WorldWideScience

Sample records for saharan dust marine

  1. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters.

    Science.gov (United States)

    Westrich, Jason R; Ebling, Alina M; Landing, William M; Joyner, Jessica L; Kemp, Keri M; Griffin, Dale W; Lipp, Erin K

    2016-05-24

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust-Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  2. Environmental factors controlling the seasonal variability in particle sizedistribution of modern Saharan dust deposited off Cape Blanc

    NARCIS (Netherlands)

    Friese, C.A.; van der Does, M.; Merkel, U.; Iversen, M.H.; Fischer, G.; Stuut, J-B W.

    2016-01-01

    The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxyfor trade-wind speed. However, there are still large uncertainties with respect to the seasonality of theparticle sizes of deposited Saharan dust off northwestern Africa and the factors influencing

  3. INVESTIGATION OF SAHARAN DUST TRANSPORT ON THE BASIS OF AEROLOGICAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    R. TÓTH

    2016-03-01

    Full Text Available The Sahara Desert is the largest dust source on Earth. Its dust is frequently emitted into the Mediterranean atmosphere and transported by the winds sometimes as far north as Central Europe. The accumulated particles contribute to soil forming processes, while the atmospheric mineral dust has an impact on the radiation budget, cloud forming processes, the pH of precipitation and biogeochemical cycles of marine ecosystems. The PM (particulate matter in ambient air does not contain only primary particles but secondary particles formed in the atmosphere from precursor gases as well. Especially these latter ones have significant negative impacts to human health. There are in average four-five Saharan dust episodes annually in Hungary, sometimes in form of colour precipitation (brown rainfall, red snow. There are several possibilities for providing evidence for the Saharan origin of the dust observed in our country: back-trajectories using NOAA HYSPLIT model, TOMS satellite maps of NASA, maps of aerosol index of Ozone Monitoring Instrument, observations of spectral aerosol optical depth of Aerosol Robotic Network, satellite maps of EUMETSAT, elemental analysis of dust samples. In this study we try to reveal the suitability of the upper-air wind fields in detection of Saharan dust episodes in Central Europe. We deployed the global upper-air data base of the last 41 years that is available by courtesy of College of Engineering and Applied Sciences at University of Wyoming. We apply this method also for tracking air pollution of vegetation fires.

  4. Saharan dust intrusions in Spain: Health impacts and associated synoptic conditions.

    Science.gov (United States)

    Díaz, Julio; Linares, Cristina; Carmona, Rocío; Russo, Ana; Ortiz, Cristina; Salvador, Pedro; Trigo, Ricardo Machado

    2017-07-01

    A lot of papers have been published about the impact on mortality of Sahara dust intrusions in individual cities. However, there is a lack of studies that analyse the impact on a country and scarcer if in addition the analysis takes into account the meteorological conditions that favour these intrusions. The main aim is to examine the effect of Saharan dust intrusions on daily mortality in different Spanish regions and to characterize the large-scale atmospheric circulation anomalies associated with such dust intrusions. For determination of days with Saharan dust intrusions, we used information supplied by the Ministry of Agriculture, Food & Environment, it divides Spain into 9 main areas. In each of these regions, a representative province was selected. A time series analysis has been performed to analyse the relationship between daily mortality and PM 10 levels in the period from 01.01.04 to 31.12.09, using Poisson regression and stratifying the analysis by the presence or absence of Saharan dust advections. The proportion of days on which there are Saharan dust intrusions rises to 30% of days. The synoptic pattern is characterised by an anticyclonic ridge extending from northern Africa to the Iberian Peninsula. Particulate matter (PM) on days with intrusions are associated with daily mortality, something that does not occur on days without intrusions, indicating that Saharan dust may be a risk factor for daily mortality. In other cases, what Saharan dust intrusions do is to change the PM-related mortality behaviour pattern, going from PM 2.5 . A study such as the one conducted here, in which meteorological analysis of synoptic situations which favour Saharan dust intrusions, is combined with the effect on health at a city level, would seem to be crucial when it comes to analysing the differentiated mortality pattern in situations of Saharan dust intrusions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    Science.gov (United States)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, we investigate the relationships among Saharan dust outbreak and transport, African easterly waves (AEW), African easterly jet (AEJ) and associated convective activities of Atlantic Intertropical Convergence Zone (ITCZ) using Cloudsat-Calipso, MODIS and MERRA data. We find that a major Saharan dust outbreak is associated with the formation of a westward propagating strong cyclone around 15-25N over the western part northern Saharan. The strong cyclonic flow mobilizes and lifts the dust from the desert surface to a high elevation. As the cyclone propagate westward, it transports a thick elevated dust layer between 900 -500 hPa from the African continent to the eastern Atlantic. Cloudiness is reduced within the warm, dry dusty layer, but enhanced underneath it, possibly due to the presence of a shallow inversion layer over the marine boundary layer. The dust outbreak is linked to enhanced deep convection in the northern part of Atlantic ITCZ, abutting the southern flank of the dust layer, and a strengthening of the northward flank of the AEJ. As the dust layer spreads westward, it loses elevation and becomes increasing diffused as it reaches the central and western Atlantic. Using band pass filtered EOF analysis of MERRA winds, we find that AEWs propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are highly correlated with major dust outbreak over North Africa and associated with slower moving systems, with a quasi-periodicity of 6-9 day. On the other hand, easterly waves along the southern track are faster, with quasi-periodicity of 3-5 days. These faster easterly waves are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track by the faster waves generally leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between

  6. GARRLiC and LIRIC: strengths and limitations for the characterization of dust and marine particles along with their mixtures

    Directory of Open Access Journals (Sweden)

    A. Tsekeri

    2017-12-01

    Full Text Available The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC and the LIdar-Radiometer Inversion Code (LIRIC provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean during the CHARacterization of Aerosol mixtures of Dust and Marine origin Experiment (CHARADMExp. Three case studies are presented, focusing on dust-dominated, marine-dominated and dust–marine mixing conditions. GARRLiC and LIRIC achieve a satisfactory characterization for the dust-dominated case in terms of particle microphysical properties and concentration profiles. The marine-dominated and the mixture cases are more challenging for both algorithms, although GARRLiC manages to provide more detailed microphysical retrievals compared to AERONET, while LIRIC effectively discriminates dust and marine particles in its concentration profile retrievals. The results are also compared with modelled dust and marine concentration profiles and surface in situ measurements.

  7. Tank bromeliads capture Saharan dust in El Yunque National Forest, Puerto Rico

    Science.gov (United States)

    Royer, Dana L.; Moynihan, Kylen M.; Ariori, Carolyn; Bodkin, Gavin; Doria, Gabriela; Enright, Katherine; Hatfield-Gardner, Rémy; Kravet, Emma; Nuttle, C. Miller; Shepard, Lisa; Ku, Timothy C. W.; O'Connell, Suzanne; Resor, Phillip G.

    2018-01-01

    Dust from Saharan Africa commonly blows across the Atlantic Ocean and into the Caribbean. Most methods for measuring this dust either are expensive if collected directly from the atmosphere, or depend on very small concentrations that may be chemically altered if collected from soil. Tank bromeliads in the dwarf forest of El Yunque National Forest, Puerto Rico, have a structure of overlapping leaves used to capture rainwater and other atmospheric inputs. Therefore, it is likely that these bromeliads are collecting in their tanks Saharan dust along with local inputs. Here we analyze the elemental chemistry, including rare earth elements (REEs), of tank contents in order to match their chemical fingerprint to a provenance of the Earth's crust. We find that the tank contents differ from the local soils and bedrock and are more similar to published values of Saharan dust. Our study confirms the feasibility of using bromeliad tanks to trace Saharan dust in the Caribbean.

  8. Saharan dust, climate variability, and asthma in Grenada, the Caribbean.

    Science.gov (United States)

    Akpinar-Elci, Muge; Martin, Francis E; Behr, Joshua G; Diaz, Rafael

    2015-11-01

    Saharan dust is transported across the Atlantic and interacts with the Caribbean seasonal climatic conditions, becoming respirable and contributing to asthma presentments at the emergency department. This study investigated the relationships among dust, climatic variables, and asthma-related visits to the emergency room in Grenada. All asthma visits to the emergency room (n = 4411) over 5 years (2001-2005) were compared to the dust cover and climatic variables for the corresponding period. Variation in asthma was associated with change in dust concentration (R(2) = 0.036, p asthma was positively correlated with rainfall (R(2) = 0.055, p asthma visits were inversely related to mean sea level pressure (R(2) = 0.123, p = 0.006) and positively correlated with relative humidity (R(2) = 0.593, p = 0.85). Saharan dust in conjunction with seasonal humidity allows for inhalable particulate matter that exacerbates asthma among residents in the Caribbean island of Grenada. These findings contribute evidence suggesting a broader public health impact from Saharan dust. Thus, this research may inform strategic planning of resource allocation among the Caribbean public health agencies.

  9. Application of the Garrlic Algorithm for the Characterization of Dust and Marine Particles Utilizing the Lidar-Sunphotometer Synergy

    Directory of Open Access Journals (Sweden)

    Tsekeri Alexandra

    2016-01-01

    Full Text Available The importance of studying the vertical distribution of aerosol plumes is prominent in regional and climate studies. The new Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC provides this opportunity combining active and passive ground-based remote sensing from lidar and sunphotometer measurements. Here, we utilize GARRLiC capabilities for the characterization of Saharan dust and marine particles at the Eastern Mediterranean region during the Characterization of Aerosol mixtures of Dust And Marine origin Experiment (CHARADMExp. Two different case studies are presented, a dust-dominated case which we managed to characterize successfully in terms of the particle microphysical properties and their vertical distribution and a case of two separate layers of marine and dust particles for which the characterization proved to be more challenging.

  10. The microphysics of the Saharan dust and its implications on climate

    International Nuclear Information System (INIS)

    Kalu, A.E.

    1987-12-01

    A strong influence of Saharan dust plumes on the microphysics of cumulus clouds, especially along their long-distance transport trajectories into cloudy regions of the world, has been discussed and illustrated. This climate-related influence is primarily based on the observed anhydrous non-hygroscopic property of the Saharan dust, otherwise known as the Harmattan dust haze in Nigeria. An observational feature of the dust-cloud interaction which is strongly climate-related is the rapid clearance of cumulus clouds on arrival of a dust plume. This is because aeolian dust particles and water droplets cannot coexist comfortably. A useful practical application of this influence of the dust on clouds by means of atmospheric teleconnection principles for fine-weather prediction in cloudy remote regions seasonally affected by dust plumes from the Sahara, has therefore been suggested. (author). 37 refs, 6 figs, 3 tabs, 3 plates

  11. Saharan and Arabian Dust Aerosols: A Comparative Case Study of Lidar Ratio

    Directory of Open Access Journals (Sweden)

    Córdoba-Jabonero Carmen

    2016-01-01

    Full Text Available This work presents a first comparative study of the Lidar Ratio (LR values obtained for dust particles in two singular dust-influenced regions: the Canary Islands (Spain, close to the African coast in the North Atlantic Ocean, frequently affected by Saharan dust intrusions, and the Kuwait area (Arabian Peninsula as usually influenced by Arabian dust storms. Synergetic lidar and sun-photometry measurements are carried out in two stations located in these particular regions for that purpose. Several dusty cases were observed during 2014 in both stations and, just for illustration, two specific dusty case studies have been selected and analyzed to be shown in this work. In general, mean LR values of 54 sr and 40 sr were obtained in these studies cases for Saharan and Arabian dust particles, respectively. Indeed, these results are in agreement with other studies performed for dust particles arriving from similar desert areas. In particular, the disparity found in Saharan and Arabian dust LR values can be based on the singular composition of the suspended dust aerosols over each station. These results can be useful for CALIPSO extinction retrievals, where a single LR value (40 sr is assumed for pure dust particles independently on the dust source region.

  12. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania

    Directory of Open Access Journals (Sweden)

    C. A. Friese

    2017-08-01

    Full Text Available Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL. In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.

  13. Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact

    Science.gov (United States)

    Longman, Jack; Veres, Daniel; Ersek, Vasile; Salzmann, Ulrich; Hubay, Katalin; Bormann, Marc; Wennrich, Volker; Schäbitz, Frank

    2017-07-01

    Reconstructions of dust flux have been used to produce valuable global records of changes in atmospheric circulation and aridity. These studies have highlighted the importance of atmospheric dust in marine and terrestrial biogeochemistry and nutrient cycling. By investigating a 10 800-year-long paleoclimate archive from the Eastern Carpathians (Romania) we present the first peat record of changing dust deposition over the Holocene for the Carpathian-Balkan region. Using qualitative (X-ray fluorescence (XRF) core scanning) and quantitative inductively coupled plasma optical emission spectrometer(ICP-OES) measurements of lithogenic (K, Si, Ti) elements, we identify 10 periods of major dust deposition between 9500-9200, 8400-8100, 7720-7250, 6350-5950, 5450-5050, 4130-3770, 3450-2850, 2000-1450, 800-620, and 60 cal yr BP to present. In addition, we used testate amoeba assemblages preserved within the peat to infer local palaeohydroclimatic conditions. Our record highlights several discrepancies between eastern and western European dust depositional records and the impact of highly complex hydrological regimes in the Carpathian region. Since 6100 cal yr BP, we find that the geochemical indicators of dust flux have become uncoupled from the local hydrology. This coincides with the appearance of millennial-scale cycles in the dust input and changes in geochemical composition of dust. We suggest that this is indicative of a shift in dust provenance from local-regional (likely loess-related) to distal (Saharan) sources, which coincide with the end of the African Humid Period and the onset of Saharan desertification.

  14. Following Saharan Dust Outbreak Toward The Amazon Basin

    Science.gov (United States)

    Ben Ami, Y.; Koren, I.; Rudich, Y.; Flores, M.

    2008-12-01

    The role of the Amazon rainforest on earth climatic system is well recognized. To keep forest wellbeing and the fragile balance between the rainforest and the atmosphere, the Amazon must contain a satisfactory amount of nutrients to support the plants. The extensive rain and floods wash most of the soluble nutrients from the rainforest soil, leaving behind acidic kaolinite clay or sandy soil, with limited minerals for plant growth. It was suggested that lack of mineral in the soil may be replenished by deposition of Saharan mineral dust. Using remote sensing data (from the A-train satellites constellation) following with in-situ measurements (as part of the AMazonian Aerosol CharacteriZation Experiment (AMZE) campaign), ground-based data (from AErosol RObotic NETwork (AERONET)) and back trajectory calculations, we analyzed Saharan dust transport toward the Amazon basin during the AMZE period (Feb 7 to Mar 14, 2008). Dust mass, sink, vertical distribution and surface wind speeds were analyzed over the Bodele depression (located in Chad), where most of the dust is emitted, along the Atlantic Ocean and near the Brazilian coastline. Using an integrated data analysis approach we followed dust packages from their emission in the Sahara to their sink in the Amazon forest.

  15. The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)

    Science.gov (United States)

    Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.

    2017-12-01

    Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.

  16. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    Science.gov (United States)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  17. 3D Structure of Saharan Dust Transport Towards Europe as Seen by CALIPSO

    Directory of Open Access Journals (Sweden)

    Marinou Eleni

    2016-01-01

    Full Text Available We present a 3D multi-year monthly mean climatology of Saharan dust advection over Europe using an area-optimized pure dust CALIPSO product. The product has been developed by applying EARLINET-measured dust lidar ratios and depolarization-based dust discrimination methods and it is shown to have a very good agreement in terms of AOD when compared to AERONET over Europe/North Africa and MODIS over Mediterranean. The processing of such purely observational data reveals the certain seasonal patterns of dust transportation towards Europe and the Atlantic Ocean. The physical and optical properties of the dust layer are identified for several areas near the Saharan sources, over the Mediterranean and over continental Europe.

  18. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-01-01

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust--laden Saharan Air Layer (SAL) over the equatorial North Atlantic, which cools the sea surface and likely suppresses hurricane activity. To understand the formation mechanisms of SAL, we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM--I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF--Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground--based observations show that WRF--Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest

  19. Saharan dust detection using multi-sensor satellite measurements

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2017-02-01

    Full Text Available Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T and Aqua (A MODerate-resolution Imaging Spectroradiometer (MODIS, fusing with Ozone Monitoring Instrument (OMI. Previous work by Hao and Qu (2007 had considered a limited number of thermal infrared channels which led to a correlation coefficient R2 value of 0.765 between the Aerosol Optical Thickness (AOT at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R2 value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  20. Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    Science.gov (United States)

    Cabrerizo, Marco J.; Medina-Sánchez, Juan Manuel; González-Olalla, Juan Manuel; Villar-Argaiz, Manuel; Carrillo, Presentación

    2016-10-01

    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks.

  1. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali; Stenchikov, Georgiy L.; Weinzierl, Bernadett; Kalenderski, Stoitchko; Osipov, Sergey

    2015-01-01

    , this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution

  2. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  3. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic

    Directory of Open Access Journals (Sweden)

    M. van der Does

    2016-11-01

    Full Text Available Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 32 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also, the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.

  4. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    Science.gov (United States)

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  5. Saharan dust contribution to PM levels: The EC LIFE+ DIAPASON project

    Science.gov (United States)

    Gobbi, G. P.; Wille, H.; Sozzi, R.; Angelini, F.; Barnaba, F.; Costabile, F.; Frey, S.; Bolignano, A.; Di Giosa, A.

    2012-04-01

    The contribution of Saharan-dust advections to both daily and annual PM average values can be significant all over Southern Europe. The most important effects of dust on the number of PM exceedances are mostly observed in polluted areas and large cities. While a wide literature exists documenting episodes of Saharan dust transport towards the Euro-Mediterranean region and Europe in general, a limited number of studies are still available providing statistically significant results on the impact of Saharan dust on the particulate matter loads over the continent. A four-year (2001-2004) study performed in Rome (Italy) found these events to contribute to the average ground PM10 with about 15±10 µg/m3 on about 17% of the days in a year. Since the PM10 yearly average of many traffic stations in Rome is close to 40 μg/m3, these events can cause the PM10 concentration to exceed air quality limit values (50 μg/m3 as daily average) set by the EU Air Quality Directive 2008/50/EC. Although the European legislation allows Member States to subtract the contribution of natural sources before counting PM10 exceedances, definition of an optimal methodology to quantitatively assess such contribution is still in progress. On the basis of the current European Guidelines on the assessment of natural contributions to PM, the DIAPASON project ("Desert-dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs", recently funded under the EC LIFE+ program) has been formulated to provide a robust, user-oriented methodology to assess the presence of desert dust and its contribution to PM levels. To this end, in addition to satellite-based data and model forecasts, the DIAPASON methodology will employ innovative and affordable technologies, partly prototyped within the project itself, as an operational Polarization Lidar-Ceilometer (laser radar) capable of detecting and profiling dust clouds from the ground up to 10 km altitude. The DIAPASON Project (2011

  6. Exploring records of Saharan dust transport and hurricanes in the Caribbean and Gulf of Mexico over recent millennia

    Science.gov (United States)

    Hayes, C. T.; Wallace, D. J.

    2017-12-01

    Locations in the northern Caribbean and Gulf of Mexico receive aerosol deposition from the summertime Saharan dust plume that is representative of atmospheric conditions over a very large expanse of the North Atlantic Ocean. A recent reconstruction of stable dust deposition in the Bahamas over the past 2 thousand years contrasts other records from the African continent which were impacted by local anthropogenic emissions. Dust deposition in the Bahamas also appeared relatively insensitive to expected changes in intertropical convergence zone position. Here, we will investigate records of Atlantic hurricane activity and Saharan dust transport, parameters which are anti-correlated today, in the Caribbean and Gulf region over the past few thousand years to further probe possible variations in Saharan dust forcings on Atlantic climate.

  7. Airborne transport of Saharan dust to the Mediterranean and to the Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Pericleous, K.A.; Plainiotis, S. [Greenwich Univ., London (United Kingdom); Fisher, B.E.A. [Environment Agency, Reading (United Kingdom)

    2006-07-01

    A Lagrangian particle dispersion (LPD) model was used to predict the transport of sand particles and particulate matter (PM{sub 10}) exceedances attributed to Saharan storms in the Atlantic ocean near the United Kingdom, and in the Mediterranean Sea near Crete. Forward and reverse receptor modes were used to confirm the discovery of conflicting emission sources. Outputs were compared with satellite images and receptor data from multiple ground-based sites. Two models were used, notably the hybrid single particle Lagrangian integrated trajectory (HYSPLIT) model, and FLEXPART, an open source model. The emission model used to simulate dust emissions caused in a Sahara dust storm was based on the concept that threshold friction velocity was dependent on surface roughness. Case studies were presented for various Saharan dust episodes in the studied regions. Results of the study showed that the model accurately characterized sand entrainment in the atmosphere due to wind shear. It was concluded that coupled with advanced weather forecasting, the model can be used to predict the onset of desert dust storms well before their effects are felt. 15 refs., 6 figs.

  8. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-11-27

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL) over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size distributions with

  9. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    Directory of Open Access Journals (Sweden)

    Basit Khan

    2015-11-01

    Full Text Available Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth's meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I, which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane's tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size

  10. PM10 composition during an intense Saharan dust transport event over Athens (Greece)

    International Nuclear Information System (INIS)

    Remoundaki, E.; Bourliva, A.; Kokkalis, P.; Mamouri, R.E.; Papayannis, A.; Grigoratos, T.; Samara, C.; Tsezos, M.

    2011-01-01

    The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM 10 monitored at an urban site at 14 m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM 10 concentrations exceeded the EU limit (50 μg/m 3 ) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10 h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM 10 reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes < 2 μm. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles < 1 μm. - Highlights: → The paper focuses on the contribution of Saharan dust in PM10 levels at an urban site. → High Ca and Fe, calcite, illite and smectites and poor quartz contents are related to source-regions. → The data sets presented are in very good agreement and are also strongly confirmed by literature. → Dust contribution in PM10 can be of comparable importance for both an urban and a remote location.

  11. Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps.

    Science.gov (United States)

    Peter, Hannes; Hörtnagl, Paul; Reche, Isabel; Sommaruga, Ruben

    2014-12-01

    The diversity of airborne microorganisms that potentially reach aquatic ecosystems during rain events is poorly explored. Here, we used a culture-independent approach to characterize bacterial assemblages during rain events with and without Saharan dust influence arriving to a high mountain lake in the Austrian Alps. Bacterial assemblage composition differed significantly between samples with and without Saharan dust influence. Although alpha diversity indices were within the same range in both sample categories, rain events with Atlantic or continental origins were dominated by Betaproteobacteria, whereas those with Saharan dust intrusions were dominated by Gammaproteobacteria. The high diversity and evenness observed in all samples suggests that different sources of bacteria contributed to the airborne assemblage collected at the lake shore. During experiments with bacterial assemblages collected during rain events with Saharan dust influence, cell numbers rapidly increased in sterile lake water from initially ∼3 × 103 cell ml-1 to 3.6-11.1 x105 cells ml-1 within 4-5 days, and initially, rare taxa dominated at the end of the experiment. Our study documents the dispersal of viable bacteria associated to Saharan dust intrusions travelling northwards as far as 47° latitude.

  12. Mechanisms of Saharan Dust Radiative Effects Coupled to Eddy Energy and Wave Activity

    Science.gov (United States)

    Hosseinpour, F.; Wilcox, E. M.; Colarco, P. R.

    2017-12-01

    We explore mechanisms addressing the relationships between the net radiative forcing of Saharan Air Layer (SAL) and eddy energetics of the African Easterly jet-African easterly wave (AEJ-AEWs) system across the tropical Atlantic storm track. This study indicates that radiatively interactive dust aerosols have the capability to modify the exchange of kinetic energy between the AEWs and AEJ. We find that while dust can have both constructive and destructive effects on eddy activity of the waves, depending on the behavior and structure of waves exhibiting different characteristic time-scales, the local heating by dust tends to change the quadruple pattern of eddy momentum fluxes of the AEWs which can yield feedbacks onto the mean-flow. These results arise from applying an ensemble of large NASA satellite observational data sets, such as MODIS, SeaWiFS and TRMM, as well as the GOCART aerosol model and MERRA reanalysis. Sensitivity studies indicate that the results are consistent when the analysis is performed with multiple different aerosol datasets. While the mechanisms proposed here require further evaluation with numerical model experiments, this study presents a novel approach and new insights into Saharan dust effects on large-scale climate dynamics.

  13. Enhanced Saharan dust input to the Levant during Heinrich stadials

    Science.gov (United States)

    Torfstein, Adi; Goldstein, Steven L.; Stein, Mordechai

    2018-04-01

    The history of dust transport to the Levant during the last glacial period is reconstructed using the isotope ratios of Pb, Sr, Nd, and Hf in sediments of Lake Lisan, the last glacial Dead Sea. Exposed marginal sections of the Lisan Formation were sampled near Masada, the Perazim Valley and from a core drilled at the deep floor of the modern lake. Bulk samples and size fractions display unique isotopic fingerprints: the finest detritus fraction (<5 μm) displays higher 87Sr/86Sr and lower εNd values (0.710-0.713 and -7.0 to -9.8, respectively) relative to the coarser fractions (5-20 μm and <20 μm; 0.708-0.710 and -3.4 to -8.3) and the bulk detritus samples (0.709-0.711 and -6 to -7.5). Similarly, the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios (18.26-19.02, 15.634-15.68, and 38.25-38.82, respectively) are systematically higher in the finest detritus fraction relative to corresponding coarser fractions and bulk samples. The 87Sr/86Sr and εNd values of the finest fraction correspond with those of atmospheric dust originating from the Sahara Desert, while those of the coarse fractions are similar to loess deposits exposed in the Sinai and Negev Deserts. Pronounced excursions in the Sr-Nd-Pb isotope ratios toward more Sahara-like values coincide with the Heinrich (H) stadials 6, 5 and 1, reflecting significant increases in Saharan dust fluxes during regionally arid intervals, reflected by sharp lake level drops. Moreover, during H6 the dust came from different Saharan sources than during H1 and H5. While the relatively wet glacial climate in the Levant suppressed the transport of dust to the lake watershed, short-term hyper-arid spells during H-stadial intervals were accompanied by enhanced supply of fine Sahara dust to this region.

  14. Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain

    Science.gov (United States)

    Rodríguez, S.; Querol, X.; Alastuey, A.; Kallos, G.; Kakaliagou, O.

    The analysis of PM10 and TSP levels recorded in rural areas from Southern and Eastern Spain (1996-1999) shows that most of the PM10 and TSP peak events are simultaneously recorded at monitoring stations up to 1000 km apart. The study of the atmospheric dynamics by back-trajectory analysis and simulations with the SKIRON Forecast System show that these high PM10 and TSP events occur when high-dust Saharan air masses are transported over the Iberian Peninsula. In the January-June period, this dust transport is mainly caused by cyclonic activity over the West or South of Portugal, whereas in the summer period this is induced by anticyclonic activity over the East or Southeast Iberian Peninsula. Most of the Saharan intrusions which exert a major influence on the particulate levels occur from May to September (63%) and in January and October. In rural areas in Northeast Spain, where the PM10 annual mean is around 18 μg PM10 m -3, the Saharan dust accounts for 4-7 annual daily exceedances of the forthcoming PM10-EU limit value (50 μg PM10 m -3 daily mean). Higher PM10 background levels are recorded in Southern Spain (30 μg PM10 m -3 as annual mean for rural areas) and very similar values are recorded in industrial and urban areas. In rural areas in Southern Spain, the Saharan dust events accounts for 10-23 annual daily exceedances of the PM10 limit value, a high number when compared with the forthcoming EU standard, which states that the limit value cannot be exceeded more than 7 days per year. The proportion of Sahara-induced exceedances with respect to the total annual exceedances is discussed for rural, urban and industrial sites in Southern Spain.

  15. Intercontinental Transport and Climatic Impact of Saharan and Sahelian Dust

    Directory of Open Access Journals (Sweden)

    N'Datchoh Evelyne Touré

    2012-01-01

    Full Text Available The Sahara and Sahel regions of Africa are important sources of dust particles into the atmosphere. Dust particles from these regions are transported over the Atlantic Ocean to the Eastern American Coasts. This transportation shows temporal and spatial variability and often reaches its peak during the boreal summer (June-July-August. The regional climate model (RegCM 4.0, containing a module of dust emission, transport, and deposition processes, is used in this study. Saharan and Sahelian dusts emissions, transports, and climatic impact on precipitations during the spring (March-April-May and summer (June-July-August were studied using this model. The results showed that the simulation were coherent with observations made by the MISR satellite and the AERONET ground stations, within the domain of Africa (Banizoumba, Cinzana, and M’Bour and Ragged-point (Barbados Islands. The transport of dust particles was predominantly from North-East to South-West over the studied period (2005–2010. The seasonality of dust plumes’ trajectories was influenced by the altitudes reached by dusts in the troposphere. The impact of dusts on climate consisted of a cooling effect both during the boreal summer and spring over West Africa (except Southern-Guinea and Northern-Liberia, Central Africa, South-America, and Caribbean where increased precipitations were observed.

  16. PM{sub 10} composition during an intense Saharan dust transport event over Athens (Greece)

    Energy Technology Data Exchange (ETDEWEB)

    Remoundaki, E., E-mail: remound@metal.ntua.gr [National Technical University of Athens (NTUA), School of Mining and Metallurgical Engineering, Laboratory of Environmental Science and Engineering, Heroon Polytechniou 9, 15780 Zografou (Greece); Bourliva, A. [Aristotle University of Thessaloniki (AUTH), Department of Geology, 54124 Thessaloniki (Greece); Hellenic Open University, School of Science and Technology, 26335 Patras (Greece); Kokkalis, P.; Mamouri, R.E.; Papayannis, A. [National Technical University of Athens (NTUA), Laser Remote Sensing Laboratory, Heroon Polytechniou 9, 15780 Zografou (Greece); Grigoratos, T.; Samara, C. [Aristotle University of Thessaloniki (AUTH), Department of Chemistry, Environmental Pollution Control Laboratory, 54124 Thessaloniki (Greece); Tsezos, M. [National Technical University of Athens (NTUA), School of Mining and Metallurgical Engineering, Laboratory of Environmental Science and Engineering, Heroon Polytechniou 9, 15780 Zografou (Greece)

    2011-09-15

    The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM{sub 10} monitored at an urban site at 14 m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM{sub 10} concentrations exceeded the EU limit (50 {mu}g/m{sup 3}) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10 h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM{sub 10} reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes < 2 {mu}m. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles < 1 {mu}m. - Highlights: {yields} The paper focuses on the contribution of Saharan dust in PM10 levels at an urban site. {yields} High Ca and Fe, calcite, illite and smectites and poor quartz contents are related to source-regions. {yields} The data sets presented are in very good agreement and are also strongly confirmed by literature. {yields} Dust contribution in PM10 can be of comparable importance for

  17. Saharan dust particles in snow samples of Alps and Apennines during an exceptional event of transboundary air pollution.

    Science.gov (United States)

    Telloli, Chiara; Chicca, Milvia; Pepi, Salvatore; Vaccaro, Carmela

    2017-12-21

    Southern European countries are often affected in summer by transboundary air pollution from Saharan dust. However, very few studies deal with Saharan dust pollution at high altitudes in winter. In Italy, the exceptional event occurred on February 19, 2014, colored in red the entire mountain range (Alps and Apennines) and allowed to characterize the particulate matter deposited on snow from a morphological and chemical point of view. Snow samples were collected after this event in four areas in the Alps and one in the Apennines. The particulate matter of the melted snow samples was analyzed by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) and by inductively coupled plasma mass spectrometry (ICP-MS). These analyses confirmed the presence of Saharan dust particle components in all areas with similar percentages, supported also by the positive correlations between Mg-Ca, Al-Ca, Al-Mg, and Al-K in all samples.

  18. Saharan dust levels in Greece and received inhalation doses

    Directory of Open Access Journals (Sweden)

    C. Mitsakou

    2008-12-01

    Full Text Available The desert of Sahara is one of the major sources of mineral dust on Earth, producing around 2×108 tons/yr. Under certain weather conditions, dust particles from Saharan desert get transported over the Mediterranean Sea and most of Europe. The limiting values set by the directive EC/30/1999 of European Union can easily be exceeded by the transport of desert dust particles in the south European Region and especially in urban areas, where there is also significant contribution from anthropogenic sources. In this study, the effects of dust transport on air quality in several Greek urban areas are quantified. PM10 concentration values from stationary monitoring stations are compared to dust concentrations for the 4-year period 2003–2006. The dust concentration values in the Greek areas were estimated by the SKIRON modelling system coupled with embedded algorithms describing the dust cycle. The mean annual dust contribution to daily-averaged PM10 concentration values was found to be around or even greater than 10% in the urban areas throughout the years examined. Natural dust transport may contribute by more than 20% to the annual number of exceedances – PM10 values greater than EU limits – depending on the specific monitoring location. In a second stage of the study, the inhaled lung dose received by the residents in various Greek locations is calculated. The particle deposition efficiency of mineral dust at the different parts of the human respiratory tract is determined by applying a lung dosimetry numerical model, which incorporates inhalation dynamics and aerosol physical processes. The inhalation dose from mineral dust particles was greater in the upper respiratory system (extrathoracic region and less significant in the lungs, especially in the sensitive alveolar region. However, in cases of dust episodes, the amounts of mineral dust deposited along the human lung are comparable to those

  19. Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project

    Directory of Open Access Journals (Sweden)

    A. Papayannis

    2005-01-01

    Full Text Available We report on the vertical distributions of Saharan dust aerosols over the N.E. Mediterranean region, which were obtained during a typical dust outbreak on August 2000, by two lidar systems located in Athens and Thessaloniki, Greece, in the frame of the European EARLINET project. MODIS and ground sun spectrophotometric data, as well as air-mass backward trajectories confirmed the existence of Saharan dust in the case examined, which was also successfully forecasted by the DREAM dust model. The lidar data analysis for the period 2000-2002 made possible, for the first time, an estimation of the vertical extent of free tropospheric dust layers [mean values of the aerosol backscatter and extinction coefficients and the extinction-to-backscatter ratio (lidar ratio, LR at 355 nm], as well as a seasonal distribution of Saharan dust outbreaks over Greece, under cloud-free conditions. A mean value of the lidar ratio at 355 nm was obtained over Athens (53±1 sr and over Thessaloniki (44±2 sr during the Saharan dust outbreaks. The corresponding aerosol optical thickness (AOT at 355 nm, in the altitude range 0-5 km, was 0.69±0.12 and 0.65±0.10 for Athens and Thessaloniki, respectively (within the dust layer the AOT was 0.23 and 0.21, respectively. Air-mass back-trajectory analysis performed in the period 2000-2002 for all Saharan dust outbreaks over the N.E. Mediterranean indicated the main pathways followed by the dust aerosols.

  20. Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source

    Science.gov (United States)

    Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.

    2015-12-01

    In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity

  1. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    Science.gov (United States)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  2. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    Science.gov (United States)

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  3. The 7-13 March 2006 major Saharan outbreak: Multiproxy characterization of mineral dust deposited on the West African margin

    NARCIS (Netherlands)

    Skonieczny, C.; Bory, A.; Bout-Roumazeilles, V.; Abouchami, W.; Galer, S.J.G.; Crosta, X.; Stuut, J.B.; Meyer, I.; Chiapello, I.; Podvin, T.; Chatenet, B.; Diallo, A.; Ndiaye, T.

    2011-01-01

    Mineral dust deposits were collected at Mbour, Senegal, throughout the spring of 2006 and especially during the well-documented March 7-13 large Saharan dust outbreak. During this 7-day period, significant changes in mass flux, grain-size, clay mineralogy and Sr and Nd isotopic compositions were

  4. Can Transport of Saharan Dust Explain Extensive Clay Deposits in the Amazon Basin? A Test Using Radiogenic Isotopes

    Science.gov (United States)

    Andreae, M. O.; Abouchami, W.; Näthe, K.; Kumar, A.; Galer, S. J.; Jochum, K. P.; Williams, E.; Horbe, A. M.; Rosa, J. W.; Adams, D. K.; Balsam, W. R.

    2012-12-01

    The Bodélé Depression, located in the Southern Sahara, is a huge source of atmospheric dust and thus an important element in biogeochemical cycles and the radiative budget of Earth's atmosphere. Previous studies have shown that Saharan dust transport across the Atlantic acts as an important source of mineral nutrients to the Amazon rainforest. The Belterra Clay, which outcrops extensively across the Amazon Basin in Brazil, has been proposed to result from dry deposition of African dusts. We have investigated this hypothesis by measuring the radiogenic isotopic composition (Sr, Nd and Pb) of a suite of samples from the Belterra Clay, the Bodélé Depression, dusts deposits collected at various locations along the airmass transport trajectory, as well as loess from the Cape Verde Islands. Radiogenic isotope systems are powerful tracers of provenance and can be used to fingerprint dust sources and atmospheric transport patterns. Our results identify distinct isotopic signatures in the Belterra Clay samples and the African sources. The Belterra Clay display radiogenic Sr and Pb isotope ratios associated with non-radiogenic Nd isotope signatures. In contrast, Bodélé samples and dusts deposits show lower Pb isotope ratios, variable 87Sr/86Sr, and relatively homogeneous Nd isotopic compositions, albeit more radiogenic than those of the Belterra Clay. Our data show unambiguously that the Belterra Clay is not derived from African dust deposition, nor from the Andean chain, as originally suggested by W. Sombroek. Rather, isotopic compositions and Nd model ages are consistent with simple mixing of Archean and younger Proterozoic terranes within the Amazon Basin as a result of weathering and erosion under humid tropical conditions. Whether Saharan dusts contribute to the fertilization in the Amazon Basin cannot be ruled out, however, since the African dust isotopic signature is expected to be entirely overprinted by local sources. Radiogenic isotope data obtained on

  5. Saharan dust plume charging observed over the UK

    Science.gov (United States)

    Harrison, R. Giles; Nicoll, Keri A.; Marlton, Graeme J.; Ryder, Claire L.; Bennett, Alec J.

    2018-05-01

    A plume of Saharan dust and Iberian smoke was carried across the southern UK on 16th October 2017, entrained into an Atlantic cyclone which had originated as Hurricane Ophelia. The dust plume aloft was widely noticed as it was sufficiently dense to redden the visual appearance of the sun. Time series of backscatter from ceilometers at Reading and Chilbolton show two plumes: one carried upwards to 2.5 km, and another below 800 m into the boundary layer, with a clear slot between. Steady descent of particles at about 50 cm s‑1 continued throughout the morning, and coarse mode particles reached the surface. Plumes containing dust are frequently observed to be strongly charged, often through frictional effects. This plume passed over atmospheric electric field sensors at Bristol, Chilbolton and Reading. Consistent measurements at these three sites indicated negative plume charge. The lower edge plume charge density was (‑8.0 ± 3.3) nC m‑2, which is several times greater than that typical for stratiform water clouds, implying an active in situ charge generation mechanism such as turbulent triboelectrification. A meteorological radiosonde measuring temperature and humidity was launched into the plume at 1412 UTC, specially instrumented with charge and turbulence sensors. This detected charge in the boundary layer and in the upper plume region, and strong turbulent mixing was observed throughout the atmosphere’s lowest 4 km. The clear slot region, through which particles sedimented, was anomalously dry compared with modelled values, with water clouds forming intermittently in the air beneath. Electrical aspects of dust should be included in numerical models, particularly the charge-related effects on cloud microphysical properties, to accurately represent particle behaviour and transport.

  6. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    Science.gov (United States)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  7. Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany

    Science.gov (United States)

    Rieger, Daniel; Steiner, Andrea; Bachmann, Vanessa; Gasch, Philipp; Förstner, Jochen; Deetz, Konrad; Vogel, Bernhard; Vogel, Heike

    2017-11-01

    The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV) power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.

  8. Ice nuclei in marine air: biogenic particles or dust?

    Directory of Open Access Journals (Sweden)

    S. M. Burrows

    2013-01-01

    Full Text Available Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate-related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earth's energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

  9. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    Science.gov (United States)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  10. The evolution of Saharan dust input in Lanzarote (Canary Islands): Lower Holocene triggering by human activity in the northwest Sahara?

    Science.gov (United States)

    von Suchodoletz, H.; Oberhänsli, H.; Faust, D.; Zöller, L.; Hambach, U.; Fuchs, M.

    2009-04-01

    A Holocene increase of Saharan dust input to the area of the Canary islands is accompanied by a strong coarsening of this material during the Early Holocene as recorded in loess-like sediments deposited on Lanzarote. Whereas natural causes can be ruled out for the coarsening that is exceptional during the period of the last 180 ka, it is assumed that anthropogenic activity strongly mobilized dust in an area on the pathway of dust prior to its arrival in Lanzarote comprising parts of Western Sahara and northern Mauritania. Although scarce archaeological data from the coastal area of that region do not point to strong anthropogenic activity during the Early Holocene yet, a high density of unexplored archaeological remains reported from the coastal hinterlands does not exclude this hypothesis. Thus, the results of this study highlight the need of further archaeological investigations in that Saharan region.

  11. Impacts of Saharan dust on downward irradiance and photosynthetically available radiation in the water column

    Directory of Open Access Journals (Sweden)

    T. Ohde

    2012-09-01

    Full Text Available A semi-empirical approach was used to quantify the modification of the underwater light field in amplitude (magnitude effect and spectral distribution (spectral effect by different atmospheric conditions altering the incident light. The approach based on an optical model in connection with radiation measurements in the area off Northwest Africa. Key inputs of the model were parameterized magnitude and spectral effects. Various atmospheric conditions were considered: clear sky, dusty sky without clouds, cloudy sky without dust and skies with different ratios of dust and clouds. Their impacts were investigated concerning the modification of the downward irradiance and photosynthetically available radiation in the water column. The impact on downward irradiance depended on the wavelength, the water depth, the optical water properties, the dust and cloud properties, and the ratio of clouds to dust. The influence of clouds on the amplitude can be much higher than that of dust. Saharan dust reduced the photosynthetically available radiation in the water column. Ocean regions were more influenced than coastal areas. Compensations of the magnitude and spectral effects were observed at special water depths in ocean regions and at atmospheric conditions with definite cloud to dust ratios.

  12. Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe

    Science.gov (United States)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.

    2013-01-01

    We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0

  13. Saharan Dust Deposition May Affect Phytoplankton Growth in the Mediterranean Sea at Ecological Time Scales

    Science.gov (United States)

    Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria

    2014-01-01

    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783

  14. A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling

    Science.gov (United States)

    PéRez, C.; Nickovic, S.; Baldasano, J. M.; Sicard, M.; Rocadenbosch, F.; Cachorro, V. E.

    2006-08-01

    A long Saharan dust event affected the western Mediterranean in the period 12-28 June 2002. Dust was present mainly between 1- and 5-km height affecting most parts of the Iberian Peninsula and reaching western/central Europe. Intensive backscatter lidar observations over Barcelona (Spain) and Sun photometer data from two stations (El Arenosillo, Spain, and Avignon, France) are used to evaluate different configurations the Dust Regional Atmospheric Modeling (DREAM) system. DREAM currently operates dust forecasts over the Mediterranean region (http://www.bsc.es/projects/earthscience/DREAM/) considering four particle size bins while only the first two are relevant for long-range transport analysis since their life time is larger than 12 hours. A more detailed bin method is implemented, and two different dust distributions at sources are compared to the operational version. Evaluations are performed at two wavelengths (532 and 1064 nm). The dust horizontal and vertical structure simulated by DREAM shows very good qualitative agreement when compared to SeaWIFS satellite images and lidar height-time displays over Barcelona. When evaluating the modeled aerosol optical depth (AOD) against Sun photometer data, significant improvements are achieved with the use of the new detailed bin method. In general, the model underpredicts the AOD for increasing Ångström exponents because of the influence of anthropogenic pollution in the boundary layer. In fact, the modeled AOD is highly anticorrelated with the observed Ångström exponents. Avignon shows higher influence of small anthropogenic aerosols which explains the better results of the model at the wavelength of 1064 nm over this location. The uncertainties of backscatter lidar inversions (20-30%) are in the same order of magnitude as the differences between the model experiments. Better model results are obtained when comparing to lidar because most of the anthropogenic effect is removed.

  15. Saharan dust event impacts on cloud formation and radiation over Western Europe

    Directory of Open Access Journals (Sweden)

    M. Bangert

    2012-05-01

    Full Text Available We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties.

    The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l−1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds.

    Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected. This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to −75 W m−2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80 W m−2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10 W m−2.

    The

  16. Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany

    Directory of Open Access Journals (Sweden)

    D. Rieger

    2017-11-01

    Full Text Available The importance for reliable forecasts of incoming solar radiation is growing rapidly, especially for those countries with an increasing share in photovoltaic (PV power production. The reliability of solar radiation forecasts depends mainly on the representation of clouds and aerosol particles absorbing and scattering radiation. Especially under extreme aerosol conditions, numerical weather prediction has a systematic bias in the solar radiation forecast. This is caused by the design of numerical weather prediction models, which typically account for the direct impact of aerosol particles on radiation using climatological mean values and the impact on cloud formation assuming spatially and temporally homogeneous aerosol concentrations. These model deficiencies in turn can lead to significant economic losses under extreme aerosol conditions. For Germany, Saharan dust outbreaks occurring 5 to 15 times per year for several days each are prominent examples for conditions, under which numerical weather prediction struggles to forecast solar radiation adequately. We investigate the impact of mineral dust on the PV-power generation during a Saharan dust outbreak over Germany on 4 April 2014 using ICON-ART, which is the current German numerical weather prediction model extended by modules accounting for trace substances and related feedback processes. We find an overall improvement of the PV-power forecast for 65 % of the pyranometer stations in Germany. Of the nine stations with very high differences between forecast and measurement, eight stations show an improvement. Furthermore, we quantify the direct radiative effects and indirect radiative effects of mineral dust. For our study, direct effects account for 64 %, indirect effects for 20 % and synergistic interaction effects for 16 % of the differences between the forecast including mineral dust radiative effects and the forecast neglecting mineral dust.

  17. On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculations

    Directory of Open Access Journals (Sweden)

    S. Otto

    2011-05-01

    Full Text Available Realistic size equivalence and shape of Saharan mineral dust particles are derived from in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006, dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10 %. At the bottom of the atmosphere (BOA the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal forcing by 55/5 % at the TOA over ocean/land and 15 % at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20 %. Large dust particles significantly contribute to all the radiative effects reported. They strongly enhance the absorbing properties and forward scattering in the solar and increase predominantly, e.g., the total TOA forcing of the dust over land.

  18. Saharan dust - a carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    Directory of Open Access Journals (Sweden)

    V.H Garrison

    2006-12-01

    Full Text Available An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI, Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs, trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde and the Caribbean (USVI and Trinidad & Tobago. Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs and polycyclic aromatic hydrocarbons (PAHs and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions. Rev. Biol. Trop. 54 (Suppl. 3: 9-21. Epub 2007 Jan. 15.

  19. Saharan Dust Deposition Effects on the Microbial Food Web in the Eastern Mediterranean: A Study Based on a Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Paraskevi Pitta

    2017-05-01

    Full Text Available The effect of episodicity of Saharan dust deposition on the pelagic microbial food web was studied in the oligotrophic Eastern Mediterranean by means of a mesocosm experiment in May 2014. Two different treatments in triplicates (addition of natural Saharan dust in a single-strong pulse or in three smaller consecutive doses of the same total quantity, and three unamended controls were employed; chemical and biological parameters were measured during a 10-day experiment. Temporal changes in primary (PP and bacterial (BP production, chlorophyll a (Chl a concentration and heterotrophic bacteria, Synechococcus and mesozooplankton abundance were studied. The results suggested that the auto- and hetero-trophic components of the food web (at least the prokaryotes were enhanced by the dust addition (and by the nitrogen and phosphorus added through dust. Furthermore, a 1-day delay was observed for PP, BP, and Chl a increases when dust was added in three daily doses; however, the maximal values attained were similar in the two treatments. Although, the effect was evident in the first osmotrophic level (phytoplankton and bacteria, it was lost further up the food web, masked under the impact of grazing exerted by predators such as heterotrophic flagellates, ciliates and dinoflagellates. This was partly proved by two dilution experiments. This study demonstrates the important role of atmospheric deposition and protist grazing when evaluating the effect on oligotrophic systems characterized by increased numbers of trophic levels.

  20. The uptake of SO2 on Saharan dust: a flow tube study

    Directory of Open Access Journals (Sweden)

    J. W. Adams

    2005-01-01

    Full Text Available The uptake of SO2 onto Saharan mineral dust from the Cape Verde Islands was investigated using a coated wall flow tube coupled to a mass spectrometer. The rate of loss of SO2 to the dust coating was measured and uptake coefficients were determined using the measured BET surface area of the sample. The uptake of SO2, with an initial concentration between (2-40x1010molecule cm-3 (0.62-12 µTorr, was found to be strongly time dependent over the first few hundred seconds of an experiment, with an initial uptake γ0,BET of (6.6±0.8x10-5 (298 K, declining at longer times. The amount of SO2 adsorbed on the dust samples was measured over a range of SO2 concentrations and mineral dust loadings. The uptake of SO2 was found to be up to 98% irreversible over the timescale of these investigations. Experiments were also performed at 258 K, at a relative humidity of 27% and at 298 K in the presence of ozone. The initial uptake and the amount of SO2 taken up per unit area of BET dust surface was the same within error, irrespective of the conditions used; however the presence of ozone reduced the amount of SO2 released back into the gas-phase per unit area once exposure of the surface ended. Multiple uptakes to the same surface revealed a loss of surface reactivity, which did not return if the samples were exposed to gas-phase water, or left under vacuum overnight. A mechanism which accounts for the observed uptake behaviour is proposed and numerically modelled, allowing quantitative estimates of the rate and amount of SO2 removal in the atmosphere to be estimated. Removal of SO2 by mineral dust is predicted to be significant at high dust loadings.

  1. Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign

    Directory of Open Access Journals (Sweden)

    C. L. Ryder

    2013-01-01

    Full Text Available New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 μm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (deff from 2.3 to 19.4 μm and coarse mode volume median diameter (dvc from 5.8 to 45.3 μm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with deff > 12 μm, or dvc > 25 μm were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration.

    Single Scattering Albed (SSA values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to deff. New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when deff is greater than 2 μm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have

  2. Environmental impacts on human health during a Saharan dust episode at Crete Island, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Nastos, P.T. [Univ. of Athens, Athen (Greece). Lab. of Climatology and Atmospheric Environment; Kampanis, N.A. [Foundation for Research and Technology, Hellas (Greece). Inst of Applied and Computational Mathematics; Giaouzaki, K.N. [Univ. of Crete, Iraklion (Greece). Dept. of Cardiology; Matzarakis, A. [Univ. of Freiburg (Germany). Meteorological Inst.

    2011-10-15

    The objective of this study is to examine the synergistic environmental impacts (thermal bioclimatic conditions and air quality due to particulate pollution) with cardiovascular and respiratory syndromes, in Heraklion in the northern part of Crete Island, during a Saharan dust episode on March 22-23, 2008. Daily counts of admissions for cardiovascular and respiratory syndromes were obtained from the two main hospitals in Heraklion. The corresponding daily meteorological parameters, such as maximum and minimum air temperature, relative humidity, wind speed and cloud cover, from the meteorological station of Heraklion (Hellenic National Meteorological Service), were processed in order to estimate and analyze the bioclimatic conditions expressed by the Physiologically Equivalent Temperature (PET), which is based on the energy balance models of the human body. Dust concentrations were derived from the SKIRON forecast model of the University of Athens, while Moderate Resolution Imaging Spectroradiometer (MODIS) products such as aerosol optical depth at 550 nm (AOD550), aerosol small mode fraction (SM), Aangstroem exponent in the 550-865 nm band and mass concentration, were used for the episode. Besides, daily composite anomalies (reference period: 1968-1996) of the air temperature and vector wind from the middle to the lower atmospheric levels (500 hPa - mean sea level) on March 23, 2008, were calculated from the reanalysis datasets of the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR). The analysis of MODIS and SKIRON products showed that high AOD{sub 550} values (>0.9) and high dust concentration (>250 {mu}g/m{sup 3}), respectively, appear on March 23, 2008, while the respiratory admissions were five-fold than the mean daily admissions on the same day of the emergence of the Saharan dust episode (key day). According to the analysis, this is due to the existence of coarse-mode particles along the dust pathway, which

  3. Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps

    Directory of Open Access Journals (Sweden)

    G. Aymoz

    2004-01-01

    Full Text Available A Saharan dust event was observed in a rural area in the Maurienne Valley (French Alps in summer 2000. Detailed data on PM10, particle numbers, and aerosol chemistry (ionic species and Elemental Carbon (EC and Organic Carbon (OC are presented. The comparative evolutions of particle numbers and chemistry (calcium, sodium, and sulfate show that the overall period included two episodes of dust particles with very distinct chemistry, followed by an episode with a large increase of the concentrations of species with an anthropogenic origin. The overall data set does not indicate large interactions between the dust particles and compounds from anthropogenic origin (sulfate, nitrate or with organic carbon, all of these species showing very low concentrations. Simplistic calculations indicate that these concentrations are consistent with our current knowledge of adsorption processes of gases on mineral dust in a clean air mass.

  4. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean

    Science.gov (United States)

    Han, Yongxiang; Zhao, Tianliang; Song, Lianchun; Fang, Xiaomin; Yin, Yan; Deng, Zuqin; Wang, Suping; Fan, Shuxian

    2011-08-01

    Iron-addition experiments have revealed that iron supply exerts controls on biogeochemical cycles in the ocean and ultimately influences the Earth's climate system. The iron hypothesis in its broad outlines has been proved to be correct. However, the hypothesis needs to be verified with an observable biological response to specific dust deposition events. Plankton growth following the Asian dust storm over Ocean Station PAPA (50°N, 145°W) in the North Pacific Ocean in April 2001 was the first supportive evidence of natural aeolian iron inputs to ocean; The data were obtained through the SeaWiFS satellite and robot carbon explorers by Bishop et al. Using the NARCM modeling results in this study, the calculated total dust deposition flux was 35 mg m -2 per day in PAPA region from the dust storm of 11-13 April, 2001 into 0.0615 mg m -2 d -1 (about 1100 nM) soluble iron in the surface layer at Station PAPA. It was enough for about 1100 nM to enhance the efficiency of the marine biological pump and trigger the rapid increase of POC and chlorophyll. The iron fertilization hypothesis therefore is plausible. However, even if this specific dust event can support the iron fertilization hypothesis, long-term observation data are lacking in marine export production and continental dust. In this paper, we also conducted a simple correlation analysis between the diatoms and foraminifera at about 3000 m and 4000 m at two subarctic Pacific stations and the dust aerosol production from China's mainland. The correlation coefficient between marine export production and dust storm frequency in the core area of the dust storms was significantly high, suggesting that aerosols generated by Asian dust storm are the source of iron for organic matter fixation in the North Pacific Ocean. These results suggest that there could be an interlocking chain for the change of atmospheric dust aerosol-soluble iron-marine export production.

  5. Impact of a Saharan dust intrusion over southern Spain on DNI estimation with sky cameras

    Science.gov (United States)

    Alonso-Montesinos, J.; Barbero, J.; Polo, J.; López, G.; Ballestrín, J.; Batlles, F. J.

    2017-12-01

    To operate Central Tower Solar Power (CTSP) plants properly, solar collector systems must be able to work under varied weather conditions. Therefore, knowing the state of the atmosphere, and more specifically the level of incident radiation, is essential operational information to adapt the electricity production system to atmospheric conditions. In this work, we analyze the impact of a strong Saharan dust intrusion on the Direct normal irradiance (DNI) registered at two sites 35 km apart in southeastern Spain: the University of Almería (UAL) and the Plataforma Solar de Almería (PSA). DNI can be inputted into the European Solar Radiation Atlas (ESRA) clear sky procedure to derive Linke turbidity values, which proved to be extremely high at the UAL. By using the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) at the PSA site, AERONET data from PSA and assuming dust dominated aerosol, DNI estimations agreed strongly with the measured DNI values. At the UAL site, a SMARTS simulation of the DNI values also seemed to be compatible with dust dominated aerosol.

  6. Atmospheric dust additions as a soil formation factor

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Hernandez, J. L.; Ruoss, J.

    2009-07-01

    The Mediterranean area is distinguished by a least four features that determine the nature of its soils. These are its climate, its mountains, the addition of exogenous dust and ongoing anthropogenic effects. We here present three cases in which the influence of atmospheric dust additions can be detected in the soils of representative circum-Saharan contexts the Canary Islands, Betic intramontane depressions, and the Sierra Bermeja peridotite massif (Malaga). The unique position of the Canary Islands determines important rates of dust deposit, largely depending on position on the relief. the nature of the dust contrasts with the rocky substratum of the islands, and the marine and volcanic context can also affect the nature of the deposits. The numerous, extensive intramontane basins of the Betic Cordilleras act as large captors of atmospheric dust, with rates similar to those found in the Canary archipelago. The carbonate content of these exogenous additions represents a significant components that should be taken into account when establishing the carbonate accumulation regime in these soils. (Author) 13 refs.

  7. Meteorological and dust aerosol conditions over the western Saharan region observed at Fennec Supersite-2 during the intensive observation period in June 2011

    Science.gov (United States)

    Todd, M. C.; Allen, C. J. T.; Bart, M.; Bechir, M.; Bentefouet, J.; Brooks, B. J.; Cavazos-Guerra, C.; Clovis, T.; Deyane, S.; Dieh, M.; Engelstaedter, S.; Flamant, C.; Garcia-Carreras, L.; Gandega, A.; Gascoyne, M.; Hobby, M.; Kocha, C.; Lavaysse, C.; Marsham, J. H.; Martins, J. V.; McQuaid, J. B.; Ngamini, J. B.; Parker, D. J.; Podvin, T.; Rocha-Lima, A.; Traore, S.; Wang, Y.; Washington, R.

    2013-08-01

    The climate of the Sahara is relatively poorly observed and understood, leading to errors in forecast model simulations. We describe observations from the Fennec Supersite-2 (SS2) at Zouerate, Mauritania during the June 2011 Fennec Intensive Observation Period. These provide an improved basis for understanding and evaluating processes, models, and remote sensing. Conditions during June 2011 show a marked distinction between: (i) a "Maritime phase" during the early part of the month when the western sector of the Sahara experienced cool northwesterly maritime flow throughout the lower troposphere with shallow daytime boundary layers, very little dust uplift/transport or cloud cover. (ii) A subsequent "heat low" phase which coincided with a marked and rapid westward shift in the Saharan heat low towards its mid-summer climatological position and advection of a deep hot, dusty air layer from the central Sahara (the "Saharan residual layer"). This transition affected the entire western-central Sahara. Dust advected over SS2 was primarily from episodic low-level jet (LLJ)-generated emission in the northeasterly flow around surface troughs. Unlike Fennec SS1, SS2 does not often experience cold pools from moist convection and associated dust emissions. The diurnal evolution at SS2 is strongly influenced by the Atlantic inflow (AI), a northwesterly flow of shallow, cool and moist air propagating overnight from coastal West Africa to reach SS2 in the early hours. The AI cools and moistens the western Saharan and weakens the nocturnal LLJ, limiting its dust-raising potential. We quantify the ventilation and moistening of the western flank of the Sahara by (i) the large-scale flow and (ii) the regular nocturnal AI and LLJ mesoscale processes.

  8. Investigating the Heterogeneous Interaction of VOCs with Natural Atmospheric Particles: Adsorption of Limonene and Toluene on Saharan Mineral Dusts.

    Science.gov (United States)

    Romanías, Manolis N; Ourrad, Habib; Thévenet, Frédéric; Riffault, Véronique

    2016-03-03

    The heterogeneous interaction of limonene and toluene with Saharan dusts was investigated under dark conditions, pressure of 1 atm, and temperature 293 K. The mineral dust samples were collected from six different regions along the Sahara desert, extending from Tunisia to the western Atlantic coastal areas of Morocco, and experiments were carried out with the smallest sieved fractions, that is, inferior to 100 μm. N2 sorption measurements, granulometric analysis, and X-ray fluorescence and diffraction (XRF and XRD) measurements were conducted to determine the physicochemical properties of the particles. The chemical characterization showed that dust originating from mideastern Sahara has a significantly higher SiO2 content (∼ 82%) than dust collected from the western coastal regions where the SiO2 relative abundance was ∼ 50%. A novel experimental setup combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), selected-ion flow-tube mass spectrometry (SIFT-MS), and long path transmission Fourier transform infrared spectroscopy (FTIR) allowed us to follow both the adsorbed and gas phases. The kinetic adsorption/desorption measurements were performed using purified dry air as bath gas, exposing each dust surface to 10 ppm of the selective volatile organic compound (VOC). The adsorption of limonene was independent of the SiO2 content, given the experimental uncertainties, and the coverage measurements ranged between (10 and 18) × 10(13) molecules cm(-2). Experimental results suggest that other metal oxides that could possibly influence dust acidity may enhance the adsorption of limonene. On the contrary, in the case of toluene, the adsorption capacities of the Saharan samples increased with decreasing SiO2 content; however, the coverage measurements were significantly lower than those of limonene and ranged between (2 and 12) × 10(13) molecules cm(-2). Flushing the surface with purified dry air showed that VOC desorption is not a

  9. Influences of natural emission sources (wildfires and Saharan dust) on the urban organic aerosol in Barcelona (Western Mediterranean Basis) during a PM event.

    Science.gov (United States)

    van Drooge, Barend L; Lopez, Jordi F; Grimalt, Joan O

    2012-11-01

    The urban air quality in Barcelona in the Western Mediterranean Basin is characterized by overall high particulate matter (PM) concentrations, due to intensive local anthropogenic emissions and specific meteorological conditions. Moreover, on several days, especially in summer, natural PM sources, such as long-range transported Saharan dust from Northern Africa or wildfires on the Iberian Peninsula and around the Mediterranean Basin, may influence the levels and composition of the organic aerosol. In the second half of July 2009, daily collected PM(10) filter samples in an urban background site in Barcelona were analyzed on organic tracer compounds representing several emission sources. During this period, an important PM peak event was observed. Individual organic compound concentrations increased two to five times during this event. Although highest increase was observed for the organic tracer of biomass burning, the contribution to the organic aerosol was estimated to be around 6 %. Organic tracers that could be related to Saharan dust showed no correlation with the PM and OC levels, while this was the case for those related to fossil fuel combustion from traffic emissions. Moreover, a change in the meteorological conditions gave way to an overall increase of the urban background contamination. Long-range atmospheric transport of organic compounds from primary emissions sources (i.e., wildfires and Saharan dust) has a relatively moderate impact on the organic aerosol in an urban area where the local emissions are dominating.

  10. Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust

    Science.gov (United States)

    Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.

    2010-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.

  11. Long-range Transported African Dust in the Caribbean Region: Dust Concentrations and Water-soluble Ions

    Science.gov (United States)

    Santos-Figueroa, G.; Avilés-Piñeiro, G. M.; Mayol-Bracero, O. L.

    2017-12-01

    Long-range transported African dust (LRTAD) particles reach the Caribbean region every year during the summer months causing an increase in PM10 concentrations and by consequence degradation of air quality. During African dust (AD) incursions at the Caribbean region, PM10 concentration could exceeds the exposure limit of 50 µg/m³ 24-hour mean established by the World Health Organization (WHO). To have a better understanding of the impacts of AD particles to climate and public health at the Caribbean region it is necessary to study and determine the spatial and temporal distribution of dust particles. In order to address this, aerosols samples were collected during and absence of AD incursions during the summer of 2017 using a Hi-Volume (Hi-Vol) sampler for total suspended particles (TSP) at two sampling stations in Puerto Rico. The first station is a marine site located at Cabezas de San Juan (CSJ) Nature Reserve in Fajardo, and the second station is an urban site located at the Facundo Bueso (FB) building at the University of Puerto Rico-Rio Piedras. Aerosol samples were collected using Whatman 41 grade filters from which we determined the concentration of dust particles and the water-soluble ions (e.g., Na+, NH4+, Ca+2, Cl-, SO4-2) in the presence and absence of LRTAD particles. Saharan Air Layer (SAL) imagery, the results from the air mass backward trajectories calculated with the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the spectral coefficients from measurements at CSJ were used to monitor and confirm the presence of air masses coming from North Africa. Average dust concentrations using the Stacked-Filter Units (SFUs) at CSJ are around 4 μg/m3. LRTAD concentrations and ionic speciation results using the Hi-Vol for the marine and urban sites will be presented at the conference.

  12. Role of the convergence zone over West Africa in controlling Saharan mineral dust load and transport in the boreal summer

    Directory of Open Access Journals (Sweden)

    Owen M. Doherty

    2014-07-01

    Full Text Available During summer, large amounts of mineral dust are emitted and transported from North Africa over the tropical North Atlantic towards the Caribbean with the exact quantity varying greatly from year to year. Much effort has been made to explain the variability of summer season mineral dust load, for example, by relating dust variability to teleconnection indices such as ENSO and the NAO. However, only weak relationships between such climate indices and the abundance of mineral dust have been found. In this work, we demonstrate the role of the near-surface convergence zone over West Africa in controlling dust load and transport of mineral dust. We apply the ‘Center of Action’ approach to obtain indices that quantify the movement and strength of the convergence zone using NCEP/NCAR Reanalysis data. The latitudinal position of the convergence zone is significantly correlated with the quantity of mineral dust at Barbados over the period 1965–2003 (r=−0.47. A southward displacement of the convergence zone is associated with both increased near-surface flow and decreased precipitation over the dust source regions of the southern Saharan desert, Sahel and Lake Chad. This in turn reduces soil moisture and vegetation, furthering the potential for dust emission. In contrast, the intensity of the convergence zone is not correlated with dust concentration at Barbados. We conclude that the coupling of changes in near-surface winds with changes in precipitation in source regions driven by a southward movement of the convergence zone most directly influence dust load at Barbados and over the tropical North Atlantic during summer.

  13. Identification of mineral dust layers in high alpine snow packs

    Science.gov (United States)

    Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne

    2017-04-01

    Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers

  14. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10

    Science.gov (United States)

    Chirizzi, Daniela; Cesari, Daniela; Guascito, Maria Rachele; Dinoi, Adelaide; Giotta, Livia; Donateo, Antonio; Contini, Daniele

    2017-08-01

    Exposure to atmospheric particulate matter (PM) leads to adverse health effects although the exact mechanisms of toxicity are still poorly understood. Several studies suggested that a large number of PM health effects could be due to the oxidative potential (OP) of ambient particles leading to high concentrations of reactive oxygen species (ROS). The contribution to OP of specific anthropogenic sources like road traffic, biomass burning, and industrial emissions has been investigated in several sites. However, information about the OP of natural sources are scarce and no data is available regarding the OP during Saharan dust outbreaks (SDO) in Mediterranean regions. This work uses the a-cellular DTT (dithiothreitol) assay to evaluate OP of the water-soluble fraction of PM2.5 and PM10 collected at an urban background site in Southern Italy. OP values in three groups of samples were compared: standard characterised by concentrations similar to the yearly averages; high carbon samples associated to combustion sources (mainly road traffic and biomass burning) and SDO events. DTT activity normalised by sampled air volume (DTTV), representative of personal exposure, and normalised by collected aerosol mass (DTTM), representing source-specific characteristics, were investigated. The DTTV is larger for high PM concentrations. DTTV is well correlated with secondary organic carbon concentration. An increased DTTV response was found for PM2.5 compared to the coarse fraction PM2.5-10. DTTV is larger for high carbon content samples but during SDO events is statistically comparable with that of standard samples. DTTM is larger for PM2.5 compared to PM10 and the relative difference between the two size fractions is maximised during SDO events. This indicates that Saharan dust advection is a natural source of particles having a lower specific OP with respect to the other sources acting on the area (for water-soluble fraction). OP should be taken into account in epidemiological

  15. Understanding the Transport of Patagonian Dust and Its Influence on Marine Biological Activity in the South Atlantic Ocean

    Science.gov (United States)

    Johnson, Matthew; Meskhidze, Nicholas; Kiliyanpilakkil, Praju; Gasso, Santiago

    2010-01-01

    Modeling and remote sensing techniques were applied to examine the horizontal and vertical transport pathways of Patagonian dust and quantify the effect of soluble-iron- laden mineral dust deposition on marine primary productivity in the South Atlantic Ocean (SAO) surface waters. The global chemistry transport model GEOS-Chem, implemented with an iron dissolution scheme, was applied to evaluate the atmospheric transport and deposition of mineral dust and bioavailable iron during two dust outbreaks originating in the source regions of Patagonia. In addition to this "rapidly released" iron, offline calculations were also carried out to estimate the amount of bioavailable iron leached during the residence time of dust in the ocean mixed layer. Model simulations showed that the horizontal and vertical transport pathways of Patagonian dust plumes were largely influenced by the synoptic meteorological patterns of high and low pressure systems. Model-predicted horizontal and vertical transport pathways of Patagonian dust over the SAO were in reasonable agreement with remotely-sensed data. Comparison between remotely-sensed and offline calculated ocean surface chlorophyll-a concentrations indicated that, for the two dust outbreaks examined in this study, the deposition of bioavailable iron in the SAO through atmospheric pathways was insignificant. As the two dust transport episodes examined here represent typical outflows of mineral dust from South American sources, our study suggests that the atmospheric deposition of mineral dust is unlikely to induce large scale marine primary productivity and carbon sequestration in the South Atlantic sector of the Southern Ocean.

  16. Satellite Observations from SEVIRI of Saharan dust over West Africa, within the context of the Fennec project

    Science.gov (United States)

    Banks, J.; Brindley, H.

    2012-04-01

    During the summer months, the atmosphere over the western half of the Sahara carries some of the highest dust loadings on the planet. This situation develops when intense solar heating over the dry desert creates a deep and hot low pressure system (the Saharan Heat Low, SHL), which allows a strong vertical mixing of dust. The Fennec* consortium project aims to address the deficiency in observations from the sparsely populated western Sahara through the use of field campaign measurements made in June 2011, incorporating observations from ground instruments, aircraft, and from satellite instruments such as SEVIRI, in combination with climate modelling. Fennec aims to study the poorly understood behaviour of the SHL, and the processes which take place within it. Due to their high temporal resolution, observations from SEVIRI can offer new insights into the timing of activation of specific dust sources, and the processes governing their behaviour. Here we employ a multi-year, high time-resolution record of dust detection and aerosol optical depth (AOD) derived from SEVIRI using an algorithm developed at Imperial College to both identify areas of high dust loading and diagnose diurnal patterns in their activation. We will present results from the SEVIRI record alongside results from other satellite instruments such as MODIS, and place these findings in the context of the initial ground-based and in-situ observations available from the Fennec field campaign. We will also identify surface features which can contaminate the dust detection retrieval, due to their emissivities in the 8.7 micron channel. New techniques can be used to filter out these features, based on the difference between the brightness temperatures at 10.8 and 8.7 microns. Using surface visibility measurements and AERONET data, we will evaluate the consequences of this on the dust detection and AOD record. * Fennec is a consortium project which includes groups from the universities of Oxford, Imperial

  17. Response of the Eastern Mediterranean microbial ecosystem to dust and dust affected by acid processing in the atmosphere

    Directory of Open Access Journals (Sweden)

    Michael David Krom

    2016-08-01

    Full Text Available Acid processes in the atmosphere, particularly those caused by anthropogenic acid gases, increase the amount of bioavailable P in dust and hence are predicted to increase microbial biomass and primary productivity when supplied to oceanic surface waters. This is likely to be particularly important in the Eastern Mediterranean Sea (EMS, which is P limited during the winter bloom and N&P co-limited for phytoplankton in summer. However, it is not clear how the acid processes acting on Saharan dust will affect the microbial biomass and primary productivity in the EMS. Here, we carried out bioassay manipulations on EMS surface water on which Saharan dust was added as dust (Z, acid treated dust (ZA, dust plus excess N (ZN and acid treated dust with excess N (ZNA during springtime (May 2012 and measured bacterioplankton biomass, metabolic and other relevant chemical and biological parameters. We show that acid treatment of Saharan dust increased the amount of bioavailable P supplied by a factor of ~40 compared to non-acidified dust (18.4 nmoles P mg-1 dust vs. 0.45 nmoles P mg-1 dust, respectively. The increase in chlorophyll, primary and bacterial productivity for treatments Z and ZA were controlled by the amount of N added with the dust while those for treatments ZN and ZNA (in which excessive N was added were controlled by the amount of P added. These results confirm that the surface waters were N&P co-limited for phytoplankton during springtime. However, total chlorophyll and primary productivity in the acid treated dust additions (ZA and ZNA were less than predicted from that calculated from the amount of the potentially limiting nutrient added. This biological inhibition was interpreted as being due to labile trace metals being added with the acidified dust. A probable cause for this biological inhibition was the addition of dissolved Al, which forms potentially toxic Al nanoparticles when added to seawater. Thus, the effect of anthropogenic acid

  18. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air

    Science.gov (United States)

    Garrison, Virginia H.; Majewski, Michael S.; Konde, Lassana; Wolf, Ruth E.; Otto, Richard D.; Tsuneoka, Yutaka

    2014-01-01

    Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan–Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 – 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara–Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.

  19. Saharan dust and the impact on adult and elderly allergic patients: the effect of threshold values in the northern sector of Gran Canaria, Spain.

    Science.gov (United States)

    Menéndez, Inmaculada; Derbyshire, Edward; Carrillo, Teresa; Caballero, Elena; Engelbrecht, Johann P; Romero, Lidia E; Mayer, Pablo L; Rodríguez de Castro, Felipe; Mangas, José

    2017-04-01

    Gran Canaria Island is frequently impacted by Saharan dust, a health hazard of particular concern to the island population and health agencies. Airborne mineral dust has the severest impact on the higher age groups of the population, and those with respiratory conditions; despite that, on average, the ambient particulate matter (PM) concentrations fall within international PM guidelines. During 2010 and 2011, an epidemiological survey, in parallel with an air quality study, was conducted at the Dr Negrín hospital in Gran Canaria. This included the quarterly monitoring of outpatients and recording of emergency patients with respiratory diseases, together with the measurement of aerosol, meteorological, and PM-related air quality levels. The finer more toxic particles were collected with PM 2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) aerosol samplers. The filter samples were gravimetrically and chemically analyzed for their elemental, water-soluble ions, carbon, and mineralogical contents. Individual particle morphology was measured by Scanning Electron Microscopy. Statistical analysis of the chemical and clinical data included the analysis of variance and calculation of Spearman correlation coefficients. No statistically significant relations were found between the allergic control group, the emergency room admissions, pulmonary conditions, medication, and elevated Saharan dust levels. However, changing environmental conditions, such as an increase in humidity or a reduction in ambient air temperature made a significant difference to the outcomes recorded on the health statements of the allergic and respiratory illness groups of the Gran Canary population.

  20. Dating Saharan dust deposits on Lanzarote (Canary Islands) by luminescence dating techniques and their implication for palaeoclimate reconstruction of NW Africa

    Science.gov (United States)

    von Suchodoletz, H.; Fuchs, M.; ZöLler, L.

    2008-02-01

    Lava flow dammed valleys (Vegas) on Lanzarote (Canary Islands) represent unique sediment traps, filled with autochthonous volcanic material and allochthonous Saharan dust. These sediments and the intercalated palaeosoil sediments document past environmental change of the last glacial-interglacial cycles, both on Lanzarote and in NW Africa. A reliable chronology must be established to use these sediment archives for palaeoclimate reconstructions. Owing to the lack of organic material and the limiting time range of the 14C-dating method, luminescence dating is the most promising method for these sediments. However, the fluvio-eolian character of these sediments is a major problem for luminescence dating, because these sediments are prone to insufficient resetting of the parent luminescence signal (bleaching) prior to sedimentation. To check for the best age estimates, we compare the bleaching behavior of (1) different grain sizes (coarse- versus fine-grain quartz OSL) and (2) different minerals (fine-grain feldspar IRSL versus fine-grain quartz OSL). The results show that owing to its bleaching characteristics, quartz is the preferable mineral for luminescence dating. On the basis of the fine- and coarse-grain quartz OSL age estimates, a chronostratigraphy up to 100 ka could be established. Beyond this age limit for OSL quartz, the chronostratigraphy could be extended up to 180 ka by correlating the vega sediments with dated marine sediment archives.

  1. Characterization of Dust Properties during ACE-Asia and PRIDE: A Column Satellite-Surface Perspective

    Science.gov (United States)

    Lau, William K. M. (Technical Monitor); Tsay, Si-Chee; Hsu, N. Christina; Herman, Jay R.; Ji, Q. Jack

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentration over particular pathways around the globe. For example, the ACE-Asia (Aerosol Characterization Experiment-Asia) was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). The PRIDE (Puerto RIco Dust Experiment, July 2000) was designed to measure the properties of Saharan dust transported across the Atlantic Ocean to the Caribbean. Dust particles typically originate in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of dust aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the ocean. During ACE-Asia and PRIDE we had measured aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from ground-based remote sensing. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. We will present the results and discuss their implications in regional climatic effects.

  2. A GCM Study of Responses of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing

    Science.gov (United States)

    Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.

    2009-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0

  3. The global distribution of mineral dust

    International Nuclear Information System (INIS)

    Tegen, I; Schepanski, K

    2009-01-01

    Dust aerosol particles produced by wind erosion in arid and semi arid regions affect climate and air quality, but the magnitude of these effects is largely unquantified. The major dust source regions include the Sahara, the Arabian and Asian deserts; global annual dust emissions are currently estimated to range between 1000 and 3000 Mt/yr. Dust aerosol can be transported over long distances of thousands of kilometers, e.g. from source regions in the Saharan desert over the North Atlantic, or from the Asian deserts towards the Pacific Ocean. The atmospheric dust load varies considerably on different timescales. While dust aerosol distribution and dust effects are important on global scales, they strongly depend on dust emissions that are controlled on small spatial and temporal scales.

  4. Spatial and Temporal Variation of the Extreme Saharan Dust Event over Turkey in March 2016

    Directory of Open Access Journals (Sweden)

    Hakki Baltaci

    2017-02-01

    Full Text Available In this study, the influence of an extraordinary Saharan dust episode over Turkey on 23–24 March 2016 and the atmospheric conditions that triggered this event were evaluated in detail. PM10 (particulate matter less than 10 μm observations from 97 air quality stations, METAR (Meteorological Terminal Aviation Routine Weather Report observations at 64 airports, atmospheric soundings, and satellite products were used for the analysis. To determine the surface and upper levels of atmospheric circulation, National Centers of Environmental Prediction (NCEP/National Center for Atmospheric Research (NCAR Reanalysis data were applied to the extreme dust episodes. On 23 March 2016, high southwesterly winds due to the interaction between surface low- and high-pressure centers over Italy and Levant basin brought thick dust particles from Libya to Turkey. The daily PM10 data from 43 stations exceeded their long-term spring means over Turkey (especially at the northern and western stations. As a consequence of the longitudinal movement of the surface low from Italy to the Balkan Peninsula, and the quasi-stationary conditions of the surface high-pressure center allowed for the penetration of strong south and southwesterly winds to inner parts of the country on the following day. As a consequence, 100%, 90%, 88%, and 87% of the monitoring stations in Marmara (NW Turkey, central Anatolia, western (Aegean and northern (Black Sea regions of Turkey, respectively, exhibited above-normal daily PM10 values. In addition, while strong subsidence at the low levels of the atmosphere plays a significant role in having excessive daily PM10 values in Black Sea, dry atmospheric conditions and thick inversion level near the ground surface of Marmara ensured this region to have peak PM10 values ~00 Local Time (LT.

  5. Biological response to coastal upwelling and dust deposition in the area off Northwest Africa

    Science.gov (United States)

    Ohde, T.; Siegel, H.

    2010-05-01

    Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll- a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll- a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll- a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll- a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll- a was caused by Saharan dust input and not by

  6. Observations of Saharan dust microphysical and optical properties from the Eastern Atlantic during NAMMA airborne field campaign

    Directory of Open Access Journals (Sweden)

    G. Chen

    2011-01-01

    Full Text Available As part of the international project entitled "African Monsoon Multidisciplinary Analysis (AMMA", NAMMA (NASA AMMA aimed to gain a better understanding of the relationship between the African Easterly Waves (AEWs, the Sahara Air Layer (SAL, and tropical cyclogenesis. The NAMMA airborne field campaign was based out of the Cape Verde Islands during the peak of the hurricane season, i.e., August and September 2006. Multiple Sahara dust layers were sampled during 62 encounters in the eastern portion of the hurricane main development region, covering both the eastern North Atlantic Ocean and the western Saharan desert (i.e., 5–22° N and 10–35° W. The centers of these layers were located at altitudes between 1.5 and 3.3 km and the layer thickness ranged from 0.5 to 3 km. Detailed dust microphysical and optical properties were characterized using a suite of in-situ instruments aboard the NASA DC-8 that included a particle counter, an Ultra-High Sensitivity Aerosol Spectrometer, an Aerodynamic Particle Sizer, a nephelometer, and a Particle Soot Absorption Photometer. The NAAMA sampling inlet has a size cut (i.e., 50% transmission efficiency size of approximately 4 μm in diameter for dust particles, which limits the representativeness of the NAMMA observational findings. The NAMMA dust observations showed relatively low particle number densities, ranging from 268 to 461 cm−3, but highly elevated volume density with an average at 45 μm3 cm−3. NAMMA dust particle size distributions can be well represented by tri-modal lognormal regressions. The estimated volume median diameter (VMD is averaged at 2.1 μm with a small range of variation regardless of the vertical and geographical sampling locations. The Ångström Exponent assessments exhibited strong wavelength dependence for absorption but a weak one for scattering. The single scattering albedo was estimated at 0.97 ± 0.02. The imaginary part of the refractive

  7. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    Directory of Open Access Journals (Sweden)

    A. Papayannis

    2012-05-01

    Full Text Available A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients properties of aerosols in the troposphere. The aerosol optical depth (AOD values derived from the CIMEL ranged from 0.33–0.91 (355 nm to 0.18–0.60 (532 nm, while the lidar ratio (LR values retrieved from the Raman lidar ranged within 75–100 sr (355 nm and 45–75 sr (532 nm. Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR355/532 and Ångström-extinction-related (AER355/532 were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively, indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10 + 0.007( ± 0.007i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide

  8. Atmospheric response to Saharan dust deduced from ECMWF reanalysis increments

    Science.gov (United States)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-04-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data - the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely-sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (> 0.5), low correlation, and high negative correlation (Forecast(ECMWF) suggests that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity, and downward (upward) airflow. These facts indicate an interaction between dust-forced heating /cooling and atmospheric circulation. The April correlation results are supported by the analysis of vertical distribution of dust concentration, derived from the 24-hour dust prediction system at Tel Aviv University (website: http://earth.nasa.proj.ac.il/dust/current/). For other months the analysis is more complicated because of the essential increasing of humidity along with the northward progress of the ITCZ and the significant impact on the increments.

  9. Downwind changes in grain size of aeolian dust; examples from marine and terrestrial archives

    Science.gov (United States)

    Stuut, Jan-Berend; Prins, Maarten

    2013-04-01

    Aeolian dust in the atmosphere may have a cooling effect when small particles in the high atmosphere block incoming solar energy (e.g., Claquin et al., 2003) but it may also act as a 'greenhouse gas' when larger particles in the lower atmosphere trap energy that was reflected from the Earth's surface (e.g., Otto et al., 2007). Therefore, it is of vital importance to have a good understanding of the particle-size distribution of aeolian dust in space and time. As wind is a very size-selective transport mechanism, the sediments it carries typically have a very-well sorted grain-size distribution, which gradually fines from proximal to distal deposition sites. This fact has been used in numerous paleo-environmental studies to both determine source-to-sink changes in the particle size of aeolian dust (e.g., Weltje and Prins, 2003; Holz et al., 2004; Prins and Vriend, 2007) and to quantify mass-accumulation rates of aeolian dust (e.g., Prins and Weltje 1999; Stuut et al., 2002; Prins et al., 2007; Prins and Vriend, 2007; Stuut et al., 2007; Tjallingii et al., 2008; Prins et al., 2009). Studies on modern wind-blown particles have demonstrated that particle size of dust not only is a function of lateral but also vertical transport distance (e.g., Torres-Padron et al., 2002; Stuut et al., 2005). Nonetheless, there are still many unresolved questions related to the physical properties of wind-blown particles like e.g., the case of "giant" quartz particles found on Hawaii (Betzer et al., 1988) that can only originate from Asia but have a too large size for the distance they travelled through the atmosphere. Here, we present examples of dust particle-size distributions from terrestrial (loess) as well as marine (deep-sea sediments) sedimentary archives and their spatial and temporal changes. With this contribution we hope to provide quantitative data for the modelling community in order to get a better grip on the role of wind-blown particles in the climate system. Cited

  10. Saharan dust - a carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    Directory of Open Access Journals (Sweden)

    V.H Garrison

    2006-12-01

    Full Text Available An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI, Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs, trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde and the Caribbean (USVI and Trinidad & Tobago. Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs and polycyclic aromatic hydrocarbons (PAHs and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions. Rev. Biol. Trop. 54 (Suppl. 3: 9-21. Epub 2007 Jan. 15.Un grupo internacional de agencias gubernamentales y universidades de los Estados Unidos, las Islas Vírgenes (EUA, Trinidad y Tobago, la República de Cabo Verde y la República de Mali (África Oeste, está trabajando en conjunto para elucidar el papel que el polvo del Sahara puede estar jugando en el deterioro de los ecosistemas caribeños. El

  11. The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol

    Science.gov (United States)

    Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi

    2018-01-01

    The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending on the

  12. Retrieval of Saharan desert dust optical depth from thermal infrared measurements by IASI

    Science.gov (United States)

    Vandenbussche, S.; Kochenova, S.; Vandaele, A.-C.; Kumps, N.; De Mazière, M.

    2012-04-01

    Aerosols are a major actor in the climate system. They are responsible for climate forcing by both direct (by emission, absorption and scattering) and indirect effects (for example, by altering cloud microphysics). A better knowledge of aerosol optical properties, of the atmospheric aerosol load and of aerosol sources and sinks may therefore significantly improve the modeling of climate changes. Aerosol optical depth and other properties are retrieved on an operational basis from daytime measurements in the visible and near infrared spectral range by a number of instruments, like the satellite instruments MODIS, CALIOP, POLDER, MISR and ground-based sunphotometers. Aerosol retrievals from day and night measurements at thermal infrared (TIR) wavelengths (for example, from SEVIRI, AIRS and IASI satellite instruments) are less common, but they receive growing interest in more recent years. Among those TIR measuring instruments, IASI on METOP has one major advantage for aerosol retrievals: its large continuous spectral coverage, allowing to better capture the broadband signature of aerosols. Furthermore, IASI has a high spectral resolution (0.5cm-1 after apodization) which allows retrieving a large number of trace gases at the same time, it will nominally be in orbit for 15 years and offers a quasi global Earth coverage twice a day. Here we will show recently obtained results of desert aerosol properties (concentration, altitude, optical depth) retrieved from IASI TIR measurements, using the ASIMUT software (BIRA-IASB, Belgium) linked to (V)LIDORT (R. Spurr, RTsolutions Inc, US) and to SPHER (M. Mishchenko, NASA GISS, USA). In particular, we will address the case of Saharan desert dust storms, which are a major source of desert dust particles in the atmosphere. Those storms frequently transport sand to Europe, Western Asia or even South America. We will show some test-case comparisons between our retrievals and measurements from other instruments like those listed

  13. How Saharan Dust Slows River Knickpoints: Coupling Vegetation Canopy, Soils and the Foundation of the Critical Zone

    Science.gov (United States)

    Brocard, G. Y.; Willenbring, J. K.; Harrison, E. J.; Scatena, F. N.

    2015-12-01

    Forest succession theory maintains that trees drape existing landscapes as passive niche optimizers, but in the Luquillo Mountains in Puerto Rico, the forest exerts a powerful control on erosion. The Luquillo Critical Zone observatory is set in the Luquillo Mountains, an isolated massif at the northeastern tip of Puerto Rico Island which receives up to five meters of rainfall annually. Most of the rainfall received in the mountains is conveyed as quick flow through soil macropores, inhibiting soil erosion by overland flow. Physical erosion is kept low, occurring in the form of infrequent shallow landslides, thus increasing the residence time of minerals in the near-surface environment. The extensive chemical alteration of minerals generates a thick saprolite covered by fine-grained soil. Over the quartz diorite bedrock that characterizes the southern side of the mountains, the weathering process generates saprolite tens of meters deep that is almost completely devoid of weatherable minerals. Soils forming over this saprolite are nutrient-poor, forcing the rainforest to retrieve its nutrients from atmospheric fluxes, such as Saharan dust and marine aerosols. These atmospheric inputs are thus indirectly essential for the forest to be able to maintain slow erosion rates over the mountains. At lower elevation, using cosmogenic nuclide-derived denudation rates, we identified a wave of incision which has been propagating upstream over the past 4 My in the form of very steep and slowly migrating knickpoints. Bedrock abrasion and plucking are infrequent along the knickpoint faces, because the bedrock is massive and because rivers are bedload-starved. This situation is due to the highly weathered upland soils and slow erosion rates and high weathering rate upstream, which acts to reduce bedload grain size and limits bedload fluxes to the knickpoint, respectively. The soils change radically where the wave of erosion has passed and has increased erosion rates. There, nutrient

  14. Short-term changes in the northwest African Upwelling System induced by Saharan dust deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, A G; Coca, J; Redondo, A [SeaSnet Canarias. Dpto. de Biologia (University of Las Palmas de Gran Canaria), Canary Islands (Spain); Cuevas, E; Alonso-Perez, S; Bustos, J J [Izana Atmospheric Research Center, Agencia Estatal de Meteorologia, Tenerife (Spain); Perez, C; Baldasano, J M [Earth Sciences Department. Barcelona Supercomputing Center, Barcelona (Spain); Nickovic, S [Atmospheric Research and Environment Branch, World Meteorological Organization, Geneva (Switzerland)], E-mail: aramos@pesca.gi.ulpgc.es

    2009-03-01

    During the last 7-year period (2000-2006) atmosphere circulation changes show strong influences on the dust storm deposition dynamics and, as a result, on the primary production dynamics of the northwest African Upwelling System. From 2000 to 2006, the annual mean sea level pressure became higher ranging from 1014 to 1015 mb. Mean annual zonal wind intensity became higher (from 1.1 to 1.8 m s{sup -1}), while the mean annual meridional was reduced from 6.2 to 5.3 m s{sup -1} at the north of the Canary Islands. Mean annual satellite-derived AVHRR/NOAA SST recorded in the northwest African Upwelling became warmer in both locations, from 18.3 deg. C to 18.8 deg. C in Cape Ghir and from 19.5 deg. C to 20.3 deg. C north Canary Islands waters. CHL records from the SeaWiFS/OV-2 showed a different pattern trend. Mean annual CHL levels increased at Cape Ghir from 0.65 mg m-3 to 0.9 mg m-3 and significantly reduced from 0.59 mg m{sup -3} to 0.31 mg m{sup -3} at the north of the Canary Islands. Changes observed in the role of CHL during the last 7-years period could be associated to intensive dust deposition and exceptional weather warming observed in this area since 2000. However, this study focused on a 7-year period and conclusions on possible links between dust deposition and marine biochemistry activity cannot be generalized.

  15. Short-term changes in the northwest African Upwelling System induced by Saharan dust deposition events

    International Nuclear Information System (INIS)

    Ramos, A G; Coca, J; Redondo, A; Cuevas, E; Alonso-Perez, S; Bustos, J J; Perez, C; Baldasano, J M; Nickovic, S

    2009-01-01

    During the last 7-year period (2000-2006) atmosphere circulation changes show strong influences on the dust storm deposition dynamics and, as a result, on the primary production dynamics of the northwest African Upwelling System. From 2000 to 2006, the annual mean sea level pressure became higher ranging from 1014 to 1015 mb. Mean annual zonal wind intensity became higher (from 1.1 to 1.8 m s -1 ), while the mean annual meridional was reduced from 6.2 to 5.3 m s -1 at the north of the Canary Islands. Mean annual satellite-derived AVHRR/NOAA SST recorded in the northwest African Upwelling became warmer in both locations, from 18.3 deg. C to 18.8 deg. C in Cape Ghir and from 19.5 deg. C to 20.3 deg. C north Canary Islands waters. CHL records from the SeaWiFS/OV-2 showed a different pattern trend. Mean annual CHL levels increased at Cape Ghir from 0.65 mg m-3 to 0.9 mg m-3 and significantly reduced from 0.59 mg m -3 to 0.31 mg m -3 at the north of the Canary Islands. Changes observed in the role of CHL during the last 7-years period could be associated to intensive dust deposition and exceptional weather warming observed in this area since 2000. However, this study focused on a 7-year period and conclusions on possible links between dust deposition and marine biochemistry activity cannot be generalized.

  16. Introduction to project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    Science.gov (United States)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2014-01-01

    The main goal of project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of eolian mineral dust. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension after atmospheric deposition at the sea surface. This introductory paper describes the objectives of DUNE and the implementation plan of a series of mesocosm experiments conducted in the Mediterranean Sea in 2008 and 2010 during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated based on the production of dust analogs from erodible soils of a source region. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented. From laboratory results on the solubility of trace elements in dust to biogeochemical results from the mesocosm experiments and associated modeling, these papers describe how the strong simulated dust deposition events impacted the marine biogeochemistry. Those multidisciplinary results are bringing new insights into the role of atmospheric deposition on oligotrophic ecosystems and its impact on the carbon budget. The dissolved trace metals with crustal origin - Mn, Al and Fe - showed different behaviors as a function of time after the seeding. The increase in dissolved Mn and Al concentrations was attributed to dissolution processes. The observed decrease in dissolved Fe was due to scavenging on sinking dust particles and aggregates. When a second dust seeding followed, a dissolution of Fe from the dust particles was then observed due to the excess Fe binding ligand concentrations present at that time. Calcium nitrate and sulfate were formed in the dust

  17. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  18. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  19. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Denjean

    2016-02-01

    Full Text Available This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco, time of transport (1–5 days and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l. than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling

  20. Effects of Saharan Mineral Dust Aerosols on the Dynamics of an Idealized African Easterly Jet-African Easterly Wave System over North Africa

    Science.gov (United States)

    Grogan, Dustin Francis Phillip

    The central objective of this work is to examine the direct radiative effects of Saharan mineral dust aerosols on the dynamics of African easterly waves (AEWs) and the African easterly jet (AEJ). Achieving this objective is built around two tasks that use the Weather Research and Forecasting (WRF) model coupled to an online dust model (WRF-dust model). The first task (Chapter 2) examines the linear dynamics of AEWs; the second task (Chapter 3) examines the nonlinear evolution of AEWs and their interactions with the AEJ. In Chapter 2, the direct radiative effects of dust on the linear dynamics of AEWs are examined analytically and numerically. The analytical analysis combines the thermodynamic equation with a dust continuity equation to form an expression for the generation of eddy available potential energy (APE) by the dust field. The generation of eddy APE is a function of the transmissivity and spatial gradients of the dust, which are modulated by the Doppler-shifted frequency. The expression predicts that for a fixed dust distribution, the wave response will be largest in regions where the dust gradients are maximized and the Doppler-shifted frequency vanishes. The numerical analysis calculates the linear dynamics of AEWs using zonally averaged basic states for wind, temperature and dust consistent with summertime conditions over North Africa. For the fastest growing AEW, the dust increases the growth rate from ~15% to 90% for aerosol optical depths ranging from tau=1.0 to tau=2.5. A local energetics analysis shows that for tau=1.0, the dust increases the maximum barotropic and baroclinic energy conversions by ~50% and ~100%, respectively. The maxima in the generation of APE and conversions of energy are co-located and occur where the meridional dust gradient is maximized near the critical layer, i.e., where the Doppler-shifted frequency is small, in agreement with the prediction from the analytical analysis. In Chapter 3, the direct radiative effects of dust

  1. Bacterial profiling of Saharan dust deposition in the Atlantic Ocean using sediment trap moorings – year one results

    Science.gov (United States)

    Munday, Chris; Brummer, Geert-Jan; van der Does, Michelle; Korte, Laura; Stuut, Jan-Berend

    2015-04-01

    Large quantities of dust are transported from the Sahara Desert across the Atlantic Ocean towards the Caribbean each year, with a large portion of it deposited in the ocean. This dust brings an array of minerals, nutrients and organic matter, both living and dead. This input potentially fertilizes phytoplankton growth, with resulting knock-on effects throughout the food chain. The input of terrestrial microbial life may also have an impact on the marine microbial community. The current multi-year project consists of a transect of floating dust collectors and sub-surface sediment traps placed at 12°N across the Atlantic Ocean. Sediment traps are located 1200m and 3500m below the sea surface and all are synchronized to collect samples for a period of two weeks. The aim is to understand the links between dust input and the bacterial community and how this relates to ocean productivity and the carbon cycle. The first set of sediment trap samples were recovered using the RV Pelagia in November 2013 with promising results. Results from 7 sediment traps (three at 1200m and four at 3500m) were obtained. In general, the total mass flux decreased as distance from the source increased and the upper traps generally held more material than those at 3500m. Denaturing Gradient Gel Electrophoresis (DGGE) was used as a screening technique, revealing highly varied profiles, with the upper (1200m) traps generally showing more variation throughout the year. Several samples have been submitted for high throughput DNA sequencing which will identify the variations in these samples.

  2. In situ aerosol characterization at Cape Verde. Part 2: Parametrization of relative humidity- and wavelength-dependent aerosol optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Schladitz, Alexander; Muller, Thomas; Nordmann, Stephan; Tesche, Matthias; Wiedensohler, Alfred (Leibniz Institute for Tropospheric Research (IfT), Leipzig (Germany)), e-mail: alexander.schladitz@tropos.de; Gross, Silke; Freudenthaler, Volker; Gasteiger, Josef (Meteorological Institute, Ludwig-Maximilians-Universitaet, Munich (Germany))

    2011-09-15

    An observation-based numerical study of humidity-dependent aerosol optical properties of mixed marine and Saharan mineral dust aerosol is presented. An aerosol model was developed based on measured optical and microphysical properties to describe the marine and Saharan dust aerosol at Cape Verde. A wavelength-dependent optical equivalent imaginary part of the refractive index and a scattering non-sphericity factor for Saharan dust were derived. Simulations of humidity effects on optical properties by the aerosol model were validated with relative measurements of the extinction coefficient at ambient conditions. Parametrizations were derived to describe the humidity dependence of the extinction, scattering, and absorption coefficients as well as the asymmetry parameter and single scattering albedo. For wavelengths (300-950 nm) and dry dust volume fractions (0-1), aerosol optical properties as a function of relative humidity (RH = 0-90%) can be calculated from tabulated parameters. For instance, at a wavelength of 550 nm, a volume fraction of 0.5 of dust on the total particle volume (dry conditions) and a RH of 90%, the enhancements for the scattering, extinction and absorption coefficients are 2.55, 2.46 and 1.04, respectively, while the enhancements for the asymmetry parameter and single scattering albedo are 1.11 and 1.04

  3. Ice nucleating particles in the Saharan Air Layer

    Directory of Open Access Journals (Sweden)

    Y. Boose

    2016-07-01

    Full Text Available This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL, the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l., in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC. Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L−1 in the deposition mode and up to 2500 std L−1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43–0.67 and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher

  4. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  5. Atmospheric response to Saharan dust deduced from ECMWF reanalysis (ERA) temperature increments

    Science.gov (United States)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-09-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in the reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the lack of dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (>0.5), low correlation and high negative correlation (Forecast (ECMWF) suggest that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity and downward (upward) airflow. These findings are associated with the interaction between dust-forced heating/cooling and atmospheric circulation. This paper contributes to a better understanding of dust radiative processes missed in the model.

  6. Radioecological impact of Saharan dusts fallout. Case study of a major event on the 21. of february 2004 in south part of France

    International Nuclear Information System (INIS)

    Masson, O.; Pourcelot, L.; Gurriaran, R.; Paulat, P.

    2005-01-01

    Lithometeors, Sirocco or more commonly 'red mud' are all in fact related to a single phenomenon which affects France every year: the wind transport and deposit of desert particles from the Sahara. On the 21. of February 2004, the southern part of France is swept by a weather event of wind transport of Saharan particles. The recordings of atmospheric dust contamination and the deposit of dust, which results from it, make an episode of exceptional width. In a few hours, the thickness of the deposit exceeds 1 mm (up to 4 mm in Corsica) with a maximum density of surface charge of 50 g.m -2 (50 tons per km 2 ). The loads of the PM 10 type particles in the air, recorded by associations of monitoring of the quality of the air, indicate concentrations multiplied to the maximum by 10 and an influence on the ground of the plume ranging between 300 000 and 350 000 km 2 . To the end, 2 million tons are deposited on a portion of the territory located at the south of a line from Nantes to Besancon. This event also had a significant radio-ecological impact, leading to significant 137 Cs, (239+240) Pu, 241 Am, activity levels of 38 Bq. kg -1 sec, 1 Bq. kg -1 sec and 0,46 Bq. kg -1 sec, respectively. Quality of air monitoring organisations recorded 10-fold increases in the concentration of charged PM 10 2 type particles within the cloud; ground coverage stretched over a 300 000 km 2 surface area. Across this whole area, the artificial radioactivity deposits are estimated to 37.10 10 Bq. In term of flow of deposit, this episode represents, with him only, i.e. in a few hours, a 137 Cs deposition equivalent to that recorded on average in a cumulated time of one year. Data from this study show that these weather-climatic episodes generate today, environmental samples which on average, present the highest levels and flux of artificial radioactivities, more than those in the sediments of the Rhone river deposited by flood events, for example. Changes in artificial radionuclide activity

  7. Effect of type and concentration of ballasting particles on sinking rate of marine snow produced by the Appendicularian Oikopleura dioica

    DEFF Research Database (Denmark)

    Lombard, Fabien; Guidi, L.; Kiørboe, Thomas

    2013-01-01

    Ballast material (organic, opal, calcite, lithogenic) is suggested to affect sinking speed of aggregates in the ocean. Here, we tested this hypothesis by incubating appendicularians in suspensions of different algae or Saharan dust, and observing the sinking speed of the marine snow formed...... by their discarded houses. We show that calcite increases the sinking speeds of aggregates by ~100% and lithogenic material by ~150% while opal only has a minor effect. Furthermore the effect of ballast particle concentration was causing a 33 m d-1 increase in sinking speed for a 5×105 μm3 ml-1 increase in particle...

  8. Role of Surface Wind and Vegetation Cover in Multi-decadal Variations of Dust Emission in the Sahara and Sahel

    Science.gov (United States)

    Kim, Dong; Chin, Mian; Remer, Lorraine A.; Diehl, Thomas L.; Bian, Huisheng; Yu, Hongbin; Brown, Molly E.; Stockwell, William R.

    2016-01-01

    North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82 of the continental North Africa dust emission (1340-1570 Tg year(exp -1) in the 27-year average, the Sahel accounts for 17 with a larger seasonal and inter-annual variation (230-380 Tg year(exp -1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R equals 0.92). Over the Sahel, the dust emission is correlated with W10m (R 0.69) but is also anti-correlated with the trend of NDVI (R equals 0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R equals 0.53), suggesting that Saharan Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.

  9. Desert Dust Outbreaks over Mediterranean Basin: A Modeling, Observational, and Synoptic Analysis Approach

    Directory of Open Access Journals (Sweden)

    F. Calastrini

    2012-01-01

    Full Text Available Dust intrusions from African desert regions have an impact on the Mediterranean Basin (MB, as they cause an anomalous increase of aerosol concentrations in the tropospheric column and often an increase of particulate matter at the ground level. To estimate the Saharan dust contribution to PM10, a significant dust intrusion event that occurred in June 2006 is investigated, joining numerical simulations and specific measurements. As a first step, a synoptic analysis of this episode is performed. Such analysis, based only on meteorological and aerosol optical thickness observations, does not allow the assessment of exhaustive informations. In fact, it is not possible to distinguish dust outbreaks transported above the boundary layer without any impact at the ground level from those causing deposition. The approach proposed in this work applies an ad hoc model chain to describe emission, transport and deposition dynamics. Furthermore, physical and chemical analyses (PIXE analysis and ion chromatography were used to measure the concentration of all soil-related elements to quantify the contribution of dust particles to PM10. The comparison between simulation results and in-situ measurements show a satisfying agreement, and supports the effectiveness of the model chain to estimate the Saharan dust contribution at ground level.

  10. Inverse Relationship of Marine Aerosol and Dust in Antarctic Ice with Fine-Grained Sediment in the South Atlantic Ocean: Implications for Sea-Ice Coverage and Wind Strength

    Directory of Open Access Journals (Sweden)

    Sharon L. Kanfoush

    2012-03-01

    Full Text Available This research seeks to test the hypothesis that natural gamma radiation (NGR from Ocean Drilling Program Site 1094, which displays variability over the last glacial-interglacial cycle similar to dust in the Vostok ice core, reflects fine-grained terrigenous sediment delivered by eolian processes. Grain size was measured on 400 samples spanning 0–20 m in a composite core. Accumulation of the <63μ size fraction at Site 1094 and dust in Vostok exhibit a negative correlation, suggesting the fine sediments are not dominantly eolian. However the technique used for grain size measurements cannot distinguish between terrigenous and biogenous materials; therefore it is possible much fine-grained material is diatoms. An inverse correlation between fine sediments and NGR supports this interpretation, and implies terrigenous materials were at times diluted by microfossils from high biological productivity. Fine marine sediments correlate positively with temperature and negatively with marine aerosol Na+ in Vostok. One plausible explanation is extensive sea-ice of cold intervals steepened ocean-continent temperature gradients, intensified winds, and led to increased transport of dust and marine aerosol to Antarctica yet also reduced biological productivity at Site 1094. Such a reduction despite increases in NGR, potentially representing Fe-rich dust influx, would require light limitation or stratification associated with sea-ice.

  11. Atmospheric dust contribution to budget of U-series nuclides in weathering profiles. The Mount Cameroon volcano

    Science.gov (United States)

    Pelt, E.; Chabaux, F. J.; Innocent, C.; Ghaleb, B.

    2009-12-01

    Analysis of U-series nuclides in weathering profiles is developed today for constraining time scale of soil and weathering profile formation (e.g., Chabaux et al., 2008). These studies require the understanding of U-series nuclides sources and fractionation in weathering systems. For most of these studies the impact of aeolian inputs on U-series nuclides in soils is usually neglected. Here, we propose to discuss such an assumption, i.e., to evaluate the impact of dust deposition on U-series nuclides in soils, by working on present and paleo-soils collected on the Mount Cameroon volcano. Recent Sr, Nd, Pb isotopic analyses performed on these samples have indeed documented significant inputs of Saharan dusts in these soils (Dia et al., 2006). We have therefore analyzed 238U-234U-230Th nuclides in the same samples. Comparison of U-Th isotopic data with Sr-Nd-Pb isotopic data indicates a significant impact of the dust input on the U and Th budget of the soils, around 10% for both U and Th. Using Sr-Nd-Pb isotopic data of Saharan dusts given by Dia et al. (2006) we estimate U-Th concentrations and U-Th isotope ratios of dusts compatible with U-Th data obtained on Saharan dusts collected in Barbados (Rydell H.S. and Prospero J.M., 1972). However, the variations of U/Th ratios along the weathering profiles cannot be explained by a simple mixing scenario between material from basalt and from the defined atmospheric dust pool. A secondary uranium migration associated with chemical weathering has affected the weathering profiles. Mass balance calculation suggests that U in soils from Mount Cameroon is affected at the same order of magnitude by both chemical migration and dust accretion. Nevertheless, the Mount Cameroon is a limit case were large dust inputs from continental crust of Sahara contaminate basaltic terrain from Mount Cameroon volcano. Therefore, this study suggests that in other contexts were dust inputs are lower, or the bedrocks more concentrated in U and Th

  12. Atmospheric Dust Modeling from Meso to Global Scales with the Online NMMB/BSC-Dust Model Part 2: Experimental Campaigns in Northern Africa

    Science.gov (United States)

    Haustein, K.; Perez, C.; Baldasano, J. M.; Jorba, O.; Basart, S.; Miller, R. L.; Janjic, Z.; Black, T.; Nickovic, S.; Todd, M. C.; hide

    2012-01-01

    The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (Perez et al., 2011) develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD) was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6-0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1) in 2006 and the Bodele Dust Experiment (BoDEx) in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ) and the dust AOD over the Bodélé are well reproduced

  13. The potential of the synergistic use of passive and active remote sensing measurements for the validation of a regional dust model

    Directory of Open Access Journals (Sweden)

    V. Amiridis

    2009-08-01

    Full Text Available A long-lasting Saharan dust event affected Europe on 18–23 May 2008. Dust was present in the free troposphere over Greece, in height ranges between the surface and approximately 4–5 km above sea level. The event was monitored by ground-based CIMEL sunphotometric and multi-wavelength combined backscatter/Raman lidar measurements over Athens, Greece. The dust event had the maximum of its intensity on 20 May. Three-dimensional dust spatial distribution over Greece on that day is presented through satellite synergy of passive and active remote sensing using MODIS and CALIPSO data, respectively. For the period under study, the ground-based measurements are used to characterize the dust event and evaluate the latest version of the BSC Dust Regional Atmospheric Modeling (BSC-DREAM system. Comparisons of modeled and measured aerosol optical depths over Athens show that the Saharan dust outbreak is fairly well captured by BSC-DREAM simulations. Evaluation of BSC-DREAM using Raman lidar measurements on 20 May shows that the model consistently reproduces the dust vertical distribution over Athens.

  14. Impacts of Dust on Tropical Volcanic Soil Formation: Insights from Strontium and Uranium-Series Isotopes in Soils from Basse-Terre Island, French Guadeloupe

    Science.gov (United States)

    Pereyra, Y.; Ma, L.; Sak, P. B.; Gaillardet, J.; Buss, H. L.; Brantley, S. L.

    2015-12-01

    Dust inputs play an important role in soil formation, especially for thick soils developed on tropical volcanic islands. In these regions, soils are highly depleted due to intensive chemical weathering, and mineral nutrients from dusts have been known to be important in sustaining soil fertility and productivity. Tropical volcanic soils are an ideal system to study the impacts of dust inputs on the ecosystem. Sr and U-series isotopes are excellent tracers to identify sources of materials in an open system if the end-members have distinctive isotope signatures. These two isotope systems are particularly useful to trace the origin of atmospheric inputs into soils and to determine rates and timescales of soil formation. This study analyzes major elemental concentrations, Sr and U-series isotope ratios in highly depleted soils in the tropical volcanic island of Basse-Terre in French Guadeloupe to determine atmospheric input sources and identify key soil formation processes. We focus on three soil profiles (8 to 12 m thick) from the Bras-David, Moustique Petit-Bourg, and Deshaies watersheds; and on the adjacent rivers to these sites. Results have shown a significant depletion of U, Sr, and major elements in the deep profile (12 to 4 m) attributed to rapid chemical weathering. The top soil profiles (4 m to the surface) all show addition of elements such as Ca, Mg, U, and Sr due to atmospheric dust. More importantly, the topsoil profiles have distinct Sr and U-series isotope compositions from the deep soils. Sr and U-series isotope ratios of the top soils and sequential extraction fractions confirm that the sources of the dust are from the Saharan dessert, through long distance transport from Africa to the Caribbean region across the Atlantic Ocean. During the transport, some dust isotope signatures may also have been modified by local volcanic ashes and marine aerosols. Our study highlights that dusts and marine aerosols play important roles in element cycles and

  15. Ice nucleation properties of mineral dust particles: determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles

    Directory of Open Access Journals (Sweden)

    S. Dobbie

    2010-01-01

    Full Text Available A newly developed ice nucleation experimental set up was used to investigate the heterogeneous ice nucleation properties of three Saharan and one Spanish dust particle samples. It was observed that the spread in the onset relative humidities with respect to ice (RHi for Saharan dust particles varied from 104% to 110%, whereas for the Spanish dust from 106% to 110%. The elemental composition analysis shows a prominent Ca feature in the Spanish dust sample which could potentially explain the differences in nucleation threshold. Although the spread in the onset RHi for the three Saharan dust samples were in agreement, the active fractions and nucleation time-lags calculated at various temperature and RHi conditions were found to differ. This could be due to the subtle variation in the elemental composition of the dust samples, and surface irregularities like steps, cracks, cavities etc. A combination of classical nucleation theory and active site theory is used to understand the importance of these surface irregularities on the nucleability parameter, contact angle that is widely used in ice cloud modeling. These calculations show that the surface irregularities can reduce the contact angle by approximately 10 degrees.

  16. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 2: Experimental campaigns in Northern Africa

    Directory of Open Access Journals (Sweden)

    K. Haustein

    2012-03-01

    Full Text Available The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (Pérez et al., 2011 develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6–0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1 in 2006 and the Bodélé Dust Experiment (BoDEx in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ and the dust AOD over the Bodélé are

  17. Optical characteristics of desert dust over the East Mediterranean during summer: a case study

    Directory of Open Access Journals (Sweden)

    D. Balis

    2006-05-01

    Full Text Available High aerosol optical depth (AOD values, larger than 0.6, are systematically observed in the Ultraviolet (UV region both by sunphotometers and lidar systems over Greece during summertime. To study in more detail the characteristics and the origin of these high AOD values, a campaign took place in Greece in the frame of the PHOENICS (Particles of Human Origin Extinguishing Natural solar radiation In Climate Systems and EARLINET (European Aerosol Lidar Network projects during August–September of 2003, which included simultaneous sunphotometric and lidar measurements at three sites covering the north-south axis of Greece: Thessaloniki, Athens and Finokalia, Crete. Several events with high AOD values have been observed over the measuring sites during the campaign period, many of them corresponding to Saharan dust. In this paper we focused on the event of 30 and 31 August 2003, when a dust layer in the height range of 2000-5000 m, progressively affected all three stations. This layer showed a complex behavior concerning its spatial evolution and allowed us to study the changes in the optical properties of the desert dust particles along their transport due to aging and mixing with other types of aerosol. The extinction-to-backscatter ratio determined on the 30 August 2003 at Thessaloniki was approximately 50 sr, characteristic for rather spherical mineral particles, and the measured color index of 0.4 was within the typical range of values for desert dust. Mixing of the desert dust with other sources of aerosols resulted the next day in overall smaller and less absorbing population of particles with a lidar ratio of 20 sr. Mixing of polluted air-masses originating from Northern Greece and Crete and Saharan dust result in very high aerosol backscatter values reaching 7 Mm-1 sr-1 over Finokalia. The Saharan dust observed over Athens followed a different spatial evolution and was not mixed with the boundary layer aerosols mainly originating from

  18. Direct Radiative Effect of Mineral Dust on the Development of African Easterly Wave in Late Summer, 2003-2007

    Science.gov (United States)

    Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong; Matsui, Toshihisa; Arking, Albert

    2012-01-01

    Episodic events of both Saharan dust outbreaks and African Easterly Waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan Air Layer (SAL) on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting (WRF) model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximum tropical cyclone activity, in years 2003-2007. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, most AEWs intensify in the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. We conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.

  19. Sensitivity of Sahelian Precipitation to Desert Dust under ENSO variability: a regional modeling study

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.

    2016-12-01

    Mineral dust is estimated to comprise over half the total global aerosol burden, with a majority coming from the Sahara and Sahel region. Bounded by the Sahara Desert to the north and the Sahelian Savannah to the south, the Sahel experiences high interannual rainfall variability and a short rainy season during the boreal summer months. Observation-based data for the past three decades indicates a reduced dust emission trend, together with an increase in greening and surface roughness within the Sahel. Climate models used to study regional precipitation changes due to Saharan dust yield varied results, both in sign convention and magnitude. Inconsistency of model estimates drives future climate projections for the region that are highly varied and uncertain. We use the NASA-Unified Weather Research and Forecasting (NU-WRF) model to quantify the interaction and feedback between desert dust aerosol and Sahelian precipitation. Using nested domains at fine spatial resolution we resolve changes to mesoscale atmospheric circulation patterns due to dust, for representative phases of El Niño-Southern Oscillation (ENSO). The NU-WRF regional earth system model offers both advanced land surface data and resolvable detail of the mechanisms of the impact of Saharan dust. Results are compared to our previous work assessed over the Western Sahel using the Geophysical Fluid Dynamics Laboratory (GFDL) CM2Mc global climate model, and to other previous regional climate model studies. This prompts further research to help explain the dust-precipitation relationship and recent North African dust emission trends. This presentation will offer a quantitative analysis of differences in radiation budget, energy and moisture fluxes, and atmospheric dynamics due to desert dust aerosol over the Sahel.

  20. Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005

    Science.gov (United States)

    Todd, Martin C.; Washington, Richard; Martins, José Vanderlei; Dubovik, Oleg; Lizcano, Gil; M'bainayel, Samuel; Engelstaedter, Sebastian

    2007-03-01

    Mineral dust in the atmosphere is an important component of the climate system but is poorly quantified. The Bodélé Depression of northern Chad stands out as the world's greatest source region of mineral dust into the atmosphere. Frequent dust plumes are a distinguishing feature of the region's climate. There is a need for more detailed information on processes of dust emission/transport and dust optical properties to inform model simulations of this source. During the Bodélé Dust Experiment (BoDEx) in 2005, instrumentation was deployed to measure dust properties and boundary layer meteorology. Observations indicate that dust emission events are triggered when near-surface wind speeds exceed 10 ms-1, associated with synoptic-scale variability in the large-scale atmospheric circulation. Dust emission pulses in phase with the diurnal cycle of near-surface winds. Analysis of dust samples shows that the dust consists predominantly of fragments of diatomite sediment. The particle size distribution of this diatomite dust estimated from sun photometer data, using a modified Aeronet retrieval algorithm, indicates a dominant coarse mode (radius centered on 1-2 μm) similar to other Saharan dust observations. Single-scattering albedo values are high, broadly in line with other Saharan dust even though the diatomite composition of dust from the Bodélé is likely to be unusual. The radiative impact of high dust loadings results in a reduction in surface daytime maximum temperature of around 7°C in the Bodélé region. Using optical and physical properties of dust obtained in the field, we estimate the total dust flux emitted from the Bodélé to be 1.18 ± 0.45 Tg per day during a substantial dust event. We speculate that the Bodélé Depression (˜10,800 km2) may be responsible for between 6-18% of global dust emissions, although the uncertainty in both the Bodélé and global estimates remains high.

  1. Dust Deposition Events on Mt. Elbrus, Caucasus Mountains in the 21st Century Reconstructed from the Shallow Firn and Ice Cores (Invited)

    Science.gov (United States)

    Shahgedanova, M.; Kutuzov, S.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.

    2013-12-01

    This paper presents and discusses a record of dust deposition events reconstructed from the shallow firn and ice cores extracted on the Western Plateau, Mt. Elbrus, Caucasus Mountains, Russia. A combination of SEVIRI imagery, HYSPLIT trajectory model, meteorological and atmospheric optical depth data were used to establish timing of deposition events and source regions of dust with very high temporal (hours) and spatial (c. 50-100 km) resolution. The source regions of the desert dust transported to Mt. Elbrus were primarily located in the Middle East, in particular in eastern Syria and in the Syrian Desert at the border between Saudi Arabia, Iraq and Jordan. Northern Sahara, the foothills of the Djebel Akhdar Mountains in eastern Libya and the border region between Libya and Algeria were other important sources of desert dust. Dust sources in the Sahara were natural (e.g. palaeolakes and alluvial deposits in the foothills) while in the Middle East, dust entrainment occurred from both natural (e.g. dry river beds) and anthropogenic (e.g. agricultural fields) sources. The overall majority of dust deposition events occurred between March and June and, less frequently, dust deposition events occurred in February and October. In all cases, dust deposition was associated with depressions causing strong surface wind and dust uplift in the source areas, transportation of dust to the Caucasus with a strong south-westerly flow from the Sahara or southerly flow from the Middle East, merging of the dust clouds with precipitation-bearing weather fronts and precipitation over the Caucasus region. The Saharan depressions were vigorous and associated with stronger daily wind speeds of 20-30 m/s at the 700 hPa level; depressions forming over the Middle East and the associated wind speeds were weaker at 12-15 m/s. The Saharan depressions were less frequent than those carrying dust from the Middle East but higher dust loads were associated with the Saharan depressions. A higher

  2. Major dust events in Europe during marine isotope stage 5 (130–74 ka: a climatic interpretation of the "markers"

    Directory of Open Access Journals (Sweden)

    D.-D. Rousseau

    2013-09-01

    Full Text Available At present, major dust storms are occurring at mid-latitudes in the Middle East and Asia, as well as at low latitudes in Northern Africa and in Australia. Western Europe, though, does not experience such dramatic climate events, except for some African dust reaching it from the Sahara. This modern situation is of particular interest, in the context of future climate projections, since the present interglacial is usually interpreted, in this context, as an analog of the warm Eemian interval. European terrestrial records show, however, major dust events during the penultimate interglacial and early glacial. These events are easily observed in loess records by their whitish-color deposits, which lie above and below dark chernozem paleosols in Central European records of Marine Isotope Stage (MIS 5 age. We describe here the base of the Dolni Vestonice (DV loess sequence, Czech Republic, as the reference of such records. The dust is deposited during intervals that are characterized by poor vegetation – manifested by high δ13C values and low magnetic susceptibility – while the fine sand and clay in the deposits shows grain sizes that are clearly different from the overlying pleniglacial loess deposits. Some of these dust events have been previously described as "Markers" or Marker Silts (MS by one of us (G. Kukla, and are dated at about 111–109 ka and 93–92 ka, with a third and last one slightly visible at about 75–73 ka. Other events correspond to the loess material of Kukla's cycles, and are described as eolian silts (ES; they are observed in the same DV sequence and are dated at about 106–105 ka, 88–86 ka, and 78.5–77 ka. These dates are determined by considering the OSL ages with their errors measured on the studied sequence, and the comparison with Greenland ice-core and European speleothem chronologies. The fine eolian deposits mentioned above, MS as well as ES, correspond to short events that lasted about 2 ka; they are

  3. Diagnosis of the Relationship between Dust Storms over the Sahara Desert and Dust Deposit or Coloured Rain in the South Balkans

    Directory of Open Access Journals (Sweden)

    N. G. Prezerakos

    2010-01-01

    Full Text Available The main objects of study in this paper are the synoptic scale atmospheric circulation systems associated with the rather frequent phenomenon of coloured rain and the very rare phenomenon of dust or sand deposits from a Saharan sandstorm triggered by a developing strong depression. Analysis of two such cases revealed that two days before the occurrence of the coloured rain or the dust deposits over Greece a sand storm appeared over the north-western Sahara desert. The flow in the entire troposphere is southerly/south-westerly with an upward vertical motion regime. If the atmospheric conditions over Greece favour rain then this rain contains a part of the dust cloud while the rest is drawn away downstream adopting a light yellow colour. In cases where the atmospheric circulation on the route of the dust cloud trajectories is not intensively anticyclonic dust deposits can occur on the surface long far from the region of the dust origin. Such was the case on 4th April, 1988, when significant synoptic-scale subsidence occurred over Italy and towards Greece. The upper air data, in the form of synoptic maps, illustrate in detail the synoptic-scale atmospheric circulations associated with the emission-transport-deposition and confirm the transportation of dust particles.

  4. Linkages between observed, modeled Saharan dust loading and meningitis in Senegal during 2012 and 2013

    Science.gov (United States)

    Diokhane, Aminata Mbow; Jenkins, Gregory S.; Manga, Noel; Drame, Mamadou S.; Mbodji, Boubacar

    2016-04-01

    The Sahara desert transports large quantities of dust over the Sahelian region during the Northern Hemisphere winter and spring seasons (December-April). In episodic events, high dust concentrations are found at the surface, negatively impacting respiratory health. Bacterial meningitis in particular is known to affect populations that live in the Sahelian zones, which is otherwise known as the meningitis belt. During the winter and spring of 2012, suspected meningitis cases (SMCs) were with three times higher than in 2013. We show higher surface particular matter concentrations at Dakar, Senegal and elevated atmospheric dust loading in Senegal for the period of 1 January-31 May during 2012 relative to 2013. We analyze simulated particulate matter over Senegal from the Weather Research and Forecasting (WRF) model during 2012 and 2013. The results show higher simulated dust concentrations during the winter season of 2012 for Senegal. The WRF model correctly captures the large dust events from 1 January-31 March but has shown less skill during April and May for simulated dust concentrations. The results also show that the boundary conditions are the key feature for correctly simulating large dust events and initial conditions are less important.

  5. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  6. Vertical distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings

    Science.gov (United States)

    Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.

    2005-03-01

    Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in observations of dust vertical profiles. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar observations to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar vertical profiles collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed vertical profiles, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust vertical distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume profiles. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect

  7. Investigating the use of the Saharan dust index as a tool for the detection of volcanic ash in SEVIRI imagery

    Science.gov (United States)

    Taylor, Isabelle; Mackie, Shona; Watson, Matthew

    2015-10-01

    Despite the similar spectral signatures of ash and desert dust, relatively little has been done to explore the application of dust detection techniques to the problem of volcanic ash detection. The Saharan dust index (SDI) is routinely implemented for dust monitoring at some centres and could be utilised for volcanic ash detection with little computational expense, thereby providing a product that forecasters already have some familiarity with to complement the suite of existing ash detection tools. We illustrate one way in which the index could be implemented for the purpose of ash detection by applying it to three scenes containing volcanic ash from the 2010 Eyjafjallajökull eruption, Iceland and the 2011 eruption of Puyehue, Chile. It was also applied to an image acquired over Etna in January 2011, where a volcanic plume is clearly visible but is unlikely to contain any ash. These examples demonstrate the potential of the SDI as a tool for ash monitoring under different environmental and atmospheric conditions. In addition to presenting a valuable qualitative product to aid monitoring, this work includes a quantitative assessment of the detection skill using a manually constructed expert ash mask. The optimum implementation of any technique is likely to be dependent on both atmospheric conditions and on the properties of the imaged ash (which is often unknown in a real-time situation). Here we take advantage of access to a 'truth' rarely available in a real-time situation and calculate an ash mask based on the optimum threshold for the specific scene, which is then used to demonstrate the potential of the SDI. The SDI mask is compared to masks calculated from a simplistic implementation of the more traditional split window method, again exploiting our access to the 'truth' to set the most appropriate threshold for each scene, and to a probabilistic method that is implemented without reference to the 'truth' and which provides useful insights into the likely

  8. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali; Stenchikov, Georgiy L.; Weinzierl, Bernadett; Kalenderski, Stoitchko; Osipov, Sergey

    2015-01-01

    outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest that more detailed treatment

  9. Influence of mineral dust transport on the chemical composition and physical properties of the Eastern Mediterranean aerosol

    Science.gov (United States)

    Koçak, M.; Theodosi, C.; Zarmpas, P.; Séguret, M. J. M.; Herut, B.; Kallos, G.; Mihalopoulos, N.; Kubilay, N.; Nimmo, M.

    2012-09-01

    Bulk aerosol samples were collected from three different coastal rural sites located around the Eastern Mediterranean, (i) Erdemli (ER), Turkey, (ii) Heraklion (HR), Crete, Greece, and (iii) Tel Shikmona (TS), Israel, during two distinct mineral dust periods (October, 2007 and April, 2008) in order to explore the temporal and geographical variability in the aerosol chemical composition. Samples were analyzed for trace elements (Al, Fe, Mn, Ca, Cr, Zn, Cu, V, Ni, Cd, Pb) and water-soluble ions (Cl-, NO3-, SO42-, C2O42-, Na+, NH4+, K+, Mg2+ and Ca2+). The dust events were categorized on the basis of Al concentrations >1000 ng m-3, SKIRON dust forecast model and 3-day back trajectories into three groups namely, Middle East, Mixed and Saharan desert. ER and TS were substantially affected by dust events originating from the Middle East, particularly in October, whilst HR was not influenced by dust transport from the Middle East. Higher AOT values were particularly associated with higher Al concentrations. Contrary to the highest Al concentration: 6300 ng m-3, TS showed relatively lower AI and AOT. Al concentrations at ER were similar for October and April, whilst OMI-AI and AOT values were ˜2 times higher in April. This might be attributed to the weak sensitivity of the TOMS instrument to absorbing aerosols near the ground and optical difference between Middle East and Saharan desert dusts. The lowest enhancement of anthropogenic aerosol species was observed at HR during dust events (nssSO42-/nssCa2+ ˜ 0.13). These species were particularly enhanced when mineral dust arrived at sites after passing through populated and industrialized urban areas.

  10. Millennial-scale variability in dust deposition, marine export production, and nutrient consumption in the glacial subantarctic ocean (Invited)

    Science.gov (United States)

    Martinez-Garcia, A.; Sigman, D. M.; Anderson, R. F.; Ren, H. A.; Hodell, D. A.; Straub, M.; Jaccard, S.; Eglinton, T. I.; Haug, G. H.

    2013-12-01

    Based on the limitation of modern Southern Ocean phytoplankton by iron and the evidence of higher iron-bearing dust fluxes to the ocean during ice ages, it has been proposed that iron fertilization of Southern Ocean phytoplankton contributed to the reduction in atmospheric CO2 during ice ages. In the Subantarctic zone of the Atlantic Southern Ocean, glacial increases in dust flux and export production have been documented, supporting the iron fertilization hypothesis. However, these observations could be interpreted alternatively as resulting from the equatorward migration of Southern Ocean fronts during ice ages if the observed productivity rise was not accompanied by an increase in major nutrient consumption. Here, new 230Th-normalized lithogenic and opal fluxes are combined with high-resolution biomarker measurements to reconstruct millennial-scale changes in dust deposition and marine export production in the subantarctic Atlantic over the last glacial cycle. In the same record foraminifera-bound nitrogen isotopes are used to reconstruct ice age changes in surface nitrate utilization, providing a comprehensive test of the iron fertilization hypothesis. Elevation in foraminifera-bound δ15N, indicating more complete nitrate consumption, coincides with times of surface cooling and greater dust flux and export production. These observations indicate that the ice age Subantarctic was characterized by iron fertilized phytoplankton growth. The resulting strengthening of the Southern Ocean's biological pump can explain the ~40 ppm lowering of CO2 that characterizes the transitions from mid-climate states to full ice age conditions as well as the millennial-scale atmospheric CO2 fluctuations observed within the last ice age

  11. Impact of Dust on Air Quality and Radiative Forcing : AN Episodic Study for the Megacity Istanbul Using RegCM4.1

    Science.gov (United States)

    Agacayak, T.; Kindap, T.; Unal, A.; Mallet, M.; Pozzoli, L.; Karaca, M.; Solmon, F.

    2012-04-01

    Istanbul is a megacity (with population over 15 million) that has significant levels of Particulate Matter concentrations. It is suspected that long-range transport of Saharan dust is one of the main contributors. The purpose of this study is to investigate the relationship between high PM concentrations and dust transport using atmospheric modeling, satellite data as well as in-situ observations. Measurements of PM10 concentrations at 10 different stations in Istanbul for the period 2004-2010 were provided by the Turkish Ministry of Environment. Daily mean PM10 concentrations exceeding the European standard of 50 µg/m3 were found to be, on average, 49 days for the Spring period, 45 days for the Winter period, and 41 days for the Fall period. DREAM model output (Nickovic et al. 2001; Perez et al. 2006) suggests that high PM10 concentrations correlate highly with mineral dust transport episodes from Saharan desert (i.e., 23% for winter and 58% for spring). In this study, we have utilized RegCM4.1 model to further investigate the Saharan dust transport in the selected episodes. During the period between March 21st and 24th, 2008, observed daily mean of PM10 concentrations reach up to 140 µg/m3 in Istanbul. Simulations conducted by RegCM4.1 provides AOD (350-640 nm model band) values ranging between 0.04 and 0.98during this episode. Central Anatolia is affected from the dust transport on 21 and 22 March 2008, with a daily mean AOD of 0.9. On 23th March 2008, the dust plume reaches the Marmara Sea and AOD increases about 1.0 over the region according to both DREAM and RegCM4.1 model outputs. On the fourth day of the episode, the dust event stops and AOD decreases to 0.5 over the region. Asymmetry parameters can be seen as 0.62 during the dust episode, while single scattering albedo is about 0.93 during the entire dust episode over Istanbul. The effect of the dust episode on the regional radiative budget over Istanbul was also estimated. Model results indicate a daily

  12. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  13. Light scattering and absorption properties of dust particles retrieved from satellite measurements

    International Nuclear Information System (INIS)

    Hu, R.-M.; Sokhi, R.S.

    2009-01-01

    We use the radiative transfer model and chemistry transport model to improve our retrievals of dust optical properties from satellite measurements. The optical depth and absorbing optical depth of mineral dust can be obtained from our improved retrieval algorithm. We find the nonsphericity and absorption of dust particles strongly affect the scattering signatures such as phase function and polarization at the ultraviolet wavelengths. From our retrieval results, we find the high levels of dust concentration occurred over most desert regions such as Saharan and Gobi deserts. The dust absorption is found to be sensitive to mineral chemical composition, particularly the fraction of strongly absorbing dust particles. The enhancement of polarization at the scattering angles exceeding 120 0 is found for the nonspherical dust particles. If the polarization is neglected in the radiative transfer calculation, a maximum 50 percent error is introduced for the case of forward scattering and 25 percent error for the case of backscattering. We suggest that the application of polarimeter at the ultraviolet wavelengths has the great potential to improve the satellite retrievals of dust properties. Using refined optical model and radiative transfer model to calculate the solar radiative forcing of dust aerosols can reduce the uncertainties in aerosol radiative forcing assessment.

  14. Asian Dust Storm Outbreaks: A Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, Si-Chee

    2006-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during springtime. Asian dust typically originates in desert areas far from polluted urban regions. During the transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in the mid-Pacific Ocean, etc.), as well as societal concerns (e.g., adverse health effects to humans). The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network (e.g. AERONET, SKY NET, MPLNET, etc.). Recently, many field campaigns (e.g., ACE-Asia-2001, TRACEP-2001, ADE-2002 & -2003, APEX-2001 & -2003, etc.) were designed and executed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. I will present an overview of the outbreak of Asian dust storms from space and surface observations and to address the climatic effects and societal impacts.

  15. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos

    Science.gov (United States)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; McMillan, W. W.; Rousch, T.

    1995-01-01

    We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff)variance-0.8 micron), smaller particle size (r(sub mode)-0.02 microns) distribution coupled with a "palagonite-like" composition is argued to fit the complete ultraviolet-to-30-micron absorption properties of the dust better than the montmorillonite-basalt r(sub eff)variance= 0.4 micron, r(sub mode)= 0.40 micron dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971 - 1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emission-phase-function (EPF) observations at 9 microns are analyzed to retrieve 9-micron dust opacities coincident with solar band dust opacities obtained from the same EPF sequences. These EPF dust opacities provide an independent measurement of the visible/9-microns extinction opacity ratio (> or equal to 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-microns opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions and compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micron absorption well. However, it predicts structured, deep absorptions at 20 microns which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8- to 9-micron

  16. CV-Dust: Atmospheric aerosol in the Cape Verde region: carbon and soluble fractions of PM10

    Science.gov (United States)

    Pio, C.; Nunes, T.; Cardoso, J.; Caseiro, A.; Custódio, D.; Cerqueira, M.; Patoilo, D.; Almeida, S. M.; Freitas, M. C.

    2012-04-01

    Every year, billions of tons of eroded mineral soils from the Saharan Desert and the Sahel region, the largest dust source in the world, cross Mediterranean towards Europe, western Asia and the tropical North Atlantic Ocean as far as the Caribbean and South America. Many aspects of the direct and indirect effects of dust on climate are not well understood and the bulk and surface chemistry of the mineral dust particles determines interactions with gaseous and other particle species. The quantification of the magnitude of warming or cooling remains open because of the strong variability of the atmospheric dust burden and the lack of representative data for the spatial and temporal distribution of the dust composition. CV-Dust is a project that aims at provide a detailed data on the size distribution and the size-resolved chemical and mineralogical composition of dust emitted from North Africa using a natural laboratory like Cape Verde. This archipelago is located in an area of massive dust transport from land to ocean, and is thus ideal to set up sampling devices that are able to characterize and quantify dust transported from Africa. Moreover, Cape Verde's future economic prospects depend heavily on the encouragement of tourism, therefore it is essential to elucidate the role of Saharan dust may play in the degradation of Cape Verde air quality. The main objectives of CV-Dust project are: 1) to characterize the chemical and mineralogical composition of dust transported from Africa by setting up an orchestra of aerosol sampling devices in the strategic archipelago of Cape Verde; 2) to identify the sources of particles in Cape Verde by using receptor models; 3) to elucidate the role Saharan dust may play in the degradation of Cape Verde air quality; 4) to model processes governing dust production, transport, interaction with the radiation field and removal from the atmosphere. Here we present part of the data obtained throughout the last year, involving a set of more

  17. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara

    Directory of Open Access Journals (Sweden)

    J. H. Marsham

    2008-12-01

    Full Text Available Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations induced mesoscale circulations. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Residual Layer (SRL. Mesoscale variations in winds are also shown to affect dust loadings in the boundary layer.

    Using the aircraft observations and data from the COSMO model, a region of local dust uplift, with strong along-track winds, was identified in one low-level flight. Large eddy model (LEM simulations based on this location showed linearly organised boundary-layer convection. Calculating dust uplift rates from the LEM wind field showed that the boundary-layer convection increased uplift by approximately 30%, compared with the uplift rate calculated neglecting the convection. The modelled effects of boundary-layer convection on uplift are shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur.

    Both the coupling of albedo features to the atmosphere on the mesoscale, and the enhancement of dust uplift by boundary-layer convection are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parametrise.

  18. Airborne lidar measurements to investigate the impact of long-range transported dust on shallow marine trade wind convection

    Science.gov (United States)

    Gross, S.; Gutleben, M.; Wirth, M.; Ewald, F.

    2017-12-01

    Aerosols and clouds are still main contributors to uncertainties in estimates and interpretation of the Earth's changing energy budget. Their interaction with the Earth's radiation budged has a direct component by scattering and absorbing solar and terrestrial radiation, and an indirect component, e.g. as aerosols modify the properties and thus the life-time of clouds or by changing the atmosphere's stability. Up to know now sufficient understanding in aerosol-cloud interaction and climate feedback is achieved. Thus studies with respect to clouds, aerosols, their interaction and influence on the radiation budged are highly demanded. In August 2016 the NARVAL-II (Next-generation airborne remote sensing for validation studies) mission took place. Measurements with a combined active (high spectral resolution and water vapor differential absorption lidar and cloud radar) and passive remote sensing (microwave radiometer, hyper spectral imager, radiation measurements) payload were performed with the German high altitude and long-range research aircraft HALO over the subtropical North-Atlantic Ocean to study shallow marine convection during the wet and dusty season. With this, NARVAL-II is follow-up of the NARVAL-I mission which took place during the dry and dust free season in December 2013. During NARVAL-II the measurement flights were designed the way to sample dust influenced areas as well as dust free areas in the trades. One main objective was to investigate the optical and macro physical properties of the dust layer, differences in cloud occurrence in dusty and non-dusty areas, and to study the influence of aerosols on the cloud properties and formation. This allows comparisons of cloud and aerosol distribution as well as their environment between the dry and the wet season, and of cloud properties and distribution with and without the influence of long-range transported dust across the Atlantic Ocean. In our presentation we will give an overview of the NARVAL

  19. Mineral dust transport toward Hurricane Helene (2006)

    Science.gov (United States)

    Schwendike, Juliane; Jones, Sarah C.; Vogel, Bernhard; Vogel, Heike

    2016-05-01

    This study investigates the transport of mineral dust from its source regions in West Africa toward the developing tropical cyclone Helene (2006) and diagnoses the resulting properties of the air influencing the tropical cyclonegenesis. The model system COSMO-ART (Consortium for Small-Scale Modelling-Aerosols and Reactive Trace gases) in which the emission and transport of mineral dust as well as the radiation feedback are taken into account, was used. The emission of mineral dust between 9 and 14 September 2006 occurred in association with the relatively strong monsoon flow and northeasterly trade winds, with gust fronts of convective systems over land, and with the Atlantic inflow. Additionally, increased surface wind speed was linked to orographical effects at the Algerian Mountains, Atlas Mountains, and the Hoggar. The dust, as part of the Saharan air layer, is transported at low levels by the monsoon flow, the Harmattan, the northeasterly trade winds, and the monsoon trough, and is transported upward in the convergence zone between Harmattan and monsoon flow, in the baroclinic zone along the West African coastline, and by convection. At around 700 hPa the dust is transported by the African easterly jet. Dry and dust-free air is found to the north-northwest of the developing tropical depression due to descent in an anticyclone. Based on the model data, it was possible to distinguish between dry (from the anticyclone), dry and dusty (from the Harmattan and northeasterly trade winds), and dusty and moist air (from the monsoon flow and in the tropical depression due to convection).

  20. Large Contribution of Coarse Mode to Aerosol Microphysical and Optical Properties: Evidence from Ground-Based Observations of a Transpacific Dust Outbreak at a High-Elevation North American Site

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, E. [Pacific Northwest National Laboratory, Richland, Washington; Pekour, M. [Pacific Northwest National Laboratory, Richland, Washington; Flynn, C. [Pacific Northwest National Laboratory, Richland, Washington; Berg, L. K. [Pacific Northwest National Laboratory, Richland, Washington; Beranek, J. [Pacific Northwest National Laboratory, Richland, Washington; Zelenyuk, A. [Pacific Northwest National Laboratory, Richland, Washington; Zhao, C. [Pacific Northwest National Laboratory, Richland, Washington; Leung, L. R. [Pacific Northwest National Laboratory, Richland, Washington; Ma, P. L. [Pacific Northwest National Laboratory, Richland, Washington; Riihimaki, L. [Pacific Northwest National Laboratory, Richland, Washington; Fast, J. D. [Pacific Northwest National Laboratory, Richland, Washington; Barnard, J. [University of Nevada, Reno, Nevada; Hallar, A. G. [Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado; McCubbin, I. B. [Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado; Eloranta, E. W. [University of Wisconsin–Madison, Madison, Wisconsin; McComiskey, A. [National Oceanic and Atmospheric Administration, Boulder, Colorado; Rasch, P. J. [Pacific Northwest National Laboratory, Richland, Washington

    2017-05-01

    Our work is motivated by previous studies of the long-range trans-Atlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 µm. We examine coarse mode contributions from the trans-Pacific transport of Asian dust to North American aerosol microphysical and optical properties using a dataset collected at the high-elevation, mountain-top Storm Peak Laboratory (SPL, 3.22 km above sea level [ASL]) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 2.76 km ASL). Data collected during the SPL Cloud Property Validation Experiment (STORMVEX, March 2011) are complemented by quasi-global high-resolution model simulations coupled with aerosol chemistry. We identify dust event associated mostly with Asian plume (about 70% of dust mass) where the coarse mode with moderate (~4 µm) VMD is distinct and contributes substantially to aerosol microphysical (up to 70% for total volume) and optical (up to 45% for total scattering and aerosol optical depth) properties. Our results, when compared with previous Saharan dust studies, suggest a fairly invariant behavior of coarse mode dust aerosols. If confirmed in additional studies, this invariant behavior may simplify considerably model parameterizations for complex and size-dependent processes associated with dust transport and removal.

  1. Impact of aerosols, dust, water vapor and clouds on fair weather PG and implications for the Carnegie curve

    Science.gov (United States)

    Kourtidis, Konstantinos; Georgoulias, Aristeidis

    2017-04-01

    We studied the impact of anthropogenic aerosols, fine mode natural aerosols, Saharan dust, atmospheric water vapor, cloud fraction, cloud optical depth and cloud top height on the magnitude of fair weather PG at the rural station of Xanthi. Fair weather PG was measured in situ while the other parameters were obtained from the MODIS instrument onboard the Terra and Aqua satellites. All of the above parameteres were found to impact fair weather PG magnitude. Regarding aerosols, the impact was larger for Saharan dust and fine mode natural aerosols whereas regarding clouds the impact was larger for cloud fraction while less than that of aerosols. Water vapour and ice precipitable water were also found to influence fair weather PG. Since aerosols and water are ubiquitous in the atmosphere and exhibit large spatial and temporal variability, we postulate that our understanding of the Carnegie curve might need revision.

  2. Using aircraft measurements to determine the refractive index of Saharan dust during the DODO Experiments

    Directory of Open Access Journals (Sweden)

    C. L. McConnell

    2010-03-01

    Full Text Available Much uncertainty in the value of the imaginary part of the refractive index of mineral dust contributes to uncertainty in the radiative effect of mineral dust in the atmosphere. A synthesis of optical, chemical and physical in-situ aircraft measurements from the DODO experiments during February and August 2006 are used to calculate the refractive index mineral dust encountered over West Africa. Radiative transfer modeling and measurements of broadband shortwave irradiance at a range of altitudes are used to test and validate these calculations for a specific dust event on 23 August 2006 over Mauritania. Two techniques are used to determine the refractive index: firstly a method combining measurements of scattering, absorption, size distributions and Mie code simulations, and secondly a method using composition measured on filter samples to apportion the content of internally mixed quartz, calcite and iron oxide-clay aggregates, where the iron oxide is represented by either hematite or goethite and clay by either illite or kaolinite. The imaginary part of the refractive index at 550 nm (ni550 is found to range between 0.0001 i to 0.0046 i, and where filter samples are available, agreement between methods is found depending on mineral combination assumed. The refractive indices are also found to agree well with AERONET data where comparisons are possible. ni550 is found to vary with dust source, which is investigated with the NAME model for each case. The relationship between both size distribution and ni550 on the accumulation mode single scattering albedo at 550 nm (ω0550 are examined and size distribution is found to have no correlation to ω0550, while ni550 shows a strong linear relationship with ω0550. Radiative transfer modeling was performed with different

  3. Numerical Prediction of Dust. Chapter 10

    Science.gov (United States)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; hide

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  4. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    Science.gov (United States)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  5. A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean

    Science.gov (United States)

    Kumar, A.; Abouchami, W.; Galer, S.J.G.; Garrison, V.H.; Williams, E.; Andreae, M.O.

    2014-01-01

    Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers – Sr, Nd and Pb – to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and

  6. A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean

    Science.gov (United States)

    Kumar, A.; Abouchami, W.; Galer, S. J. G.; Garrison, V. H.; Williams, E.; Andreae, M. O.

    2014-01-01

    Many studies have suggested that long-range transport of African desert dusts across the Atlantic Ocean occurs, delivering key nutrients and contributing to fertilization of the Amazon rainforest. Here we utilize radiogenic isotope tracers - Sr, Nd and Pb - to derive the provenance, local or remote, and pathways of dust transport from Africa to the Caribbean. Atmospheric total suspended particulate (TSP) matter was collected in 2008 on quartz fibre filters, from both sides of the Atlantic Ocean at three different locations: in Mali (12.6°N, 8.0°W; 555 m a.s.l.), Tobago (11.3°N, 60.5°W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7°N, 64.6°W; 27 m a.s.l.). Both the labile phase, representative of the anthropogenic signal, and the refractory detrital silicate fraction were analysed. Dust deposits and soils from around the sampling sites were measured as well to assess the potential contribution from local sources to the mineral dust collected. The contribution from anthropogenic sources of Pb was predominant in the labile, leachate phase. The overall similarity in Pb isotope signatures found in the leachates is attributed to a common African source of anthropogenic Pb, with minor inputs from other sources, such as from Central and South America. The Pb, Sr and Nd isotopic compositions in the silicate fraction were found to be systematically more radiogenic than those in the corresponding labile phases. In contrast, Nd and Sr isotopic compositions from Mali, Tobago, and the Virgin Islands are virtually identical in both leachates and residues. Comparison with existing literature data on Saharan and Sahelian sources constrains the origin of summer dust transported to the Caribbean to mainly originate from the Sahel region, with some contribution from northern Saharan sources. The source regions derived from the isotope data are consistent with 7-day back-trajectory analyses, demonstrating the usefulness of radiogenic isotopes in tracing dust provenance and

  7. Dust storms over the Arabian Gulf: a possible indicator of climate changes consequences

    NARCIS (Netherlands)

    Hamza, W.; Enan, M.R.; Al-Hassini, H.; Stuut, J.B.; de-Beer, D.

    2011-01-01

    Dust storm frequencies and strengths were monitored during 2009 at various locations along the coast of the United Arab Emirates (UAE), as representative sites of the Arabian Gulf marine environment. The results have been compared with a pre-2009 five-year data set. Mineralogical components of dust

  8. Shape dependency of the extinction and absorption cross sections of dust aerosols modeled as randomly oriented spheroids

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2011-09-01

    Full Text Available We present computational results on the shape dependency of the extinction and absorption cross sections of dustlike aerosol particles that were modeled as randomly oriented spheroids. Shape dependent variations in the extinction cross sections are largest in the size regime that is governed by the interference structure. Elongated spheroids best fitted measured extinction spectra of re-dispersed Saharan dust samples. For dust particles smaller than 1.5 μm in diameter and low absorption potential, shape effects on the absorption cross sections are very small.

  9. The Paleozoic Dust Bowl: Dust Deposition in Tropical Western Pangaea (Midcontinent U.S.) at the Terminus of the Late Paleozoic Ice Age

    Science.gov (United States)

    Soreghan, G. S.; Heavens, N. G.; Benison, K. C.; Soreghan, M. J.; Mahowald, N. M.; Foster, T.; Zambito, J.; Sweet, A.; Kane, M.

    2012-12-01

    Atmospheric dust is well recognized and studied as both an archive and agent of climate change in Earth's relatively recent past. Archives of past dust include loess deposits and dust recovered from ocean- and ice-cores. Dust remains poorly known in Earth's past prior to the Cenozoic, but is increasingly recognized in the form of paleo-loess deposits, and (epeiric) marine strata that accumulated isolated from fluvio-deltaic influx. Here, we report on the growing recognition of voluminous dust deposits preserved in the Permian record of the U.S. Midcontinent (western tropical Pangaea). Fine-grained redbeds predominate in Permian strata throughout the U.S. Midcontinent, but notably in a swath extending from Oklahoma through South Dakota. These units consist predominantly of red mudstone and siltstone in commonly massive units, but sedimentary structures and bedding that signal aqueous processes (e.g. laminations, ripples) have led most to infer deltaic or tidal deposition. The absence of channel systems to deliver the sediment, as well as the predominantly massive and laterally continuous character and the uniform fine grain size signal wind transport, implying that these units record sustained dust deposition overprinted at times by sub-aqueous deposition in lakes, including ephemeral saline and acid lakes that led to evaporite cementation. Detrital zircon geochronology indicates that much of the dust originated in the relatively distant Appalachian-Ouachita orogenic systems, which formed part of the central Pangaean mountains (CPM), the collisional zone that sutured the supercontinent. Within the Anadarko basin of Oklahoma, Permian redbeds record >2 km of predominantly dust deposition, some of the thickest dust deposits yet documented in Earth's record. Yet the tropical setting is remarkably non-uniformitarian, as much Quaternary loess occurs in mid- to high-latitude regions, commonly linked to glacial genesis. We are currently investigating with both data and

  10. Ten-year operational dust forecasting - Recent model development and future plans

    International Nuclear Information System (INIS)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G

    2009-01-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10 8 t yr- 1 . A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  11. Ten-year operational dust forecasting - Recent model development and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G [University of Athens, School of Physics, Atmospheric Modeling and Weather Forecasting Group - UOA/AM and WFG, University Campus, Bldg. PHYS-V, Athens 15784 (Greece)], E-mail: kallos@mg.uoa.gr

    2009-03-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10{sup 8} t yr-{sup 1}. A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  12. Changes in Stratiform Clouds of Mesoscale Convective Complex Introduced by Dust Aerosols

    Science.gov (United States)

    Lin, B.; Min, Q.-L.; Li, R.

    2010-01-01

    Aerosols influence the earth s climate through direct, indirect, and semi-direct effects. There are large uncertainties in quantifying these effects due to limited measurements and observations of aerosol-cloud-precipitation interactions. As a major terrestrial source of atmospheric aerosols, dusts may serve as a significant climate forcing for the changing climate because of its effect on solar and thermal radiation as well as on clouds and precipitation processes. Latest satellites measurements enable us to determine dust aerosol loadings and cloud distributions and can potentially be used to reduce the uncertainties in the estimations of aerosol effects on climate. This study uses sensors on various satellites to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective complex (MCC). A trans-Atlantic dust outbreak of Saharan origin occurring in early March 2004 is considered. For the observed MCCs under a given convective strength, small hydrometeors were found more prevalent in the dusty stratiform regions than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust regions, particularly at altitudes where heterogeneous nucleation of mineral dust prevails, further supports the observed changes of clouds and precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the size spectrum of precipitation-sized hydrometeors from heavy precipitation to light precipitation and ultimately to suppress precipitation and increase the lifecycle of cloud systems, especially over stratiform areas.

  13. How are climate and marine biological outbreaks functionally linked?

    Science.gov (United States)

    Hayes, Marshall L.; Bonaventura, Joseph; Mitchell, Todd P.; Prospero, Joseph M.; Shinn, Eugene A.; Van Dolah, Frances; Barber, Richard T.

    2001-01-01

    Since the mid-1970s, large-scale episodic events such as disease epidemics, mass mortalities, harmful algal blooms and other population explosions have been occurring in marine environments at an historically unprecedented rate. The variety of organisms involved (host, pathogens and other opportunists) and the absolute number of episodes have also increased during this period. Are these changes coincidental? Between 1972 and 1976, a global climate regime shift took place, and it is manifest most clearly by a change in strength of the North Pacific and North Atlantic pressure systems. Consequences of this regime shift are: (1) prolonged drought conditions in the Sahel region of Africa; (2) increased dust supply to the global atmosphere, by a factor of approximately four; (3) increased easterly trade winds across the Atlantic; (4) increased eolian transport of dust to the Atlantic and Caribbean basins; and (5) increased deposition of iron-rich eolian dust to typically iron-poor marine regions. On the basis of well-documented climate and dust observations and the widely accepted increase in marine outbreak rates, this paper proposes that the increased iron supply has altered the micronutrient factors limiting growth of opportunistic organisms and virulence of pathogenic microbes, particularly in macronutrient-rich coastal systems.

  14. Viking orbiter imaging observations of dust in the Martian atmosphere

    International Nuclear Information System (INIS)

    Briggs, G.A.; Baum, W.A.; Barnes, J.

    1979-01-01

    More than 20 local Martian dust clouds and two global dust storms were observed with the Viking orbiter camera. Sixteen of the local clouds were imaged in two colors or were observed with other instruments confirming their identification as dust clouds. These Viking results are compared with earth-based observations of Martian dust storms and with Mariner 9 data. Most of the dust activity seen by Viking occurred during southern hemisphere spring and early summer, when Mars was near perihelion and isolation was near maximum. About half the local clouds occurred near the edge of the southern polar cap, where winds are presumably enhanced by a strong regional temperature gradient. The other half occurred mainly in the southern hemisphere near regions where circulation models incorporating topography predict positive vertical velocities. Although dust clouds observed from earth show a similar partial correlation with models, some ambiguity exists concerning interpretation of regions near Hellespontus that have spawned the most spectacular Martian dust storms on record

  15. Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D

    Science.gov (United States)

    Liu, Dantong; Taylor, Jonathan W.; Crosier, Jonathan; Marsden, Nicholas; Bower, Keith N.; Lloyd, Gary; Ryder, Claire L.; Brooke, Jennifer K.; Cotton, Richard; Marenco, Franco; Blyth, Alan; Cui, Zhiqiang; Estelles, Victor; Gallagher, Martin; Coe, Hugh; Choularton, Tom W.

    2018-03-01

    During the summertime, dust from the Sahara can be efficiently transported westwards within the Saharan air layer (SAL). This can lead to high aerosol loadings being observed above a relatively clean marine boundary layer (MBL) in the tropical Atlantic Ocean. These dust layers can impart significant radiative effects through strong visible and IR light absorption and scattering, and can also have indirect impacts by altering cloud properties. The processing of the dust aerosol can result in changes in both direct and indirect radiative effects, leading to significant uncertainty in climate prediction in this region. During August 2015, measurements of aerosol and cloud properties were conducted off the coast of west Africa as part of the Ice in Cloud Experiment - Dust (ICE-D) and AERosol properties - Dust (AER-D) campaigns. Observations were obtained over a 4-week period using the UK Facility for Atmospheric Airborne Measurements (FAAM) BAe 146 aircraft based on Santiago Island, Cabo Verde. Ground-based observations were collected from Praia (14°57' N, 23°29' W; 100 m a.s.l.), also located on Santiago Island. The dust in the SAL was mostly sampled in situ at altitudes of 2-4 km, and the potential dust age was estimated by backward trajectory analysis. The particle mass concentration (at diameter d = 0.1-20 µm) decreased with transport time. Mean effective diameter (Deff) for supermicron SAL dust (d = 1-20 µm) was found to be 5-6 µm regardless of dust age, whereas submicron Deff (d = 0.1-1 µm) showed a decreasing trend with longer transport. For the first time, an airborne laser-induced incandescence instrument (the single particle soot photometer - SP2) was deployed to measure the hematite content of dust. For the Sahel-influenced dust in the SAL, the observed hematite mass fraction of dust (FHm) was found to be anti-correlated with the single scattering albedo (SSA, λ = 550 nm, for particles d influenced plumes (not influenced by the Sahel) were independent

  16. Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western US

    Energy Technology Data Exchange (ETDEWEB)

    Creamean, Jessie; Suski, Kaitlyn; Rosenfeld, Daniel; Cazorla, Alberto; DeMott, Paul J.; Sullivan, Ryan C.; White, Allen B.; Ralph, F. M.; Minnis, Patrick; Comstock, Jennifer M.; Tomlinson, Jason M.; Prather, Kimberly

    2013-03-29

    Winter storms in California’s Sierra Nevada increase seasonal snowpack and provide critical water resources for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation (1), while few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols likely serve as IN and play an important role in orographic precipitation processes over the western United States.

  17. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms.

    Science.gov (United States)

    Weil, Tobias; De Filippo, Carlotta; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Pavarini, Lorenzo; Carotenuto, Federico; Pasqui, Massimiliano; Poto, Luisa; Gabrieli, Jacopo; Barbante, Carlo; Sattler, Birgit; Cavalieri, Duccio; Miglietta, Franco

    2017-03-10

    A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.

  18. Middle Pleistocene palaeoenvironmental changes of the eastern Canary Islands - revealed by the Mála dune-palaeosol-sequence at Lanzarote (Canary Islands)

    Science.gov (United States)

    von Suchodoletz, H.; Zöller, L.; Hilgers, A.; Radtke, U.; Faust, D.

    2012-04-01

    The Canary Islands are located at the transition between the Mediterranean and the Saharan climate off NW-Africa. Thus, they are a key area for the investigation of palaeoenvironmental changes. Several terrestrial studies investigated the palaeoenvironmental development of that region during the later part of the last glacial cycle. However, apart from recent investigations of "vega" sediments on Lanzarote Island (Suchodoletz et al. 2010) the palaeoenvironmental evolution during the Middle Pleistocene is hardly studied yet, basically due to the lack of reliable geochronological data. The Mála dune-palaeosol-sequence is located in the north of Lanzarote. It consists of marine shell detritus originally blown out from the insular shelf during periods of low global sea level, and to a small part of Saharan dust and fine quartz sand. The aeolian layers are intercalated with up to eight silty-clayey palaeosol horizons. Unlike the dune sands, the soils indicate stable landscape conditions with trapping of Saharan dust. Using a combination of ESR and luminescence dating techniques, we are able to place this sequence into the Middle Pleistocene, in contrast to former investigations based on 14C datings postulating a Late Pleistocene age (Ortiz et al. 2006). As a consequence, clayey-silty palaeosols represent periods of stable landscape conditions in the Canarian region during the Middle Pleistocene, which we compare with marine palaeoclimatic studies from the area.

  19. Discernible rhythm in the spatio/temporal distributions of transatlantic dust

    Directory of Open Access Journals (Sweden)

    Y. Ben-Ami

    2012-03-01

    northwestern and southern Saharan dust source spatial distributions. Despite the vast difference in areas, the Bodélé Depression, located in Chad, appears to modulate transatlantic dust patterns about half the time.

  20. High-latitude dust in the Earth system

    Science.gov (United States)

    Bullard, Joanna E; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; NcKenna Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80–100 Tg yr−1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  1. High Latitude Dust in the Earth System

    Science.gov (United States)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; hide

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  2. Characterisation of nutrients wet deposition under influence of Saharan dust at Puerto-Rico in Caribbean Sea

    Science.gov (United States)

    Desboeufs, Karine; Formenti, Paola; Triquet, Sylvain; Laurent, Benoit; Denjean, Cyrielle; Gutteriez-Moreno, Ian E.; Mayol-Bracero, Olga L.

    2015-04-01

    Large quantities of African dust are carried across the North Atlantic toward the Caribbean every summer by Trade Winds. Atmospheric deposition of dust aerosols, and in particular wet deposition, is widely acknowledged to be the major delivery pathway for nutrients to ocean ecosystems, as iron, phosphorus and various nitrogen species. The deposition of this dustis so known to have an important impact on biogeochemical processes in the Tropical and Western Atlantic Ocean and Caribbean including Puerto-Rico. However, very few data exists on the chemical composition in nutrients in dusty rain in this region. In the framework of the Dust-ATTAcK project, rainwater was collected at the natural reserve of Cape San Juan (CSJ) (18.38°N, 65.62°W) in Puerto-Ricobetween 20 June 2012 and 12 July 2012 during thedusty period. A total of 7 rainwater events were sampled during various dust plumes. Complementary chemical analyses on aerosols in suspension was also determined during the campaign. The results on dust composition showed that no mixing with anthropogenic material was observed, confirming dust aerosols were the major particles incorporated in rain samples. The partitioning between soluble and particulate nutrients in rain samples showed that phosphorous solubility ranged from 30 and 80%. The average Fe solubility was around 0.5%, in agreement with Fe solubility observed in rains collected in Niger during African monsoon. That means that the high solubility measurements previously observed in Caribbean was probably due to an anthropogenic influence. Atmospheric wet deposition fluxes of soluble and total nutrients (N, P, Si, Fe, Co, Cu, Mn, Ni, Zn) to Caribbean Sea were determined. Atmospheric P and N inputs were strongly depleted relative to the stoichiometry of phytoplankton Fe, N, P and Si requirements.The nitrogen speciation was also determined and showed the predominance of ammonium form. 3-D modeling was used to estimate the spatial extend of these fluxes over the

  3. WRF-Chem model simulations of a dust outbreak over the central Mediterranean and comparison with multi-sensor desert dust observations

    Science.gov (United States)

    Rizza, Umberto; Barnaba, Francesca; Marcello Miglietta, Mario; Mangia, Cristina; Di Liberto, Luca; Dionisi, Davide; Costabile, Francesca; Grasso, Fabio; Gobbi, Gian Paolo

    2017-01-01

    In this study, the Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate an intense Saharan dust outbreak event that took place over the Mediterranean in May 2014. Comparison of a simulation using a physics-based desert dust emission scheme with a numerical experiment using a simplified (minimal) emission scheme is included to highlight the advantages of the former. The model was found to reproduce well the synoptic meteorological conditions driving the dust outbreak: an omega-like pressure configuration associated with a cyclogenesis in the Atlantic coasts of Spain. The model performances in reproducing the atmospheric desert dust load were evaluated using a multi-platform observational dataset of aerosol and desert dust properties, including optical properties from satellite and ground-based sun photometers and lidars, plus in situ particulate matter mass concentration (PM) data. This comparison allowed us to investigate the model ability in reproducing both the horizontal and the vertical displacement of the dust plume, as well as its evolution in time. The comparison with satellite (MODIS-Terra) and sun photometers (AERONET) showed that the model is able to reproduce well the horizontal field of the aerosol optical depth (AOD) and its evolution in time (temporal correlation coefficient with AERONET of 0.85). On the vertical scale, the comparison with lidar data at a single site (Rome, Italy) confirms that the desert dust advection occurs in several, superimposed "pulses" as simulated by the model. Cross-analysis of the modeled AOD and desert dust emission fluxes further allowed for the source regions of the observed plumes to be inferred. The vertical displacement of the modeled dust plume was in rather good agreement with the lidar soundings, with correlation coefficients among aerosol extinction profiles up to 1 and mean discrepancy of about 50 %. The model-measurement comparison for PM10 and PM2.5 showed a

  4. Few data but many fish: marine small-scale fisheries catches for ...

    African Journals Online (AJOL)

    ... substantially under-reported national data puts authorities under serious risk of over-licensing fishing access and mismanaging marine ecosystems and national food security. Keywords: catch rates, catch reconstructions, food security, Malthusian overfishing, small-scale fisheries, sub-Saharan Africa, subsistence fisheries

  5. Variability of mineral dust deposition in the western Mediterranean basin and south-east of France

    Directory of Open Access Journals (Sweden)

    J. Vincent

    2016-07-01

    Full Text Available Previous studies have provided some insight into the Saharan dust deposition at a few specific locations from observations over long time periods or intensive field campaigns. However, no assessment of the dust deposition temporal variability in connection with its regional spatial distribution has been achieved so far from network observations over more than 1 year. To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA (Collecteur Automatique de Retombées Atmosphériques insolubles à Grande Autonomie in French have been deployed in the western Mediterranean region during 1 to 3 years depending on the station. The sites include, from south to north, Lampedusa, Majorca, Corsica, Frioul and Le Casset (southern French Alps. Deposition measurements are performed on a common weekly period at the five sites. The mean dust deposition fluxes are higher close to the northern African coasts and decrease following a south–north gradient, with values from 7.4 g m−2 year−1 in Lampedusa (35°31′ N, 12°37′ E to 1 g m−2 year−1 in Le Casset (44°59′ N, 6°28′ E. The maximum deposition flux recorded is of 3.2 g m−2 wk−1 in Majorca with only two other events showing more than 1 g m−2 wk−1 in Lampedusa, and a maximum of 0.5 g m−2 wk−1 in Corsica. The maximum value of 2.1 g m−2 year−1 observed in Corsica in 2013 is much lower than existing records in the area over the 3 previous decades (11–14 g m−2 year−1. From the 537 available samples, 98 major Saharan dust deposition events have been identified in the records between 2011 and 2013. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations for the studied period. Despite the large size of African dust plumes detected by satellites, more

  6. A new thermal gradient ice nucleation diffusion chamber instrument: design, development and first results using Saharan mineral dust

    Directory of Open Access Journals (Sweden)

    J. B. McQuaid

    2009-06-01

    Full Text Available A new Thermal Gradient ice nucleation Diffusion Chamber (TGDC capable of investigating ice nucleation efficiency of atmospherically important aerosols, termed Ice Nuclei (IN, has been designed, constructed and validated. The TGDC can produce a range of supersaturations with respect to ice (SSi over the temperature range of −10 to −34°C for sufficiently long time needed to observe the ice nucleation by the particles. The novel aspect of this new TGDC is that the chamber is run in static mode with aerosol particles supported on a Teflon substrate, which can be raised and lowered in a controlled way through the SSi profile within the chamber, and nucleation events are directly observed using digital photography. The TGDC consists of two ice coated plates to which a thermal gradient is applied to produce the range of SSi. The design of the TGDC gives the ability to understand time-related ice nucleation event information and to perform experiments at different temperatures and SSi conditions for different IN without changing the thermal gradient within the TGDC. The temperature and SSi conditions of the experimental system are validated by observing (NH42SO4 deliquescence and the results are in good agreement with the literature data. First results are presented of the onset ice nucleation for mineral dust sampled from the Saharan Desert, including images of nucleation and statistical distributions of onset ice nucleation SSi as a function of temperature. This paper illustrates how useful this new TGDC is for process level studies of ice nucleation and more experimental investigations are needed to better quantify the role of ice formation in the atmosphere.

  7. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales

    Science.gov (United States)

    Pointing, Stephen B.; Belnap, Jayne

    2014-01-01

    This review considers the regional scale of impacts arising from disturbance to desert soil ecosystems. Deserts occupy over one-third of the Earth’s terrestrial surface, and biological soil covers are critical to stabilization of desert soils. Disturbance to these can contribute to massive destabilization and mobilization of dust. This results in dust storms that are transported across inter-continental distances where they have profound negative impacts. Dust deposition at high altitudes causes radiative forcing of snowpack that leads directly to altered hydrological regimes and changes to freshwater biogeochemistry. In marine environments dust deposition impacts phytoplankton diazotrophy, and causes coral reef senescence. Increasingly dust is also recognized as a threat to human health.

  8. Patterns of North African dust transport over the Atlantic: winter vs. summer, based on CALIPSO first year data

    Directory of Open Access Journals (Sweden)

    Y. Ben-Ami

    2009-10-01

    Full Text Available One of the most important factors that determine the transported dust effect on the atmosphere is its vertical distribution. In this study the vertical structure of North African dust and stratiform low clouds is analyzed over the Atlantic Ocean for the 2006–2007 boreal winter (December–February and boreal summer of 2006 (June–August. By using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO backscatter measurements over the dust routes, we describe the differences in dust transport between the seasons. We show a bi-modal distribution of the average dust plumes height in both seasons (it is less clear in the winter. The higher plume top height is 5.1±0.4 km, near the African coast line in the summer and 3.7±0.4 km in the winter. The lower plume merges with the marine boundary layer, in both seasons. Our study suggests that a significant part of the dust is transported near and within the marine boundary layer and interacts with low stratiform clouds.

  9. Biogeochemical Impact of Long-Range Transported Dust over Northern South China Sea

    Science.gov (United States)

    Tsay, Si-Chee; Wang, S. H.; Hsu, N. C.

    2011-01-01

    Transpacific transport and impact of Asian dust aerosols have been well documented (e.g., results from ACE-Asia and regional follow-on campaigns), but little is known about dust invasion to the South China Sea (SCS). On 19-21 March 2010, a fierce Asian dust storm affected large areas from the Gobi deserts to the West Pacific, including Taiwan and Hong Kong. As a pilot study of the 7-SEAS (Seven South East Asian Studies) in the northern SCS, detailed characteristics of long-range transported dust aerosols were first observed by a comprehensive set of ground-based instruments deployed at the Dongsha islands (20deg42'52" N, 116deg43'51" E). Aerosol measurements such as particle mass concentrations, size distribution, optical properties, hygroscopicity, and vertical profiles help illustrate the evolution of this dust outbreak. Our results indicate that these dust particles were mixed with anthropogenic and marine aerosols, and transported near the surface. Satellite assessment of biogeochemical impact of dust deposition into open oceans is hindered by our current inability in retrieving areal dust properties and ocean colors over an extensive period of time, particularly under the influence of cloudy conditions. In this paper, we analyze the changes of retrieved Chlorophyll-a (Chl-a) concentration over the northern SCS, considered as oligotophic waters in the spring, from long-term SeaWiFS measurements since 1997. Over the past decade, six long-range transported dust events are identified based on spatiotemporal evolutions of PM10 measurements from regional monitoring stations, with the aid of trajectory analysis. Multi-year composites of Chl-a imagery for dust event and non-dust background during March-April are applied to overcome insufficient retrievals of Chl-a due to cloudy environment. Due to anthropogenic modification within a shallow boundary layer off the densely populated and industrial southeast coast of China, the iron ion activation of deliquescent dust

  10. Atmospheric processing of iron carried by mineral dust

    Directory of Open Access Journals (Sweden)

    S. Nickovic

    2013-09-01

    Full Text Available Nutrification of the open ocean originates mainly from deposited aerosol in which the bio-avaliable iron is likely to be an important factor. The relatively insoluble iron in dust from arid soils becomes more soluble after atmospheric processing and, through its deposition in the ocean, could contribute to marine primary production. To numerically simulate the atmospheric route of iron from desert sources to sinks in the ocean, we developed a regional atmospheric dust-iron model that included parameterization of the transformation of iron to a soluble form caused by dust mineralogy, cloud processes and solar radiation. When compared with field data on the aerosol iron, which were collected during several Atlantic cruises, the results from the higher-resolution simulation experiments showed that the model was capable of reproducing the major observed patterns.

  11. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment

    Science.gov (United States)

    Xu, Zhaokai; Li, Tiegang; Clift, Peter D.; Lim, Dhongil; Wan, Shiming; Chen, Hongjin; Tang, Zheng; Jiang, Fuqing; Xiong, Zhifang

    2015-09-01

    We present a new high-resolution multiproxy data set of Sr-Nd isotopes, rare earth element, soluble iron, and total organic carbon data from International Marine Global Change Study Core MD06-3047 located in the western Philippine Sea. We integrate our new data with published clay mineralogy, rare earth element chemistry, thermocline depth, and δ13C differences between benthic and planktonic foraminifera, in order to quantitatively constrain Asian dust input to the basin. We explore the relationship between Philippine Sea and high-latitude Pacific eolian fluxes, as well as its significance for marine productivity and atmospheric CO2 during the mid-late Quaternary. Three different indices indicate that Asian dust contributes between ˜15% and ˜50% to the detrital fraction of the sediments. Eolian dust flux in Core MD06-3047 is similar to that in the polar southern Pacific sediment. Coherent changes for most dust flux maximum/minimum indicate that dust generation in interhemispheric source areas might have a common response to climatic variation over the mid-late Quaternary. Furthermore, we note relatively good coherence between Asian dust input, soluble iron concentration, local marine productivity, and even global atmospheric CO2 concentration over the entire study interval. This suggests that dust-borne iron fertilization of marine phytoplankton might have been a periodic process operating at glacial/interglacial time scales over the past 700 ka. We suggest that strengthening of the biological pump in the Philippine Sea, and elsewhere in the tropical western Pacific during the mid-late Quaternary glacial periods may contribute to the lowering of atmospheric CO2 concentrations during ice ages.

  12. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-09-26

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy (SEM) and laser particle size analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used in climate

  13. Characterization of Dust Properties at the Source Region During ACE-Asia

    Science.gov (United States)

    Tsay, Si-Chee; Lau, William (Technical Monitor)

    2001-01-01

    ACE (Aerosol Characterization Experiment)-Asia is designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally-occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. The phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, east coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of dust aerosol radiative flux in addition to measurements of loading and optical thickness. At the time of the Terra/MODIS overpass, these ground-based observations can provide valuable data to compare with MODIS retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  14. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean

    Science.gov (United States)

    Kumar, Ashwini; Abouchami, W.; Galer, S. J. G.; Singh, Satinder Pal; Fomba, K. W.; Prospero, J. M.; Andreae, M. O.

    2018-04-01

    In order to assess the impact of mineral dust on climate and biogeochemistry, it is paramount to identify the sources of dust emission. In this regard, radiogenic isotopes have recently been used successfully for tracing North African dust provenance and its transport across the tropical Atlantic to the Caribbean. Here we present two time series of radiogenic isotopes (Pb, Sr and Nd) in dusts collected at the Cape Verde Islands and Barbados in order to determine the origin of the dust and examine the seasonality of westerly dust outflow from Northern Africa. Aerosol samples were collected daily during two campaigns - February 2012 (winter) and June-July 2013 (summer) - at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente (16.9°N, 24.9°W). A one-year-long time series of aerosols from Barbados (13.16°N, 59.43°W) - a receptor region in the Caribbean - was sampled at a lower, monthly resolution. Our results resolve a seasonal isotopic signal at Cape Verde shown by daily variations, with a larger radiogenic isotope variability in winter compared to that in summer. This summer signature is also observed over Barbados, indicating similar dust provenance at both locations, despite different sampling years. This constrains the isotope fingerprint of Saharan Air Layer (SAL) dust that is well-mixed during its transport. This result provides unequivocal evidence for a permanent, albeit of variable strength, long-range transport of African dust to the Caribbean and is in full agreement with atmospheric models of North African dust emission and transport across the tropical Atlantic in the SAL. The seasonal isotopic variability is related to changes in the dust source areas - mainly the Sahara and Sahel regions - that are active all-year-round, albeit with variable contributions in summer versus the winter months. Our results provide little support for much dust contributed from the Bodélé Depression in Chad - the "dustiest" place on Earth

  15. Patterns of Saharan dust transport over the Atlantic: winter vs. summer, based on CALIPSO first year data

    OpenAIRE

    Y. Ben-Ami; I. Koren; O. Altaratz

    2009-01-01

    One of the most important factors that determines the transported dust effect is its vertical distribution in the atmosphere. Until the launch of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), the vertical distribution was studied mostly by in-situ measurements and models. CALIPSO, as a part of the A-Train constellation has opened an opportunity to study the transported dust vertical structure in a large number of events (sufficient statistics).
    <...

  16. Forecasting the northern African dust outbreak towards Europe in April 2011: a model intercomparison

    Science.gov (United States)

    Huneeus, N.; Basart, S.; Fiedler, S.; Morcrette, J.-J.; Benedetti, A.; Mulcahy, J.; Terradellas, E.; Pérez García-Pando, C.; Pejanovic, G.; Nickovic, S.; Arsenovic, P.; Schulz, M.; Cuevas, E.; Baldasano, J. M.; Pey, J.; Remy, S.; Cvetkovic, B.

    2016-04-01

    In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 h using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distribution was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. Our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.

  17. A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust

    Science.gov (United States)

    Boreddy, S. K. R.; Kawamura, K.

    2015-06-01

    In order to characterize the long-term trend of remote marine aerosols, a 12-year observation was conducted for water-soluble ions in TSP (total suspended particulate) aerosols collected from 2001 to 2012 in the Asian outflow region at Chichijima Island in the western North Pacific. We found a clear difference in chemical composition between the continentally affected and marine background air masses over the observation site. Asian continental air masses are delivered from late autumn to spring, whereas marine air masses were dominated in summer. Concentrations of non-sea salt (nss-) SO42-, NO3-, NH4+, nss-K+ and nss-Ca2+ are high in winter and spring and low in summer. On the other hand, MSA- (methanesulfonate) exhibits higher concentrations during spring and winter, probably due to springtime dust bloom or due to the direct continental transport of MSA- to the observation site. We could not find any clear decadal trend for Na+, Cl-, Mg2+ and nss-Ca2+ in all seasons, although there exists a clear seasonal trend. However, concentrations of nss-SO42- continuously decreased from 2007 to 2012, probably due to the decreased SO2 emissions in East Asia especially in China. In contrast, nss-K+ and MSA- concentrations continuously increased from 2001 to 2012 during winter and spring seasons, demonstrating that biomass burning and/or terrestrial biological emissions in East Asia are being increasingly transported from the Asian continent to the western North Pacific. This study also demonstrates that Asian dusts can act as an important source of nutrients for phytoplankton and thus sea-to-air emission of dimethyl sulfide over the western North Pacific.

  18. Retrieval of optical and physical properties of African dust from multiwavelength Raman lidar measurements during the SHADOW campaign in Senegal

    Directory of Open Access Journals (Sweden)

    I. Veselovskii

    2016-06-01

    Full Text Available West Africa and the adjacent oceanic regions are very important locations for studying dust properties and their influence on weather and climate. The SHADOW (study of SaHAran Dust Over West Africa campaign is performing a multiscale and multilaboratory study of aerosol properties and dynamics using a set of in situ and remote sensing instruments at an observation site located at the IRD (Institute for Research and Development in Mbour, Senegal (14° N, 17° W. In this paper, we present the results of lidar measurements performed during the first phase of SHADOW (study of SaHAran Dust Over West Africa which occurred in March–April 2015. The multiwavelength Mie–Raman lidar acquired 3β + 2α + 1δ measurements during this period. This set of measurements has permitted particle-intensive properties, such as extinction and backscattering Ångström exponents (BAE for 355/532 nm wavelengths' corresponding lidar ratios and depolarization ratio at 532 nm, to be determined. The mean values of dust lidar ratios during the observation period were about 53 sr at both 532 and 355 nm, which agrees with the values observed during the SAMUM-1 and SAMUM-2 campaigns held in Morocco and Cabo Verde in 2006 and 2008. The mean value of the particle depolarization ratio at 532 nm was 30 ± 4.5 %; however, during strong dust episodes this ratio increased to 35 ± 5 %, which is also in agreement with the results of the SAMUM campaigns. The backscattering Ångström exponent during the dust episodes decreased to ∼ −0.7, while the extinction Ångström exponent, though negative, was greater than −0.2. Low values of BAE can likely be explained by an increase in the imaginary part of the dust refractive index at 355 nm compared to 532 nm. The dust extinction and backscattering coefficients at multiple wavelengths were inverted to the particle microphysics using the regularization algorithm and the model of randomly

  19. Long-term systematic profiling of dust aerosol optical properties using the EOLE NTUA lidar system over Athens, Greece (2000-2016)

    Science.gov (United States)

    Soupiona, O.; Papayannis, A.; Kokkalis, P.; Mylonaki, M.; Tsaknakis, G.; Argyrouli, A.; Vratolis, S.

    2018-06-01

    We present a comprehensive analysis of the seasonal variability of the vertical profiles of the optical and geometrical properties of Saharan dust aerosols, observed in the height region between 1000 and 6000 m, over the city of Athens, Greece, from February 2000 to December 2016. These observations were performed by a multi-wavelength (355-387-532-1064 nm) Raman lidar system under cloud-free conditions. The statistical analysis (using aerosol monthly mean values) is based on nighttime vertical Raman measurements of range-resolved aerosol optical properties (backscatter and extinction coefficients, lidar ratio, Ångström exponent) at 355 nm (57 dust events during more than 80 measurement hours). We found that the number of dust events was highest in spring, summer, and early autumn periods and that during spring the dust layers were moved at higher altitudes (∼4500 m) than in other seasons. The number of the forecasted dusty days (on monthly basis) by the BSC-DREAM8b model compared to those of the performed lidar measurements were found to have a quite strong correlation (R2 = 0.81), with a maximum occurrence predicted for the spring season. In the worst case scenario, at least 50% of the model-forecasted dust events can be observed by lidar under cloudless skies over Athens. For the sampled dust plumes we found mean lidar ratios of 52 ± 13 sr at 355 nm in the height range 2000-4000 m a.s.l. Moreover, the dust layers had a mean thickness of 2497 ± 1026 m and a center of mass of 2699 ± 1017 m. An analysis performed regarding the air mass back-trajectories arriving over Athens revealed two main clusters: one pathway from south-west to north-east, with dust emission areas in Tunisia, Algeria and Libya and a second one from south, across the Mediterranean Sea with emission areas over Libya and the remaining part of Algeria and Tunisia. This clustering enabled us to differentiate between the aerosol optical properties between the two clusters, based on their

  20. Exploring Dust Impacts on Tropical Systems from the NASA HS-3 Field Campaign

    Science.gov (United States)

    Nowottnick, Ed; Colarco, Pete; da Silva, Arlindo; Barahona, Donifan; Hlavka, Dennis

    2015-01-01

    One of the overall scientific goals of the NASA Hurricane and Severe Storm Sentinel (HS-3) field campaign is to better understand the role of the Saharan Air Layer (SAL) in tropical storm development. During the 2012 HS-3 deployment, the Cloud Physics Lidar (CPL) observed dust within SAL air in close proximity to a developing Nadine (September 11, 2012). Throughout the mission, the NASA GEOS-5 modeling system supported HS-3 by providing 0.25 degrees resolution 5-day global forecasts of aerosols, which were used to support mission planning. The aerosol module was radiatively interactive within the GEOS-5 model, but aerosols were not directly coupled to cloud and precipitation processes. In this study we revisit the aerosol forecasts with an updated version of the GEOS-5 model. For the duration of Hurricane Nadine, we run multiday climate simulations leading up to each respective Global Hawk flight with and without aerosol direct interaction. For each set of simulations, we compare simulated dust mass fluxes to identify differences in SAL entrainment related to the interaction between dust aerosols and the atmosphere. We find that the direct effects of dust induce a low level anticyclonic circulation that temporarily shields Nadine from the intrusion of dry air, leading to a more intense storm.

  1. Forecasting the northern African dust outbreak towards Europe in April 2011: a model intercomparison

    Directory of Open Access Journals (Sweden)

    N. Huneeus

    2016-04-01

    Full Text Available In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 h using observations of aerosol optical depth (AOD from the AErosol RObotic NETwork (AERONET and the Moderate Resolution Imaging Spectroradiometer (MODIS and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distribution was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP. To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile, synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. Our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.

  2. Arabian Red Sea coastal soils as potential mineral dust sources

    Directory of Open Access Journals (Sweden)

    P. Jish Prakash

    2016-09-01

    Full Text Available Both Moderate Resolution Imaging Spectroradiometer (MODIS and Spinning Enhanced Visible and InfraRed Imager (SEVIRI satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD, inductively coupled plasma optical emission spectrometry (ICP-OES, ion chromatography (IC, scanning electron microscopy (SEM and laser particle size analysis (LPSA. We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models

  3. Atmospheric inputs to watersheds of the Luquillo Mountains in eastern Puerto Rico: Chapter D in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    Twenty years of precipitation-chemistry data from the National Atmospheric Deposition Program site at El Verde, Puerto Rico, demonstrate that three major sources control the composition of solutes in rain in eastern Puerto Rico. In order of importance, these sources are marine salts, temperate contamination from the Northern Hemisphere, and Sahara Desert dust. Marine salts are a source of roughly 82 percent of the ionic charge in precipitation; marine salt inputs are greatest in January. Evaluation of 15 years of U.S. Geological Survey data for four watersheds in eastern Puerto Rico suggests that large storms, including hurricanes, are associated with exceptionally high chloride concentrations in stream waters. Some of these storms were missed in sampling by the National Atmospheric Deposition Program, and therefore its data on the marine contribution likely underestimate chloride. The marine contribution is a weak source of acidity. Temperate contamination contributes about 10 percent of the ionic charge in precipitation; contaminants are primarily nitrate, ammonia, and sulfate derived from various manmade and natural sources. Peak deposition of temperate contaminants is during January, April, and May, months in which strong weather fronts arrive from the north. Temperate contamination, a strong source of acidity, is the only component that is increasing through time. Sahara Desert dust provides 5 percent of the ionic charge in precipitation; it is strongly seasonal, peaking in June and July during times of maximum dust transport from the Sahara and sub-Saharan regions. This dust contributes, on average, enough alkalinity to neutralize the acidity in June and July rains.

  4. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    Science.gov (United States)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing

  5. Dust Aerosols at the Source Region During ACE-ASIA: A Surface/Satellite Perspective

    Science.gov (United States)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2001-01-01

    ACE (Aerosol Characterization Experiment)-Asia is designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. The phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of dust aerosol radiative flux in addition to measurements of loading and optical thickness. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  6. Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D

    Directory of Open Access Journals (Sweden)

    D. Liu

    2018-03-01

    Full Text Available During the summertime, dust from the Sahara can be efficiently transported westwards within the Saharan air layer (SAL. This can lead to high aerosol loadings being observed above a relatively clean marine boundary layer (MBL in the tropical Atlantic Ocean. These dust layers can impart significant radiative effects through strong visible and IR light absorption and scattering, and can also have indirect impacts by altering cloud properties. The processing of the dust aerosol can result in changes in both direct and indirect radiative effects, leading to significant uncertainty in climate prediction in this region. During August 2015, measurements of aerosol and cloud properties were conducted off the coast of west Africa as part of the Ice in Cloud Experiment – Dust (ICE-D and AERosol properties – Dust (AER-D campaigns. Observations were obtained over a 4-week period using the UK Facility for Atmospheric Airborne Measurements (FAAM BAe 146 aircraft based on Santiago Island, Cabo Verde. Ground-based observations were collected from Praia (14°57′ N, 23°29′ W; 100 m a.s.l., also located on Santiago Island. The dust in the SAL was mostly sampled in situ at altitudes of 2–4 km, and the potential dust age was estimated by backward trajectory analysis. The particle mass concentration (at diameter d  =  0.1–20 µm decreased with transport time. Mean effective diameter (Deff for supermicron SAL dust (d  =  1–20 µm was found to be 5–6 µm regardless of dust age, whereas submicron Deff (d  =  0.1–1 µm showed a decreasing trend with longer transport. For the first time, an airborne laser-induced incandescence instrument (the single particle soot photometer – SP2 was deployed to measure the hematite content of dust. For the Sahel-influenced dust in the SAL, the observed hematite mass fraction of dust (FHm was found to be anti-correlated with the single scattering albedo (SSA,

  7. Study of African Dust with Multi-Wavelength Raman Lidar During "Shadow" Campaign in Senegal

    Science.gov (United States)

    Veselovskii, Igor; Goloub, Philippe; Podvin, Thierry; Bovchaliuk, Valentyn; Tanre, Didier; Derimian, Yevgeny; Korenskiy, Mikhail; Dubovik, Oleg

    2016-06-01

    West Africa and the adjacent oceanic regions are very important locations for studying dust properties and their influence on weather and climate. The SHADOW (Study of SaHAran Dust Over West Africa) campaign is performing a multi-scale and multi-laboratory study of aerosol properties and dynamics using a set of in situ and remote sensing instruments at an observation site located at IRD (Institute for Research and Development) Center, Mbour, Senegal (14°N, 17°W). In this paper, we present the results of lidar measurements performed during the first phase of SHADOW which occurred in March-April, 2015. The multiwavelength Mie-Raman lidar acquired 3β+2α+1δ measurements during this period. This set of measurements has permitted particle intensive properties such as extinction and backscattering Ångström exponents (BAE) for 355/532 nm wavelengths corresponding lidar ratios and depolarization ratio at 532 nm to be determined. The backscattering Ångström exponent during the dust episodes decreased to ~-0.7, while the extinction Ångström exponent though being negative, was greater than -0.2. Low values of BAE can likely be explained by an increase in the imaginary part of the dust refractive index at 355 nm compared to 532 nm.

  8. The footprints of Saharan air layer and lightning on the formation of tropical depressions over the eastern Atlantic Ocean

    Science.gov (United States)

    Centeno Delgado, Diana C.; Chiao, Sen

    2015-02-01

    The roles of the Saharan Air Layer (SAL) and lightning during genesis of Tropical Depression (TD) 8 (2006) and TD 12 (2010) were investigated in relation to the interaction of the dust outbreaks with each system and their surrounding environment. This study applied data collected from the 2006 NASA African Monsoon Multidisciplinary Analysis and 2010 Genesis and Rapid Intensification Processes projects. Satellite observations from METEOSAT and Moderate Resolution Imaging Spectroradiometer (MODIS)—Aerosol Optical Depth (AOD) were also employed for the study of the dust content. Lightning activity data from the Met Office Arrival Time Difference (ATD) system were used as another parameter to correlate moist convective overturning and a sign of cyclone formation. The AOD and lightning analysis for TD 8 demonstrated the time-lag connection through their positive contribution to TC-genesis. TD 12 developed without strong dust outbreak, but with lower wind shear (2 m s-1) and an organized Mesoscale Convective System (MCS). Overall, the results from the combination of various data analyses in this study support the fact that both systems developed under either strong or weak dust conditions. From these two cases, the location (i.e., the target area) of strong versus weak dust outbreaks, in association with lightning, were essential interactions that impacted TC-genesis. While our dust footprints hypothesis applied under strong dust conditions (i.e., TD 8), other factors (e.g., vertical wind shear, pre-existing vortex and trough location, thermodynamics) need to be evaluated as well. The results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones (i.e., TD 8 and TD 12).

  9. From Desert to Dessert: Why Australian Dust Matters.

    Science.gov (United States)

    Hunter, K. A.; Mackie, D. S.; Boyd, P. W.; McTainsh, G. H.

    2006-12-01

    The growth of some types of phytoplankton in several parts of the world ocean, including much of the Southern Ocean, is limited by the supply of iron. Large Australian dust storms uplift, transport and abrade soils, to produce aeolian dust that is a significant source iron to the Southern Ocean. Atmospheric processes that enhance the dissolution of iron from aeolian dusts are of interest and have been studied for material from major dust producing regions like the Sahara, Gobi and Australian deserts; the reported solubility of iron from aeolian dusts ranges from <0.01% to 80%. The characteristic red soils, sands and dusts from Australia are generally believed to consist of quartz grains with a coating of fine grains and crystals of iron oxides, primarily hematite and goethite. The precise mineralogy of soil and dust grain coatings is poorly understood and it also not well known how the coatings are altered during uplift and transport to the ocean. Current models to understand the processes operating during the transport and atmospheric processing of dust include some generalisations and simplifications that are not always warranted and our work has shown the overlooked complexity of the system. Models for aeolian-iron dissolution based on Northern Hemisphere data commonly include the pollutants SOx and NOx. The modern Southern Hemisphere is less polluted and thus resembles past environmental systems. The dissolution of iron from soils of the Saharan, Gobi and Australian deserts in the presence of protons only (i.e. without SOx and NOx) occurs in two phases. The first, faster phase, representing up to 20% of total iron is via a surface-controlled mechanism. The rate determining variable is the exposed surface area of the iron oxides and not the size of the underlying quartz grain. The second, slower, phase of dissolution occurs via the transport-controlled formation of a leached layer. During the simulated aeolian abrasion of Australian soils from dust producing

  10. Long-term (2002–2012 investigation of Saharan dust transport events at Mt. Cimone GAW global station, Italy (2165 m a.s.l.

    Directory of Open Access Journals (Sweden)

    Rocco Duchi

    2016-02-01

    Full Text Available Abstract Mineral dust transport from North Africa towards the Mediterranean basin and Europe was monitored over an 11-y period (2002–2012 using the continuous observations made at Mt. Cimone WMO/GAW global station (CMN. CMN is in a strategic position for investigating the impact of mineral dust transported from northern Africa on the atmospheric composition of the Mediterranean basin and southern Europe. The identification of “dusty days” is based on coupling the measured in situ coarse aerosol particle number concentration with an analysis of modeled back trajectories tracing the origin of air masses from North Africa. More than 400 episodes of mineral dust transport were identified, accounting for 15.7% of the investigated period. Our analysis points to a clear seasonal cycle, with the highest frequency from spring to autumn, and a dust-induced variation of the coarse particle number concentration larger than 123% on a seasonal basis. In addition, FLEXTRA 10-d back trajectories showed that northwestern and central Africa are the major mineral dust source regions. Significant inter-annual variability of dust outbreak frequency and related mineral dust loading were detected and during spring the NAO index was positively correlated (R2 = 0.32 with dust outbreak frequency. Lastly, the impact of transported mineral dust on the surface O3 mixing ratio was quantified over the 11-y investigation period. Evidence of a non-linear and negative correlation between mineral dust and ozone concentrations was found, resulting in an average spring and summer decrease of the O3 mixing ratio down to 7%.

  11. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands

    Directory of Open Access Journals (Sweden)

    H. Herrmann

    2009-12-01

    Full Text Available Monomethylamine (MA, dimethylamine (DMA and diethylamine (DEA were detected at non-negligible concentrations in sub-micrometer particles at the Cap Verde Atmospheric Observatory (CVAO located on the island of São Vicente in Cape Verde during algal blooms in 2007. The concentrations of these amines in five stage impactor samples ranged from 0–30 pg m−3 for MA, 130–360 pg m−3 for DMA and 5–110 pg m−3 for DEA during the spring bloom in May 2007 and 2–520 pg m−3 for MA, 100–1400 pg m−3 for DMA and 90–760 pg m−3 for DEA during an unexpected winter algal bloom in December 2007. Anomalously high Saharan dust deposition and intensive ocean layer deepening were found at the Atmospheric Observatory and the associated Ocean Observatory during algal bloom periods. The highest amine concentrations in fine particles (impactor stage 2, 0.14–0.42 μm indicate that amines are likely taken up from the gas phase into the acidic sub-micrometer particles. The contribution of amines to the organic carbon (OC content ranged from 0.2–2.5% C in the winter months, indicating the importance of this class of compounds to the carbon cycle in the marine environment. Furthermore, aliphatic amines originating from marine biological sources likely contribute significantly to the nitrogen content in the marine atmosphere. The average contribution of the amines to the detected nitrogen species in sub-micrometer particles can be non-negligible, especially in the winter months (0.1% N–1.5% N in the sum of nitrate, ammonium and amines. This indicates that these smaller aliphatic amines can be important for the carbon and the nitrogen cycles in the remote marine environment.

  12. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles

    International Nuclear Information System (INIS)

    Turner, Andrew; Singh, Nimisha; Richards, Jonathan P.

    2009-01-01

    Fragments of antifouling paint and environmental geosolids have been sampled from the island of Malta and analysed for total and bioaccessible metals. Total concentrations of Ba, Cd, Cu, Pb, Sn and Zn were two to three orders of magnitude higher in spent antifouling composites relative to respective values in background soils and road dusts. Paint fragments were visible in geosolids taken from the immediate vicinity of boat maintenance facilities and mass balance calculations, based on Ba as a paint tracer, suggested that the most contaminated soils, road dusts and boatyard dusts contained about 1%, 7% and 9%, respectively, of antifouling particles. Human bioaccessibilities of metals were evaluated in selected samples using a physiologically based extraction technique. Accessibilities of Cd, Cu, Pb and Zn in the most contaminated solids were sufficient to be cause for concern for individuals working in the boat repair industry and to the wider, local community. - Geosolids near boat maintenance facilities are contaminated by antifouling paint particles containing high concentrations of bioaccessible metals.

  13. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew, E-mail: aturner@plymouth.ac.u [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Singh, Nimisha; Richards, Jonathan P. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-05-15

    Fragments of antifouling paint and environmental geosolids have been sampled from the island of Malta and analysed for total and bioaccessible metals. Total concentrations of Ba, Cd, Cu, Pb, Sn and Zn were two to three orders of magnitude higher in spent antifouling composites relative to respective values in background soils and road dusts. Paint fragments were visible in geosolids taken from the immediate vicinity of boat maintenance facilities and mass balance calculations, based on Ba as a paint tracer, suggested that the most contaminated soils, road dusts and boatyard dusts contained about 1%, 7% and 9%, respectively, of antifouling particles. Human bioaccessibilities of metals were evaluated in selected samples using a physiologically based extraction technique. Accessibilities of Cd, Cu, Pb and Zn in the most contaminated solids were sufficient to be cause for concern for individuals working in the boat repair industry and to the wider, local community. - Geosolids near boat maintenance facilities are contaminated by antifouling paint particles containing high concentrations of bioaccessible metals.

  14. Saharan dust transport and high-latitude glacial climate variability: the Alboran Sea record

    NARCIS (Netherlands)

    Moreno, A.; Cacho, I.; Canals, M.; Prins, M.A.; Sánchez-Goñi, M.F.; Grimalt, J.O.; Weltje, G.J.

    2002-01-01

    Millennial to submillennial marine oscillations that are linked with the North Atlantic's Heinrich events and Dansgaard-Oeschger cycles have been reported recently from the Alboran Sea, revealing a close ocean-atmosphere coupling in the Mediterranean region. We present a high-resolution record of

  15. Identifying sources of aeolian mineral dust: Present and past

    Science.gov (United States)

    Muhs, Daniel R; Prospero, Joseph M; Baddock, Matthew C; Gill, Thomas E

    2014-01-01

    Aeolian mineral dust is an important component of the Earth’s environmental systems, playing roles in the planetary radiation balance, as a source of fertilizer for biota in both terrestrial and marine realms and as an archive for understanding atmospheric circulation and paleoclimate in the geologic past. Crucial to understanding all of these roles of dust is the identification of dust sources. Here we review the methods used to identify dust sources active at present and in the past. Contemporary dust sources, produced by both glaciogenic and non-glaciogenic processes, can be readily identified by the use of Earth-orbiting satellites. These data show that present dust sources are concentrated in a global dust belt that encompasses large topographic basins in low-latitude arid and semiarid regions. Geomorphic studies indicate that specific point sources for dust in this zone include dry or ephemeral lakes, intermittent stream courses, dune fields, and some bedrock surfaces. Back-trajectory analyses are also used to identify dust sources, through modeling of wind fields and the movement of air parcels over periods of several days. Identification of dust sources from the past requires novel approaches that are part of the geologic toolbox of provenance studies. Identification of most dust sources of the past requires the use of physical, mineralogical, geochemical, and isotopic analyses of dust deposits. Physical properties include systematic spatial changes in dust deposit thickness and particle size away from a source. Mineralogy and geochemistry can pinpoint dust sources by clay mineral ratios and Sc-Th-La abundances, respectively. The most commonly used isotopic methods utilize isotopes of Nd, Sr, and Pb and have been applied extensively in dust archives of deep-sea cores, ice cores, and loess. All these methods have shown that dust sources have changed over time, with far more abundant dust supplies existing during glacial periods. Greater dust supplies in

  16. An 11-year analysis of satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf

    Science.gov (United States)

    Banks, Jamie; Brindley, Helen; Schepanski, Kerstin; Stenchikov, Georgiy

    2017-04-01

    As enclosed seas bordering two large desert regions, the Saharan and Arabian deserts, the maritime environments of the Red Sea and the Persian Gulf are heavily influenced by the presence of desert dust aerosol. The inter-annual variability of dust presence over the Red Sea is analysed and presented, with respect to the summer-time latitudinal gradient in dust loading, which is at a maximum in the far south of the Red Sea and at a minimum in the far north. Two satellite aerosol optical depth (AOD) products from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the MODerate resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify this loading over the region. Over an eleven-year period from 2005-2015 the July mean SEVIRI AODs at 630 nm vary between 0.48 and 1.45 in the southern half of the Sea, while in the north this varies between 0.22 and 0.66. Inter-retrieval offsets are observed to occur at higher dust loadings, with pronounced positive MODIS-SEVIRI AOD offsets at AODs greater than 1, indicating substantial and systematic differences between the retrievals over the Red Sea at high dust loadings. These differences appear to be influenced in part by the differences in scattering angle range of the satellite measurements, implying that assumptions of particle shape introduce more substantial biases at the highest dust loadings.

  17. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    Science.gov (United States)

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  18. Life in Darwin's dust: intercontinental transport and survival of microbes in the nineteenth century.

    Science.gov (United States)

    Gorbushina, Anna A; Kort, Renate; Schulte, Anette; Lazarus, David; Schnetger, Bernhard; Brumsack, Hans-Jürgen; Broughton, William J; Favet, Jocelyne

    2007-12-01

    Charles Darwin, like others before him, collected aeolian dust over the Atlantic Ocean and sent it to Christian Gottfried Ehrenberg in Berlin. Ehrenberg's collection is now housed in the Museum of Natural History and contains specimens that were gathered at the onset of the Industrial Revolution. Geochemical analyses of this resource indicated that dust collected over the Atlantic in 1838 originated from the Western Sahara, while molecular-microbiological methods demonstrated the presence of many viable microbes. Older samples sent to Ehrenberg from Barbados almost two centuries ago also contained numbers of cultivable bacteria and fungi. Many diverse ascomycetes, and eubacteria were found. Scanning electron microscopy and cultivation suggested that Bacillus megaterium, a common soil bacterium, was attached to historic sand grains, and it was inoculated onto dry sand along with a non-spore-forming control, the Gram-negative soil bacterium Rhizobium sp. NGR234. On sand B. megaterium quickly developed spores, which survived for extended periods and even though the numbers of NGR234 steadily declined, they were still considerable after months of incubation. Thus, microbes that adhere to Saharan dust can live for centuries and easily survive transport across the Atlantic.

  19. Geochemical characterization of critical dust source regions in the American West

    Science.gov (United States)

    Aarons, Sarah M.; Blakowski, Molly A.; Aciego, Sarah M.; Stevenson, Emily I.; Sims, Kenneth W. W.; Scott, Sean R.; Aarons, Charles

    2017-10-01

    The generation, transport, and deposition of mineral dust are detectable in paleoclimate records from land, ocean, and ice, providing valuable insight into earth surface conditions and cycles on a range of timescales. Dust deposited in marine and terrestrial ecosystems can provide critical nutrients to nutrient-limited ecosystems, and variations in dust provenance can indicate changes in dust production, sources and transport pathways as a function of climate variability and land use change. Thus, temporal changes in locations of dust source areas and transport pathways have implications for understanding interactions between mineral dust, global climate, and biogeochemical cycles. This work characterizes dust from areas in the American West known for dust events and/or affected by increasing human settlement and livestock grazing during the last 150 years. Dust generation and uplift from these dust source areas depends on climate and land use practices, and the relative contribution of dust has likely changed since the expansion of industrialization and agriculture into the western United States. We present elemental and isotopic analysis of 28 potential dust source area samples analyzed using Thermal Ionization Mass Spectrometry (TIMS) for 87Sr/86Sr and 143Nd/144Nd composition and Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) for 176Hf/177Hf composition, and ICPMS for major and trace element concentrations. We find significant variability in the Sr, Nd, and Hf isotope compositions of potential source areas of dust throughout western North America, ranging from 87Sr/86Sr = 0.703699 to 0.740236, εNd = -26.6 to 2.4, and εHf = -21.7 to -0.1. We also report differences in the trace metal and phosphorus concentrations in the geologic provinces sampled. This research provides an important resource for the geochemical tracing of dust sources and sinks in western North America, and will aid in modeling the biogeochemical impacts of increased

  20. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish; Stenchikov, Georgiy L.; Tao, Weichun; Yapici, Tahir; Warsama, Bashir H.; Engelbrecht, Johann

    2016-01-01

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  1. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-03-23

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  2. Evaluation of the desert dust effects on global, direct and diffuse spectral ultraviolet irradiance

    Directory of Open Access Journals (Sweden)

    R. Román

    2013-01-01

    Full Text Available This paper presents a study of a strong desert dust episode over the Iberian Peninsula, and its effect on the spectral ultraviolet (UV irradiance in Granada, Spain. Remote sensing measurements, forecast models, and synoptic analysis are used to identify a Saharan desert dust outbreak that affected the Iberian Peninsula starting 20 July 2009. Additionally, a Bentham DMc150 spectroradiometer is employed to obtain global, direct and diffuse spectral UV irradiances every 15 minutes in Granada. The desert dust caused a large attenuation of the direct UV irradiance (up to 55%, while the diffuse UV irradiance increased up to 40% at 400 nm. The UVSPEC/LibRadtran radiative transfer model is used to study the spectral dependence of the experimental UV irradiance ratios (ratios of spectral irradiance for the day with the highest aerosol load to that measured in days with low–moderate load. The spectral increase or decrease of the UV direct irradiance ratios depends on a new parameter: a threshold wavelength. The spectral dependence of the UV diffuse irradiance ratio can be explained because under the influence of the intense dust outbreak, the Mie scattering by aerosols at shorter wavelengths is stronger than the Rayleigh scattering by gases. Finally, the sensitivity analysis of the aerosol absorption properties shows a substantial attenuation of UV spectral irradiance with a weak spectral dependence.

  3. Fennec dust forecast intercomparison over the Sahara in June 2011

    Directory of Open Access Journals (Sweden)

    J.-P. Chaboureau

    2016-06-01

    Full Text Available In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynamics and composition of the Saharan atmospheric boundary layer (SABL under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.

  4. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Charles A. Osunla

    2017-10-01

    Full Text Available Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  5. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa.

    Science.gov (United States)

    Osunla, Charles A; Okoh, Anthony I

    2017-10-07

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  6. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Science.gov (United States)

    Osunla, Charles A.

    2017-01-01

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens. PMID:28991153

  7. Maternity health care: The experiences of Sub-Saharan African women in Sub-Saharan Africa and Australia.

    Science.gov (United States)

    Mohale, Hlengiwe; Sweet, Linda; Graham, Kristen

    2017-08-01

    Increasing global migration is resulting in a culturally diverse population in the receiving countries. In Australia, it is estimated that at least four thousand Sub-Saharan African women give birth each year. To respond appropriately to the needs of these women, it is important to understand their experiences of maternity care. The study aimed to examine the maternity experiences of Sub-Saharan African women who had given birth in both Sub-Saharan Africa and in Australia. Using a qualitative approach, 14 semi-structured interviews with Sub-Saharan African women now living in Australia were conducted. Data was analysed using Braun and Clark's approach to thematic analysis. Four themes were identified; access to services including health education; birth environment and support; pain management; and perceptions of care. The participants experienced issues with access to maternity care whether they were located in Sub-Saharan Africa or Australia. The study draws on an existing conceptual framework on access to care to discuss the findings on how these women experienced maternity care. The study provides an understanding of Sub-Saharan African women's experiences of maternity care across countries. The findings indicate that these women have maternity health needs shaped by their sociocultural norms and beliefs related to pregnancy and childbirth. It is therefore arguable that enhancing maternity care can be achieved by improving women's health literacy through health education, having an affordable health care system, providing respectful and high quality midwifery care, using effective communication, and showing cultural sensitivity including family support for labouring women. Copyright © 2016 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  8. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  9. Dust Model Intercomparison and Extensive Comparison to Observations in the Western Mediterranean for the Summer 2012 Pre-ChArMEx/TRAQA Campaign

    Science.gov (United States)

    Basart, S.; Dulac, F.; Baldasano, J. M.

    2014-12-01

    The present analysis focuses on the model capability to properly simulate long-range Saharan dust transport for summer 2012 in the Western Mediterranean. In this period, Saharan dust events were numerous as shown by satellite and ground-based remote sensing observations.An exhaustive comparison of model outputs against other models and observations can reveal weaknesses of individual models, provide an assessment of uncertainties in simulating the dust cycle and give additional information on sources for potential model improvement. For this kind of study, multiple and different observations are combined to deliver a detailed idea of the structure and evolution of the dust cloud and the state of the atmosphere at the different stages of the event. The present contribution shows an intercomparison of a set of 7 European regional dust model simulations (NMMB/BSC-Dust, ALADIN, Meso-NH, RegCM, CHIMERE, COSMO/MUSCAT; MOCAGE and BSC-DREAM8b). In this study, the model outputs are compared against a variety of both ground-based and airborne in situ and remote sensing measurements performed during the pre-ChArMEx/TRAQA field campaign which included in particular several AERONET sites, the airborne lidar LNG, sounding with a ULA and with the new balloonborne optical particle counter LOAC showing large particles (>15 µm), the CARAGA network of weekly deposition samples, etc. The models are also compared with satellite aerosol products (including MSG/SEVIRI, MODIS, POLDER and CALIOP), which provide a description of the spatial AOD distribution over the basin. These observational datasets provide a complete set of unusual quantitative constraints for model simulations of this period, combining data on aerosol optical depth, vertical distribution, particle size distribution, deposition flux, and chemical and optical properties. Acknowledgements are addressed to OMP/SEDOO for the ChArMEx data portal and to CNES for balloon operations and funding. The other main sponsors of the

  10. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  11. Climatology and classification of spring Saharan cyclone tracks

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, A. [Reading University, Department of Meteorology, PO Box 243, Reading (United Kingdom); Awad, A. [King Abdulaziz University, Department of Meteorology, Jeddah (Saudi Arabia); Ammar, K. [Meteorological Authority, Department of Research, Cairo (Egypt)

    2011-08-15

    Spring Saharan cyclones constitute a dominant feature of the not-well-explored Saharan region. In this manuscript, a climatological analysis and classification of Saharan cyclone tracks are presented using 6-hourly NCEP/NCAR sea level pressure (SLP) reanalyses over the Sahara (10 W-50 E, 20 N-50 N) for the Spring (March-April-May) season over the period 1958-2006. A simple tracking procedure based on following SLP minima is used to construct around 640 Spring Saharan cyclone tracks. Saharan cyclones are found to be short-lived compared to their extratropical counterparts with an e-folding time of about 3 days. The lee side of the west Atlas mountain is found to be the main cyclogenetic region for Spring Saharan cyclones. Central Iraq is identified as the main cyclolytic area. A subjective procedure is used next to classify the cyclone tracks where six clusters are identified. Among these clusters the Western Atlas-Asia Minor is the largest and most stretched, whereas Algerian Sahara-Asia Minor is composed of the most long-lived tracks. Upper level flow associated with the tracks has also been examined and the role of large scale baroclinicity in the growth of Saharan cyclones is discussed. (orig.)

  12. Dust emission mechanisms in the central Sahara: new insights from remote field observations

    Science.gov (United States)

    Allen, C.; Washington, R.; Engelstaedter, S.

    2013-12-01

    North Africa is the world's largest source of mineral aerosol (dust). The Fennec Project, an international consortium led by the University of Oxford, is the first project to systematically instrument the remote central Sahara Desert. These observations have, among others, provided new insights into the atmospheric mechanisms of dust emission. Bordj Badji Mokhtar, in south-west Algeria, is within kilometres of the centre of the global mean summer dust maximum. The site, operated by Fennec partners ONM Algerie, has been heavily instrumented since summer 2011. During the Intensive Observation Period (IOP) in June 2011, four main emission mechanisms were observed and documented: cold pool outflows, low level jets (LLJs), monsoon surges and dry convective plumes. Establishing the relative importance of dust emission mechanisms has been a long-standing research goal. A detailed partitioning exercise of dust events during the IOP shows that 45% of the dust over BBM was generated by local emission in cold pool outflows, 14% by LLJs and only 2% by dry convective plumes. 27% of the dust was advected to the site rather than locally emitted and 12% of the dust was residual or ';background' dust. The work shows the primacy of cold pool outflows for dust emission in the region and also the important contribution of dust advection. In accordance with long-held ideas, the cube of wind speed is strongly correlated with dust emission. Surprisingly however, particles in long-range advection (>500km) were found to be larger than locally emitted dust. Although a clear LLJ wind structure is evident in the mean diurnal cycle during the IOP (12m/s peak winds at 935hPa between 04-05h), LLJs are only responsible for a relatively small amount of dust emission. There is significant daily variability in LLJ strength; the strongest winds are produced by a relatively small number of events. The position and strength of the Saharan Heat Low is strongly associated with the development (or

  13. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-07-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to marine surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-yr period at Finokalia, Crete. In addition, at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  14. Introduction to the project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    Science.gov (United States)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2013-07-01

    The main goal of the project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of Aeolian dust. Atmospheric deposition is now recognized as a significant source of macro- and micro-nutrients for the surface ocean, but the quantification of its role on the biological carbon pump is still poorly determined. We proposed in DUNE to investigate the role of atmospheric inputs on the functioning of an oligotrophic system particularly well adapted to this kind of study: the Mediterranean Sea. The Mediterranean Sea - etymologically, sea surrounded by land - is submitted to atmospheric inputs that are very variable both in frequency and intensity. During the thermal stratification period, only atmospheric deposition is prone to fertilize Mediterranean surface waters which has become very oligotrophic due to the nutrient depletion (after the spring bloom). This paper describes the objectives of DUNE and the implementation plan of a series of mesocosms experiments during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented, including laboratory results on the solubility of trace elements in erodible soils in addition to results from the mesocosm experiments. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension in the study of the fate of atmospheric deposition within surface waters. Results obtained can be more easily extrapolated to quantify budgets and parameterize processes such as particle migration through a "captured water column". The strong simulated dust deposition

  15. The impact of dust storms on the Arabian Peninsula and the Red Sea

    KAUST Repository

    Jish Prakash, P.

    2015-01-12

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF–Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

  16. The impact of dust storms on the Arabian Peninsula and the Red Sea

    KAUST Repository

    Jish Prakash, P.; Stenchikov, Georgiy L.; Kalenderski, Stoitchko; Osipov, Sergey; Bangalath, Hamza Kunhu

    2015-01-01

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF–Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

  17. Radioecological impact of Saharan dusts fallout. Case study of a major event on the 21. of february 2004 in south part of France; Impact radioecologique des retombees de poussieres sahariennes. Episode majeur du 21/02/2004 dans le sud de la France

    Energy Technology Data Exchange (ETDEWEB)

    Masson, O.; Pourcelot, L.; Gurriaran, R.; Paulat, P

    2005-07-01

    Lithometeors, Sirocco or more commonly 'red mud' are all in fact related to a single phenomenon which affects France every year: the wind transport and deposit of desert particles from the Sahara. On the 21. of February 2004, the southern part of France is swept by a weather event of wind transport of Saharan particles. The recordings of atmospheric dust contamination and the deposit of dust, which results from it, make an episode of exceptional width. In a few hours, the thickness of the deposit exceeds 1 mm (up to 4 mm in Corsica) with a maximum density of surface charge of 50 g.m{sup -2} (50 tons per km{sup 2}). The loads of the PM{sub 10} type particles in the air, recorded by associations of monitoring of the quality of the air, indicate concentrations multiplied to the maximum by 10 and an influence on the ground of the plume ranging between 300 000 and 350 000 km{sup 2}. To the end, 2 million tons are deposited on a portion of the territory located at the south of a line from Nantes to Besancon. This event also had a significant radio-ecological impact, leading to significant {sup 137}Cs, {sup (239+240)}Pu, {sup 241}Am, activity levels of 38 Bq. kg{sup -1} sec, 1 Bq. kg{sup -1} sec and 0,46 Bq. kg{sup -1} sec, respectively. Quality of air monitoring organisations recorded 10-fold increases in the concentration of charged PM{sub 10} {sup 2}type particles within the cloud; ground coverage stretched over a 300 000 km{sup 2} surface area. Across this whole area, the artificial radioactivity deposits are estimated to 37.10{sup 10} Bq. In term of flow of deposit, this episode represents, with him only, i.e. in a few hours, a {sup 137}Cs deposition equivalent to that recorded on average in a cumulated time of one year. Data from this study show that these weather-climatic episodes generate today, environmental samples which on average, present the highest levels and flux of artificial radioactivities, more than those in the sediments of the Rhone river

  18. Aspergillus Sydowii Marine Fungal Bloom in Australian Coastal Waters, Its Metabolites and Potential Impact on Symbiodinium Dinoflagellates

    Directory of Open Access Journals (Sweden)

    Aiko Hayashi

    2016-03-01

    Full Text Available Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m3 forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef.

  19. Primary factors affecting water quality and quantity in four watersheds in Eastern Puerto Rico

    Science.gov (United States)

    Murphy, Sheila F.; Stallard, Robert F.

    2009-01-01

    As part of the U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) program, four small watersheds in eastern Puerto Rico were monitored to identify and evaluate the effects of geology, landcover, atmospheric deposition, and other factors on stream water quality and quantity. Two catchments are located on coarse-grained granitic plutonic rocks, which weather to quartz- and clay-rich, sandy soils, and two are located on fine-grained volcanic rocks and volcaniclastic sediments, which weather to quartz-poor, fine-grained soils. These differing soil materials result in different hydrologic regimes. Soils on the granitic rocks have greater permeability than those developed on the volcaniclastic rocks, allowing more water infiltration and potentially greater landslide erosion rates. For each bedrock type, one catchment was covered with mature rainforest, and the other catchment was affected by agricultural practices typical of eastern Puerto Rico. These practices led to the erosion of much of the original surface soil in the agricultural watersheds, which introduced large quantities of sediment to stream channels. The agricultural watersheds are undergoing natural reforestation, like much of Puerto Rico. Eastern Puerto Rico receives large atmospheric inputs of marine salts, pollutants from the Northern Hemisphere, and Saharan Desert dust. Marine salts contribute over 80 percent of the ionic charge in precipitation, with peak inputs in January. Intense storms, mostly hurricanes, are associated with exceptionally high chloride concentrations in stream waters. Temperate pollution contributes nitrate, ammonia, and sulfate, with maximum inputs during northern cold fronts in January, April, and May. Pollution inputs have increased through time. Desert dust peaks in June and July, during times of maximum dust transport from the Saharan Desert across the Atlantic Ocean.

  20. Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara

    Science.gov (United States)

    Moskowitz, Bruce M; Reynolds, Richard L.; Goldstein, Harland L.; Beroquo, Thelma; Kokaly, Raymond F.; Bristow, Charlie S

    2016-01-01

    Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the Bodélé Depression (Chad, north-central Africa), which is estimated to be Earth’s most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the Bodélé Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the Bodélé Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the Bodélé Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002–0.57 wt%) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM bioavailability to marine and terrestrial ecosystems.

  1. Deciphering the Role of Desert Dust in the Climate Puzzle: The Mediterranean Israeli Dust Experiment (MEIDEX)

    Science.gov (United States)

    Levin, Zev; Joseph, Joachim; Mekler, Yuri; Israelevich, Peter; Ganor, Eli; Hilsenrath, Ernest; Janz, Scott

    2002-01-01

    Numerous studies have shown that aerosol particles may be one of the primary agents that can offset the climate warming induced by the increase in the amount of atmospheric greenhouse gases. Desert aerosols are probably the most abundant and massive type of aerosol particles that are present in the atmosphere worldwide. These aerosols are carried over large distances and have various global impacts. They interact with clouds, impact the efficiency of their rain production and change their optical properties. They constitute one of the primary sources of minerals for oceanic life and influence the health of coral reefs. They have direct effects on human health, especially by inducing breathing difficulties in children. It was lately discovered that desert particles carry pathogens from the Sahara desert over the Atlantic Ocean, a fact that may explain the migration of certain types of diseases. Aerosols not only absorb solar radiation but also scatter it, so that their climatic effect is influenced not only by their physical properties and height distribution but also by the reflectivity of the underlying surface. This latter property changes greatly over land and is low over ocean surfaces. Aerosol plumes are emitted from discrete, sporadic sources in the desert areas of the world and are transported worldwide by the atmosphere's wind systems. For example, Saharan dust reaches Mexico City, Florida, Ireland, Switzerland and the Mediterranean region, while Asian dust reaches Alaska, Hawaii and the continental United States. This means that in order to assess its global effects, one must observe dust from space. The Space Shuttle is a unique platform, because it flies over the major deserts of our planet, enabling measurements and remote sensing of the aerosols as they travel from source to sink regions. Such efforts must always be accompanied by in-situ data for validation and calibration, with direct sampling of the airborne particles. MEIDEX is a joint project of

  2. Iron Oxide Minerals in Atmospheric Dust and Source Sediments-Studies of Types and Properties to Assess Environmental Effects

    Science.gov (United States)

    Reynolds, R. L.; Goldstein, H. L.; Moskowitz, B. M.; Till, J. L.; Flagg, C.; Kokaly, R. F.; Munson, S.; Landry, C.; Lawrence, C. R.; Hiza, M. M.; D'Odorico, P.; Painter, T. H.

    2011-12-01

    Ferric oxide minerals in atmospheric dust can influence atmospheric temperatures, accelerate melting of snow and ice, stimulate marine phytoplankton productivity, and impact human health. Such effects vary depending on iron mineral type, size, surface area, and solubility. Generally, the presence of ferric oxides in dust is seen in the red, orange, or yellow hues of plumes that originate in North Africa, central and southwest Asia, South America, western North America, and Australia. Despite their global importance, these minerals in source sediments, atmospheric dust, and downwind aeolian deposits remain poorly described with respect to specific mineralogy, particle size and surface area, or presence in far-traveled aerosol compounds. The types and properties of iron minerals in atmospheric dust can be better understood using techniques of rock magnetism (measurements at 5-300 K), Mössbauer and high-resolution visible and near-infrared reflectance spectroscopy; chemical reactivity of iron oxide phases; and electron microscopy for observing directly the ferric oxide coatings and particles. These studies can elucidate the diverse environmental effects of iron oxides in dust and can help to identify dust-source areas. Dust-source sediments from the North American Great Basin and Colorado Plateau deserts and the Kalahari Desert, southern Africa, were used to compare average reflectance values with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance. Lower reflectance values correspond strongly with higher HIRM values, indicating that ferric oxides (hematite or goethite, or both) contribute to absorption of solar radiation in these sediments. Dust deposited to snow cover of the San Juan Mountains (Colorado) and Wasatch Mountains (Utah) was used to characterize dust composition compared with properties of sediments exposed in source-areas identified from satellite retrievals. Results from multiple methods indicate that

  3. Obliquity-controlled soil moisture fluctuations recorded in Saharan dust deposits on Lanzarote (Canary Islands) during the last 180 ka

    Science.gov (United States)

    von Suchodoletz, H.; Oberhänsli, H.; Hambach, U.; Zöller, L.; Fuchs, M.; Faust, D.

    2009-04-01

    On Lanzarote (Canary Islands), dust-borne sediments trapped in valleys dammed by volcanic material were investigated in order to reveal environmental changes during the Late Quaternary. Clay content and frequency dependent magnetic susceptibility are used as proxies of pedogenesis and trace back changes of palaeo-soil moisture during the last 180 ka, showing a pattern of generally enhanced soil moisture during glacials and stadials and more arid conditions during warm periods. These results are compared with proxies from local palaeoclimate studies, showing that there is a positive correlation with proxies of trade wind strength off NW Africa and sea surface temperatures in the NE-Atlantic, and an inverse correlation with the extent of mediterranean vegetation. Possible causes for the observed pattern include a glacial enhancement of precipitation from westerly cyclones, an occasional influence of the African summer monsoon and a relative humidity change triggered by fluctuating air temperatures. Although no clear differentiation between the influences of these factors is possible yet, it is clear that the first and the last one must have dominated during most of the time. These results are the first quasi continuous terrestrial data testifying to environmental changes in the NW African coastal area for the last 180 ka, and complement the abundant data derived from marine cores of the region. The results from this study demonstrate a dominant influence of high latitude dynamics in this area intermediated by North Atlantic sea surface temperatures. This influence is supported by a negative correlation of our proxies with the orbital obliquity cycle, including a time lag of about 10 ka similar to that recorded from North Atlantic sea surface temperatures.

  4. Observations of an 11 September Sahelian Squall Line and Saharan Air Layer Outbreak during NAMMA-06

    Directory of Open Access Journals (Sweden)

    J. W. Smith

    2012-01-01

    Full Text Available The 2006 NASA-African Monsoon Multidisciplinary Analyses (NAMMA-06 field campaign examined a compact, low-level vortex embedded in the trough of an AEW between 9–12 September. The vortex triggered a squall line (SL in southeastern Senegal in the early morning of 11 September and became Tropical Depression 8 on 12 September. During this period, there was a Saharan Air Layer (SAL outbreak in northwestern Senegal and adjacent Atlantic Ocean waters in the proximity of the SL. Increases in aerosol optical thicknesses in Mbour, Senegal, high dewpoint depressions observed in the Kawsara and Dakar rawinsondes, and model back-trajectories suggest the SAL exists. The close proximity of this and SL suggests interaction through dust entrainment and precipitation invigoration.

  5. Measurements of ice nucleating particle concentrations at 242 K in the free troposphere

    Science.gov (United States)

    Lacher, L.; Lohmann, U.; Boose, Y.; Zipori, A.; Herrmann, E.; Bukowiecki, N.; Steinbacher, M.; Gute, E.; Kanji, Z. A.

    2017-12-01

    Clouds containing ice play an important role in the Earth's system, but some fundamental knowledge on their formation and further development is still missing. The phase change from vapor or liquid to ice in the atmosphere can occur heterogeneously in the presence of ice nucleating particles (INPs) at temperatures warmer, and supersaturations lower than required for homogeneous freezing. Only a small fraction of particles in an environment relevant for the occurrence of ice- and mixed-phase clouds are INPs, and their identification and quantification remains challenging. We measure INP concentrations with the ETH Horizontal Ice Nucleation Chamber (HINC) at the High Altitude Research Station Jungfraujoch (JFJ) during several field campaigns in different seasons and years. The measurements are performed at 242 K and above water saturation, representing ice- and mixed-phase clouds conditions. Due to its elevation of 3580 m a.s.l. the site encounters mostly free tropospheric conditions, and is influenced by boundary layer injections up to 80% of the time in summer. JFJ regularly encounters Saharan dust events and receives air masses of marine origin, which can both occur within the free troposphere. Our measurements show that INP concentrations in the free troposphere do not follow a seasonal cycle. They are remarkably constant, with concentrations from 0.5 - 8 L-1 (interquartile range), which compares well to measurements performed under the same conditions at another location within the free troposphere, the Izaña Atmospheric Research Station in Tenerife. At JFJ, correlations with parameters of physical properties of ambient particles, meteorology and air mass characteristics do not show a single best estimator to predict INP concentrations, emphasizing the complexity of ice nucleation in the free troposphere. Increases in INP concentrations of a temporary nature were observed in the free troposphere during Saharan dust events and marine air mass influence, which

  6. DustEM: Dust extinction and emission modelling

    Science.gov (United States)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  7. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    Science.gov (United States)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  8. Quantifying local-scale dust emission from the Arabian Red Sea coastal plain

    KAUST Repository

    Anisimov, Anatolii

    2017-01-23

    Dust plumes emitted from the narrow Arabian Red Sea coastal plain are often observed on satellite images and felt in local population centers. Despite its relatively small area, the coastal plain could be a significant dust source; however, its effect is not well quantified as it is not well approximated in global or even regional models. In addition, because of close proximity to the Red Sea, a significant amount of dust from the coastal areas could be deposited into the Red Sea and serve as a vital component of the nutrient balance of marine ecosystems. In the current study, we apply the offline Community Land Model version 4 (CLM4) to better quantify dust emission from the coastal plain during the period of 2009-2011. We verify the spatial and temporal variability in model results using independent weather station reports. We also compare the results with the MERRA Aerosol Reanalysis (MERRAero). We show that the best results are obtained with 1 km model spatial resolution and dust source function based on Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements. We present the dust emission spatial pattern, as well as estimates of seasonal and diurnal variability in dust event frequency and intensity, and discuss the emission regime in the major dust generation hot spot areas. We demonstrate the contrasting seasonal dust cycles in the northern and southern parts of the coastal plain and discuss the physical mechanisms responsible for dust generation. This study provides the first estimates of the fine-scale spatial and temporal distribution of dust emissions from the Arabian Red Sea coastal plain constrained by MERRAero and short-term WRF-Chem simulations. The estimate of total dust emission from the coastal plain, tuned to fit emissions in MERRAero, is 7.5 ± 0.5 Mt a. Small interannual variability indicates that the study area is a stable dust source. The mineralogical composition analysis shows that the coastal plain

  9. Quantifying local-scale dust emission from the Arabian Red Sea coastal plain

    KAUST Repository

    Anisimov, Anatolii; Tao, Weichun; Stenchikov, Georgiy L.; Kalenderski, Stoitchko; Jish Prakash, P.; Yang, Zong Liang; Shi, Mingjie

    2017-01-01

    Dust plumes emitted from the narrow Arabian Red Sea coastal plain are often observed on satellite images and felt in local population centers. Despite its relatively small area, the coastal plain could be a significant dust source; however, its effect is not well quantified as it is not well approximated in global or even regional models. In addition, because of close proximity to the Red Sea, a significant amount of dust from the coastal areas could be deposited into the Red Sea and serve as a vital component of the nutrient balance of marine ecosystems. In the current study, we apply the offline Community Land Model version 4 (CLM4) to better quantify dust emission from the coastal plain during the period of 2009-2011. We verify the spatial and temporal variability in model results using independent weather station reports. We also compare the results with the MERRA Aerosol Reanalysis (MERRAero). We show that the best results are obtained with 1 km model spatial resolution and dust source function based on Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements. We present the dust emission spatial pattern, as well as estimates of seasonal and diurnal variability in dust event frequency and intensity, and discuss the emission regime in the major dust generation hot spot areas. We demonstrate the contrasting seasonal dust cycles in the northern and southern parts of the coastal plain and discuss the physical mechanisms responsible for dust generation. This study provides the first estimates of the fine-scale spatial and temporal distribution of dust emissions from the Arabian Red Sea coastal plain constrained by MERRAero and short-term WRF-Chem simulations. The estimate of total dust emission from the coastal plain, tuned to fit emissions in MERRAero, is 7.5 ± 0.5 Mt a. Small interannual variability indicates that the study area is a stable dust source. The mineralogical composition analysis shows that the coastal plain

  10. Sub-Saharan Africa Report

    National Research Council Canada - National Science Library

    1985-01-01

    .... This report from Sub-Saharan Africa, Benin, Botswana, Burkina, Cameroon, Chad, Comoros, Ethiopia, Ghana, Guinea, Kenya, Liberia, Madagascar, Mauritius, Mozambique, Sierra Leone, Somalia, South Africa...

  11. Sub-Saharan Africa Report

    National Research Council Canada - National Science Library

    1985-01-01

    .... This report on Sub-Saharan Africa, Angola, Botswana, Burkina, Cameroon, Ghana, Ivory Coast, Liberia, Madagascar, Malawi, Mali, Mozambique, Namibia, Senegal, South Africa, and Swaziland, contains...

  12. Sub-Saharan Africa Report

    National Research Council Canada - National Science Library

    1985-01-01

    .... This report from Sub-Saharan Africa, Angola, Benin, Botswana, Burundi, Ghana, Lesoto, Liberia, Malawi, Namibia, Nigeria, Senegal, Seychelles, South Africa, Tanzania and Zimbabwe, contains articles...

  13. Sub-Saharan Africa Report

    National Research Council Canada - National Science Library

    1987-01-01

    Partial Contents: Sub Saharan Africa, Military Exercise, Radio Commentary, Stock Exchange, Prime Minister, Economic, Domestic Service, Armed Forces, Health, Organizations, Death, International Service, Foreign Policy...

  14. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission.

    Science.gov (United States)

    Fiedler, S; Schepanski, K; Heinold, B; Knippertz, P; Tegen, I

    2013-06-27

    [1] This study presents the first climatology for the dust emission amount associated with Nocturnal Low-Level Jets (NLLJs) in North Africa. These wind speed maxima near the top of the nocturnal boundary layer can generate near-surface peak winds due to shear-driven turbulence in the course of the night and the NLLJ breakdown during the following morning. The associated increase in the near-surface wind speed is a driver for mineral dust emission. A new detection algorithm for NLLJs is presented and used for a statistical assessment of NLLJs in 32 years of ERA-Interim reanalysis from the European Centre for Medium-Range Weather Forecasts. NLLJs occur in 29% of the nights in the annual and spatial mean. The NLLJ climatology shows a distinct annual cycle with marked regional differences. Maxima of up to 80% NLLJ frequency are found where low-level baroclinicity and orographic channels cause favorable conditions, e.g., over the Bodélé Depression, Chad, for November-February and along the West Saharan and Mauritanian coast for April-September. Downward mixing of NLLJ momentum to the surface causes 15% of mineral dust emission in the annual and spatial mean and can be associated with up to 60% of the total dust amount in specific areas, e.g., the Bodélé Depression and south of the Hoggar-Tibesti Channel. The sharp diurnal cycle underlines the importance of using wind speed information with high temporal resolution as driving fields for dust emission models. Citation: Fiedler, S., K. Schepanski, B. Heinold, P. Knippertz, and I. Tegen (2013), Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission, J. Geophys. Res. Atmos., 118, 6100-6121, doi:10.1002/jgrd.50394.

  15. Sub-Saharan Africa Report

    National Research Council Canada - National Science Library

    1986-01-01

    .... This report contains articles from Sub-Saharan Africa, Angola, Ethiopia, Ghana, Mozambique, Namibia, Sierra Leone, Togo, Zambia, and South Africa, the articles deal mainly with Politics, Sociology...

  16. U.S. Army and Marine Corps Equipment Requirements: Background and Issues for Congress

    National Research Council Canada - National Science Library

    Feickert, Andrew

    2006-01-01

    ... on a rotational basis in combat conditions." In a similar manner, the Marine Corps has deployed its forces and equipment in what has been described as "the harsh operating environments of Iraq and Afghanistan" where the heat, sand, and dust...

  17. Lead isotopic composition of paleozoic and late proterozoic marine carbonate rocks in the vicinity of Yucca Mountains, Nevada

    International Nuclear Information System (INIS)

    Zartman, R.E.; Kwak, L.M.

    1993-01-01

    Paleozoic and Late Proterozoic marine carbonate rocks (limestones, dolomites, and their metamorphic equivalents) cropping out in the vicinity of Yucca Mountain contain lead with an isotopic composition strongly suggesting them to be a major source of the lead observed at Trench 14 in the carbonate phase of carbonate-silica veins and nearby surficial calcrete deposits. Six whole-rock samples of marine carbonate rocks yield 206 Pb/ 204 Pb = 19.21-29.06, 207 Pb/ 204 Pb = 15.74-16.01, and 208 Pb/ 204 Pb = 37.90-39.25, and leachate and residue fractions of the rocks reveal additional isotopic heterogeneity within individual samples. Two samples of eolian dust also have isotopic compositions lying along a 'carbonate' to 'silicate' mixing trend that appears to arise entirely from pedeogenic processes. The tendency for the marine carbonate rocks to evolve highly uranogenic, but not thorogenic, lead results in a distinctive isotopic composition that serves as a tracer in eolian dust and secondary carbonate minerals derived from the marine carbonate rocks

  18. Dust acoustic shock wave at high dust density

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.

    2003-01-01

    Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak

  19. Speciation of organic aerosols in the Saharan Air Layer and in the free troposphere westerlies

    Directory of Open Access Journals (Sweden)

    M. I. García

    2017-07-01

    Full Text Available We focused this research on the composition of the organic aerosols transported in the two main airflows of the subtropical North Atlantic free troposphere: (i the Saharan Air Layer – the warm, dry and dusty airstream that expands from North Africa to the Americas at subtropical and tropical latitudes – and (ii the westerlies, which flow from North America over the North Atlantic at mid- and subtropical latitudes. We determined the inorganic compounds (secondary inorganic species and elemental composition, elemental carbon and the organic fraction (bulk organic carbon and organic speciation present in the aerosol collected at Izaña Observatory,  ∼  2400 m a.s.l. on the island of Tenerife. The concentrations of all inorganic and almost all organic compounds were higher in the Saharan Air Layer than in the westerlies, with bulk organic matter concentrations within the range 0.02–4.0 µg m−3. In the Saharan Air Layer, the total aerosol population was by far dominated by dust (93 % of bulk mass, which was mixed with secondary inorganic pollutants ( <  5 % and organic matter ( ∼  1.5 %. The chemical speciation of the organic aerosols (levoglucosan, dicarboxylic acids, saccharides, n-alkanes, hopanes, polycyclic aromatic hydrocarbons and those formed after oxidation of α-pinene and isoprene, determined by gas chromatography coupled with mass spectrometry accounted for 15 % of the bulk organic matter (determined by the thermo-optical transmission technique; the most abundant organic compounds were saccharides (associated with surface soils, secondary organic aerosols linked to oxidation of biogenic isoprene (SOA ISO and dicarboxylic acids (linked to several primary sources and SOA. When the Saharan Air Layer shifted southward, Izaña was within the westerlies stream and organic matter accounted for  ∼  28 % of the bulk mass of aerosols. In the westerlies, the organic aerosol species determined

  20. Selected socioeconomic barriers of education in Sub-Saharan Africa

    OpenAIRE

    Tillová, Petra

    2015-01-01

    Selected socioeconomic barriers of education in Sub-Saharan Africa Abstract The aim of bachelor thesis is to describe and understand the process of education in Sub-Saharan Africa and analyze components that cause limited access to education. The first part of the thesis describes the process of education in Sub-Saharan Africa using selected indicators. The second main part focuses on the description and possible relations between selected socioeconomic barriers and literacy. Selected barrier...

  1. The Ethics of Introducing GMOs into sub-Saharan Africa: Considerations from the sub-Saharan African Theory of Ubuntu.

    Science.gov (United States)

    Komparic, Ana

    2015-11-01

    A growing number of countries in sub-Saharan Africa are considering legalizing the growth of genetically modified organisms (GMOs). Furthermore, several projects are underway to develop transgenic crops tailored to the region. Given the contentious nature of GMOs and prevalent anti-GMO sentiments in Africa, a robust ethical analysis examining the concerns arising from the development, adoption, and regulation of GMOs in sub-Saharan Africa is warranted. To date, ethical analyses of GMOs in the global context have drawn predominantly on Western philosophy, dealing with Africa primarily on a material level. Yet, a growing number of scholars are articulating and engaging with ethical theories that draw upon sub-Saharan African value systems. One such theory, Ubuntu, is a well-studied sub-Saharan African communitarian morality. I propose that a robust ethical analysis of Africa's agricultural future necessitates engaging with African moral theory. I articulate how Ubuntu may lead to a novel and constructive understanding of the ethical considerations for introducing GMOs into sub-Saharan Africa. However, rather than reaching a definitive prescription, which would require significant engagement with local communities, I consider some of Ubuntu's broader implications for conceptualizing risk and engaging with local communities when evaluating GMOs. I conclude by reflecting on the implications of using local moral theory in bioethics by considering how one might negotiate between universalism and particularism in the global context. Rather than advocating for a form of ethical relativism, I suggest that local moral theories shed light on salient ethical considerations that are otherwise overlooked. © 2015 John Wiley & Sons Ltd.

  2. Cometary Dust

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  3. Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance

    Science.gov (United States)

    Herwitz, S.R.; Muhs, D.R.; Prospero, J.M.; Mahan, S.; Vaughn, B.

    1996-01-01

    Red clayey paleosols that are chiefly the product of aerosolic dust deposition are interbedded in the Quaternary carbonate formations of the Bermuda oceanic island system. These paleosols provide a basis for reconstructing Quaternary atmospheric circulation patterns in the northwestern Atlantic. Geochemical analyses were performed on representative paleosol samples to identify their parent dust source. Fine-grained fractions were analyzed by energy-dispersive X ray fluorescence to determine trace element (Zr, Y, La, Ti, and Nb) concentrations and to derive geochemical signatures based on immobile element ratios. These ratios were compared with geochemical signatures determined for three possible sources of airborne dust: (1) Great Plains loess, (2) Mississippi River Valley loess, and (3) Saharan dust. The Zr/Y and Zr/La ratios provided the clearest distinction between the hypothesized dust sources. The low ratios in the paleosol B horizons most closely resemble Saharan dust in the the two North American loessial source areas could not be clearly detected. Thus Bermuda paleosols have a predominantly Saharan aerosolic dust signature. Saharan dust deposition on Bermuda during successive Quaternary glacial periods is consistent with patterns of general circulation models, which indicate that during glacial maxima the northeast summer trade winds were stronger than at present and reached latitudes higher than 30 ?? N despite lower-than-present sea surface temperatures in the North Atlantic.

  4. Sub-Saharan Africa Report

    National Research Council Canada - National Science Library

    1985-01-01

    This is Sub Saharan Africa Report. It contains the issues with different topics on Inter African Affairs, Angola, Cameroon, Cape Verde, Chad, Congo, Ethiopia, Gambia, Ghana, Guinea, Guinea Bissau, Kenya, madagascar, Mozambique...

  5. Characterization of Dust Properties Near Source Region During ACE-Asia: A Column Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, S. -C.; Ji, Q.; Chu, A.; Hsu, C.; Holben, B.; Campbell, J.; Welton, E. J.; Shu, P. K.

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern/southeastern Asia and along the rim of the western Pacific. For example, the ACE-Asia was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  6. Plants as antimalarial agents in Sub-Saharan Africa.

    Science.gov (United States)

    Chinsembu, Kazhila C

    2015-12-01

    Although the burden of malaria is decreasing, parasite resistance to current antimalarial drugs and resistance to insecticides by vector mosquitoes threaten the prospects of malaria elimination in endemic areas. Corollary, there is a scientific departure to discover new antimalarial agents from nature. Because the two antimalarial drugs quinine and artemisinin were discovered through improved understanding of the indigenous knowledge of plants, bioprospecting Sub-Saharan Africa's enormous plant biodiversity may be a source of new and better drugs to treat malaria. This review analyses the medicinal plants used to manage malaria in Sub-Saharan Africa. Chemical compounds with antiplasmodial activity are described. In the Sub-Saharan African countries cited in this review, hundreds of plants are used as antimalarial remedies. While the number of plant species is not exhaustive, plants used in more than one country probably indicate better antimalarial efficacy and safety. The antiplasmodial data suggest an opportunity for inventing new antimalarial drugs from Sub-Saharan-African flora. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Science Granting Councils Initiative in Sub-Saharan Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... the increasingly important role of these councils in national science systems. ... that will contribute to economic and social development in Sub-Saharan Africa. ... Initiative for Sub-Saharan Africa's website to learn more about the initiative.

  8. Reconstructing dust fluxes and paleoproductivity at the southern Agulhas Plateau since MIS-6

    Science.gov (United States)

    Frenkel, M. M.; Anderson, R. F.; Winckler, G.

    2017-12-01

    Understanding the mechanisms underlying glacial-interglacial cycles requires characterizing the role of oceanic feedbacks in climatic changes. For example, increased aeolian iron fluxes to Fe-limited regions of the ocean and corresponding changes in marine productivity could have improved biological pump efficiency and resulted in CO2 drawdown. Here we explore these feedbacks using marine sediment core MDO2-2588 collected from the southern Agulhas Plateau (SAP; 41°S, 26°E), located beneath the modern subtropical front. Today, diatom productivity in this region is Si-limited because high Si utilization south of the polar front (PF) means that water advected northward to our study site is Si-depleted. However, previous work has suggested that extended sea ice cover during glacial periods may have limited diatom productivity south of the PF while frontal systems shifted northward, allowing more Si to reach thermocline of the SAP. Meanwhile, increased glacial dust flux to the SAP may have simultaneously supplied more Fe, contributing to higher glacial productivity. This hypothesis has been supported by observations of higher LGM and MIS-6 productivity at MD02-2588 using bulk biogenic content and diatom assemblages (Romero et al., Paleoceanography, 30 (2015) 118-132). Gradients in d13C between benthic and planktic foraminifera have also been used to support Fe fertilization at this site on millennial timescales (Ziegler et al., Nature Geoscience, 6 (2013) 457-461). Yet, studies have yet to produce coordinated records of dust flux and export production for the SAP. Here, we present records of dust, based on 230Th-normalized 232Th fluxes, and export production using 230Th-normalized excess-Ba and opal fluxes and authigenic U through MIS-6. Preliminary results show that lithogenic fluxes to MD02-2588 were approximately twice as high during MIS-6 as MIS-5e and were concurrent with a two-fold increase in excess-Ba flux. However, this relative increase in lithogenic flux

  9. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  10. Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara

    Science.gov (United States)

    Moskowitz, Bruce M; Reynolds, Richard L.; Goldstein, Harland L.; Beroquo, Thelma; Kokaly, Raymond F.; Bristow, Charlie S

    2016-01-01

    Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the Bodélé Depression (Chad, north-central Africa), which is estimated to be Earth’s most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the Bodélé Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the Bodélé Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the Bodélé Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002–0.57 wt%) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM iron apportionment is estimated at about 33% in ferric oxide minerals, 1.4% in magnetite, and 65% in ferric silicates. Structural iron in clay

  11. Sub-Saharan Africa's media and neocolonialism.

    Science.gov (United States)

    Domatob, J K

    1988-01-01

    Given the heavy Western metropolitan bias of the media in sub-Saharan Africa, the ideology of neocolonialism continues to exert a dominant influence on economic, social, political, and cultural life. This neocolonial influence is further reinforced by advertising that champions a consumerist culture centered around Western goods. The capital of multinational firms plays a crucial role in the strategy of media imperialism. The dramatic growth of monopolies and the creation of military-industrial-information conglomerates in the 1970s and 1980s have been reflected in the international exchange of information and the interlinkage of mass communication systems in sub-Saharan Africa. Another media strategy that reinforces neocolonialism is the use of satellite communication. If cultural autonomy is defined as sub-Saharan Africa's capacity to decide on the allocation of its environmental resources, then cultural synchronization is a massive threat to that autonomy. Few African nations have the resources or expertise necessary to design, establish, or maintain communication systems that could accurately reflect their own culture. Nonetheless, there are some policy options. Personnel can be trained to respect African values and to recognize the dangers of neocolonial domination. The production of indigenous programs could reduce the media's foreign content. The incorporation of traditional drama and dance in the media could enhance this process. Above all, a high degree of planning is necessary if sub-Saharan African states intend to tackle the media and its domination by neocolonialist ideology.

  12. Impact of human schistosomiasis in sub-Saharan Africa.

    Science.gov (United States)

    Adenowo, Abiola Fatimah; Oyinloye, Babatunji Emmanuel; Ogunyinka, Bolajoko Idiat; Kappo, Abidemi Paul

    2015-01-01

    Schistosomiasis, a neglected tropical disease of poverty ranks second among the most widespread parasitic disease in various nations in sub-Saharan Africa. Neglected tropical diseases are causes of about 534,000 deaths annually in sub-Saharan Africa and an estimated 57 million disability-adjusted life-years are lost annually due to the neglected tropical diseases. The neglected tropical diseases exert great health, social and financial burden on economies of households and governments. Schistosomiasis has profound negative effects on child development, outcome of pregnancy, and agricultural productivity, thus a key reason why the "bottom 500 million" inhabitants of sub-Saharan Africa continue to live in poverty. In 2008, 17.5 million people were treated globally for schistosomiasis, 11.7 million of those treated were from sub-Saharan Africa. This enervating disease has been successfully eradicated in Japan, as well as in Tunisia. Morocco and some Caribbean Island countries have made significant progress on control and management of this disease. Brazil, China and Egypt are taking steps towards elimination of the disease, while most sub-Saharan countries are still groaning under the burden of the disease. Various factors are responsible for the continuous and persistent transmission of schistosomiasis in sub-Saharan Africa. These include climatic changes and global warming, proximity to water bodies, irrigation and dam construction as well as socio-economic factors such as occupational activities and poverty. The morbidity and mortality caused by this disease cannot be overemphasized. This review is an exposition of human schistosomiasis as it affects the inhabitants of various communities in sub-Sahara African countries. It is hoped this will bring a re-awakening towards efforts to combat this impoverishing disease in terms of vaccines development, alternative drug design, as well as new point-of-care diagnostics. Copyright © 2015 Elsevier Editora Ltda. All rights

  13. Impact of human schistosomiasis in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Abiola Fatimah Adenowo

    2015-03-01

    Full Text Available Schistosomiasis, a neglected tropical disease of poverty ranks second among the most widespread parasitic disease in various nations in sub-Saharan Africa. Neglected tropical diseases are causes of about 534,000 deaths annually in sub-Saharan Africa and an estimated 57 million disability-adjusted life-years are lost annually due to the neglected tropical diseases. The neglected tropical diseases exert great health, social and financial burden on economies of households and governments. Schistosomiasis has profound negative effects on child development, outcome of pregnancy, and agricultural productivity, thus a key reason why the “bottom 500 million” inhabitants of sub-Saharan Africa continue to live in poverty. In 2008, 17.5 million people were treated globally for schistosomiasis, 11.7 million of those treated were from sub-Saharan Africa. This enervating disease has been successfully eradicated in Japan, as well as in Tunisia. Morocco and some Caribbean Island countries have made significant progress on control and management of this disease. Brazil, China and Egypt are taking steps towards elimination of the disease, while most sub-Saharan countries are still groaning under the burden of the disease. Various factors are responsible for the continuous and persistent transmission of schistosomiasis in sub-Saharan Africa. These include climatic changes and global warming, proximity to water bodies, irrigation and dam construction as well as socio-economic factors such as occupational activities and poverty. The morbidity and mortality caused by this disease cannot be overemphasized. This review is an exposition of human schistosomiasis as it affects the inhabitants of various communities in sub-Sahara African countries. It is hoped this will bring a re-awakening towards efforts to combat this impoverishing disease in terms of vaccines development, alternative drug design, as well as new point-of-care diagnostics.

  14. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  15. Alkaline phosphatase activity in the subtropical ocean: insights from nutrient, dust and trace metal addition experiments

    Directory of Open Access Journals (Sweden)

    Claire eMahaffey

    2014-12-01

    Full Text Available Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low and limit primary productivity and nitrogen fixation. In these regions, organisms produce hydrolytic enzymes, such as alkaline phosphatase (AP, that enable them to utilize the more replete dissolved organic phosphorus (DOP pool to meet their cellular phosphorus demands. In this study, we synthesized data from 14 published studies and present our own findings from two research cruises (D326 and D361 in the eastern subtropical Atlantic to explore the relationship between AP activity (APA and nutrients, Saharan dust and trace metals. We found that below a threshold phosphate concentration of ~ 30 nM, APA increased with an inverse hyperbolic relationship with phosphate concentration. Meanwhile, DOP concentrations decreased with enhanced APA, indicating utilization of the DOP pool. We found APA rates were significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM. While the phosphate concentration may have a first order control on the APA rates, we speculate that other factors influence this basin scale contrast. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increased the rate of APA. To our knowledge, our results are the first direct field-based evidence that APA is limited by zinc in the subtropical ocean. Further work is required to explore the relationship between trace metals such as iron and zinc, which are co-factors of phosphohydrolytic enzymes, specifically PhoX and PhoA, respectively, and APA in the ocean.

  16. Growth and Poverty in Sub-Saharan Africa

    OpenAIRE

    Arndt, Channing; McKay, Andrew; Tarp, Finn

    2016-01-01

    While the economic growth renaissance in sub-Saharan Africa is widely recognized, much less is known about progress in living conditions. This book comprehensively evaluates trends in living conditions in 16 major sub-Saharan African countries, corresponding to nearly 75% of the total population. A striking diversity of experience emerges. While monetary indicators improved in many countries, others are yet to succeed in channeling the benefits of economic growth into the pockets of the poor....

  17. Variable features on Mars - Preliminary Mariner 9 television results.

    Science.gov (United States)

    Sagan, C.; Veverka, J.; Fox, P.; Dubisch, R.; Lederberg, J.; Levinthal, E.; Quam, L.; Tucker, R.; Pollack, J. B.; Smith, B. A.

    1972-01-01

    Systematic Mariner 9 photography of a range of Martian surface features, observed with all three photometric angles approximately invariant, reveals three general categories of albedo variations: (1) an essentially uniform contrast enhancement due to the dissipation of the dust storm; (2) the appearance of splotches, irregular dark markings at least partially related to topography; and (3) the development of both bright and dark linear streaks, generally emanating from craters. Some splotches and streaks vary on characteristic timescales of about two weeks; they have characteristic dimensions of kilometers to tens of kilometers. The morphology and variability of streaks and splotches, and the resolution of at least one splotch into an extensive dune system, implicate windblown dust as the principal agent of Martian albedo differences and variability.

  18. Energy Security and Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Emily Meierding

    2013-02-01

    Full Text Available Published by Palgrave MacmillanOver the last decade the topic of energy security has reappeared on global policy agendas. Most analyses of international energy geopolitics examine the interests and behaviour of powerful energy-importing countries like the US and China. This chapter begins by examining foreign powers’ expanded exploitation of oil and uranium resources in Sub-Saharan Africa. It goes on to examine how energy importers’ efforts to enhance their energy security through Africa are impacting energy security within Africa. It assesses Sub-Saharan states’ attempts to increase consumption of local oil and uranium reserves. Observing the constraints on these efforts, it then outlines some alternative strategies that have been employed to enhance African energy security. It concludes that, while local community-based development projects have improved the well-being of many households, they are not a sufficient guarantor of energy security. Inadequate petroleum access, in particular, remains a development challenge. Foreign powers’ efforts to increase their oil security are undermining the energy security of Sub-Saharan African citizens.

  19. Effect of corrosive marine atmosphere on construction materials in Tanzania: Exposure sites and preliminary results

    International Nuclear Information System (INIS)

    Mmari, A.G.; Uiso, C.B.S.; Makundi, I.N.; Potgieter-Vermaak, S.S.; Potgieter, J.H.; Van Grieken, R.

    2007-01-01

    Air pollution studies in Africa are limited and the influence of ambient air quality on buildings and constructions have not been investigated in the larger part of Sub-Saharan Africa. The increasing burden of emission from industry, traffic and coal power plants on ambient air pollution in Sub-Saharan Africa necessitated reviewing previous and current studies. In South Africa a 20-year exposure program, focusing on the effect of ambient exposure on various metals and alloys, showed that the amount of rainfall, relative humidity, atmospheric pollution, wind speed, solar radiation and structural design are some of the factors controlling atmospheric corrosion. Tanzania, being among the Sub-Saharan African countries and partly bordered by Indian ocean, the main source of marine atmosphere, experiences corrosive degradation on metal roofing and cementitious materials. This paper describes the exposure site set-up and will report on some preliminary results of air quality and its relation with the meteorological conditions, as well as surface changes observed, for the year one of exposure. These will thereafter be compared to the completed European and Asian studies, as reported by CLRTAP and RAPIDC respectively. (author)

  20. Sub-Saharan Africa’s Lagging Development

    Directory of Open Access Journals (Sweden)

    Katja Vintar Mally

    2009-12-01

    Full Text Available Sub-Saharan Africa is a very diverse region with extensive natural wealth, great human potential, and a rich history. However, the majority of its countries are among the poorest in the world and about half of its 800 million inhabitants live in extreme poverty. Sub-Saharan Africa produces only 1.5% of the world’s GDP and its share in world trade has fallen from 6% in 1980 to 2% today. The region’s exports remain dominated by primary goods (fuels, ores, and agricultural products. The roots of the region’s economic weakness lie variously in the past colonial relationships with European countries and in unjust global trade patterns as well as in misuse of power by ruling political elites in the post-independence era. Numerous civil wars and other conflicts have fragmented the sub-Saharan countries into many factions and parties fighting for domination. The region is lagging behind developed countries because of corruption, lack of infrastructure, weakness of its institutions, heavy indebtedness, lack of education and health services, and unfavorable natural conditions, among other factors. Subsistence agriculture is the source of livelihood for most Africans. Nevertheless, average yields per hectare are low and heavily dependent on climatic conditions. Compared to urban areas (except for slums, people living in rural areas have worse infrastructure and are further from achieving the UN’s Millennium Development Goals. The recent increase in food prices is threatening the limited progress in reducing hunger and malnutrition (28% of children under age five are underweight and particularly vulnerable to infectious diseases. Little progress has been made in reducing child and maternal mortality; mortality rates remain the highest in the world. In the previous decade, life expectancy in sub-Saharan countries has fallen due to the spread of HIV/AIDS and it still remains below fifty. In addition, many negative socioeconomic effects are the result

  1. The Position of Sub-Saharan Countries in the World Economy

    Directory of Open Access Journals (Sweden)

    Baumgartner Boris

    2016-06-01

    Full Text Available Most of the countries of sub-Saharan Africa belong to the most underdeveloped and poorest countries in the world economy. This region consists of forty-nine countries but at world GDP, world export, world import and inflow of foreign direct investment share only by small percent. There are some positive facts in the recent history of sub- Saharan Africa. Sub-Saharan Africa has grown faster than the world economy in the past ten years. The predictions are also positive. There is an expectation of another growth till the 2020. If the sub-Saharan countries want to keep the growth in the future they have to invest to infrastructure, in educational system, in research and science to make their economies more competitive.

  2. Dust confinement and dust acoustic waves in a magnetized plasma

    Science.gov (United States)

    Piel, A.

    2005-10-01

    Systematic laboratory experiments on dust acoustic waves require the confinement of dust particles. Here we report on new experiments in a magnetized plasma region in front of an additional positively biased disk electrode in a background plasma which is generated in argon at 27MHz between a disk and grid electrode. The plasma diffuses through the grid along the magnetic field. The three-dimensional dust distribution is measured with a horizontal sheet of laser light and a CCD camera, which are mounted on a vertical translation stage. Depending on magnetic field and discharge current, cigar or donut-shaped dust clouds are generated, which tend to rotate about the magnetic field direction. Measurements with emissive probes show that the axial confinement of dust particles with diameters between 0.7-2 μm is achieved by a balance of ion-drag force and electric field force. Dust levitation and radial confinement is due to a strong radial electric field. Dust acoustic waves are destabilized by the ion flow or can be stimulated by a periodic bias on the disk electrode. The observed wave dispersion is compared with fluid and kinetic models of the dust acoustic wave.

  3. Abortion and Contraceptive Use in Sub-Saharan Africa: How ...

    African Journals Online (AJOL)

    Erah

    sub-Saharan cities, particularly where contraceptive use is low and access to ... other regions, sub-Saharan women nevertheless exercise ... kinship networks to share the costs and benefits of .... developing countries in contraceptive use among married .... The report includes case studies of ..... Tours, France, July 2005.

  4. Soil Dust Aerosols and Wind as Predictors of Seasonal Meningitis Incidence in Niger

    Science.gov (United States)

    Perez Garcia Pando, Carlos; Stanton, Michelle C.; Diggle, Peter J.; Trzaska, Sylwia; Miller, Ron L.; Perlwitz, Jan P.; Baldasano, Jose M.; Cuevas, Emilio; Ceccato, Pietro; Yaka, Pascal; hide

    2014-01-01

    Background: Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa during the dry season, a period when the region is affected by the Harmattan, a dry and dusty northeasterly trade wind blowing from the Sahara into the Gulf of Guinea.Objectives: We examined the potential of climate-based statistical forecasting models to predict seasonal incidence of meningitis in Niger at both the national and district levels.Data and methods: We used time series of meningitis incidence from 1986 through 2006 for 38 districts in Niger. We tested models based on data that would be readily available in an operational framework, such as climate and dust, population, and the incidence of early cases before the onset of the meningitis season in January-May. Incidence was used as a proxy for immunological state.

  5. 1500-year Record of trans-Pacific Dust Flux collected from the Denali Ice Core, Mt. Hunter, Alaska

    Science.gov (United States)

    Saylor, P. L.; Osterberg, E. C.; Koffman, B. G.; Winski, D.; Ferris, D. G.; Kreutz, K. J.; Wake, C. P.; Handley, M.; Campbell, S. W.

    2016-12-01

    Mineral dust aerosols are a critical component of the climate system through their influence on atmospheric radiative forcing, ocean productivity, and surface albedo. Dust aerosols derived from Asian deserts are known to reach as far as Europe through efficient transport in the upper tropospheric westerlies. While centennially-to-millennially resolved Asian dust records exist over the late Holocene from North Pacific marine sediment cores and Asian loess deposits, a high-resolution (sub-annual to decadal) record of trans-Pacific dust flux will significantly improve our understanding of North Pacific dust-climate interactions and provide paleoclimatological context for 20th century dust activity. Here we present an annually resolved 1500-year record of trans-Pacific dust transport based on chemical and physical dust measurements in parallel Alaskan ice cores (208 m to bedrock) collected from the summit plateau of Mt. Hunter in Denali National Park. The cores were sampled at high resolution using a continuous melter system with discrete analyses for major ions (Dionex ion chromatograph), trace elements (Element2 inductively coupled plasma mass spectrometer), and stable water isotope ratios (Picarro laser ringdown spectroscopy), and continuous flow analysis for dust concentration and size distribution (Klotz Abakus). We compare the ice core dust record to instrumental aerosol stations, satellite observations, and dust model data from the instrumental period, and evaluate climatic controls on dust emission and trans-Pacific transport using climate reanalysis data, to inform dust-climate relationships over the past 1500 years. Physical particulate and chemical data demonstrate remarkable fidelity at sub-annual resolution, with both displaying a strong springtime peak consistent with periods of high dust activity over Asian desert source regions. Preliminary results suggest volumetric mode typically ranges from 4.5 - 6.5 um, with a mean value of 5.5 um. Preliminary

  6. Dust deposition in southern Nevada and California, 1984-1989: Relations to climate, source area, and source lithology

    Science.gov (United States)

    Reheis, Marith C.; Kihl, Rolf

    1995-05-01

    Dust samples collected annually for 5 years from 55 sites in southern Nevada and California provide the first regional source of information on modern rates of dust deposition, grain size, and mineralogical and chemical composition relative to climate and to type and lithology of dust source. The average silt and clay flux (rate of deposition) in southern Nevada and southeastern California ranges from 4.3 to 15.7 g/m2/yr, but in southwestern California the average silt and clay flux is as high as 30 g/m2/yr. The climatic factors that affect dust flux interact with each other and with the factors of source type (playas versus alluvium), source lithology, geographic area, and human disturbance. Average dust flux increases with mean annual temperature but is not correlated to decreases in mean annual precipitation because the regional winds bring dust to relatively wet areas. In contrast, annual dust flux mostly reflects changes in annual precipitation (relative drought) rather than temperature. Although playa and alluvial sources produce about the same amount of dust per unit area, the total volume of dust from the more extensive alluvial sources is much larger. In addition, playa and alluvial sources respond differently to annual changes in precipitation. Most playas produce dust that is richer in soluble salts and carbonate than that from alluvial sources (except carbonate-rich alluvium). Gypsum dust may be produced by the interaction of carbonate dust and anthropogenic or marine sulfates. The dust flux in an arid urbanizing area may be as much as twice that before disturbance but decreases when construction stops. The mineralogic and major-oxide composition of the dust samples indicates that sand and some silt is locally derived and deposited, whereas clay and some silt from different sources can be far-traveled. Dust deposited in the Transverse Ranges of California by the Santa Ana winds appears to be mainly derived from sources to the north and east.

  7. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  8. On the pace of fertility decline in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    David Shapiro

    2017-10-01

    Full Text Available Background: This descriptive finding examines the comparative pace of fertility decline in sub-Saharan Africa, relative to Asia, Latin America and the Caribbean, and Northern Africa. Objective: We seek to determine if fertility decline has been slower in sub-Saharan Africa than elsewhere in the developing world. Methods: United Nations 2017 estimates of national fertility are used in assessing the comparative pace of fertility decline, and the four regions are compared in terms of how far they are into their fertility transition. Results: The data shows clearly that fertility decline in sub-Saharan Africa, still at a comparatively early stage, has been considerably slower than the earlier declines in Asia, Latin America and the Caribbean, and Northern Africa at comparable stages of the transition, and displays less within-region heterogeneity than the transitions in these other regions. Conclusions: The slower pace of fertility decline in sub-Saharan Africa, in conjunction with the high current fertility levels in the region, means that in the absence of policies seeking to accelerate fertility decline, sub-Saharan Africa will continue to experience rapid population growth that in turn will constrain its development. Contribution: Presentation of data in a novel way (Figures 2‒4, and associated calculations unambiguously demonstrates the slow pace of fertility decline in sub-Saharan Africa compared with other regions of the world.

  9. Operative needs in HIV+ populations: An estimation for sub-Saharan Africa.

    Science.gov (United States)

    Cherewick, Megan L; Cherewick, Steven D; Kushner, Adam L

    2017-05-01

    In 2015, it was estimated that approximately 36.7 million people were living with HIV globally and approximately 25.5 million of those people were living in sub-Saharan Africa. Limitations in the availability and access to adequate operative care require policy and planning to enhance operative capacity. Data estimating the total number of persons living with HIV by country, sex, and age group were obtained from the Joint United Nations Programme on HIV/AIDS (UNAIDS) in 2015. Using minimum proposed surgical rates per 100,000 for 4, defined, sub-Saharan regions of Africa, country-specific and regional estimates were calculated. The total need and unmet need for operative procedures were estimated. A minimum of 1,539,138 operative procedures were needed in 2015 for the 25.5 million persons living with HIV in sub-Saharan Africa. In 2015, there was an unmet need of 908,513 operative cases in sub-Saharan Africa with the greatest unmet need in eastern sub-Saharan Africa (427,820) and western sub-Saharan Africa (325,026). Approximately 55.6% of the total need for operative cases is adult women, 38.4% are adult men, and 6.0% are among children under the age of 15. A minimum of 1.5 million operative procedures annually are required to meet the needs of persons living with HIV in sub-Saharan Africa. The unmet need for operative care is greatest in eastern and western sub-Saharan Africa and will require investments in personnel, infrastructure, facilities, supplies, and equipment. We highlight the need for global planning and investment in resources to meet targets of operative capacity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Epidemiology, causes, and treatment of epilepsy in sub-Saharan Africa

    OpenAIRE

    Ba-Diop, Awa; Marin, Beno?t; Druet-Cabanac, Michel; Ngoungou, Edgard B; Newton, Charles R; Preux, Pierre-Marie

    2014-01-01

    Epilepsy is a common neurological disease in tropical countries, particularly in sub-Saharan Africa. Previous work on epilepsy in sub-Saharan Africa has shown that many cases are severe, partly a result of some specific causes, that it carries a stigma, and that it is not adequately treated in many cases. Many studies on the epidemiology, aetiology, and management of epilepsy in sub-Saharan Africa have been reported in the past 10 years. The prevalence estimated from door-to-door studies is a...

  11. Nitrate removal from alkaline high nitrate effluent by in situ generation of hydrogen using zinc dust

    International Nuclear Information System (INIS)

    Rajagopal, S.; Chitra, S.; Paul, Biplob

    2016-01-01

    Alkaline radioactive low level waste generated in Nuclear Fuel Cycle contains substantial amount of nitrate and needs to be treated to meet Central Pollution Control Board discharge limits of 90 mg/L in marine coastal area. Several denitrification methods like chemical treatment, electrochemical reduction, biological denitrification, ion exchange, reverse osmosis, photochemical reduction etc are followed for removal of nitrate. In effluent treatment plants where chemical treatment is carried out, chemical denitrification can be easily adapted without any additional set up. Reducing agents like zinc and aluminum are suitable for reducing nitrate in alkaline solution. Study on denitrification with zinc dust was taken up in this work. Not much work has been done with zinc dust on reduction of nitrate to nitrogen in alkaline waste with high nitrate content. In the present work, nitrate is reduced by nascent hydrogen generated in situ, caused by reaction between zinc dust and sodium hydroxide

  12. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    Science.gov (United States)

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  13. Determinants of adolescent pregnancy in sub-Saharan Africa: a systematic review

    OpenAIRE

    Yakubu, Ibrahim; Salisu, Waliu Jawula

    2018-01-01

    Background Adolescent pregnancy has been persistently high in sub-Saharan Africa. The objective of this review is to identify factors influencing adolescent pregnancies in sub-Saharan Africa in order to design appropriate intervention program. Methods A search in MEDLINE, Scopus, Web of science, and Google Scholar databases with the following keywords: determinants, factors, reasons, sociocultural factors, adolescent pregnancy, unintended pregnancies, and sub- Saharan Africa. Qualitative and ...

  14. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  15. Links between Patagonian Ice Sheet fluctuations and Antarctic dust variability during the last glacial period (MIS 4-2)

    Science.gov (United States)

    Kaiser, Jérôme; Lamy, Frank

    2010-06-01

    Antarctic and Greenland ice-core records reveal large fluctuations of dust input on both orbital and millennial time-scales with potential global climate implications. At least during glacial periods, the Antarctic dust fluctuations appear to be largely controlled by environmental changes in southern South America. We compare dust flux records from two Antarctic ice-cores to variations in the composition of the terrigenous supply at ODP Site 1233 located off southern Chile and known to record fluctuations in the extent of the northern part of the Patagonian ice-sheet (NPIS) during the last glacial period (Marine Isotope Stage, MIS, 4 to 2). Within age uncertainties, millennial-scale glacial advances (retreats) of the NPIS correlate to Antarctic dust maxima (minima). In turn, NPIS fluctuations were closely related to offshore sea surface temperature (SST) changes. This pattern suggests a causal link involving changes in temperature, in rock flour availability, in latitudinal extensions of the westerly winds and in foehn winds in the southern Pampas and Patagonia. We further suggest that the long-term trend of dust accumulation is partly linked to the sea-level related changes in the size if the Patagonian source area due to the particular morphology of the Argentine shelf. We suggest that sea-level drops at the beginning of MIS 4 and MIS 2 were important for long-term dust increases, while changes in the Patagonian dust source regions primarily control the early dust decrease during the MIS 4/3 transition and Termination 1.

  16. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    Science.gov (United States)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  17. Biogas technology research in selected sub-Saharan African countries

    African Journals Online (AJOL)

    This reviews aims to provide an insight and update of the state of biogas technology research in some selected sub-Saharan African countries in peer reviewed literature. This paper also aims to highlight the sub-Saharan countries' strengths and weaknesses in biogas research and development capacity. An attempt is ...

  18. Inactivation of dust mites, dust mite allergen, and mold from carpet.

    Science.gov (United States)

    Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin

    2014-01-01

    Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.

  19. Experimental Constraints On Transparency of The 1052;1040;rtian Atmosphere Out of Dust Storm

    Science.gov (United States)

    Korablev, O.; Moroz, V. I.; Rodin, A. V.

    In the absence of a dust storm so-called permanent dust haze with = 0.2 in the atmo- sphere of Mars determines its thermal structure, as it has been shown by Gierasch and Goody [1972 JAS 29, 400] and is confirmed by modern Mars GCMs that include dust cycle. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it. Presently, these are the data of thermal IR instruments, benefiting from being insensitive to condensa- tional clouds: TES/MGS and IRTM/Viking. In calm atmospheric conditions (aphelion season) a typical value of 9-µm optical depth 9 of 0.05-0.15 is observed by these instruments [Smith et al. 2000, 2001 JGR 105, 9539; JGR 106, 23929; Martin and Richardson 1993 JGR 98, 10941]. In order to quantify the typical optical depth of the permanent dust haze, we will discuss, among others, the following two questions: 1) How to agree the above values and reliable measurements from the surface (VL, Pathfinder) which give the typical optical depth (out of dust storms) of = 0.5 from one side, and some ground-based observations (in UV-visible range) that frequently reveal < 0.02 on the other side. 2) What is the relationship between 9 and the visi- ble optical depth? Comparison of IRTM and VL measurements (the only simultaneous observations available so far) suggest vis/9 = 2.5, that contradict to vis/9 = 0.9 that follow from IRIS/Mariner 9 mineralogy model, which is confirmed by recent re- analysis of IRIS data.

  20. Bibliometric trends of health economic evaluation in Sub-Saharan Africa.

    Science.gov (United States)

    Hernandez-Villafuerte, Karla; Li, Ryan; Hofman, Karen J

    2016-08-24

    Collaboration between Sub-Saharan African researchers is important for the generation and transfer of health technology assessment (HTA) evidence, in order to support priority-setting in health. The objective of this analysis was to evaluate collaboration patterns between countries. We conducted a rapid evidence assessment that included a random sample of health economic evaluations carried out in 20 countries (Angola, Botswana, Congo, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia, Zimbabwe, Ghana, Kenya, Nigeria, Ethiopia, Uganda). We conducted bibliometric network analysis based on all first authors with a Sub-Saharan African academic affiliation and their co-authored publications ("network-articles"). Then we produced a connection map of collaboration patterns among Sub-Saharan African researchers, reflecting the number of network-articles and the country of affiliation of the main co-authors. The sample of 119 economic evaluations mostly related to treatments of communicable diseases, in particular HIV/AIDS (42/119, 35.29 %) and malaria (26/119, 21.85 %). The 39 first authors from Sub-Saharan African institutions together co-authored 729 network-articles. The network analysis showed weak collaboration between health economic researchers in Sub-Saharan Africa, with researchers being more likely to collaborate with Europe and North America than with other African countries. South Africa stood out as producing the highest number of health economic evaluations and collaborations. The development and evaluation of HTA research networks in Sub-Saharan Africa should be supported, with South Africa central to any such efforts. Organizations and institutions from high income countries interested in supporting priority setting in Sub-Saharan Africa should include promoting collaboration as part of their agendas, in order to take advantage of the potential transferability of results and methods of the

  1. Sedimentary and mineral dust sources of dissolved iron to the world ocean

    Directory of Open Access Journals (Sweden)

    J. K. Moore

    2008-05-01

    from sinking particles; and 3 an improved sedimentary source for dissolved iron. Most scavenged iron (90% is put on sinking particles to remineralize deeper in the water column. The model-observation differences are reduced with these modifications. The improved BEC model is used to examine the relative contributions of mineral dust and marine sediments in driving dissolved-iron distributions and marine biogeochemistry. Mineral dust and sedimentary sources of iron contribute roughly equally, on average, to dissolved iron concentrations. The sedimentary source from the continental margins has a strong impact on open-ocean iron concentrations, particularly in the North Pacific. Plumes of elevated dissolved-iron concentrations develop at depth in the Southern Ocean, extending from source regions in the SW Atlantic and around New Zealand. The lower particle flux and weaker scavenging in the Southern Ocean allows the continental iron source to be advected far from sources. Both the margin sediment and mineral dust Fe sources substantially influence global-scale primary production, export production, and nitrogen fixation, with a stronger role for the dust source. Ocean biogeochemical models that do not include the sedimentary source for dissolved iron, will overestimate the impact of dust deposition variations on the marine carbon cycle. Available iron observations place some strong constraints on ocean biogeochemical models. Model results should be evaluated against both surface and subsurface Fe observations in the waters that supply dissolved iron to the euphotic zone.

  2. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    Science.gov (United States)

    Wang, Yong; Liu, Xiaohong

    2014-12-01

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736-741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments.

  3. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    International Nuclear Information System (INIS)

    Wang, Yong; Liu, Xiaohong

    2014-01-01

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736–741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments. (letter)

  4. Whither Cometary Dust?

    Science.gov (United States)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  5. Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling

    Science.gov (United States)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-01-01

    Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

  6. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-01-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν (880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν (880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10 11 (L ☉ ) and 4-14 × 10 7 (M ☉ ), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution

  7. Dust Destruction in the ISM: A Re-Evaluation of Dust Lifetimes

    Science.gov (United States)

    Jones, A. P.; Nuth, J. A., III

    2011-01-01

    There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.

  8. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Surface/Satellite Perspective

    Science.gov (United States)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern/southeastern Asia and along the rim of the western Pacific. For example, the phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Springtime is also the peak season for biomass burning in southeastern Asia. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer), SeaWiFS (Sea-viewing Wide Field-of-view Sensor), TOMS (Total Ozone Mapping Spectrometer) and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. A column satellite-surface perspective of Asian aerosols will be presented

  9. Boosting food security in sub-Saharan Africa through cassava ...

    African Journals Online (AJOL)

    Boosting food security in sub-Saharan Africa through cassava production: a case study of Nigeria. ... Nigerian Journal of Economic History ... The paper argues that cassava which is widely grown in Sub-Saharan Africa with a lot of variety of food derivatives from it can reduce to the barest minimum the present state of food ...

  10. Burns in sub-Saharan Africa: A review.

    Science.gov (United States)

    Nthumba, Peter M

    2016-03-01

    Burns are important preventable causes of morbidity and mortality, with a disproportionate incidence in sub-Saharan Africa. The management of these injuries in sub-Saharan Africa is a challenge because of multiple other competing problems such as infectious diseases (HIV/AIDS, tuberculosis and malaria), terrorist acts and political instability. There is little investment in preventive measures, pre-hospital, in-hospital and post-discharge care of burns, resulting in high numbers of burns, high morbidity and mortality. Lack of data that can be used in legislation and policy formulation is a major hindrance in highlighting the problem of burns in this sub-region. An online search of publications on burns from sub-Saharan countries was performed. A total of 54 publications with 32,862 patients from 14 countries qualified for inclusion in the study. The average age was 15.3 years. Children aged 10 years and below represented over 80% of the burn patient population. Males constituted 55% of those who suffered burns. Scalds were the commonest cause of thermal injuries, accounting for 59% of all burns, while flame burns accounted for 33%. The burn mortality averaged 17%, or the death of one of every five burn victims. These statistics indicate the need for an urgent review of burn policies and related legislation across the sub-Saharan region to help reduce burns, and provide a safe environment for children. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  11. Greenhouse gas emissions in Sub-Saharan Africa

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.; Perlack, R.D.; Prasad, A.M.G.; Ranney, J.W.; Waddle, D.B.

    1990-11-01

    Current and future carbon emissions from land-use change and energy consumption were analyzed for Sub-Saharan Africa. The energy sector analysis was based on UN energy data tapes while the land-use analysis was based on a spatially-explicit land-use model developed specifically for this project. The impacts of different energy and land-use strategies on future carbon emissions were considered. (A review of anthropogenic emissions of methane, nitrous oxides, and chlorofluorocarbons in Sub-Saharan Africa indicated that they were probably minor in both a global and a regional context. The study therefore was focused on emissions of carbon dioxide.) The land-use model predicts carbon emissions from land use change and the amount of carbon stored in vegetation (carbon inventory) on a yearly basis between 1985 and 2001. Emissions and inventory are modeled at 9000 regularly-spaced point locations in Sub-Saharan Africa using location-specific information on vegetation type, soils, climate and deforestation. Vegetation, soils, and climate information were derived from continental-scale maps while relative deforestation rates(% of forest land lost each year) were developed from country-specific forest and deforestation statistics (FAO Tropical Forest Resources Assessment for Africa, 1980). The carbon emissions under different land use strategies in Sub-Saharan Africa were analyzed by modifying deforestation rates and altering the amount of carbon stored under different land uses. The considered strategies were: preservation of existing forests, implementation of agroforestry, and establishment of industrial tree plantations. 82 refs., 16 figs., 25 tabs.

  12. Occupational exposure to roadway emissions and inside informal settlements in sub-Saharan Africa: A pilot study in Nairobi, Kenya

    Science.gov (United States)

    Ngo, Nicole S.; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N.; Bouhamam, Kheira; Kinneym, Patrick L.

    2015-01-01

    Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM2.5), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM2.5 levels for all study populations, particularly among bus drivers, while PM2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi’s low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern. PMID:26034383

  13. Occupational exposure to roadway emissions and inside informal settlements in sub-Saharan Africa: A pilot study in Nairobi, Kenya

    Science.gov (United States)

    Ngo, Nicole S.; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N.; Bouhamam, Kheira; Kinney, Patrick L.

    2015-06-01

    Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM2.5), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM2.5 levels for all study populations, particularly among bus drivers, while PM2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi's low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern.

  14. Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006 and 2010

    Science.gov (United States)

    Torfstein, Adi; Teutsch, Nadya; Tirosh, Ofir; Shaked, Yeala; Rivlin, Tanya; Zipori, Assaf; Stein, Mordechai; Lazar, Boaz; Erel, Yigal

    2017-08-01

    Atmospheric dust loads and chemical compositions serve as a key link between global climate patterns and marine biogeochemical cycles. The primary source of atmospheric dust in the world today is the Sahara-Arabian desert belt. Although this source was also active during the Quaternary, the interpretation of paleo-dust records and their effects on marine ecosystems is complicated by the scarcely reported atmospheric load patterns of bioavailable phases (i.e., water and acid leachable phases) and present-day contamination of anthropogenic components. This study reports a multi-annual time series of atmospheric dust loads (2006-2016) and their chemical compositions (2006-2010) collected in the north Gulf of Aqaba (north Red Sea) at a weekly to bi-weekly resolution. Major and trace element abundances in each sample are reported for three fractions: water-soluble salts, carbonates and oxides (weak acid leach), and Al-silicates. Dust loads vary seasonally from low values in late summer (∼20-30 μg m-3) to higher values in the fall, and highest values in late winter and early spring (∼150-250 μg m-3). Major and trace element abundances allow to distinguish between the sources and chemical compositions that dominate high and low dust loads in each season. The water leachable fraction (L0) is relatively enriched in Na, Ca, K and Mg, the acid-leachable fraction (L1) is enriched in Ca as well as Na, Al, Mg, Zn, Cd and Pb, and the silicate residue (L2) in Al and Fe. High dust loads occurring mainly during winter and spring months are characterized by low Mg/Ca (L1, L2), low K/Al and Na/Al (L1) and high Ca/Al (L1), high Mg/Al (L2) and relatively un-weathered (L2) contents. High dust load intervals during winter months are characterized by low passing air masses originating from the Sahara, while the ambient winter dust (low dust load) is associated with proximal source regions from the East Sahara and Arabian Peninsula. During late winter and spring months, high dust

  15. Palynology of Sub-Saharan Karoo Basins: Key to Early Mesozoic palaeoclimate reconstruction

    Science.gov (United States)

    Götz, Annette E.

    2014-05-01

    Palynological data of Permian-Triassic formations of the Sub-Saharan Karoo basins play a crucial role in the study and for the understanding of Gondwana's climate history and biodiversity in this time of major global changes in terrestrial and marine ecosystems. The palynological record reflects changes in land plant communities and vegetational patterns related to climate change and thus provides significant data for high-resolution palaeoclimate reconstructions in deep time. Recent palynological investigations of Triassic successions of South Africa, Mozambique and Tanzania document major changes in palaeoclimate. The spore/pollen ratios are used as a proxy for humidity changes. Stratal variations in the composition of the pollen group indicate warming and cooling phases. Variations in the amount and in the type, size and shape of phytoclasts reflect short-term changes in transport and weathering. The detected palaeoclimate signals are used for high-resolution correlation on basin-wide, intercontinental and intra-Gondwanic scales.

  16. Impact of human schistosomiasis in sub-Saharan Africa

    OpenAIRE

    Adenowo, Abiola Fatimah; Oyinloye, Babatunji Emmanuel; Ogunyinka, Bolajoko Idiat; Kappo, Abidemi Paul

    2015-01-01

    Schistosomiasis, a neglected tropical disease of poverty ranks second among the most widespread parasitic disease in various nations in sub-Saharan Africa. Neglected tropical diseases are causes of about 534,000 deaths annually in sub-Saharan Africa and an estimated 57 million disability-adjusted life-years are lost annually due to the neglected tropical diseases. The neglected tropical diseases exert great health, social and financial burden on economies of households and governments. ...

  17. Environmental and traffic-related parameters affecting road dust composition: A multi-technique approach applied to Venice area (Italy)

    Science.gov (United States)

    Valotto, Gabrio; Rampazzo, Giancarlo; Visin, Flavia; Gonella, Francesco; Cattaruzza, Elti; Glisenti, Antonella; Formenton, Gianni; Tieppo, Paulo

    2015-12-01

    Road dust is a non-exhaust source of atmospheric particulate by re-suspension. It is composed of particles originating from natural sources as well as other non-exhaust source such as tire, brake and asphalt wear. The discrimination between atmospheric particles directly emitted from abrasion process and those related to re-suspension is therefore an open issue, as far as the percentage contribution of non-exhaust emissions is becoming more considerable due also to the recent policy actions and the technological upgrades in the automotive field, focused on the reduction of exhaust emissions. In this paper, road dust collected along the bridge that connects Venice (Italy) to the mainland is characterized with a multi-technique approach in order to determine its composition depending on environmental as well as traffic-related conditions. Six pollutant sources of road dust particles were identified by cluster analysis: brake, railway, tire, asphalt, soil + marine, and mixed combustions. Considering the lack of information on this matrix in this area, this study is intended to provide useful information for future identification of road dust re-suspension source in atmospheric particulate.

  18. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{sub ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  19. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records

    Directory of Open Access Journals (Sweden)

    S. Kutuzov

    2013-09-01

    Full Text Available The first record of dust deposition events on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow firn core is presented for the 2009–2012 period. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analyses of meteorological data enabled identification of dust source regions with high temporal (hours and spatial (ca. 20–100 km resolution. Seventeen dust deposition events were detected; fourteen occurred in March–June, one in February and two in October. Four events originated in the Sahara, predominantly in northeastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric southwesterly flow with daily winds speeds of 20–30 m s−1 at 700 hPa level. Although these events were less frequent than those originating in the Middle East, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centred over or extending towards the Caspian Sea and a weaker southerly or southeasterly flow towards the Caucasus Mountains with daily wind speeds of 12–18 m s−1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterised dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0–2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and

  20. Current Status of Family Medicine Faculty Development in Sub-Saharan Africa.

    Science.gov (United States)

    Larson, Paul R; Chege, Patrick; Dahlman, Bruce; Gibson, Christine; Evensen, Ann; Colon-Gonzalez, Maria C; Onguka, Stephanie; Lamptey, Roberta; Cayley, William E; Nguyen, Bich-May; Johnson, Brian; Getnet, Sawra; Hasnain, Memoona

    2017-03-01

    Reducing the shortage of primary care physicians in sub-Saharan Africa requires expansion of training programs in family medicine. Challenges remain in preparing, recruiting, and retaining faculty qualified to teach in these pioneering programs. Little is known about the unique faculty development needs of family medicine faculty within the sub-Saharan African context. The purpose of this study was to assess the current status and future needs for developing robust family medicine faculty in sub-Saharan Africa. The results are reported in two companion articles. A cross-sectional study design was used to conduct a qualitative needs assessment comprising 37 in-depth, semi-structured interviews of individual faculty trainers from postgraduate family medicine training programs in eight sub-Saharan African countries. Data were analyzed according to qualitative description. While faculty development opportunities in sub-Saharan Africa were identified, current faculty note many barriers to faculty development and limited participation in available programs. Faculty value teaching competency, but institutional structures do not provide adequate support. Sub-Saharan African family physicians and postgraduate trainee physicians value good teachers and recognize that clinical training alone does not provide all of the skills needed by educators. The current status of limited resources of institutions and individuals constrain faculty development efforts. Where faculty development opportunities do exist, they are too infrequent or otherwise inaccessible to provide trainers the necessary skills to help them succeed as educators.

  1. Investigation of radiative effects of the optically thick dust layer over the Indian tropical region

    Directory of Open Access Journals (Sweden)

    S. K. Das

    2013-04-01

    Full Text Available Optical and physical properties of aerosols derived from multi-satellite observations (MODIS-Aqua, OMI-Aura, MISR-Terra, CALIOP-CALIPSO have been used to estimate radiative effects of the dust layer over southern India. The vertical distribution of aerosol radiative forcing and heating rates are calculated with 100 m resolution in the lower atmosphere, using temperature and relative humidity data from balloon-borne radiosonde observations. The present study investigates the optically thick dust layer of optical thickness 0.18 ± 0.06 at an altitude of 2.5 ± 0.7 km over Gadanki, transported from the Thar Desert, producing radiative forcing and heating rate of 11.5 ± 3.3 W m−2 and 0.6 ± 0.26 K day−1, respectively, with a forcing efficiency of 43 W m−2 and an effective heating rate of 4 K day−1 per unit dust optical depth. Presence of the dust layer increases radiative forcing by 60% and heating rate by 60 times at that altitude compared to non-dusty cloud-free days. Calculation shows that the radiative effects of the dust layer strongly depend on the boundary layer aerosol type and mass loading. An increase of 25% of heating by the dust layer is found over relatively cleaner regions than urban regions in southern India and further 15% of heating increases over the marine region. Such heating differences in free troposphere may have significant consequences in the atmospheric circulation and hydrological cycle over the tropical Indian region.

  2. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.

    2002-01-01

    A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential

  3. The impact of asthma and COPD in sub-Saharan Africa

    NARCIS (Netherlands)

    van Gemert, Frederik; van der Molen, Thys; Jones, Rupert; Chavannes, Niels

    Background: Many countries in sub-Saharan Africa have the highest risk of developing chronic diseases and are the least able to cope with them. Aims: To assess the current knowledge of the prevalence and impact of asthma and chronic obstructive pulmonary disease (COPD) in sub-Saharan Africa.

  4. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  5. Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity.

    Science.gov (United States)

    Mladenov, Natalie; Pulido-Villena, Elvira; Morales-Baquero, Rafael; Ortega-Retuerta, Eva; Sommaruga, Ruben; Reche, Isabel

    2008-01-01

    The effects of many environmental stressors such as UV radiation are mediated by dissolved organic matter (DOM) properties. Therefore, determining the factors shaping spatial and temporal patterns is particularly essential in the most susceptible, low dissolved organic carbon (DOC) lakes. We analyzed spatiotemporal variations in dissolved organic carbon concentration and dissolved organic matter optical properties (absorption and fluorescence) in 11 transparent lakes located above tree line in the Sierra Nevada Mountains (Spain), and we assessed potential external (evaporation and atmospheric deposition) and internal (bacterial abundance, bacterial production, chlorophyll a, and catchment vegetation) drivers of DOM patterns. At spatial and temporal scales, bacteria were related to chromophoric DOM (CDOM). At the temporal scale, water soluble organic carbon (WSOC) in dust deposition and evaporation were found to have a significant influence on DOC and CDOM in two Sierra Nevada lakes studied during the ice-free periods of 2000-2002. DOC concentrations and absorption coefficients at 320 nm were strongly correlated over the spatial scale (n = 11, R(2) = 0.86; p DOC concentration and CDOM to these factors. At the continental scale, higher mean DOC concentrations and more CDOM in lakes of the Sierra Nevada than in lakes of the Pyrenees and Alps may be due to a combination of more extreme evaporation, and greater atmospheric dust deposition.

  6. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  7. Gender Gaps in Political Participation across Sub-Saharan African Nations

    Science.gov (United States)

    Coffe, Hilde; Bolzendahl, Catherine

    2011-01-01

    A substantial literature has studied gender differences in political participation in Western industrialized democracies, but little is known about such gaps in sub-Saharan African nations. Using 2005 Afrobarometer data, this paper presents a systematic investigation of the gender gap in political participation across 18 sub-Saharan African…

  8. Review: Head and neck squamous cell carcinoma in sub-Saharan ...

    African Journals Online (AJOL)

    Aim Review the literature from 1990 to 2013 to determine known anatomic sites, risk factors, treatments, and outcomes of head and neck squamous cell carcinoma (HNSCC) in sub-Saharan Africa. Methods Using a systematic search strategy, literature pertaining to HNSCC in sub-Saharan Africa was reviewed and patient ...

  9. The vertical structure of the Saharan boundary layer: Observations and modelling

    Science.gov (United States)

    Garcia-Carreras, L.; Parker, D. J.; Marsham, J. H.; Rosenberg, P.; Marenco, F.; Mcquaid, J.

    2012-04-01

    The vertical structure of the Saharan atmospheric boundary layer (SABL) is investigated with the use of aircraft data from the Fennec observational campaign, and high-resolution large-eddy model (LEM) simulations. The SABL is one of the deepest on Earth, and crucial in controlling the vertical redistribution and long-range transport of dust in the Sahara. The SABL is typically made up of an actively growing convective region driven by high sensible heating at the surface, with a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ~500hPa. These two layers are usually separated by a weak (≤1K) temperature inversion, making the vertical structure very sensitive to the surface fluxes. Large-eddy model (LEM) simulations initialized with radiosonde data from Bordj Bardji Mokhtar (BBM), southern Algeria, are used to improve our understanding of the turbulence structure of the stratification of the SABL, and any mixing or exchanges between the different layers. The model can reproduce the typical SABL structure from observations, and a tracer is used to illustrate the growth of the convective boundary layer into the residual layer above. The heat fluxes show a deep entrainment zone between the convective region and the SRL, potentially enhanced by the combination of a weak lid and a neutral layer above. The horizontal variability in the depth of the convective layer was also significant even with homogeneous surface fluxes. Aircraft observations from a number of flights are used to validate the model results, and to highlight the variability present in a more realistic setting, where conditions are rarely homogeneous in space. Stacked legs were performed to get an estimate of the mean flux profile of the boundary layer, as well as the variations in the vertical structure of the SABL with heterogeneous atmospheric and surface conditions. Regular radiosondes from BBM put

  10. Corruption in Sub-Saharan Africa: A practical-theological response

    Directory of Open Access Journals (Sweden)

    Petria M. Theron

    2013-11-01

    Full Text Available On the 2012 Corruption Perceptions Index of Transparency International, 89.6%of Sub-Saharan African countries received scores below 50, where a score of zero signifies that the country is highly corrupt and a score of 100 declares a country free of corruption. From these results, it seems as if Sub-Saharan African countries are quite vulnerable to corruption. In this article, the question whether certain traits in the Sub-Saharan African culture such as communalism, gift giving and a shame culture could in some situations influence people’s perception of, and their possible openness towards, certain forms of corruption was investigated. The research showed that cultural traits do influence people’s behaviour and that there are certain traits in the Sub-Saharan African culture that might sanction corruption. In response to these findings, some preliminary suggestions were proposed as to how Christians living in Africa could evaluate their cultural practices in the light of God’s Word and from a reformed theological paradigm. Instead of succumbing to the pressure posed by their culture to participate in immoral or corrupt activities, they could contribute to a moral regeneration on the African continent.

  11. Leptospirosis in Sub-Saharan Africa: a systematic review.

    Science.gov (United States)

    de Vries, Sophia G; Visser, Benjamin J; Nagel, Ingeborg M; Goris, Marga G A; Hartskeerl, Rudy A; Grobusch, Martin P

    2014-11-01

    Leptospirosis is an emerging zoonotic infection worldwide, possibly due to climate change and demographic shifts. It is regarded as endemic in Sub-Saharan Africa; however, for most countries scarce epidemiological data, if any, exist. The primary objectives were to describe the prevalence of leptospirosis in countries in Sub-Saharan Africa, and to develop options for prevention and control in the future. A systematic review was conducted to determine the prevalence of leptospirosis in Sub-Saharan Africa; the PRISMA guidelines were followed. Medline/PubMed, Embase, The Cochrane Library, Web of Science, BIOSIS Previews, the African Index Medicus, AJOL, and Google Scholar were searched. Information about the prevalence and incidence of leptospirosis in humans is available, but remains scarce for many countries. Data are unavailable or outdated for many countries, particularly those in Central Africa. Most data are available from animals, probably due to the economic losses caused by leptospirosis in livestock. In humans, leptospirosis is an important cause of febrile illness in Sub-Saharan Africa. It concerns numerous serogroups, harboured by many different animal carriers. A wide variety of data was identified. Prevalence rates vary throughout the continent and more research, especially in humans, is needed to reliably gauge the extent of the problem. Preventive measures need to be reconsidered to control outbreaks in the future.

  12. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  13. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea

    Science.gov (United States)

    Richon, Camille; Dutay, Jean-Claude; Dulac, François; Wang, Rong; Balkanski, Yves

    2018-04-01

    Daily modeled fields of phosphate deposition to the Mediterranean from natural dust, anthropogenic combustion and wildfires were used to assess the effect of this external nutrient on marine biogeochemistry. The ocean model used is a high-resolution (1/12°) regional coupled dynamical-biogeochemical model of the Mediterranean Sea (NEMO-MED12/PISCES). The input fields of phosphorus are for 2005, which are the only available daily resolved deposition fields from the global atmospheric chemical transport model LMDz-INCA. Traditionally, dust has been suggested to be the main atmospheric source of phosphorus, but the LMDz-INCA model suggests that combustion is dominant over natural dust as an atmospheric source of phosphate (PO4, the bioavailable form of phosphorus in seawater) for the Mediterranean Sea. According to the atmospheric transport model, phosphate deposition from combustion (Pcomb) brings on average 40.5×10-6 mol PO4 m-2 yr-1 over the entire Mediterranean Sea for the year 2005 and is the primary source over the northern part (e.g., 101×10-6 mol PO4 m-2 yr-1 from combustion deposited in 2005 over the north Adriatic against 12.4×10-6 from dust). Lithogenic dust brings 17.2×10-6 mol PO4 m-2 yr-1 on average over the Mediterranean Sea in 2005 and is the primary source of atmospheric phosphate to the southern Mediterranean Basin in our simulations (e.g., 31.8×10-6 mol PO4 m-2 yr-1 from dust deposited in 2005 on average over the south Ionian basin against 12.4×10-6 from combustion). The evaluation of monthly averaged deposition flux variability of Pdust and Pcomb for the 1997-2012 period indicates that these conclusions may hold true for different years. We examine separately the two atmospheric phosphate sources and their respective flux variability and evaluate their impacts on marine surface biogeochemistry (phosphate concentration, chlorophyll a, primary production). The impacts of the different phosphate deposition sources on the biogeochemistry of the

  14. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  15. Geographic distribution and ecological niche of plague in sub-Saharan Africa

    DEFF Research Database (Denmark)

    Neerinckx, Simon B; Peterson, Andrew T; Gulinck, Hubert

    2008-01-01

    Background Plague is a rapidly progressing, serious illness in humans that is likely to be fatal if not treated. It remains a public health threat, especially in sub-Saharan Africa. In spite of plague's highly focal nature, a thorough ecological understanding of the general distribution pattern...... of plague across sub-Saharan Africa has not been established to date. In this study, we used human plague data from sub-Saharan Africa for 1970-2007 in an ecological niche modeling framework to explore the potential geographic distribution of plague and its ecological requirements across Africa. Results We...... predict a broad potential distributional area of plague occurrences across sub-Saharan Africa. General tests of model's transferability suggest that our model can anticipate the potential distribution of plague occurrences in Madagascar and northern Africa. However, generality and predictive ability tests...

  16. Bridging the Atlantic : Brazil and Sub-Saharan Africa, South–South Partnering for Growth

    OpenAIRE

    World Bank

    2012-01-01

    Bridging the Atlantic is a descriptive study of Brazil's involvement with counterparts in Sub-Saharan Africa through knowledge exchange, trade, and investments. The objective of the study is to understand these relations better with the intent to forge concrete and mutually beneficial partnerships between Brazil and Sub-Saharan Africa. Brazil and Sub-Saharan Africa are natural partners, wi...

  17. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    Science.gov (United States)

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  18. Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: case studies

    Directory of Open Access Journals (Sweden)

    J. Hofer

    2017-12-01

    values are lower than typical lidar ratio values for Saharan dust (50–60 sr and comparable to Middle Eastern or west-Asian dust lidar ratios (35–45 sr. In contrast, the presented case of pollution aerosol of local origin has an Ångström exponent of 2.07 and a lidar ratio (particle linear depolarization ratio of 55.8 sr (0.03 at 355 nm and 32.8 sr (0.08 at 532 nm wavelength.

  19. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  20. Poverty and Inequality in Sub-Saharan Africa: Literature Survey and Empirical Assessment

    OpenAIRE

    Delfin Go; Denis Nikitin; Xiongjian Wang; Heng-fu Zou

    2011-01-01

    This paper surveys the literature and assesses the magnitude, persistence, and depth of poverty and inequality in Sub-Saharan Africa using empirical analysis. Our analysis explores linkages between three key facts about development in Sub-Saharan Africa: poor economic growth, poor performance in terms of public health indicators, and resilient high-income inequality. Most of the differential between growth rates in Sub-Saharan Africa and other developing countries can be explained by two meas...

  1. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the

  2. Sub-Saharan agriculture and migrations

    Directory of Open Access Journals (Sweden)

    Andrea Giordano

    2018-06-01

    Full Text Available In Sub-Saharan Africa, the rural population accounts for 70% of the total population and the family farming for 80% of all agricultural enterprises. It would seem logical to think that an unprofitable agriculture is responsible for the migration phenomenon. This is in part certainly true, but numerous other causes contribute to the phenomenon. However considering the current sub-Saharan situation, family farming structured in cooperatives still remains the most suitable land management model to achieve social, economic and ecological integration. On the contrary, we have to note that the commercial agriculture with the monocultures and in the recent past the Green Revolution and the GMOs have not achieved this integration which is fundamental for development. The migratory phenomenon (internal and external to Africa with its many causes is part of a complex framework where in the background the low profitability of family farming and the precarious availability of arable land impend with the inherent conflicting situations. The proposals presented in the paper concern the management and technical enhancement of the family farming, with the hope that they will be supported by local Governments, International Organizations and the NGO. We are conscious that what is indicated in the proposals will certainly not stop the migration phenomenon but could make it more aware and hence reduce it. In the conclusion is reaffirmed the role of cooperatives as main actors for implementing managerial and technological innovations and therefore for the development of agriculture and consequently for the geo-political stabilization of the sub-Saharan area.

  3. WMO SDS-WAS NAMEE Regional Center: Towards continuous evaluation of dust models in Northern Africa

    Science.gov (United States)

    Basart, Sara; García-Castillo, Gerardo; Cuevas, Emilio; Terradellas, Enric

    2016-04-01

    frequently affected by intrusions of Saharan dust. Regional Node are evaluated during two years (2013-2014) with observations recorded in the Sahelian region and Canary Islands. Additionally, since the data sets of weather records have an excellent spatial and temporal coverage, observations of horizontal visibility included in meteorological reports are used as an alternative way to monitor dust events in near-real-time (NRT). Recently, a new visibility product that includes more than 1,500 METAR stations has implemented in the SDS-WAS NAMEE Regional Center. The present contribution also will demonstrate how the visibility can complement the information provided by other observing systems (air quality monitoring stations, sun photometers, vertical profilers or satellite products) and numerical simulations presenting its application in tracking several dust episodes. Otherwise, the vertical distribution of aerosol also influences the radiative effect at the top of the atmosphere, especially when aerosols have strong absorption of shortwave radiation. The free troposphere contribution to aerosol optical depth (AOD) and the altitude of lofted layers are provided thanks to the vertical profiling capability of the lidar/ceilomenter technique. Currently, a lidar located in Dakar (Senegal) and a ceilometer in Santa Cruz de Tenerife (Canary Islands, Spain) provide near-real-time (NRT) vertical profiles of aerosols, which are compared with those simulated by models.

  4. The Perplex of Deforestation in sub-Saharan Africa

    OpenAIRE

    A.W Yalew

    2015-01-01

    Deforestation has been a complex phenomenon to study in sub-Saharan Africa. The average annual deforestation rate in the region is by far higher than the world average. What causes and drives deforestation in the region are debated to date. The present paper is motivated by this debate. It attempts to test whether the maintained hypotheses on the causes of deforestation can give answer to the problem in sub-Saharan Africa. It used average cross-national data of forty eight countries in the re...

  5. Sub-Saharan Africa: A Paradoxial Conundrum

    National Research Council Canada - National Science Library

    Dunn, Gracus

    2002-01-01

    .... In reassessing United States interests and security policy in Sub-Saharan Africa in the Post Cold War era, it is important to understand modern Africa's past and the peculiar relationship of politics...

  6. Cervical cancer in sub-Saharan Africa: a preventable noncommunicable disease.

    Science.gov (United States)

    Mboumba Bouassa, Ralph-Sydney; Prazuck, Thierry; Lethu, Thérèse; Jenabian, Mohammad-Ali; Meye, Jean-François; Bélec, Laurent

    2017-06-01

    Infections caused by high-risk human papillomavirus (HPV) are responsible for 7.7% of cancers in developing countries, mainly cervical cancer. This disease is steadily increasing in sub-Saharan Africa, with more than 75,000 new cases and 50,000 deaths yearly, further increased by HIV infection. Areas covered: The current status of cervical cancer associated with HPV in sub-Saharan Africa has been systematically revised. The main issues discussed here are related to the public health burden of cervical cancer in sub-Saharan Africa and predictions for the coming decades, including molecular epidemiology and determinants of HPV infection in Africa, and promising prevention measures currently being evaluated in Africa. Expert commentary: By the year 2030, cervical cancer will kill more than 443,000 women yearly worldwide, most of them in sub-Saharan Africa. The increase in the incidence of cervical cancer in Africa could counteract the progress made by African women in reducing maternal mortality and longevity. Nevertheless, cervical cancer is a potentially preventable noncommunicable disease, and intervention strategies to eliminate cervical cancer as a public health concern should be urgently implemented.

  7. Temperature effects on future energy demand in Sub-Saharan Africa

    Science.gov (United States)

    Shivakumar, Abhishek

    2016-04-01

    Climate change is projected to adversely impact different parts of the world to varying extents. Preliminary studies show that Sub-Saharan Africa is particularly vulnerable to climate change impacts, including changes to precipitation levels and temperatures. This work will analyse the effect of changes in temperature on critical systems such as energy supply and demand. Factors that determine energy demand include income, population, temperature (represented by cooling and heating degree days), and household structures. With many countries in Sub-Saharan Africa projected to experience rapid growth in both income and population levels, this study aims to quantify the amplified effects of these factors - coupled with temperature changes - on energy demand. The temperature effects will be studied across a range of scenarios for each of the factors mentioned above, and identify which of the factors is likely to have the most significant impact on energy demand in Sub-Saharan Africa. Results of this study can help set priorities for decision-makers to enhance the climate resilience of critical infrastructure in Sub-Saharan Africa.

  8. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  9. EPA Collaboration with Sub-Saharan Africa

    Science.gov (United States)

    EPA’s environmental program in Sub-Saharan Africa is focused on addressing Africa’s growing urban and industrial pollution issues, such as air quality, water quality, electronics waste and indoor air from cookstoves.

  10. Pediatric HIV/AIDS in sub-Saharan Africa: emerging issues and way ...

    African Journals Online (AJOL)

    Conclusion: HIV infected children and their families in sub-Saharan Africa face myriad of complex medical and psychosocial issues. A holistic health promotional approach is being advocated as the required step for eradication of pediatric HIV in Africa. Keywords: Pediatric HIV, sub-Saharan Africa, Challenges.

  11. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    Science.gov (United States)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  12. GROWTH REGIMES IN SUB-SAHARAN AFRICA: A MIXTUREMODEL APPROACH

    Directory of Open Access Journals (Sweden)

    Emmanuel Igbinoba

    2016-07-01

    Full Text Available This paper employs a generalized mixture model approach to empiricallydetermine if Sub-Saharan African countries henceforth (SSA follow ahomogenous growth pattern based on the conditional distribution of their growthrates. Latent effects are employed to determine the growth experience of SSAcountries and to examine the structural characteristics of the clusters if any exist.Affirmation of clusters might imply significant productivity divergence amongSub-Saharan economies, helping explaining the structural imbalances in theregion. Results strongly buttress the existence of clusters and little evidence of acommon growth path, implying divergence among Sub-Saharan economies andspecific economic reforms are required in the identified clusters to guaranteesustainability and equality of growth in the SSA region. We also observed apositive and significant effect of investment even though the estimated long runeffects of investment on economic growth are smaller than expected

  13. Selected aspects of GDP value and structure development in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Luboš Smutka

    2011-01-01

    Full Text Available Africa belongs to the poorest regions of the world. This statement may be applied especially to its sub-Saharan part. The paper analyses some basic structural characteristics related to the economic development of sub-Saharan region. The article reveals existing differences between countries and regions of sub-Saharan Africa and analyses key problems which influence economic development of individual states. An emphasis is placed on analysing an unsuitable GDP structure and on external economic relations which affect this structure. Results of an investigation show that the GDP of sub-Saharan countries is to a large extend generated by the primary sector of their economies, which is dominant in the total GDP value and its position is continuously strengthening due to a high dynamics of its growth. Having regard to the external environment, there can be stated that the foreign trade has contributed to the GDP growth of the whole region only to a limited degree (this does not apply to all countries seen as individuals. The integration process in sub-Saharan Africa may be characterized as questionable. Many integration groupings are operating in the region, but their influence on economic growth is limited due a low potential for mutual cooperation based on specialisation and use of comparative advantages. The economies of sub-Saharan countries are very sensitive to changes in their external economic environment. In this regard, there is important to highlight the very strong sensitivity of the GDP in the sub-Saharan region in relation to the World GDP (mainly to European and US GDP because both regions belong to the most important trading partners of Africa as a whole.

  14. Future of Family Medicine Faculty Development in Sub-Saharan Africa.

    Science.gov (United States)

    Larson, Paul R; Chege, Patrick; Dahlman, Bruce; Gibson, Christine; Evensen, Ann; Colon-Gonzalez, Maria C; Onguka, Stephanie; Lamptey, Roberta; Cayley, William E; Nguyen, Bich-May; Johnson, Brian; Getnet, Sawra; Hasnain, Memoona

    2017-03-01

    High-quality family medicine education is needed in sub-Saharan Africa to facilitate the future growth of primary care health systems. Current faculty educators recognize the value of dedicated teacher training and ongoing faculty development. However, they are constrained by inadequate faculty development program availability and institutional support. A cross-sectional study design was used to conduct a qualitative needs assessment comprised of 37 in-depth, semi-structured interviews of individual faculty trainers from postgraduate family medicine training programs in eight sub-Saharan African countries. Data were analyzed according to qualitative description. Informants described desired qualities for a family medicine educator in sub-Saharan Africa: (1) pedagogical expertise in topics and perspectives unique to family medicine, (2) engagement in self-directed, lifelong learning, and (3) exemplary character and behavior that inspires others. Informant recommendations to guide the development of faculty development programs include: (1) sustainability, partnership, and responsiveness to the needs of the institution, (2) intentional faculty development must begin early and be supported with high-quality mentorship, (3) presumptions of teaching competence based on clinical training must be overcome, and (4) evaluation and feedback are critical components of faculty development. High-quality faculty development in family medicine is critically important to the primary care workforce in sub-Saharan Africa. Our study describes specific needs and recommendations for family medicine faculty development in sub-Saharan Africa. Next steps include piloting and evaluating innovative models of faculty development that respond to specific institutional or regional needs.

  15. Fostering Growth through Tourism in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Jorge Fernández Ruiz

    2015-01-01

    Full Text Available In recent years, the rate of growth of tourism in Sub-Saharan Africa has continued apace at almost twice the rate of the rest of the globe. In this paper we examine some economic consequences of this growth focusing our attention on two Sub-Saharan countries with important tourist sectors: Cape Verde and Gambia. We examine the factors driving the growth of tourism in these countries and those affecting whether or not this increase can help promote broader economic development and increase the overall welfare of the citizens of these two countries.

  16. Globalization, Financial Depth, and Inequality in Sub-Saharan Africa

    OpenAIRE

    Hisako KAI; Shigeyuki HAMORI

    2009-01-01

    This paper examines the relationship between globalization, financial deepening, and inequality in sub-Saharan Africa between 1980 and 2002. We provide the first detailed econometric analysis in this regard covering the entire sub-Saharan African region; such an analysis has hardly been conducted owing to the lack of relevant data. We find that while globalization deteriorates inequality, its disequalizing effect depends on the level of development of the country. Further, this paper confirms...

  17. Atmospheric Electricity Effects of Eastern Mediterranean Dust Storms

    Science.gov (United States)

    Katz, Shai; Yair, Yoav; Yaniv, Roy; Price, Colin

    2016-04-01

    We present atmospheric electrical measurements conducted at the Wise Observatory (WO) in Mizpe-Ramon (30035'N, 34045'E) and Mt. Hermon (30024'N, 35051'E), Israel, during two massive and unique dust storms that occurred over the Eastern Mediterranean region on February 10-11 and September 08-12, 2015. The first event transported Saharan dust from Egypt and the Sinai Peninsula in advance of a warm front of a Cyprus low pressure system. In the second event, dust particles were transported from the Syrian desert, which dominates the north-east border with Iraq, through flow associated with a shallow Persian trough system. In both events the concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 2200 μg m-3. Aerosol Optical Thickness (AOT) obtained from the AERONET station in Sde-Boker reached values up to 4.0. The gradual intensification of the first event reached peak values on the February 11th > 1200 μg m-3 and an AOT ~ 1.8, while the second dust storm commenced on September 8th with a sharp increase reaching peak values of 2225 μg m-3 and AOT of 4.0. Measurements of the fair weather vertical electric field (Ez) and of the vertical current density (Jz) were conducted continuously with a 1 minute temporal resolution. During the February event, very large fluctuations in the electrical parameters were measured at the WO. The Ez values changed between +1000 and +8000 V m-1 while the Jz fluctuated between -10 and +20 pA m-2 (this is an order of magnitude larger compared to the fair weather current density of ~2 pA m-2. In contrast, during the September event, Ez values registered at WO were between -430 and +10 V m-1 while the Jz fluctuated between -6 and +3 pA m2. For the September event the Hermon site showed Ez and Jz values fluctuating between -460 and +570 V m-1 and -14.5 and +18 pA m-2 respectively. The electric field and current variability, amplitude and the

  18. Parameterizing the interstellar dust temperature

    Science.gov (United States)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-08-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.

  19. Aids prevention in sub-Saharan Africa: as easy as ABC? | Bertrand ...

    African Journals Online (AJOL)

    Background: The failure to stem HIV in sub-Saharan Africa and the unique epidemiological modes of infection within this region have demonstrated that unique strategies for combatting the virus are required. This review article discusses why international AIDS campaigns in sub- Saharan Africa have largely been ...

  20. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  1. Analysis of dust and marine aerosol optical depth spectral-curvature information in the UV to SWIR (Short Wave Infrared) wavelength regions.

    Science.gov (United States)

    O'Neill, N. T.; Smirnov, A.; Eck, T. F.; Sakerin, S.; Kabanov, D.

    2005-12-01

    Traditional sunphotometry in the UV, visible and very NIR (Near Infrared) spectral regions is weighted, in terms of spectral information content, towards sub-micron (fine mode) particles. Sunphotometry in the NIR and SWIR increases the diversity and information content of spectral aerosol optical depth (AOD) measurements for supermicron (coarse mode) particles. Two data sets representing dust aerosols from the UAE (United Arab Emirates) region and marine aerosols from the northern, tropical and southern Atlantic Ocean were analyzed in terms of their spectral curvature diversity and information content. The former data set was acquired using NIR-enhanced CIMEL sunphotometers (340, 340, 380, 440, 500, 670, 870, 1020, 1640 nm) as part of the August to October, 2004 UAE2 field campaign while the latter data set was acquired using an automated Russian UV to SWIR SP-5 sunphotometer (339, 423, 438, 484, 552, 633, 677, 777, 869, 1241, 1560, 2148, 4000 nm) as part of a October/December 2004 cruise campaign in the northern, tropical and south Atlantic Ocean. A Microtops hand-held sunphotometer was also employed to acquire VIS to NIR AOD spectra during the latter field campaign. Results will be presented in terms of robust micro-physical and spectral curvature parameters which characterize super-micron aerosols and, in a more general sense, in terms of what universal/fundamental optical inferences can be drawn from the two disperse data sets.

  2. Temporal variations in optical and microphysical properties of mineral dust and biomass burning aerosol derived from daytime Raman lidar observations over Warsaw, Poland

    Science.gov (United States)

    Janicka, Lucja; Stachlewska, Iwona S.; Veselovskii, Igor; Baars, Holger

    2017-11-01

    In July 2013, favorable weather conditions caused a severe events of advection of biomass burning particles of Canadian forest fires to Europe. The smoke layers were widely observed, especially in Western Europe. An unusual atmospheric aerosol composition was measured at the EARLINET site in Warsaw, Central Poland, during a short event that occurred between 11 and 21 UTC on 10th July 2013. Additionally to the smoke layer, mineral dust was detected in a separate layer. The long-range dust transport pathway followed an uncommon way; originating in Western Sahara, passing above middle Atlantic, and circulating over British Islands, prior to its arrival to Poland. An effective radius of 560 nm was obtained for Saharan dust over Warsaw. This relatively small effective radius is likely due to the long time of the transport. The aerosol-polarization-Raman PollyXT-UW lidar was used for a successful daytime Raman retrieval of the aerosol optical properties at selected times during this short event. The aerosol vertical structure during the inflow over Warsaw in terms of optical properties and depolarization was analyzed, indicating clear distinction of the layers. The microphysical properties were inverted from the lidar derived optical data for selected ranges as representing the smoke and the mineral dust. For smoke, the effective radius was in the range of 0.29-0.36 μm and the complex refractive index 1.36 + 0.008i, on average. For dust, the values of 0.33-0.56 μm and 1.56 + 0.004i were obtained. An evolution of the aerosol composition over Warsaw during the day was analyzed.

  3. Economywide impacts of climate change on agriculture in Sub-Saharan Africa

    NARCIS (Netherlands)

    Calzadilla, Alvaro; Zhu, Tingju; Rehdanz, Katrin; Tol, Richard S J; Ringler, Claudia

    2013-01-01

    Two possible adaptation scenarios to climate change for Sub-Saharan Africa are analyzed under the SRES B2 scenario. The first scenario doubles the irrigated area in Sub-Saharan Africa by 2050, compared to the baseline, but keeps total crop area constant. The second scenario increases both rainfed

  4. Dust as a surfactant

    International Nuclear Information System (INIS)

    Ignatov, A M; Schram, P P J M; Trigger, S A

    2003-01-01

    We argue that dust immersed in a plasma sheath acts as a surfactant. By considering the momentum balance in a plasma sheath, we evaluate the dependence of the plasma surface pressure on the dust density. It is shown that the dust may reduce the surface pressure, giving rise to a sufficiently strong tangential force. The latter is capable of confining the dust layer inside the sheath in the direction perpendicular to the ion flow

  5. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z ∼ 2 DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Borys, C.; Desai, V.; Sheth, K.; Soifer, B. T.; Le Floc'h, E.; Melbourne, J.

    2009-01-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ∼3 x 10 8 M sun . In comparison to other dusty z ∼ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10 13 L sun versus 6 x 10 12 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ∼30 K) and lower inferred dust masses (3 x 10 8 M sun versus 3 x 10 9 M sun ). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ∼ 2 involves a submillimeter bright, cold-dust, and star

  6. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  7. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    Science.gov (United States)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  8. Electoral Institutions and Electoral Violence in Sub-Saharan Africa

    OpenAIRE

    Fjelde, Hanne; Höglund, Kristine

    2016-01-01

    Political violence remains a pervasive feature of electoral dynamics in many countries in Sub-Saharan Africa, even where multiparty elections have become the dominant mode of regulating access to political power. With cross-national data on electoral violence in Sub-Saharan African elections between 1990 and 2010, this article develops and tests a theory that links the use of violent electoral tactics to the high stakes put in place by majoritarian electoral institutions. It is found that ele...

  9. Testing an advanced satellite technique for dust detection as a decision support system for the air quality assessment

    Science.gov (United States)

    Falconieri, Alfredo; Filizzola, Carolina; Femiano, Rossella; Marchese, Francesco; Sannazzaro, Filomena; Pergola, Nicola; Tramutoli, Valerio; Di Muro, Ersilia; Divietri, Mariella; Crisci, Anna Maria; Lovallo, Michele; Mangiamele, Lucia; Vaccaro, Maria Pia; Palma, Achille

    2014-05-01

    In order to correctly apply the European directive for air quality (2008/50/CE), local Authorities are often requested to discriminate the possible origin (natural/anthropic) of anomalous concentration of pollutants in the air (art.20 Directive 2008/50/CE). In this framework, it's been focused on PM10 and PM2,5 concentrations and sources. In fact, depending on their origin, appropriate counter-measures can be taken devoted to prevent their production (e.g. by traffic restriction) or simply to reduce their impact on citizen health (e.g. information campaigns). In this context suitable satellite techniques can be used in order to identify natural sources (particularly Saharan dust, but also volcanic ash or forest fire smoke) that can be responsible of over-threshold concentration of PM10/2,5 in populated areas. In the framework of the NIBS (Networking and Internationalization of Basilicata Space Technologies) project, funded by the Basilicata Region within the ERDF 2007-2013 program, the School of Engineering of University of Basilicata, the Institute of Methodologies for Environmental Analysis of National Research Council (IMAA-CNR) and the Regional Agency for the Protection of the Environment of Basilicata Region (ARPAB) have started a collaboration devoted to assess the potential of the use of advanced satellite techniques for Saharan dust events identification to support ARPAB activities related to the application of the European directive for air quality (2008/50/CE) in Basilicata region. In such a joint activity, the Robust Satellite Technique (RST) approach has been assessed and tested as a decision support system for monitoring and evaluating air quality at local and regional level. In particular, RST-DUST products, derived by processing high temporal resolution data provided by SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on board Meteosat Second Generation platforms, have been analysed together with PM10 measurements performed by the ground

  10. Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene.

    Science.gov (United States)

    Tong, Haijie; Lakey, Pascale S J; Arangio, Andrea M; Socorro, Joanna; Kampf, Christopher J; Berkemeier, Thomas; Brune, William H; Pöschl, Ulrich; Shiraiwa, Manabu

    2017-08-24

    Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H 2 O 2 with Fe 2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H 2 O 2 and Fe 2+ . In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.

  11. Power sector reform and distributed generation in sub-Saharan Africa

    DEFF Research Database (Denmark)

    Turkson, J.K.; Wohlgemuth, N.

    2001-01-01

    As part of the current liberalisation process sweeping sub-Saharan Africa, power sectors across the region are being scrutinised and restructured. A critical aspect of the reform is improving access to electricity by large segments of the population. Many in the continent are, therefore,looking a......As part of the current liberalisation process sweeping sub-Saharan Africa, power sectors across the region are being scrutinised and restructured. A critical aspect of the reform is improving access to electricity by large segments of the population. Many in the continent are, therefore......, on average, 30-40 per cent of the region's population, the authors discuss the issues involved, drawing on the experiences of other countries whether there are any apparent 'preconditions' for success. Second, the role renewable energy can play in this process and the extent to which lessons from other parts...... of the world might be transferable to the countries of sub-Saharan Africa is assessed. The paper concludes by investigating the prospects for distributed generation in power sector reform in sub-Saharan Africa, arguing that though lessons from other parts of the world will be helpful, they cannot be all...

  12. Iron mineralogy and bioaccessibility of dust generated from soils as determined by reflectance spectroscopy and magnetic and chemical properties--Nellis Dunes recreational area, Nevada

    Science.gov (United States)

    Goldstein, Harland L.; Reynolds, Richard L.; Morman, Suzette A.; Moskowitz, Bruce; Kokaly, Raymond F.; Goossens, Dirk; Buck, Brenda J.; Flagg, Cody; Till, Jessica; Yauk, Kimberly; Berquó, Thelma S.

    2013-01-01

    Atmospheric mineral dust exerts many important effects on the Earth system, such as atmospheric temperatures, marine productivity, and melting of snow and ice. Mineral dust also can have detrimental effects on human health through respiration of very small particles and the leaching of metals in various organs. These effects can be better understood through characterization of the physical and chemical properties of dust, including certain iron oxide minerals, for their extraordinary radiative properties and possible effects on lung inflammation. Studies of dust from the Nellis Dunes recreation area near Las Vegas, Nevada, focus on characteristics of radiative properties (capacity of dust to absorb solar radiation), iron oxide mineral type and size, chemistry, and bioaccessibility of metals in fluids that simulate human gastric, lung, and phagolysosomal fluids. In samples of dust from the Nellis Dunes recreation area with median grain sizes of 2.4, 3.1, and 4.3 micrometers, the ferric oxide minerals goethite and hematite, at least some of it nanosized, were identified. In one sample, in vitro bioaccessibility experiments revealed high bioaccessibility of arsenic in all three biofluids and higher leachate concentration and bioaccessibility for copper, uranium, and vanadium in the simulated lung fluid than in the phagolysosomal fluid. The combination of methods used here to characterize mineral dust at the Nellis Dunes recreation area can be applied to global dust and broad issues of public health.

  13. A brief history of medical education in Sub-Saharan Africa.

    Science.gov (United States)

    Monekosso, G L

    2014-08-01

    Developments in medical education in Sub-Saharan Africa over the past 100 years have been characterized by the continent's unique history. During the first half of the 20th century, the Europeans effectively installed medical education in their African colonies. The years 1950 to 1960 were distinguished by successful movements for independence, with new governments giving priority to medical education. By 1980, there were 51 medical schools in Sub-Saharan Africa. The period from 1975 to 1990 was problematic both politically and economically for Sub-Saharan Africa, and medical schools did not escape the general difficulties. War, corruption, mounting national debts, and political instability were characteristics of this period. In many countries, maintaining medical school assets--faculty members, buildings, laboratories, libraries--became difficult, and emigration became the goal of many health professionals. In contrast, the past 20 years have seen rapid growth in the number of medical schools in Sub-Saharan Africa. Economic growth and political stability in most Sub-Saharan African countries augur well for investment in health systems strengthening and in medical education. There are, nonetheless, major problem areas, including inadequate funding, challenges of sustainability, and the continuing brain drain. The 20th century was a time of colonialism and the struggle for independence during which medical education did not advance as quickly or broadly as it did in other regions of the world. The 21st century promises a different history, one of rapid growth in medical education, leading to better care and better health for the people of Africa.

  14. Universal instability of dust ion-sound waves and dust-acoustic waves

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Watanabe, K.

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  15. Social entrepreneurship in sub-Saharan Africa

    NARCIS (Netherlands)

    Rivera-Santos, M.; Holt, D.; Littlewood, D.; Kolk, A.

    Responding to calls for a better understanding of the relationship between social enterprises and their environments, this article focuses on contextual influences on social entrepreneurship in sub-Saharan Africa. We identify four predominantly African contextual dimensions, i.e., acute poverty,

  16. Responses of heterotrophic bacteria abundance and activity to Asian dust enrichment in the low nutrients and low chlorophyll (LNLC) region of the Northwestern Pacific Ocean

    Science.gov (United States)

    Shi, Dongwan; Li, Kuiran; Tian, Yanzhao; Zhang, Xiaohao; Bai, Jie

    2017-05-01

    Bacteria, as an essential part of microbial food web, play a significant role in the marine ecosystem. Dust deposits into the surface ocean carrying with vital nutrient such as Inorganic nitrogen and phosphorus etc., which has an important influence on the life activities of heterotrophic bacteria. The microcosm experiments with Asian dust deposition was carried out on board in the station K3 (26.18°N, 136.73°E) in April 2015, aiming to estimate the impact of dust deposition on the oligotrophic Northwestern pacific Sea, the main goal of the present paper was to assess how dust deposition events affect the abundance and activity of heterotrophic bacteria in low nutrient and low chlorophyll (LNLC) sea area. Station K3 located in the central northwestern Pacific Ocean, which has the characteristic of low nutrient and low chlorophyll. The study shows that there was an N-P co-limitation in station K3, and the deposition of Asian dust can increase the abundance, and promote the activity of heterotrophic bacteria in the station K3.

  17. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  18. Recently deglaciated high-altitude soils of the Himalaya: diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper troposphere.

    Directory of Open Access Journals (Sweden)

    Blaz Stres

    Full Text Available The Himalaya with its altitude and geographical position forms a barrier to atmospheric transport, which produces much aqueous-particle monsoon precipitation and makes it the largest continuous ice-covered area outside polar regions. There is a paucity of data on high-altitude microbial communities, their native environments and responses to environmental-spatial variables relative to seasonal and deglaciation events.Soils were sampled along altitude transects from 5000 m to 6000 m to determine environmental, spatial and seasonal factors structuring bacterial communities characterized by 16 S rRNA gene deep sequencing. Dust traps and fresh-snow samples were used to assess dust abundance and viability, community structure and abundance of dust associated microbial communities. Significantly different habitats among the altitude-transect samples corresponded to both phylogenetically distant and closely-related communities at distances as short as 50 m showing high community spatial divergence. High within-group variability that was related to an order of magnitude higher dust deposition obscured seasonal and temporal rearrangements in microbial communities. Although dust particle and associated cell deposition rates were highly correlated, seasonal dust communities of bacteria were distinct and differed significantly from recipient soil communities. Analysis of closest relatives to dust OTUs, HYSPLIT back-calculation of airmass trajectories and small dust particle size (4-12 µm suggested that the deposited dust and microbes came from distant continental, lacustrine and marine sources, e.g. Sahara, India, Caspian Sea and Tibetan plateau. Cyanobacteria represented less than 0.5% of microbial communities suggesting that the microbial communities benefitted from (codeposited carbon which was reflected in the psychrotolerant nature of dust-particle associated bacteria.The spatial, environmental and temporal complexity of the high-altitude soils of the

  19. Recently deglaciated high-altitude soils of the Himalaya: diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper troposphere.

    Science.gov (United States)

    Stres, Blaz; Sul, Woo Jun; Murovec, Bostjan; Tiedje, James M

    2013-01-01

    The Himalaya with its altitude and geographical position forms a barrier to atmospheric transport, which produces much aqueous-particle monsoon precipitation and makes it the largest continuous ice-covered area outside polar regions. There is a paucity of data on high-altitude microbial communities, their native environments and responses to environmental-spatial variables relative to seasonal and deglaciation events. Soils were sampled along altitude transects from 5000 m to 6000 m to determine environmental, spatial and seasonal factors structuring bacterial communities characterized by 16 S rRNA gene deep sequencing. Dust traps and fresh-snow samples were used to assess dust abundance and viability, community structure and abundance of dust associated microbial communities. Significantly different habitats among the altitude-transect samples corresponded to both phylogenetically distant and closely-related communities at distances as short as 50 m showing high community spatial divergence. High within-group variability that was related to an order of magnitude higher dust deposition obscured seasonal and temporal rearrangements in microbial communities. Although dust particle and associated cell deposition rates were highly correlated, seasonal dust communities of bacteria were distinct and differed significantly from recipient soil communities. Analysis of closest relatives to dust OTUs, HYSPLIT back-calculation of airmass trajectories and small dust particle size (4-12 µm) suggested that the deposited dust and microbes came from distant continental, lacustrine and marine sources, e.g. Sahara, India, Caspian Sea and Tibetan plateau. Cyanobacteria represented less than 0.5% of microbial communities suggesting that the microbial communities benefitted from (co)deposited carbon which was reflected in the psychrotolerant nature of dust-particle associated bacteria. The spatial, environmental and temporal complexity of the high-altitude soils of the Himalaya

  20. Radiatively-driven processes in forest fire and desert dust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Bernadett Barbara

    2008-07-01

    The absorption of solar radiation by atmospheric aerosol particles is important for the climate effects of aerosols. Absorption by aerosol particles heats atmospheric layers, even though the net effect for the entire atmospheric column may still be a cooling. Most experimental studies on absorbing aerosols so far focussed mainly on the aerosol properties and did not consider the influence of the aerosols on the thermodynamic structure of the atmosphere. In this study, data from two international aircraft field experiments, the Intercontinental Transport of Ozone and Precursors study (ITOP) 2004 and the Saharan Mineral Dust Experiment (SAMUM) 2006 are investigated. The ITOP data were collected before the work on this thesis started, while the logistics and the instrument preparation of the SAMUM campaign, the weather forecast during SAMUM and the in-situ aerosol measurements during SAMUM were done within this thesis. The experimental data are used to explore the impact of layers containing absorbing forest fire and desert dust aerosol particles on the atmospheric stability and the implications of a changed stability on the development of the aerosol microphysical and optical properties during long-range transport. For the first time, vertical profiles of the Richardson number Ri are used to assess the stability and mixing in forest fire and desert dust plumes. Also for the first time, the conclusions drawn from the observations of forest fire and desert dust aerosol, at first glance apparently quite different aerosol types, are discussed from a common perspective. Two mechanisms, the selfstabilising and the sealed ageing effect, acting in both forest fire and desert dust aerosol layers, are proposed to explain the characteristic temperature structure as well as the aerosol properties observed in lofted forest fire and desert dust plumes. The proposed effects impact on the ageing of particles within the plumes and reduce the plume dilution, therefore extending the

  1. Engineering-scale dust control experiments

    International Nuclear Information System (INIS)

    Winberg, M.R.; Pawelko, R.J.; Jacobs, N.C.; Thompson, D.N.

    1990-12-01

    This report presents the results of engineering scale dust-control experiments relating to contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of misting systems, soil fixatives, and dust suppression agents. The Dryfog Ultrasonic Misting Head, manufactured by Sonics, Incorporated, and ENTAC, an organic resin derived from tree sap manufactured by ENTAC Corporation, were tested. The results of the experiments include product performance and recommended application methods. 19 figs., 7 refs., 6 tabs

  2. A Comparative Analysis of United States and Chinese Economic Engagement in Sub Saharan Africa

    Science.gov (United States)

    2016-03-01

    education opportunities for aspiring sub-Saharan Africa leaders, improve drinking water , and protect forests—all of which is an interesting foreign...ANALYSIS OF UNITED STATES AND CHINESE ECONOMIC ENGAGEMENT IN SUB-SAHARAN AFRICA by James Housley Furman, Jr. March 2016 Thesis Advisor...ENGAGEMENT IN SUB-SAHARAN AFRICA 5. FUNDING NUMBERS 6. AUTHOR(S) James Housley Furman, Jr. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  3. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms.

    Science.gov (United States)

    Berry, Kathryn L E; Hoogenboom, Mia O; Flores, Florita; Negri, Andrew P

    2016-05-13

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l(-1)) of suspended coal dust (coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l(-1)) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.

  4. Youth in sub-Saharan Africa.

    Science.gov (United States)

    Blum, Robert W

    2007-09-01

    Sub-Saharan Africa is going through rapid social, political, and economic transformations that have a profound impact on youth. The present review explores trends and outcomes as they relate to education, family formation and sexual and reproductive health and the interrelationships among these areas. It is based on both published and unpublished reports. Over the past 20 years, school enrollment has increased for much of the subcontinent; although the gender gap has narrowed, females remain educationally disadvantaged. Likewise, marriage is occurring later today than a generation ago, posing new challenges of out-of-wedlock births, clandestine abortions, and an increased likelihood of engaging in premarital sex. So, too, although there has been a slowing of the population growth in much of the region, in many countries of sub-Saharan Africa, the population is doubling every 30 years. Although acquired immunodeficiency syndrome is the predominant cause of death among youth, maternal mortality remains a major risk of death for youth--in some countries 600 times greater than that of peers in the industrialized world.

  5. Gravimetric dust sampling for control purposes and occupational dust sampling.

    CSIR Research Space (South Africa)

    Unsted, AD

    1997-02-01

    Full Text Available Prior to the introduction of gravimetric dust sampling, konimeters had been used for dust sampling, which was largely for control purposes. Whether or not absolute results were achievable was not an issue since relative results were used to evaluate...

  6. Scarification in sub-Saharan Africa: social skin, remedy and medical import.

    Science.gov (United States)

    Garve, Roland; Garve, Miriam; Türp, Jens C; Fobil, Julius N; Meyer, Christian G

    2017-06-01

    Various forms of body modification may be observed in sub-Saharan Africa. Hypotheses and theories of scarification and tribal marking in sub-Saharan Africa are described, plus the procedure of scarification, examples from several African countries, assumed effects in prevention and treatment of diseases, and the medical risks resulting from unsterile manipulation. © 2017 John Wiley & Sons Ltd.

  7. DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO

    Energy Technology Data Exchange (ETDEWEB)

    Pinte, C.; Ménard, F. [UMI-FCA, CNRS/INSU, France (UMI 3386), and Dept. de Astronomía, Universidad de Chile, Santiago (Chile); Dent, W. R. F.; Hales, A.; Hill, T.; Cortes, P.; Gregorio-Monsalvo, I. de, E-mail: christophe.pinte@obs.ujf-grenoble.fr [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago (Chile)

    2016-01-01

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.

  8. Selected aspects and specifics of the economic development in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Karel Tomššík

    2013-01-01

    Full Text Available The paper examines the development of economies in the sub-Saharan region. It aims to identify particular development trends specific to the region. That means identifying changes which have occurred in the past five decades in following areas: development of the GDP value ​​and structure, growth in the value of foreign trade, demographic growth, and changes in the value of GDP per capita. The results of the analysis show very constrained economic power of sub-Saharan region. Not only weak economy of the region but also a significant population growth is a problem. Increasing production and trade does not contribute effectively to elimination of high level of poverty and malnutrition which remains a long-term problem of the sub-Saharan region. In real terms, the GDP per capita was growing by less than 1 % in the period 1961–2010. Sub-Saharan region is highly dependent on cooperation with other world regions in its effort to increase economic growth and to improve the economic situation of own population. The GDP growth is thus very sensitive to GDP development in Europe and North America. Concerning the foreign trade, development of sub-Saharan trade is dependent on regions of the Southern and Eastern Asia, and Europe.

  9. Sub-Saharan African maize-based foods

    NARCIS (Netherlands)

    Ekpa, Onu; Palacios-Rojas, Natalia; Kruseman, Gideon; Fogliano, Vincenzo; Linnemann, Anita R.

    2018-01-01

    The demand for maize in Sub-Saharan Africa will triple by 2050 due to rapid population growth, while challenges from climate change will threaten agricultural productivity. Most maize breeding programmes have focused on improving agronomic properties and have paid relatively little attention to

  10. Respiratory Toxicity of Lunar Highland Dust

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Wallace, William T.

    2009-01-01

    Lunar dust exposures occurred during the Apollo missions while the crew was on the lunar surface and especially when microgravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes and in some cases respiratory symptoms were elicited. NASA s vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust need to be assessed. NASA has performed this assessment with a series of in vitro and in vivo tests on authentic lunar dust. Our approach is to "calibrate" the intrinsic toxicity of lunar dust by comparison to a nontoxic dust (TiO2) and a highly toxic dust (quartz) using intratrachael instillation of the dusts in mice. A battery of indices of toxicity is assessed at various time points after the instillations. Cultures of selected cells are exposed to test dusts to assess the adverse effects on the cells. Finally, chemical systems are used to assess the nature of the reactivity of various dusts and to determine the persistence of reactivity under various environmental conditions that are relevant to a space habitat. Similar systems are used to assess the dissolution of the dust. From these studies we will be able to set a defensible inhalation exposure standard for aged dust and predict whether we need a separate standard for reactive dust. Presently-available data suggest that aged lunar highland dust is slightly toxic, that it can adversely affect cultured cells, and that the surface reactivity induced by grinding the dust persists for a few hours after activation.

  11. Coal in sub-Saharan-African countries undergoing desertification

    Science.gov (United States)

    Weaver, J.N.; Brownfield, M.E.; Bergin, M.J.

    1990-01-01

    Coal has been reported in 11 of the 16 sub-Saharan countries discussed in this appraisal: Mauritania, Senegal, Mali, Niger, Benin, Nigeria, Cameroon, Central African Republic, Sudan, Ethiopia, and Somalia. No coal occurrences have been reported in Gambia, Togo, Burkina, Chad, and Djibouti but coal may be present within these countries because neighboring countries do contain coal-bearing rocks. Most of these countries are undergoing desertification or will in the near future. Wood, directly or in the form of charcoal, constitutes two-thirds of the fuel used in Africa. Destruction of forest and shrub lands for fuel is occurring at an increasing rate because of desertification and increasing energy demands. The decline in biological productivity, coupled with concentration of population in areas where water is available and crops may be grown, leads to increasing shortages of wood for fuel. Part of the present and future energy needs of the sub-Saharan region could be met by use of indigenous coal and peat. Nine sedimentary basins, completely or partially within the sub-Saharan region, have the potential of either coal and/or peat deposits of economic value: 1- Senegal Basin, 2- Taoudeni Basin and Gao Trough, 3- Niger Basin, 4- Chad Basin, 5- Chari Basin, 6- Benue Trough (Depression), 7- Sudan Trough, 8- Plateau and Rift Belt, and 9- Somali Basin. Niger and Nigeria are the only countries in sub-Saharan Africa in which coal is presently being mined as a fuel source for powerplants and domestic use. Peat occurs in the deltas, lower river, and interdunal basin areas of Senegal, Mauritania, and Sudan. Peat can be used as an alternate fuel source and is currently being tested as a soil amendment in the agricultural sector. Coal and peat exploration and development studies are urgently required and should be initiated so the coal and peat utilization potential of each country can be determined. The overall objective of these studies is to establish, within the sub-Saharan

  12. Coal in sub-Saharan-African countries undergoing desertification

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, J.N.; Brownfield, M.E.; Bergin, M.J. (United States Geological Survey, Denver, CO (USA))

    1990-01-01

    Coal has been reported in 11 of the 16 sub-Saharan countries discussed in this appraisal: Mauritania, Senegal, Mali, Niger, Benin, Nigeria, Cameroon, Central African Republic, Sudan, Ethiopia, and Somalia. No coal occurrences have been reported in Gambia, Togo, Burkina, Chad, and Djibouti but coal may be present within these countries because neighbouring countries do contain coal-bearing rocks. Most of these countries are undergoing desertification. Destruction of forest and shrub lands for fuel is occurring at an increasing rate because of desertification and increasing energy demands. Part of the present and future energy needs of the sub-Saharan region could be met by use of indigenous coal and peat. Nine sedimentary basins have the potential of either coal and/or peat deposits of economic value: 1- Senegal Basin, 2- Taoudeni Basin and Gao Trough, 3- Niger Basin, 4- Chad Basin. 5- Chari Basin, 6- Benue Trough (Depression), 7- Sudan Trough, 8- Plateau and Rift Belt, and 9- Somali Basin. Niger and Nigeria are the only countries in sub-Saharan Africa in which coal is presently being mined as a fuel source for powerplants and domestic use. Peat occurs in the deltas, lower river, and interdunal basin areas of Senegal, Mauritania, and Sudan. The overall objective of these studies is to establish, within the sub-Saharan region, energy independent countries using indigeneous coal and peat resources. These resources have the potential to replace wood and wood charcoal as domestic fuel in the urban centres, as well as producing electrical and industrial energy, thus reducing expensive oil imports and decreasing the rate of deforestation. 31 refs., 16 figs., 1 tab.

  13. Concentrations of Semivolatile Organic Compounds Associated with African Dust Air Masses in Mali, Cape Verde, Trinidad and Tobago, and the U.S. Virgin Islands, 2001-2008

    Science.gov (United States)

    Garrison, Virginia H.; Foreman, William T.; Genualdi, Susan A.; Majewski, Michael S.; Mohammed, Azad; Simonich, Staci Massey

    2011-01-01

    Every year, billions of tons of fine particles are eroded from the surface of the Sahara Desert and the Sahel of West Africa, lifted into the atmosphere by convective storms, and transported thousands of kilometers downwind. Most of the dust is carried west to the Americas and the Caribbean in the Saharan Air Layer (SAL). Dust air masses predominately impact northern South America during the Northern Hemisphere winter and the Caribbean and Southeastern United States in summer. Dust concentrations vary considerably temporally and spatially. In a dust source region (Mali), concentrations range from background levels of 575 micrograms per cubic meter (mu/u g per m3) to 13,000 mu/u g per m3 when visibility degrades to a few meters (Gillies and others, 1996). In the Caribbean, concentrations of 200 to 600 mu/u g per m3 in the mid-Atlantic and Barbados (Prospero and others, 1981; Talbot and others, 1986), 3 to 20 mu/u g per m3 in the Caribbean (Prospero and Nees, 1986; Perry and others, 1997); and >100 mu/u g per m3 in the Virgin Islands (this dataset) have been reported during African dust conditions. Mean dust particle size decreases as the SAL traverses from West Africa to the Caribbean and Americas as a result of gravitational settling. Mean particle size reaching the Caribbean is <1 micrometer (mu/u m) (Perry and others, 1997), and even finer particles are carried into Central America, the Southeastern United States, and maritime Canada. Particles less than 2.5 mu/u m diameter (termed PM2.5) can be inhaled deeply into human lungs. A large body of literature has shown that increased PM2.5 concentrations are linked to increased cardiovascular/respiratory morbidity and mortality (for example, Dockery and others, 1993; Penn and others, 2005).

  14. Health economics of blood transfusion safety--focus on sub-Saharan Africa.

    Science.gov (United States)

    van Hulst, Marinus; Smit Sibinga, Cees Th; Postma, Maarten J

    2010-01-01

    Health economics provides a standardised methodology for valid comparisons of interventions in different fields of health care. This review discusses the health economic evaluations of strategies to enhance blood product safety in sub-Saharan Africa. We reviewed health economic methodology with special reference to cost-effectiveness analysis. We searched the literature for cost-effectiveness in blood product safety in sub-Saharan Africa. HIV-antibody screening in different settings in sub-Saharan Africa showed health gains and saved costs. Except for adding HIV-p24 screening, adding other tests such as nucleic acid amplification testing (NAT) to HIV-antibody screening displayed incremental cost-effectiveness ratios greater than the WHO/World Bank specified threshold for cost-effectiveness. The addition of HIV-p24 in combination with HCV antibody/antigen screening and multiplex (HBV, HCV and HIV) NAT in pools of 24 may also be cost-effective options for Ghana. From a health economic viewpoint, HIV-antibody screening should always be implemented in sub-Saharan Africa. The addition of HIV-p24 antigen screening, in combination with HCV antibody/antigen screening and multiplex (HBV, HCV and HIV) NAT in pools of 24 may be feasible options for Ghana. Suggestions for future health economic evaluations of blood transfusion safety interventions in sub-Saharan Africa are: mis-transfusion, laboratory quality and donor management. Copyright 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  15. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating ...

    Indian Academy of Sciences (India)

    cantly modifies the dispersion properties of these two electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. Keywords. Dusty plasmas; dust-cyclotron waves; dust-lower-hybrid waves.

  16. Photovoltaic energy: an efficient development tool for Sub-Saharan economies

    International Nuclear Information System (INIS)

    Megherbi, Karim

    2013-01-01

    In this report, the author aims at highlighting the main success factors for a photovoltaic program in sub-Saharan Africa, and the benefits of this technology for African electricity operators. He first presents the electricity sector of Sub-Saharan Africa, its current situation, its scenarios of evolution, and the limitations of scenarios based on conventional energies. In a second part, he discusses the role photovoltaic solar energy could have within the energy mix of Sub-Saharan countries. He discusses how to calculate the cost of photovoltaic electricity production, and the value of photovoltaic electricity, discusses the main influencing parameters, and tries to identify when it becomes worth to choose photovoltaic electricity. He describes the implementation of an adapted legal and economic framework, the 'feed-in-tariff'. An appendix contains a proposition for Western Africa and analyses the case of Benin

  17. Vaccination for typhoid fever in sub-Saharan Africa.

    Science.gov (United States)

    Slayton, Rachel B; Date, Kashmira A; Mintz, Eric D

    2013-04-01

    Emerging data on the epidemiologic, clinical and microbiologic aspects of typhoid fever in sub-Saharan Africa call for new strategies and new resources to bring the regional epidemic under control. Areas with endemic disease at rates approaching those in south Asia have been identified; large, prolonged and severe outbreaks are occurring more frequently; and resistance to antimicrobial agents, including fluoroquinolones is increasing. Surveillance for typhoid fever is hampered by the lack of laboratory resources for rapid diagnosis, culture confirmation and antimicrobial susceptibility testing. Nonetheless, in 2010, typhoid fever was estimated to cause 725 incident cases and 7 deaths per 100,000 person years in sub-Saharan Africa. Efforts for prevention and outbreak control are challenged by limited access to safe drinking water and sanitation and by a lack of resources to initiate typhoid immunization. A comprehensive approach to typhoid fever prevention including laboratory and epidemiologic capacity building, investments in water, sanitation and hygiene and reconsideration of the role of currently available vaccines could significantly reduce the disease burden. Targeted vaccination using currently available typhoid vaccines should be considered as a short- to intermediate-term risk reduction strategy for high-risk groups across sub-Saharan Africa.

  18. Assessment of the Vulnerability of Water Resources to Seasonal Fires Across the Northern Sub-Saharan African Region

    Science.gov (United States)

    Ichoku, Charles M.

    2010-01-01

    The northern sub-Saharan African (NSSA) region, extending from the southern fringes of the Sahara to the Equator, and stretching west to east from the Atlantic to the Indian ocean coasts, plays a prominent role in the distribution of Saharan dust and other airborne matter around the region and to other parts of the world, the genesis of global atmospheric circulation, and the birth of such major (and often catastrophic) events as hurricanes. Therefore, this NSSA region represents a critical variable in the global climate change equation. Recent satellite-based studies have revealed that the NSSA region has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be a major driver of the regional carbon, energy, and water cycles. We acknowledge that the rainy season in the NSSA region is from April to September while biomass burning occurs mainly during the dry season (October to March). Nevertheless, these two phenomena are indirectly coupled to each other through a chain of complex processes and conditions, including land-cover and surface-albedo changes, the carbon cycle, evapotranspiration, drought, desertification, surface water runoff, ground water recharge, and variability in atmospheric composition, heating rates, and circulation. In this presentation, we will examine the theoretical linkages between these processes, discuss the preliminary results based on satellite data analysis, and provide an overview of plans for more integrated research to be conducted over the next few years.

  19. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  20. Control of harmful dust in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, B; Bower, K; Mitchell, D

    1973-01-01

    This handbook consists of a series of short chapters devoted to: sources of airborne dust; dust standards and methods of sampling; dust prevention on mechanized faces; ventilation and dust extraction; distribution and use of water; dust control on mechanized faces; dust control in drivages and headings; drilling and shotfiring; dust control in transport; some outbye dust control techniques (hygroscopic salts, impingement curtains); water infusion; personal protective equipment. (CIS Abstr.)

  1. Effect of non-Maxwellian particle trapping and dust grain charging on dust acoustic solitary waves

    International Nuclear Information System (INIS)

    Rubab, N.; Murtaza, G.; Mushtaq, A.

    2006-01-01

    The role of adiabatic trapped ions on a small but finite amplitude dust acoustic wave, including the effect of adiabatic dust charge variation, is investigated in an unmagnetized three-component dusty plasma consisting of electrons, ions and massive micron sized negatively charged dust particulates. We have assumed that electrons and ions obey (r,q) velocity distribution while the dust species is treated fluid dynamically. It is found that the dynamics of dust acoustic waves is governed by a modified r dependent Korteweg-de Vries equation. Further, the spectral indices (r,q) affect the charge fluctuation as well as the trapping of electrons and ions and consequently modify the dust acoustic solitary wave

  2. Trauma in sub-Saharan Africa: review of cost, estimation methods, and interventions.

    Science.gov (United States)

    Smigelsky, Melissa A; Aten, Jamie D; Gerberich, Stacy; Sanders, Mark; Post, Rachael; Hook, Kimberly; Ku, Angie; Boan, David M; Monroe, Phil

    2014-01-01

    Trauma is a widely acknowledged problem facing individuals and communities in developing countries. In sub-Saharan Africa-a region that is home to some of the world's worst human rights violations, ethnic and civil conflicts, disease epidemics, and conditions of poverty-trauma is an all-too-common experience in citizens' daily lives. In order to address these conditions effectively, the impact of trauma must be understood. The authors reviewed recent literature on the cost and consequences of psychological trauma in sub-Saharan Africa to provide a substantive perspective on how trauma affects individuals, communities, and organizations and to inform the effort to determine a method for measuring the impact of trauma in sub-Saharan Africa and the efficacy of trauma interventions in the region. Several recommendations are offered to help broaden and deepen the current approaches to conceptualizing trauma, evaluating its cost, and intervening on behalf of those impacted by trauma in sub-Saharan Africa.

  3. Financial Permeation and Economic Growth: Evidence from Sub-Saharan Africa

    OpenAIRE

    Inoue, Takeshi; Hamori, Shigeyuki

    2013-01-01

    This article empirically analyzes the role of finance in economic growth in Sub-Saharan Africa from the perspective of what is termed herein “financial permeation”. By estimating panel data on 37 countries in Sub-Saharan Africa between 2004 and 2010, we examine whether financial permeation through improved convenience and access to financial services has contributed to economic growth in this region. Empirical results clearly indicate that financial permeation has a statistically significant ...

  4. Agriculture and Economic Development in Sub-Saharan Africa and Asia

    OpenAIRE

    Massoud Karshenas

    2000-01-01

    This paper is a comparative study of the role of agriculture in economic development in sub-Saharan Africa and Asia. Popular notions of economic duality and agricultural squeeze in sub-Saharan Africa are re-examined, and new explanations in terms of agrarian structures and resource availabilities are put forward to account for the apparent economic duality in that continent. Comparison with surplus labour economies of Asia highlights the constraints posed by the prevailing agrarian structures...

  5. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  6. Dust in H II regions

    International Nuclear Information System (INIS)

    Isobe, S.

    1977-01-01

    Several pieces of evidence indicate that H II regions may contain dust: 1) the continuum light scattered by dust grains (O'Dell and Hubbard, 1965), 2) thermal radiation from dust grains at infrared wavelengths (Ney and Allen, 1969), 3) the abnormal helium abundance in some H II regions (Peimbert and Costero, 1969), etc. Although observations of the scattered continuum suggest that the H II region cores may be dust-free, dust grains and gas must be well mixed in view of the infrared observations. This difficulty may be solved by introducing globules with sizes approximately 0.001 pc. These globules and the molecular clouds adjacent to H II regions are the main sources supplying dust to H II regions. (Auth.)

  7. SME Adoption of Enterprise Systems in Sub-Saharan Africa

    DEFF Research Database (Denmark)

    Adisa, Femi; Isabalija, Stephen R.

    This paper discusses the need for IS research with a focus on SME adoption of enterprise systems in the context of Sub-Saharan Africa. Previous IS research into general adoption in several developing countries have shown that local context play a significant role in the successful implementation...... of any information system. SMEs constitute a majority of all organizations in most Sub Saharan economies, thus their importance to the socioeconomic development and empowerment of the region cannot be overemphasized. However, the absence of literature and focused research into factors that influence...

  8. The Spatial Variation of Dust Particulate Matter Concentrations during Two Icelandic Dust Storms in 2015

    Directory of Open Access Journals (Sweden)

    Pavla Dagsson-Waldhauserova

    2016-06-01

    Full Text Available Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 µg·m−3 (PM10 = 7 to 583 µg·m−3. The mean PM1 concentrations were 97–241 µg·m−3 with a maximum of 261 µg·m−3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34–0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  9. Dust in Snow in the Colorado River Basin: Spatial Variability in Dust Concentrations, Radiative Forcing, and Snowmelt Rates

    Science.gov (United States)

    Skiles, M.; Painter, T.; Deems, J. S.; Landry, C.; Bryant, A.

    2012-12-01

    Since the disturbance of the western US that began with the Anglo settlement in the mid 19th century, the mountain snow cover of the Colorado River Basin (CRB) has been subject to five-fold greater dust loading. This dust deposition accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. We have previously quantified the impacts of dust in snow using a 6-year record of dust concentration and energy balance fluxes at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. Dust loading exhibited interannual variability, and end of year dust concentrations were not necessarily related to the number of dust deposition events. Radiative forcing enhanced springtime melt by 21 to 51 days with the magnitude of advanced loss being linearly related to total dust concentration at the end of snow cover. To expand our understanding of dust on snow deposition patterns we utilize collections of dust concentration at the Colorado Dust on Snow (CODOS) study sites, established in 2009 along the western side of the CRB, to assess spatial variability in dust loading. In situ sampling of dust stratigraphy and concentration occurs twice each season, once over peak snow water equivalent (15 April), and again during melt (15 May). Dust loading occurs at all sites; dust concentrations are always higher in May, vary between sites, and the highest and lowest dust years were 2009 and 2012, respectively. In the absence of regular sampling and energy balance instrumentation these sites do not allow us to quantify the advanced melt due to dust. To facilitate this a new energy balance site, Grand Mesa Study plot (GMSP), was established for water year 2010 in west central Colorado, 150 km north of SBBSA. Back trajectories indicate similar Colorado Plateau dust sources at both SBBSA and GMSP, yet GMSP exhibits slightly lower dust

  10. Dust control at Yucca Mountain project

    International Nuclear Information System (INIS)

    Kissell, F.; Jurani, R.; Dresel, R.; Reaux, C.

    1999-01-01

    This report describes actions taken to control silica dust at the Yucca Mountain Exploratory Studies Facility, a tunnel located in Southern Nevada that is part of a scientific program to determine site suitability for a potential nuclear waste repository. The rock is a volcanic tuff containing significant percentages of both quartz and cristobalite. Water use for dust control was limited because of scientific test requirements, and this limitation made dust control a difficult task. Results are reported for two drifts, called the Main Loop Drift and the Cross Drift. In the Main Loop Drift, dust surveys and tracer gas tests indicated that air leakage from the TBM head, the primary ventilation duct, and movement of the conveyor belt were all significant sources of dust. Conventional dust control approaches yielded no significant reductions in dust levels. A novel alternative was to install an air cleaning station on a rear deck of the TBM trailing gear. It filtered dust from the contaminated intake air and discharged clean air towards the front of the TBM. The practical effect was to produce dust levels below the exposure limit for all TBM locations except close to the head. In the Cross Drift, better ventilation and an extra set of dust seals on the TBM served to cut down the leakage of dust from the TBM cutter head. However, the conveyor belt was much dustier than the belt in the main loop drift. The problem originated with dirt on the bottom of the belt return side and much spillage from the belt top side. Achieving lower dust levels in hard rock tunneling operations will require new approaches as well as a more meticulous application of existing technology. Planning for dust control will require specific means to deal with dust that leaks from the TBM head, dust that originates with leaky ventilation systems, and dust that comes from conveyor belts. Also, the application of water could be more efficient if automatic controls were used to adjust the water flow

  11. Electrostatic Dust Detector with Improved Sensitivity

    International Nuclear Information System (INIS)

    Boyle, D.P.; Skinner, C.H.; Roquemore, A.L.

    2008-01-01

    Methods to measure the inventory of dust particles and to remove dust if it approaches safety limits will be required in next-step tokamaks such as ITER. An electrostatic dust detector, based on a fine grid of interlocking circuit traces, biased to 30 or 50 V, has been developed for the detection of dust on remote surfaces in air and vacuum environments. Gaining operational experience of dust detection on surfaces in tokamaks is important, however the level of dust generated in contemporary short-pulse tokamaks is comparatively low and high sensitivity is necessary to measure dust on a shot-by-shot basis. We report on modifications in the detection electronics that have increased the sensitivity of the electrostatic dust detector by a factor of up to 120, - a level suitable for measurements on contemporary tokamaks.

  12. Airborne dust transport to the eastern Pacific Ocean off southern California: Evidence from San Clemente Island

    Science.gov (United States)

    Muhs, D.R.; Budahn, J.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.

    2007-01-01

    Islands are natural dust traps, and San Clemente Island, California, is a good example. Soils on marine terraces cut into Miocene andesite on this island are clay-rich Vertisols or Alfisols with vertic properties. These soils are overlain by silt-rich mantles, 5-20 cm thick, that contrast sharply with the underlying clay-rich subsoils. The silt mantles have a mineralogy that is distinct from the island bedrock. Silt mantles are rich in quartz, which is rare in the island andesite. The clay fraction of the silt mantles is dominated by mica, also absent from local andesite, and contrasts with the subsoils, dominated by smectite. Ternary plots of immobile trace elements (Sc-Th-La and Ta-Nd-Cr) show that the island andesite has a composition intermediate between average upper continental crust and average oceanic crust. In contrast, the silt and, to a lesser extent, clay fractions of the silt mantles have compositions closer to average upper continental crust. The silt mantles have particle size distributions similar to loess and Mojave Desert dust, but are coarser than long-range-transported Asian dust. We infer from these observations that the silt mantles are derived from airborne dust from the North American mainland, probably river valleys in the coastal mountains of southern California and/or the Mojave Desert. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. Examination of satellite imagery shows that easterly Santa Ana winds carry abundant dust to the eastern Pacific Ocean and the California Channel Islands. Airborne dust from mainland North America may be an important component of the offshore sediment budget in the easternmost Pacific Ocean, a finding of potential biogeochemical and climatic significance.

  13. Rain chemistry and cloud composition and microphysics in a Caribbean tropical montane cloud forest under the influence of African dust

    Science.gov (United States)

    Torres-Delgado, Elvis; Valle-Diaz, Carlos J.; Baumgardner, Darrel; McDowell, William H.; González, Grizelle; Mayol-Bracero, Olga L.

    2015-04-01

    It is known that huge amounts of mineral dust travels thousands of kilometers from the Sahara and Sahel regions in Africa over the Atlantic Ocean reaching the Caribbean, northern South America and southern North America; however, not much is understood about how the aging process that takes place during transport changes dust properties, and how the presence of this dust affects cloud's composition and microphysics. This African dust reaches the Caribbean region mostly in the summer time. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes in a tropical montane cloud forest (TMCF) in the Caribbean region we had field campaigns measuring dust physical and chemical properties in summer 2013, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and in summer 2014, as a part of the Luquillo Critical Zone Observatory (LCZO) and in collaboration with the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE). Measurements were performed at the TMCF of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Data from aerosol models, satellites, and back-trajectories were used together with CSJ measurements to classify air masses and samples collected at PE in the presence or absence of dust. Soluble ions, insoluble trace metals, pH and conductivity were measured for cloud and rainwater. Preliminary results for summer 2013 showed that in the presence of LRTAD (1) the average conductivity of cloud water

  14. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign

    Science.gov (United States)

    Tang, Kai; Huang, Zhongwei; Huang, Jianping; Maki, Teruya; Zhang, Shuang; Shimizu, Atsushi; Ma, Xiaojun; Shi, Jinsen; Bi, Jianrong; Zhou, Tian; Wang, Guoyin; Zhang, Lei

    2018-05-01

    Previous studies have shown that bioaerosols are injected into the atmosphere during dust events. These bioaerosols may affect leeward ecosystems, human health, and agricultural productivity and may even induce climate change. However, bioaerosol dynamics have rarely been investigated along the transport pathway of Asian dust, especially in China where dust events affect huge areas and massive numbers of people. Given this situation, the Dust-Bioaerosol (DuBi) Campaign was carried out over northern China, and the effects of dust events on the amount and diversity of bioaerosols were investigated. The results indicate that the number of bacteria showed remarkable increases during the dust events, and the diversity of the bacterial communities also increased significantly, as determined by means of microscopic observations with 4,6-diamidino-2-phenylindole (DAPI) staining and MiSeq sequencing analysis. These results indicate that dust clouds can carry many bacteria of various types into downwind regions and may have potentially important impacts on ecological environments and climate change. The abundances of DAPI-stained bacteria in the dust samples were 1 to 2 orders of magnitude greater than those in the non-dust samples and reached 105-106 particles m-3. Moreover, the concentration ratios of DAPI-stained bacteria to yellow fluorescent particles increased from 5.1 % ± 6.3 % (non-dust samples) to 9.8 % ± 6.3 % (dust samples). A beta diversity analysis of the bacterial communities demonstrated the distinct clustering of separate prokaryotic communities in the dust and non-dust samples. Actinobacteria, Bacteroidetes, and Proteobacteria remained the dominant phyla in all samples. As for Erenhot, the relative abundances of Acidobacteria and Chloroflexi had a remarkable rise in dust events. In contrast, the relative abundances of Acidobacteria and Chloroflexi in non-dust samples of R-DzToUb were greater than those in dust samples. Alphaproteobacteria made the major

  15. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    Science.gov (United States)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  16. CHARACTERIZATION OF THE DUST GENERATED IN THE RECYCLING PROCESS OF THE ELECTRIC ARC FURNACE DUST

    Directory of Open Access Journals (Sweden)

    Fábio Gonçalves Rizz

    2013-10-01

    Full Text Available Electric Arc Furnace Dust (EAFD is a solid waste generated by the production of steel through the Electric Arc Furnace. This waste is labeled dangerous, which motivates studies aiming its recycling. Experiments were made to study a pyrometallurgical process for the recycling of the dust, using the insertion of dust briquettes in molten pig iron in three temperatures. In the briquettes, there were made additions of calcium fluoride in four different concentrations. This paper has the objective to characterize the dust that results from this process, verifying the influence of the temperature and the concentration of calcium fluoride in the briquette in the morphology and chemical composition of the new dust, determining the optimal conditions for the recovery of the zinc content of the dust. This newly generated dust was analyzed in an Scanning Electronic Microscope, used to capture micrographs and chemical composition by EDS. The micrographs show that the temperature and the calcium fluoride concentration interfere in the way the dust particles agglomerate. Chemical analysis points that the higher zinc recuperation occurrs in the experiments at 1500°C with 7% addition of calcium fluoride.

  17. Economic Analysis of HIV/AIDS Pandemic in Sub-Saharan Africa

    OpenAIRE

    Nýdrle, Tomáš

    2009-01-01

    HIV/AIDS is a real threat for Sub-Saharan Countries. It increased adult mortality substantially. HIV/AIDS pandemic causes the death of the most productive part of affected population. Human capital passing on to future generations is limited. Low economic performance and income inequality induce higher HIV vulnerability. Contra wise HIV/AIDS has significant negative effect on the welfare of affected population. The sources of pandemic in Sub-Saharan Africa are not only social and cultural. He...

  18. History and Structure of Sub-Saharan Populations of Drosophila melanogaster

    OpenAIRE

    Pool, John E.; Aquadro, Charles F.

    2006-01-01

    Drosophila melanogaster is an important model organism in evolutionary genetics, yet little is known about the population structure and the demographic history of this species within sub-Saharan Africa, which is thought to contain its ancestral range. We surveyed nucleotide variation at four 1-kb fragments in 240 individual lines representing 21 sub-Saharan and 4 Palearctic population samples of D. melanogaster. In agreement with recent studies, we find a small but significant level of geneti...

  19. On the pace of fertility decline in sub-Saharan Africa

    OpenAIRE

    David Shapiro; Andrew Hinde

    2017-01-01

    Background: This descriptive finding examines the comparative pace of fertility decline in sub-Saharan Africa, relative to Asia, Latin America and the Caribbean, and Northern Africa.Objective: We seek to determine if fertility decline has been slower in sub-Saharan Africa than elsewhere in the developing world.Methods: United Nations 2017 estimates of national fertility are used in assessing the comparative pace of fertility decline, and the four regions are compared in terms of how far they ...

  20. Effects of dust grain charge fluctuation on obliquely propagating dust-acoustic potential in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Hassan, M.H.A.

    1999-05-01

    Effects of dust grain charge fluctuation, obliqueness and external magnetic field on finite amplitude dust-acoustic solitary potential in a magnetized dusty plasma, consisting of electrons, ions and charge fluctuating dust grains, have been investigated by the reductive perturbation method. It has been shown that such a magnetized dusty plasma system may support dust-acoustic solitary potential on a very slow time scale involving the motion of dust grains, whose charge is self-consistently determined by local electron and ion currents. The effects of dust grain charge fluctuation, external magnetic field and obliqueness are found to modify the properties of this dust-acoustic solitary potential significantly. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  1. Boundary layer aerosol size distribution, mass concentration and mineralogical composition in Morocco and at Cape Verde Islands during SAMUM I-II

    Science.gov (United States)

    Kandler, K.; Lieke, K.

    2009-04-01

    The Saharan Mineral Dust Experiment (SAMUM) is dedicated to the understanding of the radiative effects of mineral dust. Two major field experiments were performed: A first joint field campaign took place at Ouarzazate and near Zagora, southern Morocco, from May 13 to June 7, 2006. Aircraft and ground based measurements of aerosol physical and chemical properties were carried out to collect a data set of surface and atmospheric columnar information within a major dust source. This data set combined with satellite data provides the base of the first thorough columnar radiative closure tests in Saharan dust. A second field experiment was conducted during January-February 2008, in the Cape Verde Islands region, where about 300 Tg of mineral dust are transported annually from Western Africa across the Atlantic towards the Caribbean Sea and the Amazon basin. Along its transport path, the mineral dust is expected to influence significantly the radiation budget - by direct and indirect effects - of the subtropical North Atlantic. We are lacking a radiative closure in the Saharan air plume. One focus of the investigation within the trade wind region is the spatial distribution of mixed dust/biomass/sea salt aerosol and their physical and chemical properties, especially with regard to radiative effects. We report on measurements of size distributions, mass concentrations and mineralogical composition conducted at the Zagora (Morocco) and Praia (Cape Verde islands) ground stations. The aerosol size distribution was measured from 20 nm to 500

  2. Sub-Saharan Africa: Sustainability Risk Discussion

    Directory of Open Access Journals (Sweden)

    Victoria Bakhtina

    2011-11-01

    Full Text Available Africa is a rising star - one of the most desirable investment destinations in the world. Nonetheless, economic growth is uneven among African countries, and many obstacles must be overcome in order to realize the full potential of opportunity. To achieve long-term sustainable investment results, and ultimately progress towards Sustainable Development goals, many risks must be isolated, analyzed, and mitigated. This paper introduces the concept of Sustainability Risk, identifying a set of major risk components for Sub-Saharan Africa and building an integral measure to quantify the degree of remoteness of the forty-six Sub-Saharan Africa countries from the total set of threats considered. The countries are separated into distinct groups with similar characteristics in terms of Sustainability Risk, and an analysis for potential decision-making, based on the visualization of the countries' position in relation to the major sustainability threats, is performed for each group. The research identifies risks with maximum impacts.

  3. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    Science.gov (United States)

    Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier

    2013-08-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.

  4. Key determinants of AIDS impact in Southern sub-Saharan Africa.

    Science.gov (United States)

    Shandera, Wayne Xavier

    2007-11-01

    To investigate why Southern sub-Saharan Africa is more severely impacted by HIV and AIDS than other parts of sub-Saharan Africa, I conducted a review of the literature that assessed viral, host and transmission (societal) factors. This narrative review evaluates: 1) viral factors, in particular the aggregation of subtype-C HIV infections in Southern sub-Saharan Africa; 2) host factors, including unique behaviour patterns, concomitant high prevalence of sexually transmitted diseases, circumcision patterns, average age at first marriage and immunogenetic determinants; and, 3) transmission and societal factors, including levels of poverty, degrees of literacy, migrations of people, extent of political corruption, and the usage of contaminated injecting needles in community settings. HIV prevalence data and published indices on wealth, fertility, and governmental corruption were correlated using statistical software. The high prevalence of HIV in Southern sub-Saharan Africa is not explained by the unusual prevalence of subtype-C HIV infection. Many host factors contribute to HIV prevalence, including frequency of genital ulcerating sexually transmitted infections, absence of circumcision (compiled odds ratios suggest a protective effect of between 40% and 60% from circumcision), and immunogenetic loci, but no factor alone explains the high prevalence of HIV in the region. Among transmission and societal factors, the wealthiest, most literate and most educated, but also the most income-disparate, nations of sub-Saharan Africa show the highest HIV prevalence. HIV prevalence is also highest within societies experiencing significant migration and conflict as well as in those with government systems experiencing a high degree of corruption. The interactions between poverty and HIV transmission are complex. Epidemiologic studies currently do not suggest a strong role for the community usage of contaminated injecting needles. Areas meriting additional study include clade type

  5. Sub-Saharan Africa | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In addition, sub-Saharan Africa suffers the most impact from the HIV ... Our work in Benin has resulted in agricultural improvements and stronger local leadership. ... has stimulated better agriculture, health care, and anti-poverty programs.

  6. Study on the alternative mitigation of cement dust spread by capturing the dust with fogging method

    Science.gov (United States)

    Purwanta, Jaka; Marnoto, Tjukup; Setyono, Prabang; Handono Ramelan, Ari

    2017-12-01

    The existence of a cement plant impact the lives of people around the factory site. For example the air quality, which is polluted by dust. Cement plant has made various efforts to mitigate the generated dust, but there are still alot of dust fly inground either from the cement factory chimneys or transportation. The purpose of this study was to conduct a review of alternative mitigation of the spread of dust around the cement plant. This study uses research methods such as collecting secondary data which includes data of rain density, the average rains duration, wind speed and direction as well as data of dust intensity quality around PT. Semen Gresik (Persero) Tbk.Tuban plant. A soft Wind rose file is used To determine the wind direction propensity models. The impact on the spread of dust into the environment is determined using secondary data monitoring air quality. Results of the study is that the mitigation of dust around the cement plant is influenced by natural factors, such as the tendency of wind direction, rain fall and rainy days, and the rate of dust emission from the chimney. The alternative means proposed is an environmental friendly fogging dust catcher.

  7. External financial aid to blood transfusion services in sub-Saharan Africa

    DEFF Research Database (Denmark)

    Ala, Fereydoun; Allain, Jean-Pierre; Bates, Imelda

    2012-01-01

    Jean-Pierre Allain and colleagues argue that, while unintended, the foreign aid provided for blood transfusion services in sub-Saharan Africa has resulted in serious negative outcomes, which requires reflection and rethinking.......Jean-Pierre Allain and colleagues argue that, while unintended, the foreign aid provided for blood transfusion services in sub-Saharan Africa has resulted in serious negative outcomes, which requires reflection and rethinking....

  8. An Examination of the Influence of Globalisation on Science Education in Anglophone Sub-Saharan Africa

    Science.gov (United States)

    Koosimile, Anthony T.; Suping, Shanah M.

    2015-09-01

    This paper takes the view that the emergence of some trends and practices in science education mirrors the influence of the process of globalisation in Anglophone Sub-Saharan Africa. Through a literature review, an attempt is made to link science education and globalisation by answering the question: 'What influence does globalisation have on science education in countries in Anglophone Sub-Saharan Africa?' The findings of the study show some significant convergence of what is valued in science education in Sub-Saharan Africa in areas such as pedagogy; English language as a medium of instruction; assessment of learning; mobility of students in the region; and in the frameworks for collaborative engagements among stakeholders in Sub-Saharan Africa. The paper concludes with a reflective end-piece calling for more case studies to help scrutinise further the influence of globalisation on science education in Sub-Saharan Africa.

  9. Health hazards of cement dust

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)

  10. Determinants of adolescent pregnancy in sub-Saharan Africa: a systematic review.

    Science.gov (United States)

    Yakubu, Ibrahim; Salisu, Waliu Jawula

    2018-01-27

    Adolescent pregnancy has been persistently high in sub-Saharan Africa. The objective of this review is to identify factors influencing adolescent pregnancies in sub-Saharan Africa in order to design appropriate intervention program. A search in MEDLINE, Scopus, Web of science, and Google Scholar databases with the following keywords: determinants, factors, reasons, sociocultural factors, adolescent pregnancy, unintended pregnancies, and sub- Saharan Africa. Qualitative and cross-sectional studies intended to assess factors influencing adolescent pregnancies as the primary outcome variable in sub- Saharan Africa were included. Our search was limited to, articles published from the year 2000 to 2017 in English. Twenty-four (24) original articles met the inclusion criteria. The study identified Sociocultural, environmental and Economic factors (Peer influence, unwanted sexual advances from adult males, coercive sexual relations, unequal gender power relations, poverty, religion, early marriage, lack of parental counseling and guidance, parental neglect, absence of affordable or free education, lack of comprehensive sexuality education, non-use of contraceptives, male's responsibility to buy condoms, early sexual debut and inappropriate forms of recreation). Individual factors (excessive use of alcohol, substance abuse, educational status, low self-esteem, and inability to resist sexual temptation, curiosity, and cell phone usage). Health service-related factors (cost of contraceptives, Inadequate and unskilled health workers, long waiting time and lack of privacy at clinics, lack of comprehensive sexuality education, misconceptions about contraceptives, and non-friendly adolescent reproductive services,) as influencing adolescent pregnancies in Sub-Saharan Africa CONCLUSION: High levels of adolescent pregnancies in Sub-Saharan Africa is attributable to multiple factors. Our study, however, categorized these factors into three major themes; sociocultural and economic

  11. people who inject drugs, HIV risk, and HIV testing uptake in sub-Saharan Africa.

    Science.gov (United States)

    Asher, Alice K; Hahn, Judith A; Couture, Marie-Claude; Maher, Kelsey; Page, Kimberly

    2013-01-01

    Dramatic rises in injection drug use (IDU) in sub-Saharan Africa account for increasingly more infections in a region already overwhelmed by the HIV epidemic. There is no known estimate of the number of people who inject drugs (PWID) in the region, or the associated HIV prevalence in PWID. We reviewed literature with the goal of describing high-risk practices and exposures in PWID in sub-Saharan Africa, as well as current HIV prevention activities aimed at drug use. The literature search looked for articles related to HIV risk, injection drug users, stigma, and HIV testing in sub-Saharan Africa. This review found evidence demonstrating high rates of HIV in IDU populations in sub-Saharan Africa, high-risk behaviors of the populations, lack of knowledge regarding HIV, and low HIV testing uptake. There is an urgent need for action to address IDU in order to maintain recent decreases in the spread of HIV in sub-Saharan Africa. Copyright © 2013 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  12. Sub-Saharan Africa at a Glance.

    Science.gov (United States)

    Social Education, 1997

    1997-01-01

    Presents a wealth of statistical, geographic, and economic information on Sub-Saharan Africa arranged and displayed for easy and immediate access. Lists all of the countries of the region along with pertinent information including religious affiliation, capital, Gross National Product, main exports, population growth, education, and literacy. (MJP)

  13. Cystic echinococcosis in sub-Saharan Africa

    NARCIS (Netherlands)

    Wahlers, Kerstin; Menezes, Colin N.; Wong, Michelle L.; Zeyhle, Eberhard; Ahmed, Mohammed E.; Ocaido, Michael; Stijnis, Cornelis; Romig, Thomas; Kern, Peter; Grobusch, Martin P.

    2012-01-01

    Cystic echinococcosis is regarded as endemic in sub-Saharan Africa; however, for most countries only scarce data, if any, exist. For most of the continent, information about burden of disease is not available; neither are data for the animal hosts involved in the lifecycle of the parasite, thus

  14. Epidemiology and treatment of relative anemia in children with sickle cell disease in sub-Saharan Africa.

    Science.gov (United States)

    Bello-Manga, Halima; DeBaun, Michael R; Kassim, Adetola A

    2016-11-01

    Sickle cell disease (SCD) is the most common inherited hemoglobinopathy in the world, with the majority of cases in sub-Saharan Africa. Concomitant nutritional deficiencies, infections or exposure to environmental toxins exacerbate chronic anemia in children with SCD. The resulting relative anemia is associated with increased risk of strokes, poor cognitive function and impaired growth. It may also attenuate optimal response to hydroxyurea therapy, the only effective and practical treatment option for SCD in sub-Saharan Africa. This review will focus on the epidemiology, clinical sequelae, and treatment of relative anemia in children with SCD living in low and middle-income countries in sub-Saharan Africa. Areas covered: The causes and treatment of relative anemia in children with SCD in sub-Saharan Africa. The MEDLINE database was searched using medical subject headings (MeSH) and keywords for articles regarding relative anemia in children with SCD in sub-Saharan Africa. Expert commentary: Anemia due to nutritional deficiencies and infectious diseases such as helminthiasis and malaria are prevalent in sub-Saharan Africa. Their co-existence in children with SCD increases morbidity and mortality. Therefore, preventing, diagnosing and treating the underlying cause of this relative anemia will improve SCD-related outcomes in children in sub-Saharan Africa.

  15. Respirable versus inhalable dust sampling

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    The ICRP uses a total inhalable dust figure as the basis of calculations on employee lung dose. This paper was written to look at one aspect of the Olympic Dam dust situation, namely, the inhalable versus respirable fraction of the dust cloud. The results of this study will determine whether it is possible to use respirable dust figures, as obtained during routine monitoring to help in the calculations of employee exposure to internal radioactive contaminants

  16. Communication plan for windblown dust.

    Science.gov (United States)

    2015-05-01

    Windblown dust events occur in Arizona, and blowing dust has been considered a contributing factor to serious crashes on the : segment of Interstate 10 (I10) between Phoenix and Tucson, as well as on other Arizona roadways. Arizonas dust events...

  17. House dust in seven Danish offices

    Science.gov (United States)

    Mølhave, L.; Schneider, T.; Kjærgaard, S. K.; Larsen, L.; Norn, S.; Jørgensen, O.

    Floor dust from Danish offices was collected and analyzed. The dust was to be used in an exposure experiment. The dust was analyzed to show the composition of the dust which can be a source of airborne dust indoors. About 11 kg of dust from vacuum cleaner bags from seven Danish office buildings with about 1047 occupants (12 751 m 2) was processed according to a standardized procedure yielding 5.5 kg of processed bulk dust. The bulk dust contained 130.000-160.000 CFU g -1 microorganisms and 71.000-90.000 CFU g -1 microfungi. The content of culturable microfungi was 65-123 CFU 30 g -1 dust. The content of endotoxins ranged from 5.06-7.24 EU g -1 (1.45 ng g -1 to 1.01 ng g -1). Allergens (ng g -1) were from 147-159 (Mite), 395-746 (dog) and 103-330 (cat). The macro molecular organic compounds (the MOD-content) varied from 7.8-9.8 mg g -1. The threshold of release of histamine from basophil leukocytes provoked by the bulk dust was between 0.3 and 1.0 mg ml -1. The water content was 2% (WGT) and the organic fraction 33%. 6.5-5.9% (dry) was water soluble. The fiber content was less than 0.2-1.5% (WGT) and the desorbable VOCs was 176-319 μg g -1. Most of the VOC were aldehydes. However, softeners for plastic (DBP and DEHP) were present. The chemical composition includes human and animal skin fragments, paper fibers, glass wool, wood and textilefibers and inorganic and metal particles. The sizes ranged from 0.001-1 mm and the average specific density was 1.0 g m -3. The bulk dust was resuspended and injected into an exposure chamber. The airborne dust was sampled and analyzed to illustrate the exposures that can result from sedimented dirt and dust. The airborne dust resulting from the bulk dust reached concentrations ranging from 0.26-0.75 mg m -3 in average contained 300-170 CFU m -3. The organic fraction was from 55-70% and the water content about 2.5% (WGT). The content of the dust was compared to the similar results reported in the literature and its toxic potency is

  18. Synoptic conditions of fine-particle transport to the last interglacial Red Sea-Dead Sea from Nd-Sr compositions of sediment cores

    Science.gov (United States)

    Palchan, Daniel; Stein, Mordechai; Goldstein, Steven L.; Almogi-Labin, Ahuva; Tirosh, Ofir; Erel, Yigal

    2018-01-01

    The sediments deposited at the depocenter of the Dead Sea comprise high-resolution archive of hydrological changes in the lake's watershed and record the desert dust transport to the region. This paper reconstructs the dust transport to the region during the termination of glacial Marine Isotope Stage 6 (MIS 6; ∼135-129 ka) and the last interglacial peak period (MIS5e, ∼129-116 ka). We use chemical and Nd and Sr isotope compositions of fine detritus material recovered from sediment core drilled at the deepest floor of the Dead Sea. The data is integrated with data achieved from cores drilled at the floor of the Red Sea, thus, forming a Red Sea-Dead Sea transect extending from the desert belt to the Mediterranean climate zone. The Dead Sea accumulated flood sediments derived from three regional surface cover types: settled desert dust, mountain loess-soils and loess-soils filling valleys in the Dead Sea watershed termed here "Valley Loess". The Valley Loess shows a distinct 87Sr/86Sr ratio of 0.7081 ± 1, inherited from dissolved detrital calcites that originate from dried waterbodies in the Sahara and are transported with the dust to the entire transect. Our hydro-climate and synoptic conditions reconstruction illustrates the following history: During glacial period MIS6, Mediterranean cyclones governed the transport of Saharan dust and rains to the Dead Sea watershed, driving the development of both mountain soils and Valley Loess. Then, at Heinrich event 11, dry western winds blew Saharan dust over the entire Red Sea - Dead Sea transect marking latitudinal expansion of the desert belt. Later, when global sea-level rose, the Dead Sea watershed went through extreme aridity, the lake retreated, depositing salt and accumulating fine detritus of the Valley Loess. During peak interglacial MIS 5e, enhanced flooding activity flushed the mountain soils and fine detritus from all around the Dead Sea and Red Sea, marking a significant "contraction" of the desert belt

  19. Effects of dust size distribution on dust acoustic waves in magnetized two-ion-temperature dusty plasmas

    International Nuclear Information System (INIS)

    Liu Zongming; Duan Wenshan; He Guangjun

    2008-01-01

    A Zakharov-Kuznetsov (ZK) equation, a modified ZK (mZK) equation, and a coupled ZK (cZK) equation for small but finite amplitude dust acoustic waves in a magnetized two-ion-temperature dusty plasma with dust size distribution have been investigated in this paper. The variations of the linear dispersion relation and group velocity, nonlinear solitary wave amplitude, and width with an arbitrary dust size distribution function are studied numerically. We conclude that they all increase as the total number density of dust grains increases, and they are greater for unusual dusty plasma (the number density of larger dust grains is greater than that of smaller dust grains) than that of usual dusty plasma (the number density of smaller dust grains is greater than that of larger dust grains). It is noted that the frequency of the linear wave increases as the wave number along the magnetic direction increases. Furthermore, the width of the nonlinear waves increases but its amplitude decreases as the wave number along the magnetic direction increases

  20. Natural Resources, Oil and Economic Growth in Sub-Saharan Africa

    OpenAIRE

    Janda, Karel; Quarshie, Gregory

    2017-01-01

    This paper takes a critical look at the natural resource curse in countries in sub-Saharan Africa and it highlights the role of institutionalised authority. The paper first provides a comprehensive literature review of natural resource curse, Dutch disease and the role of oil resources in resource curse. This is follow by the description of the relevant economic factors in sub-Saharan Africa, which is taken as prime example of the region with both important oil and other natural resources and...

  1. The flow of interstellar dust through the solar system: the role of dust charging

    International Nuclear Information System (INIS)

    Sterken, V. J.; Altobelli, N.; Schwehm, G.; Kempf, S.; Srama, R.; Strub, P.; Gruen, E.

    2011-01-01

    Interstellar dust can enter the solar system through the relative motion of the Sun with respect to the Local Interstellar Cloud. The trajectories of the dust through the solar system are not only influenced by gravitation and solar radiation pressure forces, but also by the Lorentz forces due to the interaction of the interplanetary magnetic field with the charged dust particles. The interplanetary magnetic field changes on two major time scales: 25 days (solar rotation frequency) and 22 years (solar cycle). The short-term variability averages out for regions that are not too close (>∼2 AU) to the Sun. This interplanetary magnetic field variability causes a time-variability in the interstellar dust densities, that is correlated to the solar cycle.In this work we characterize the flow of interstellar dust through the solar system using simulations of the dust trajectories. We start from the simple case without Lorentz forces, and expand to the full simulation. We pay attention to the different ways of modeling the interplanetary magnetic field, and discuss the influence of the dust parameters on the resulting flow patterns. We also discuss the possibilities of using this modeling for prediction of dust fluxes for different space missions or planets, and we pay attention to where simplified models are justified, and where or when a full simulation, including all forces is necessary. One of the aims of this work is to understand measurements of spacecraft like Ulysses, Cassini and Stardust.

  2. Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties

    Science.gov (United States)

    Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl

    2017-12-01

    We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.

  3. Excitation of collective plasma modes during collisions between dust grains and the formation of dust plasma crystals

    International Nuclear Information System (INIS)

    Goree, J.A.; Morfill, G.; Tsytovich, V.N.

    1998-01-01

    Dust plasma crystals have recently been produced in experiments in a number of laboratories. For dust crystallization to occur, there should exist an efficient mechanism for the cooling of the dust plasma component. It is shown that the excitation of collective plasma modes during collisions between the grains may serve as the required cooling mechanism. The excitation of dust sound waves is found to be most efficient. It is shown that the cooling of dust grains via the excitation of collective plasma modes can be even more efficient than that due to collisions with neutral particles, which was previously considered to be the only mechanism for cooling of the dust plasma component. At present, the first experiments are being carried out to study collisions between individual dust grains. High efficiency of the excitation of plasma modes caused by collisions between dust grains is attributed to the coherent displacement of the plasma particles that shield the grains. it is shown that the excitation efficiency is proportional to the fourth power of the charge of the dust grains and to a large power of their relative velocity, and is independent of their mass. The results obtained can be checked in experiments studying how the binary collisions between dust grains and the pressure of the neutral component influence the dust crystallization

  4. Dust characterisation for hot gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Dockter, B.; Erickson, T.; Henderson, A.; Hurley, J.; Kuehnel, V.; Katrinak, K.; Nowok, J.; O`Keefe, C.; O`Leary, E.; Swanson, M.; Watne, T. [University of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center (UNDEERC)

    1998-03-01

    Hot gas filtration to remove particulates from the gas flow upstream of the gas turbine is critical to the development of many of the advanced coal-fired power generation technologies such as the Air Blown Gasification Cycle (ABGC), a hybrid gasification combined cycle being developed in the UK. Ceramic candle filters are considered the most promising technology for this purpose. Problems of mechanical failure and of `difficult-to-clean` dusts causing high pressure losses across the filter elements need to be solved. The project investigated the behaviour of high-temperature filter dusts, and the factors determining the ease with which they can be removed from filters. The high-temperature behaviour of dusts from both combustion and gasification systems was investigated. Dust samples were obtained from full-scale demonstration and pilot-scale plant operating around the world. Dust samples were also produced from a variety of coals, and under several different operating conditions, on UNDEERC`s pilot-scale reactor. Key factors affecting dust behaviour were examined, including: the rates of tensile strength developing in dust cakes; the thermochemical equilibria pertaining under filtration conditions; dust adhesivity on representative filter materials; and the build-up and cleaning behaviour of dusts on representative filter candles. The results obtained confirmed the importance of dust temperature, dust cake porosity, cake liquid content, and particle size distribution in determining the strength of a dust cake. An algorithm was developed to indicate the likely sticking propensity of dusts as a function of coal and sorbent composition and combustion conditions. This algorithm was incorporated into a computer package which can be used to judge the degree of difficulty in filter cleaning that can be expected to arise in a real plant based on operating parameters and coal analyzes. 6 figs.

  5. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  6. Creation of Wood Dust during Wood Processing: Size Analysis, Dust Separation, and Occupational Health

    Directory of Open Access Journals (Sweden)

    Eva Mračková

    2015-11-01

    Full Text Available Mechanical separators and fabric filters are being used to remove airborne fine particles generated during the processing and handling of wood. Such particles might have a harmful effect on employee health, not only in small- but also in large-scale wood processing facilities. The amount of wood dust and its dispersion conditions vary according to geometric boundary conditions. Thus, the dispersion conditions could be changed by changing the linear size of the particles. Moreover, the smaller the particles are, the more harmful they can be. It is necessary to become familiar with properties, from a health point of view, of wood dust generated from processing. Wood dust has to be sucked away from the processing area. The fractional separation efficiency of wood dust can be improved using exhaust and filtering devices. Filtration efficiency depends on moisture content, particle size, and device performance. Because of the carcinogenicity of wood dust, the concentration of wood dust in air has to be monitored regularly. Based on the results hereof, a conclusion can be made that both mechanical separators of types SEA and SEB as well as the fabric filters with FINET PES 1 textile are suitable for the separation of wet saw dust from all types of wooden waste produced within the process.

  7. National Interests and Strategy: Sub-Saharan Africa

    National Research Council Canada - National Science Library

    Joel, Peter

    1996-01-01

    The end of the Cold War and dissolution of the Soviet Union and Warsaw Pact caused the United States and its allies to reevaluate its national interests and strategy in and toward the countries of sub-Saharan Africa...

  8. Epidemiology, causes, and treatment of epilepsy in sub-Saharan Africa.

    Science.gov (United States)

    Ba-Diop, Awa; Marin, Benoît; Druet-Cabanac, Michel; Ngoungou, Edgard B; Newton, Charles R; Preux, Pierre-Marie

    2014-10-01

    Epilepsy is a common neurological disease in tropical countries, particularly in sub-Saharan Africa. Previous work on epilepsy in sub-Saharan Africa has shown that many cases are severe, partly a result of some specific causes, that it carries a stigma, and that it is not adequately treated in many cases. Many studies on the epidemiology, aetiology, and management of epilepsy in sub-Saharan Africa have been reported in the past 10 years. The prevalence estimated from door-to-door studies is almost double that in Asia, Europe, and North America. The most commonly implicated risk factors are birth trauma, CNS infections, and traumatic brain injury. About 60% of patients with epilepsy receive no antiepileptic treatment, largely for economic and social reasons. Further epidemiological studies should be a priority to improve understanding of possible risk factors and thereby the prevention of epilepsy in Africa, and action should be taken to improve access to treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Galactic dust and extinction

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1979-01-01

    The ratio R between visual extinction and colour excess, is slightly larger than 3 and does not vary much throughout our part of the Galaxy. The distribution of dust in the galactic plane shows, on the large scale, a gradient with higher colour excesses towards l=50 0 than towards l=230 0 . On the smaller scale, much of the dust responsible for extinction is situated in clouds which tend to group together. The correlation between positions of interstellar dust clouds and positions of spiral tracers seems rather poor in our Galaxy. However, concentrated dark clouds as well as extended regions of dust show an inclined distribution similar to the Gould belt of bright stars. (Auth.)

  10. Quality Assurance in Sub-Saharan Africa

    Science.gov (United States)

    Materu, Peter; Righetti, Petra

    2010-01-01

    This article assesses the status and practice of higher education quality assurance in sub-Saharan Africa, focusing on degree-granting tertiary institutions. A main finding is that structured national-level quality assurance processes in African higher education are a very recent phenomenon and that most countries face major capacity constraints.…

  11. Effects of grain dust on lungs prior to and following dust remediation.

    Science.gov (United States)

    Pahwa, Punam; Dosman, James A; McDuffie, Helen H

    2008-12-01

    To determine longitudinal estimates of pulmonary function decline in Canadian grain elevator workers before and after dust control by analyzing data collected from five regions of Canada over 15 years. Declines in forced expired volume in one second and forced vital capacity before and after dust control were estimated by using a generalized estimating equations approach. For grain workers who were in the grain industry for 20 or more years both before and after dust control: the mean annual loss of forced expired volume in one second was greatest among current smoking grain workers followed by ex-smokers and nonsmokers, respectively. Similar results were obtained for forced vital capacity. Grain dust control was effective in reducing decline in the lung function measurements among grain workers in all smoking and exposure categories.

  12. Simulation study of spheroidal dust gains charging: Applicable to dust grain alignment

    International Nuclear Information System (INIS)

    Zahed, H.; Sobhanian, S.; Mahmoodi, J.; Khorram, S.

    2006-01-01

    The charging process of nonspherical dust grains in an unmagnetized plasma as well as in the presence of a magnetic field is studied. It is shown that unlike the spherical dust grain, due to nonhomogeneity of charge distribution on the spheroidal dust surface, the resultant electric forces on electrons and ions are different. This process produces some surface charge density gradient on the nonspherical grain surface. Effects of a magnetic field and other plasma parameters on the properties of the dust particulate are studied. It has been shown that the alignment direction could be changed or even reversed with the magnetic field and plasma parameters. Finally, the charge distribution on the spheroidal grain surface is studied for different ambient parameters including plasma temperature, neutral collision frequency, and the magnitude of the magnetic field

  13. Dust Studies in DIII-D and TEXTOR

    International Nuclear Information System (INIS)

    Rudakov, D.; Litnovsky, A.; West, W.; Yu, J.; Boedo, J.; Bray, B.; Brezinsek, S.; Brooks, N.; Fenstermacher, M.; Groth, M.; Hollmann, E.; Huber, A.; Hyatt, A.; Krasheninnikov, S.; Lasnier, C.; Moyer, R.; Pigarov, A.; Philipps, V.; Pospieszezyk, A.; Smirnov, R.; Sharpe, J.; Solomon, W.; Watkins, J.; Wong, C.

    2008-01-01

    Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Energetic plasma disruptions produce significant amounts of dust. However, dust production by disruptions alone is insufficient to account for the estimated in-vessel dust inventory in DIII-D. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by injecting micron-size dust in plasma discharges. In DIII-D, a sample holder filled with ∼30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure (∼0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. Individual dust particles are observed moving at velocities of 10-100 m/s, predominantly in the toroidal direction, consistent with the drag force from the deuteron flow and in agreement with modeling by the 3D DustT code. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. Dust is launched either in the beginning of a discharge or at the initiation of NBI, preferentially in a direction perpendicular to the toroidal magnetic field. At the given configuration of the launch, the dust did not penetrate

  14. Dust: Small-scale processes with global consequences

    Science.gov (United States)

    Okin, G.S.; Bullard, J.E.; Reynolds, R.L.; Ballantine, J.-A.C.; Schepanski, K.; Todd, M.C.; Belnap, J.; Baddock, M.C.; Gill, T.E.; Miller, M.E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored. ?? Author(s) 2011.

  15. Why Is Improvement of Earth System Models so Elusive? Challenges and Strategies from Dust Aerosol Modeling

    Science.gov (United States)

    Miller, Ronald L.; Garcia-Pando, Carlos Perez; Perlwitz, Jan; Ginoux, Paul

    2015-01-01

    Past decades have seen an accelerating increase in computing efficiency, while climate models are representing a rapidly widening set of physical processes. Yet simulations of some fundamental aspects of climate like precipitation or aerosol forcing remain highly uncertain and resistant to progress. Dust aerosol modeling of soil particles lofted by wind erosion has seen a similar conflict between increasing model sophistication and remaining uncertainty. Dust aerosols perturb the energy and water cycles by scattering radiation and acting as ice nuclei, while mediating atmospheric chemistry and marine photosynthesis (and thus the carbon cycle). These effects take place across scales from the dimensions of an ice crystal to the planetary-scale circulation that disperses dust far downwind of its parent soil. Representing this range leads to several modeling challenges. Should we limit complexity in our model, which consumes computer resources and inhibits interpretation? How do we decide if a process involving dust is worthy of inclusion within our model? Can we identify a minimal representation of a complex process that is efficient yet retains the physics relevant to climate? Answering these questions about the appropriate degree of representation is guided by model evaluation, which presents several more challenges. How do we proceed if the available observations do not directly constrain our process of interest? (This could result from competing processes that influence the observed variable and obscure the signature of our process of interest.) Examples will be presented from dust modeling, with lessons that might be more broadly applicable. The end result will either be clinical depression or there assuring promise of continued gainful employment as the community confronts these challenges.

  16. Cosmological simulation with dust formation and destruction

    Science.gov (United States)

    Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh

    2018-06-01

    To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.

  17. Experiments on Dust Grain Charging

    Science.gov (United States)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  18. Ulysses dust measurements near Jupiter.

    Science.gov (United States)

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  19. Seasonal variability of dust in the eastern Mediterranean (Athens, Greece), through lidar measurements in the frame of EARLINET (2002-2012)

    Science.gov (United States)

    Kokkalis, Panos; Papayannis, Alex; Tsaknakis, George; Mamouri, RodElise; Argyrouli, Athina

    2013-04-01

    Aerosols play an important role in earth's atmospheric radiation balance, which is enhanced in areas where dust is mostly present (e.g. the Mediterranean region), as in the case of the city of Athens. The focus of this paper is to provide a comprehensive analysis of the seasonal variability of optical and geometrical properties, as well as the mass concentration of Saharan dust over the city of Athens, Greece, for a 10-years time period: 2002-2012 based on the laser remote sensing (lidar) technique. More specifically, the aerosol optical properties concern the extinction and the backscatter coefficient, as well as the lidar ratio, while the geometrical properties concern the dust layer thickness and center of mass. The calculations of the aerosol extinction coefficient and of the so-called lidar ratio (defined as the ratio of the aerosol extinction coefficient over the aerosol backscatter coefficient) are made by using the Raman lidar technique, only under cloud-free conditions. The calculation of the dust mass concentration was retrieved by a applying a conversion factor (the so-called dust extinction cross section; mean value of the order of 0.64 m2g-1) and by combining sun photometric measurements and modeled dust loading values. Our data analysis was based on monthly-mean values, and only in time periods under cloud-free conditions and for lidar signals with signal to noise ratios (SNR) greater than 1.5 under dusty conditions. The mean value of the lidar ratio at 355 nm was found to be 62±20sr, while the mean dust mass concentration was of the order of 240 μgm-3. The data analyzed were obtained by systematic aerosol lidar measurements performed by the EOLE Raman lidar system of the National Technical University of Athens (NTUA), in the frame of the European Aerosol Research Lidar network (EARLINET). EOLE is able to provide the vertical profiles of the aerosol backscatter (at 355, 532, 1064 nm) and extinction coefficients (at 355 and 532 nm), as well as the

  20. Dust evolution in protoplanetary disks

    OpenAIRE

    Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume

    2007-01-01

    6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...

  1. Control of dust production in ITER

    International Nuclear Information System (INIS)

    Rodriguez-Rodrigo, L.; Ciattaglia, S.; Elbez-Uzan, J.

    2006-01-01

    In the last years dust has been observed in a number of fusion devices and is being studied more in detail for understanding in particular the physical phenomena related to its formation, its composition, physical and chemical characteristics, and the amount of produced dust. The extrapolation of dust formation to ITER predicts (with large error bars), a large mass of dust production with a scattered size distribution. To evaluate the impact of dust on safety, assumptions have also been made on radionuclide inventory, and mobility in off-normal events, as well as any postulated contributions the dust may make to effluents or accidental releases. Solid activation products in structures are generally not readily mobilisable in incidental and accidental situations, so that activated dust, tritium and activated corrosions products are the important in-vessel source terms in postulated scenarios that assume a mobilisation and release of some fraction of this inventory. Such a release would require the simultaneous leak or bypass of several robust confinement barriers. Further concerns for dust may be the potential for chemical reactions between dust and coolant in the event of an in-vessel leak, and the theoretical possibility of a dust explosion, either of which could in principle cause a pressure rise that challenges one or more of the confinement barriers. Although these hazards can - and will - be controlled by other measures in the ITER design, application of the principle of Defence in Depth dictates that the dust inventory should also be minimised and controlled to prevent the potential hazard. A well-coordinated R-and-D programme is required to support this dust production control. This document provides from the safety point of view, an overview of existing data given in '' Dossier d'Options de Surete '', the first safety report presented in 2001 to the French Safety Authorities, and ITER documents; it also gathers information on status of studies on activated

  2. CDM in sub-Saharan Africa and the prospects of the Nairobi Framework Initiative

    NARCIS (Netherlands)

    Byigero, Alfred D.; Clancy, Joy S.; Skutsch, Margaret

    2010-01-01

    To what extent can capacity-building activities under the Nairobi Framework (NF) Initiative overcome barriers to the Clean Development Mechanism (CDM) in sub-Saharan Africa and, in particular, the East African region? The level of CDM penetration into sub-Saharan Africa is compared with CDM market

  3. Dust Dynamics Near Planetary Surfaces

    Science.gov (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude

  4. Satellite Sounder Observations of Contrasting Tropospheric Moisture Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Nalli, Nicholas R.; Barnet, Christopher D.; Reale, Tony; Liu, Quanhua; Morris, Vernon R.; Spackman, J. Ryan; Joseph, Everette; Tan, Changyi; Sun, Bomin; Tilley, Frank; Leung, L. Ruby; Wolfe, Daniel

    2016-12-01

    This paper examines the performance of satellite sounder atmospheric vertical moisture proles (AVMP) under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs) and Pacific Ocean moisture conveyer belts (MCBs) commonly referred to as atmospheric rivers (ARs), both of these being mesoscale to synoptic meteorological phenomena within the vicinity of subtropical Hadley subsidence zones. Operational AVMP environmental data records retrieved from the Suomi National Polar-orbiting Partnership (SNPP) NOAA-Unique Combined Atmospheric Processing System (NUCAPS) are collocated with dedicated radiosonde observations (RAOBs) obtained from ocean-based intensive field campaigns; these RAOBs provide uniquely independent correlative truth data not assimilated into numerical weather prediction models for satellite sounder validation over open ocean. Using these marine-based data, we empirically assess the performance of the operational NUCAPS AVMP product for detecting and resolving these tropospheric moisture features over otherwise RAOB-sparse regions.

  5. Patterns of biomedical science production in a sub-Saharan research center

    Directory of Open Access Journals (Sweden)

    Agnandji Selidji T

    2012-03-01

    Full Text Available Abstract Background Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing in sub-Saharan Africa. This study aims to describe the patterns of clinical research activities at a sub-Saharan biomedical research center. Methods In-depth interviews were conducted with a core group of researchers at the Medical Research Unit of the Albert Schweitzer Hospital from June 2009 to February 2010 in Lambaréné, Gabon. Scientific activities running at the MRU as well as the implementation of ethical and regulatory standards were covered by the interview sessions. Results The framework of clinical research includes transnational studies and research initiated locally. In transnational collaborations, a sub-Saharan research institution may be limited to producing confirmatory and late-stage data with little impact on economic and social innovation. However, ethical and regulatory guidelines are being implemented taking into consideration the local contexts. Similarly, the scientific content of studies designed by researchers at the MRU, if local needs are taken into account, may potentially contribute to a scientific production with long-term value on social and economic innovation in sub-Saharan Africa. Conclusion Further research questions and methods in social sciences should comprehensively address the construction of scientific content with the social, economic and cultural contexts surrounding research activities.

  6. Reducing the uncertainty in background marine aerosol radiative properties using CAM5 model results and CALIPSO-retrievals

    Science.gov (United States)

    Meskhidze, N.; Gantt, B.; Dawson, K.; Johnson, M. S.; Gasso, S.

    2012-12-01

    Abundance of natural aerosols in the atmosphere strongly affects global aerosol optical depth (AOD) and influences clouds and the hydrological cycle through its ability to act as cloud condensation nuclei (CCN). Because the anthropogenic contribution to climate forcing represents the difference between the total forcing and that from natural aerosols, understanding background aerosols is necessary to evaluate the influences of anthropogenic aerosols on cloud reflectivity and persistence (so-called indirect radiative forcing). The effects of marine aerosols are explored using remotely sensed data obtained by Cloud-aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the NCAR Community Atmosphere Model (CAM5.0), coupled with the PNNL Modal Aerosol Model. CALIPSO-provided high resolution vertical profile information about different aerosol subtypes (defined as clean continental, marine, desert dust, polluted continental, polluted dust, and biomass burning), particulate depolarization ratio (or particle non-sphericity), reported aerosol color ratio (the ratio of aerosol backscatter at the two wavelengths) and lidar ratios over different parts of the oceans are compared to model-simulations to help evaluate the contribution of biogenic aerosol to CCN budget in the marine boundary layer. Model-simulations show that over biologically productive ocean waters primary organic aerosols of marine origin can contribute up to a 20% increase in CCN (at a supersaturation of 0.2%) number concentrations. Corresponding changes associated with cloud properties (liquid water path and droplet number) can decrease global annual mean indirect radiative forcing of anthropogenic aerosol (less cooling) by ~0.1 Wm-2 (7%). This study suggests ignoring the complex chemical composition and size distribution of sea spray particles could result in considerable uncertainties in predicted anthropogenic aerosol indirect effect.

  7. Grain dust and the lungs.

    Science.gov (United States)

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  8. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  9. Combustible dust tests

    Science.gov (United States)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  10. Sub-Saharan Africa and the Paperless Society.

    Science.gov (United States)

    Olden, Anthony

    1987-01-01

    Considers the relevance for sub-Saharan Africa of electronic information systems in terms of the segments of the population that would benefit from such services, as opposed to a broader library role of advancing literacy to the general population. (Author/CLB)

  11. Dust particle formation in silane plasmas

    NARCIS (Netherlands)

    Sorokin, M.

    2005-01-01

    Dust can be found anywhere: in the kitchen, in the car, in space… Not surprisingly we also see dust in commercial and laboratory plasmas. Dust can be introduced in the plasma, but it can also grow there by itself. In the microelectronics industry, contamination of the processing plasma by dust is an

  12. Increasing sustainable cataract services in sub-Saharan Africa: an experimental initiative

    Directory of Open Access Journals (Sweden)

    Sasipriya M Karumanchi

    2015-04-01

    Full Text Available To begin to meet the need for cataract surgery in sub-Saharan Africa, the cataract surgical rate (CSR should be at least 2,000 to 3,000; i.e. there should be 2,000-3,000 cataract operations per million population, per year. The current levels are below 1,000 (and often much lower. Sub-Saharan Africa poses a unique set of challenges: low population density; inadequate transportation systems that inhibit access; big differences in wealth; and a shortage of eye care resources (which are usually concentrated in larger cities. Additional issues relate to productivity, the supply chain and the quality of outcomes, all of which contribute to the low cataract surgical rates. It is in this context that the Hilton Foundation sought to enhance cataract surgical services in sub-Saharan Africa, through the Hilton Cataract Initiative.

  13. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China

    Science.gov (United States)

    Wang, Xin; Wen, Hui; Shi, Jinsen; Bi, Jianrong; Huang, Zhongwei; Zhang, Beidou; Zhou, Tian; Fu, Kaiqi; Chen, Quanliang; Xin, Jinyuan

    2018-02-01

    Mineral dust aerosols (MDs) not only influence the climate by scattering and absorbing solar radiation but also modify cloud properties and change the ecosystem. From 3 April to 16 May 2014, a ground-based mobile laboratory was deployed to measure the optical and microphysical properties of MDs near dust source regions in Wuwei, Zhangye, and Dunhuang (in chronological order) along the Hexi Corridor over northwestern China. Throughout this dust campaign, the hourly averaged (±standard deviation) aerosol scattering coefficients (σsp, 550 nm) of the particulates with aerodynamic diameters less than 2.5 µm (PM2.5) at these three sites were sequentially 101.5 ± 36.8, 182.2 ± 433.1, and 54.0 ± 32.0 Mm-1. Correspondingly, the absorption coefficients (σap, 637 nm) were 9.7 ± 6.1, 6.0 ± 4.6, and 2.3 ± 0.9 Mm-1; single-scattering albedos (ω, 637 nm) were 0.902 ± 0.025, 0.931 ± 0.037, and 0.949 ± 0.020; and scattering Ångström exponents (Åsp, 450-700 nm) of PM2.5 were 1.28 ± 0.27, 0.77 ± 0.51, and 0.52 ± 0.31. During a severe dust storm in Zhangye (i.e., from 23 to 25 April), the highest values of σsp2.5 ( ˜ 5074 Mm-1), backscattering coefficient (σbsp2.5, ˜ 522 Mm-1), and ω637 ( ˜ 0.993) and the lowest values of backscattering fraction (b2.5, ˜ 0.101) at 550 nm and Åsp2.5 ( ˜ -0.046) at 450-700 nm, with peak values of aerosol number size distribution (appearing at the particle diameter range of 1-3 µm), exhibited that the atmospheric aerosols were dominated by coarse-mode dust aerosols. It is hypothesized that the relatively higher values of mass scattering efficiency during floating dust episodes in Wuwei and Zhangye are attributed to the anthropogenic soil dust produced by agricultural cultivations.

  14. Traditional herbal medicine use among hypertensive patients in sub-Saharan Africa: a systematic review.

    Science.gov (United States)

    Liwa, Anthony C; Smart, Luke R; Frumkin, Amara; Epstein, Helen-Ann B; Fitzgerald, Daniel W; Peck, Robert N

    2014-06-01

    Hypertension is increasingly common in sub-Saharan Africa, and rates of hypertension control are low. Use of traditional herbal medicines (THM) is common among adults in sub-Saharan Africa and may affect hypertension therapy. We searched Ovid MEDLINE, Ovid EMBASE, and Web of Knowledge in June 2013 to find studies about THM use among hypertensive patients living in sub-Saharan Africa. Two independent reviewers evaluated titles and abstracts. Qualifying references were reviewed in full text. Data were extracted using a standardized questionnaire. Four hundred and eighty-one references were retrieved, and four articles from two countries met criteria for inclusion. The prevalence of THM use was 25-65% (average 38.6%). THM was the most common type of complementary and alternative medicines used by patients (86.7-96.6%). Among THM users, 47.5% concomitantly used both allopathic medicine and THM. Increased age (psupernatural cause of hypertension (RR 2.11), and family history of hypertension (OR 1.78) were positively associated with THM use, while belief that hypertension is preventable was negatively associated with THM use (OR 0.57). More than one-third of adults with hypertension in sub-Saharan Africa use THM. Half of these patients use THM concurrently with allopathic medicine. Healthcare workers in sub-Saharan Africa must discuss THM use with their hypertensive patients. More research is urgently needed to define the impact of THM use on hypertension control and outcomes in sub-Saharan Africa.

  15. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  16. Maintaining the Background Dust Opacity During Northern Hemisphere Summer Mars Using Wind Stress Based Dust Lifting

    Science.gov (United States)

    Jha, V.; Kahre, M. A.

    2017-12-01

    The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by

  17. Properties of interstellar dust in reflection nebulae

    International Nuclear Information System (INIS)

    Sellgren, K.

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer

  18. The dust acoustic wave in a bounded dusty plasma with strong electrostatic interactions between dust grains

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2011-01-01

    The dispersion relation for the dust acoustic wave (DAW) in an unmagnetized dusty plasma cylindrical waveguide is derived, accounting for strong electrostatic interactions between charged dust grains. It is found that the boundary effect limits the radial extent of the DAW. The present result should be helpful for understanding the frequency spectrum of the DAW in a dusty plasma waveguide with strongly coupled charged dust grains. - Highlights: → We study the dust acoustic wave (DAW) in a bounded plasma. → We account for interactions between dust grains. → The boundary effect limits the radial extent of the DAW.

  19. Health disparities in liver disease in sub-Saharan Africa.

    Science.gov (United States)

    Spearman, C Wendy; Sonderup, Mark W

    2015-09-01

    Disparities in health reflect the differences in the incidence, prevalence, burden of disease and access to care determined by socio-economic and environmental factors. With liver disease, these disparities are exacerbated by a combination of limited awareness and preventable causes of morbidity and mortality in addition to the diagnostic and management costs. Sub-Saharan Africa, comprising 11% of the world's population, disproportionately has 24% of the global disease burden, yet allocates health. It has 3% of the global healthcare workforce with a mean of 0.8 healthcare workers per 1000 population. Barriers to healthcare access are many and compounded by limited civil registration data, socio-economic inequalities, discrepancies in private and public healthcare services and geopolitical strife. The UN 2014 report on the Millennium Development Goals suggest that sub-Saharan Africa will probably not meet several goals, however with HIV/AIDS and Malaria (goal 6), many successes have been achieved. A 2010 Global Burden of Disease study demonstrated that cirrhosis mortality in sub-Saharan Africa doubled between 1980 and 2010. Aetiologies included hepatitis B (34%), hepatitis C (17%), alcohol (18%) and unknown in 31%. Hepatitis B, C and alcohol accounted for 47, 23 and 20% of hepatocellular carcinoma respectively. In 10%, the underlying aetiology was not known. Liver disease reflects the broader disparities in healthcare in sub-Saharan Africa. However, many of these challenges are not insurmountable as vaccines and new therapies could comprehensively deal with the burden of viral hepatitis. Access to and affordability of therapeutics remains the major barrier. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms

    Science.gov (United States)

    Berry, Kathryn L. E.; Hoogenboom, Mia O.; Flores, Florita; Negri, Andrew P.

    2016-05-01

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l-1) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l-1) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.

  1. Dust Studies in DIII-D and TEXTOR

    International Nuclear Information System (INIS)

    Rudakov, D.L.; Litnovsky, A.; West, W.P.; Yu, J.H.; Boedo, J.A.; Bray, B.D.; Brezinsek, S.; Brooks, N.H.; Fenstermacher, M.E.; Groth, M.; Hollmann, E.M.; Huber, A.; Hyatt, A.W.; Krasheninnikov, S.I.; Lasnier, C.J.; Moyer, R.A.; Pigarov, A.Y.; Philipps, V.; Pospieszczyk, A.; Smirnov, R.D.; Sharpe, J.P.; Solomon, W.M.; Watkins, J.G.; Wong, C.C.

    2009-01-01

    Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Direct heating of the dust particles by the neutral beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust. Large flakes or debris falling into the plasma may result in a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micron-size dust in plasma discharges. In DIII-D, a sample holder filled with ∼30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure (∼0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. At the given configuration of the launch, the dust did not penetrate the core plasma and only moderately perturbed the edge plasma, as evidenced by an increase of the edge carbon content.

  2. Activation analysis of deposited dust brought to Israel by dust storms

    International Nuclear Information System (INIS)

    Ganor, E.; Tal, A.; Donagi, A.

    1975-01-01

    The determination of dust particles deposited in Jerusalem during regional dust storms was carried out by polarized microscopy, X-ray analysis and atomic absorption measurements. These analyses showed the presence of particles of quartz, calcite, dolomite, feldspar, halite, kaolinite, montmorillonite, epidote, tourmaline, glauconite, illite and other heavy minerals. The aims of the present study were to apply activation analysis for the determination of element composition in dust samples; to compare the results obtained by activation analysis with those obtained by other methods, i.e. chemical analysis, polarized microscopy and X-ray analysis. The results obtained by the various methods were in good agreement. (B.G.)

  3. A Combined Observational and Modeling Approach to Study Modern Dust Transport from the Patagonia Desert to East Antarctica

    Science.gov (United States)

    Gasso, S.; Stein, A.; Marino, F.; Castellano, E.; Udisti, R.; Ceratto, J.

    2010-01-01

    The understanding of present atmospheric transport processes from Southern Hemisphere (SH) landmasses to Antarctica can improve the interpretation of stratigraphic data in Antarctic ice cores. In addition, long range transport can deliver key nutrients normally not available to marine ecosystems in the Southern Ocean and may trigger or enhance primary productivity. However, there is a dearth of observational based studies of dust transport in the SH. This work aims to improve current understanding of dust transport in the SH by showing a characterization of two dust events originating in the Patagonia desert (south end of South America). The approach is based on a combined and complementary use of satellite retrievals (detectors MISR, MODIS, GLAS ,POLDER, OMI,), transport model simulation (HYSPLIT) and surface observations near the sources and aerosol measurements in Antarctica (Neumayer and Concordia sites). Satellite imagery and visibility observations confirm dust emission in a stretch of dry lakes along the coast of the Tierra del Fuego (TdF) island (approx.54deg S) and from the shores of the Colihue Huapi lake in Central Patagonia (approx.46deg S) in February 2005. Model simulations initialized by these observations reproduce the timing of an observed increase in dust concentration at the Concordia Station and some of the observed increases in atmospheric aerosol absorption (here used as a dust proxy) in the Neumayer station. The TdF sources were the largest contributors of dust at both sites. The transit times from TdF to the Neumayer and Concordia sites are 6-7 and 9-10 days respectively. Lidar observations and model outputs coincide in placing most of the dust cloud in the boundary layer and suggest significant de- position over the ocean immediately downwind. Boundary layer dust was detected as far as 1800 km from the source and approx.800 km north of the South Georgia Island over the central sub-Antarctic Atlantic Ocean. Although the analysis suggests the

  4. Temporal Relationships Between African Dust and Chlorophyll-a in the Eastern Caribbean Basin

    Science.gov (United States)

    Gomez-Andujar, N. X.; Mayol-Bracero, O. L.; Torres-Delgado, E.

    2017-12-01

    Seasonal African Dust (AD) transports soluble iron to oligotrophic Caribbean waters, and when bioavailable, it could increase marine primary productivity (PP). Recently, the region has experienced the proliferation of unusually high quantities of Sargassum, an iron-absorbing macroalgae inhabiting the air-sea interface, which possess ecological and economic challenges and whose driving factors are still uncertain. AD events reach Puerto Rico (PR) mostly during boreal summer months. This is also the season when chlorophyll-α (CHL) concentrations are highest, when the algae starts to bloom, and when sediment plumes from the Orinoco River (ORP) also reach nutrient discharge maxima.This study seeks to better understand the temporal relationships between increases in chlorophyll-α and the presence of african dust events in the region. Aerosol data collected at the Cabezas de San Juan Atmospheric Observatory was used to identify AD events between January 2005 and December 2015. Light scattering coefficients were measured with an integrating Nephelometer, while light absorption coefficients were obtained from either the Particle Soot/Absorption Photometer (PSAP) or the Continuous Light Absorption Photometer (CLAP). Spectral properties suggesting AD events were cross-referenced with surface dust concentration image models and source-attributed air masses corresponding to dusty periods using Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT). For all years with spectral data, modeled monthly wet dust deposition was correlated (r=0.64) with mean CHL concentrations from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). Daily dust mass column densities from NASA's MERRA-2 model were also correlated (r2= 0.53) to sea surface iron concentrations from NASA's Ocean Biogeochemical Model. We present the 2010 case study, which coincides with the start of the Sargassum bloom and shows CHL peaks occurring a month before ORPs but during the AD season

  5. ORIGIN OF DUST AROUND V1309 SCO

    International Nuclear Information System (INIS)

    Zhu, Chunhua; Lü, Guoliang; Wang, Zhaojun

    2013-01-01

    The origin of dust grains in the interstellar medium is still an unanswered problem. Nicholls et al. found the presence of a significant amount of dust around V1309 Sco, which may originate from the merger of a contact binary. We investigate the origin of dust around V1309 Sco and suggest that these dust grains are produced in the binary-merger ejecta. By means of the AGBDUST code, we estimate that ∼5.2 × 10 –4 M ☉ dust grains are produced with a radii of ∼10 –5 cm. These dust grains are mainly composed of silicate and iron grains. Because the mass of the binary merger ejecta is very small, the contribution of dust produced by binary merger ejecta to the overall dust production in the interstellar medium is negligible. However, it is important to note that the discovery of a significant amount of dust around V1309 Sco offers a direct support for the idea that common-envelope ejecta provides an ideal environment for dust formation and growth. Therefore, we confirm that common envelope ejecta can be important source of cosmic dust

  6. Hepatitis C in sub-Saharan Africa: the current status and recommendations for achieving elimination by 2030.

    Science.gov (United States)

    Sonderup, Mark W; Afihene, Mary; Ally, Reidwaan; Apica, Betty; Awuku, Yaw; Cunha, Lina; Dusheiko, Geoffrey; Gogela, Neliswa; Lohouès-Kouacou, Marie-Jeanne; Lam, Phillip; Lesi, Olufunmilayo; Mbaye, Papa Saliou; Musabeyezu, Emmanuel; Musau, Betty; Ojo, Olesegun; Rwegasha, John; Scholz, Barbara; Shewaye, Abate B; Tzeuton, Christian; Kassianides, Chris; Spearman, C Wendy

    2017-12-01

    In 2016, WHO adopted a strategy for the elimination of viral hepatitis by 2030. Africa, and more specifically, sub-Saharan Africa, carries a substantial portion of the global burden of viral hepatitis, especially chronic hepatitis B and hepatitis C virus infections. The task that lies ahead for sub-Saharan Africa to achieve elimination is substantial, but not insurmountable. Major developments in the management of hepatitis C have put elimination within reach, but several difficulties will need to be navigated on the path to elimination. Many of the challenges faced are unique to sub-Saharan Africa and the development of strategies is complicated by a scarcity of good data from countries and regions within sub-Saharan Africa. However, this hindrance should not act as a barrier to delay interventions in screening, detection, and linkage to care. Moreover, by sharing experiences from across sub-Saharan Africa, countries can create supranational synergies to develop their programmes and work together in a more cohesive manner to tackle the burden of hepatitis C in sub-Saharan Africa. In this Series paper, several issues related to hepatitis C in sub-Saharan Africa are addressed, including prevalence, risk factors, and fibrosis assessment, and recommendations are given by experts from across the region. Simplified diagnostic algorithms and treatment regimens for both HIV co-infected and hepatitis C mono-infected patients are suggested. The recommendations are consensus based and provided to guide the development of programmes in sub-Saharan Africa. Political will and appropriate funding will be required to provide impetus to implement these recommendations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Aeolian system dynamics derived from thermal infrared data

    Science.gov (United States)

    Scheidt, Stephen Paul

    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a

  8. Dust-Tolerant Intelligent Electrical Connection System

    Science.gov (United States)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  9. Ocular toxicity of authentic lunar dust.

    Science.gov (United States)

    Meyers, Valerie E; Garcìa, Hector D; Monds, Kathryn; Cooper, Bonnie L; James, John T

    2012-07-20

    Dust exposure is a well-known occupational hazard for terrestrial workers and astronauts alike and will continue to be a concern as humankind pursues exploration and habitation of objects beyond Earth. Humankind's limited exploration experience with the Apollo Program indicates that exposure to dust will be unavoidable. Therefore, NASA must assess potential toxicity and recommend appropriate mitigation measures to ensure that explorers are adequately protected. Visual acuity is critical during exploration activities and operations aboard spacecraft. Therefore, the present research was performed to ascertain the ocular toxicity of authentic lunar dust. Small (mean particle diameter = 2.9 ± 1.0 μm), reactive lunar dust particles were produced by grinding bulk dust under ultrapure nitrogen conditions. Chemical reactivity and cytotoxicity testing were performed using the commercially available EpiOcularTM assay. Subsequent in vivo Draize testing utilized a larger size fraction of unground lunar dust that is more relevant to ocular exposures (particles lunar dust was minimally irritating. Minor irritation of the upper eyelids was noted at the 1-hour observation point, but these effects resolved within 24 hours. In addition, no corneal scratching was observed using fluorescein stain. Low-titanium mare lunar dust is minimally irritating to the eyes and is considered a nuisance dust for ocular exposure. No special precautions are recommended to protect against ocular exposures, but fully shielded goggles may be used if dust becomes a nuisance.

  10. The European Union and sub-Saharan Africa

    DEFF Research Database (Denmark)

    Kluth, Michael Friederich

    2013-01-01

    This article argues that aspirations of maintaining a dominant influence over sub-Saharan security issues has spurred the French and British leadership of European Union (EU) foreign and security policy integration, just as it has informed military capability expansions by the armed forces...

  11. Echinococcosis in sub-Saharan Africa: emerging complexity

    NARCIS (Netherlands)

    Romig, T.; Omer, R. A.; Zeyhle, E.; Hüttner, M.; Dinkel, A.; Siefert, L.; Elmahdi, I. E.; Magambo, J.; Ocaido, M.; Menezes, C. N.; Ahmed, M. E.; Mbae, C.; Grobusch, M. P.; Kern, P.

    2011-01-01

    Cystic echinococcosis occurs in most regions of sub-Saharan Africa, but the frequency of this zoonosis differs considerably among and within countries. Especially human cases seem to be focally distributed. A number of environmental and behavioural factors partially explain this pattern, i.e.

  12. Dust bands in the asteroid belt

    International Nuclear Information System (INIS)

    Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs

  13. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia

    Science.gov (United States)

    Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam

    2018-01-01

    Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and

  14. Simulating SAL formation and aerosol size distribution during SAMUM-I

    KAUST Repository

    Khan, Basit Ali

    2015-04-01

    To understand the formation mechanisms of Saharan Air Layer (SAL), we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol spatial distribution across the entire region and along the airplane\\'s tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground-based observations are generally good, but suggest that more detailed treatment of microphysics in the model is required to capture the full-scale effect of large aerosol particles.

  15. Healthcare-associated infections in sub-Saharan Africa.

    Science.gov (United States)

    Rothe, C; Schlaich, C; Thompson, S

    2013-12-01

    Healthcare-associated infections (HCAIs) are the most frequent adverse consequences of healthcare worldwide, threatening the health of both patients and healthcare workers (HCWs). The impact of HCAI is particularly felt in resource-poor countries, with an already overstretched health workforce and a high burden of community-acquired infection. To provide an overview of the current situation in sub-Saharan Africa with regards to the spectrum of HCAI, antimicrobial resistance, occupational exposure and infection prevention. We reviewed the literature published between 1995 and 2013 and from other sources such as national and international agencies. Sparse data suggest that HCAIs are widespread in sub-Saharan Africa, with surgical site being the dominant focus of infection. Nosocomial transmission of multidrug-resistant tuberculosis is a considerable concern, as is the prevalence of meticillin-resistant S. aureus and resistant Enterobacteriaceae. In HCWs, vaccination rates against vaccine-preventable occupational hazards are low, as is reporting and subsequent human immunodeficiency virus-testing after occupational exposure. HCWs have an increased risk of tuberculosis relative to the general population. Compliance with hand hygiene is highly variable within the region. Injection safety in immunization programmes has improved over the past decade, mainly due to the introduction of autodestruct syringes. Despite the scarcity of data, the burden of HCAI in sub-Saharan Africa appears to be high. There is evidence of some improvement in infection prevention and control, though widespread surveillance data are lacking. Overall, measures of infection prevention and occupational safety are scarce. Copyright © 2013 The Healthcare Infection Society. All rights reserved.

  16. Context Matters – Rethinking the Resource Curse in Sub-Saharan Africa

    OpenAIRE

    Matthias Basedau

    2005-01-01

    Natural resources in sub-Saharan Africa suffer from a bad reputation. Oil and diamonds, particularly, have been blamed for a number of Africa’s illnesses such as poverty, corruption, dictatorship and war. This paper outlines the different areas and transmission channels of how this so-called “resource curse” is said to materialize. By assessing empirical evidence on sub-Saharan Africa it concludes that the resource curse theory fails to sufficiently explain why and how several countries have ...

  17. Electromagnetic dust-lower-hybrid and dust-magnetosonic waves and their instabilities in a dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Rahman, M. M.; Zeba, I.; Shah, H. A.; Murtaza, G.; Shukla, P. K.

    2006-01-01

    The electromagnetic waves below the ion-cyclotron frequency have been examined in a collisionless and homogeneous dusty plasma in the presence of a dust beam parallel to the direction of the external magnetic field. The low-frequency mixed electromagnetic dust-lower-hybrid and purely transverse magnetosonic waves become unstable for the sheared flow of dust grains and grow in amplitude when the drift velocity of the dust grains exceeds the parallel phase velocity of the waves. The growth rate depends dominantly upon the thermal velocity and density of the electrons

  18. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    International Nuclear Information System (INIS)

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-01-01

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly

  19. Construction dust amelioration techniques.

    Science.gov (United States)

    2012-04-01

    Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...

  20. Prices of second-line antiretroviral treatment for middle-income countries inside versus outside sub-Saharan Africa.

    Science.gov (United States)

    Simmons, Bryony; Hill, Andrew; Ford, Nathan; Ruxrungtham, Kiat; Ananworanich, Jintanat

    2014-01-01

    Antiretrovirals are available at low prices in sub-Saharan Africa, but these prices may not be consistently available for middle-income countries in other regions with large HIV epidemics. Over 30% of HIV infected people live in countries outside sub-Saharan Africa. Several key antiretrovirals are still on patent, with generic production restricted. We assessed price variations for key antiretroviral drugs inside versus outside sub-Saharan Africa. HIV drug prices used in national programmes (2010-2014) were extracted from the WHO Global Price Reporting Mechanism database for all reporting middle-income countries as classified by the World Bank. Treatment costs (branded and generic) were compared for countries inside sub-Saharan Africa versus those outside. Five key second-line antiretrovirals were analysed: abacavir, atazanavir, darunavir, lopinavir/ritonavir, raltegravir. Prices of branded antiretrovirals were significantly higher outside sub-Saharan Africa (psub-Saharan Africa versus $4689 (IQR $4075-5717) in non-African middle-income countries, an increase of 541%. However, when supplied by generic companies, most antiretrovirals were similarly priced between countries in sub-Saharan Africa and other regions. Pharmaceutical companies are selling antiretrovirals to non-African middle-income countries at prices 74-541% higher than African countries with similar gross national incomes. However, generic companies are selling most of these drugs at similar prices across regions. Mechanisms to ensure fair pricing for patented antiretrovirals across both African and non-African middle-income countries need to be improved, to ensure sustainable treatment access.

  1. Boys are not exempt: Sexual exploitation of adolescents in sub-Saharan Africa.

    Science.gov (United States)

    Adjei, Jones K; Saewyc, Elizabeth M

    2017-03-01

    Research on youth sexual exploitation in Africa has largely neglected the experiences of exploited boys. To date, much of the research in sub-Saharan Africa continues to consider boys mainly as exploiters but not as exploited. Using the only publicly available population-based surveys from the National Survey of Adolescents, conducted in four sub-Saharan African countries - Burkina Faso, Ghana, Malawi, and Uganda-we assessed factors associated with transactional sexual behaviour among never-married adolescent boys and girls. We also examined whether boys' reported sexual exploitation was linked to similar risky sexual behaviours as has been noted among girls in sub-Saharan Africa. Results from our analyses indicated that even though adolescent girls have a somewhat higher likelihood of reporting sexual abuse and exploitation, the odds of trading sex were significantly elevated for previously traumatized boys (that is those with a history of sexual and physical abuse) but not for their female counterparts. Just like adolescent girls, transactional sexual behaviour was associated with the risk of having concurrent multiple sexual partners for boys. These findings support the reality of boys' sexual exploitation within the African context, and further highlight the importance of including males in general and boys in particular in population-based studies on sexual health, risk, and protective factors in the sub-Saharan African region. Understanding the factors linked to sexual exploitation for both boys and girls will help in developing policies and programs that could improve the overall sexual and reproductive health outcomes among adolescents and youth in sub-Saharan Africa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Dust exposure and pneumoconiosis in a South African pottery. 1. Study objectives and dust exposure.

    Science.gov (United States)

    Rees, D; Cronje, R; du Toit, R S

    1992-07-01

    Dust exposure and pneumoconiosis were investigated in a South African pottery that manufactured wall tiles and bathroom fittings. This paper describes the objectives of the investigation and presents dust measurement data. x Ray diffraction showed that the clays used by the pottery had a high quartz content (range 58%-23%, mean 38%). Exposure to respirable dust was measured for 43 workers and was highest (6.6 mg/m3) in a bathroom fitting fettler. Quartz concentrations in excess of 0.1 mg/m3 were found in all sections of the manufacturing process from slip production to biscuit firing and sorting. The proportion of quartz in the respirable dust of these sections was 24% to 33%. This is higher than is usually reported in English potteries. Four hundred and six (80%) of the 509 workers employed at the pottery were potentially at risk of occupational lung disease. The finding of large numbers of pottery workers exposed to unacceptable dust concentrations is not surprising as poor dust control was found in all six wall tile and sanitary ware factories surveyed by the National Centre for Occupational Health between 1973 and 1989. Dust related occupational disease can be expected in potters for many years to come.

  3. Study on treatment of dust by dismantling

    International Nuclear Information System (INIS)

    Torikai, K.; Suzuki, K.

    1987-01-01

    In dismantling of nuclear reactors, various kinds of treatment of dust generated by cutting or dismantling concrete structures of components of reactors are evaluated for safety, cost, and performance comparing the work in air with water. A method of dust treatment for work in air is discussed. The dry method has an easy operation in practice and a good performance in the equipment, but has problem on the prevention from radioactive contamination by diffusion of dust in air. For the purpose of advancing the strong points and eliminating the weak points in dry method, an improved venturi scrubber system is proposed for dismantling work as a dust collecting system. The system consists of dust absorbing pipe, dust collector, separator of dust and water and dust transfer equipment to a storage of waste. This system would be expected to have better performance and lower operating cost in decommissioning nuclear reactors, especially, the number of dust filters, for example, HEPA filters, will be considerably saved

  4. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Enos, David George [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  5. Systematic characterization of structural, dynamical and electrical properties of dust devils and implications for dust lifting processes

    Science.gov (United States)

    Franzese, Gabriele; Esposito, Francesca; Lorenz, Ralph D.; Popa, Ciprian; Silvestro, Simone; Deniskina, Natalia; Cozzolino, Fabio

    2017-04-01

    Dust devils are convective vortices able to lift sand and dust grains from the soil surface, even in conditions of low wind speed environment. They have been observed not only on Earth but also on other planets of the solar system; in particular, they are largely studied on Mars. Indeed, the contribution of the dust devils to the Martian climate is a highly debated question. In order to investigate this topic, it is important to understand the nature of the dust lifting mechanism by the vortex and characterize the induced electric field. As part of the development process of DREAMS, the meteorological station on board the Schiapparelli lander of the ExoMars 2016 mission, and of the Dust complex package of the ExoMars 2020 mission, we performed various field campaigns in the Sahara desert (Tafilalt region, Morocco). We deployed a fully equipped meteorological station and, during the 2014 summer, we observed three months of dust devils activity, collecting almost six hundreds events. For each dust devil, we monitored the horizontal wind speed and direction, the vertical wind speed, the pressure drop due to the vortex core, the temperature, the induced electric field and the concentration of dust lifted. This data set is unique in literature and represents up to now the most comprehensive one available for the dusty convective vortices. Here we will present the analysis of the Moroccan data with particular emphasis on the study of the atmospheric electric field variations due to the passage of the vortices. The distribution of the vortex parameters (wind speed and direction, pressure, E-field and dust lifted) are showed and compared, when possible, to the ones observed by the Martian surveys. The connection between the E-field and the other parameters will be presented. In the terrestrial environment, the development of the convective vortices is restricted by the presence of the vegetation and of the urban areas, hence dust devils can impact the climate only on local

  6. Climate change impacts in Sub-Saharan Africa

    NARCIS (Netherlands)

    Serdeczny, Olivia; Adams, Sophie; Baarsch, Florent; Coumou, Dim; Robinson, Alexander; Hare, William; Schaeffer, Michiel; Perrette, Mahé; Reinhardt, Julia

    2017-01-01

    The repercussions of climate change will be felt in various ways throughout both natural and human systems in Sub-Saharan Africa. Climate change projections for this region point to a warming trend, particularly in the inland subtropics; frequent occurrence of extreme heat events; increasing

  7. Export and Innovation in Sub-Saharan Africa

    NARCIS (Netherlands)

    Barasa, L.; Kinyanjui, B.; Knoben, Joris; Kimuyu, P.; Vermeulen, P.A.M.

    2016-01-01

    Our study seeks to examine the bi-directional relationship between innovation and exporting in four countries in Sub-Saharan Africa. We hypothesize that there is a positive relationship between innovation and subsequent exporting, and that this relationship is mediated by market creation. We also

  8. Nursing education challenges and solutions in Sub Saharan Africa: an integrative review.

    Science.gov (United States)

    Bvumbwe, Thokozani; Mtshali, Ntombifikile

    2018-01-01

    The Lancet Commission and the Global Health Workforce Alliance reported that professional education has generally not kept up the pace of health care challenges. Sub Saharan Africa needs an effective and efficient nursing education system to build an adequate, competent and relevant nursing workforce necessary for the achievement of Sustainable Development Goals. The Plan of Action for Scaling up Quality Nursing and Midwifery Education and Practice for the African Region 2012 - 2022 provided a framework for scale up of nurses and midwives. This integrative review examined literature on nursing education challenges and solutions in Sub Saharan Africa to inform development of a model for improving the quality, quantity and relevance of nursing education at local level. A search of PubMed, Medline on EBCSOhost and Google Scholar was conducted using key words: nursing education, challenges, solutions and/ or Africa. Published works from 2012 to 2016 were reviewed to explore reports about challenges and solution in nursing education in Sub Saharan Africa. Full texts of relevant studies were retrieved after reading the tittles and abstracts. Critical appraisal was undertaken and the findings of the relevant studies were analysed using thematic analysis. Twenty articles and five grey sources were included. Findings of the review generally supports World Health Organisation framework for transformative and scale up of health professions education. Six themes emerged; curriculum reforms, profession regulation, transformative teaching strategies, collaboration and partnership, capacity building and infrastructure and resources. Challenges and solutions in nursing education are common within countries. The review shows that massive investment by development partners is resulting in positive development of nursing education in Sub Saharan Africa. However, strategic leadership, networking and partnership to share expertise and best practices are critical. Sub Saharan Africa

  9. Physical properties of five grain dust types.

    Science.gov (United States)

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482

  10. Dust Evolution in Galaxy Cluster Simulations

    Science.gov (United States)

    Gjergo, Eda; Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia; Tornatore, Luca; Borgani, Stefano

    2018-06-01

    We implement a state-of-the-art treatment of the processes affecting the production and Interstellar Medium (ISM) evolution of carbonaceous and silicate dust grains within SPH simulations. We trace the dust grain size distribution by means of a two-size approximation. We test our method on zoom-in simulations of four massive (M200 ≥ 3 × 1014M⊙) galaxy clusters. We predict that during the early stages of assembly of the cluster at z ≳ 3, where the star formation activity is at its maximum in our simulations, the proto-cluster regions are rich in dusty gas. Compared to the case in which only dust production in stellar ejecta is active, if we include processes occurring in the cold ISM,the dust content is enhanced by a factor 2 - 3. However, the dust properties in this stage turn out to be significantly different from those observationally derived for the average Milky Way dust, and commonly adopted in calculations of dust reprocessing. We show that these differences may have a strong impact on the predicted spectral energy distributions. At low redshift in star forming regions our model reproduces reasonably well the trend of dust abundances over metallicity as observed in local galaxies. However we under-produce by a factor of 2 to 3 the total dust content of clusters estimated observationally at low redshift, z ≲ 0.5 using IRAS, Planck and Herschel satellites data. This discrepancy does not subsist by assuming a lower sputtering efficiency, which erodes dust grains in the hot Intracluster Medium (ICM).

  11. A dust-free dock

    Energy Technology Data Exchange (ETDEWEB)

    Merrion, D. [E & F Services Ltd. (United Kingdom)

    2002-10-01

    This paper describes the process of unloading coal, petcoke and other dusty products in environmentally-sensitive areas. It presents a case study of the deepwater Port of Foynes on the west coast of Ireland which imports animal feed, fertiliser, coal and cement clinker, where dockside mobile loaders (DMLs) have eliminated spillage and controlled dust, and a record case study of the Humber International Terminal in the UK, where air curtinas, dust suppression grids and EFFEX{reg_sign} filters overcome the dust problems. 2 photos.

  12. Biofuel Development Initiatives in Sub-Saharan Africa: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-06-01

    Full Text Available In recent years, biofuels have emerged as a suitable alternative to hydrocarbon fuel due to their foreseen potential of being a future energy resource. Biofuel development initiatives have been successfully implemented in countries like Brazil, United States of America, European Union, Canada, Australia, and Japan. However, such programmes have been stagnant in Africa due to various constraints, such as financial barriers, technical expertise, land availability, and government policies. Nonetheless, some countries within the continent have realized the potential of biofuels and have started to introduce similar programmes and initiatives for their development. These include the bioethanol production initiatives and the plantation of jatropha oil seeds in most Sub-Saharan African countries for biodiesel production. Therefore, this paper examines the biofuel development initiatives that have been implemented in several countries across Sub-Saharan Africa over the past few years. It also discusses the opportunities and challenges of having biofuel industries in the continent. Finally, it proposes some recommendations that could be applied to accelerate their development in these Sub-Saharan African countries.

  13. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2018-03-01

    Full Text Available Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19–23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1 and the other passing over the coastal regions of eastern China (DS2. Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 ∕ PM10 and NO2 ∕ PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42− and NO3− and the ratio of Ca2+ ∕ Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] ∕ [SO42−+NO3−] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ∼ 80–90 % of the total particle extinction from near the ground to ∼ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ∼ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  14. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    Science.gov (United States)

    Wang, Qiongzhen; Dong, Xinyi; Fu, Joshua S.; Xu, Jian; Deng, Congrui; Jiang, Yilun; Fu, Qingyan; Lin, Yanfen; Huang, Kan; Zhuang, Guoshun

    2018-03-01

    Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19-23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1) and the other passing over the coastal regions of eastern China (DS2). Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 / PM10 and NO2 / PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42- and NO3- and the ratio of Ca2+ / Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] / [SO42-+NO3-] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ˜ 80-90 % of the total particle extinction from near the ground to ˜ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ˜ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  15. Effect of dust size distribution on ion-acoustic solitons in dusty plasmas with different dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dong-Ning; Yang, Yang; Yan, Qiang [Northwest Normal University, College of Physics and Electronic Engineering (China); Wang, Xiao-Yun [Lanzhou Jiao Tong University, Department of Mathematics and Physics (China); Duan, Wen-Shan, E-mail: duanws@126.com [Northwest Normal University, College of Physics and Electronic Engineering (China)

    2017-02-15

    Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.

  16. Asian dust events of April 1998

    Science.gov (United States)

    Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.

    2001-01-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative

  17. Step by step in dust control

    Energy Technology Data Exchange (ETDEWEB)

    Archer, N. [Arch Environmental Equipment, Inc. (United States)

    2003-05-01

    The paper examines the different stages in identifying delegating and controlling dust before it becomes a serious problem for a facility. Material handling, processing, storage and traffic are the major dust producing sources. All industries that convey dry, light material need to install a dust control system. The confine-seal-suppress method of dust control has provided excellent results in numerous applications, only with the combination of all three will maximum dust control. When a system is properly engineered and correctly installed, meeting the EPA Government standards becomes very easy, and is necessary in to the operation of a quality facility. 5 photos.

  18. Meningitis in HIV-positive patients in sub-Saharan Africa: a review.

    Science.gov (United States)

    Veltman, Jennifer A; Bristow, Claire C; Klausner, Jeffrey D

    2014-01-01

    Meningitis is one of the leading causes of death among patients living with HIV in sub-Saharan Africa. There is no widespread tracking of the incidence rates of causative agents among patients living with HIV, yet the aetiologies of meningitis are different than those of the general population. We reviewed the scientific literature published in PubMed to determine the incidence rates of meningitis among hospitalized people living with HIV in sub-Saharan Africa and report our findings from seven studies across sub-Saharan Africa. We found high rates of cryptococcal meningitis (19-68%). Tuberculous meningitis was lower (1-36%), although some centres included possible cases as "other" meningitis; therefore, this may not be a true representation of the total cases. Pyogenic meningitis ranged from 6 to 30% and "other" meningitis ranged from 7 to 28% of all reported cases of meningitis. Mortality rates ranged from 25 to 68%. This review describes the most common aetiologies and provides practical diagnostic, treatment and prevention considerations as they apply to the individual living with HIV in sub-Saharan Africa. Diagnosis is often limited, and wider availability of accurate and low-cost laboratory diagnostics is desperately needed for prompt diagnosis and initiation of appropriate treatment. Wider acceptance and adoption of available preventative modalities can decrease the incidence of potentially fatal central nervous system infections in African patients living with HIV.

  19. Dust coma of Halley comet: measurements with the dust counter and mass analyzer (DUSMA)

    International Nuclear Information System (INIS)

    Simpson, J.A.; Sagdeev, R.Z.; Tuzzolino, A.J.; AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij)

    1986-01-01

    The paper represents a preliminary report on measurements of spatial and temporal distribution of mass and flows of dust particles coming from comet nucleus performed by means of devices constructed on the new principle of detecting comet dust specks. The device has a high time resolution (∼ 4 μs) in the wide range of mass and dust flows. On the base of a preliminary analysis the following conclusions are drawn: dust coma in quiet state (''Vega-2'') as well as at the presence of considerable emissions (''Vega-1'') manifests the presence of important short-term out-bursts having by time a quasi-periodic structure. Integral mass spectra show flows intensity growth with the decrease of measured mass (which contradicts some theoretical models). Flow levels lie approximately in the region previously determined by ground observations. The coma is extremely dynamic both in space and in time which proves the complex structure of regions of dust emission from the nucleus

  20. Adaptation of the DP 50 dust meter for measuring dust content under isokinetic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J.; Novak, L.

    1985-03-01

    The DP 50 dust meter, developed by the Scientific Coal Research Institute Ostrava-Radvanice, is used for measuring dust content in the air in underground coal mines. Two versions of the system are used: a type developed in 1970 which is placed in a vertical position and used to measure the content of respirable coal particles in the air; and a type developed in 1983 for isokinetic measurement of dust content in the air. The latter is equipped with 8 cone-shaped adapters (with differing size and dimensions of the cone inlet adjusted to air flow rates from 0.25 to 8.00 m/s). Specifications of the 8 adapters are given in a table. The 1983 version of the DP 50 is placed in a horizontal position with the dust meter axis parallel to the direction of air flow ventilating a mine working. Recommendations for installation of dust meters in underground workings and effects of installation on measurement accuracy are discussed. 16 references.