive transport code Hytec, on the other hand application of the code in different fields of the Earth Sciences. The first two parts of the report detail several key points from this research work, most of them published or being published, following the dual development/application logic. The last part opens towards interesting future work. Development of a reactive transport code: The first part, mostly numeric analysis, details the main features of the code Hytec, in which I have been heavily involved since I joined the laboratory. The underlying equations of the model are given. The resolution methods rely on a finite volume discretization over a Voronoi mesh for the whole hydrodynamic part (flow, transport, heat). Coupling between chemistry and transport is performed through a sequential iterative scheme. Specific developments are then presented. The feedback of chemistry on transport requires specific coupling treatment to ensure convergence to the correct solution: the effects need to be taken care of within the coupling iterations. Dual porosity simulation can be elegantly simulated by duplicating the chemical nodes. Integrating the simulation of gases have implications on the flow (simultaneous resolution of the pressure and saturation equations), and transport-solver (species in the gas phase independently of the water phase), and finally coupling with chemistry and gas-water equilibrium. Applications The Hytec code is used in various domains of the Earth Sciences, in and out our laboratory notably by the members of the consortium Pole Geochimie Transport (Reactive transport group). The document details two families of applications I have been particularly interested in over these years. The geologic storage of CO 2 is a potential technology

  15. Advanced and Integrated Petrophysical Characterization for CO2 Storage: Application to the Ketzin Site Caractérisation pétrophysique intégrée pour le stockage de CO2 : application au site de Ketzin

    Directory of Open Access Journals (Sweden)

    Fleury M.

    2013-06-01

    Full Text Available Advanced and Integrated Petrophysical Characterization for CO2 Storage: Application to the Ketzin Site — Reservoir simulations and monitoring of CO2 storage require specific petrophysical data. We show a workflow that can be applied to saline aquifers and caprocks in order to provide the minimum data set for realistic estimations of storage potential and perform pertinent simulations of CO2 injection. The presented series of experiments are fully integrated with quantitative log data analysis to estimate porosity, irreducible saturation, drainage capillary pressure and water relative permeability, residual gas saturation, resistivity-saturation relationships and caprock transport properties (permeability and diffusivity. The case considered is a saline aquifer of the Triassic Stuttgart formation studied in the framework of the CO2SINK onshore research storage, the first in situ testing site of CO2 injection in Germany located near the city of Ketzin. We used petrophysical methods that can provide the required data in a reasonable amount of time while still being representative of the in situ injection process. For two phase transport properties, we used the centrifuge technique. For resistivity measurements, we used the Fast Resistivity Index Measurement (FRIM method in drainage and imbibition, at ambient and storage conditions. For caprock characterization, we used a fast NMR (Nuclear Magnetic Resonance deuterium tracer technique to measure diffusivity and a modified steady state innovative technique to determine permeability. Entry pressure has also been evaluated using several methods. Resistivity and NMR logs were analyzed to provide a continuous estimation of irreducible saturation for the entire storage zone and to judge on the representativity of the samples analyzed in the laboratory. For the Ketzin site, the storage zone is a clayey sandstone of fluvial origin locally highly cemented, with porosity around 30% and permeability ranging

  16. Final Report on "Rising CO2 and Long-term Carbon Storage in Terrestrial Ecosystems: An Empirical Carbon Budget Validation"

    Energy Technology Data Exchange (ETDEWEB)

    J. Patrick Megonigal; Bert G. Drake

    2010-08-27

    The primary goal of this report is to report the results of Grant DE-FG02-97ER62458, which began in 1997 as Grant DOE-98-59-MP-4 funded through the TECO program. However, this project has a longer history because DOE also funded this study from its inception in 1985 through 1997. The original grant was focused on plant responses to elevated CO2 in an intact ecosystem, while the latter grant was focused on belowground responses. Here we summarize the major findings across the 25 years this study has operated, and note that the experiment will continue to run through 2020 with NSF support. The major conclusions of the study to date are: (1 Elevated CO2 stimulated plant productivity in the C3 plant community by ~30% during the 25 year study. The magnitude of the increase in productivity varied interannually and was sometime absent altogether. There is some evidence of down-regulation at the ecosystem level across the 25 year record that may be due to interactions with other factors such as sea-level rise or long-term changes in N supply; (2) Elevated CO2 stimulated C4 productivity by <10%, perhaps due to more efficient water use, but C3 plants at elevated CO2 did not displace C4 plants as predicted; (3) Increased primary production caused a general stimulation of microbial processes, but there were both increases and decreases in activity depending on the specific organisms considered. An increase in methanogenesis and methane emissions implies elevated CO2 may amplify radiative forcing in the case of wetland ecosystems; (4) Elevated CO2 stimulated soil carbon sequestration in the form of an increase in elevation. The increase in elevation is 50-100% of the increase in net ecosystem production caused by elevated CO2 (still under analysis). The increase in soil elevation suggests the elevated CO2 may have a positive outcome for the ability of coastal wetlands to persist despite accelerated sea level rise; (5) Crossing elevated CO2 with elevated N causes the elevated CO

  17. Assessing the Effect of Natural and Induced Fractures on Long-Term CO2 Storage in the Northern Appalachian Basin Using Thermo-Hydro-Mechanical Modeling

    Science.gov (United States)

    Raziperchikolaee, S.; Kelley, M. E.; Main, J.

    2017-12-01

    Natural and induced fractures in a caprock could allow CO2 to migrate out of the intended storage reservoirs in the CO2 sequestration process. We evaluate, through the use of coupled hydro-mechanical numerical modeling, the effectiveness of the Cambrian-Ordovician caprock system in the northern Appalachian Basin for providing long-term containment of CO2 in the presence of existing and induced fractures. Resistivity image and acoustic image logs from wells in the study area were used characterize natural fractures in the caprock zone. The logs showed no compelling evidence of pervasive natural fracturing of the caprock; however, limited natural fractures occur in small isolated patches. Therefore, we modeled natural fractures as isolated features of limited size using the dual-porosity method. The modeling results show that the caprock is effective at preventing CO2 breakthrough in the presence of a natural fracture that partially penetrates the caprock; however, the caprock would be ineffective for containing CO2 if the fracture fully penetrates caprock. To assess induced fractures, coupled fluid-flow, geomechanical, and fracture mechanics modeling was conducted to model the effect of an induced fracture on the sealing integrity of the caprock. First, a fracture mechanics model was used to generate the injection-induced hydraulic fracture and calculate its dimensions (height, length, width). Then, a fluid-flow model was used to evaluate the impacts of the fracture on caprock sealing effectiveness. A significant observation is that the hydraulic fracture was confined to the reservoir (Rose Run sandstone) and did not extend upward into the caprock because the reservoir has the lower minimum horizontal stress. Our study shows that both natural and induced fractures can affect long term CO2 storage depending on size of natural fracture zone, geological and geomechanical properties of reservoir and caprock formations as well as injection parameters.

  18. "Supergreen" Renewables: Integration of Mineral Weathering Into Renewable Energy Production for Air CO2 Removal and Storage as Ocean Alkalinity

    Science.gov (United States)

    Rau, G. H.; Carroll, S.; Ren, Z. J.

    2015-12-01

    Excess planetary CO2 and accompanying ocean acidification are naturally mitigated on geologic time scales via mineral weathering. Here, CO2 acidifies the hydrosphere, which then slowly reacts with silicate and carbonate minerals to produce dissolved bicarbonates that are ultimately delivered to the ocean. This alkalinity not only provides long-term sequestration of the excess atmospheric carbon, but it also chemically counters the effects of ocean acidification by stabilizing or raising pH and carbonate saturation state, thus helping rebalance ocean chemistry and preserving marine ecosystems. Recent research has demonstrated ways of greatly accelerating this process by its integration into energy systems. Specifically, it has been shown (1) that some 80% of the CO2 in a waste gas stream can be spontaneously converted to stable, seawater mineral bicarbonate in the presence of a common carbonate mineral - limestone. This can allow removal of CO2 from biomass combustion and bio-energy production while generating beneficial ocean alkalinity, providing a potentially cheaper and more environmentally friendly negative-CO2-emissions alternative to BECCS. It has also been demonstrated that strong acids anodically produced in a standard saline water electrolysis cell in the formation of H2 can be reacted with carbonate or silicate minerals to generate strong base solutions. These solutions are highly absorptive of air CO2, converting it to mineral bicarbonate in solution. When such electrochemical cells are powered by non-fossil energy (e.g. electricity from wind, solar, tidal, biomass, geothermal, etc. energy sources), the system generates H2 that is strongly CO2-emissions-negative, while producing beneficial marine alkalinity (2-4). The preceding systems therefore point the way toward renewable energy production that, when tightly coupled to geochemical mitigation of CO2 and formation of natural ocean "antacids", forms a high capacity, negative-CO2-emissions, "supergreen

  19. Integrated underground gas storage of CO2 and CH4 to decarbonize the "power-to-gas-to-gas-to-power" technology

    Science.gov (United States)

    Kühn, Michael; Streibel, Martin; Nakaten, Natalie; Kempka, Thomas

    2014-05-01

    Massive roll-out of renewable energy production units (wind turbines and solar panels) leads to date to excess energy which cannot be consumed at the time of production. So far, long-term storage is proposed via the so called 'power-to-gas' technology. Energy is transferred to methane gas and subsequently combusted for power production - 'power-to-gas-to-power' (PGP) - when needed. PGP profits from the existing infrastructure of the gas market and could be deployed immediately. However, major shortcoming is the production of carbon dioxide (CO2) from renewables and its emission into the atmosphere. We present an innovative idea which is a decarbonised extension of the PGP technology. The concept is based on a closed carbon cycle: (1) Hydrogen (H2) is generated from renewable energy by electrolysis and (2) transformed into methane (CH4) with CO2 taken from an underground geological storage. (3) CH4 produced is stored in a second storage underground until needed and (4) combusted in a combined-cycled power plant on site. (5) CO2 is separated during energy production and re-injected into the storage formation. We studied a show case for the cities Potsdam and Brandenburg/Havel in the Federal State of Brandenburg in Germany to determine the energy demand of the entire process chain and the costs of electricity (COE) using an integrated techno-economic modelling approach (Nakaten et al. 2014). Taking all of the individual process steps into account, the calculation shows an overall efficiency of 27.7 % (Streibel et al. 2013) with total COE of 20.43 euro-cents/kWh (Kühn et al. 2013). Although the level of efficiency is lower than for pump and compressed air storage, the resulting costs are similar in magnitude, and thus competitive on the energy storage market. The great advantage of the concept proposed here is that, in contrast to previous PGP approaches, this process is climate-neutral due to CO2 utilisation. For that purpose, process CO2 is temporally stored in an

  20. Risk Assessment and Management for Long-Term Storage of CO2 in Geologic Formations — United States Department of Energy R&D

    Directory of Open Access Journals (Sweden)

    Dawn Deel

    2007-02-01

    Full Text Available Concern about increasing atmospheric concentrations of carbon dioxide (CO2 and other greenhouse gases (GHG and their impact on the earth's climate has grown significantly over the last decade. Many countries, including the United States, wrestle with balancing economic development and meeting critical near-term environmental goals while minimizing long-term environmental risks. One promising solution to the buildup of GHGs in the atmosphere, being pursued by the U.S. Department of Energy's (DOE National Energy Technology Laboratory (NETL and its industrial and academic partners, is carbon sequestration—a process of permanent storage of CO2 emissions in underground geologic formations, thus avoiding CO2 release to the atmosphere. This option looks particularly attractive for point source emissions of GHGs, such as fossil fuel fired power plants. CO2 would be captured, transported to a sequestration site, and injected into an appropriate geologic formation. However, sequestration in geologic formations cannot achieve a significant role in reducing GHG emissions unless it is acceptable to stakeholders, regulators, and the general public, i.e., unless the risks involved are judged to be acceptable. One tool that can be used to achieve acceptance of geologic sequestration of CO2 is risk assessment, which is a proven method to objectively manage hazards in facilities such as oil and natural gas fields, pipelines, refineries, and chemical plants. Although probabilistic risk assessment (PRA has been applied in many areas, its application to geologic CO2 sequestration is still in its infancy. The most significant risk from geologic carbon sequestration is leakage of CO2. Two types of CO2 releases are possible—atmospheric and subsurface. High concentrations of CO2 caused by a release to the atmosphere would pose health risks to humans and animals, and any leakage of CO2 back into the atmosphere negates the effort expended to sequester the CO2

  1. Kalundborg case study, a feasibility study of CO{sub 2} storage in onshore saline aquifers. CO2STORE[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Michael; Bech, N.; Bidstrup, T.; Christensen, Niels Peter; Vangkilde-Pedersen, T. [GEUS (Denmark); Biede, O. [ENERGI E2 (Denmark)

    2007-06-15

    The Danish case-study of the CO2STORE project comprises the potential future capture and underground storage of CO{sub 2} from two point sources. These are the coal fired power plant Asnaesvaerket and the Statoil refinery both located in the city of Kalundborg, Denmark. Initial mapping of the storage structure was conducted as part of the EU funded research project GESTCO that was concluded in 2003. The study identified a large underground structure forming a potential, future storage site 15 km to the northeast of the city. Porous sandstones filled with saline water at a depth of approximately 1.500 m form the reservoir. The structure covers approximately 160 km{sup 2} and a preliminary calculation suggests a storage capacity of nearly 900 million tonnes of CO2 equal to more than 150 years of CO{sub 2} emissions from the two point sources. In the Kalundborg case-study, a fictive capture and storage scenario will be formulated and modelled. The scenario is based on experiences learned through the SACS and GESTCO projects. Detailed geological modelling, reservoir simulation, reservoir and cap rock characterisation and risk assessment will be important issues for the case-study. The Geological Survey of Denmark and Greenland (GEUS) is project leader for the Kalundborg case-study. Information on CO{sub 2} emissions from the point sources and technical and economical input for the three scenarios is provided by the industrial partners; ENERGI E2 and Statoil ASA. The scenario is designed only for this case study and does not reflect the strategic plans of ENERGI E2 nor Statoil ASA. Geochemical simulation and modelling studies on reservoir and cap rock were performed at Bureau de Recherches Geologiques et Minieres (BRGM) in France. The CO2STORE project is performed within the European Community supported 5th Framework Programme. (au)

  2. A novel condensation reactor for efficient CO2 to methanol conversion for storage of renewable electric energy

    NARCIS (Netherlands)

    Bos, Martin Johan; Brilman, Derk Willem Frederik

    2015-01-01

    A novel reactor design for the conversion of CO2 and H2 to methanol is developed. The conversion limitations because of thermodynamic equilibrium are bypassed via in situ condensation of a water/methanol mixture. Two temperatures zones inside the reactor ensure optimal catalyst activity (high

  3. Closing carbon cycles : Evaluating the performance of multi-product CO2 utilisation and storage configurations in a refinery

    NARCIS (Netherlands)

    Fernández-Dacosta, Cora; Stojcheva, Viktorija; Ramirez, Andrea

    2018-01-01

    Carbon capture and utilisation (CCU) has the potential to provide business cases as CO2 waste streams are turned into feedstock for the synthesis of marketable products. Although CCU could reduce fossil resource demand, its capability as a climate change mitigation option is under debate. In

  4. Micro-scale thermal imaging of CO2 absorption in the thermochemical energy storage of Li metal oxides at high temperature

    Science.gov (United States)

    Morikawa, Junko; Takasu, Hiroki; Zamengo, Massimiliano; Kato, Yukitaka

    2017-05-01

    Li-Metal oxides (typical example: lithium ortho-silicate Li4SiO4) are regarded as a novel solid carbon dioxide CO2 absorbent accompanied by an exothermic reaction. At temperatures above 700°C the sorbent is regenerated with the release of the captured CO2 in an endothermic reaction. As the reaction equilibrium of this reversible chemical reaction is controllable only by the partial pressure of CO2, the system is regarded as a potential candidate for chemical heat storage at high temperatures. In this study, we applied our recent developed mobile type instrumentation of micro-scale infrared thermal imaging system to observe the heat of chemical reaction of Li4SiO4 and CO2 at temperature higher than 600°C or higher. In order to quantify the micro-scale heat transfer and heat exchange in the chemical reaction, the superimpose signal processing system is setup to determine the precise temperature. Under an ambient flow of carbon dioxide, a powder of Li4SiO4 with a diameter 50 micron started to shine caused by an exothermic chemical reaction heat above 600°C. The phenomena was accelerated with increasing temperature up to 700°C. At the same time, the reaction product lithium carbonate (Li2CO3) started to melt with endothermic phase change above 700°C, and these thermal behaviors were captured by the method of thermal imaging. The direct measurement of multiple thermal phenomena at high temperatures is significant to promote an efficient design of chemical heat storage materials. This is the first observation of the exothermic heat of the reaction of Li4SiO4 and CO2 at around 700°C by the thermal imaging method.

  5. Shallow groundwater monitoring at the SACROC oilfield, Scurry County, TX: good news for geologic storage of CO2 despite a complex hydrogeologic and geochemical setting (Invited)

    Science.gov (United States)

    Smyth, R. C.; Romanak, K.; Yang, C.; Hovorka, S.

    2009-12-01

    The SACROC water study is the first comprehensive research project with application to geologic storage (GS) of CO2 that focuses on collection and interpretation of field measurements of groundwater (water level and water chemistry data). CO2 has been injected for enhanced oil recovery at the SACROC oilfield in Scurry County, TX since 1972. Hence, we have a perfect natural laboratory and an analog for monitoring future commercial CO2 sequestration sites. Kinder Morgan currently operates the SACROC oilfield where over 150 million metric tons (MMT) of CO2 has been injected for EOR at ~2 km depth; over 75 MMT of the CO2 has been produced and re-injected. CO2 is assumed to be trapped in the deep subsurface at SACROC. The goals of monitoring shallow groundwater over CO2 injection sites are to (1) confirm that CO2 has remained in the deep subsurface and (2) assess impacts to water quality if CO2 were to migrate upward along conduit flow paths (e.g. leaking well bores). We collected groundwater and stratigraphic data within an ~3,000 km2 area centered on SACROC to establish regional variability prior to assessing potential impacts to groundwater from CO2 injection. Groundwater data include results from five sampling trips between June 2006 and November 2008, and a compilation of historical data from the Texas Water Development Board database, dating back to 1936. Sources of complexity that contribute to data interpretation challenges include: (1) regional historic oilfield activity, (2) multiple freshwater-bearing strata in the regional Dockum aquifer, (3) sampled wells screened in shallowest (30 m), deepest (150 m), or across both water-bearing zones, (4) variable discharge rate of sampled wells (250 gpm), (5) groundwater flow divide that bisects SACROC, (6) variable aquifer recharge mechanisms, (7) temporal variability in groundwater levels and chemistry, (8) cation exchange, (9) presence of biogenically-produced CO2 in aquifer, and (10) incongruent dissolution of

  6. Zn(II, Mn(II and Sr(II Behavior in a Natural Carbonate Reservoir System. Part II: Impact of Geological CO2 Storage Conditions

    Directory of Open Access Journals (Sweden)

    Auffray B.

    2016-07-01

    Full Text Available Some key points still prevent the full development of geological carbon sequestration in underground formations, especially concerning the assessment of the integrity of such storage. Indeed, the consequences of gas injection on chemistry and petrophysical properties are still much discussed in the scientific community, and are still not well known at either laboratory or field scale. In this article, the results of an experimental study about the mobilization of Trace Elements (TE during CO2 injection in a reservoir are presented. The experimental conditions range from typical storage formation conditions (90 bar, supercritical CO2 to shallower conditions (60 and 30 bar, CO2 as gas phase, and consider the dissolution of the two carbonates, coupled with the sorption of an initial concentration of 10−5 M of Zn(II, and the consequent release in solution of Mn(II and Sr(II. The investigation goes beyond the sole behavior of TE in the storage conditions: it presents the specific behavior of each element with respect to the pressure and the natural carbonate considered, showing that different equilibrium concentrations are to be expected if a fluid with a given concentration of TE leaks to an upper formation. Even though sorption is evidenced, it does not balance the amount of TE released by the dissolution process. The increase in porosity is clearly evidenced as a linear function of the CO2 pressure imposed for the St-Emilion carbonate. For the Lavoux carbonate, this trend is not confirmed by the 90 bar experiment. A preferential dissolution of the bigger family of pores from the preexisting porosity is observed in one of the samples (Lavoux carbonate while the second one (St-Emilion carbonate presents a newly-formed family of pores. Both reacted samples evidence that the pore network evolves toward a tubular network type.

  7. Energy Optimization for Transcritical CO2 Heat Pump for Combined Heating and Cooling and Thermal Storage Applications

    DEFF Research Database (Denmark)

    Do Carmo, Carolina Madeira Ramos; Blarke, Morten; Yazawa, Kazuaki

    2012-01-01

    and cold thermal storages know as Thermal Battery (TB) (Blarke, 2012). Smart and effective use of intermittent renewable energy resources (for example solar and wind power) is obtained supplying water heating (>70 oC) and cooling services (... hypothesis is that if electricity generated by intermittent sources is destined for thermal end-uses an efficient conversion of electricity to thermal energy and storage enables a flexible power supply. Thermal storage is more cost-effective than any electro-chemical or mechanical storage technology...

  8. Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA

    Science.gov (United States)

    Kharaka, Yousif K.; Thordsen, James J.; Hovorka, Susan D.; Nance, H. Seay; Cole, David R.; Phelps, Tommy J.; Knauss, Kevin G.

    2009-01-01

    Sedimentary basins in general, and deep saline aquifers in particular, are being investigated as possible repositories for large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick "C" sandstone unit of the Frio Formation, a regional aquifer in the US Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na–Ca–Cl type brine with ∼93,000 mg/L TDS at saturation with CH4 at reservoir conditions; gas analyses showed that CH4 comprised ∼95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5–5.7), pronounced increases in alkalinity (100–3000 mg/L as HCO3) and in Fe (30–1100 mg/L), a slug of very high DOC values, and significant shifts in the isotopic compositions of H2O, DIC, and CH4. These data, coupled with geochemical modeling, indicate corrosion of pipe and well casing as well as rapid dissolution of minerals, especially calcite and iron oxyhydroxides, both caused by lowered pH (initially ∼3.0 at subsurface conditions) of the brine in contact with supercritical CO2.These geochemical parameters, together with perfluorocarbon tracer gases (PFTs), were used to monitor migration of the injected CO2 into the overlying Frio “B”, composed of a 4-m-thick sandstone and separated from the “C” by ∼15 m of shale and siltstone beds. Results obtained from the Frio “B” 6 months after injection gave chemical and isotopic markers that show significant CO2 (2.9% compared with 0.3% CO2 in dissolved gas) migration into the “B” sandstone. Results of samples collected 15 months after injection, however, are ambiguous, and can be interpreted to show no additional injected CO2 in the “B” sandstone

  9. Confining Properties of Carbonated Dogger Caprocks (Parisian Basin for CO2 Storage Purpose Propriétés de confinement des couvertures du Dogger carbonaté (Bassin de Paris dans l’optique du stockage de CO2

    Directory of Open Access Journals (Sweden)

    Carles P.

    2010-05-01

    Full Text Available The Géocarbone-Intégrité project, funded by ANR (Agence Nationale de la Recherche from 2006 to 2008, has the overall objective of gaining knowledge and technology to predict storage integrity and safety for long term geological CO2 sequestration. The aim of this study (Sect. 1 and 2 of the project is to evaluate the sealing capacities of the carbonated Dogger caprocks located on top of the reservoirs where CO2 could be injected for storage purposes in the Parisian Basin. A petrographic analysis is done on 3 different cores from geological formations of the “Comblanchien and Dalle Nacrée” tight carbonates facies. At the same time, a petrophysical study of these facies is performed. Porosity, pore size distribution and permeability are determined using special devices adapted to low permeability and tight rocks ( Le projet Géocarbone-Intégrité, financé par l’Agence Nationale de la Recherche (ANR de 2006 à 2008, vise à développer les connaissances et les techniques nécessaires à la prévision de l’efficacité et la sécurité du confinement sur le long terme des stockages géologiques de CO2. La première tâche a été de caractériser à l’échelle pétrographique, les faciès carbonatés du sommet du Dogger appartenant aux formations des Calcaires du Comblanchien et de la Dalle Nacrée, situées immédiatement au-dessus des niveaux réservoirs retenus comme potentiels sites de stockage. Une étude pétrophysique précise des faciès de couvertures potentielles est réalisée. La porosité, la distribution de taille de pores et la perméabilité sont déterminées en utilisant des méthodes adaptées à des milieux très peu perméables (< 10 microDarcy. Les perméabilités sont mesurées à l’azote, à l’hélium et à la saumure sous pression de confinement avec la méthode stationnaire et la méthode transitoire. Les porosités sont faibles et varient de 2 à 9 % suivant le faciès, et les perméabilités en

  10. Experimental and modeling results on geochemical impacts of leaking CO2 from subsurface storage reservoirs to an unconfined oxidizing carbonate aquifer

    Science.gov (United States)

    Qafoku, N. P.; Bacon, D. H.; Shao, H.; Lawter, A.; Wang, G.; Brown, C. F.

    2013-12-01

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate risks to groundwater quality and develop a systematic understanding on how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Solid materials (rocks and slightly weathered rocks) from an unconfined aquifer, i.e., the Edwards Aquifer in Texas, were used in this investigation. The experimental part consisted of: 1) wet chemical acid extractions (8M HNO3 solution at 90 0C); 2) batch experiments conducted at low solid to solution ratios to study time-dependent releases of major, minor and trace elements during periodic or continuous exposure to CO2 gas; 3) hydraulically saturated column experiments conducted under continuous and stop-flow conditions using a CO2 gas saturated synthetic groundwater; 4) pre- and post-treatment solid phase characterization studies. Major variables tested included reaction time (0-336 hours), CO2 flow rate (50 to 350 ml/min), brine concentration (0.1 and 1 M NaCl), rock type and particle size fraction. We are currently investigating the solution composition effects (i.e., presence of contaminants in the initial solution) on the fate and behavior of potential contaminants (As, Pb and Cd) in these systems. Results from the solid phase characterization studies showed that the mineralogy of the Edwards aquifer materials was dominated by calcite. Quartz and montmorillonite were also present in some samples. Acid extractions confirmed that the solid phase had appreciable amounts of potential contaminants (As, Cd, Cr, Cu, Pb and Zn). However, the results from the batch and column experiments demonstrated that these contaminants

  11. Geophysical Research in the Ganuelas-Mazarron Tertiary Basin (Murcia, Spain), as a Natural Analogue of CO2 Storage and Leakage

    International Nuclear Information System (INIS)

    Rodrigo-Naharro, J.; Aracil, E.; Perez del Villar, L.

    2013-01-01

    In order to determine the depth, morphology and extent of the CO 2 -enriched deep saline aquifer in the Ganuelas-Mazarron Tertiary basin (Murcia, Spain), it was necessary reprocessing the vertical electrical soundings performed by IGME-ADARO in the eighties and to perform several geophysical campaigns by means of electrical tomography, time domain electromagnetic surveys and gravimetry. Densities of the outcropping lithologies in the studied basin were also determined in order to refine the model obtained from gravimetric data. The geophysical results, particularly from gravimetric data, seem to indicate that the CO 2 -enriched deep saline aquifer, located in the contact or within the carbonate materials of the Nevado-Filabride Complex, could reach a depth greater than 800 m. For this reason, the possibility that this CO 2 is in supercritical state in certain areas of the aquifer, is not discardable. Thus, the studied basin would be an excellent natural analogue of a CO 2 -deep geological storage in a deep saline aquifer in volcanic and/or carbonate rocks, anthropogenically perturbed by geothermal exploration wells (La Ermita de El Saladillo and El Alto de El Reventon) and hydrogeological wells for agricultural purposes. (Author)

  12. CO2 Injectivity in Geological Storages: an Overview of Program and Results of the GeoCarbone-Injectivity Project

    International Nuclear Information System (INIS)

    Lombard, J.M.; Egermann, P.; Azaroual, M.; Pironon, J.; Broseta, D.; Egermann, P.; Munier, G.; Mouronval, G.

    2010-01-01

    The objective of the GeoCarbone-Injectivity project was to develop a methodology to study the complex phenomena involved in the near well bore region during CO 2 injection. This paper presents an overview of the program and results of the project, and some further necessary developments. The proposed methodology is based on experiments and simulations at the core scale, in order to understand (physical modelling and definition of constitutive laws) and quantify (calibration of simulation tools) the mechanisms involved in injectivity variations: fluid/rock interactions, transport mechanisms, geomechanical effects. These mechanisms and the associated parameters have then to be integrated in the models at the well bore scale. The methodology has been applied for the study of a potential injection of CO 2 in the Dogger geological formation of the Paris Basin, in collaboration with the other ANR GeoCarbone projects. (authors)

  13. Simultaneous studies on solar energy storage by CO2 reduction to HCOOH with Brilliant Green dye removal photoelectrochemically

    Directory of Open Access Journals (Sweden)

    V.S.K. Yadav

    2016-12-01

    Full Text Available The simultaneous study on photoelectrochemical CO2 reduction with Brilliant Green (BG dye removal was studied in the present work. Experimental studies were done in aqueous solutions of sodium and potassium based electrolytes using a cathode [Zinc (Zn and Tin (Sn] and a common cobalt oxide (Co3O4 anode electrocatalyst. The influence of reaction with electrolyte concentration for the both catalysts was shown clearly with respect to time. The selected electrocatalysts were able to reduce CO2 to formic acid (HCOOH along with high BG dye removal. With Sn as cathode, the maximum BG dye removal was obtained to be KHCO3–[95.9% (10 min–0.2 M], NaHCO3–[98.6% (15 min–0.6 M]. Similarly for Zn, KHCO3–[99.8% (10 min–0.4 M], NaHCO3–[99.9% (20 min–0.8 M] were observed respectively. Finally, the results have proven that higher efficiencies for BG dye removal were obtained along with HCOOH formation, which might be a better alternate for water purification and to decrease the atmospheric CO2 concentrations.

  14. Communicating CCS. Effects of text-only and text-and-visual depictions of CO2 storage on risk perceptions and attitudes

    Energy Technology Data Exchange (ETDEWEB)

    Brunsting, S.; De Best-Waldhober, M.; Brouwer, A.S. [ECN Policy Studies, Amsterdam (Netherlands); Riesch, H.; Reiner, D. [Cambridge University, Cambridge (United Kingdom)

    2013-05-01

    This experiment aims to increase understanding of the conditions under which combining textual and visual information on CO2 storage fosters comprehension of the technology. Specifically, it is investigated if and how precision in indicating the depth of CO2 injection in either text, visual, or combinations thereof influence estimates of CO2 injection depth and how this in turn influences perceived safety of and attitude towards CO2 injection. We used a 3x3 experimental design with two factors, resulting in 9 conditions: Textual description of depth of injection (absent, ambiguous, precise) X visualization of depth (absent, ambiguous, precise). Three texts were developed explaining the background and process of CCS. They were similar in every respect except for the accuracy of indication of depth: Absent ( 'underground'); Ambiguous ('deep underground'); Precise ('1,000 meters or deeper underground'). Three visual conditions were developed displaying the depth of CO2 injection. They were similar in every respect except for the accuracy of indication of depth: Absent (no visual displayed); Ambiguous (visual not to scale, injection obviously too shallow); Precise (visual to scale). Respondents were a representative sample of the adult UK population (n = 429). Each of them received one of the nine conditions, followed by a short questionnaire. Results indicate that estimates of depth are generally most accurate in text-only conditions and least accurate in visual-only conditions. Interestingly, the condition in which people are given no information about depth at all scores in-between with a mean estimate of 869 meters. Regarding textual depictions of CO2 injection depth, results indicate that the more precise indication of depth in the text the better respondents' estimate of depth, but this effect is only found for respondents who enjoy reading text. Regarding visual depictions of CO2 injection, results indicate that the presence of a visual worsens respondents

  15. Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions

    Directory of Open Access Journals (Sweden)

    Carroll Susan A

    2011-11-01

    Full Text Available Abstract Background Reactive-transport simulation is a tool that is being used to estimate long-term trapping of CO2, and wellbore and cap rock integrity for geologic CO2 storage. We reacted end member components of a heterolithic sandstone and shale unit that forms the upper section of the In Salah Gas Project carbon storage reservoir in Krechba, Algeria with supercritical CO2, brine, and with/without cement at reservoir conditions to develop experimentally constrained geochemical models for use in reactive transport simulations. Results We observe marked changes in solution composition when CO2 reacted with cement, sandstone, and shale components at reservoir conditions. The geochemical model for the reaction of sandstone and shale with CO2 and brine is a simple one in which albite, chlorite, illite and carbonate minerals partially dissolve and boehmite, smectite, and amorphous silica precipitate. The geochemical model for the wellbore environment is also fairly simple, in which alkaline cements and rock react with CO2-rich brines to form an Fe containing calcite, amorphous silica, smectite and boehmite or amorphous Al(OH3. Conclusions Our research shows that relatively simple geochemical models can describe the dominant reactions that are likely to occur when CO2 is stored in deep saline aquifers sealed with overlying shale cap rocks, as well as the dominant reactions for cement carbonation at the wellbore interface.

  16. Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions.

    Science.gov (United States)

    Carroll, Susan A; McNab, Walt W; Torres, Sharon C

    2011-11-11

    Reactive-transport simulation is a tool that is being used to estimate long-term trapping of CO2, and wellbore and cap rock integrity for geologic CO2 storage. We reacted end member components of a heterolithic sandstone and shale unit that forms the upper section of the In Salah Gas Project carbon storage reservoir in Krechba, Algeria with supercritical CO2, brine, and with/without cement at reservoir conditions to develop experimentally constrained geochemical models for use in reactive transport simulations. We observe marked changes in solution composition when CO2 reacted with cement, sandstone, and shale components at reservoir conditions. The geochemical model for the reaction of sandstone and shale with CO2 and brine is a simple one in which albite, chlorite, illite and carbonate minerals partially dissolve and boehmite, smectite, and amorphous silica precipitate. The geochemical model for the wellbore environment is also fairly simple, in which alkaline cements and rock react with CO2-rich brines to form an Fe containing calcite, amorphous silica, smectite and boehmite or amorphous Al(OH)3. Our research shows that relatively simple geochemical models can describe the dominant reactions that are likely to occur when CO2 is stored in deep saline aquifers sealed with overlying shale cap rocks, as well as the dominant reactions for cement carbonation at the wellbore interface.

  17. Public acceptance of CO2 capture and storage technology : a survey of public opinion to explore influential factors

    International Nuclear Information System (INIS)

    Itaoka, K.; Saito, A.; Akai, M.

    2005-01-01

    A potentially effective tool in managing carbon emissions is carbon capture and storage technology (CCS). However, its effectiveness depends on its acceptability by the public, and very little is known about how willing the general public will accept various options of CCS. This paper presented the results of a study that assessed general perceptions of various forms of CCS and identified various factors that influence public acceptance of CCS. Two versions of a survey were administered and conducted in Tokyo and Sapporo, Japan in December 2003. The paper discussed the design of the questionnaire as well as the administration of the survey. One version of the survey provided limited education about CCS, while another version, provided more extensive information about CCS. The data analysis methodology was also described with reference to factor analysis, comparisons of means and rank order distributions, and multiple regression. Last, the study findings and results were presented. The findings suggest that the general public was supportive of CCS as part of a larger national climate policy, although it was opposed to the implementation of specific CCS options involving deep-sea dilution option of ocean storage, lake type option of ocean storage, onshore option of geological storage, and offshore option of geological storage. In addition, it was found that education about CCS affected public acceptance. The more information respondents obtained about CCS, the more likely they were to be supportive of those storage options, except for onshore option of geological storage. 4 refs., 3 tabs

  18. The estimation of CO2 storage potential of gas-bearing shale complex at the early stage of reservoir characterization: the case of Baltic Basin (Poland).

    Science.gov (United States)

    Wójcicki, Adam; Jarosiński, Marek

    2017-04-01

    For the stage of shale gas production, like in the USA, prediction of the CO2 storage potential in shale reservoir can be performed by dynamic modeling. We have made an attempt to estimate this potential at an early stage of shale gas exploration in the Lower Paleozoic Baltic Basin, based on data from 3,800 m deep vertical well (without hydraulic fracking stimulation), supplemented with additional information from neighboring boreholes. Such an attempt makes a sense as a first guess forecast for company that explores a new basin. In our approach, the storage capacity is build by: (1) sorption potential of organic matter, (2) open pore space and (3) potential fracture space. the sequence. our estimation is done for 120 m long shale sequence including three shale intervals enriched with organic mater. Such an interval is possible to be fracked from a single horizontal borehole as known from hydraulic fracture treatment in the other boreholes in this region. The potential for adsorbed CO2 is determined from Langmuir isotherm parameters taken from laboratory measurements in case of both CH4 and CO2 adsorption, as well as shale density and volume. CO2 has approximately three times higher sorption capacity than methane to the organic matter contained in the Baltic Basin shales. Finally, due to low permeability of shale we adopt the common assumption for the USA shale basins that the CO2 will be able to reach effectively only 10% of theoretical total sorption volume. The pore space capacity was estimated by utilizing results of laboratory measurements of dynamic capacity for pores bigger than 10 nm. It is assumed for smaller pores adsorption prevails over free gas. Similarly to solution for sorption, we have assumed that only 10 % of the tight pore space will be reached by CO2. For fracture space we have considered separately natural (tectonic-origin) and technological (potentially produced by hydraulic fracturing treatment) fractures. From fracture density profile and

  19. Mesoporous NiCo2O4 nano-needles supported by 3D interconnected carbon network on Ni foam for electrochemical energy storage

    Science.gov (United States)

    Lu, Congxiang; Liu, Wen-wen; Pan, Hui; Tay, Beng Kang; Wang, Xingli; Liang, Kun; Wei, Xuezhe

    2018-05-01

    In this work, a three dimensional (3D) interconnected carbon network consisting of ultrathin graphite (UG) and carbon nanotubes (CNTs) on Ni foam is fabricated and employed as a novel type of substrate for mesoporous NiCo2O4 nano-needles. The successfully synthesized NiCo2O4 nano-needles/CNTs/UG on Ni foam has many advantages including facile electrolyte access and direct conducting pathways towards current collectors, which enable it to be a promising electrode material in battery-like electrochemical energy storage. Encouragingly, a high capacity of 135.1 mAh/g at the current density of 1 A/g, superior rate performance and also stable cycling for 1200 cycles at the current density of 5 A/g have been demonstrated in this novel material.

  20. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model

    Directory of Open Access Journals (Sweden)

    M. Ödalen

    2018-03-01

    Full Text Available During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90–100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air–sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment

  1. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model

    Science.gov (United States)

    Ödalen, Malin; Nycander, Jonas; Oliver, Kevin I. C.; Brodeau, Laurent; Ridgwell, Andy

    2018-03-01

    During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90-100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air-sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment in which we investigate

  2. Microbiological monitoring of carbon dioxide storage in a subsurface saline aquifer in Ketzin/Germany within the scope of CO2SINK

    Science.gov (United States)

    Wandrey, M.; Morozova, D.; Zemke, K.; Lerm, S.; Scherf, A.-K.; Vieth, A.; Würdemann, H.; Co2SINK Group

    2009-04-01

    Within the scope of the EU project CO2SINK (www.co2sink.org) a research facility in Ketzin (Germany, west of Berlin) is operated to store CO2 in a saline subsurface aquifer (Würdemann et al., EGU General Assembly 2009). In order to examine the influence of CO2 storage on the environment a comprehensive monitoring program is applied at this site including molecular and microbiological investigations. With the injection of CO2 into the geological formation chemical and physical reservoir characteristics are changed. This may influence the composition and activities of the deep biosphere at the storage horizon. Mineral precipitation, dissolution and corrosion of reservoir casing may be consequences, influencing permeability and long-term stability of the reservoir. The objective of the microbial monitoring program is the characterisation of the microbial community (biocenosis) in fluid samples, as well as in samples from reservoir and cap rock before and during CO2storage using molecular biological methods. 16S rRNA taxonomic studies, Fluorescence in situ hybridisation (FISH), and RealTime PCR are used to examine the composition of the biocenosis. First results of fluid sampling revealed that the microbial community of the saline aquifer is dominated by haloalkaliphilic fermentative bacteria and extremophilic organisms, coinciding with reduced conditions, high salinity and pressure. RealTime RT-PCR of selected genes and the creation and analysis of cDNA libraries will allow the prediction of microbial metabolic activities. In addition, the analysis of organic and inorganic components of the samples will add to the knowledge of possible metabolic shifts during CO2 storage. In order to simulate the storage conditions in situ, long term laboratory experiments in high pressure incubators have been set up using original rock cores from Ketzin. Since DNA and RNA analysis techniques are very sensitive, contamination entries from the adjacent environment have to be excluded

  3. Determination of Priority Study Areas for Coupling CO2 Storage and CH4 Gas Hydrates Recovery in the Portuguese Offshore Area

    Directory of Open Access Journals (Sweden)

    Luís Bernardes

    2015-09-01

    Full Text Available Gas hydrates in sub-seabed sediments is an unexploited source of energy with estimated reserves larger than those of conventional oil. One of the methods for recovering methane from gas hydrates involves injection of Carbon Dioxide (CO2, causing the dissociation of methane and storing CO2. The occurrence of gas hydrates offshore Portugal is well known associated to mud volcanoes in the Gulf of Cadiz. This article presents a determination of the areas with conditions for the formation of biogenic gas hydrates in Portugal’s mainland geological continental margin and assesses their overlap with CO2 hydrates stability zones defined in previous studies. The gas hydrates stability areas are defined using a transfer function recently published by other authors and takes into account the sedimentation rate, the particulate organic carbon content and the thickness of the gas hydrate stability zone. An equilibrium equation for gas hydrates, function of temperature and pressure, was adjusted using non-linear regression and the maximum stability zone thickness was found to be 798 m. The gas hydrates inventory was conducted in a Geographic Information System (GIS environment and a full compaction scenario was adopted, with localized vertical flow assumed in the accrecionary wedge where mud volcanoes occur. Four areas where temperature and pressure conditions may exist for formation of gas hydrates were defined at an average of 60 km from Portugal’s mainland coastline. Two of those areas coincide with CO2 hydrates stability areas previously defined and should be the subject of further research to evaluate the occurrence of gas hydrate and the possibility of its recovery coupled with CO2 storage in sub-seabed sediments.

  4. Highly porous ionic rht metal-organic framework for H2 and CO2 storage and separation: A molecular simulation study

    KAUST Repository

    Babarao, Ravichandar

    2010-07-06

    The storage and separation of H2 and CO2 are investigated in a highly porous ionic rht metal-organic framework (rht-MOF) using molecular simulation. The rht-MOF possesses a cationic framework and charge-balancing extraframework NO3 - ions. Three types of unique open cages exist in the framework: rhombicuboctahedral, tetrahedral, and cuboctahedral cages. The NO3 - ions exhibit small mobility and are located at the windows connecting the tetrahedral and cuboctahedral cages. At low pressures, H2 adsorption occurs near the NO 3 - ions that act as preferential sites. With increasing pressure, H2 molecules occupy the tetrahedral and cuboctahedral cages and the intersection regions. The predicted isotherm of H2 at 77 K agrees well with the experimental data. The H2 capacity is estimated to be 2.4 wt % at 1 bar and 6.2 wt % at 50 bar, among the highest in reported MOFs. In a four-component mixture (15:75:5:5 CO2/H 2/CO/CH4) representing a typical effluent gas of H 2 production, the selectivity of CO2/H2 in rht-MOF decreases slightly with increasing pressure, then increases because of cooperative interactions, and finally decreases as a consequence of entropy effect. By comparing three ionic MOFs (rht-MOF, soc-MOF, and rho-ZMOF), we find that the selectivity increases with increasing charge density or decreasing free volume. In the presence of a trace amount of H2O, the interactions between CO2 and NO3 - ions are significantly shielded by H2O; consequently, the selectivity of CO 2/H2 decreases substantially. © 2010 American Chemical Society.

  5. Coupled Hydro-Mechanical Simulations of CO2 Storage Supported by Pressure Management Demonstrate Synergy Benefits from Simultaneous Formation Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Kempka Thomas

    2015-04-01

    Full Text Available We assessed the synergetic benefits of simultaneous formation fluid extraction during CO2 injection for reservoir pressure management by coupled hydro-mechanical simulations at the prospective Vedsted storage site located in northern Denmark. Effectiveness of reservoir pressure management was investigated by simulation of CO2 storage without any fluid extraction as well as with 66% and 100% equivalent volume formation fluid extraction from four wells positioned for geothermal heat recovery. Simulation results demonstrate that a total pressure reduction of up to about 1.1 MPa can be achieved at the injection well. Furthermore, the areal pressure perturbation in the storage reservoir can be significantly decreased compared to the simulation scenario without any formation fluid extraction. Following a stress regime analysis, two stress regimes were considered in the coupled hydro-mechanical simulations indicating that the maximum ground surface uplift is about 0.24 m in the absence of any reservoir pressure management. However, a ground uplift mitigation of up to 37.3% (from 0.24 m to 0.15 m can be achieved at the injection well by 100% equivalent volume formation fluid extraction. Well-based adaptation of fluid extraction rates can support achieving zero displacements at the proposed formation fluid extraction wells located close to urban infrastructure. Since shear and tensile failure do not occur under both stress regimes for all investigated scenarios, it is concluded that a safe operation of CO2 injection with simultaneous formation fluid extraction for geothermal heat recovery can be implemented at the Vedsted site.

  6. Pockmark development in the Petrel Sub-basin, Timor Sea, Northern Australia: Seabed habitat mapping in support of CO2 storage assessments

    Science.gov (United States)

    Nicholas, W. A.; Nichol, S. L.; Howard, F. J. F.; Picard, K.; Dulfer, H.; Radke, L. C.; Carroll, A. G.; Tran, M.; Siwabessy, P. J. W.

    2014-07-01

    The extent to which fluids may leak from sedimentary basins to the seabed is a critical issue for assessing the potential of a basin for carbon capture and storage. The Petrel Sub-basin, located beneath central and eastern Joseph Bonaparte Gulf in tropical northern Australia, was identified as potentially suitable for the geological storage of CO2 because of its geological characteristics and proximity to offshore gas and petroleum resources. In May 2012, a multidisciplinary marine survey (SOL5463) was undertaken to collect data in two targeted areas of the Petrel Sub-basin to facilitate an assessment of its CO2 storage potential. This paper focuses on Area 1 of that survey, a 471 km2 area of sediment-starved shelf (water depths of 78 to 102 m), characterised by low-gradient plains, low-lying ridges, palaeo-channels and shallow pockmarks. Three pockmark types are recognised: small shallow unit pockmarks 10-20 m in diameter (generally <1 m, rarely to 2 m deep), composite pockmarks of 150-300 m diameter formed from the co-location of several cross-cutting pockmarks forming a broad shallow depression (<1 m deep), and pockmark clusters comprised of shallow unit pockmarks co-located side by side (150-300 m width overall, <1 m deep). Pockmark distribution is non-random, focused within and adjacent to palaeo-channels, with pockmark clusters also located adjacent to ridges. Pockmark formation is constrained by AMS 14C dating of in situ mangrove deposits and shells to have begun after 15.5 cal ka BP when a rapid marine transgression of Bonaparte Shelf associated with meltwater pulse 1A drowned coastal mangrove environments. Pockmark development is likely an ongoing process driven by fluid seepage at the seabed, and sourced from CO2 produced in the shallow sub-surface (<2 m) sediment. No evidence for direct connection to deeper features was observed.

  7. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier, and an onshore integrated receiving terminal. Due to utilization of the cold exergy both in the offshore and onshore processes, and combined use of the gas carrier, the transport chain is both energy and cost effective. In this paper, the liquefied energy chain (LEC) is explained, including novel processes for both the offshore field site and onshore market site. In the offshore section, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. The LNG is transported in a combined gas carrier to the receiving terminal where it is used as a cooling agent to liquefy CO 2 and nitrogen. The LCO 2 and LIN are transported offshore using the same combined carrier. Pinch and Exergy Analyses are used to determine the optimal offshore and onshore processes and the best transport conditions. The exergy efficiency for a thermodynamically optimized process is 87% and 71% for the offshore and onshore processes, respectively, yielding a total efficiency of 52%. The offshore process is self-supported with power and can operate with few units of rotating equipment and without flammable refrigerants. The loss of natural gas due to power generation for the energy requirements in the LEC processes is roughly one third of the loss in a conventional transport chain for stranded natural gas with CO 2 sequestration. The LEC has several configurations and can be used for small scale ( 5 MTPA LNG) transport. In the example in this paper, the total costs for the simple LEC including transport of natural gas to a 400 MW net power plant and return of 85% of the corresponding carbon as CO 2 for a total sailing distance of 24 h are 58.1 EUR/tonne LNG excluding or including the cost of power. The total power requirements are 319 k

  8. A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO2 storage simulations

    Science.gov (United States)

    Fan, Yaqing; Durlofsky, Louis J.; Tchelepi, Hamdi A.

    2012-06-01

    A numerical simulation framework for coupled multiphase flow, multicomponent transport and geochemical reactions in porous media is presented. The approach is an element-based formulation that combines the compositional modeling capabilities used in oil reservoir simulation with the treatment of chemical reactions used in groundwater modeling. The procedure employs a conservative finite-volume method with a fully-implicit treatment in time in order to preserve the nonlinear coupling of flow, transport, reactions, and mass transfer across phases. Phase behavior is described using cubic equations of state. In this framework, all the governing equations and associated constraints are cast in discrete residual form, such that any variable, or coefficient, can depend on any other variable in the problem. Prior to linearization, which is applied to construct the Jacobian matrix, no algebraic or analytic manipulation need be performed to reduce the nonlinear sets of equations and unknowns. Once the complete Jacobian matrix is assembled, a series of algebraic reductions (Schur complements), of the type used in compositional reservoir simulation, are performed to reduce the number of discrete equations that must be solved simultaneously. A GMRES solution strategy with CPR (Constrained Pressure Residual) preconditioning is applied to solve the reduced linear system. We demonstrate the formulation using two CO2 sequestration problems, one of which involves chemical reactions. The simulations demonstrate the efficiency and applicability of the overall procedure for modeling the long-term fate of sequestered CO2.

  9. Reservoir Characterization and CO2 Plume Migration Modeling Based on Bottom-hole Pressure Data: An Example from the AEP Mountaineer Geological Storage Project

    Science.gov (United States)

    Mishra, Srikanta; Kelley, Mark; Oruganti, YagnaDeepika; Bhattacharya, Indra; Spitznogle, Gary

    2014-05-01

    We present an integrated approach for formation permeability estimation, front tracking, reservoir model calibration, and plume migration modeling based on injection rate and down-hole pressure data from CO2 geologic sequestration projects. The data are taken from the 20 MW CO2 capture and storage project at American Electric Power's Mountaineer Plant in West Virginia, USA. The Mountaineer CO2 injection system consists of two injection wells - one in the Copper Ridge Dolomite formation and one in the Rose Run sandstone formation, and three deep observation wells that were operational between October 2009 and May 2011. Approximately 27000 MT and 10000 MT were injected into the Copper Ridge dolomite formation and Rose Run sandstone formation, respectively. A wealth of pressure and rate data from injection and observation wells is available covering a series of injection and pressure falloff events. The methodology developed and applied for interpreting and integrating the data during reservoir analysis and modeling from the Rose Run formation is the subject of this paper. For the analysis of transient pressure data at the injection and observation wells, the CO2 storage reservoir is conceptualized as a radial composite system, where the inner (invaded) zone consists of both supercritical CO2 and brine, and the outer (uninvaded) zone consists of undisturbed brine. Using established analytical solutions for analyzing fluid injection problems in the petroleum reservoir engineering literature, we show how the late-time pressure derivative response from both injection and observation wells will be identical - reflecting the permeability-thickness product of the undisturbed brine-filled formation. We also show how the expanding CO2 plume affects the "effective" compressibility that can be estimated by history matching injection-falloff data and how this can be used to develop a relationship between the plume radius and "effective" compressibility. This provides a novel non

  10. CO2-neutral fuels

    Science.gov (United States)

    Goede, A. P. H.

    2015-08-01

    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  11. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  12. SiteChar - Workflow for fit-for-purpose characterisation of CO2 storage sites in Europe

    NARCIS (Netherlands)

    Delprat-Jannaud, F.; Pearce, J.; Neele, F.; Akhurst, M.; Nielsen, C.; Mazurowski, M.; Lothe, A.; Volpi, V.; Brunsting, S.

    2014-01-01

    The FP7 SiteChar project has examined the entire site characterization chain, from the initial feasibility studies through to the final stage of application for a storage permit, on the basis of criteria defined by the relevant European legislation, highlighting important issues and recommendations

  13. Designing a cost-effective CO2 storage infrastructure using a GIS based linear optimization energy model

    NARCIS (Netherlands)

    Broek, M. van den; Brederode, E.; Ramírez, A.; Kramers, L.; Kuip, M. van der; Wildenborg, T.; Turkenburg, W.; Faaij, A.

    2010-01-01

    Large-scale deployment of carbon capture and storage needs a dedicated infrastructure. Planning and designing of this infrastructure require incorporation of both temporal and spatial aspects. In this study, a toolbox has been developed that integrates ArcGIS, a geographical information system with

  14. Fabrication of porous nanosheets assembled from NiCo2O4/NiO electrode for electrochemical energy storage application.

    Science.gov (United States)

    Wei, Chao; Huang, Ying; Chen, Menghua; Yan, Jing; Yao, Wen; Chen, Xuefang

    2017-10-15

    In this work, The NiCo 2 O 4 /NiO electrode materials are successfully synthesized via hydrothermal and following calcination approach. Due to the distinctive porous nanosheets assembled structure through controlling effectively the feeding amount of HMT, the NiCo 2 O 4 /NiO electrode possesses excellent specific surface area and reasonable pore size distribution, which hence minimizes the intrinsic electrode resistance and improves the morphology and structure stability. Therefore, the NiCo 2 O 4 /NiO electrode delivers a superior specific capacitance (Csp) (992.85Fg -1 at the current density of 1Ag -1 ), good rate capability (79.14% Csp retention even at 10Ag -1 ) and considerable cycle life (79.82% Csp retention at 10Ag -1 after 5000 times). Furthermore, the asymmetric supercapacitor is successfully assembled by NCN-0.1 as positive electrode and activated carbon (AC) as negative electrode. The NCN-0.1//AC device delivers a relatively excellent energy density of 47.43kWkg -1 at a power density of 0.389Whkg -1 . Consequently, the outstanding performance and stability of the ASC device shows great potential for future energy storage application. Copyright © 2017. Published by Elsevier Inc.

  15. Inverse Problem for 3D coupled Flow-Geomechanics Models and Induced Seismicity: Application to Subsurface Characterization and Seismicity Forecasting in Geologic CO2 Storage

    Science.gov (United States)

    Castineira, D.; Jha, B.; Juanes, R.

    2016-12-01

    Carbon Capture and Sequestration (CCS) is regarded as a promising technology to mitigate rising CO2 concentrations in the atmosphere from industrial emissions. However, as a result of the inherent uncertainty that is present in geological structures, assessing the stability of geological faults and quantifying the potential for induced seismicity is a fundamental challenge for practical implementation of CCS. Here we present a formal framework for the solution of the inverse problem associated with coupled flow and geomechanics models of CO2 injection and subsurface storage. Our approach builds from the application of Gaussian Processes, MCMC and posterior predictive analysis to evaluate relevant earthquake attributes (earthquake time, location and magnitude) in 3D synthetic models of CO2 storage under geologic, observational and operational uncertainty. In our approach, we first conduct hundreds of simulations of a high-fidelity 3D computational model for CO2 injection into a deep saline aquifer, dominated by an anticline structure and a fault. This ensemble of realizations accounts for uncertainty in the model parameters (including fault geomechanical and rock properties) and observations (earthquake time, location and magnitude). We apply Gaussian processes (GP) to generate a valid surrogate that closely approximates the behavior of the high fidelity (and computationally intensive) model, and apply hyperparameter optimization and cross-validation techniques in the solution of this multidimensional data-fit problem. The net result of this process is the generation of a fast model that can be effectively used for Bayesian analysis. We then implement Markov chain Monte Carlo (MCMC) to determine the posterior distribution of the model uncertain parameters (given some prior distributions for those parameters and given the likelihood defined in this case by the GP model). Our results show that the resulting posterior distributions correctly converge towards the "true

  16. From Injectivity to Integrity Studies of CO2 Geological Storage Caractérisation de l’injectivité et de l’intégrité d’un stockage géologique de CO2

    Directory of Open Access Journals (Sweden)

    Bemer E.

    2009-07-01

    Full Text Available The technical and economical success of a CO2 geological storage project requires the preservation of the site injectivity and integrity properties over its lifetime. Unlike conventional hydrocarbon gas injection, CO2 injection implies geochemical reactions between the reactive brine and the in situ formations (reservoir and cap rock leading to modifications of their petrophysical and geomechanical properties. This paper underlines the experimental difficulties raised by the low permeability of samples representative either of the cap rock itself or at least of transition zones between the reservoir and the effective cap rock. Acidification effects induced by CO2 injection have been studied using an experimental procedure of chemical alteration, which ensures a homogeneous dissolution pattern throughout the rock sample and especially avoids any wormholing process that would lead to erroneous measurements at the core scale. Porosity, permeability and geomechanical properties of outcrop and field carbonate samples of various permeability levels have been measured under their native state and different levels of alteration. The present work has been conducted within the framework of ANR GeoCarbone-INJECTIVITY and GeoCarbone-INTEGRITY projects. Each experimental step: chemical alteration, petrophysical measurements and geomechanical testing, is considered from the point of view of injectivity and integrity issues. The obtained experimental data show clear trends of chemically induced mechanical weakening. La réussite technique et économique d’un projet de stockage géologique de CO2 repose sur le maintien des propriétés d’injectivité et d’intégrité du site pendant sa durée de vie. Contrairement à l’injection d’un gaz d’hydrocarbure standard, l’injection de CO2 implique des réactions géochimiques entre la saumure réactive mobile et les roches en place (réservoir et couverture conduisant à des modifications de leurs propri

  17. The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Y.; Xu, T.; Pruess, K.

    2008-10-15

    Possible means of reducing atmospheric CO{sub 2} emissions include injecting CO{sub 2} in petroleum reservoirs for Enhanced Oil Recovery or storing CO{sub 2} in deep saline aquifers. Large-scale injection of CO{sub 2} into subsurface reservoirs would induce a complex interplay of multiphase flow, capillary trapping, dissolution, diffusion, convection, and chemical reactions that may have significant impacts on both short-term injection performance and long-term fate of CO{sub 2} storage. Reactive Transport Modeling is a promising approach that can be used to predict the spatial and temporal evolution of injected CO{sub 2} and associated gas-fluid-rock interactions. This presentation will summarize recent advances in reactive transport modeling of CO{sub 2} storage and review key technical issues on (1) the short- and long-term behavior of injected CO{sub 2} in geological formations; (2) the role of reservoir mineral heterogeneity on injection performance and storage security; (3) the effect of gas mixtures (e.g., H{sub 2}S and SO{sub 2}) on CO{sub 2} storage; and (4) the physical and chemical processes during potential leakage of CO{sub 2} from the primary storage reservoir. Simulation results suggest that CO{sub 2} trapping capacity, rate, and impact on reservoir rocks depend on primary mineral composition and injecting gas mixtures. For example, models predict that the injection of CO{sub 2} alone or co-injection with H{sub 2}S in both sandstone and carbonate reservoirs lead to acidified zones and mineral dissolution adjacent to the injection well, and carbonate precipitation and mineral trapping away from the well. Co-injection of CO{sub 2} with H{sub 2}S and in particular with SO{sub 2} causes greater formation alteration and complex sulfur mineral (alunite, anhydrite, and pyrite) trapping, sometimes at a much faster rate than previously thought. The results from Reactive Transport Modeling provide valuable insights for analyzing and assessing the dynamic

  18. A comparative approach for modeling of CO2 storage capacity and associated pressure response - analysis of data from South Scania site, Sweden

    Science.gov (United States)

    Tian, Liang; Yang, Zhibing; Jung, Byeongju; Joodaki, Saba; Niemi, Auli; Fagerlund, Fritjof; Erlström, Mikael

    2014-05-01

    Comprehensive modeling with models of varying level of accuracy can give valuable information for the appraisal of CO2 storage potential and the assessment of risks for a given site. Here, we present a comparative modeling approach/workflow where a sequence of mathematical models of different levels of complexity are applied. These models span from semi-analytical solution to three-dimensional (3D) numerical simulator. The Scania Site, southwest Sweden where the geological model was developed within the MUSTANG project activities is selected for an example study. Initially, a semi-analytical approach is used to investigate pressure increase induced by CO2 injection so as to determine a viable injection strategy (including injection rate and number of injection wells) and parameter sensitivity. The result is then used as a starting point in subsequent numerical simulations with TOUGH2/ECO2N for 2D and 3D simulations. At the same time a simplified numerical model with the vertical equilibrium (VE) approach is also implemented. A systematic comparison is done between the different methods in terms of pressure response. CO2 spreading during both the injection and post-injection phase is also carefully compared between the 2D, VE and 3D numerical simulations. Through these comparisons we can thus identify a model with the appropriate level of complexity according to the objectives of the modeling study. Given the data available, we show an effective modeling strategy in achieving order-of-magnitude estimates on the behavior of the identified CO2 traps during and after the injection.

  19. Numerical simulations of enhanced gas recovery at the Zalezcze gas field in Poland confirm high CO2 storage capacity and mechanical integrity

    International Nuclear Information System (INIS)

    Klimkowski, Lukasz; Nagy, Stanislaw; Papiernik, Bartosz; Orlic, Bogdan; Kempka, Thomas

    2015-01-01

    Natural gas from the Zalecze gas field located in the Fore-Sudetic Monocline of the Southern Permian Basin has been produced since November 1973, and continuous gas production led to a decrease in the initial reservoir pressure from 151 bar to about 22 bar until 2010. We investigated a prospective enhanced gas recovery operation at the Zalecze gas field by coupled numerical hydro-mechanical simulations to account for the CO 2 storage capacity, trapping efficiency and mechanical integrity of the reservoir, cap-rock and regional faults. Dynamic flow simulations carried out indicate a CO 2 storage capacity of 106.6 Mt with a trapping efficiency of about 43% (45.8 Mt CO 2 ) established after 500 years of simulation. Two independent strategies on the assessment of mechanical integrity were followed by two different modeling groups resulting in the implementation of field- to regional-scale hydro-mechanical simulation models. The simulation results based on application of different constitutive laws for the lithological units show deviations of 31% to 93% for the calculated maximum vertical displacements at the reservoir top. Nevertheless, results of both simulation strategies indicate that fault reactivation generating potential leakage pathways from the reservoir to shallower units is very unlikely due to the low fault slip tendency (close to zero) in the Zechstein cap-rocks. Consequently, our simulation results also emphasise that the supra- and sub-saliferous fault systems at the Zalecze gas field are independent and very likely not hydraulically connected. Based on our simulation results derived from two independent modeling strategies with similar simulation results on fault and cap-rock integrity, we conclude that the investigated enhanced gas recovery scheme is feasible, with a negligibly low risk of relevant fault reactivation or formation fluid leakage through the Zechstein cap-rocks. (authors)

  20. Reactive transport at the pore-scale: Geological Labs on Chip studies (GLoCs) for CO2 storage in saline aquifers

    Science.gov (United States)

    Azaroual, M. M.; Lassin, A., Sr.; André, L., Sr.; Devau, N., Sr.; Leroy, P., Sr.

    2017-12-01

    The near well bore of CO2 injection in saline aquifer is the main sensitive part of the targeted carbone storage reservoirs. The recent development of microfluidics tools mimicking porous media of geological reservoirs allowed studying physical, physico-chemical and thermodynamic mechanisms. We used the GLoCs "Geological Labs on Chip" to study dynamic and reactive transport processes at the pore scale induced by the CO2 geological storage. The present work is a first attempt to reproduce, by reactive transport modeling, an experiment of calcium carbonate precipitation during the co-injection of two aqueous solutions in a GLoC device. For that purpose, a new kinetics model, based on the transition-state-theory and on surface complexation modeling, was developed to describe the co-precipitation of amorphous calcium carbonate (ACC) and calcite. ACC precipitates and creates surface complexation sites from which calcite can nucleate and create new surface complexation sites. When the kinetics of calcite precipitation are fast enough, the consumption of matter leads to the dissolution of ACC. The modeling results were first compared to batch experiments (from the literature) and then applied with success to dynamic experiment observations carried out on a GLoC device (from the literature). On the other hand, we evaluated the solubility of CO2 in capillary waters that increases between 5 to 10 folds for reservoir conditions (200 bar and 100°C) compared to the bulk water. The GLoCs tools started to address an excellent and much finer degree of processes control (reactive transport processes, mixing effects, minerals precipitation and dissolution kinetics, etc.) thanks to in situ analysis and characterization techniques, allowing access in real time to relevant properties. Current investigations focus on key parameters influencing the flowing dynamics and trapping mechanisms (relative permeability, capillary conditions, kinetics of dissolution and precipitation of minerals).

  1. A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

    2008-04-15

    The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

  2. Experimental simulation of the geological storage of CO2: particular study of the interfaces between well cement, cap-rock and reservoir rock

    International Nuclear Information System (INIS)

    Jobard, Emmanuel

    2013-01-01

    The geological storage of the CO 2 is envisaged to mitigate the anthropogenic greenhouse gas emissions in the short term. CO 2 is trapped from big emitters and is directly injected into a reservoir rock (mainly in deep salty aquifers, depleted hydrocarbon oil fields or unexploited charcoal lodes) located at more than 800 m deep. In the framework of the CO 2 storage, it is crucial to ensure the integrity of the solicited materials in order to guarantee the permanent confinement of the sequestrated fluids. Using experimental simulation the purpose of this work is to study the mechanisms which could be responsible for the system destabilization and could lead CO 2 leakage from the injection well. The experimental simulations are performed under pressure and temperature conditions of the geological storage (100 bar and from 80 to 100 deg. C). The first experimental model, called COTAGES (for 'Colonne Thermoregulee A Grains pour Gaz a Effet de Serre') allows studying the effects of the thermal destabilisation caused by the injection of a fluid at 25 deg. C in a hotter reservoir (submitted to the geothermal gradient). This device composed of an aqueous saline solution (4 g.L -1 of NaCl), crushed rock (Lavoux limestone or Callovo-Oxfordian argillite) and gas (N 2 or CO 2 ) allows demonstrating an important matter transfer from the cold area (30 deg. C) toward the hot area (100 deg. C). The observed dissolution/precipitation phenomena leading to changes of the petro-physical rocks properties occur in presence of N 2 or CO 2 but are significantly amplified by the presence of CO 2 . Concerning the experiments carried out with Lavoux limestone, the dissolution in the cold zone causes a raise of porosity of about 2% (initial porosity of 8%) due to the formation of about 500 pores/mm 2 with a size ranging between 10 and 100 μm 2 . The precipitation in the hot zone forms a micro-calcite fringe on the external part of the grains and fills the intergrain porosity

  3. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline

  4. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.; Birkholzer, J. T.

    2011-05-01

    The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

  5. A method for examining the geospatial distribution of CO2 storage resources applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin, U.S.A

    Science.gov (United States)

    Roberts-Ashby, Tina; Brandon N. Ashby,

    2016-01-01

    This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable.

  6. Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation.

    Science.gov (United States)

    Wang, Wenjing; Yuan, Daqiang

    2014-07-16

    Four nanoporous carbons prepared by direct carbonization of non-permanent highly porous MOF [Zn3(BTC)2 · (H2O)3]n without any additional carbon precursors. The carbonization temperature plays an important role in the pore structures of the resultant carbons. The Brunauer-Emmett-Teller (BET) surface areas of four carbon materials vary from 464 to 1671 m(2) g(-1) for different carbonization temperature. All the four carbon materials showed a mesoporous structure centered at ca. 3 nm, high surface area and good physicochemical stability. Hydrogen, methane and carbon dioxide sorption measurements indicated that the C1000 has good gas uptake capabilities. The excess H2 uptake at 77 K and 17.9 bar can reach 32.9 mg g(-1) and the total uptake is high to 45 mg g(-1). Meanwhile, at 95 bar, the total CH4 uptake can reach as high as 208 mg g(-1). Moreover the ideal adsorbed solution theory (IAST) prediction exhibited exceptionally high adsorption selectivity for CO2/CH4 in an equimolar mixture at 298 K and 1 bar (S(ads) = 27) which is significantly higher than that of some porous materials in the similar condition.

  7. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The

  8. Well selection in depleted oil and gas fields for a safe CO2 storage practice: A case study from Malaysia

    Directory of Open Access Journals (Sweden)

    Arshad Raza

    2017-03-01

    Full Text Available Carbon capture and sequestration technology is recognized as a successful approach taken to mitigate the amount of greenhouse gases released into the atmosphere. However, having a successful storage practice requires wise selection of suitable wells in depleted oil or gas fields to reduce the risk of leakage and contamination of subsurface resources. The aim of this paper is to present a guideline which can be followed to provide a better understanding of sophisticated wells chosen for injection and storage practices. Reviewing recent studies carried out on different aspects of geosequestration indicated that the fracture pressure of seals and borehole conditions such as cement-sheath integrity, distance from faults and fractures together with the depth of wells are important parameters, which should be part of the analysis for well selection in depleted reservoirs. A workflow was then designed covering these aspects and it was applied to a depleted gas field in Malaysia. The results obtained indicated that Well B in the field may have the potential of being a suitable conduit for injection. Although more studies are required to consider other aspects of well selections, it is recommended to employ the formation integrity analysis as part of the caprock assessment before making any decisions.

  9. The sequestration of CO2

    International Nuclear Information System (INIS)

    Le Thiez, P.

    2004-01-01

    The reduction of greenhouse gas emissions, especially CO 2 , represents a major technological and societal challenge in the fight against climate change. Among the measures likely to reduce anthropic CO 2 emissions, capture and geological storage holds out promise for the future. (author)

  10. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  11. SiteChar. Characterisation of European CO2 storage. Deliverable 8.4. Quantitative social site characterisations

    Energy Technology Data Exchange (ETDEWEB)

    Brunsting, S.; Mastop, E.A. [ECN Policy Studies, Energy research Centre of the Netherlands ECN, Amsterdam (Netherlands); Kaiser, M.; Zimmer, R. [Unabhaengiges Institut fuer Umweltfragen UfU, Berlin (Germany)

    2013-06-15

    This report describes the results of the last stage of the in-depth social site characterisation activities at two prospective CCS sites as part of the SiteChar project: a CCS onshore site and a CCS offshore site. The onshore site is the Zalecze and Zuchlow site application (Poland - WP5) and the offshore site is the North Sea Moray Firth site (UK - WP3). This deliverable describes the results from a repeated quantitative measurement of local awareness, knowledge, and perceptions of CCS at both sites using representative surveys. For comparison and discussion of all SiteChar WP8 results we refer to the final summary report D8.5. The 2nd survey showed some interesting results. First of all, awareness of CCS was still very low. While in the UK around half of the respondents had at least heard of local plans for CCS, in Poland this was only 21%. It seems that awareness in the UK was mostly induced by specific plans in the area that were abandoned in the course of the SiteChar project. Second, it seems that on the whole the local publics were rather positive about CCS. Most respondents expected a positive impact of CCS on the region. In the UK, arguments for that were mainly economic, while in Poland arguments were mainly related to environmental concerns. Although there are some worries about risks of leakage, especially at the onshore site in Poland, people think that authorities will properly regulate CCS and monitor the safety of CCS. Expectations were mostly that it would be good for the country and that it will help reach international targets for CO2 reduction and buy time to develop renewable energy. Respondents seemed uncertain about the costs of using CCS and whether the technique is ready for widespread use. Especially in Poland people seemed to agree that CCS is essential for tackling climate change. Most differences between the two sites may be attributed to the proximity of the site to the local community. The Polish site is onshore and therefore much

  12. Hydrochemical field investigations at a potential CO2 storage site - analysis of natural salinisation processes as an indicator for deep reaching flow processes in Eastern Brandenburg (Germany)

    Science.gov (United States)

    Endler, Ricarda; Jahnke, Christoph; Ludwig, Oliver

    2013-04-01

    The storage of CO2 in deep saline aquifers may cause an upward brine migration as a result of the pressure increase and brine displacement in the reservoir. With regard to a possible endangerment for regional freshwater resources the understanding of natural and induced migration processes of brines is therefore of great importance for the evaluation of potential storage sites. Within the framework of the BMBF project 'brine - CO2 storage in Eastern Brandenburg' (Germany), hydrochemical investigations were carried out to get an idea of the sources of salinisation, the migration pathways and the current processes and interactions between salt- and freshwater aquifers above a potential CO2 storage reservoir. This reservoir is located at a salt anticline structure in a Lower Triassic sandstone formation at a depth of about 1000 m. Since the 19th century freshwater salinisation and salinised soils in part with populations of halophytes were observed in Brandenburg. Both, fault zones in the Mesozoic/Tertiary and Pleistocene erosion processes led locally to a leakage of the Oligocene Rupelian clay formation, the most important confining layer between Mesozoic saltwater and Cenozoic freshwater aquifers, and thus potential migration pathways for brines. Possible sources for the salinisation are the leaching of deep Permian salt structures as well as in situ brackish or marine waters from Tertiary and Mesozoic sediments. Still unclear is especially the timescale of the salinisation processes in the shallow aquifers. To answer these questions, extensive groundwater samples from Pleistocene, Tertiary and Mesozoic aquifers down to depths of 450 m were taken in an investigation area of 50 x 50 km2 surrounding the potential storage site. In addition, deep thermal waters in Brandenburg in depths down to 1700 m were sampled to have comparable data for the storage reservoir and the deep caprock formations. Field parameters and a wide range of hydrochemical indicators (anions

  13. Hydrogen for small-scale energy consumers and CO2-storage. Feasibility study of a demonstration project in the Rijnmond, Netherlands

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Van der Werff, T.T.; Rooijers, F.J.

    1996-01-01

    In the future natural gas can be substituted by hydrogen. In the short term hydrogen can be produced from fossil fuels. Released CO 2 can be stored. In the long run it will be possible to produce hydrogen from renewable energy sources (solar cells and wind turbines), which can be transported to the consumer. In the study on the title subject attention is paid to different methods of hydrogen production from natural gas and from residual oils, costs and problems of hydrogen distribution, hydrogen appliances, and CO 2 storage. From the results it appears that a demonstration project to use hydrogen on a small-scale is feasible, although expensive. The costs of the reconstruction of the present natural gas distribution system to a hydrogen distribution system is higher than expected. The price of hydrogen per GJ is higher than the equal energy content of natural gas, in spite of a reduction of the energy levy. The demonstration project will be 25% cheaper per GJ hydrogen when carried out in a newly built area. A demonstration project in which hydrogen is mixed with natural gas is even a factor 2 cheaper. 17 refs., 7 appendices

  14. Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-09-30

    Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along

  15. CO2 chemical valorization

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Rakotojaona, Loic; Bucy, Jacques de; Clodic, Denis; Roger, Anne-Cecile; El Khamlichi, Aicha; Thybaud, Nathalie; Oeser, Christian; Forti, Laurent; Gimenez, Michel; Savary, David; Amouroux, Jacques

    2014-07-01

    Facing global warming, different technological solutions exist to tackle carbon dioxide (CO 2 ) emissions. Some inevitable short term emissions can be captured so as to avoid direct emissions into the atmosphere. This CO 2 must then be managed and geological storage seems to currently be the only way of dealing with the large volumes involved. However, this solution faces major economic profitability and societal acceptance challenges. In this context, alternative pathways consisting in using CO 2 instead of storing it do exist and are generating growing interest. This study ordered by the French Environment and Energy Management Agency (ADEME), aims at taking stock of the different technologies used for the chemical conversion of CO 2 in order to have a better understanding of their development potential by 2030, of the conditions in which they could be competitive and of the main actions to be implemented in France to foster their emergence. To do this, the study was broken down into two main areas of focus: The review and characterization of the main CO 2 chemical conversion routes for the synthesis of basic chemical products, energy products and inert materials. This review includes a presentation of the main principles underpinning the studied routes, a preliminary assessment of their performances, advantages and drawbacks, a list of the main R and D projects underway, a focus on emblematic projects as well as a brief analysis of the markets for the main products produced. Based on these elements, 3 routes were selected from among the most promising by 2030 for an in-depth modelling and assessment of their energy, environmental and economic performances. The study shows that the processes modelled do have favorable CO 2 balances (from 1 to 4 t-CO 2 /t-product) and effectively constitute solutions to reduce CO 2 emissions, despite limited volumes of CO 2 in question. Moreover, the profitability of certain solutions will remain difficult to reach, even with an

  16. Petrophysical Characterization of Arroyal Antiform Geological Formations (Aguilar de Campoo, Palencia) as a Storage and Seal Rocks in the Technology Development Plant for Geological CO2 Storage (Hontomin, Burgos)

    International Nuclear Information System (INIS)

    Campos, R.; Barrios, I.; Gonzalez, A. M.; Pelayo, M.; Saldana, R.

    2011-01-01

    The geological storage program of Energy City Foundation is focusing its research effort in the Technological Development and Research Plant in Hontomin (Burgos) start off. The present report shows the petrophysical characterization of of the Arroyal antiform geological formations since they are representatives, surface like, of the storage and seal formations that will be found in the CO 2 injection plant in Hontomin. In this petrophysics characterization has taken place the study of matrix porosity, specific surface and density of the storage and seal formations. Mercury intrusion porosimetry, N 2 adsorption and He pycnometry techniques have been used for the characterization. Furthermore, it has carried out a mineralogical analysis of the seal materials by RX diffraction. (Author) 26 refs.

  17. Characterization of the Lower Cambrian sandstone aquifer in the Swedish Baltic Sea area - assessment regarding its potential suitability for storage of CO2

    Science.gov (United States)

    Erlström, M.; Sivhed, U.

    2012-04-01

    In the Baltic region the Cambrian sandstone is considered to have great economic value concerning its aquifer and reservoir properties. Its potential as petroleum reservoir is well known, especially from the Polish, Lithuanian and Russian sectors of the Baltic Sea where oil and gas has been found in anticline traps in the sandstone sequence. Offshore exploration in the Swedish sector has so far not encountered any significant findings of oil and gas. However, the extensive exploration has generated data, which is now being used for assessing the overall properties regarding suitability for storage of CO2. The Swedish primary industry has a great interest in finding potential sites for storage of CO2. A suitable site in the Baltic Sea would be a most favourable alternative in comparison to more remote alternatives such as deep saline aquifers in the North Sea. The Lower Cambrian is in the Swedish sector of the Baltic Sea composed of three main sandstone units varying in thickness between 5 and 50 m occurring within an up to 250 m thick Cambrian sequence dominated by fine-grained terriclastic sediments. The limit of Lower Palaeozoic sequence in the Baltic area is today defined by erosional truncation because of the gently dipping Lower Palaeozoic sequence. To the north and northwest, the limit is found in the Pre-Quaternary, whereas the erosional limit is deeply buried beneath Permian and Mesozoic sediments to the south. Here the Lower Palaeozoic limit is buried to depths reaching more than 2 km. The Cambrian sequence in the distal parts of the Swedish sector occurs at depths of c. 1300 m while it constitutes the bedrock surface in a narrow zone trending from Öland to the north of of Gotland. Sandstone beds constitute 40-60% of the total Cambrian sequence. The main sandstone units have a regional distribution of several thousands of square kilometres. The up to 50 m thick Faludden sandstone member exhibits the best reservoir properties including porosities in the

  18. Preliminary Safety and Risk HSE Assessment. Application to the Potential Locations of a CO2 Geological Storage Pilot; Evaluación Preliminar de la Seguridad y de los Riesgos HSE. Aplicación a las Potenciales Ubicaciones de una Planta Piloto de Almacenamiento Geológico de CO2.

    Energy Technology Data Exchange (ETDEWEB)

    Recreo, F.; Eguilior, S.; Ruiz, C.; Lomba, L.; Hurtado, A.

    2015-07-01

    The location of a site safe and able to sequester CO2 for long periods of time is essential to gain public acceptance. This requires a long-term safety assessment developed in a robust and reliable framework. Site selection is the first step and requires specific research. This paper describes the application of the Selection and Classification Method of Geological Formations (SCF) developed to assess the potential of geological formations to CO2 storage. This assessment is based in the analysis of risks to Health, Safety and Environment (HSE) derived from potential CO2 leakage. Comparisons of the results obtained from a number of potential sites can help to select the best candidate for CO2 injection. The potential impact will be related to three key potential features of CO2 geological storage: the potential of the target geological formation for long term CO2 containment; the potential for secondary containment on containment failure of the target formation; and the site's potential to mitigate and/or disperse CO2 leakage if the primary and secondary containments fail. The methodology assesses each of these three characteristics through an analysis and assessment of properties of certain attributes of them. Uncertainty will remain as an input and output value of the methodology due to the usual lack of data in most site selection processes. The global uncertainty reports on the trust on the knowledge of the site characteristics. Therefore, the methodology enables comparing sites taking into account both the HSE risk expectation and the estimation of the quality of knowledge concerning such risk. The objective is to contribute to the selection of potential sites for a CO2 injection pilot plant in the Iberian Peninsula from the perspective of Safety and Risk Analysis.

  19. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum Based soc-MOF for CH4, O2 and CO2 Storage

    KAUST Repository

    Alezi, Dalal

    2015-09-28

    The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum based Metal-Organic Frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized, namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-properties relationship, we performed a molecular simulation study and evaluated the methane storage performance of Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes in a wide range of pressure and temperature conditions.

  20. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  1. Coal-fuelled systems for peaking power with 100% CO2 capture through integration of solid oxide fuel cells with compressed air energy storage

    Science.gov (United States)

    Nease, Jake; Adams, Thomas A.

    2014-04-01

    In this study, a coal-fuelled integrated solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) system in a load-following power production scenario is discussed. Sixteen SOFC-based plants with optional carbon capture and sequestration (CCS) and syngas shifting steps are simulated and compared to a state-of-the-art supercritical pulverised coal (SCPC) plant. Simulations are performed using a combination of MATLAB and Aspen Plus v7.3. It was found that adding CAES to a SOFC-based plant can provide load-following capabilities with relatively small effects on efficiencies (1-2% HHV depending on the system configuration) and levelized costs of electricity (∼0.35 ¢ kW-1 h-1). The load-following capabilities, as measured by least-squares metrics, show that this system may utilize coal and achieve excellent load-tracking that is not adversely affected by the inclusion of CCS. Adding CCS to the SOFC/CAES system reduces measurable direct CO2 emission to zero. A seasonal partial plant shutdown schedule is found to reduce fuel consumption by 9.5% while allowing for cleaning and maintenance windows for the SOFC stacks without significantly affecting the performance of the system (∼1% HHV reduction in efficiency). The SOFC-based systems with CCS are found to become economically attractive relative to SCPC above carbon taxes of 22 ton-1.

  2. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 2: The offshore and the onshore processes

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel energy and cost effective transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier, and an integrated receiving terminal. In the offshore process, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. The offshore process is self-supported with power, hot and cold utilities and can operate with little rotating equipment and without flammable refrigerants. In the onshore process, the cryogenic exergy in LNG is used to cool and liquefy the cold carriers, which reduces the power requirement to 319 kWh/tonne LNG. Pinch and exergy analyses are used to determine thermodynamically optimized offshore and onshore processes with exergy efficiencies of 87% and 71%, respectively. There are very low emissions from the processes. The estimated specific costs for the offshore and onshore process are 8.0 and 14.6 EUR per tonne LNG, respectively, excluding energy costs. With an electricity price of 100 EUR per MWh, the specific cost of energy in the onshore process is 31.9 EUR per tonne LNG

  3. A Versatile CuII Metal-Organic Framework Exhibiting High Gas Storage Capacity with Selectivity for CO2 : Conversion of CO2 to Cyclic Carbonate and Other Catalytic Abilities.

    Science.gov (United States)

    De, Dinesh; Pal, Tapan K; Neogi, Subhadip; Senthilkumar, S; Das, Debasree; Gupta, Sayam Sen; Bharadwaj, Parimal K

    2016-03-01

    A linear tetracarboxylic acid ligand, H 4 L, with a pendent amine moiety solvothermally forms two isostructural metal-organic frameworks (MOFs) L M (M=Zn II , Cu II ). Framework L Cu can also be obtained from L Zn by post- synthetic metathesis without losing crystallinity. Compared with L Zn , the L Cu framework exhibits high thermal stability and allows removal of guest solvent and metal-bound water molecules to afford the highly porous, L Cu '. At 77 K, L Cu ' absorbs 2.57 wt % of H 2 at 1 bar, which increases significantly to 4.67 wt % at 36 bar. The framework absorbs substantially high amounts of methane (238.38 cm 3  g -1 , 17.03 wt %) at 303 K and 60 bar. The CH 4 absorption at 303 K gives a total volumetric capacity of 166 cm 3  (STP) cm -3 at 35 bar (223.25 cm 3  g -1 , 15.95 wt %). Interestingly, the NH 2 groups in the linker, which decorate the channel surface, allow a remarkable 39.0 wt % of CO 2 to be absorbed at 1 bar and 273 K, which comes within the dominion of the most famous MOFs for CO 2 absorption. Also, L Cu ' shows pronounced selectivity for CO 2 absorption over CH 4 , N 2 , and H 2 at 273 K. The absorbed CO 2 can be converted to value-added cyclic carbonates under relatively mild reaction conditions (20 bar, 120 °C). Finally, L Cu ' is found to be an excellent heterogeneous catalyst in regioselective 1,3-dipolar cycloaddition reactions ("click" reactions) and provides an efficient, economic route for the one-pot synthesis of structurally divergent propargylamines through three-component coupling of alkynes, amines, and aldehydes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The importance of natural fractures in a tight reservoir for potential CO2 storage : A case study of the upper Triassic-middle Jurassic Kapp Toscana Group (Spitsbergen, Arctic Norway)

    NARCIS (Netherlands)

    Ogata, K.; Senger, K.; Braathen, A.; Tveranger, J.; Olaussen, S.

    2014-01-01

    In the Longyearbyen CO2 laboratory project, it is planned to inject carbon dioxide into a Triassic-Jurassic fractured sandstone-shale succession (Kapp Toscana Group) at a depth of 700- 1000 m below the local settlement. The targeted storage sandstones offer moderate secondary porosity and low

  5. The importance of natural fractures in a tight reservoir for potential CO2 storage: a case study of the upper Triassic-middle Jurassic Kapp Toscana Group (Spitsbergen, Arctic Norway)

    NARCIS (Netherlands)

    Ogata, K.; Senger, K.; Braathen, A.; Tveranger, J.; Olaussen, S.

    2012-01-01

    In the Longyearbyen CO2 laboratory project, it is planned to inject carbon dioxide into a Triassic–Jurassic fractured sandstone–shale succession (Kapp Toscana Group) at a depth of 700– 1000 m below the local settlement. The targeted storage sandstones offer moderate secondary porosity and low

  6. CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2017-09-01

    Full Text Available CO2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO2 gas to carbonates in MgCl2–NH3–NH4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limiting step of CO2 absorption when proceeding chiefly through interactions between CO2(aq and NH3(aq. We further quantified the reaction kinetic constant of the CO2–NH3 reaction. Our results indicate that higher initial concentration of NH4Cl ( ≥ 2 mol · L − 1 leads to the precipitation of roguinite [ ( NH 4 2 Mg ( CO 3 2 · 4 H 2 O ], while nesquehonite appears to be the dominant Mg-carbonate without NH4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO2 sequestration.

  7. Application of geoelectric and electromagnetic methods for the detection of failing zones and brine rising zones in the vicinity of a potential CO2-storage site

    Science.gov (United States)

    Herd, Rainer; Krause, Yvonne; Schafrik, Wlad

    2013-04-01

    Within the framework of the project "brine - CO2 storage in eastern Brandenburg" geophysical investigations are conducted by the German Research Center for Geoscience (GFZ), Potsdam and the Brandenburg University of Technology (BTU), Cottbus on different scales in order to investigate underground situations and evaluate methods suitable for a salinization early warning system. The research of BTU is focused on the distribution of underground structures up to a maximum depth of 200m. Of prevalent interest are the detection capabilities for near surface failing zones which might serve as favored pathways for brine migration and the status-quo of the freshwater-saltwater boundary. Geophysical investigations with the frequency domain electromagnetic (FDEM) and direct current (DC) geoelectric methods are qualified for the identification and monitoring of brine displacement as the measuring parameter is the resistivity/conductivity of the subsurface. In eastern Brandenburg the Oligocene Rupelian clay represents the barrier horizon separating the freshwater and saline aquifers. Due to postglacial processes this layer is locally reduced or totally eroded and might enhance upward brine migration during pressure increase. The areas of investigation were selected by known high fluid conductivity values (hydro chemical indication) and the potential presence of quaternary erosion channels in the Rupelian clay (geological indication). The geophysical results yield a vertical and horizontal resistivity/conductivity distribution. The interpretation is done by lithology profiles of nearby boreholes and correlation with fluid conductivities in groundwater wells. The results of FDEM and DC on coincident profiles are generally in accordance and show that both methods are suitable with DC geoelectrics supplementing a higher resolution close to the surface (max. 80m depth) and the electromagnetics adding coarser/less detailed conductivity information of the deeper underground (down to

  8. Effects of Irradiation Dose and O2 and CO2 Concentrations in Packages on Foodborne Pathogenic Bacteria and Quality of Ready-to-Cook Seasoned Ground Beef Product (Meatball) during Refrigerated Storage

    Science.gov (United States)

    Gunes, Gurbuz; Yilmaz, Neriman; Ozturk, Aylin

    2012-01-01

    Combined effects of gamma irradiation and concentrations of O2 (0, 5, 21%) and CO2 (0, 50%) on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball) during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O2 and CO2 levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy) caused about 6 Log inactivation of the inoculated pathogens. Inactivation of Salmonella was 0.9- and 0.4-Log lower in 0 and 5% O2, respectively, compared to 21% O2. Irradiation at 2 and 4 kGy increased thiobarbituric acid reactive substances in meatballs by 0.12 and 0.28 mg malondialdehyde kg−1, respectively, compared to control. In reduced-O2 packages, radiation-induced oxidation was lower, and the initial color of an irradiated sample was maintained. Packaging with 0% + 50% CO2 or 5% O2 + 50% CO2 maintained the oxidative and the color quality of irradiated meatballs during 14-day refrigerated storage. MAP with 5%O2 + 50% CO2 combined with irradiation up to 4 kGy is suggested for refrigerated meatballs to reduce the foodborne pathogen risk and to maintain the quality. PMID:22566763

  9. Effects of irradiation dose and O(2) and CO(2) concentrations in packages on foodborne pathogenic bacteria and quality of ready-to-cook seasoned ground beef product (meatball) during refrigerated storage.

    Science.gov (United States)

    Gunes, Gurbuz; Yilmaz, Neriman; Ozturk, Aylin

    2012-01-01

    Combined effects of gamma irradiation and concentrations of O(2) (0, 5, 21%) and CO(2) (0, 50%) on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball) during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O(2) and CO(2) levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy) caused about 6 Log inactivation of the inoculated pathogens. Inactivation of Salmonella was 0.9- and 0.4-Log lower in 0 and 5% O(2), respectively, compared to 21% O(2). Irradiation at 2 and 4 kGy increased thiobarbituric acid reactive substances in meatballs by 0.12 and 0.28 mg malondialdehyde kg(-1), respectively, compared to control. In reduced-O(2) packages, radiation-induced oxidation was lower, and the initial color of an irradiated sample was maintained. Packaging with 0% + 50% CO(2) or 5% O(2) + 50% CO(2) maintained the oxidative and the color quality of irradiated meatballs during 14-day refrigerated storage. MAP with 5%O(2) + 50% CO(2) combined with irradiation up to 4 kGy is suggested for refrigerated meatballs to reduce the foodborne pathogen risk and to maintain the quality.

  10. Effects of Irradiation Dose and O2 and CO2 Concentrations in Packages on Foodborne Pathogenic Bacteria and Quality of Ready-to-Cook Seasoned Ground Beef Product (Meatball during Refrigerated Storage

    Directory of Open Access Journals (Sweden)

    Gurbuz Gunes

    2012-01-01

    Full Text Available Combined effects of gamma irradiation and concentrations of O2 (0, 5, 21% and CO2 (0, 50% on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O2 and CO2 levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy caused about 6 Log inactivation of the inoculated pathogens. Inactivation of Salmonella was 0.9- and 0.4-Log lower in 0 and 5% O2, respectively, compared to 21% O2. Irradiation at 2 and 4 kGy increased thiobarbituric acid reactive substances in meatballs by 0.12 and 0.28 mg malondialdehyde kg−1, respectively, compared to control. In reduced-O2 packages, radiation-induced oxidation was lower, and the initial color of an irradiated sample was maintained. Packaging with 0% + 50% CO2 or 5% O2 + 50% CO2 maintained the oxidative and the color quality of irradiated meatballs during 14-day refrigerated storage. MAP with 5%O2 + 50% CO2 combined with irradiation up to 4 kGy is suggested for refrigerated meatballs to reduce the foodborne pathogen risk and to maintain the quality.

  11. Effects of Irradiation Dose and O2 and CO2 Concentrations in Packages on Foodborne Pathogenic Bacteria and Quality of Ready-to-Cook Seasoned Ground Beef Product (Meatball) during Refrigerated Storage

    OpenAIRE

    Gunes, Gurbuz; Yilmaz, Neriman; Ozturk, Aylin

    2012-01-01

    Combined effects of gamma irradiation and concentrations of O2 (0, 5, 21%) and CO2 (0, 50%) on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball) during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O2 and CO2 levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy) caused about 6 Log inactivation of the inoculated pat...

  12. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  13. Management of uncertainties on parameters elicited by experts - Applications to sea-level rise and to CO2 storage operations risk assessment

    Science.gov (United States)

    Manceau, Jean-Charles; Loschetter, Annick; Rohmer, Jérémy; Le Cozannet, Gonéri; Lary Louis, de; Guénan Thomas, Le; Ken, Hnottavange-Telleen

    2017-04-01

    In a context of high degree of uncertainty, when very few data are available, experts are commonly requested to provide their opinions on input parameters of risk assessment models. Not only might each expert express a certain degree of uncertainty on his/her own statements, but the set of information collected from the pool of experts introduces an additional level of uncertainty. It is indeed very unlikely that all experts agree on exactly the same data, especially regarding parameters needed for natural risk assessments. In some cases, their opinions may differ only slightly (e.g. the most plausible value for a parameter is similar for different experts, and they only disagree on the level of uncertainties that taint the said value) while on other cases they may express incompatible opinions for a same parameter. Dealing with these different kinds of uncertainties remains a challenge for assessing geological hazards or/and risks. Extra-probabilistic approaches (such as the Dempster-Shafer theory or the possibility theory) have shown to offer promising solutions for representing parameters on which the knowledge is limited. It is the case for instance when the available information prevents an expert from identifying a unique probability law to picture the total uncertainty. Moreover, such approaches are known to be particularly flexible when it comes to aggregating several and potentially conflicting opinions. We therefore propose to discuss the opportunity of applying these new theories for managing the uncertainties on parameters elicited by experts, by a comparison with the application of more classical probability approaches. The discussion is based on two different examples. The first example deals with the estimation of the injected CO2 plume extent in a reservoir in the context of CO2 geological storage. This estimation requires information on the effective porosity of the reservoir, which has been estimated by 14 different experts. The Dempster

  14. Experimental investigations and geochemical modelling of site-specific fluid-fluid and fluid-rock interactions in underground storage of CO2/H2/CH4 mixtures: the H2STORE project

    Science.gov (United States)

    De Lucia, Marco; Pilz, Peter

    2015-04-01

    Underground gas storage is increasingly regarded as a technically viable option for meeting the energy demand and environmental targets of many industrialized countries. Besides the long-term CO2 sequestration, energy can be chemically stored in form of CO2/CH4/H2 mixtures, for example resulting from excess wind energy. A precise estimation of the impact of such gas mixtures on the mineralogical, geochemical and petrophysical properties of specific reservoirs and caprocks is crucial for site selection and optimization of storage depth. Underground gas storage is increasingly regarded as a technically viable option for meeting environmental targets and the energy demand through storage in form of H2 or CH4, i.e. resulting from excess wind energy. Gas storage in salt caverns is nowadays a mature technology; in regions where favorable geologic structures such as salt diapires are not available, however, gas storage can only be implemented in porous media such as depleted gas and oil reservoirs or suitable saline aquifers. In such settings, a significant amount of in-situ gas components such as CO2, CH4 (and N2) will always be present, making the CO2/CH4/H2 system of particular interest. A precise estimation of the impact of their gas mixtures on the mineralogical, geochemical and petrophysical properties of specific reservoirs and caprocks is therefore crucial for site selection and optimization of storage depth. In the framework of the collaborative research project H2STORE, the feasibility of industrial-scale gas storage in porous media in several potential siliciclastic depleted gas and oil reservoirs or suitable saline aquifers is being investigated by means of experiments and modelling on actual core materials from the evaluated sites. Among them are the Altmark depleted gas reservoir in Saxony-Anhalt and the Ketzin pilot site for CO2 storage in Brandenburg (Germany). Further sites are located in the Molasse basin in South Germany and Austria. In particular, two

  15. Changes in temperature, oxygen and CO2 during controlled atmosphere storage of ‘Royal Gala’ applesVariação da temperatura, oxigênio e CO2 durante o armazenamento em atmosfera controlada de maçãs ‘Royal Gala’

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2012-12-01

    Full Text Available The aim of this research was to evaluate the effect of changes of temperature, levels of O2 and CO2 during storage, on the quality of ‘Royal Gala’ apples stored in controlled atmosphere (CA for long term. The treatments consisted of storage temperatures of 0.0 ºC, 0.5 °C and 1.0 ºC, decreasing in temperature during storage of 0.5 ºC to 0.0 ºC, in CA with 1.0 kPa O2 and 2.0 kPa CO2, besides storage in low O2 (0.8 kPa, decreasing in O2 concentration (from 1.0 kPa to 0.8 kPa and CO2 increasing (from 2.0 kPa to 8.0 kPa during storage period, at 0.5 ºC. Fruit quality was evaluated after eight months of storage plus seven days at 20 °C. Apples stored at 1.0 ºC, in standard CA (1.0 kPa O2 and 2.0 kPa CO2, showed less ethylene production, respiration, ACC oxidase activity and lower breakdown and mealy pulp incidence. Increasing in CO2 concentration at the end of the storage period was not more efficient than standard CA in maintenance fruit quality during shelf life, but did not cause damage in the fruits. The decrease in O2 and/or temperature during storage reduces the fruit decay incidence. O objetivo do trabalho foi avaliar o efeito da variação da temperatura, dos níveis de O2 e CO2 durante o armazenamento, sobre a qualidade de maçãs ‘Royal Gala’ armazenadas em atmosfera controlada por um longo período. Os tratamentos constaram do armazenamento em temperaturas de 0,0 ºC, 0,5 ºC, 1,0 ºC e diminuição da temperatura de 0,5 ºC para 0,0 ºC durante o armazenamento, em AC com 1,0 kPa O2 e 2,0 kPa CO2, além do armazenamento em baixo O2 (0,8 kPa, diminuição da concentração de O2 (de 1,0 kPa para 0,8 kPa e aumento do CO2 (de 2,0 kPa para 8,0 kPa durante o armazenamento, na temperatura de 0,5 ºC. Os frutos permaneceram durante oito meses nessas condições, mais sete dias a 20 ºC, antes das análises de qualidade. O armazenamento na temperatura de 1,0 ºC, na condição de AC considerada padrão (1,0 kPa de O2 e 2,0 kPa de CO

  16. Spatially Variable CO2 Degassing in the Main Ethiopian Rift: Implications for Magma Storage, Volatile Transport, and Rift-Related Emissions

    Science.gov (United States)

    Hunt, Jonathan A.; Zafu, Amdemichael; Mather, Tamsin A.; Pyle, David M.; Barry, Peter H.

    2017-10-01

    Deep carbon emissions from historically inactive volcanoes, hydrothermal, and tectonic structures are among the greatest unknowns in the long-term (˜Myr) carbon cycle. Recent estimates of diffuse CO2 flux from the Eastern Rift of the East African Rift System (EARS) suggest this could equal emissions from the entire mid-ocean ridge system. We report new CO2 surveys from the Main Ethiopian Rift (MER, northernmost EARS), and reassess the rift-related CO2 flux. Since degassing in the MER is concentrated in discrete areas of volcanic and off-edifice activity, characterization of such areas is important for extrapolation to a rift-scale budget. Locations of hot springs and fumaroles along the rift show numerous geothermal areas away from volcanic edifices. With these new data, we estimate total CO2 emissions from the central and northern MER as 0.52-4.36 Mt yr-1. Our extrapolated flux from the Eastern Rift is 3.9-32.7 Mt yr-1 CO2, overlapping with lower end of the range presented in recent estimates. By scaling, we suggest that 6-18 Mt yr-1 CO2 flux can be accounted for by magmatic extension, which implies an important role for volatile-enriched lithosphere, crustal assimilation, and/or additional magmatic intrusion to account for the upper range of flux estimates. Our results also have implications for the nature of volcanism in the MER. Many geothermal areas are found >10 km from the nearest volcanic center, suggesting ongoing hazards associated with regional volcanism.

  17. CO2 blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003469.htm CO2 blood test To use the sharing features on this page, ... a substance called bicarbonate (HCO3-). Therefore, the CO2 blood test is really a measure of your blood bicarbonate ...

  18. Stakeholder involvement in other sectors. High Voltage Electricity Transmission. Case study: CO2 capture and storage. Common misconceptions on stakeholder involvement - Reviewing deployment of RES

    International Nuclear Information System (INIS)

    Wolsink, Maarten; Komendantova, Nadejda; Kalaydjian, Francois

    2017-01-01

    compartmentalising stakeholder involvement. Ms Komendantova of the International Institute for Applied Systems Analysis pointed out that at higher levels of involvement several different ways can be found to share power. These include distributing responsibilities for planning and decision making (partnership) or allocating a majority of seats on review committees to citizen representatives (citizen control). Alongside choosing the right level of involvement, the approach must be tailored to the setting. Ms Komendantova presented the BESTGRID research project in the European Union, which tested and studied alternative approaches to stakeholder engagement in trans-border high-voltage transmission line projects. Different methods may be needed for engaging specific sets of people, according to such factors as age, technological familiarity, geographic situation and possibly national culture. Mr Kalaydjian pointed to the research project SiteChar-CO2, juxtaposing the reasoning of stakeholders in different locations (in Poland and in Scotland) who held different