WorldWideScience

Sample records for sagittal plane knee

  1. Does Knee Osteoarthritis Differentially Modulate Proprioceptive Acuity in the Frontal and Sagittal Planes of the Knee?

    Science.gov (United States)

    Cammarata, Martha L; Schnitzer, Thomas J; Dhaher, Yasin Y

    2012-01-01

    Objective Impaired proprioception may alter joint loading and contribute to the progression of knee osteoarthritis (OA). Though frontal plane loading at the knee contributes to OA, proprioception and its modulation with OA in this direction have not been examined. The aim of this study was to assess knee proprioceptive acuity in the frontal and sagittal planes in knee OA and healthy participants. We hypothesized that proprioceptive acuity will be decreased in the OA population in both planes of movement. Methods Thirteen persons with knee OA and fourteen healthy age-matched subjects participated. Proprioceptive acuity was assessed in varus, valgus, flexion, and extension using the threshold to detection of passive movement (TDPM). Repeated measures analysis of variance was used to assess differences in TDPM between subject groups and across movement directions. Linear regression analyses were performed to assess the correlation of TDPM between and within planes of movement. Results TDPM was found to be significantly higher (Pplanes of movement were only weakly correlated, especially in the OA group. Conclusions Consistent differences in TDPM between the OA and control groups across all movement directions suggest a global, not direction-specific, reduction in sensation in knee OA patients. PMID:21547895

  2. Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness.

    Science.gov (United States)

    Schmitz, Randy J; Harrison, David; Wang, Hsin-Min; Shultz, Sandra J

    2017-06-02

      Understanding the factors associated with thicker cartilage in a healthy population is important when developing strategies aimed at minimizing the cartilage thinning associated with knee osteoarthritis progression. Thicker articular cartilage is commonly thought to be healthier cartilage, but whether the sagittal-plane biomechanics important to gait are related to cartilage thickness is unknown.   To determine the relationship of a weight-bearing region of the medial femoral condyle's cartilage thickness to sagittal gait biomechanics in healthy individuals.   Descriptive laboratory study.   Laboratory.   Twenty-eight healthy participants (15 women: age = 21.1 ± 2.1 years, height = 1.63 ± 0.07 m, weight = 64.6 ± 9.9 kg; 13 men: age = 22.1 ± 2.9 years, height = 1.79 ± 0.05 m, weight = 75.2 ± 9.6 kg).   Tibiofemoral angle (°) was obtained via goniometric assessment, thickness of the medial femoral condyle cartilage (mm) was obtained via ultrasound imaging, and peak internal knee-extensor moment (% body weight · height) was measured during 10 trials of over-ground walking at a self-selected pace. We used linear regression to examine the extent to which peak internal knee-extensor moment predicted cartilage thickness after accounting for tibiofemoral angle and sex.   Sex and tibiofemoral angle (12.3° ± 3.2°) were entered in the initial step as control factors (R 2 = 0.01, P = .872). In the final step, internal knee-extensor moment (1.5% ± 1.3% body weight · height) was entered, which resulted in greater knee-extensor moment being related to greater cartilage thickness (2.0 ± 0.3 mm; R 2 Δ = 0.31, PΔ = .003).   Individuals who walked with a greater peak internal knee-extensor moment during gait had a cartilage structure that is generally considered beneficial in a healthy population. Our study offers promising findings that a potentially modifiable biomechanical factor is associated with cartilage status in a healthy population

  3. Knee joint passive stiffness and moment in sagittal and frontal planes markedly increase with compression.

    Science.gov (United States)

    Marouane, H; Shirazi-Adl, A; Adouni, M

    2015-01-01

    Knee joints are subject to large compression forces in daily activities. Due to artefact moments and instability under large compression loads, biomechanical studies impose additional constraints to circumvent the compression position-dependency in response. To quantify the effect of compression on passive knee moment resistance and stiffness, two validated finite element models of the tibiofemoral (TF) joint, one refined with depth-dependent fibril-reinforced cartilage and the other less refined with homogeneous isotropic cartilage, are used. The unconstrained TF joint response in sagittal and frontal planes is investigated at different flexion angles (0°, 15°, 30° and 45°) up to 1800 N compression preloads. The compression is applied at a novel joint mechanical balance point (MBP) identified as a point at which the compression does not cause any coupled rotations in sagittal and frontal planes. The MBP of the unconstrained joint is located at the lateral plateau in small compressions and shifts medially towards the inter-compartmental area at larger compression forces. The compression force substantially increases the joint moment-bearing capacities and instantaneous angular rigidities in both frontal and sagittal planes. The varus-valgus laxities diminish with compression preloads despite concomitant substantial reductions in collateral ligament forces. While the angular rigidity would enhance the joint stability, the augmented passive moment resistance under compression preloads plays a role in supporting external moments and should as such be considered in the knee joint musculoskeletal models.

  4. The influence of heel height on sagittal plane knee kinematics during landing tasks in recreationally active and athletic collegiate females.

    Science.gov (United States)

    Lindenberg, Kelly M; Carcia, Christopher R; Phelps, Amy L; Martin, Robroy L; Burrows, Anne M

    2011-09-01

    To determine if heel height alters sagittal plane knee kinematics when landing from a forward hop or drop landing. Knee angles close to extension during landing are theorized to increase ACL injury risk in female athletes. Fifty collegiate females performed two single-limb landing tasks while wearing heel lifts of three different sizes (0, 12 & 24 mm) attached to the bottom of a sneaker. Using an electrogoniometer, sagittal plane kinematics (initial contact [KA(IC)], peak flexion [KA(Peak)], and rate of excursion [RE]) were examined. Repeated measures ANOVAs were used to determine the influence of heel height on the dependent measures. Forward hop task- KA(IC) with 0 mm, 12 mm, and 24 mm lifts were 8.88±6.5, 9.38±5.8 and 11.28±7.0, respectively. Significant differences were noted between 0 and 24 mm lift (psneaker significantly alters sagittal plane knee kinematics upon landing from a unilateral forward hop but not from a drop jump.

  5. The Effect of Sagittal Plane Deformities after Tibial Plateau Fractures to Functions and Instability of Knee Joint.

    Science.gov (United States)

    Erdil, M; Yildiz, F; Kuyucu, E; Sayar, Ş; Polat, G; Ceylan, H H; Koçyiğit, F

    2016-01-01

    The objective of this study is to evaluate the effect of posterior tibial slope after fracture healing on antero-posterior knee laxity, functional outcome and patient satisfaction. 126 patients who were treated for tibial plateau fractures between 2008-2013 in the orthopedics and traumatology department of our institution were evaluated for the study. Patients were treated with open reduction and internal fixation, arthroscopy assisted minimally invasive osteosynthesis or conservative treatment. Mean posterior tibial slope after the treatment was 6.91 ± 5.11 and there was no significant difference when compared to the uninvolved side 6.42 ± 4,21 (p = 0.794). Knee laxity in anterior-posterior plane was 6.14 ± 2.11 and 5.95 ± 2.25 respectively on healthy and injured side. The difference of mean laxity in anterior-posterior plane between two sides was statistically significant. In this study we found no difference in laxity between the injured and healthy knees. However Tegner score decreased significantly in patients who had greater laxity difference between the knees. We did not find significant difference between fracture type and laxity, IKDC functional scores independent of the ligamentous injury. In conclusion despite coronal alignment is taken into consideration in treatment of tibial plateau fractures, sagittal alignment is reasonably important for stability and should not be ignored.

  6. Benefits of sagittal-oblique MRI reconstruction of anterior cruciate ligament of the knee

    International Nuclear Information System (INIS)

    Nenezić, D.

    2015-01-01

    Full text: MRI examination of the anterior cruciate ligament (ACL) of the knee gives valuable information for conventional, physiatrist and/or arthroscopic microinvasiv treatment. three planar MRI examination and 3D reconstructions are highly precise in the analysis of the intra and periarticular structures, with exceptions of anterior cruciate ligament. Direct contact with the roof of the intercondilar fossa (in the full extension during the examination) and its specific orientation makes visualization of ACL diagnostically problematic. In a one year period precise protocol for MRI visualization of ACL was tested and applied as “Sagittal Oblique MRI Reconstruction”. In short, it has been Angled biplanar reconstruction in the parasagital and paratransversal planes (patientrelated and arbitrary selected in full extension), on T2, 2mm slice and 0,2 mm gap. 153 MRI examinations of the patients with lesions of the ACL were included in the study in the Clinical Center of Montenegro during 2005 year. Beside standard Knee MRI protocol all patients had the Sagittal Oblique MRI reconstruction of ACL and the Flexion MRI examination, to compare with. The Sagittal Oblique MRI reconstruction of ACL it is adapted to the concrete morphology of the patients ACL and it does not depend of the volume of the examined knee. In comparison with the Standard Knee MRI protocol and with the Flexion MRI examination, the Sagittal Oblique MRI reconstruction of ACL takes less time to perform, and the ligament is shown in fool length at three to five slices, which is more than with the both compared protocols. Sagittal Oblique MRI Reconstruction of ACL is therefore patient dependable, orientated in shape of concrete ligament of the patient’s knee. In combination with age, occupation, physical activity and level of patients while to contribute in healing process, the Sagittal Oblique MRI reconstruction of ACL contribute to scholastic approach, as highest benefit to patients with

  7. 3D knee segmentation based on three MRI sequences from different planes.

    Science.gov (United States)

    Zhou, L; Chav, R; Cresson, T; Chartrand, G; de Guise, J

    2016-08-01

    In clinical practice, knee MRI sequences with 3.5~5 mm slice distance in sagittal, coronal, and axial planes are often requested for the knee examination since its acquisition is faster than high-resolution MRI sequence in a single plane, thereby reducing the probability of motion artifact. In order to take advantage of the three sequences from different planes, a 3D segmentation method based on the combination of three knee models obtained from the three sequences is proposed in this paper. In the method, the sub-segmentation is respectively performed with sagittal, coronal, and axial MRI sequence in the image coordinate system. With each sequence, an initial knee model is hierarchically deformed, and then the three deformed models are mapped to reference coordinate system defined by the DICOM standard and combined to obtain a patient-specific model. The experimental results verified that the three sub-segmentation results can complement each other, and their integration can compensate for the insufficiency of boundary information caused by 3.5~5 mm gap between consecutive slices. Therefore, the obtained patient-specific model is substantially more accurate than each sub-segmentation results.

  8. The angle of inclination of the native ACL in the coronal and sagittal planes.

    Science.gov (United States)

    Reid, Jonathan C; Yonke, Bret; Tompkins, Marc

    2017-04-01

    The purpose of this cross-sectional study was to evaluate the angle of inclination of the native anterior cruciate ligament (ACL) in both the sagittal and coronal planes and to evaluate these findings based on sex, height, BMI, and skeletal maturity. Inclusion criteria for the study included patients undergoing routine magnetic resonance imaging (MRI) of the knee at a single outpatient orthopedic center who had an intact ACL on MRI. Measurements of the angle of inclination were made on MRIs in both the sagittal and coronal planes. Patients were compared based on sex, height, BMI, and skeletal maturity. One-hundred and eighty-eight patients were included (36 skeletally immature/152 skeletally mature; 98 male/90 female). The overall angle of inclination was 74.3° ± 4.8° in the coronal plane and 46.9° ± 4.9° in the sagittal plane. Skeletally immature patients (coronal: 71.8° ± 6.1°; sagittal: 44.7° ± 5.5°) were significantly different in both coronal and sagittal planes (P = 0.04 and 0.01, respectively) from skeletally mature patients (coronal: 75.3° ± 4.7°; sagittal: 47.4° ± 4.7°). There were no differences based on sex, height, or BMI. There are differences between the angle of inclination findings in this study and other studies, which could be due to MRI and measurement techniques. Clinically, skeletal maturity may be important to account for when using the ACL angle of inclination to evaluate anatomic ACL reconstruction. Prognostic retrospective study, Level of evidence III.

  9. Composition of The Knee Index, a novel three-dimensional biomechanical index for knee joint load, in subjects with mild to moderate knee osteoarthritis

    DEFF Research Database (Denmark)

    Clausen, Brian; Andriacchi, Tom; Nielsen, Dennis Brandborg

    Background Knee joint load is an important factor associated with progression of knee osteoarthritis. To provide an overall understanding of knee joint loading, the Knee Index (KI) has been developed to include moments from all three planes (frontal, sagittal and transversal). However, before KI...... index of joint load for the knee, in patients with mild to moderate knee osteoarthritis. Methods The contribution of frontal, sagittal and transversal plane knee moments to KI was investigated in 24 subjects (13 women, age: 58 ± 7.6 years, BMI: 27.1 ± 3.0) with clinically diagnosed mild to moderate knee...... kinematics (i.e. the knee adduction moment), and secondarily the sagittal plane kinematics (i.e. the knee flexion moment). This holds promise for using KI in clinical trials since both frontal and sagittal knee joint moments have been suggested to be associated with the knee osteoarthritis disease...

  10. The accuracy of intramedullary tibial guide of sagittal alignment of PCL-substituting total knee arthroplasty.

    Science.gov (United States)

    Han, Hyuk-Soo; Kang, Seung-Baik; Jo, Chris H; Kim, Sun-Hong; Lee, Jung-Ha

    2010-10-01

    Experimental and clinical studies on the accuracy of the intramedullary alignment method have produced different results, and few have addressed accuracy in the sagittal plane. Reported deviations are not only attributable to the alignment method but also to radiological errors. The purpose of this study was to evaluate the accuracy of the intramedullary alignment method in the sagittal plane using computed tomography (CT) and 3-dimensional imaging software. Thirty-one TKAs were performed using an intramedullary alignment method involving the insertion of a long 8-mm diameter rod into the medullary canal to the distal metaphysis of the tibia. All alignment instruments were set to achieve an ideal varus/valgus angle of 0° in the coronal plane and a tibial slope of 0° in the sagittal plane. The accuracy of the intramedullary alignment system was assessed by measuring the coronal tibial component angle and sagittal tibial slope angles, i.e., angles between the tibial anatomical axis and the tangent to the medial and lateral tibial plateau or the cut-surface. The mean coronal tibial component angle was 88.5° ± 1.2° and the mean tibial component slope in the sagittal plane was 1.6° ± 1.2° without anterior slope. Our intramedullary tibial alignment method, which involves passing an 8-mm diameter long rod through the tibial shaft isthmus, showed good accuracy (less than 3 degrees of variation and no anterior slope) in the sagittal plane in neutral or varus knees.

  11. Reliability of sagittal plane hip, knee, and ankle joint angles from a single frame of video data using the GAITRite camera system.

    Science.gov (United States)

    Ross, Sandy A; Rice, Clinton; Von Behren, Kristyn; Meyer, April; Alexander, Rachel; Murfin, Scott

    2015-01-01

    The purpose of this study was to establish intra-rater, intra-session, and inter-rater, reliability of sagittal plane hip, knee, and ankle angles with and without reflective markers using the GAITRite walkway and single video camera between student physical therapists and an experienced physical therapist. This study included thirty-two healthy participants age 20-59, stratified by age and gender. Participants performed three successful walks with and without markers applied to anatomical landmarks. GAITRite software was used to digitize sagittal hip, knee, and ankle angles at two phases of gait: (1) initial contact; and (2) mid-stance. Intra-rater reliability was more consistent for the experienced physical therapist, regardless of joint or phase of gait. Intra-session reliability was variable, the experienced physical therapist showed moderate to high reliability (intra-class correlation coefficient (ICC) = 0.50-0.89) and the student physical therapist showed very poor to high reliability (ICC = 0.07-0.85). Inter-rater reliability was highest during mid-stance at the knee with markers (ICC = 0.86) and lowest during mid-stance at the hip without markers (ICC = 0.25). Reliability of a single camera system, especially at the knee joint shows promise. Depending on the specific type of reliability, error can be attributed to the testers (e.g. lack of digitization practice and marker placement), participants (e.g. loose fitting clothing) and camera systems (e.g. frame rate and resolution). However, until the camera technology can be upgraded to a higher frame rate and resolution, and the software can be linked to the GAITRite walkway, the clinical utility for pre/post measures is limited.

  12. Association of baseline knee sagittal dynamic joint stiffness during gait and 2-year patellofemoral cartilage damage worsening in knee osteoarthritis.

    Science.gov (United States)

    Chang, A H; Chmiel, J S; Almagor, O; Guermazi, A; Prasad, P V; Moisio, K C; Belisle, L; Zhang, Y; Hayes, K; Sharma, L

    2017-02-01

    Knee sagittal dynamic joint stiffness (DJS) describes the biomechanical interaction between change in external knee flexion moment and flexion angular excursion during gait. In theory, greater DJS may particularly stress the patellofemoral (PF) compartment and thereby contribute to PF osteoarthritis (OA) worsening. We hypothesized that greater baseline knee sagittal DJS is associated with PF cartilage damage worsening 2 years later. Participants all had OA in at least one knee. Knee kinematics and kinetics during gait were recorded using motion capture systems and force plates. Knee sagittal DJS was computed as the slope of the linear regression line for knee flexion moments vs angles during the loading response phase. Knee magnetic resonance imaging (MRI) scans were obtained at baseline and 2 years later. We assessed the association between baseline DJS and baseline-to-2-year PF cartilage damage worsening using logistic regression with generalized estimating equations (GEE). Our sample had 391 knees (204 persons): mean age 64.2 years (SD 10.0); body mass index (BMI) 28.4 kg/m 2 (5.7); 76.5% women. Baseline knee sagittal DJS was associated with baseline-to-2-year cartilage damage worsening in the lateral (OR = 5.35, 95% CI: 2.37-12.05) and any PF (OR = 2.99, 95% CI: 1.27-7.04) compartment. Individual components of baseline DJS (i.e., change in knee moment or angle) were not associated with subsequent PF disease worsening. Capturing the concomitant effect of knee kinetics and kinematics during gait, knee sagittal DJS is a potentially modifiable risk factor for PF disease worsening. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Rotation of intramedullary alignment rods affects distal femoral cutting plane in total knee arthroplasty.

    Science.gov (United States)

    Maderbacher, Günther; Matussek, Jan; Keshmiri, Armin; Greimel, Felix; Baier, Clemens; Grifka, Joachim; Maderbacher, Hermann

    2018-02-17

    Intramedullary rods are widely used to align the distal femoral cut in total knee arthroplasty. We hypothesised that both coronal (varus/valgus) and sagittal (extension/flexion) cutting plane are affected by rotational changes of intramedullary femoral alignment guides. Distal femoral cuts using intramedullary alignment rods were simulated by means of a computer-aided engineering software in 4°, 6°, 8°, 10°, and 12° of valgus in relation to the femoral anatomical axis and 4° extension, neutral, as well as 4°, 8°, and 12° of flexion in relation to the femoral mechanical axis. This reflects the different angles between anatomical and mechanical axis in coronal and sagittal planes. To assess the influence of rotation of the alignment guide on the effective distal femoral cutting plane, all combinations were simulated with the rod gradually aligned from 40° of external to 40° of internal rotation. Rotational changes of the distal femoral alignment guides affect both the coronal and sagittal cutting planes. When alignment rods are intruded neutrally with regards to sagittal alignment, external rotation causes flexion, while internal rotation causes extension of the sagittal cutting plane. Simultaneously the coronal effect (valgus) decreases resulting in an increased varus of the cutting plane. However, when alignment rods are intruded in extension or flexion partly contradictory effects are observed. Generally the effect increases with the degree of valgus preset, rotation and flexion. As incorrect rotation of intramedullary alignment guides for distal femoral cuts causes significant cutting errors, exact rotational alignment is crucial. Coronal cutting errors in the distal femoral plane might result in overall leg malalignment, asymmetric extension gaps and subsequent sagittal cutting errors.

  14. Associations between lower extremity muscle mass and multiplanar knee laxity and stiffness: a potential explanation for sex differences in frontal and transverse plane knee laxity.

    Science.gov (United States)

    Shultz, Sandra J; Pye, Michele L; Montgomery, Melissa M; Schmitz, Randy J

    2012-12-01

    Compared with men, women have disproportionally greater frontal (varus-valgus) and transverse (internal-external) plane laxity and lower stiffness, despite having similar sagittal (anterior-posterior) plane laxity and stiffness. While the underlying cause is unclear, the amount of lower extremity lean mass (LELM) may be a contributing factor. Lower extremity lean mass would be a stronger predictor of frontal and transverse plane laxity and incremental stiffness than the sagittal plane. Associations between LELM and stiffness would be stronger at lower force increments. Descriptive laboratory study. Sixty-three women and 30 men with no history of ligament injury were measured for knee laxity and incremental stiffness in the sagittal (-90- to 130-N posterior-to-anterior directed loads), frontal (±10-N·m varus-valgus torques), and transverse (±5-N·m internal-external rotation torques) planes and underwent dual-energy X-ray absorptiometry scans to measure LELM. Linear regressions examined the extent to which LELM predicted each laxity and stiffness value, while also accounting for a person's sex. Females (vs males) had greater laxity and less stiffness in the frontal and transverse planes but not the sagittal plane. Lower extremity lean mass was a poor predictor of sagittal laxity and stiffness (R (2) range = .021-.081; P > .06) but was a stronger predictor of frontal (R (2) range = .215-.567; P plane laxity and stiffness. Associations were stronger for low (R (2) = .495-.504) versus high (R (2) = .215-.435) frontal plane stiffness but were similar for low (R (2) = .233-.293) versus high (R (2) = .224-.356) transverse plane stiffness. Once we accounted for a person's LELM, sex had little effect on laxity and stiffness (change in R (2) after removal = .01-.08; P = .027-.797). Less LELM was associated with greater laxity and less stiffness in frontal and transverse planes, which may contribute to the disproportionally higher laxities and reduced stiffnesses observed

  15. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility.

    Science.gov (United States)

    Williams, D S Blaise; Welch, Lee M

    2015-01-01

    Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (pHamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.

  16. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility

    Directory of Open Access Journals (Sweden)

    D. S. Blaise Williams III

    2015-10-01

    Full Text Available ABSTRACTBackground:Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females.Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners.Method: Forty subjects (30.0±6.4 years participated and were placed in one of 4 groups: flexible males (n=10, inflexible males (n=10, flexible females (n=10, and inflexible females (n=10. All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility ANOVA (α=0.05.Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05 and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01. For hip flexion at initial contact, a significant interaction existed (p<0.05. Flexible females (36.7±7.4º exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01 and flexible males (30.1±9.5º, p<0.05. No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment.Conclusion: Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.

  17. Evaluation of uterine peristalsis using cine MRI on the coronal plane in comparison with the sagittal plane.

    Science.gov (United States)

    Shitano, Fuki; Kido, Aki; Kataoka, Masako; Fujimoto, Koji; Kiguchi, Kayo; Fushimi, Yasutaka; Togashi, Kaori

    2016-01-01

    Uterine peristalsis is supposed to be closely related to the early stages of reproduction. Sperms are preferentially transported from the uterine cervix to the side of the tube with the dominant follicle. However, with respect to magnetic resonance imaging (MRI), uterine peristalsis has only been evaluated at the sagittal plane of cine MRI. To evaluate and compare uterine peristalsis both on sagittal and coronal planes using cine MRI. Internal ethics committee approval was obtained, and subjects provided informed written consent. Thirty-one women underwent MRI scans in the periovulatory phase of the menstrual cycle. Cine MR images obtained by fast advanced spin echo sequence at 3-T field strength magnet (Toshiba Medical Systems) were visually evaluated by two independent radiologists. The frequency and the direction of peristalsis, and the presence of outer myometrium conduction of signal intensities (OMC), were evaluated. The laterality of the dominant follicle was determined on axial images and compared with the peristaltic direction in fundus. The subjects in which peristaltic directions were more clearly recognized were significantly frequent in coronal planes than in sagittal planes (P < 0.05). There was no significant difference in the peristaltic frequency between the sagittal and the coronal plane. However, the OMC was more recognized in the coronal plane than in the sagittal plane (P < 0.05). Peristaltic waves conducted toward the possible ovulation side were observed in only three of the 10 subjects. OMC of uterine peristalsis was better demonstrated in the coronal plane compared to the sagittal plane. © The Foundation Acta Radiologica 2015.

  18. Sagittal plane tilting deformity of the patellofemoral joint: a new concept in patients with chondromalacia patella.

    Science.gov (United States)

    Aksahin, Ertugrul; Aktekin, Cem Nuri; Kocadal, Onur; Duran, Semra; Gunay, Cüneyd; Kaya, Defne; Hapa, Onur; Pepe, Murad

    2017-10-01

    The aims of this study were to evaluate sagittal plane alignment in patients with chondromalacia patella via magnetic resonance imaging (MRI), analyse the relationships between the location of the patellar cartilaginous lesions and sagittal alignment and finally investigate the relationships between the sagittal plane malalignment and patellofemoral loadings using by finite element analysis. Fifty-one patients who were diagnosed with isolated modified Outerbridge grade 3-4 patellar chondromalacia based on MRI evaluation and 51 control subjects were evaluated. Chondromalacia patella patients were divided into three subgroups according to the chondral lesion location as superior, middle and inferior. The patella-patellar tendon angle (P-PT) was used for evaluation of sagittal alignment of patellofemoral joint. Each subgroup was compared with control group by using P-PT angle. To investigate the biomechanical effects of sagittal plane malpositioning on patellofemoral joint, bone models were created at 30°, 60° and 90° knee flexion by using mean P-PT angles, which obtained from patients with chondromalacia patellae and control subjects. The total loading and contact area values of the patellofemoral joints were investigated by finite element analysis. The mean age of all participants was 52.9 ± 8.2 years. The mean P-PT angle was significantly lower in chondromalacia group (142.1° ± 3.6°) compared to control group (144.5° ± 5.3°) (p = 0.008). Chondral lesions were located in superior, middle and inferior zones in 16, 20 and 15 patients, respectively. The mean P-PT angles in patients with superior (141.8 ± 2.7) and inferior subgroups (139.2 ± 2.3) were significantly lower than the values in the control group (p chondromalacia than in the control models at the same flexion degrees. There were increased loadings at 30° and 90° flexions in the sagittal patellar tilt models. This study revealed that sagittal plain malpositioning of the

  19. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility

    Science.gov (United States)

    Williams III, D. S. Blaise; Welch, Lee M.

    2015-01-01

    ABSTRACT Background: Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Method: Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (pHamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners. PMID:26537812

  20. Alignment in the transverse plane, but not sagittal or coronal plane, affects the risk of recurrent patella dislocation.

    Science.gov (United States)

    Takagi, Shigeru; Sato, Takashi; Watanabe, Satoshi; Tanifuji, Osamu; Mochizuki, Tomoharu; Omori, Go; Endo, Naoto

    2017-11-17

    Abnormalities of lower extremity alignment (LEA) in recurrent patella dislocation (RPD) have been studied mostly by two-dimensional (2D) procedures leaving three-dimensional (3D) factors unknown. This study aimed to three-dimensionally examine risk factors for RPD in lower extremity alignment under the weight-bearing conditions. The alignment of 21 limbs in 15 RPD subjects was compared to the alignment of 24 limbs of 12 healthy young control subjects by an our previously reported 2D-3D image-matching technique. The sagittal, coronal, and transverse alignment in full extension as well as the torsional position of the femur (anteversion) and tibia (tibial torsion) under weight-bearing standing conditions were assessed by our previously reported 3D technique. The correlations between lower extremity alignment and RPD were assessed using multiple logistic regression analysis. The difference of lower extremity alignment in RPD between under the weight-bearing conditions and under the non-weight-bearing conditions was assessed. In the sagittal and coronal planes, there was no relationship (statistically or by clinically important difference) between lower extremity alignment angle and RPD. However, in the transverse plane, increased external tibial rotation [odds ratio (OR) 1.819; 95% confidence interval (CI) 1.282-2.581], increased femoral anteversion (OR 1.183; 95% CI 1.029-1.360), and increased external tibial torsion (OR 0.880; 95% CI 0.782-0.991) were all correlated with RPD. The tibia was more rotated relative to femur at the knee joint in the RPD group under the weight-bearing conditions compared to under the non-weight-bearing conditions (p alignment parameters in the transverse plane related to the risk of RPD, while in the sagittal and coronal plane alignment parameters did not correlate with RPD. The clinical importance of this study is that the 3D measurements more directly, precisely, and sensitively detect rotational parameters associated with RPD and

  1. A Comparison of Plain Radiography with Computer Tomography in Determining Coronal and Sagittal Alignments following Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Solayar GN

    2017-07-01

    Full Text Available INTRODUCTION: Optimal coronal and sagittal component positioning is important in achieving a successful outcome following total knee arthroplasty (TKA. Modalities to determine post-operative alignment include plain radiography and computer tomography (CT imaging. This study aims to determine the accuracy and reliability of plain radiographs in measuring coronal and sagittal alignment following TKA. MATERIALS AND METHODS: A prospective, consecutive study of 58 patients undergoing TKA was performed comparing alignment data from plain radiographs and CT imaging. Hip- knee-angle (HKA, sagittal femoral angle (SFA and sagittal tibial angle (STA measurements were taken by two observers from plain radiographs and compared with CT alignment. Intra- and inter-observer correlation was calculated for each measurement. RESULTS: Intra-observer correlation was excellent for HKA (r>0.89 with a mean difference of 0.95 and STA (r>0.8 compared to SFA (r=0.5. When comparing modalities (radiographs vs CT, HKA estimations for both observers showed the least maximum and mean differences while SFA observations were the least accurate. CONCLUSION: Radiographic estimation of HKA showed excellent intra- and inter-observer correlation and corresponds well with CT imaging. However, radiographic estimation of sagittal plane alignment was less reliably measured and correlated less with CT imaging. Plain radiography was found to be inferior to CT for estimation of biplanar prosthetic alignment following TKA.

  2. The effects of the sagittal plane malpositioning of the patella and concomitant quadriceps hypotrophy on the patellofemoral joint: a finite element analysis.

    Science.gov (United States)

    Aksahin, Ertugrul; Kocadal, Onur; Aktekin, Cem N; Kaya, Defne; Pepe, Murad; Yılmaz, Serdar; Yuksel, H Yalcin; Bicimoglu, Ali

    2016-03-01

    Anterior knee pain is a common symptom after intramedullary nailing in tibia shaft fracture. Moreover, patellofemoral malalignment is also known to be a major reason for anterior knee pain. Patellofemoral malalignment predisposes to increased loading in patellar cartilage. In the previous study, we have demonstrated the quadriceps atrophy and patellofemoral malalignment after intramedullary nailing due to tibia shaft fracture. In this study, our aim was to clarify the effects of quadriceps atrophy and patellofemoral malalignment with the pathologic loading on the joint cartilage. Mesh models of patellofemoral joint were constructed with CT images and integrated with soft tissue components such as menisci and ligaments. Physiological and sagittal tilt models during extension and flexion at 15°, 30° and 60° were created generating eight models. All the models were applied with 137 N force to present the effects of normal loading and 115.7 N force for the simulation of quadriceps atrophy. Different degrees of loading were applied to evaluate the joint contact area and pressure value with the finite element analysis. There was increased patellofemoral contact area in patellar tilt models with respect to normal models. The similar loading patterns were diagnosed in all models at 0° and 15° knee flexion when 137 N force was applied. Higher loading values were obtained at 30° and 60° knee flexions in sagittal tilt models. Furthermore, in the sagittal tilt models, in which the quadriceps atrophy was simulated, the loadings at 30° and 60° knee flexion were higher than in the physiological ones. Sagittal malalignment of the patellofemoral joint is a new concept that results in different loading patterns in the patellofemoral joint biomechanics. This malalignment in sagittal plane leads to increased loading values on the patellofemoral joint at 30° and 60° of the knee flexions. This new concept should be kept in mind during the course of diagnosis and treatment

  3. Investigation of reconstruction conditions in sagittal-plane multiplanar reconstruction of the temporal bone

    International Nuclear Information System (INIS)

    Suzuki, Miyako; Yoshikawa, Hiroshi; Hosokawa, Akira; Ichikawa, Ginichiro; Kobayashi, Kenichi; Ando, Ichiro

    2002-01-01

    In recent years, it has become possible to quickly obtain a large amount of 3D data with high continuity by helical CT scanning, in which the body is scanned continuously in a helical fashion. MPR (multiplanar reconstruction) can be performed using this data to generate images in arbitrary sectional planes, making it possible to obtain sagittal-plane images of the highest quality, which is useful for surgical planning. However, the procedures involved are rather complicated. Therefore, this study was conducted to investigate conditions for standardization of sagittal-plane MPR examinations performed using Xvigor CT scanners and Xtension. The results showed that a slice interval of 1 mm, no imaging filter, a zooming factor of 1.5, a window level of 350, and a window width of 3500 are the optimal imaging conditions. The stapes can be visualized in 70% of cases with sagittal-plane MPR based on axial images, and can be recognized at surgery in 75% or more of cases. Images of consistent quality can be obtained by standardizing the conditions for sagittal-plane MPR, which should prove advantageous in the clinical setting. (author)

  4. Effect of Acute Alterations in Foot Strike Patterns during Running on Sagittal Plane Lower Limb Kinematics and Kinetics

    Directory of Open Access Journals (Sweden)

    Kevin A. Valenzuela, Scott K. Lynn, Lisa R. Mikelson, Guillermo J. Noffal, Daniel A. Judelson

    2015-03-01

    Full Text Available subjects were identified through slow motion video playback (n = 21, age = 22.8±2.2 years, mass = 73.1±14.5 kg, height 1.75 ± 0.10 m. On day two, subjects performed five overground run trials in both their natural and unnatural strike patterns while motion and force data were collected. Data were collected over two days so that foot strike videos could be analyzed for group placement purposes. Several 2 (Foot Strike Pattern –forefoot strike [FFS], rearfoot strike [RFS] x 2 (Group – PFFG, PRFG mixed model ANOVAs (p < 0.05 were run on speed, active peak vertical ground reaction force (VGRF, peak early stance and mid stance sagittal ankle moments, sagittal plane hip and knee moments, ankle dorsiflexion ROM, and sagittal plane hip and knee ROM. There were no significant interactions or between group differences for any of the measured variables. Within subject effects demonstrated that the RFS condition had significantly lower (VGRF (RFS = 2.58 ± .21 BW, FFS = 2.71 ± 0.23 BW, dorsiflexion moment (RFS = -2.6 1± 0.61 Nm·kg-1, FFS = -3.09 ± 0.32 Nm·kg-1, and dorsiflexion range of motion (RFS = 17.63 ± 3.76°, FFS = 22.10 ± 5.08°. There was also a significantly higher peak plantarflexion moment (RFS = 0.23 ± 0.11 Nm·kg-1, FFS = 0.01 ± 0.01 Nm·kg-1, peak knee moment (RFS = 2.61 ± 0.54 Nm·kg-1, FFS = 2.39 ± 0.61 Nm·kg-1, knee ROM (RFS = 31.72 ± 2.79°, FFS = 29.58 ± 2.97°, and hip ROM (RFS = 42.72 ± 4.03°, FFS = 41.38 ± 3.32° as compared with the FFS condition. This research suggests that acute changes in foot strike patterns during shod running can create alterations in certain lower limb kinematic and kinetic measures that are not dependent on the preferred foot strike pattern of the individual. This research also challenges the contention that the impact transient spike in the vertical ground reaction force curve is only present during a rear foot strike type of running gait.

  5. Gender difference of ankle stability in the sagittal and frontal planes.

    Science.gov (United States)

    Hanzlick, Harrison; Hyunglae Lee

    2017-07-01

    This paper offers quantification of ankle stability in relation to simulated haptic environments of varying stiffness. This study analyzes the stability trends of male and female subjects independently over a wide range of simulated environments after subjects were exposed to vigorous position perturbation. Ankle stability was quantified for both degrees-of-freedom of the ankle in the sagittal and frontal planes. Subjects' stability consistently decreased when exposed to environments of negative simulated stiffness. In the frontal plane, male and female subjects exhibited nearly identical stability levels. In the sagittal plane, however, male subjects demonstrated marginally more stability than female subjects in environments with negative stiffness. Results of this study are beneficial to understanding situations in which the ankle is likely to lose stability, potentially resulting in injury.

  6. Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis and flexion of the knee.

    Science.gov (United States)

    Obeid, Ibrahim; Hauger, Olivier; Aunoble, Stéphane; Bourghli, Anouar; Pellet, Nicolas; Vital, Jean-Marc

    2011-09-01

    It has become well recognised that sagittal balance of the spine is the result of an interaction between the spine and the pelvis. Knee flexion is considered to be the last compensatory mechanism in case of sagittal imbalance, but only few studies have insisted on the relationship between spino-pelvic parameters and lower extremity parameters. Correlation between the lack of lumbar lordosis and knee flexion has not yet been established. A retrospective study was carried out on 28 patients with major spinal deformities. The EOS system was used to measure spinal and pelvic parameters and the knee flexion angle; the lack of lumbar lordosis was calculated after prediction of lumbar lordosis with two different formulas. Correlation analysis between the different measured parameters was performed. Lumbar lordosis correlated with sacral slope (r = -0.71) and moderately with knee flexion angle (r = 0.42). Pelvic tilt correlated moderately with knee flexion angle (r = 0.55). Lack of lumbar lordosis correlated best with knee flexion angle (r = 0.72 and r = 0.63 using the two formulas, respectively). Knee flexion as a compensatory mechanism to sagittal imbalance was well correlated to the lack of lordosis and, depending on the importance of the former parameter, the best procedure to correct sagittal imbalance could be chosen.

  7. Bracing of the Reconstructed and Osteoarthritic Knee during High Dynamic Load Tasks.

    Science.gov (United States)

    Hart, Harvi F; Crossley, Kay M; Collins, Natalie J; Ackland, David C

    2017-06-01

    Lateral compartment osteoarthritis accompanied by abnormal knee biomechanics is frequently reported in individuals with knee osteoarthritis after anterior cruciate ligament reconstruction (ACLR). The aim of this study was to evaluate changes in knee biomechanics produced by an adjusted and unadjusted varus knee brace during high dynamic loading activities in individuals with lateral knee osteoarthritis after ACLR and valgus malalignment. Nineteen participants who had undergone ACLR 5 to 20 yr previously and had symptomatic and radiographic lateral knee osteoarthritis with valgus malalignment were assessed. Quantitative motion analysis experiments were conducted during hopping, stair ascent, and descent under three test conditions: (i) no brace, (ii) unadjusted brace with sagittal plane support and neutral frontal plane alignment, and (iii) adjusted brace with sagittal plane support and varus realignment (valgus to neutral). Sagittal, frontal, and transverse plane knee kinematics, external joint moment, and angular impulse data were calculated. Relative to an unbraced knee, braced conditions significantly increased knee flexion and adduction angles during hopping (P = 0.003 and P = 0.005; respectively), stair ascent (P = 0.003 and P stair ascent (P = 0.008) and flexion moments during stair descent (P = 0.006). There were no significant differences between the adjusted and the unadjusted brace conditions (P > 0.05). A knee brace, with or without varus alignment, can modulate knee kinematics and external joint moments during hopping, stairs ascent, and descent in individuals with predominant lateral knee osteoarthritis after ACLR. Longer-term use of a brace may have implications in slowing osteoarthritis progression.

  8. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-01-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  9. Gender differences of sagittal knee and ankle biomechanics during stair-to-ground descent transition.

    Science.gov (United States)

    Hong, Yoon No Gregory; Shin, Choongsoo S

    2015-12-01

    Falls on stairs often result in severe injury and occur twice as frequently in women. However, gender differences in kinetics and kinematics during stair descent are unknown. Thus, this study aimed to determine whether gender differences of knee and ankle biomechanics exist in the sagittal plane during the stair-to-ground descending transition. It was hypothesized that 1) women would reveal higher ground-toe-trochanter angle and lower ground-toe length during stair-to-ground descent transition than men; and 2) women would reveal lower peak knee extension moment during stair-to-ground descent transition than men. Fifteen men and fifteen women were recruited and performed a stair descent activity. Kinetic and kinematic data were obtained using a force plate and motion capture system. The women performed the stair descent with a lower peak knee extension moment and a peak knee power at the early weight acceptance phase. The women also revealed a higher ground-toe-trochanter angle and a lower ground-toe length, which indicated a more forward position of the lower extremity relative to the toe contact point at both the initial contact and at the time of peak kinematic and kinetic events. This study found that knee and ankle kinematics and kinetics differed significantly between the genders due to differences in ground-toe-trochanter angle. Women have a different stair descending strategy that reduces the demand of the lower extremity muscle function, but this strategy seems to increase the risk of falls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Knee motion variability in patients with knee osteoarthritis: the effect of self-reported instability

    Science.gov (United States)

    Gustafson, Jonathan A.; Robinson, Megan E.; Fitzgerald, G. Kelley; Tashman, Scott; Farrokhi, Shawn

    2015-01-01

    Background Knee osteoarthritis has been previously associated with a stereotypical knee-stiffening gait pattern and reduced knee joint motion variability due to increased antagonist muscle co-contractions and smaller utilized arc of motion during gait. However, episodic self-reported instability may be a sign of excessive motion variability for a large subgroup of patients with knee osteoarthritis. The objective of this work was to evaluate the differences in knee joint motion variability during gait in patients with knee osteoarthritis with and without self-reported instability compared to a control group of older adults with asymptomatic knees. Methods Forty-three subjects, 8 with knee osteoarthritis but no reports of instability (stable), 11 with knee osteoarthritis and self-reported instability (unstable), and 24 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a decline gait task on a treadmill. Knee motion variability was assessed using parametric phase plots during the loading response phase of decline gait. Findings The stable group demonstrated decreased sagittal-plane motion variability compared to the control group (p=0.04), while the unstable group demonstrated increased sagittal-plane motion variability compared to the control (p=0.003) and stable groups (pknee motion variability in patients with knee osteoarthritis without self-reported instability supports previous research. However, presence of self-reported instability is associated with increased knee motion variability in patients with knee osteoarthritis and warrants further investigation. PMID:25796536

  11. Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Skoglund, Karl; Ryberg, Charlotte

    2005-01-01

    , the mid-sagittal plane is not always planar, but a curved surface resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an optimization strategy which fits a thin-plate spline surface to the brain data using a robust least median of squares estimator...

  12. Effects of Knee Alignments and Toe Clip on Frontal Plane Knee Biomechanics in Cycling

    Science.gov (United States)

    Shen, Guangping; Zhang, Songning; Bennett, Hunter J.; Martin, James C.; Crouter, Scott E.; Fitzhugh, Eugene C.

    2018-01-01

    Effects of knee alignment on the internal knee abduction moment (KAM) in walking have been widely studied. The KAM is closely associated with the development of medial knee osteoarthritis. Despite the importance of knee alignment, no studies have explored its effects on knee frontal plane biomechanics during stationary cycling. The purpose of this study was to examine the effects of knee alignment and use of a toe clip on the knee frontal plane biomechanics during stationary cycling. A total of 32 participants (11 varus, 11 neutral, and 10 valgus alignment) performed five trials in each of six cycling conditions: pedaling at 80 rpm and 0.5 kg (40 Watts), 1.0 kg (78 Watts), and 1.5 kg (117 Watts) with and without a toe clip. A motion analysis system and a customized instrumented pedal were used to collect 3D kinematic and kinetic data. A 3 × 2 × 3 (group × toe clip × workload) mixed design ANOVA was used for statistical analysis (p < 0.05). There were two different knee frontal plane loading patterns, internal abduction and adduction moment, which were affected by knee alignment type. The knee adduction angle was 12.2° greater in the varus group compared to the valgus group (p = 0.001), yet no difference was found for KAM among groups. Wearing a toe clip increased the knee adduction angle by 0.95º (p = 0.005). The findings of this study indicate that stationary cycling may be a safe exercise prescription for people with knee malalignments. In addition, using a toe clip may not have any negative effects on knee joints during stationary cycling. Key points Varus or valgus alignment did not cause increased frontal-plane knee joint loading, suggesting stationary cycling is a safe exercise. This study supports that using a toe clip did not lead to abnormal frontal-plane knee loading during stationary cycling. Two different knee frontal plane loading patterns, knee abduction and adduction moment, were observed during stationary cycling, which are likely affected by

  13. Body posture in the sagittal plane and scoliotic variables in girls aged 7-18

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2018-02-01

    Introduction. The aim of the study was to analyze the correlation between the variable posture in the sagittal plane and the scoliotic variables. Material and methods. The study involved 28 girls aged 7-18 years with scoliotic posture and scoliosis. Body posture as well as the spine were examined using Moiré’s spatial photogrammetry and the Exhibeon digital radiography method. Based on the size of the spinal curvature, the following were distinguished: scoliotic postures: 1-9° and scoliosis: ≥10°. Results. There were 21 (75% with scoliotic posture and 7 (25% with scoliosis. The size of the thoracic kyphosis and lumbar lordosis was normal. Conclusions. Between the body postural variables in the sagittal plane and the scoliotic variables, both positive (direct proportional and negative (inversely proportional correlations occurred. In the selection of scoliosis treatment method, the size of the postural variables in the sagittal plane should be taken into account, and each patient’s case should be individually considered.

  14. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.

    Science.gov (United States)

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Descriptive laboratory study. Research laboratory. Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. The high-INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low-INI EA group (P .05). Greater frontal-plane INI EA was associated with less favorable frontal-plane biomechanics that likely result in greater ACL loading. Women were more likely than men to use greater frontal-plane INI EA. The magnitudes of sagittal- and frontal-plane INI EA were largely independent.

  15. Ankle and knee kinetics between strike patterns at common training speeds in competitive male runners.

    Science.gov (United States)

    Kuhman, Daniel; Melcher, Daniel; Paquette, Max R

    2016-01-01

    The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6 min mile(-1)) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.

  16. Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.

    Science.gov (United States)

    Saner, Robert J; Washabaugh, Edward P; Krishnan, Chandramouli

    2017-07-01

    Three-dimensional (3-D) motion capture systems are commonly used for gait analysis because they provide reliable and accurate measurements. However, the downside of this approach is that it is expensive and requires technical expertise; thus making it less feasible in the clinic. To address this limitation, we recently developed and validated (using a high-precision walking robot) a low-cost, two-dimensional (2-D) real-time motion tracking approach using a simple webcam and LabVIEW Vision Assistant. The purpose of this study was to establish the repeatability and minimal detectable change values of hip and knee sagittal plane gait kinematics recorded using this system. Twenty-one healthy subjects underwent two kinematic assessments while walking on a treadmill at a range of gait velocities. Intraclass correlation coefficients (ICC) and minimal detectable change (MDC) values were calculated for commonly used hip and knee kinematic parameters to demonstrate the reliability of the system. Additionally, Bland-Altman plots were generated to examine the agreement between the measurements recorded on two different days. The system demonstrated good to excellent reliability (ICC>0.75) for all the gait parameters tested on this study. The MDC values were typically low (gait assessments using webcam technology can be reliably used for clinical and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Improvements in knee biomechanics during walking are associated with increased physical activity after total knee arthroplasty.

    Science.gov (United States)

    Arnold, John B; Mackintosh, Shylie; Olds, Timothy S; Jones, Sara; Thewlis, Dominic

    2015-12-01

    Total knee arthroplasty (TKA) in people with knee osteoarthritis increases knee-specific and general physical function, but it has not been established if there is a relationship between changes in these elements of functional ability. This study investigated changes and relationships between knee biomechanics during walking, physical activity, and use of time after TKA. Fifteen people awaiting TKA underwent 3D gait analysis before and six months after surgery. Physical activity and use of time were determined in free-living conditions from a high resolution 24-h activity recall. After surgery, participants displayed significant improvements in sagittal plane knee biomechanics and improved their physical activity profiles, standing for 105 more minutes (p=0.001) and performing 64 min more inside chores on average per day (p=0.008). Changes in sagittal plane knee range of motion (ROM) and peak knee flexion positively correlated with changes in total daily energy expenditure, time spent undertaking moderate to vigorous physical activity, inside chores and passive transport (r=0.52-0.66, p=0.005-0.047). Restoration of knee function occurs in parallel and is associated with improvements in physical activity and use of time after TKA. Increased functional knee ROM is required to support improvements in total and context specific physical activity. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Video raster stereography back shape reconstruction: a reliability study for sagittal, frontal, and transversal plane parameters.

    Science.gov (United States)

    Schroeder, J; Reer, R; Braumann, K M

    2015-02-01

    As reliability of raster stereography was proved only for sagittal plane parameters with repeated measures on the same day, the present study was aiming at investigating variability and reliability of back shape reconstruction for all dimensions (sagittal, frontal, transversal) and for different intervals. For a sample of 20 healthy volunteers, intra-individual variability (SEM and CV%) and reliability (ICC ± 95% CI) were proved for sagittal (thoracic kyphosis, lumbar lordosis, pelvis tilt angle, and trunk inclination), frontal (pelvis torsion, pelvis and trunk imbalance, vertebral side deviation, and scoliosis angle), transversal (vertebral rotation), and functional (hyperextension) spine shape reconstruction parameters for different test-retest intervals (on the same day, between-day, between-week) by means of video raster stereography. Reliability was high for the sagittal plane (pelvis tilt, kyphosis and lordosis angle, and trunk inclination: ICC > 0.90), and good to high for lumbar mobility (0.86 < ICC < 0.97). Apart from sagittal plane spinal alignment, there was a lack of certainty for a high reproducibility indicated by wider ICC confidence intervals. So, reliability was fair to high for vertebral side deviation and the scoliosis angle (0.71 < ICC < 0.95), and poor to good for vertebral rotation values as well as for frontal plane upper body and pelvis position parameters (0.65 < ICC < 0.92). Coefficients for the between-day and between-week interval were a little lower than for repeated measures on the same day. Variability (SEM) was less than 1.5° or 1.5 mm, except for trunk inclination. Relative variability (CV) was greater in global trunk position and pelvis parameters (35-98%) than in scoliosis (14-20%) or sagittal sway parameters (4-8 %). Although we found a lower reproducibility for the frontal plane, raster stereography is considered to be a reliable method for the non-invasive, three-dimensional assessment of spinal alignment in normal non

  19. Six degree-of-freedom knee joint kinematics in obese individuals with knee pain during gait.

    Science.gov (United States)

    Li, Jing-Sheng; Tsai, Tsung-Yuan; Felson, David T; Li, Guoan; Lewis, Cara L

    2017-01-01

    Knee joint pain is a common symptom in obese individuals and walking is often prescribed as part of management programs. Past studies in obese individuals have focused on standing alignment and kinematics in the sagittal and coronal planes. Investigation of 6 degree-of-freedom (6DOF) knee joint kinematics during standing and gait is important to thoroughly understand knee function in obese individuals with knee pain. This study aimed to investigate the 6DOF knee joint kinematics in standing and during gait in obese patients using a validated fluoroscopic imaging system. Ten individuals with obesity and knee pain were recruited. While standing, the knee was in 7.4±6.3°of hyperextension, 2.8±3.3° of abduction and 5.6±7.3° of external rotation. The femoral center was located 0.7±3.1mm anterior and 5.1±1.5mm medial to the tibial center. During treadmill gait, the sagittal plane motion, i.e., flexion/extension and anterior-posterior translation, showed a clear pattern. Specifically, obese individuals with knee pain maintained the knee in more flexion and more anterior tibial translation during most of the stance phase of the gait cycle and had a reduced total range of knee flexion when compared to a healthy non-obese group. In conclusion, obese individuals with knee pain used hyperextension knee posture while standing, but maintained the knee in more flexion during gait with reduced overall range of motion in the 6DOF analysis.

  20. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Directory of Open Access Journals (Sweden)

    Yang Yang, Ying Fang, Xini Zhang, Junliang He, Weijie Fu

    2017-12-01

    Full Text Available The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively performed a weight-bearing dorsiflexion (WB-DF maneuver, drop jumps (DJs, and lay-up jumps (LJs. Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041 was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028 and power (p = 0.022 were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  1. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-12-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion-extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  2. Predicting the Functional Roles of Knee Joint Muscles from Internal Joint Moments

    DEFF Research Database (Denmark)

    Flaxman, Teresa E; Alkjær, Tine; Simonsen, Erik B

    2017-01-01

    INTRODUCTION: Knee muscles are commonly labeled as flexors or extensors and aptly stabilize the knee against sagittal plane loads. However, how these muscles stabilize the knee against adduction-abduction and rotational loads remains unclear. Our study sought 1) to classify muscle roles as they r...... on its role in maintaining knee joint stability in the frontal and transverse loading planes. This is useful for delineating the roles of biarticular knee joint muscles and could have implications in robotics, musculoskeletal modeling, sports sciences, and rehabilitation....

  3. Kinematic alterations of the lower limbs and pelvis during an ascending stairs task are associated with the degree of knee osteoarthritis severity.

    Science.gov (United States)

    Gonçalves, Glaucia Helena; Selistre, Luiz Fernando Approbato; Petrella, Marina; Mattiello, Stela Márcia

    2017-03-01

    Individuals with knee osteoarthritis (OA) generally demonstrate great difficulty in ascending stairs. The strategies and compensations used by these individuals in stair activities have not been fully established. The purpose of this study was to investigate the joint kinematics of the pelvis, hip, knee and ankle throughout the gait cycle, in the sagittal and frontal planes, in individuals with mild and moderate knee OA, during an ascending stairs task. Thirty-one individuals with knee OA and 19 controls were subjected to clinical and radiographic analysis, divided into three groups: control, mild knee OA, and moderate knee OA. Participants answered a self-reported questionnaire, carried out performance-based tests, and their kinematic data were recorded during an ascending stairs task using an eight-camera Qualisys 3D-Motion analysis system. The individuals with moderate degrees of knee OA demonstrated kinematic alterations in the pelvis, hip, knee, and ankle in the sagittal plane. The individuals with mild degrees of knee OA demonstrated kinematic alterations of the hip in the frontal plane, and kinematic alterations of the ankle in the sagittal plane. The ascending stairs task allowed verification of meaningful information regarding gait strategies used by individuals with mild and moderate knee OA. The strategies of these two groups of individuals are different for this task, although more pronounced in individuals with moderate knee OA. The findings should be taken into account in the development of rehabilitation programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sagittal plane gait characteristics in hip osteoarthritis patients with mild to moderate symptoms compared to healthy controls: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Eitzen Ingrid

    2012-12-01

    Full Text Available Abstract Background Existent biomechanical studies on hip osteoarthritic gait have primarily focused on the end stage of disease. Consequently, there is no clear consensus on which specific gait parameters are of most relevance for hip osteoarthritis patients with mild to moderate symptoms. The purpose of this study was to explore sagittal plane gait characteristics during the stance phase of gait in hip osteoarthritis patients not eligible for hip replacement surgery. First, compared to healthy controls, and second, when categorized into two subgroups of radiographic severity defined from a minimal joint space of ≤/>2 mm. Methods Sagittal plane kinematics and kinetics of the hip, knee and ankle joint were calculated for total joint excursion throughout the stance phase, as well as from the specific events initial contact, midstance, peak hip extension and toe-off following 3D gait analysis. In addition, the Western Ontario and McMaster Universities Osteoarthritis Index, passive hip range of motion, and isokinetic muscle strength of hip and knee flexion and extension were included as secondary outcomes. Data were checked for normality and differences evaluated with the independent Student’s t-test, Welch’s t-test and the independent Mann–Whitney U-test. A binary logistic regression model was used in order to control for velocity in key variables. Results Fourty-eight hip osteoarthritis patients and 22 controls were included in the final material. The patients walked significantly slower than the controls (p=0.002, revealed significantly reduced joint excursions of the hip (pp=0.011, and a reduced hip flexion moment at midstance and peak hip extension (p2 mm suggested that the observed deviations were more pronounced in patients with greater radiographic severity. The biomechanical differences were, however, not reflected in self-reported symptoms or function. Conclusions Reduced gait velocity, reduced sagittal plane joint excursion, and

  5. Direct CT scanning of the lesser pelvis - frontal vs sagittal plane

    International Nuclear Information System (INIS)

    Khadzhigeorgiev, G.; Lichev, A.

    1994-01-01

    Whenever axial scanning alone is used, the anatomical patterns of the true pelvis and the organs contained in it, particularly in women, give rise to diagnostic difficulties during CT assessment of neoplasms originating from these organs. The high demands on precision characterization of the pathological changes in the pelvis minor organs necessitate the obtaining of reliable density and size measurement data, not merely from the axial plane, but from the frontal and sagittal ones as well. The deficient information afforded by secondary reconstruction of the pelvis mind images requires an mandatory evaluation of the potentialities of direct frontal and direct sagittal scanning of the pelvis minor using standard CT equipment. Information yielded by images from direct frontal and direct sagittal pelvis minor scanning as well as diagnostic problems where application of this type of scanning is indicated operational difficulties and their overcoming, are among the issues discussed. 8 figs., 7 refs

  6. A comparison of economy and sagittal plane trunk movements among back-, back/front- and head-loading.

    Science.gov (United States)

    Hudson, Sean; Cooke, Carlton; Davies, Simeon; West, Sacha; Gamieldien, Raeeq; Low, Chris; Lloyd, Ray

    2018-05-14

    It has been suggested that freedom of movement in the trunk could influence load carriage economy. This study aimed to compare the economy and sagittal plane trunk movements associated with three load carriage methods that constrain posture differently. Eighteen females walked at 3 km.h -1 with loads of 0, 3, 6, 9, 12, 15 and 20 kg carried on the back, back/front and head. Load carriage economy was assessed using the Extra Load Index (ELI). Change in sagittal plane trunk forward lean and trunk angle excursion from unloaded to loaded walking were assessed. Results show no difference in economy between methods (p = 0.483), despite differences in the change in trunk forward lean (p = 0.001) and trunk angle excursion (p = 0.021) from unloaded to loaded walking. We conclude that economy is not different among the three methods of load carriage, despite significant differences in sagittal plane trunk movements.

  7. Ipsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame.

    Science.gov (United States)

    Muraoka, Tetsuro; Ishida, Yuki; Obu, Takashi; Crawshaw, Larry; Kanosue, Kazuyuki

    2013-04-01

    When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performed coordinated movements in a sitting position where the torso/head was stationary relative to the external world. In order to discern the reference frame in the present study, participants performed paced oscillatory movements of the ipsilateral wrist and ankle in the sagittal plane in a standing position so that the torso/head moved relative to the external world. The coordinated movements were performed in one of two modes of coordination, moving the hand upward concomitant with either ankle plantarflexion or ankle dorsiflexion. The same directional mode relative to extrinsic space was more stable and accurate as compared with the opposite directional mode. When forearm position was changed from the pronated position to the supinated position, similar results were obtained, indicating that the results were independent of a particular coupling of muscles. These findings suggest that the directional constraint on ipsilateral joints movements in the sagittal plane reflects movement direction encoded in the extrinsic reference frame. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Knee Kinematic Improvement After Total Knee Replacement Using a Simplified Quantitative Gait Analysis Method

    Directory of Open Access Journals (Sweden)

    Hassan Sarailoo

    2013-10-01

    Full Text Available Objectives: The aim of this study was to extract suitable spatiotemporal and kinematic parameters to determine how Total Knee Replacement (TKR alters patients’ knee kinematics during gait, using a rapid and simplified quantitative two-dimensional gait analysis procedure. Methods: Two-dimensional kinematic gait pattern of 10 participants were collected before and after the TKR surgery, using a 60 Hz camcorder in sagittal plane. Then, the kinematic parameters were extracted using the gait data. A student t-test was used to compare the group-average of spatiotemporal and peak kinematic characteristics in the sagittal plane. The knee condition was also evaluated using the Oxford Knee Score (OKS Questionnaire to ensure thateach subject was placed in the right group. Results: The results showed a significant improvement in knee flexion during stance and swing phases after TKR surgery. The walking speed was increased as a result of stride length and cadence improvement, but this increment was not statistically significant. Both post-TKR and control groups showed an increment in spatiotemporal and peak kinematic characteristics between comfortable and fast walking speeds. Discussion: The objective kinematic parameters extracted from 2D gait data were able to show significant improvements of the knee joint after TKR surgery. The patients with TKR surgery were also able to improve their knee kinematics during fast walking speed equal to the control group. These results provide a good insight into the capabilities of the presented method to evaluate knee functionality before and after TKR surgery and to define a more effective rehabilitation program.

  9. Effects of Knee Alignments and Toe Clip on Frontal Plane Knee Biomechanics in Cycling.

    Science.gov (United States)

    Shen, Guangping; Zhang, Songning; Bennett, Hunter J; Martin, James C; Crouter, Scott E; Fitzhugh, Eugene C

    2018-06-01

    Effects of knee alignment on the internal knee abduction moment (KAM) in walking have been widely studied. The KAM is closely associated with the development of medial knee osteoarthritis. Despite the importance of knee alignment, no studies have explored its effects on knee frontal plane biomechanics during stationary cycling. The purpose of this study was to examine the effects of knee alignment and use of a toe clip on the knee frontal plane biomechanics during stationary cycling. A total of 32 participants (11 varus, 11 neutral, and 10 valgus alignment) performed five trials in each of six cycling conditions: pedaling at 80 rpm and 0.5 kg (40 Watts), 1.0 kg (78 Watts), and 1.5 kg (117 Watts) with and without a toe clip. A motion analysis system and a customized instrumented pedal were used to collect 3D kinematic and kinetic data. A 3 × 2 × 3 (group × toe clip × workload) mixed design ANOVA was used for statistical analysis (p < 0.05). There were two different knee frontal plane loading patterns, internal abduction and adduction moment, which were affected by knee alignment type. The knee adduction angle was 12.2° greater in the varus group compared to the valgus group (p = 0.001), yet no difference was found for KAM among groups. Wearing a toe clip increased the knee adduction angle by 0.95º (p = 0.005). The findings of this study indicate that stationary cycling may be a safe exercise prescription for people with knee malalignments. In addition, using a toe clip may not have any negative effects on knee joints during stationary cycling.

  10. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    Science.gov (United States)

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  11. The Relationships Between the Center of Mass Position and the Trunk, Hip, and Knee Kinematics in the Sagittal Plane: A Pilot Study on Field-Based Video Analysis for Female Soccer Players

    Directory of Open Access Journals (Sweden)

    Sasaki Shogo

    2015-03-01

    Full Text Available Athletes with non-contact anterior cruciate ligament tears have common features in the sagittal plane; namely, the body’s center of mass (COM is located posterior to the base of support, the trunk and knee joints are extended, and the hip angle is flexed. However, the relationships among these variables have not been assessed in field-based movements. This study sought to determine relationships between distances from the COM to the base of support and the trunk, hip, and knee positions in women while playing soccer. Sixty events (29 single-leg landing and 31 single-leg stopping events were analyzed using two-dimensional video analysis. The relationships among the measurement variables were determined using the Pearson’s product-moment correlation coefficient, and stepwise multiple linear regression models were used to explore the relationships between the COM position and the kinematic variables. The distance from the COM to the base of support displayed a moderate negative relationship with the trunk angle (r = - 0.623, p < .0001, r2 = 0.388 and a strong positive relationship with the limb angle (r = 0.869, p < .0001, r2 = 0.755. The limb, knee, and trunk angles were selected in the best regression model (adjusted r2 = 0.953, p < .0001, f2 = 20.277. These findings suggest that an increased trunk angle and a decreased limb angle at initial contact are associated with a safer COM position. Neuromuscular training may be useful for controlling the trunk and lower limb positions during dynamic activities.

  12. The effect of age and knee osteoarthritis on muscle activation patterns and knee joint biomechanics during dual belt treadmill gait.

    Science.gov (United States)

    Rutherford, Derek; Baker, Matthew; Wong, Ivan; Stanish, William

    2017-06-01

    To compare a group of individuals with moderate medial compartment knee osteoarthritis (OA) to both an age-matched asymptomatic group of older adults and younger adults to determine whether differences in knee joint muscle activation patterns and joint biomechanics exist during gait between these three groups. 20 young adults, 20 older adults, and 40 individuals with moderate knee OA were recruited. Using standardized procedures, surface electromyograms were recorded from the vastus lateralis and medialis, rectus femoris and the medial and lateral hamstrings. All individuals walked on a dual belt instrumented treadmill while segment motions and ground reaction forces were recorded. Sagittal plane motion and net external sagittal and frontal plane moments were calculated. Discrete measures and principal component analyses extracted amplitude and temporal waveform features. Analysis of Variance models using Bonferroni corrections determined between and within group differences in these gait features (α=0.05). Individuals with knee OA have distinct biomechanics and muscle activation patterns when compared to age-matched asymptomatic adults and younger adults whereas differences between the young and older adults were few and included only measures of muscle activation amplitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Knee joint changes in patients with neglected developmental hip dysplasia: a prospective case-control study.

    Science.gov (United States)

    Li, Qiwei; Kadhim, Muayad; Zhang, Lijun; Cheng, Xiangjun; Zhao, Qun; Li, Lianyong

    2014-12-01

    Few reports are available describing knee changes in neglected developmental dysplasia of the hip (DDH). The purpose of this study was to assess the radiographic morphology of knee joints in adults with neglected DDH. Thirty-seven patients (35 females and two males) with neglected DDH were prospectively recruited with an average age of 32.6 years. Twenty-three patients had unilateral and 14 patients had bilateral neglected DDH. Thirty-seven healthy individuals were recruited to form a matched control group. Three groups of knee joints were examined: affected knees (on the same side of the neglected DDH), unaffected knees (contralateral to the neglected DDH in patients with unilateral involvement), and control knees. A series of radiographic parameters of the knee joint were measured in the coronal and sagittal plane, and they were compared between patients and normal controls. In the coronal plane, the affected knees had increased valgus angulation related to increased height of the medial femoral condyle, decreased height of the lateral femoral condyle and decreased lateral distal femoral angle compared to control knees. In the sagittal plane, both distal femoral and proximal tibial joints of the affected knees developed a decrease in posterior angles. Additionally, the unaffected knees also developed radiographic changes compared to control knees. Patients with neglected DDH may develop changes in both knee joints. These changes should be considered during surgery to the hip, femur and knee to prevent potential complications. Level 2. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. How does knee pain affect trunk and knee motion during badminton forehand lunges?

    Science.gov (United States)

    Huang, Ming-Tung; Lee, Hsing-Hsan; Lin, Cheng-Feng; Tsai, Yi-Ju; Liao, Jen-Chieh

    2014-01-01

    Badminton requires extensive lower extremity movement and a precise coordination of the upper extremity and trunk movements. Accordingly, this study investigated motions of the trunk and the knee, control of dynamic stability and muscle activation patterns of individuals with and without knee pain. Seventeen participants with chronic knee pain and 17 healthy participants participated in the study and performed forehand forward and backward diagonal lunges. This study showed that those with knee pain exhibited smaller knee motions in frontal and horizontal planes during forward lunge but greater knee motions in sagittal plane during backward lunge. By contrast, in both tasks, the injured group showed a smaller value on the activation level of the paraspinal muscles in pre-impact phase, hip-shoulder separation angle, trunk forward inclination range and peak centre of mass (COM) velocity. Badminton players with knee pain adopt a more conservative movement pattern of the knee to minimise recurrence of knee pain. The healthy group exhibit better weight-shifting ability due to a greater control of the trunk and knee muscles. Training programmes for badminton players with knee pain should be designed to improve both the neuromuscular control and muscle strength of the core muscles and the knee extensor with focus on the backward lunge motion.

  15. Measuring Fractional Anisotropy of the Corpus Callosum Using Diffusion Tensor Imaging: Mid-Sagittal versus Axial Imaging Planes

    International Nuclear Information System (INIS)

    Kim, Eung Yeop; Park, Hae Jeong; Kim, Dong Hyun; Lee, Seung Koo; Kim, Jin Na

    2008-01-01

    Many diffusion tensor imaging (DTI) studies of the corpus callosum (CC) have been performed with a relatively thick slice thickness in the axial plane, which may result in underestimating the fractional anisotropy (FA) of the CC due to a partial volume effect. We hypothesized that the FA of the CC can be more accurately measured by using mid-sagittal DTI. We compared the FA values of the CC between the axial and mid-sagittal DTI. Fourteen healthy volunteers underwent MRI at 3.0 T. DTI was performed in both the mid-sagittal and axial planes. One 5-mm mid-sagittal image and twenty-five 2-mm axial images were obtained for the CC. The five regions of interest (ROIs) that included the prefrontal (I), premotor and supplementary motor (II), motor (III), sensory (IV) and parietal, temporal and occipital regions (V) were drawn along the border of the CC on each sagittal FA map. The FA values obtained from each region were compared between the two sagittal maps. The FA values of all the regions, except for region V, were significantly increased on the mid-sagittal imaging. The FA values in region IV were significantly underestimated on the mid-sagittal image from the axial imaging, compared with those in the regions I and V (p = 0.037 and p = 0.001, respectively). The FA values of the CC were significantly higher on the midsagittal DTI than those on the axial DTI in regions I-IV, and particularly in the region IV. Mid-sagittal DTI may provide more accurate FA values of the CC than can the axial DTI, and mid-sagittal DTI may be more desirable for studies that compare between patients and healthy subjects

  16. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks

    Science.gov (United States)

    Bates, Nathaniel A.; Nesbitt, Rebecca J.; Shearn, Jason T.; Myer, Gregory D.; Hewett, Timothy E.

    2017-01-01

    Background Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. Purpose To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Study Design Descriptive laboratory study. Methods A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, −7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. Results The mean (6SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60–0.65), flexion (r = 0.64–0.66), lateral (r = 0.57–0.69), and external rotation torques (r = 0.47–0.72) as well as inverse correlations with peak abduction (r = −0.42 to −0.61) and internal rotation torques (r = −0.39 to −0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64–0.69) and lateral knee force (r = 0.55–0.74) as well as inverse correlations with peak external torque (r = −0.34 to 20.67) and medial knee force (r = −0.58 to −0.59). These moderate correlations were also present during simulated sidestep cutting. Conclusion The investigation supported the theory that increased posterior

  17. Knee and hip sagittal and transverse plane changes after two fatigue protocols

    Science.gov (United States)

    Lucci, Shawn; Cortes, Nelson; Van Lunen, Bonnie; Ringleb, Stacie; Onate, James

    2013-01-01

    Fatigue has been shown to alter the biomechanics of lower extremity during landing tasks. To date, no study has examined the effects of two types of fatigue on kinetics and kinematics. Objectives This study was conducted to assess biomechanical differences between two fatigue protocols [Slow Linear Oxidative Fatigue Protocol (SLO-FP) and Functional Agility Short-Term Fatigue Protocol (FAST-FP)]. Design Single-group repeated measures design. Methods Fifteen female collegiate soccer players had to perform five successful trials of unanticipated sidestep cutting (SS) pre- and post-fatigue protocols. The SLO-FP consisted of an initial VO2peak test followed by 5-min rest, and a 30-min interval run. The FAST-FP consisted of 4 sets of a functional circuit. Biomechanical measures of the hip and knee were obtained at different instants while performing SS pre- and post-fatigue. Repeated 2 × 2 ANOVAs were conducted to examine task and fatigue differences. Alpha level set a priori at 0.05. Results During the FAST-FP, participants had increased knee internal rotation at initial contact (IC) (12.5 ± 5.9°) when compared to the SLO-FP (7.9 ± 5.4°, p < 0.001). For hip flexion at IC, pre-fatigue had increased angles (36.4 ± 8.4°) compared to post-fatigue (30.4 ± 9.3°, p = 0.003), also greater knee flexion during pre-fatigue (25.6 ± 6.8°) than post-fatigue (22.4 ± 8.4°, p = 0.022). Conclusion The results of this study showed that hip and knee mechanics were substantially altered during both fatigue conditions. PMID:21636322

  18. Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking.

    Science.gov (United States)

    Klemetti, Rudolf; Steele, Katherine M; Moilanen, Petro; Avela, Janne; Timonen, Jussi

    2014-07-18

    This study was conducted to analyze the unimpaired control of the trunk during walking. Studying the unimpaired control of the trunk reveals characteristics of good control. These characteristics can be pursued in the rehabilitation of impaired control. Impaired control of the trunk during walking is associated with aging and many movement disorders. This is a concern as it is considered to increase fall risk. Muscles that contribute to the trunk control in normal walking may also contribute to it under perturbation circumstances, attempting to prevent an impending fall. Knowledge of such muscles can be used to rehabilitate impaired control of the trunk. Here, angular accelerations of the trunk induced by individual muscles, in the sagittal and frontal planes, were calculated using 3D muscle-driven simulations of seven young healthy subjects walking at free speed. Analysis of the simulations demonstrated that the abdominal and back muscles displayed large contributions throughout the gait cycle both in the sagittal and frontal planes. Proximal lower-limb muscles contributed more than distal muscles in the sagittal plane, while both proximal and distal muscles showed large contributions in the frontal plane. Along with the stance-limb muscles, the swing-limb muscles also exhibited considerable contribution. The gluteus medius was found to be an important individual frontal-plane control muscle; enhancing its function in pathologies could ameliorate gait by attenuating trunk sway. In addition, since gravity appreciably accelerated the trunk in the frontal plane, it may engender excessive trunk sway in pathologies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Improving tibial component coronal alignment during total knee arthroplasty with use of a tibial planing device.

    Science.gov (United States)

    Patil, Shantanu; D'Lima, Darryl D; Fait, James M; Colwell, Clifford W

    2007-02-01

    The outcomes of knee arthroplasty have been shown to be affected by component alignment. Intramedullary and extramedullary alignment instrumentation are fairly effective for achieving the desired mean tibial component coronal alignment. However, there are outliers representing >3 degrees of varus or valgus alignment with respect to the anatomic tibial shaft axis. We measured the efficacy of a custom tibial planing device for reducing the outliers in tibial alignment. We designed a tibial planing tool in an effort to improve tibial alignment. In one cohort (100 knees), we used traditional intramedullary alignment instrumentation to make the tibial bone cut. In a second cohort (120 knees), we used intramedullary alignment instrumentation to make the cut and also used a custom tool to check the cut and to correct an inexact cut. Tibial tray alignment relative to the long axis of the tibial shaft was measured in the coronal and sagittal planes on postoperative radiographs. The target coronal alignment was 90 degrees with respect to the tibial shaft axis (with alignment). A total of 100 anteroposterior radiographs and sixty-five lateral radiographs were analyzed for the group that was treated with traditional instrumentation alone, and a total of 120 anteroposterior radiographs and fifty-five lateral radiographs were analyzed for the group that was treated with use of the custom tibial planing device. The mean coronal alignment of the tibial component was 89.5 degrees +/- 2.1 degrees in the group that was treated with traditional instrumentation alone and 89.6 degrees +/- 1.4 degrees in the group that was treated with use of the custom planing device. Although the mean coronal alignment was not significantly different, the number of outliers was substantially reduced when the custom planing device was used. All 120 components that had been aligned with use of the custom planing device were within 3 degrees of the target coronal alignment, compared with only eighty

  20. An interactive tool for CT volume rendering and sagittal plane-picking of the prostate for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Jani, Ashesh B.; Pelizzari, Charles A.; Chen, George T.Y.; Grzezcszuk, Robert P.; Vijayakumar, Srinivasan

    1997-01-01

    Objective: Accurate and precise target volume and critical structure definition is a basic necessity in radiotherapy. The prostate, particularly the apex (an important potential site of recurrence in prostate cancer patients), is a challenging structure to define using any modality, including conventional axial CT. Invasive or expensive techniques, such as retrograde urethrography or MRI, could be avoided if localization of the prostate were possible using information already available on the planning CT. Our primary objective was to build a software tool to determine whether volume rendering and sagittal plane-picking, which are CT-based, noninvasive visualization techniques, were of utility in radiotherapy treatment planning for the prostate. Methods: Using AVS (Application Visualization System) on a Silicon Graphics Indigo 2 High Impact workstation, we have developed a tool that enables the clinician to efficiently navigate a CT volume and to use volume rendering and sagittal plane-picking to better define structures at any anatomic site. We applied the tool to the specific example of the prostate to compare the two visualization techniques with the current standard of axial CT. The prostate was defined on 80-slice CT scans (scanning thickness 4mm, pixel size 2mm x 2mm) of prostate cancer patients using axial CT images, volume-rendered CT images, and sagittal plane-picked images. Results: The navigation of the prostate using the different visualization techniques qualitatively demonstrated that the sagittal plane-picked images, and even more so the volume-rendered images, revealed the prostate (particularly the lower border) better in relationship to the surrounding regional anatomy (bladder, rectum, pelvis, and penile structures) than did the axial images. A quantitative comparison of the target volumes obtained by navigating using the different visualization techniques demonstrated that, when compared to the prostate volume defined on axial CT, a larger volume

  1. Bone-femoral component interface gap after sagittal mechanical axis alignment is filled with new bone after cementless total knee arthroplasty.

    Science.gov (United States)

    Kuriyama, Shinichi; Hyakuna, Katsufumi; Inoue, Satoshi; Kawai, Yasutsugu; Tamaki, Yasuyuki; Ito, Hiromu; Matsuda, Shuichi

    2018-05-01

    This study retrospectively evaluated the fate of mismatch between an uncemented femoral component and each femoral cut surface (i.e., wedge-shaped gap) relative to sagittal mechanical alignment in total knee arthroplasty (TKA). Primary TKA was performed on 99 consecutive knees. The femoral components were aligned to the sagittal mechanical axis with CT-based navigation. All patients were assessed with postoperative true lateral radiographs. Bone-side surfaces of the uncemented femoral component were divided into five zones: anterior flange, anterior chamfer, posterior chamfer, posterior part, and distal part, which were defined as zones 1 to 5, respectively. Bone filling of wedge-shaped gaps in each zone was evaluated after 1 year. Femoral anterior notching did not occur. However, wedge-shaped gaps were observed in at least one zone in 23 of 99 knees (23%), most frequently in zone 5 (18%). There were 9 and 7 gaps in zones 1 and 2, respectively. The femoral component showed malpositioning of approximately 3° of flexion in cases with wedge-shaped gaps in zones 2 and/or 5. After one year, 67% (6/9) of zone 1, 100% (7/7) of zone 2, and 94% (17/18) of zone 5 wedge-shaped gaps were filled in with new bone. Femoral alignment relative to sagittal mechanical axis caused wedge-shaped gaps due to unstable anterior bone cutting through hard bone, but the small gaps were not clinically significant and filled in within one year. Sagittal setting of the femoral component should aim for the anatomical axis rather than the mechanical axis. IV.

  2. Agreement Between Visual Assessment and 2-Dimensional Analysis During Jump Landing Among Healthy Female Athletes.

    Science.gov (United States)

    Rabin, Alon; Einstein, Ofira; Kozol, Zvi

    2018-04-01

      Altered movement patterns, including increased frontal-plane knee movement and decreased sagittal-plane hip and knee movement, have been associated with several knee disorders. Nevertheless, the ability of clinicians to visually detect such altered movement patterns during high-speed athletic tasks is relatively unknown.   To explore the association between visual assessment and 2-dimensional (2D) analysis of frontal-plane knee movement and sagittal-plane hip and knee movement during a jump-landing task among healthy female athletes.   Cross-sectional study.   Gymnasiums of participating volleyball teams.   A total of 39 healthy female volleyball players (age = 21.0 ± 5.2 years, height = 172.0 ± 8.6 cm, mass = 64.2 ± 7.2 kg) from Divisions I and II of the Israeli Volleyball Association.   Frontal-plane knee movement and sagittal-plane hip and knee movement during jump landing were visually rated as good, moderate, or poor based on previously established criteria. Frontal-plane knee excursion and sagittal-plane hip and knee excursions were measured using free motion-analysis software and compared among athletes with different visual ratings of the corresponding movements.   Participants with different visual ratings of frontal-plane knee movement displayed differences in 2D frontal-plane knee excursion ( P < .01), whereas participants with different visual ratings of sagittal-plane hip and knee movement displayed differences in 2D sagittal-plane hip and knee excursions ( P < .01).   Visual ratings of frontal-plane knee movement and sagittal-plane hip and knee movement were associated with differences in the corresponding 2D hip and knee excursions. Visual rating of these movements may serve as an initial screening tool for detecting altered movement patterns during jump landings.

  3. Increased conformity offers diminishing returns for reducing total knee replacement wear.

    Science.gov (United States)

    Fregly, Benjamin J; Marquez-Barrientos, Carlos; Banks, Scott A; DesJardins, John D

    2010-02-01

    Wear remains a significant problem limiting the lifespan of total knee replacements (TKRs). Though increased conformity between TKR components has the potential to decrease wear, the optimal amount and planes of conformity have not been investigated. Furthermore, differing conformities in the medial and lateral compartments may provide designers the opportunity to address both wear and kinematic design goals simultaneously. This study used a computational model of a Stanmore knee simulator machine and a previously validated wear model to investigate this issue for simulated gait. TKR geometries with different amounts and planes of conformity on the medial and lateral sides were created and tested in two phases. The first phase utilized a wide range of sagittal and coronal conformity combinations to blanket a physically realistic design space. The second phase performed a focused investigation of the conformity conditions from the first phase to which predicted wear volume was sensitive. For the first phase, sagittal but not coronal conformity was found to have a significant effect on predicted wear volume. For the second phase, increased sagittal conformity was found to decrease predicted wear volume in a nonlinear fashion, with reductions gradually diminishing as conformity increased. These results suggest that TKR geometric design efforts aimed at minimizing wear should focus on sagittal rather than coronal conformity and that at least moderate sagittal conformity is desirable in both compartments.

  4. Effects of changing speed on knee and ankle joint load during walking and running.

    Science.gov (United States)

    de David, Ana Cristina; Carpes, Felipe Pivetta; Stefanyshyn, Darren

    2015-01-01

    Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s(-1) ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.

  5. An algorithm based on OmniView technology to reconstruct sagittal and coronal planes of the fetal brain from volume datasets acquired by three-dimensional ultrasound.

    Science.gov (United States)

    Rizzo, G; Capponi, A; Pietrolucci, M E; Capece, A; Aiello, E; Mammarella, S; Arduini, D

    2011-08-01

    To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography. We developed an algorithm to image standard neurosonographic planes by drawing dissecting lines through the axial transventricular view of 3D volume datasets acquired transabdominally. The algorithm was tested on 106 normal fetuses at 18-24 weeks of gestation and the visualization rates of brain diagnostic planes were evaluated by two independent reviewers. The algorithm was also applied to nine cases with proven brain defects. The two reviewers, using the algorithm on normal fetuses, found satisfactory images with visualization rates ranging between 71.7% and 96.2% for sagittal planes and between 76.4% and 90.6% for coronal planes. The agreement rate between the two reviewers, as expressed by Cohen's kappa coefficient, was > 0.93 for sagittal planes and > 0.89 for coronal planes. All nine abnormal volumes were identified by a single observer from among a series including normal brains, and eight of these nine cases were diagnosed correctly. This novel algorithm can be used to visualize standard sagittal and coronal planes in the fetal brain. This approach may simplify the examination of the fetal brain and reduce dependency of success on operator skill. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  6. Non-Sagittal Knee Joint Kinematics and Kinetics during Gait on Level and Sloped Grounds with Unicompartmental and Total Knee Arthroplasty Patients

    Science.gov (United States)

    Komnik, Igor; David, Sina; Weiss, Stefan; Potthast, Wolfgang

    2016-01-01

    After knee arthroplasty (KA) surgery, patients experience abnormal kinematics and kinetics during numerous activities of daily living. Biomechanical investigations have focused primarily on level walking, whereas walking on sloped surfaces, which is stated to affect knee kinematics and kinetics considerably, has been neglected to this day. This study aimed to analyze over-ground walking on level and sloped surfaces with a special focus on transverse and frontal plane knee kinematics and kinetics in patients with KA. A three-dimensional (3D) motion analysis was performed by means of optoelectronic stereophogrammetry 1.8 ± 0.4 years following total knee arthroplasty (TKA) and unicompartmental arthroplasty surgery (UKA). AnyBody™ Modeling System was used to conduct inverse dynamics. The TKA group negotiated the decline walking task with reduced peak knee internal rotation angles compared with a healthy control group (CG). First-peak knee adduction moments were diminished by 27% (TKA group) and 22% (UKA group) compared with the CG during decline walking. No significant differences were detected between the TKA and UKA groups, regardless of the locomotion task. Decline walking exposed apparently more abnormal knee frontal and transverse plane adjustments in KA patients than level walking compared with the CG. Hence, walking on sloped surfaces should be included in further motion analysis studies investigating KA patients in order to detect potential deficits that might be not obvious during level walking. PMID:28002437

  7. Accuracy of Implant Placement Utilizing Customized Patient Instrumentation in Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    William D. Bugbee

    2013-01-01

    Full Text Available Customized patient instrumentation (CPI combines preoperative planning with customized cutting jigs to position and align implants during total knee arthroplasty (TKA. We compared postoperative implant alignment of patients undergoing surgery with CPI to traditional TKA instrumentation for accuracy of implant placement. Twenty-five consecutive TKAs using CPI were analyzed. Preoperative CT scans of the lower extremities were segmented using a computer program. Limb alignment and mechanical axis were computed. Virtual implantation of computer-aided design models was done. Postoperative coronal and sagittal view radiographs were obtained. Using 3D image-matching software, relative positions of femoral and tibial implants were determined. Twenty-five TKAs implanted using traditional instrumentation were also analyzed. For CPI, difference in alignment from the preoperative plan was calculated. In the CPI group, the mean absolute difference between the planned and actual femoral placements was 0.67° in the coronal plane and 1.2° in the sagittal plane. For tibial alignment, the mean absolute difference was 0.9° in the coronal plane and 1.3° in the sagittal plane. For traditional instrumentation, difference from ideal placement for the femur was 1.5° in the coronal plane and 2.3° in the sagittal plane. For the tibia, the difference was 1.8° in the coronal plane. CPI achieved accurate implant positioning and was superior to traditional TKA instrumentation.

  8. Interactive videodisk atlas of knee anatomy

    International Nuclear Information System (INIS)

    McEnery, K.W.; Woods, J.W.; Glenn, W.F.; Rauschning, W.

    1987-01-01

    An interactive, computer-assisted atlas of knee anatomy has been developed. MR and CT images from normal volunteers and cryomicrotomed anatomic images were recorded on a laser viodeodisk. Computer software allows movement through the knee and correlation of radiographic images in the coronal, axial, and sagittal planes. Computer graphics are superimposed on the videodisk images. A high-resolution color graphics, touch-screen monitor is included in the computer system. Learning modules allow for rapid identification of specific structure by touching their location on the screen. Computer-created testing modules are available that provide for self-assessment

  9. Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.

    Science.gov (United States)

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2016-01-01

    Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (Pcutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Tracking errors in tractography of the gastrocnemius muscle. A comparison between the transverse and sagittal planes

    International Nuclear Information System (INIS)

    Aoki, Takako; Tohdoh, Yukihiro; Tawara, Noriyuki; Okuwaki, Toru; Horiuchi, Akira; Itagaki, Takuma; Niitsu, Mamoru

    2010-01-01

    In scans taken in conventional direction, tracking errors may occur when using a streamline-based algorithm for the tractography of the gastrocnemius muscle. To solve errors in tracking, we applied tractography to the musculotendinous junction and performed fiber tracking on the gastrocnemius muscle of 10 healthy subjects with their written informed consent. We employed a spin-echo diffusion tensor imaging (SE-DTI) sequence with 6-direction diffusion gradient sensitization and acquired DTI images at 1.5 tesla using a body array coil with parallel imaging. We compared tractography obtained in the transverse and sagittal planes using anatomical reference and found that the gastrocnemius muscle and musculotendinous junction were significantly better visualized on sagittal scans and in 3 regions of interest. We utilized Mann-Whitney U-test to determine significant differences between rates of concordance (P 2 value of skeletal muscle is around 50 ms, and TE should be as short as possible. A streamline-based algorithm is based on the continuity of a vector. It is easy to take running of the muscle fiber in sagittal scan. Therefore, tracking error is hard to occur. In conclusion, sagittal scanning may be one way to eliminate tracking errors in the tractography of the gastrocnemius muscle. Tracking errors were smaller with sagittal scans than transverse scans, and sagittal scans allow better fiber tracking. (author)

  11. 1975 Memorial Award Paper. Image generation and display techniques for CT scan data. Thin transverse and reconstructed coronal and sagittal planes.

    Science.gov (United States)

    Glenn, W V; Johnston, R J; Morton, P E; Dwyer, S J

    1975-01-01

    The various limitations to computerized axial tomographic (CT) interpretation are due in part to the 8-13 mm standard tissue plane thickness and in part to the absence of alternative planes of view, such as coronal or sagittal images. This paper describes a method for gathering multiple overlapped 8 mm transverse sections, subjecting these data to a deconvolution process, and then displaying thin (1 mm) transverse as well as reconstructed coronal and sagittal CT images. Verification of the deconvolution technique with phantom experiments is described. Application of the phantom results to human post mortem CT scan data illustrates this method's faithful reconstruction of coronal and sagittal tissue densities when correlated with actual specimen photographs of a sectioned brain. A special CT procedure, limited basal overlap scanning, is proposed for use on current first generation CT scanners without hardware modification.

  12. Extramedullary versus intramedullary tibial cutting guides in megaprosthetic total knee replacement

    Directory of Open Access Journals (Sweden)

    Karade Vikas

    2012-10-01

    Full Text Available Abstract Background In a standard total knee replacement, tibial component alignment is a key factor for the long term success of the surgery. The purpose of this study is to compare the accuracy of extramedullary and intramedullary tibial cutting guides used in indigenous and imported implants respectively, in positioning of the tibial components in megaprosthetic knee replacements. Methods A comparative study of the accuracy of extramedullary and intramedullary tibial cutting guides was carried out in 92 megaprosthetic knee replacements for distal femoral tumors. For the proximal tibia cut for tibial component placement, an extramedullary guide was used in 65 patients and an intramedullary guide was used in 27 patients. Tibial component alignment angles were measured in postoperative X-rays with the help of CAD software. Results There was more varus placement in coronal plane with extramedullary cutting guide (−1.18 +/− 2.4 degrees than the intramedullary guide (−0.34 +/− 2.31 degrees but this did not reach statistical significance. The goal of 90 +/− 2 degrees alignment of tibial component was achieved in 54% of patients in the extramedullary group versus 67% in the intramedullary group. In terms of sagittal plane alignment, extramedullary guide showed less accurate results (2.09 +/− 2.4 degrees than intramedullary guide (0.50 +/− 3.80 degrees for tibial component alignment, though 78% of patients were aligned within the goal of 0–5 degrees of tibial slope angle in extramedullary group versus 63% in intramedullary group. The mean error in the measurements due to rotation of the knee during taking the X-rays was less than 0.1 degrees and distribution of the X-rays with the rotation of knee was similar in both the groups. Conclusions Overall, in megaprosthetic knee replacement intramedullary guides gave more accurate results in sagittal plane and exhibited similar variability as of extramedullary guides in coronal plane.

  13. Real-time feedback on knee abduction moment does not improve frontal-plane knee mechanics during jump landings.

    Science.gov (United States)

    Beaulieu, M L; Palmieri-Smith, R M

    2014-08-01

    Excessive knee abduction loading is a contributing factor to anterior cruciate ligament (ACL) injury risk. The purpose of this study was to determine whether a double-leg landing training program with real-time visual feedback improves frontal-plane mechanics during double- and single-leg landings. Knee abduction angles and moments and vertical ground reaction forces (GRF) of 21 recreationally active women were quantified for double- and single-leg landings before and after the training program. This program consisted of two sessions of double-leg jump landings with real-time visual feedback on knee abduction moments for the experimental group and without real-time feedback for the control group. No significant differences were found between training groups. In comparison with pre-training data, peak knee abduction moments decreased 12% post-training for both double- and single-leg landings; whereas peak vertical GRF decreased 8% post-training for double-leg landings only, irrespective of training group. Real-time feedback on knee abduction moments, therefore, did not significantly improve frontal-plane knee mechanics during landings. The effect of the training program on knee abduction moments, however, transferred from the double-leg landings (simple task) to single-leg landings (more complex task). Consequently, ACL injury prevention efforts may not need to focus on complex tasks during which injury occurs. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. A Proposal of New Reference System for the Standard Axial, Sagittal, Coronal Planes of Brain Based on the Serially-Sectioned Images

    Science.gov (United States)

    Park, Jin Seo; Park, Hyo Seok; Shin, Dong Sun; Har, Dong-Hwan; Cho, Zang-Hee; Kim, Young-Bo; Han, Jae-Yong; Chi, Je-Geun

    2010-01-01

    Sectional anatomy of human brain is useful to examine the diseased brain as well as normal brain. However, intracerebral reference points for the axial, sagittal, and coronal planes of brain have not been standardized in anatomical sections or radiological images. We made 2,343 serially-sectioned images of a cadaver head with 0.1 mm intervals, 0.1 mm pixel size, and 48 bit color and obtained axial, sagittal, and coronal images based on the proposed reference system. This reference system consists of one principal reference point and two ancillary reference points. The two ancillary reference points are the anterior commissure and the posterior commissure. And the principal reference point is the midpoint of two ancillary reference points. It resides in the center of whole brain. From the principal reference point, Cartesian coordinate of x, y, z could be made to be the standard axial, sagittal, and coronal planes. PMID:20052359

  15. CHARACTERISTICS OF BODY POSTURE IN THE SAGITTAL PLANE AND FITNESS OF FIRST-FORM PUPILS FROM RURAL AREAS

    Directory of Open Access Journals (Sweden)

    Hanna Żukowska

    2014-07-01

    Full Text Available Purpose: to find correlations between characteristics of body posture in the sagittal plane and fitness and endurance of first-form children from rural areas. Material: an analysis of more than 30 sources of scientific and educational literature. Results: the study involved 209 children, including 102 girls and 107 boys. They were children who lived in the country since they were born. To assess particular characteristics of body posture, the children were studied by means of the measuring equipment using the projection Moiré system. Motor skills were estimated using selected EUROFIT physical fitness tests (sitting forward bend, standing broad jump, handgrip, sit-and-reach, bent arm hang and 10 x 5 m shuttle run. The level of physical endurance was evaluated with the Harvard Step Test modified by Montoye. Conclusions: the conducted research reveals statistically significant correlations between the characteristics of body posture in the sagittal plane and selected EUROFIT physical fitness tests and physical endurance of the children involved in the study.

  16. Agreement between fiber optic and optoelectronic systems for quantifying sagittal plane spinal curvature in sitting.

    Science.gov (United States)

    Cloud, Beth A; Zhao, Kristin D; Breighner, Ryan; Giambini, Hugo; An, Kai-Nan

    2014-07-01

    Spinal posture affects how individuals function from a manual wheelchair. There is a need to directly quantify spinal posture in this population to ultimately improve function. A fiber optic system, comprised of an attached series of sensors, is promising for measuring large regions of the spine in individuals sitting in a wheelchair. The purpose of this study was to determine the agreement between fiber optic and optoelectronic systems for measuring spinal curvature, and describe the range of sagittal plane spinal curvatures in natural sitting. Able-bodied adults (n = 26, 13 male) participated. Each participant assumed three sitting postures: natural, slouched (accentuated kyphosis), and extension (accentuated lordosis) sitting. Fiber optic (ShapeTape) and optoelectronic (Optotrak) systems were applied to the skin over spinous processes from S1 to C7 and used to measure sagittal plane spinal curvature. Regions of kyphosis and lordosis were identified. A Cobb angle-like method was used to quantify lordosis and kyphosis. Generalized linear model and Bland-Altman analyses were used to assess agreement. A strong correlation exists between curvature values obtained with Optotrak and ShapeTape (R(2) = 0.98). The mean difference between Optotrak and ShapeTape for kyphosis in natural, extension, and slouched postures was 4.30° (95% LOA: -3.43 to 12.04°), 3.64° (95% LOA: -1.07 to 8.36°), and 4.02° (95% LOA: -2.80 to 10.84°), respectively. The mean difference for lordosis, when present, in natural and extension postures was 2.86° (95% LOA: -1.18 to 6.90°) and 2.55° (95% LOA: -3.38 to 8.48°), respectively. In natural sitting, the mean ± SD of kyphosis values was 35.07 ± 6.75°. Lordosis was detected in 8/26 participants: 11.72 ± 7.32°. The fiber optic and optoelectronic systems demonstrate acceptable agreement for measuring sagittal plane thoracolumbar spinal curvature. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effects of mid-foot contact area ratio on lower body kinetics/kinematics in sagittal plane during stair descent in women.

    Science.gov (United States)

    Lee, Jinkyu; Hong, Yoon No Gregory; Shin, Choongsoo S

    2016-07-01

    The mid-foot contact area relative to the total foot contact area can facilitate foot arch structure evaluation. A stair descent motion consistently provides initial fore-foot contact and utilizes the foot arch more actively for energy absorption. The purpose of this study was to compare ankle and knee joint angle, moment, and work in sagittal plane during stair descending between low and high Mid-Foot-Contact-Area (MFCA) ratio group. The twenty-two female subjects were tested and classified into two groups (high MFCA and low MFCA) using their static MFCA ratios. The ground reaction force (GRF) and kinematics of ankle and knee joints were measured while stair descending. During the period between initial contact and the first peak in vertical GRF (early absorption phase), ankle negative work for the low MFCA ratio group was 33% higher than that for the high MFCA ratio group (pcontact and peak dorsiflexion angle (early absorption phase+late absorption phase). The peak ankle dorsiflexion angle was smaller in the low MFCA ratio group (p<0.05). Our results suggest that strategy of energy absorption at the ankle and foot differs depending upon foot arch types classified by MFCA. The low MFCA ratio group seemed to absorb more impact energy using strain in the planar fascia during early absorption phase, whereas the high MFCA ratio group absorbed more impact energy using increased dorsiflexion during late absorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hip joint biomechanics in those with and without post-traumatic knee osteoarthritis after anterior cruciate ligament injury.

    Science.gov (United States)

    Wellsandt, E; Zeni, J A; Axe, M J; Snyder-Mackler, L

    2017-12-01

    Anterior cruciate ligament injury results in altered kinematics and kinetics in the knee and hip joints that persist despite surgical reconstruction and rehabilitation. Abnormal movement patterns and a history of osteoarthritis are risk factors for articular cartilage degeneration in additional joints. The purpose of this study was to determine if hip joint biomechanics early after anterior cruciate ligament injury and reconstruction differ between patients with and without post-traumatic knee osteoarthritis 5years after reconstruction. The study's rationale was that individuals who develop knee osteoarthritis after anterior cruciate ligament injury may also demonstrate large alterations in hip joint biomechanics. Nineteen athletes with anterior cruciate ligament injury completed standard gait analysis before (baseline) and after (post-training) extended pre-operative rehabilitation and at 6months, 1year, and 2years after reconstruction. Weightbearing knee radiographs were completed 5years after reconstruction to identify medial compartment osteoarthritis. Five of 19 patients had knee osteoarthritis at 5years after anterior cruciate ligament reconstruction. Patients with knee osteoarthritis at 5years walked with smaller sagittal plane hip angles (P: 0.043) and lower sagittal (P: 0.021) and frontal plane (P: 0.042) external hip moments in the injured limb before and after reconstruction compared to those without knee osteoarthritis. The current findings suggest hip joint biomechanics may be altered in patients who develop post-traumatic knee osteoarthritis. Further study is needed to confirm whether the risk of non-traumatic hip pathology is increased after anterior cruciate ligament injury and if hip joint biomechanics influence its development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. ESB Clinical Biomechanics Award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6-10 months.

    Science.gov (United States)

    Heinlein, Bernd; Kutzner, Ines; Graichen, Friedmar; Bender, Alwina; Rohlmann, Antonius; Halder, Andreas M; Beier, Alexander; Bergmann, Georg

    2009-05-01

    Detailed information about the loading of the knee joint is required for various investigations in total knee replacement. Up to now, gait analysis plus analytical musculo-skeletal models were used to calculate the forces and moments acting in the knee joint. Currently, all experimental and numerical pre-clinical tests rely on these indirect measurements which have limitations. The validation of these methods requires in vivo data; therefore, the purpose of this study was to provide in vivo loading data of the knee joint. A custom-made telemetric tibial tray was used to measure the three forces and three moments acting in the implant. This prosthesis was implanted into two subjects and measurements were obtained for a follow-up of 6 and 10 months, respectively. Subjects performed level walking and going up and down stairs using a self-selected comfortable speed. The subjects' activities were captured simultaneously with the load data on a digital video tape. Customized software enabled the display of all information in one video sequence. The highest mean values of the peak load components from the two subjects were as follows: during level walking the forces were 276%BW (percent body weight) in axial direction, 21%BW (medio-lateral), and 29%BW (antero-posterior). The moments were 1.8%BW*m in the sagittal plane, 4.3%BW*m (frontal plane) and 1.0%BW*m (transversal plane). During stair climbing the axial force increased to 306%BW, while the shear forces changed only slightly. The sagittal plane moment increased to 2.4%BW*m, while the frontal and transversal plane moments decreased slightly. Stair descending produced the highest forces of 352%BW (axial), 35%BW (medio-lateral), and 36%BW (antero-posterior). The sagittal and frontal plane moments increased to 2.8%BW*m and 4.6%BW*m, respectively, while the transversal plane moment changed only slightly. Using the data obtained, mechanical simulators can be programmed according to realistic load profiles. Furthermore

  20. Dynamic knee alignment and collateral knee laxity and its variations in normal humans

    Directory of Open Access Journals (Sweden)

    Kamal eDeep

    2015-11-01

    Full Text Available Alignment of normal, arthritic and replaced human knees is a much debated subject as is the collateral ligamentous laxity. Traditional quantitative values have been challenged. Methods used to measure these are also not without flaws. Authors review the recent literature and a novel method of measurement of these values has been included. This method includes use of computer navigation technique in clinic setting for assessment of the normal or affected knee before the surgery. Computer navigation has been known for achievement of alignment accuracy during knee surgery. Now its use in clinic setting has added to the inventory of measurement methods. Authors dispel the common myth of straight mechanical axis in normal knees and also look at quantification of amount of collateral knee laxity. Based on the scientific studies it has been shown that the mean alignment is in varus in normal knees. It changes from lying non weight bearing position to standing weight bearing position in both coronal and the sagittal planes. It also varies with gender and race. The collateral laxity is also different for males and females. Further studies are needed to define the ideal alignment and collateral laxity which the surgeon should aim for individual knees.

  1. A Computer Navigation System Analysis of the Accuracy of the Extramedullary (Tibial Alignment Technique in Total Knee Arthroplasty (TKA

    Directory of Open Access Journals (Sweden)

    EK Chee

    2010-07-01

    Full Text Available In total knee arthroplasty, mechanical alignment guides have improved the accuracy of implant alignment, but errors are not uncommon. In the present study, an image-free computer-assisted navigation system was used to analyse the accuracy of an extramedullary (tibial alignment system, which is based on predetermined, fixed anatomical landmarks. Comparisons were made between two surgeons, with different levels of competency in order to determine if experience affected the accuracy of extramedullary tibial jig placement, in either the coronal and sagittal planes or both planes. The results showed that the accuracy of the extramedullary tibial alignment system, in the coronal plane (in up to 80-87% of cases was much better than for posterior slope, and sagittal plane. Surgeon experience was not a significant factor.

  2. MR imaging of the knee in patients with rheumatic diseases

    International Nuclear Information System (INIS)

    Weissman, B.N.; Winalski, C.S.; Aliabadi, P.; Kikinis, R.; Shortkroff, S.; Sledge, C.B.

    1990-01-01

    This paper evaluates the MR appearances of the knees in patients with rheumatic diseases, including the grading of changes, quantification of changes, and the role of intravenous gadolinium. MR imaging of the knee was performed in 19 patients with arthritis, including rheumatoid arthritis (n = 11), juvenile rheumatoid arthritis (n = 2), Reiter syndrome (n = 2), Crohn arthritis (n = 1), and psoriatic arthritis (n = 3). Spin-echo images (T1, T2, and proton density weighted) were obtained in sagittal, coronal, and axial planes. T1-weighted axial images were obtained before and after intravenous injection of Gd-DTPA

  3. Progression of spinal deformity in wheelchair-dependent patients with Duchenne muscular dystrophy who are not treated with steroids: coronal plane (scoliosis) and sagittal plane (kyphosis, lordosis) deformity.

    Science.gov (United States)

    Shapiro, F; Zurakowski, D; Bui, T; Darras, B T

    2014-01-01

    We determined the frequency, rate and extent of development of scoliosis (coronal plane deformity) in wheelchair-dependent patients with Duchenne muscular dystrophy (DMD) who were not receiving steroid treatment. We also assessed kyphosis and lordosis (sagittal plane deformity). The extent of scoliosis was assessed on sitting anteroposterior (AP) spinal radiographs in 88 consecutive non-ambulatory patients with DMD. Radiographs were studied from the time the patients became wheelchair-dependent until the time of spinal fusion, or the latest assessment if surgery was not undertaken. Progression was estimated using a longitudinal mixed-model regression analysis to handle repeated measurements. Scoliosis ≥ 10° occurred in 85 of 88 patients (97%), ≥ 20° in 78 of 88 (89%) and ≥ 30° in 66 of 88 patients (75%). The fitted longitudinal model revealed that time in a wheelchair was a highly significant predictor of the magnitude of the curve, independent of the age of the patient (p lordosis (16 (27%) abnormal and seven (11%) normal). This study provides a baseline to assess the effects of steroids and other forms of treatment on the natural history of scoliosis in patients with DMD, and an approach to assessing spinal deformity in the coronal and sagittal planes in wheelchair-dependent patients with other neuromuscular disorders.

  4. Fast three-dimensional MR imaging of the knee: A comparison with arthroscopy

    International Nuclear Information System (INIS)

    Tyrrell, R.; Gluckert, K.; Yulish, B.; Pathria, M.N.; Goodfellow, D.

    1987-01-01

    Fifty patients with suspected knee pathology were evaluated with fast volume imaging and compared to arthroscopy as a gold standard. The knee was imaged with FISP (repetition time 28 msec/echo time, 14 msec/flip angle, 40 degrees) in a sagittal plane generating 64 continguous slices in about 8 minutes. A numerical grading system that could be used for both MR and arthroscopy was devised. Results showed that there was a 95% agreement between MR and arthroscopy in meniscal tears; 100% correlation between MR and severely degenerated menisci; 100% agreement of partial cruciate tears; and high correlation for high-grade cartilage lesions

  5. The Effects of Frontal- and Sagittal-Plane Plyometrics on Change-of-Direction Speed and Power in Adolescent Female Basketball Players.

    Science.gov (United States)

    McCormick, Brian T; Hannon, James C; Newton, Maria; Shultz, Barry; Detling, Nicole; Young, Warren B

    2016-01-01

    Plyometrics is a popular training modality for basketball players to improve power and change-of-direction speed. Most plyometric training has used sagittal-plane exercises, but improvements in change-of-direction speed have been greater in multi-direction programs. To determine the benefits of a 6-wk frontal-plane plyometric (FPP) training program compared with a 6-wk sagittal-plane plyometric (SPP) training program with regard to power and change-of-direction speed. Fourteen female varsity high school basketball players participated in the study. Multiple 2 × 2 repeated-measures ANOVAs were used to determine differences for the FPP and SPP groups from preintervention to postintervention on 4 tests of power and 2 tests of change-of-direction speed. There was a group main effect for time in all 6 tests. There was a significant group × time interaction effect in 3 of the 6 tests. The SPP improved performance of the countermovement vertical jump more than the FPP, whereas the FPP improved performance of the lateral hop (left) and lateral-shuffle test (left) more than the SPP. The standing long jump, lateral hop (right), and lateral-shuffle test (right) did not show a significant interaction effect. These results suggest that basketball players should incorporate plyometric training in all planes to improve power and change-of-direction speed.

  6. MR assessment of movement and morphologic change in the menisci during knee flexion

    International Nuclear Information System (INIS)

    Kawahara, Y.; Uetani, M.; Fuchi, K.; Eguchi, H.; Hayashi, K.

    1999-01-01

    To examine movement and morphologic alteration in the menisci during knee flexion. Twenty healthy knees were imaged at 0 degrees, 45 degrees, and 90 degrees of passive non-weight-bearing flexion in the sagittal plane with MR. In each meniscus, posterior movement distance during knee flexion and the ratio of anteroposterior (a.p.) diameter at flexion to that at extension were calculated. Each meniscus moved posteriorly during knee flexion. Movement was greater in the anterior horn than in the posterior horn, and greater in the medial meniscus than in the lateral meniscus (p<0.05). The a.p. diameter of each meniscus was reduced at flexion (p<0.05). Knee flexion normally leads to posterior movement and shortening of the a.p. diameter of the menisci, which may be related to the positioning and curvature of femoral condyles at the femorotibial contact point at knee flexion

  7. MR assessment of movement and morphologic change in the menisci during knee flexion

    International Nuclear Information System (INIS)

    Kawahara, Y.; Uetani, M.; Hayashi, K.; Fuchi, K.; Eguchi, H.

    1999-01-01

    Purpose: To examine movement and morphologic alteration in the menisci during knee flexion. Material and Methods: Twenty healthy knees were imaged at 0 , 45 , and 90 of passive non-weight-bearing flexion in the sagittal plane with MR. In each meniscus, posterior movement distance during knee flexion and the ratio of anteroposterior (a.p.) diameter at flexion to that at extension were calculated. Results: Each meniscus moved posteriorly during knee flexion. Movement was greater in the anterior horn than in the posterior horn, and greater in the medial meniscus than in the lateral meniscus (p<0.05). The a.p. diameter of each meniscus was reduced at flexion (p<0.05). Conclusion: Knee flexion normally leads to posterior movement and shortening of the a.p. diameter of the menisci, which may be related to the positioning and curvature of femoral condyles at the femorotibial contact point at knee flexion. (orig.)

  8. Magnetic resonance imaging reflects cartilage proteoglycan degradation in the rabbit knee

    International Nuclear Information System (INIS)

    Paul, P.K.; O'Byrne, E.; Blancuzzi, V.; Wilson, D.; Gunson, D.; Douglas, F.L.; Wang Jinzhao; Mezrich, R.S.

    1991-01-01

    Cartilage degeneration in osteoarthritis is initiated by a loss of proteoglycan. Intra-articular injection of papain causes a reversible loss of proteoglycan in rabbit knees. Rabbits were scanned with magnetic resonance imaging (MRI), using a 1.5T Signa superconducting magnet with 3 inch surface coil. Spin echo sequences were performed in the coronal and sagittal planes at 0, 24, 48, and 72 h after intra-articular injection of papain to abtain T 1 , proton density, and T 2 -weighted images. Cartilage proteoglycan content was measured biochemically and histochemically. Reduced articular cartilage thickness in the MR images of papain-treated knees corresponded to changes in cartilage proteoglycan content. (orig.)

  9. Satisfactory rate of post-processing visualization of fetal cerebral axial, sagittal, and coronal planes from three-dimensional volumes acquired in routine second trimester ultrasound practice by sonographers of peripheral centers.

    Science.gov (United States)

    Rizzo, Giuseppe; Pietrolucci, Maria Elena; Capece, Giuseppe; Cimmino, Ernesto; Colosi, Enrico; Ferrentino, Salvatore; Sica, Carmine; Di Meglio, Aniello; Arduini, Domenico

    2011-08-01

    The aim of this study was to evaluate the feasibility to visualize central nervous system (CNS) diagnostic planes from three-dimensional (3D) brain volumes obtained in ultrasound facilities with no specific experience in fetal neurosonography. Five sonographers prospectively recorded transabdominal 3D CNS volumes starting from an axial approach on 500 consecutive pregnancies at 19-24 weeks of gestation undergoing routine ultrasound examination. Volumes were sent to the referral center (Department of Obstetrics and Gynecology, Università Roma Tor Vergata, Italy) and two independent reviewers with experience in 3D ultrasound assessed their quality in the display of axial, coronal, and sagittal planes. CNS volumes were acquired in 491/500 pregnancies (98.2%). The two reviewers acknowledged the presence of satisfactory images with a visualization rate ranging respectively between 95.1% and 97.14% for axial planes, 73.72% and 87.16% for coronal planes, and 78.41% and 94.29% for sagittal planes. The agreement rate between the two reviewers as expressed by Cohen's kappa coefficient was >0.87 for axial planes, >0.89 for coronal planes, and >0.94 for sagittal planes. The presence of a maternal body mass index >30 alters the probability of achieving satisfactory CNS views, while existence of previous maternal lower abdomen surgery does not affect the quality of the reconstructed planes. CNS volumes acquired by 3D ultrasonography in peripheral centers showed a quality high enough to allow a detailed fetal neurosonogram.

  10. Estimation and Perturbation of the Mid-Sagittal Plane and its Effects on Corpus Callosum Morphometry

    DEFF Research Database (Denmark)

    Skoglund, Karl; Stegmann, Mikkel Bille; Ryberg, Charlotte

    2005-01-01

    callosum (CC), the white-matter nervous tissue bridging the left and right cerebral hemisphere. A multitude of papers (e.g. [2]) report on measurements performed on the two-dimensional cross-section of the CC defined by the mid-sagittal plane (MSP) which separates the left hemisphere from the right......Brain morphometry is an important tool for detecting and monitoring brain pathologies such as epilepsy, dementia [1,2] and multiple sclerosis [3]. A common method is to delineate some well-defined area of the brain to yield a shape for interor intra-subject studies. One such structure is the corpus....... Differences in shape due to pathologies are often slight (e.g. [1]). This makes it imperative to define the MSP in an accurate and consistent manner. This work investigates the importance of proper MSP estimation by measuring relative area changes of the CC as a function of plane perturbation angle from...

  11. Modelling of the Human Knee Joint Supported by Active Orthosis

    Science.gov (United States)

    Musalimov, V.; Monahov, Y.; Tamre, M.; Rõbak, D.; Sivitski, A.; Aryassov, G.; Penkov, I.

    2018-02-01

    The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC). The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  12. Modelling of the Human Knee Joint Supported by Active Orthosis

    Directory of Open Access Journals (Sweden)

    Musalimov V.

    2018-02-01

    Full Text Available The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC. The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  13. TREATMENT OF DEEP PERIPROSTHETIC INFECTION OF KNEE JOINT

    Directory of Open Access Journals (Sweden)

    Ivantsov V. A.

    2018-03-01

    Full Text Available In connection with the increase in arthroplasty of joints, the problem of infectious complications becomes topical. The aim of the study was to increase the effectiveness of purulent complications treatment after total knee arthroplasty. Material and methods. Treatment of patients with deep periprosthetic infection of the knee joint dealt with surgical debridement with the preservation of endoprosthesis, its removal and placement of a cement spacer or with the removal of endoprosthesis and arthrodesis of the knee joint. Surgical debridement was related to the radical excision of necrotic tissues and the remains of the synovial membrane. To prepare the cement spacer bone cement "CEMFIX" or "GENTAFIX" impregnated with antibiotic was used. For arthrodesis of the knee joint, Medbiotech core apparatus (the Republic of Belarus superimposed on the limb in the frontal and sagittal planes was applied. Results. The use of a differentiated and individual approach to the treatment of deep periprosthetic infection of the knee joint enabled to obtain positive results in 85.6% of cases. Conclusions. The two-stage method of treatment of deep periprosthetic infection of the knee joint is preferred, as compared to a one-stage method, which enables to obtain better results.

  14. Position controlled Knee Rehabilitation Orthotic Device for Patients after Total Knee Replacement Arthroplasty

    Science.gov (United States)

    Wannaphan, Patsiri; Chanthasopeephan, Teeranoot

    2016-11-01

    Knee rehabilitation after total knee replacement arthroplasty is essential for patients during their post-surgery recovery period. This study is about designing one degree of freedom knee rehabilitation equipment to assist patients for their post-surgery exercise. The equipment is designed to be used in sitting position with flexion/extension of knee in sagittal plane. The range of knee joint motion is starting from 0 to 90 degrees angle for knee rehabilitation motion. The feature includes adjustable link for different human proportions and the torque feedback control at knee joint during rehabilitation and the control of flexion/extension speed. The motion of the rehabilitation equipment was set to move at low speed (18 degrees/sec) for knee rehabilitation. The rehabilitation link without additional load took one second to move from vertical hanging up to 90° while the corresponding torque increased from 0 Nm to 2 Nm at 90°. When extra load is added, the link took 1.5 seconds to move to 90° The torque is then increased from 0 Nm to 4 Nm. After a period of time, the speed of the motion can be varied. User can adjust the motion to 40 degrees/sec during recovery activity of the knee and users can increase the level of exercise or motion up to 60 degrees/sec to strengthen the muscles during throughout their rehabilitation program depends on each patient. Torque control is included to prevent injury. Patients can use the equipment for home exercise to help reduce the number of hospital visit while the patients can receive an appropriate therapy for their knee recovery program.

  15. Gait adaptations with aging in healthy participants and people with knee-joint osteoarthritis.

    Science.gov (United States)

    Duffell, Lynsey D; Jordan, Stevan J; Cobb, Justin P; McGregor, Alison H

    2017-09-01

    The relationship between age and gait characteristics in people with and without medial compartment osteoarthritis (OA) remains unclear. We aimed to characterize this relationship and to relate biomechanical and structural parameters in a subset of OA patients. Twenty five participants with diagnosed unilateral medial knee OA and 84 healthy participants, with no known knee pathology were recruited. 3D motion capture was used to analyse sagittal and coronal plane gait parameters while participants walked at a comfortable speed. Participants were categorized according to age (18-30, 31-59 and 60+ years), and those with and without OA were compared between and within age groups. In a subset of OA patients, clinically available Computed Tomography images were used to assess joint structure. Differences in coronal plane kinematics at the hip and knee were noted in participants with OA particularly those who were older compared with our healthy controls, as well as increased knee moments. Knee adduction moment correlated with structural parameters in the subset of OA patients. Increased knee moments and altered kinematics were observed in older participants presenting with OA only, which seem to be related to morphological changes in the joint due to OA, as opposed to being related to the initial cause of medial knee OA. Copyright © 2017. Published by Elsevier B.V.

  16. A systematic review of the angular values obtained by computerized photogrammetry in sagittal plane: a proposal for reference values.

    Science.gov (United States)

    Krawczky, Bruna; Pacheco, Antonio G; Mainenti, Míriam R M

    2014-05-01

    Reference values for postural alignment in the coronal plane, as measured by computerized photogrammetry, have been established but not for the sagittal plane. The objective of this study is to propose reference values for angular measurements used for postural analysis in the sagittal plane for healthy adults. Electronic databases (PubMed, BVS, Cochrane, Scielo, and Science Direct) were searched using the following key words: evaluation, posture, photogrammetry, and software. Articles published between 2006 and 2012 that used the PAS/SAPO (postural assessment software) were selected. Another inclusion criterion was the presentation of, at least, one of the following measurements: head horizontal alignment, pelvic horizontal alignment, hip angle, vertical alignment of the body, thoracic kyphosis, and lumbar lordosis. Angle samples of the selected articles were grouped 2 by 2 in relation to an overall average, which made possible total average, variance, and SD calculations. Six articles were included, and the following average angular values were found: 51.42° ± 4.87° (head horizontal alignment), -12.26° ± 5.81° (pelvic horizontal alignment), -6.40° ± 3.86° (hip angle), and 1.73° ± 0.94° (vertical alignment of the body). None of the articles contained the measurements for thoracic kyphosis and lumbar lordosis. The reference values can be adopted as reference for postural assessment in future researches if the same anatomical points are considered. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  17. Observer-Based Human Knee Stiffness Estimation.

    Science.gov (United States)

    Misgeld, Berno J E; Luken, Markus; Riener, Robert; Leonhardt, Steffen

    2017-05-01

    We consider the problem of stiffness estimation for the human knee joint during motion in the sagittal plane. The new stiffness estimator uses a nonlinear reduced-order biomechanical model and a body sensor network (BSN). The developed model is based on a two-dimensional knee kinematics approach to calculate the angle-dependent lever arms and the torques of the muscle-tendon-complex. To minimize errors in the knee stiffness estimation procedure that result from model uncertainties, a nonlinear observer is developed. The observer uses the electromyogram (EMG) of involved muscles as input signals and the segmental orientation as the output signal to correct the observer-internal states. Because of dominating model nonlinearities and nonsmoothness of the corresponding nonlinear functions, an unscented Kalman filter is designed to compute and update the observer feedback (Kalman) gain matrix. The observer-based stiffness estimation algorithm is subsequently evaluated in simulations and in a test bench, specifically designed to provide robotic movement support for the human knee joint. In silico and experimental validation underline the good performance of the knee stiffness estimation even in the cases of a knee stiffening due to antagonistic coactivation. We have shown the principle function of an observer-based approach to knee stiffness estimation that employs EMG signals and segmental orientation provided by our own IPANEMA BSN. The presented approach makes realtime, model-based estimation of knee stiffness with minimal instrumentation possible.

  18. Case-related factors affecting cutting errors of the proximal tibia in total knee arthroplasty assessed by computer navigation.

    Science.gov (United States)

    Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu; Yoshino, Kensuke; Suzuki, Mashiko

    2018-05-01

    The aim of this study was to determine factors that contribute to bone cutting errors of conventional instrumentation for tibial resection in total knee arthroplasty (TKA) as assessed by an image-free navigation system. The hypothesis is that preoperative varus alignment is a significant contributory factor to tibial bone cutting errors. This was a prospective study of a consecutive series of 72 TKAs. The amount of the tibial first-cut errors with reference to the planned cutting plane in both coronal and sagittal planes was measured by an image-free computer navigation system. Multiple regression models were developed with the amount of tibial cutting error in the coronal and sagittal planes as dependent variables and sex, age, disease, height, body mass index, preoperative alignment, patellar height (Insall-Salvati ratio) and preoperative flexion angle as independent variables. Multiple regression analysis showed that sex (male gender) (R = 0.25 p = 0.047) and preoperative varus alignment (R = 0.42, p = 0.001) were positively associated with varus tibial cutting errors in the coronal plane. In the sagittal plane, none of the independent variables was significant. When performing TKA in varus deformity, careful confirmation of the bone cutting surface should be performed to avoid varus alignment. The results of this study suggest technical considerations that can help a surgeon achieve more accurate component placement. IV.

  19. Effects of Fatigue on Frontal Plane Knee Motion, Muscle Activity, and Ground Reaction Forces In Men and Women During Landing

    OpenAIRE

    Smith, Michael P.; Sizer, Phillip S.; James, C. Roger

    2009-01-01

    Women tear their Anterior Cruciate Ligament (ACL) 2-8 times more frequently than men. Frontal plane knee motion can produce a pathological load in the ACL. During a state of fatigue the muscles surrounding the knee joint may lose the ability to protect the joint during sudden deceleration while landing. The purpose of this study was to investigate the effects of fatigue and gender on frontal plane knee motion, EMG amplitudes, and GRF magnitudes during drop- jump landing. Pretest-posttest comp...

  20. The influence of knee alignment on lower extremity kinetics during squats.

    Science.gov (United States)

    Slater, Lindsay V; Hart, Joseph M

    2016-12-01

    The squat is an assessment of lower extremity alignment during movement, however there is little information regarding altered joint kinetics during poorly performed squats. The purpose of this study was to examine changes in joint kinetics and power from altered knee alignment during a squat. Thirty participants completed squats while displacing the knee medially, anteriorly, and with neutral alignment (control). Sagittal and frontal plane torques at the ankle, knee, and hip were altered in the descending and ascending phase of the squat in both the medial and anterior malaligned squat compared to the control squat. Ankle and trunk power increased and hip power decreased in the medial malaligned squat compared to the control squat. Ankle, knee, and trunk power increased and hip power decreased in the anterior malaligned squat compared to the control squat. Changes in joint torques and power during malaligned squats suggest that altered knee alignment increases ankle and trunk involvement to execute the movement. Increased anterior knee excursion during squatting may also lead to persistent altered loading of the ankle and knee. Sports medicine professionals using the squat for quadriceps strengthening must consider knee alignment to reduce ankle and trunk involvement during the movement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. How Anterior Cruciate Ligament Injury was averted during Knee Collapse in a NBA Point Guard.

    Science.gov (United States)

    Schilaty, Nathan D; Bates, Nathaniel A; Krych, Aaron J; Hewett, Timothy E

    2017-01-01

    Non-contact anterior cruciate ligament (ACL) injuries occur with rapid decelerations and pivoting. A recent injury to a high-level National Basketball Association (NBA) player demonstrated neuromuscular control and injury-sparing mechanisms that resulted in only minor ligament injury to the medial collateral ligament. We analyzed biomechanical mechanisms via publically available orthogonal 2-D video to demonstrate how this potential ACL injury was averted. Analysis of the knee injury mechanism demonstrated that the NBA player experienced low ground reaction force, high sagittal plane flexion, and maintenance of frontal plane stability with neuromuscular control. The outcome of these factors inhibited dynamic valgus collapse of the knee throughout the fall, avoiding ACL injury - a potentially career-altering injury. Many athletes, professional and recreational, will be subjected to similar mechanisms of injury and will have improved outcomes if they can successfully utilize preventive strategies of neuromuscular control to limit injury mechanisms.

  2. Fluoroscopic Analysis of Tibial Translation in Anterior Cruciate Ligament Injured Knees With and Without Bracing During Forward Lunge

    Science.gov (United States)

    Jalali, Maryam; Farahmand, Farzam; Mousavi, Seyed Mohammad Ebrahim; Golestanha, Seyed Ali; Rezaeian, Tahmineh; Shirvani Broujeni, Shahram; Rahgozar, Mehdi; Esfandiarpour, Fateme

    2015-01-01

    Background: Despite several studies with different methods, the effect of functional knee braces on knee joint kinematics is not clear. Direct visualization of joint components through medical imaging modalities may provide the clinicians with more useful information. Objectives: In this study, for the first time in the literature, video fluoroscopy was used to investigate the effect of knee bracing on the sagittal plane kinematics of anterior cruciate ligament (ACL) injured patients. Patients and Methods: For twelve male unilateral ACL deficient subjects, the anterior tibial translation was measured during lunge exercise in non-braced and braced conditions. Fluoroscopic images were acquired from the subjects using a digital fluoroscopy system with a rate of 10 fps. The image of each frame was scaled using a calibration coin and analyzed in AutoCAD environment. The angle between the two lines, tangent to the posterior cortexes of the femoral and tibial shafts was measured as the flexion angle. For the fluoroscopic images associated with 0°, 15°, 30°, 45° and 60° knee flexion angles, the relative anterior-posterior configuration of the tibiofemoral joint was assessed by measuring the position of landmarks on the tibia and femur. Results: Results indicated that the overall anterior translations of the tibia during the eccentric (down) and concentric (up) phases of lunge exercise were 10.4 ± 1.7 mm and 9.0 ± 2.2 mm for non-braced, and 10.1 ± 3.4 mm and 7.4 ± 2.5 mm, for braced conditions, respectively. The difference of the tibial anterior-posterior translation behaviors of the braced and non-braced knees was not statistically significant. Conclusion: Fluoroscopic imaging provides an effective tool to measure the dynamic behavior of the knee joint in the sagittal plane and within the limitations of this study, the pure mechanical stabilizing effect of functional knee bracing is not sufficient to control the anterior tibial translation of the ACL deficient

  3. Fluoroscopic Analysis of Tibial Translation in Anterior Cruciate Ligament Injured Knees With and Without Bracing During Forward Lunge.

    Science.gov (United States)

    Jalali, Maryam; Farahmand, Farzam; Mousavi, Seyed Mohammad Ebrahim; Golestanha, Seyed Ali; Rezaeian, Tahmineh; Shirvani Broujeni, Shahram; Rahgozar, Mehdi; Esfandiarpour, Fateme

    2015-07-01

    Despite several studies with different methods, the effect of functional knee braces on knee joint kinematics is not clear. Direct visualization of joint components through medical imaging modalities may provide the clinicians with more useful information. In this study, for the first time in the literature, video fluoroscopy was used to investigate the effect of knee bracing on the sagittal plane kinematics of anterior cruciate ligament (ACL) injured patients. For twelve male unilateral ACL deficient subjects, the anterior tibial translation was measured during lunge exercise in non-braced and braced conditions. Fluoroscopic images were acquired from the subjects using a digital fluoroscopy system with a rate of 10 fps. The image of each frame was scaled using a calibration coin and analyzed in AutoCAD environment. The angle between the two lines, tangent to the posterior cortexes of the femoral and tibial shafts was measured as the flexion angle. For the fluoroscopic images associated with 0°, 15°, 30°, 45° and 60° knee flexion angles, the relative anterior-posterior configuration of the tibiofemoral joint was assessed by measuring the position of landmarks on the tibia and femur. Results indicated that the overall anterior translations of the tibia during the eccentric (down) and concentric (up) phases of lunge exercise were 10.4 ± 1.7 mm and 9.0 ± 2.2 mm for non-braced, and 10.1 ± 3.4 mm and 7.4 ± 2.5 mm, for braced conditions, respectively. The difference of the tibial anterior-posterior translation behaviors of the braced and non-braced knees was not statistically significant. Fluoroscopic imaging provides an effective tool to measure the dynamic behavior of the knee joint in the sagittal plane and within the limitations of this study, the pure mechanical stabilizing effect of functional knee bracing is not sufficient to control the anterior tibial translation of the ACL deficient patients during lunge exercise.

  4. Combined versus individual effects of a valgus knee brace and lateral wedge foot orthotic during stair use in patients with knee osteoarthritis.

    Science.gov (United States)

    Moyer, Rebecca; Birmingham, Trevor; Dombroski, Colin; Walsh, Robert; Giffin, J Robert

    2017-05-01

    The aim of this study was to investigate the combined and individual biomechanical effects of a valgus knee brace and a lateral wedge foot orthotic during stair ascent and descent in patients with knee osteoarthritis (OA). Thirty-five patients with varus alignment and medial knee OA were prescribed a custom valgus knee brace and lateral wedge foot orthotic. Knee angles and moments in the frontal and sagittal planes were determined from 3D gait analysis completed under four randomized conditions: (1) control (no knee brace or foot orthotic), (2) knee brace, (3) foot orthotic, and (4) combined knee brace and foot orthotic. Additional measures included the vertical ground reaction force, trunk lean, toe out and gait speed. During the combined use of a knee brace and foot orthotic, significant decreases in the knee adduction angle (2.17, 95%CI: 0.50-3.84, p=0.013) and 2nd peak EKAM (0.35, 95%CI: 0.17-0.52, pstair descent; and significant increases in the EKFM were observed during stair ascent (0.54, 95%CI: 0.30-0.78, pstair descent compared to ascent, except for toe out. Findings suggest greater effects on gait when both knee brace and foot orthotic are used together, resulting in a more normal gait pattern. However, whether or not a true change in knee joint load can be inferred when using these orthoses remains unclear. Further research is required to determine the clinical importance of the observed changes. Copyright © 2017. Published by Elsevier B.V.

  5. Three-dimensional kinematic and kinetic gait deviations in individuals with chronic anterior cruciate ligament deficient knee: A systematic review and meta-analysis.

    Science.gov (United States)

    Ismail, Shiek Abdullah; Button, Kate; Simic, Milena; Van Deursen, Robert; Pappas, Evangelos

    2016-06-01

    Altered joint motion that occurs in people with an anterior cruciate ligament deficient knee is proposed to play a role in the initiation of knee osteoarthritis, however, the exact mechanism is poorly understood. Although several studies have investigated gait deviations in individuals with chronic anterior cruciate ligament deficient knee in the frontal and transverse planes, no systematic review has summarized the kinematic and kinetic deviations in these two planes. We searched five electronic databases from inception to 14th October 2013, with key words related to anterior cruciate ligament, biomechanics and gait, and limited to human studies only. Two independent reviewers assessed eligibility based on predetermined inclusion/exclusion criteria and methodological quality was evaluated using the Strengthening the Reporting of Observational Studies in Epidemiology statement checklist. We identified 16 studies, totaling 183 subjects with anterior cruciate ligament deficient knee and 211 healthy subjects. Due to the variability in reported outcomes, we could only perform meta-analysis for 13 sagittal plane outcomes. The only significant finding from our meta-analysis showed that individuals with anterior cruciate ligament deficient knee demonstrated a significantly greater external hip flexor angular impulse compared to control (P=0.03). No consensus about what constitutes a typical walking pattern in individuals with anterior cruciate ligament deficient knee can be made, nor can conclusions be derived to explain if gait deviations in the frontal and transverse plane contributed to the development of the knee osteoarthritis among this population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings.

    Directory of Open Access Journals (Sweden)

    Bart Malfait

    Full Text Available The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ.Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM,vastus lateralis(VL}, {vastus medialis(VM,hamstring medialis(HM}, {hamstring medialis(HM,hamstring lateralis(HL} and the {vastus lateralis(VL,hamstring lateralis(HL}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping.The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05. Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001. The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05. Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001. Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001.This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior

  7. Validity and Reliability of a Virtual Reality Game in Evaluating the Projected Frontal Plane Knee Angle When Landing From a Drop Vertical Jump.

    Science.gov (United States)

    Mills, Kathryn; Idris, Aula; Pham, Thu-An; Porte, John; Wiggins, Mark; Kavakli, Manolya

    2017-12-18

    To determine the validity and reliability of the peak frontal plane knee angle evaluated by a virtual reality (VR) netball game when landing from a drop vertical jump (DVJ). Laboratory Methods: Forty participants performed 3 DVJs evaluated by 3-dimensional (3D) motion analysis and 3 DVJs evaluated by the VR game. Limits of agreement for the peak projected frontal plane knee angle and peak knee abduction were determined. Participants were given a consensus category of "Above threshold" or "Below threshold" based on a pre-specified threshold angle of 9˚ during landing. Classification agreement was determined using kappa coefficient and accuracy was determined using specificity and sensitivity. Ten participants returned 1-week later to determine intra-rater reliability, standard error of the measure and typical error. The mean difference in detected frontal plane knee angle was 3.39˚ (1.03˚, 5.74˚). Limits of agreement were -10.27˚ (-14.36˚, -6.19˚) to 17.05˚ (12.97˚, 21.14˚). Substantial agreement, specificity and sensitivity were observed for the threshold classification (ĸ = 0.66, [0.42, 0.88] specificity= 0.96 [0.78, 1.0], sensitivity= 0.75 [0.43, 0.95]). The game exhibited acceptable reliability over time (ICC (3,1) = 0.844) and error was approximately 2˚. The VR game reliably evaluated a projected frontal plane knee angle. While the knee angle detected by the VR game is strongly related peak knee abduction, the accuracy of detecting the exact angle was limited. A threshold approach may be a more accurate approach for gaming technology to evaluate frontal plane knee angles when landing from a jump.

  8. A DYNAMIC VALGUS INDEX THAT COMBINES HIP AND KNEE ANGLES: ASSESSMENT OF UTILITY IN FEMALES WITH PATELLOFEMORAL PAIN.

    Science.gov (United States)

    Scholtes, Sara A; Salsich, Gretchen B

    2017-06-01

    Two=dimensional motion analysis of lower=extremity movement typically focuses on the knee frontal plane projection angle, which considers the position of the femur and the tibia. A measure that includes the pelvis may provide a more comprehensive and accurate indicator of lower=extremity movement. Hypothesis/Purpose: The purpose of the study was to describe the utility of a two=dimensional dynamic valgus index (DVI) in females with patellofemoral pain. The hypothesis was that the DVI would be more reliable and valid than the knee frontal plane projection angle, be greater in females with patellofemoral pain during a single=limb squat than in females without patellofemoral pain, and decrease in females with patellofemoral pain following instruction. Study Design: Controlled Laboratory Study. Data were captured while participants performed single limb squats under two conditions: usual and corrected. Two=dimensional hip and knee angles and a DVI that combined the hip and knee angles were calculated. Three=dimensional sagittal, frontal, and transverse plane angles of the hip and knee and a DVI combining the frontal and transverse plane angles were calculated. The two=dimensional DVI demonstrated moderate reliability (ICC=0.74). The correlation between the two=dimensional and three=dimensional DVI's was 0.635 (ppatellofemoral pain demonstrated a greater two=dimensional DVI (31.14 °±13.36 °) than females without patellofemoral pain (18.30 °±14.97 °; p=0.010). Females with patellofemoral pain demonstrated a decreased DVI in the corrected (19.04 °±13.70 °) versus usual (31.14 °±13.36 °) condition (p=0.001). The DVI is a reliable and valid measure that may provide a more comprehensive assessment of lower=extremity movement patterns than the knee frontal plane projection angle in individuals with lower=extremity musculoskeletal pain problems. 2b.

  9. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    Science.gov (United States)

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  10. Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Dai, B; Butler, R J; Garrett, W E; Queen, R M

    2014-12-01

    Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Sagittal plane analysis of the spine and pelvis in degenerative lumbar scoliosis.

    Science.gov (United States)

    Han, Fei; Weishi, Li; Zhuoran, Sun; Qingwei, Ma; Zhongqiang, Chen

    2017-01-01

    Previous studies have reported the normative values of pelvic sagittal parameters, but no study has analyzed the sagittal spino-pelvic alignment in degenerative lumbar scoliosis (DLS) and its role in the pathogenesis. Retrospective analysis was applied to 104 patients with DLS, together with 100 cases of asymptomatic young adults as a control group and another control group consisting of 145 cases with cervical spondylosis. The coronal and sagittal parameters were measured on the anteroposterior and lateral radiograph of the whole spine in the DLS group as well as in the two control groups. Statistical analysis showed that the DLS group had a higher pelvic incidence (PI) value (50.5° ± 10.2°), than the normal control group (with PI 47.2° ± 8.8°) and the cervical spondylosis group (46.9° ± 9.1°). In DLS group, there were 38 cases (36.5%) complicated with degenerative lumbar spondylolisthesis, who had higher PI values than patients without it. Besides, the lumbar lordosis (LL) and sacral slope (SS) of DLS group were lower; the scoliosis Cobb's angle was correlated with pelvic tilt (PT); thoracic kyphosis was correlated with LL, SS, and PT; and LL was correlated with other sagittal parameters. Patients with DLS may have a higher PI, which may impact the pathogenesis of DLS. A high PI value is probably associated with the high prevalence of degenerative lumbar spondylolisthesis among DLS patients. In DLS patients, the lumbar spine maintains the ability of regulating the sagittal balance, and the regulation depends more on thoracic curve.

  12. Relationships between the center of pressure and the movements of the ankle and knee joints during the stance phase in patients with severe medial knee osteoarthritis.

    Science.gov (United States)

    Fukaya, Takashi; Mutsuzaki, Hirotaka; Okubo, Tomoyuki; Mori, Koichi; Wadano, Yasuyoshi

    2016-08-01

    The knee joint movement during the stance phase is affected by altered ankle movement and the center of pressure (COP). However the relationships between changes in the center of pressure (COP) and the altered kinematics and kinetics of the ankle and knee joints in patients with osteoarthritis (OA) of the knee are not well understood. The purpose of this study was to determine the relationships between changes in the COP and the altered kinematic and kinetic variables in ankle and knee joints during the stance phase in patients with medial knee OA. Fourteen patients with knee OA (21 knees) and healthy subjects were assessed by gait analysis using an eight-camera motion analysis system to record forward and lateral shifts in the COP and the angle and net internal moments of the knee and ankle joint. Spearman rank-correlation coefficients were used to determine the relationship between these results. In knees with medial OA, lateral shifts in the COP were correlated with knee flexion angle. Lateral shifts in the COP were correlated with the second peak of the knee extensor moment and correlated with the knee abductor moment. In patients with medial knee OA, lateral shifts in the COP were negatively correlated with the kinematic and kinetic variables in the sagittal plane of the knee joints. Controlling such lateral shifts in the COP may thus be an effective intervention for mechanical loads on the knee during the stance phase in patients with knee OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The use of parallel imaging for MRI assessment of knees in children and adolescents.

    Science.gov (United States)

    Doria, Andrea S; Chaudry, Gulraiz A; Nasui, Cristina; Rayner, Tammy; Wang, Chenghua; Moineddin, Rahim; Babyn, Paul S; White, Larry M; Sussman, Marshall S

    2010-03-01

    Parallel imaging provides faster scanning at the cost of reduced signal-to-noise ratio (SNR) and increased artifacts. To compare the diagnostic performance of two parallel MRI protocols (PPs) for assessment of pathologic knees using an 8-channel knee coil (reference standard, conventional protocol [CP]) and to characterize the SNR losses associated with parallel imaging. Two radiologists blindly interpreted 1.5 Tesla knee MRI images in 21 children (mean 13 years, range 9-18 years) with clinical indications for an MRI scan. Sagittal proton density, T2-W fat-saturated FSE, axial T2-W fat-saturated FSE, and coronal T1-W (NEX of 1,1,1) images were obtained with both CP and PP. Images were read for soft tissue and osteochondral findings. There was a 75% decrease in acquisition time using PP in comparison to CP. The CP and PP protocols fell within excellent or upper limits of substantial agreement: CP, kappa coefficient, 0.81 (95% CIs, 0.73-0.89); PP, 0.80-0.81 (0.73-0.89). The sensitivity of the two PPs was similar for assessment of soft (0.98-1.00) and osteochondral (0.89-0.94) tissues. Phantom data indicated an SNR of 1.67, 1.6, and 1.51 (axial, sagittal and coronal planes) between CP and PP scans. Parallel MRI provides a reliable assessment for pediatric knees in a significantly reduced scan time without affecting the diagnostic performance of MRI.

  14. What is the optimal alignment of the tibial and femoral components in knee arthroplasty?

    DEFF Research Database (Denmark)

    Gromov, Kirill; Korchi, Mounim; Thomsen, Morten G

    2014-01-01

    of positioning on survival and functional outcome was considered. Results - Many definitions exist when evaluating placement of femoral and tibial components. Implant alignment plays a role in both survival and functional outcome following primary TKA, as component malalignment can lead to increased failure......Background - Surgeon-dependent factors such as optimal implant alignment are thought to play a significant role in outcome following primary total knee arthroplasty (TKA). Exact definitions and references for optimal alignment are, however, still being debated. This overview of the literature...... describes different definitions of component alignment following primary TKA for (1) tibiofemoral alignment in the AP plane, (2) tibial and femoral component placement in the AP plane, (3) tibial and femoral component placement in the sagittal plane, and (4) rotational alignment of tibial and femoral...

  15. EFFECTS OF FATIGUE ON FRONTAL PLANE KNEE MOTION, MUSCLE ACTIVITY, AND GROUND REACTION FORCES IN MEN AND WOMEN DURING LANDING

    Directory of Open Access Journals (Sweden)

    Michael P. Smith

    2009-09-01

    Full Text Available Women tear their Anterior Cruciate Ligament (ACL 2-8 times more frequently than men. Frontal plane knee motion can produce a pathological load in the ACL. During a state of fatigue the muscles surrounding the knee joint may lose the ability to protect the joint during sudden deceleration while landing. The purpose of this study was to investigate the effects of fatigue and gender on frontal plane knee motion, EMG amplitudes, and GRF magnitudes during drop- jump landing. Pretest-posttest comparison group design was used. Twenty-six volunteers (14 women; 12 Men; Mean ± standard deviation age = 24.5 ± 2.7 yrs; height = 1.73 ± 0.09 m; mass = 74.3 ± 11.8 kg participated in the study. Knee frontal plane ranges of motion and positions, ground reaction force peak magnitudes, and surface EMG RMS amplitudes from five lower extremity muscles (vastus medialis, vastus lateralis, medial hamstring, lateral hamstring, and lateral gastrocnemius were obtained during the landing phase of a drop-jump. MANOVA and ANOVA indicated that peak GRF significantly (p < 0.05; 2.50 ± 0.75 BW vs. 2.06 ± 0.93 BW decreased during fatigued landings. No other variables exhibited a fatigue main effect, although there was a significant (p < 0.05 fatigue by gender interaction for the frontal plane range of motion from initial contact to max knee flexion variable. Follow-up analyses failed to reveal significant gender differences at the different levels of fatigue for this variable. Additionally, no variables exhibited a significant gender main effect. Single subject analysis indicated that fatigue significantly altered frontal plane knee motion, peak GRF, and EMG in some subjects and the direction of differences varied by individual. Fatigue altered some aspects of landing performance in both men and women, but there were no gender differences. Additionally, both group and single subject analyses provided valuable but different information about factors representing

  16. In-Plane Ultrasound-Guided Knee Injection Through a Lateral Suprapatellar Approach: A Safe Technique.

    Science.gov (United States)

    Chagas-Neto, Francisco A; Taneja, Atul K; Gregio-Junior, Everaldo; Nogueira-Barbosa, Marcello H

    2017-06-01

    This study aims to describe a technique for in-plane ultrasound-guided knee arthrography through a lateral suprapatellar approach, reporting its accuracy and related complications. A retrospective search was performed for computed tomography and magnetic resonance reports from June 2013 through June 2015. Imaging studies, puncture descriptions, and guided-procedure images were reviewed along with clinical and surgical history. A fellowship-trained musculoskeletal radiologist performed all procedures under sterile technique and ultrasound guidance with the probe in oblique position on the lateral suprapatellar recess after local anesthesia with the patient on dorsal decubitus, hip in neutral rotation, and 30 to 45 degrees of knee flexion. A total of 86 consecutive subjects were evaluated (mean, 55 years). All subjects underwent intra-articular injection of contrast, which was successfully reached in the first attempt in 94.2% of the procedures (81/86), and in the second attempt in 5.8% (5/86) after needle repositioning without a second puncture. There were no postprocedural reports of regional complications at the puncture site, such as significant pain, bleeding, or vascular lesions. Our study demonstrates that in-plane ultrasound-guided injection of the knee in semiflexion approaching the lateral suprapatellar recess is a safe and useful technique to administer intra-articular contrast solution, as an alternative method without radiation exposure.

  17. Clinical outcome of increased flexion gap after total knee arthroplasty. Can controlled gap imbalance improve knee flexion?

    Science.gov (United States)

    Ismailidis, P; Kuster, M S; Jost, B; Giesinger, K; Behrend, H

    2017-06-01

    Increased range of motion (ROM) while maintaining joint stability is the goal of modern total knee arthroplasty (TKA). A biomechanical study has shown that small increases in flexion gap result in decreased tibiofemoral force beyond 90° flexion. The purpose of this paper was to investigate clinical implications of controlled increased flexion gap. Four hundred and four TKAs were allocated into one of two groups and analysed retrospectively. In the first group (n = 352), flexion gap exceeded extension gap by 2.5 mm, while in the second group (n = 52) flexion gap was equal to the extension gap. The procedures were performed from 2008 to 2012. The patients were reviewed 12 months postoperatively. Objective clinical results were assessed for ROM, mediolateral and sagittal stability. Patient-reported outcome measures were the WOMAC score and the Forgotten Joint Score (FJS-12). After categorizing postoperative flexion into three groups (poor < 90°, satisfactory 91°-119°, good ≥ 120°) significantly more patients in group 1 achieved satisfactory or good ROM (p = 0.006). Group 1 also showed a significantly higher mean FJS-12 (group 1: 73, group 2: 61, p = 0.02). The mean WOMAC score was 11 in the first and 14 in the second group (n.s.). Increase in flexion gap did not influence knee stability. The clinical relevance of this study is that a controlled flexion gap increase of 2.5 mm may have a positive effect on postoperative flexion and patient satisfaction after TKA. Neither knee stability in the coronal and sagittal planes nor complications were influenced by a controlled increase in flexion gap. III.

  18. Subchondral cysts of the tibia secondary to osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Ostlere, S.J.; Seeger, L.L.; Eckardt, J.J.

    1990-01-01

    Subchondral cysts of the tibia secondary to osteoarthritis of the knee are not usually seen on radiographs. When present, they are typically small and present no diagnostic difficulty. Two cases of unusually large subchondral lesions of the medial tibial plateau are presented. The lesions were well defined and lay adjacent to the medial tibial cortex with their long axes in the sagittal plane. Both were associated with moderate medial compartment osteoarthritis. Additional information obtained from computed tomography indicated that these lesions were subchondral cysts secondary to osteoarthritis rather than tumors or other tumor-like conditions. (orig.)

  19. Measurement and Finite Element Model Validation of Immature Porcine Brain-Skull Displacement during Rapid Sagittal Head Rotations.

    Science.gov (United States)

    Pasquesi, Stephanie A; Margulies, Susan S

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head ( n  = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.

  20. Measurement and Finite Element Model Validation of Immature Porcine Brain–Skull Displacement during Rapid Sagittal Head Rotations

    Science.gov (United States)

    Pasquesi, Stephanie A.; Margulies, Susan S.

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain–skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain–skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain–skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain–skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain–skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations. PMID:29515995

  1. Comparing preseason frontal and sagittal plane plyometric programs on vertical jump height in high-school basketball players.

    Science.gov (United States)

    King, Jeffrey A; Cipriani, Daniel J

    2010-08-01

    The primary purpose of this study was to evaluate whether frontal plane (FP) plyometrics, which are defined as plyometrics dominated with a lateral component, would produce similar increases in vertical jump height (VJH) compared to sagittal plane (SP) Plyometrics. Thirty-two junior varsity and varsity high-school basketball players participated in 6 weeks of plyometric training. Players participated in either FP or SP plyometrics for the entire study. Vertical jump height was measured on 3 occasions: preintervention (baseline), at week 3 of preparatory training, and at week 6 of training. Descriptive statistics were calculated for VJH. A 2-way analysis of variance (ANOVA) with repeated measures was used to test the difference in mean vertical jump scores using FP and SP training modalities. Results showed a significant effect over time for vertical jump (p training did not have a significant effect on VJH and significant improvement in VJH was seen in subjects participating in SP plyometrics thus reinforcing the specificity principle of training. However, coaches should implement both types of plyometrics because both training modalities can improve power and quickness among basketball players.

  2. The wrinkled patellar tendon: An indication of abnormality in the extensor mechanism of the knee

    International Nuclear Information System (INIS)

    Berlin, R.C.; Levinsohn, E.M.; Chrisman, H.

    1991-01-01

    Rupture of the quadriceps tendon is an uncommon condition which requires early diagnosis and treatment to avert prolonged disability. In four patients who had surgically confirmed quadriceps tendon rupture, lateral radiographs of the knee and/or sagittal magnetic resonance (MR) images demonstrated a corrugated appearance to the patellar tendon. Sagittal MR images of the knee following patellectomy in one patient and radiographs of a transverse fracture of the patella in another also demonstrated this appearance. MRI has superb contrast resolution which provides optimal visualization of the contour of the patellar tendon on sagittal images. A retrospective review of 50 consecutive knee MRI examinations was carried out to evaluate the appearance of the normal patellar tendon. In 49 of 50 patients, the sagittal images demonstrated a straight or nearly straight patellar tendon. A corrugated appearance of the patellar tendon on sagittal images indicates a reduction in the normal tensile force applied to it and indicates the need for careful evaluation of the patella and quadriceps tendon mechanism. (orig.)

  3. Association between frontal plane knee control and lower extremity injuries: a prospective study on young team sport athletes

    Science.gov (United States)

    Pasanen, Kati; Krosshaug, Tron; Vasankari, Tommi; Kannus, Pekka; Heinonen, Ari; Kujala, Urho M; Avela, Janne; Perttunen, Jarmo; Parkkari, Jari

    2018-01-01

    Background/aim Poor frontal plane knee control can manifest as increased dynamic knee valgus during athletic tasks. The purpose of this study was to investigate the association between frontal plane knee control and the risk of acute lower extremity injuries. In addition, we wanted to study if the single-leg squat (SLS) test can be used as a screening tool to identify athletes with an increased injury risk. Methods A total of 306 basketball and floorball players participated in the baseline SLS test and a 12-month injury registration follow-up. Acute lower extremity time-loss injuries were registered. Frontal plane knee projection angles (FPKPA) during the SLS were calculated using a two-dimensional video analysis. Results Athletes displaying a high FPKPA were 2.7 times more likely to sustain a lower extremity injury (adjusted OR 2.67, 95% CI 1.23 to 5.83) and 2.4 times more likely to sustain an ankle injury (OR 2.37, 95% CI 1.13 to 4.98). There was no statistically significant association between FPKPA and knee injury (OR 1.49, 95% CI 0.56 to 3.98). The receiver operating characteristic curve analyses indicated poor combined sensitivity and specificity when FPKPA was used as a screening test for lower extremity injuries (area under the curve of 0.59) and ankle injuries (area under the curve of 0.58). Conclusions Athletes displaying a large FPKPA in the SLS test had an elevated risk of acute lower extremity and ankle injuries. However, the SLS test is not sensitive and specific enough to be used as a screening tool for future injury risk. PMID:29387448

  4. Training intensity and sagittal curvature of the spine in male and female artistic gymnasts.

    Science.gov (United States)

    Sanz-Mengibar, Jose M; Sainz-de-Baranda, Pilar; Santonja-Medina, Fernando

    2018-04-01

    Specific adaptations of the spine in the sagittal plane have been described according to different sports disciplines. The goal of this study was to describe the integrative diagnosis of the sagittal morphotype of the spine in male and female artistic gymnasts. Forty-eight gymnasts were measured with an inclinometer. Thoracic and lumbar curves were quantified in standing position, in Sit and Reach and Slump Sitting in order to assess the sagittal spine posture and analyze if adaptations were related to training intensity. Correlation values of the sagittal plane spine measurements showed significantly increased thoracic kyphosis in men (-0.445, Partistic gymnastics; however, this sport seems to cause specific adaptations in postural hypolordosis, functional thoracic kyphosis and lumbar kyphotic attitude during sitting and trunk flexion. The implications of the functional adaptations observed in our results may require a preventive intervention in male and female artistic gymnasts can be assessed with the integrative diagnosis of the sagittal morphotype of the spine.

  5. The use of the T1 sagittal angle in predicting overall sagittal balance of the spine.

    Science.gov (United States)

    Knott, Patrick T; Mardjetko, Steven M; Techy, Fernando

    2010-11-01

    A balanced sagittal alignment of the spine has been shown to strongly correlate with less pain, less disability, and greater health status scores. To restore proper sagittal balance, one must assess the position of the occiput relative to the sacrum. The assessment of spinal balance preoperatively can be challenging, whereas predicting postoperative balance is even more difficult. This study was designed to evaluate and quantify multiple factors that influence sagittal balance. Retrospective analysis of existing spinal radiographs. A retrospective review of 52 adult spine patient records was performed. All patients had full-column digital radiographs that showed all the important skeletal landmarks necessary for accurate measurement. The average age of the patient was 53 years. Both genders were equally represented. The radiographs were measured using standard techniques to obtain the following parameters: scoliosis in the coronal plane; lordosis or kyphosis of the cervical, thoracic, and lumbar spine; the T1 sagittal angle (angle between a horizontal line and the superior end plate of T1); the angle of the dens in the sagittal plane; the angle of the dens in relation to the occiput; the sacral slope; the pelvic incidence; the femoral-sacral angle; and finally, the sagittal vertical axis (SVA) measured from both the dens of C2 and from C7. It was found that the SVA when measured from the dens was on average 16 mm farther forward than the SVA measured from C7 (p<.0001). The dens plumb line (SVA(dens)) was then used in the study. An analysis was done to examine the relationship between SVA(dens) and each of the other measurements. The T1 sagittal angle was found to have a moderate positive correlation (r=0.65) with SVA(dens), p<.0001, indicating that the amount of sagittal T1 tilt can be used as a good predictor of overall sagittal balance. When examining the other variables, it was found that cervical lordosis had a weak correlation (r=0.37) with SVA(dens) that was

  6. Sex differences in proximal control of the knee joint.

    Science.gov (United States)

    Mendiguchia, Jurdan; Ford, Kevin R; Quatman, Carmen E; Alentorn-Geli, Eduard; Hewett, Timothy E

    2011-07-01

    Following the onset of maturation, female athletes have a significantly higher risk for anterior cruciate ligament (ACL) injury compared with male athletes. While multiple sex differences in lower-extremity neuromuscular control and biomechanics have been identified as potential risk factors for ACL injury in females, the majority of these studies have focused specifically on the knee joint. However, increasing evidence in the literature indicates that lumbo-pelvic (core) control may have a large effect on knee-joint control and injury risk. This review examines the published evidence on the contributions of the trunk and hip to knee-joint control. Specifically, the sex differences in potential proximal controllers of the knee as risk factors for ACL injury are identified and discussed. Sex differences in trunk and hip biomechanics have been identified in all planes of motion (sagittal, coronal and transverse). Essentially, female athletes show greater lateral trunk displacement, altered trunk and hip flexion angles, greater ranges of trunk motion, and increased hip adduction and internal rotation during sport manoeuvres, compared with their male counterparts. These differences may increase the risk of ACL injury among female athletes. Prevention programmes targeted towards trunk and hip neuromuscular control may decrease the risk for ACL injuries.

  7. Sex Differences in Proximal Control of the Knee Joint

    Science.gov (United States)

    Mendiguchia, Jurdan; Ford, Kevin R.; Quatman, Carmen E.; Alentorn-Geli, Eduard; Hewett, Timothy E.

    2014-01-01

    Following the onset of maturation, female athletes have a significantly higher risk for anterior cruciate ligament (ACL) injury compared with male athletes. While multiple sex differences in lower-extremity neuromuscular control and biomechanics have been identified as potential risk factors for ACL injury in females, the majority of these studies have focused specifically on the knee joint. However, increasing evidence in the literature indicates that lumbopelvic (core) control may have a large effect on knee-joint control and injury risk. This review examines the published evidence on the contributions of the trunk and hip to knee-joint control. Specifically, the sex differences in potential proximal controllers of the knee as risk factors for ACL injury are identified and discussed. Sex differences in trunk and hip biomechanics have been identified in all planes of motion (sagittal, coronal and transverse). Essentially, female athletes show greater lateral trunk displacement, altered trunk and hip flexion angles, greater ranges of trunk motion, and increased hip adduction and internal rotation during sport manoeuvres, compared with their male counterparts. These differences may increase the risk of ACL injury among female athletes. Prevention programmes targeted towards trunk and hip neuromuscular control may decrease the risk for ACL injuries. PMID:21688868

  8. Lower extremity joint coupling variability during gait in young adults with and without chronic ankle instability.

    Science.gov (United States)

    Lilley, Thomas; Herb, Christopher C; Hart, Joseph; Hertel, Jay

    2018-06-01

    Chronic ankle instability (CAI) is a condition resulting from a lateral ankle sprain. Shank-rearfoot joint-coupling variability differences have been found in CAI patients; however, joint-coupling variability (VCV) of the ankle and proximal joints has not been explored. Our purpose was to analyse VCV in adults with and without CAI during gait. Four joint-coupling pairs were analysed: knee sagittal-ankle sagittal, knee sagittal-ankle frontal, hip frontal-ankle sagittal and hip frontal-ankle frontal. Twenty-seven adults participated (CAI:n = 13, Control:n = 14). Lower extremity kinematics were collected during walking (4.83 km/h) and jogging (9.66 km/h). Vector-coding was used to assess the stride-to-stride variability of four coupling pairs. During walking, CAI patients exhibited higher VCV than healthy controls for knee sagittal-ankle frontal in latter parts of stance thru mid-swing. When jogging, CAI patients demonstrated lower VCV with specific differences occurring across various intervals of gait. The increased knee sagittal-ankle frontal VCV in CAI patients during walking may indicate an adaptation to deal with the previously identified decrease in variability in transverse plane shank and frontal plane rearfoot coupling during walking; while the decreased ankle-knee and ankle-hip VCV identified in CAI patients during jogging may represent a more rigid, less adaptable sensorimotor system ambulating at a faster speed.

  9. Gender differences in the knee adduction moment after anterior cruciate ligament reconstruction surgery.

    Science.gov (United States)

    Webster, Kate E; McClelland, Jodie A; Palazzolo, Simon E; Santamaria, Luke J; Feller, Julian A

    2012-04-01

    The external knee adduction moment during gait has previously been associated with knee pain and osteoarthritis (OA). Recently, the knee adduction moment has been shown to be increased following anterior cruciate ligament (ACL) reconstruction surgery and has been suggested as a potential mechanism for the progression of early onset knee OA in this population. No study has investigated the gender differences in gait biomechanics following ACL reconstruction. To examine gender differences in gait biomechanics following ACL reconstruction surgery. 36 subjects (18 females, 18 males) who had previously undergone ACL reconstruction surgery (mean time since surgery 20 months) underwent gait analysis at a self-selected walking speed. Males and females were well matched for age, time since surgery and walking speed. Maximum flexion and adduction angles and moments were recorded during the stance phase of level walking and compared between the male and female groups. The knee adduction moment was 23% greater in the female compared with the male ACL group. No gender differences were seen in the sagittal plane. No differences were seen between the reconstructed and contralateral limb. The higher knee adduction moment seen in females compared with males may suggest an increased risk for the development of OA in ACL-reconstructed females.

  10. EMG Analysis and Sagittal Plane Kinematics of the Two-Handed and Single-Handed Kettlebell Swing: A Descriptive Study.

    Science.gov (United States)

    Van Gelder, Leonard H; Hoogenboom, Barbara J; Alonzo, Bryan; Briggs, Dayna; Hatzel, Brian

    2015-11-01

    Kettlebell (KB) swing exercises have been proposed as a possible method to improve hip and spinal motor control as well as improve power, strength, and endurance. To describe electromyographic (EMG) and sagittal plane kinematics during two KB exercises: the two-handed KB swing (THKS) and the single-handed KB swing (SHKS). In addition, the authors sought to investigate whether or not hip flexor length related to the muscular activity or the kinematics of the exercise. Twenty-three healthy college age subjects participated in this study. Demographic information and passive hip flexor length were recorded for each subject. A maximum voluntary isometric contraction (MVIC) of bilateral gluteus maximus (GMAX), gluteus medius (GMED), and biceps femoris (BF) muscles was recorded. EMG activity and sagittal plane video was recorded during both the THKS and SHKS in a randomized order. Normalized muscular activation of the three studied muscles was calculated from EMG data. During both SHKS and THKS, the average percent of peak MVIC for GMAX was 75.02% ± 55.38, GMED 55.47% ± 26.33, and BF 78.95% ± 53.29. Comparisons of the mean time to peak activation (TTP) for each muscle showed that the biceps femoris was the first muscle to activate during the swings. Statistically significant (p < .05), moderately positive correlations (r = .483 and .417) were found between passive hip flexor length and % MVIC for the GMax during the SHKS and THKS, respectively. The THKS and SHKS provide sufficient muscular recruitment for strengthening of all of the muscles explored. This is the first study to show significant correlations between passive hip flexor length and muscular activation of hip extensors, particularly the GMax. Finally, the BF consistently reached peak activity before the GMax and GMed during the SHKS. Level 3.

  11. Sex differences in lower extremity kinematics and patellofemoral kinetics during running.

    Science.gov (United States)

    Almonroeder, Thomas G; Benson, Lauren C

    2017-08-01

    The incidence of patellofemoral pain (PFP) is 2 times greater in females compared with males of similar activity levels; however, the exact reason for this discrepancy remains unclear. Abnormal mechanics of the hip and knee in the sagittal, frontal, and transverse planes have been associated with an increased risk of PFP. The purpose of this study was to compare the mechanics of the lower extremity in males and females during running in order to better understand the reason(s) behind the sex discrepancy in PFP. Three-dimensional kinematic and kinetic data were collected as male and female participants completed overground running trials at a speed of 4.0 m · s -1 (±5%). Patellofemoral joint stress (PFJS) was estimated using a sagittal plane knee model. The kinematics of the hip and knee in the frontal and transverse planes were also analysed. Male participants demonstrated significantly greater sagittal plane peak PFJS in comparison with the female participants (P < .001, ES = 1.9). However, the female participants demonstrated 3.5° greater peak hip adduction and 3.4° greater peak hip internal rotation (IR). As a result, it appears that the sex discrepancy in PFP is more likely to be related to differences in the kinematics of the hip in the frontal and transverse planes than differences in sagittal plane PFJS.

  12. Effects of toe-in and toe-in with wider step width on level walking knee biomechanics in varus, valgus, and neutral knee alignments.

    Science.gov (United States)

    Bennett, Hunter J; Shen, Guangping; Cates, Harold E; Zhang, Songning

    2017-12-01

    Increased peak external knee adduction moments exist for individuals with knee osteoarthritis and varus knee alignments, compared to healthy and neutrally aligned counterparts. Walking with increased toe-in or increased step width have been individually utilized to successfully reduce 1st and 2nd peak knee adduction moments, respectfully, but have not previously been combined or tested among all alignment groups. The purpose of this study was to compare toe-in only and toe-in with wider step width gait modifications in individuals with neutral, valgus, and varus alignments. Thirty-eight healthy participants with confirmed varus, neutral, or valgus frontal-plane knee alignment through anteroposterior radiographs, performed level walking in normal, toe-in, and toe-in with wider step width gaits. A 3×3 (group×intervention) mixed model repeated measures ANOVA compared alignment groups and gait interventions (pstep width compared to normal gait. The 2nd peak adduction moment was increased in toe-in compared to normal and toe-in with wider step width. The adduction impulse was also reduced in toe-in and toe-in with wider step width compared to normal gait. Peak knee flexion and external rotation moments were increased in toe-in and toe-in with wider step width compared to normal gait. Although the toe-in with wider step width gait seems to be a viable option to reduce peak adduction moments for varus alignments, sagittal, and transverse knee loadings should be monitored when implementing this gait modification strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The MR diagnosis and clinical significance of bone contusion of knee

    International Nuclear Information System (INIS)

    Liu Wei; Yang Jun; Shao Kangwei; Zhu Caisong; Zhu Ying; Zhai Lulan

    2007-01-01

    Objective: To evaluate MRI in the diagnosis of the bone contusion of the knee .joint and its clinical significance. Methods: Using special coil for knee joint, coronal, sagittal, axial and oblique sagittal plane scanning with fast spin-echo sequence(T 1 WI, T 2 WI, PDWI + FS) was performed on knee joint in 205 patients in three days after injury. According the distributing bone marrow edema and injury mechanism, bone contusion were classified five types as pivot shift injury, clip injury, dashboard injury, hyperextension injury and lateral patellar dislocation. Results: One hundred and forty-five cases of the 205 patients were found bone marrow edema without fracture on X-ray films. Among them, pivot shift injury was found in 43 cases accompanied with anterior cruciate ligament rupture in 30 cases, tear of the posterior horn of the lateral or medial meniscus in 12 and tears of the medial collateral ligament in 8 cases; clip injury in 53 cases accompanied with anterior cruciate ligament rupture in 10 cases, tear of the posterior horn of the lateral or medial meniscus in 15 and tears of the medial collateral ligament in 38 cases; dashboard injury 40 cases accompanied with posterior cruciate ligament rupture in 16 cases, hyperextension injury. 9 cases accompanied with anterior cruciate ligament rupture in 2 cases, posterior cruciate ligament rupture in 3 cases. No lateral patellar dislocation was found. Forty-eight of 145 patients had undergone arthroscopy, 43 cases (89.6%) of them were in accordance with Mill diagnosis. Bone contusion were defined as geographic regions of abnormal signal intensity, that is, low signal intensity in T 1 -weighted images and high signal intensity in PD-weighted or T 2 -weigeted images with fat saturation. Conclusion: MRI can accurately display the location and area of bone contusion of the knee joint as well as its adjunctive structure injury and deduce their injury mechanism. MRI should be used routinely for knee trauma. (authors)

  14. Knock knee and the gait of six-year-old children.

    Science.gov (United States)

    Pretkiewicz-Abacjew, E

    2003-06-01

    Knock knee (genu valgum) interferes with the locomotive and supporting function of the lower limb. In static conditions the load-bearing axis of the valgus limb is displaced laterally in relation to the middle of the joint, causing the knee joint, the ankle joint, and the foot as a whole to be weighted in the wrong way. The purpose of this work is to examine the influence of knock knee on gait kinematics. The gait of twenty-two 6-year-old children of both sexes in whom knock knee had been medically diagnosed was compared with the gait of 33 children of the same age whose knee joints conformed to the norm in formation and position. Gait was recorded separately for the sagittal and the frontal planes, using a video-computer system. The results of the examination indicated statistically significant differences in the gait of the two groups of children. These differences related mainly to the time features of gait and to data on the angles in the knee and ankle joints. Although the results obtained for other features of gait did not reveal statistical differences, these did indicate that the children with knock knee walked more slowly and with a lower cadence. The results indicate that knock knee in 6-year-old children has an adverse impact on the mechanics of the lower limb joints in gait and causes a deterioration in gait quality. Thus knock knee in children should not be treated merely as a superficial defect but should be subject to therapy and, more importantly, taken into account when introducing children to early sports training.

  15. A comparison of cephalometric analyses for assessing sagittal jaw relationship

    International Nuclear Information System (INIS)

    Erum, G.; Fida, M.

    2008-01-01

    To compare the seven methods of cephalometric analysis for assessing sagittal jaw relationship and to determine the level of agreement between them. Seven methods, describing anteroposterior jaw relationships (A-B plane, ANB, Wits, AXB, AF-BF, FABA and Beta angle) were measured on the lateral cephalographs of 85 patients. Correlation analysis, using Cramer's V-test, was performed to determine the possible agreement between the pair of analyses. The mean age of the sample, comprising 35 males and 50 females was 15 years and 3 months. Statistically significant relationships were found among seven sagittal parameters with p-value <0.001. Very strong correlation was found between AXB and AF-BF distance (r=0.924); and weak correlation between ANB and Beta angle (r=0.377). Wits appraisal showed the greatest coefficient of variability. Despite varying strengths of association, statistically significant correlations were found among seven methods for assessing sagittal jaw relationship. FABA and A-B plane may be used to predict the skeletal class in addition to the established ANB angle. (author)

  16. Three-dimensional (3D) MRI of the knee. IRM tridimensionnelle du genou

    Energy Technology Data Exchange (ETDEWEB)

    Shahabpour, M.; Spruyt, D.; Leroux, G.B.; Osteaux, M. (Vrije Univ., Brussels (Belgium))

    1993-01-01

    Three-dimensional gradient echo T2-weighted sequences have a number of advantages over spin echo T2-weighted sequences (or even 2D gradient echo T2-weighted sequences) for assessment of the knee. They allow a multidimensional analysis based on a single acquisition sequence usually obtained in the sagittal plane. Image reconstructions can be performed secondarily in the coronal, axial and oblique planes, particularly along the specific path of the anterior cruciate ligament. By providing ultrathin serial sections, decreasing the partial volume effect, small lesions, such as cartilaginous fissures or flaps and radial meniscal lesions can be detected in the axial plane, for example. This advantage, combined with the marked sensitivity of gradient echo sequences to alterations in the tissue water content, allows the detection of partial tendon ruptures. The reduction of the partial volume effect and chemical shift artefact probably participate in the capacity of these sequences to visualize the two surfaces of the cartilage of the femorotibial joint. Flow artefacts are less of a problem than with 2D imaging, which eliminates the need for techniques such as saturation of the vascular signal or cardiac gating. A disadvantage of these gradient echo sequences (3D or 2D) is their sensitivity to the presence of metallic material, limiting their application in operated knees.

  17. Kinetics features changes before and after intra-articular hyaluronic acid injections in patients with knee osteoarthritis.

    Science.gov (United States)

    Tang, Alice Chu-Wen; Tang, Simon Fuk-Tan; Hong, Wei-Hsien; Chen, Hsieh-Ching

    2015-02-01

    To examine the kinetic features in patients with knee osteoarthritis (OA) after intra-articular hyaluronic acid (IAHA) injections in different time periods. A single group repeated measures study. Gait laboratory in a tertiary hospital. Twenty-five subjects with bilateral symptomatic knee OA and 15 healthy control subjects. Gait analyses were performed in both control and OA groups before (baseline), and after the completion of IAHA injections (1 week, 3 months, and 6 months). Knee pain and functional indices were assessed using a visual analogue scale (VAS) and the Lequesne function Index (LI). Joint kinetic changes were analyzed in the frontal and sagittal planes with 6-camera motion analysis system and two AMTI force plates. VAS and LI scores were both improved in OA group after IAHA injections (pinjections (pinjections can provide significant pain relief and improvement in activity of daily living function for patients with knee OA. However, the reduction in pain and the increase in knee adduction moment may last up to 6 months. This may cause excessive loading on the knee joints, which may further accelerate the rate of knee degeneration. As a result, longer study time is needed to determine whether the observed kinetic findings in this study are associated with detrimental outcomes on the knee joints. © 2015 Elsevier B.V. All rights reserved.

  18. Influence of Different Hip Joint Centre Locations on Hip and Knee Joint Kinetics and Kinematics During the Squat

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2014-12-01

    Full Text Available Identification of the hip joint centre (HJC is important in the biomechanical examination of human movement. However, there is yet to be any published information regarding the influence of different HJC locations on hip and knee joint kinetics during functional tasks. This study aimed to examine the influence of four different HJC techniques on 3- D hip and knee joint kinetics/kinematics during the squat. Hip and knee joint kinetics/kinematics of the squat were obtained from fifteen male participants using an eight camera motion capture system. The 3-D kinetics/kinematics of the squat were quantified using four hip joint centre estimation techniques. Repeated measures ANOVAs were used to compare the discrete parameters as a function of each HJC location. The results show that significant differences in joint angles and moment parameters were evident at both the hip and knee joint in the coronal and transverse planes. These observations indicate that when calculating non-sagittal joint kinetics/kinematics during the squat, researchers should carefully consider their HJC method as it may significantly affect the interpretation of their data.

  19. Slightly flexed knee position within a standard knee coil: MR delineation of the anterior cruciate ligament

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, M.; Itai, Y. [Department of Radiology, Institute of Clinical Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305 (Japan); Ikeda, K. [Department of Orthopedic Surgery, Institute of Clinical Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305 (Japan)

    1998-02-01

    The purpose of this study was to assess the value of positioning the knee slightly flexed within a standard MR knee coil in delineation of the anterior cruciate ligament (ACL). Within the confined space of a commercially available knee coil, knee could bend as much as 30 , average 17 of flexion. Sets of oblique sagittal MR images were obtained at both fully extended and slightly flexed positions. Twenty-two normal knees and 18 knees with ACL tears were examined and paired MR images were evaluated by two observers. Compared with knee extension, the MR images for knee flexion provided better clarity in 57 % of reviews of full length of the ACL and 53 % of the femoral attachment. In the extended position the anterior margin of the ligament was obscured due to partial averaging with the intercondylar roof. We recommend examining the knee in an achievable flexed position within the standard knee coil. (orig.) With 3 figs., 1 tab., 6 refs.

  20. Slightly flexed knee position within a standard knee coil: MR delineation of the anterior cruciate ligament

    International Nuclear Information System (INIS)

    Niitsu, M.; Itai, Y.; Ikeda, K.

    1998-01-01

    The purpose of this study was to assess the value of positioning the knee slightly flexed within a standard MR knee coil in delineation of the anterior cruciate ligament (ACL). Within the confined space of a commercially available knee coil, knee could bend as much as 30 , average 17 of flexion. Sets of oblique sagittal MR images were obtained at both fully extended and slightly flexed positions. Twenty-two normal knees and 18 knees with ACL tears were examined and paired MR images were evaluated by two observers. Compared with knee extension, the MR images for knee flexion provided better clarity in 57 % of reviews of full length of the ACL and 53 % of the femoral attachment. In the extended position the anterior margin of the ligament was obscured due to partial averaging with the intercondylar roof. We recommend examining the knee in an achievable flexed position within the standard knee coil. (orig.)

  1. Infrapatellar plica of the knee: Revisited with MR arthrographies undertaken in the knee flexion position mimicking operative arthroscopic posture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Han; Song, Ho-Taek; Kim, Sungjun [Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Sung-Jae [Department of Orthopedic Surgery and Arthroscopic Surgery Unit, Yonsei University College of Medicine (Korea, Republic of); Suh, Jin-Suck, E-mail: jss@yuhs.ac [Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2012-10-15

    Purpose: To describe the appearance of the infrapatellar plica (IPP) on magnetic resonance arthrography (MRA) taken in 70° knee flexion, corresponding to the arthroscopic posture. Materials and methods: Twenty-two patients (23 knee joints) who underwent MRA with 70° knee flexion were enrolled. All patients underwent MRA with 70° knee flexion to simulate operative arthroscopy. The images included fat-suppressed T1-weighted spin echo axial, sagittal, and coronal images. The visualization and morphology of the IPP were retrospectively assessed by two musculoskeletal radiologists. Results: The IPP was demonstrated in 78.3% (n = 18/23) and was best visualized on the sagittal section through the intercondylar notch. The IPP manifested as a linear hypointense structure with variable thicknesses. The intercondylar component was delineated clearly, arising from the anterior intercondylar notch in parallel with the ACL and curving gently downward to attach to the infrapatellar fat pad. On the other hand, the Hoffa's fat pad component was not depicted clearly. The morphology of the IPP was either a separate type (60.9%) or a split type (17.4%). Conclusion: The IPPs can be visualized with a high rate of detection and various morphologic appearances must be appreciated under the review of a flexed knee MRA.

  2. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Frank J. Wouda

    2018-03-01

    Full Text Available Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics in any environment. However, kinetic information could not be provided with such technology. Furthermore, numerous body-worn sensors are required for a full-body motion analysis. The aim of this study is to examine the validity of a method to estimate sagittal knee joint angles and vertical ground reaction forces during running using an ambulatory minimal body-worn sensor setup. Two concatenated artificial neural networks were trained (using data from eight healthy subjects to estimate the kinematics and kinetics of the runners. The first artificial neural network maps the information (orientation and acceleration of three inertial sensors (placed at the lower legs and pelvis to lower-body joint angles. The estimated joint angles in combination with measured vertical accelerations are input to a second artificial neural network that estimates vertical ground reaction forces. To validate our approach, estimated joint angles were compared to both inertial and optical references, while kinetic output was compared to measured vertical ground reaction forces from an instrumented treadmill. Performance was evaluated using two scenarios: training and evaluating on a single subject and training on multiple subjects and evaluating on a different subject. The estimated kinematics and kinetics of most subjects show excellent agreement (ρ>0.99 with the reference, for single subject training. Knee flexion/extension angles are estimated with a mean RMSE <5°. Ground reaction forces are estimated with a mean RMSE < 0.27 BW. Additionaly, peak vertical ground reaction force, loading rate and maximal knee flexion during stance were compared, however, no significant

  3. Quantification of in vivo implant wear in total knee replacement from dynamic single plane radiography

    Science.gov (United States)

    Teeter, Matthew G.; Seslija, Petar; Milner, Jaques S.; Nikolov, Hristo N.; Yuan, Xunhua; Naudie, Douglas D. R.; Holdsworth, David W.

    2013-05-01

    An in vivo method to measure wear in total knee replacements was developed using dynamic single-plane fluoroscopy. A dynamic, anthropomorphic total knee replacement phantom with interchangeable, custom-fabricated components of known wear volume was created, and dynamic imaging was performed. For each frame of the fluoroscopy data, the relative location of the femoral and tibial components were determined, and the apparent intersection of the femoral component with the tibial insert was used to calculate wear volume, wear depth, and frequency of intersection. No difference was found between the measured and true wear volumes. The precision of the measurements was ±39.7 mm3 for volume and ±0.126 mm for wear depth. The results suggest the system is capable of tracking wear volume changes across multiple time points in patients. As a dynamic technique, this method can provide both kinematic and wear measurements that may be useful for evaluating new implant designs for total knee replacements.

  4. Quantification of in vivo implant wear in total knee replacement from dynamic single plane radiography

    International Nuclear Information System (INIS)

    Teeter, Matthew G; Naudie, Douglas D R; Holdsworth, David W; Seslija, Petar; Milner, Jaques S; Nikolov, Hristo N; Yuan Xunhua

    2013-01-01

    An in vivo method to measure wear in total knee replacements was developed using dynamic single-plane fluoroscopy. A dynamic, anthropomorphic total knee replacement phantom with interchangeable, custom-fabricated components of known wear volume was created, and dynamic imaging was performed. For each frame of the fluoroscopy data, the relative location of the femoral and tibial components were determined, and the apparent intersection of the femoral component with the tibial insert was used to calculate wear volume, wear depth, and frequency of intersection. No difference was found between the measured and true wear volumes. The precision of the measurements was ±39.7 mm 3 for volume and ±0.126 mm for wear depth. The results suggest the system is capable of tracking wear volume changes across multiple time points in patients. As a dynamic technique, this method can provide both kinematic and wear measurements that may be useful for evaluating new implant designs for total knee replacements. (paper)

  5. Knee joint contact mechanics during downhill gait and its relationship with varus/valgus motion and muscle strength in patients with knee osteoarthritis.

    Science.gov (United States)

    Farrokhi, Shawn; Voycheck, Carrie A; Gustafson, Jonathan A; Fitzgerald, G Kelley; Tashman, Scott

    2016-01-01

    The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p knee OA compared to their control counterparts (p = 0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p knee OA were linearly associated with greater frontal-plane varus motion excursions (p knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength.

  6. Signs of patellar chondromalacia on sagittal T2-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    De Smet, A.A.; Monu, J.U.; Fisher, D.R.; Keene, J.S.; Graf, B.K.

    1992-01-01

    We incidentally noted distinctive high signal defects or fissures in the patellar articular cartilage on sagittal T2-weighted magnetic resonance (MR) images in 4 patients. At subsequent arthroscopy all 4 patients were found to have patellar chondromalacia. To determine the reliabilty of these signs, we retrospectively evaluated, in a blinded manner, sagittal T2-weighted MR images of the knee in 75 patients who were undergoing arthroscopic assessment of their patellar articular cartilage. We indentified high signal defects of fissures in the patellar cartilage of 5 patients. Patellar chondromalacia was noted at arthroscopy in all 5 patients. Arthroscopy demonstrated patellar chondromalacia in an additional 21 patients with normal MR images. We conclude that high signal defects or fissures on sagittal T2-weighted images are usefull signs of patellar chondromalacia. This single imaging sequence will, however, detect only a small number of the cartilage lesions that may be present. (orig.)

  7. Signs of patellar chondromalacia on sagittal T2-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    De Smet, A.A.; Monu, J.U.; Fisher, D.R. (Univ. of Wisconsin Hospital and Clinics, Dept. of Radiology, Madison, WI (United States)); Keene, J.S.; Graf, B.K. (Univ. of Wisconsin Hospital and Clinics, Div. of Orthopedic Surgery, Madison, WI (United States))

    1992-02-01

    We incidentally noted distinctive high signal defects or fissures in the patellar articular cartilage on sagittal T2-weighted magnetic resonance (MR) images in 4 patients. At subsequent arthroscopy all 4 patients were found to have patellar chondromalacia. To determine the reliabilty of these signs, we retrospectively evaluated, in a blinded manner, sagittal T2-weighted MR images of the knee in 75 patients who were undergoing arthroscopic assessment of their patellar articular cartilage. We indentified high signal defects of fissures in the patellar cartilage of 5 patients. Patellar chondromalacia was noted at arthroscopy in all 5 patients. Arthroscopy demonstrated patellar chondromalacia in an additional 21 patients with normal MR images. We conclude that high signal defects or fissures on sagittal T2-weighted images are usefull signs of patellar chondromalacia. This single imaging sequence will, however, detect only a small number of the cartilage lesions that may be present. (orig.).

  8. Effects of tibial slope changes in the stability of fixed bearing medial unicompartmental arthroplasty in anterior cruciate ligament deficient knees.

    Science.gov (United States)

    Suero, Eduardo M; Citak, Musa; Cross, Michael B; Bosscher, Marianne R F; Ranawat, Anil S; Pearle, Andrew D

    2012-08-01

    Patients with anterior cruciate ligament (ACL) deficiency may have increased failure rates with UKA as a result of abnormal contact stresses and altered knee kinematics. Variations in the slope of the tibial component in UKA may alter tibiofemoral translation, and affect outcomes. This cadaveric study evaluated tibiofemoral translation during the Lachman and pivot shift tests after changing the slope of a fixed bearing unicondylar tibial component. Sectioning the ACL increased tibiofemoral translation in both the Lachman and pivot shift tests (Pslope leveling (decreasing the posterior slope) of the polyethylene insert in a UKA decreases anteroposterior tibiofemoral translation in the sagittal plane to a magnitude similar to that of the intact knee. With 8° of tibial slope leveling, anterior tibial translation during the Lachman test decreased by approximately 5mm. However, no variation in slope altered the pivot shift kinematics in the ACL deficient knees. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Mid-callosal plane determination using preferred directions from diffusion tensor images

    Science.gov (United States)

    Costa, André L.; Rittner, Letícia; Lotufo, Roberto A.; Appenzeller, Simone

    2015-03-01

    The corpus callosum is the major brain structure responsible for inter{hemispheric communication between neurons. Many studies seek to relate corpus callosum attributes to patient characteristics, cerebral diseases and psychological disorders. Most of those studies rely on 2D analysis of the corpus callosum in the mid-sagittal plane. However, it is common to find conflicting results among studies, once many ignore methodological issues and define the mid-sagittal plane based on precary or invalid criteria with respect to the corpus callosum. In this work we propose a novel method to determine the mid-callosal plane using the corpus callosum internal preferred diffusion directions obtained from diffusion tensor images. This plane is analogous to the mid-sagittal plane, but intended to serve exclusively as the corpus callosum reference. Our method elucidates the great potential the directional information of the corpus callosum fibers have to indicate its own referential. Results from experiments with five image pairs from distinct subjects, obtained under the same conditions, demonstrate the method effectiveness to find the corpus callosum symmetric axis relative to the axial plane.

  10. Accuracy assessment of Tri-plane B-mode ultrasound for non-invasive 3D kinematic analysis of knee joints.

    Science.gov (United States)

    Masum, Md Abdullah; Pickering, Mark; Lambert, Andrew; Scarvell, Jennie; Smith, Paul

    2014-08-26

    Currently the clinical standard for measuring the motion of the bones in knee joints with sufficient precision involves implanting tantalum beads into the bones. These beads appear as high intensity features in radiographs and can be used for precise kinematic measurements. This procedure imposes a strong coupling between accuracy and invasiveness. In this paper, a tri-plane B-mode ultrasound (US) based non-invasive approach is proposed for use in kinematic analysis of knee joints in 3D space. The 3D analysis is performed using image processing procedures on the 2D US slices. The novelty of the proposed procedure and its applicability to the unconstrained 3D kinematic analysis of knee joints is outlined. An error analysis for establishing the method's feasibility is included for different artificial compositions of a knee joint phantom. Some in-vivo and in-vitro scans are presented to demonstrate that US scans reveal enough anatomical details, which further supports the experimental setup used using knee bone phantoms. The error between the displacements measured by the registration of the US image slices and the true displacements of the respective slices measured using the precision mechanical stages on the experimental apparatus is evaluated for translation and rotation in two simulated environments. The mean and standard deviation of errors are shown in tabular form. This method provides an average measurement precision of less than 0.1 mm and 0.1 degrees, respectively. In this paper, we have presented a novel non-invasive approach to measuring the motion of the bones in a knee using tri-plane B-mode ultrasound and image registration. In our study, the image registration method determines the position of bony landmarks relative to a B-mode ultrasound sensor array with sub-pixel accuracy. The advantages of our proposed system over previous techniques are that it is non-invasive, does not require the use of ionizing radiation and can be used conveniently if

  11. Combining valgus knee brace and lateral foot wedges reduces external forces and moments in osteoarthritis patients

    NARCIS (Netherlands)

    Jafarnezhadgero, Amir Ali; Oliveira, Anderson S.; Mousavi, Seyed Hamed; Madadi-Shad, Morteza

    Osteoarthritis progression can be related to the external knee adduction and flexion moments during walking. Lateral foot wedges and knee braces have been used as treatment for osteoarthritis, but little is known about their influence on knee joint moments generated in the sagittal and frontal

  12. Reliability of cervical lordosis and global sagittal spinal balance measurements in adolescent idiopathic scoliosis.

    Science.gov (United States)

    Vidal, Christophe; Ilharreborde, Brice; Azoulay, Robin; Sebag, Guy; Mazda, Keyvan

    2013-06-01

    Radiological reproducibility study. To assess intra and interobserver reliability of radiographic measurements for global sagittal balance parameters and sagittal spine curves, including cervical spine. Sagittal spine balance in adolescent idiopathic scoliosis (AIS) is a main issue and many studies have been reported, showing that coronal and sagittal deformities often involve sagittal cervical unbalance. Global sagittal balance aims to obtain a horizontal gaze and gravity line at top of hips when subject is in a static position, involving adjustment of each spine curvature in the sagittal plane. To our knowledge, no study did use a methodologically validated imaging analysis tool able to appreciate sagittal spine contours and distances in AIS and especially in the cervical region. Lateral full-spine low-dose EOS radiographs were performed in 75 patients divided in three groups (control subjects, AIS, operated AIS). Three observers digitally analyzed twice each radiograph and 11 sagittal measures were collected for each image. Reliability was assessed calculating intraobserver Pearson's r correlation coefficient, interobserver intra-class correlation coefficient (ICC) completed with a two-by-two Bland-Altman plot analysis. This measurement method has shown excellent intra and interobserver reliability in all parameters, sagittal curvatures, pelvic parameters and global sagittal balance. This study validated a simple and efficient tool in AIS sagittal contour analysis. It defined new relevant landmarks allowing to characterize cervical segmental curvatures and cervical involvement in global balance.

  13. Effect of an ankle-foot orthosis on knee joint mechanics: a novel conservative treatment for knee osteoarthritis.

    Science.gov (United States)

    Fantini Pagani, Cynthia H; Willwacher, Steffen; Benker, Rita; Brüggemann, Gert-Peter

    2014-12-01

    Several conservative treatments for medial knee osteoarthritis such as knee orthosis and laterally wedged insoles have been shown to reduce the load in the medial knee compartment. However, those treatments also present limitations such as patient compliance and inconsistent results regarding the treatment success. To analyze the effect of an ankle-foot orthosis on the knee adduction moment and knee joint alignment in the frontal plane in subjects with knee varus alignment. Controlled laboratory study, repeated measurements. In total, 14 healthy subjects with knee varus alignment were analyzed in five different conditions: without orthotic, with laterally wedged insoles, and with an ankle-foot orthosis in three different adjustments. Three-dimensional kinetic and kinematic data were collected during gait analysis. Significant decreases in knee adduction moment, knee lever arm, and joint alignment in the frontal plane were observed with the ankle-foot orthosis in all three different adjustments. No significant differences could be found in any parameter while using the laterally wedged insoles. The ankle-foot orthosis was effective in reducing the knee adduction moment. The decreases in this parameter seem to be achieved by changing the knee joint alignment and thereby reducing the knee lever arm in the frontal plane. This study presents a novel approach for reducing the load in the medial knee compartment, which could be developed as a new treatment option for patients with medial knee osteoarthritis. © The International Society for Prosthetics and Orthotics 2013.

  14. Walking sagittal balance correction by pedicle subtraction osteotomy in adults with fixed sagittal imbalance.

    Science.gov (United States)

    Yagi, Mitsuru; Kaneko, Shinjiro; Yato, Yoshiyuki; Asazuma, Takashi; Machida, Masafumi

    2016-08-01

    Pedicle subtraction osteotomy (PSO) is widely used to treat severe fixed sagittal imbalance. However, the effect of PSO on balance has not been fully documented. The aim of this study was to assess dynamic walking balance after PSO to treat fixed sagittal imbalance. Gait and balance were assessed in 15 consecutive adult female patients who had been treated by PSO for a fixed sagittal imbalance and compare patients' preop and postop dynamic walking balance with that of 15 age- and gender-matched healthy volunteers (HV). Each patient's chart, X-rays, pre and postop SRS22 outcome scores, and ODI were reviewed. Means were compared by Mann-Whitney U test and Chi-square test. The mean age was 66.3 years (51-74 years). The mean follow-up was 2.7 years (2-3.5 years). The C7PL and GL, measured on the force platform, were both improved from 24.2 ± 7.3 cm and 27.6 ± 9.4 to 5.4 ± 2.6 cm and 7.2 ± 3.4 cm, respectively. The baseline hip ROM was significantly smaller in patients compared to HV, whereas no significant difference was observed in the knee or ankle ROM. The pelvic tilt (preop -0.4° ± 1.4°, postop 8.9° ± 1.0°), and maximum hip-extension angle (preop -1.2° ± 14.2°, postop -11.2° ± 7.2°) were also improved after surgery. Cadence (116 s/min), stance-swing ratio (stance 63.2 % vs. swing 36.8 %), and stride (98.0 cm) were all increased after surgery. On the other hand, gait velocity was significantly slower in the PSO group at both pre and postop than in HV (PSO 53.3 m/min at preop and 58.8 m/min at postop vs. HV 71.1 m/min, p = 0.04). Despite a mild residual spinal-pelvic malalignment, PSO restored sagittal alignment and balance satisfactorily and has improved the gait pattern.

  15. Technical feasibility of personalized articulating knee joint distraction for treatment of tibiofemoral osteoarthritis.

    Science.gov (United States)

    Struik, T; Jaspers, J E N; Besselink, N J; van Roermund, P M; Plomp, S; Rudert, M J; Lafeber, F P J G; Mastbergen, S C

    2017-11-01

    Knee osteoarthritis is a highly prevalent degenerative joint disorder characterized by joint tissue damage and pain. Knee joint distraction has been introduced as a joint preserving surgical procedure to postpone knee arthroplasty. An often used standard externally fixation device for distraction poses a burden to patients due to the absence of joint flexion during the 6weeks treatment. Therefore, a personalized articulating distraction device was developed. The aim of this study was to test technical feasibility of this device. Based on an often applied rigid device, using equal bone pin positions and connectors, a hinge mechanism was developed consisting of a cam-following system for reproducing the complex joint-specific knee kinematics. In support, a device was developed for capturing the joint-specific sagittal plane articulation. The obtained kinematic data were translated into joint-specific cam shapes that were installed bilaterally in the hinge mechanism of the distraction device, as such providing personalized knee motion. Distraction of 5mm was performed within a range of motion of 30deg. joint flexion. Pre-clinical evaluation of the working principle was performed on human cadaveric legs and system stiffness characteristics were biomechanically evaluated. The desired range of motion was obtained and distraction was maintained under physiologically representative loading. Moreover, the joint-specific approach demonstrated tolerance of deviations from anatomical and alignment origin during initial placement of the developed distraction device. Articulation during knee distraction is considered technically feasible and has potential to decrease burden and improve acceptance of distraction therapy. Testing of clinical feasibility is warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Quantifying frontal plane knee motion during single limb squats: reliability and validity of 2-dimensional measures.

    Science.gov (United States)

    Gwynne, Craig R; Curran, Sarah A

    2014-12-01

    Clinical assessment of lower limb kinematics during dynamic tasks may identify individuals who demonstrate abnormal movement patterns that may lead to etiology of exacerbation of knee conditions such as patellofemoral joint (PFJt) pain. The purpose of this study was to determine the reliability, validity and associated measurement error of a clinically appropriate two-dimensional (2-D) procedure of quantifying frontal plane knee alignment during single limb squats. Nine female and nine male recreationally active subjects with no history of PFJt pain had frontal plane limb alignment assessed using three-dimensional (3-D) motion analysis and digital video cameras (2-D analysis) while performing single limb squats. The association between 2-D and 3-D measures was quantified using Pearson's product correlation coefficients. Intraclass correlation coefficients (ICCs) were determined for within- and between-session reliability of 2-D data and standard error of measurement (SEM) was used to establish measurement error. Frontal plane limb alignment assessed with 2-D analysis demonstrated good correlation compared with 3-D methods (r = 0.64 to 0.78, p < 0.001). Within-session (0.86) and between-session ICCs (0.74) demonstrated good reliability for 2-D measures and SEM scores ranged from 2° to 4°. 2-D measures have good consistency and may provide a valid measure of lower limb alignment when compared to existing 3-D methods. Assessment of lower limb kinematics using 2-D methods may be an accurate and clinically useful alternative to 3-D motion analysis when identifying individuals who demonstrate abnormal movement patterns associated with PFJt pain. 2b.

  17. Predicted osteotomy planes are accurate when using patient-specific instrumentation for total knee arthroplasty in cadavers: a descriptive analysis.

    Science.gov (United States)

    Kievit, A J; Dobbe, J G G; Streekstra, G J; Blankevoort, L; Schafroth, M U

    2018-06-01

    Malalignment of implants is a major source of failure during total knee arthroplasty. To achieve more accurate 3D planning and execution of the osteotomy cuts during surgery, the Signature (Biomet, Warsaw) patient-specific instrumentation (PSI) was used to produce pin guides for the positioning of the osteotomy blocks by means of computer-aided manufacture based on CT scan images. The research question of this study is: what is the transfer accuracy of osteotomy planes predicted by the Signature PSI system for preoperative 3D planning and intraoperative block-guided pin placement to perform total knee arthroplasty procedures? The transfer accuracy achieved by using the Signature PSI system was evaluated by comparing the osteotomy planes predicted preoperatively with the osteotomy planes seen intraoperatively in human cadaveric legs. Outcomes were measured in terms of translational and rotational errors (varus, valgus, flexion, extension and axial rotation) for both tibia and femur osteotomies. Average translational errors between the osteotomy planes predicted using the Signature system and the actual osteotomy planes achieved was 0.8 mm (± 0.5 mm) for the tibia and 0.7 mm (± 4.0 mm) for the femur. Average rotational errors in relation to predicted and achieved osteotomy planes were 0.1° (± 1.2°) of varus and 0.4° (± 1.7°) of anterior slope (extension) for the tibia, and 2.8° (± 2.0°) of varus and 0.9° (± 2.7°) of flexion and 1.4° (± 2.2°) of external rotation for the femur. The similarity between osteotomy planes predicted using the Signature system and osteotomy planes actually achieved was excellent for the tibia although some discrepancies were seen for the femur. The use of 3D system techniques in TKA surgery can provide accurate intraoperative guidance, especially for patients with deformed bone, tailored to individual patients and ensure better placement of the implant.

  18. Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis.

    Science.gov (United States)

    Park, Sang-Kyoon; Kobsar, Dylan; Ferber, Reed

    2016-10-01

    The relationship between muscle strength, gait biomechanics, and self-reported physical function and pain for patients with knee osteoarthritis is not well known. The objective of this study was to investigate these relationships in this population. Twenty-four patients with knee osteoarthritis and 24 healthy controls were recruited. Self-reported pain and function, lower-limb maximum isometric force, and frontal plane gait kinematics during treadmill walking were collected on all patients. Between-group differences were assessed for 1) muscle strength and 2) gait biomechanics. Linear regressions were computed within the knee osteoarthritis group to examine the effect of muscle strength on 1) self-reported pain and function, and 2) gait kinematics. Patients with knee osteoarthritis exhibited reduced hip external rotator, knee extensor, and ankle inversion muscle force output compared with healthy controls, as well as increased peak knee adduction angles (effect size=0.770; p=0.013). Hip abductor strength was a significant predictor of function, but not after controlling for covariates. Ankle inversion, hip abduction, and knee flexion strength were significant predictors of peak pelvic drop angle after controlling for covariates (34.4% unique variance explained). Patients with knee osteoarthritis exhibit deficits in muscle strength and while they play an important role in the self-reported function of patients with knee osteoarthritis, the effect of covariates such as sex, age, mass, and height was more important in this relationship. Similar relationships were observed from gait variables, except for peak pelvic drop, where hip, knee, and ankle strength remained important predictors of this variable after controlling for covariates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. ACL Injury Prevention Training Results in Modification of Hip and Knee Mechanics During a Drop-Landing Task.

    Science.gov (United States)

    Pollard, Christine D; Sigward, Susan M; Powers, Christopher M

    2017-09-01

    Injury prevention training has been shown to be effective in reducing the incidence of noncontact anterior cruciate ligament (ACL) injury; however, the underlying reason for the success of these training programs is unclear. To investigate whether an ACL injury prevention program that has been shown to reduce the incidence of ACL injury alters sagittal plane hip and knee biomechanics during a drop-landing task. Descriptive laboratory study. Thirty female club soccer players (age range, 11-17 years) with no history of knee injury participated in this study. Kinematics and ground-reaction forces were collected while each participant performed a drop-landing task prior to and immediately after participation in a 12-week ACL injury prevention training program. After ACL injury prevention training, participants demonstrated decreased knee extensor moments ( P = .03), increased energy absorption at the hip ( P = .04), decreased knee-to-hip extensor moment ratios ( P = .05), and decreased knee-to-hip energy absorption ratios ( P = .03). Participation in an ACL injury prevention training program decreased reliance on the knee extensor muscles and improved use of the hip extensor muscles, which may explain the protective effect of this type of training program on ACL injury. Based on these findings, clinicians can better understand how ACL injury prevention training, such as the Prevent Injury and Enhance Performance (PEP) Program, may change movement behavior at both the hip and knee. Furthermore, the study findings may support the implementation of the PEP Program, or a similar program, for clinicians aiming to improve use of the hip in an effort to reduce knee loading and consequent injuries.

  20. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee.

    Science.gov (United States)

    Petrigliano, Frank A; Suero, Eduardo M; Voos, James E; Pearle, Andrew D; Allen, Answorth A

    2012-06-01

    Proximal tibial slope has been shown to influence anteroposterior translation and tibial resting point in the posterior cruciate ligament (PCL)-deficient knee. The effect of proximal tibial slope on rotational stability of the knee is unknown. Change in proximal tibial slope produced via osteotomy can influence both static translation and dynamic rotational kinematics in the PCL/posterolateral corner (PLC)-deficient knee. Controlled laboratory study. Posterior drawer, dial, and mechanized reverse pivot-shift (RPS) tests were performed on hip-to-toe specimens and translation of the lateral and medial compartments measured utilizing navigation (n = 10). The PCL and structures of the PLC were then sectioned. Stability testing was repeated, and compartmental translation was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5° or -5° of tibial slope variation, after which stability testing was repeated (n = 10). Analysis was performed using 1-way analysis of variance (ANOVA; α = .05). Combined sectioning of the PCL and PLC structures resulted in a 10.5-mm increase in the posterior drawer, 15.5-mm increase in the dial test at 30°, 14.5-mm increase in the dial test at 90°, and 17.9-mm increase in the RPS (vs intact; P slope (high tibial osteotomy [HTO] +5°) in the PCL/PLC-deficient knee reduced medial compartment translation by 3.3 mm during posterior drawer (vs deficient; P slope (HTO -5°) caused a 4.8-mm increase in medial compartment translation (vs deficient state; P slope diminished static posterior instability of the PCL/PLC-deficient knee as measured by the posterior drawer test but had little effect on rotational or dynamic multiplanar stability as assessed by the dial and RPS tests, respectively. Conversely, decreasing posterior slope resulted in increased posterior instability and a significant increase in the magnitude of the RPS. These results suggest that increasing posterior tibial slope may improve

  1. Sagittal x-ray beam deviation at asymmetric inclined diffractors

    Czech Academy of Sciences Publication Activity Database

    Korytár, D.; Hrdý, Jaromír; Artemiev, Nikolai; Ferrari, C.; Freund, A.

    2001-01-01

    Roč. 8, - (2001), s. 1136-1139 ISSN 0909-0495 R&D Projects: GA MŠk OK 305; GA MPO PZ-CH/22 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray optics * Si(111) W/grooved crystals * inclined diffraction * out-of-diffraction-plane beams * sagittal focusing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.519, year: 2001

  2. Changes in lower extremity movement and power absorption during forefoot striking and barefoot running.

    Science.gov (United States)

    Williams, D S Blaise; Green, Douglas H; Wurzinger, Brian

    2012-10-01

    Both forefoot strike shod (FFS) and barefoot (BF) running styles result in different mechanics when compared to rearfoot strike (RFS) shod running. Additionally, running mechanics of FFS and BF running are similar to one another. Comparing the mechanical changes occurring in each of these patterns is necessary to understand potential benefits and risks of these running styles. The authors hypothesized that FFS and BF conditions would result in increased sagittal plane joint angles at initial contact and that FFS and BF conditions would demonstrate a shift in sagittal plane joint power from the knee to the ankle when compared to the RFS condition. Finally, total lower extremity power absorption will be least in BF and greatest in the RFS shod condition. The study included 10 male and 10 female RFS runners who completed 3-dimensional running analysis in 3 conditions: shod with RFS, shod with FFS, and BF. Variables were the angles of plantarflexion, knee flexion, and hip flexion at initial contact and peak sagittal plane joint power at the hip, knee, and ankle during stance phase. Running with a FFS pattern and BF resulted in significantly greater plantarflexion and significantly less negative knee power (absorption) when compared to shod RFS condition. FFS condition runners landed in the most plantarflexion and demonstrated the most peak ankle power absorption and lowest knee power absorption between the 3 conditions. BF and FFS conditions demonstrated decreased total lower extremity power absorption compared to the shod RFS condition but did not differ from one another. BF and FFS running result in reduced total lower extremity power, hip power and knee power and a shift of power absorption from the knee to the ankle. Alterations associated with BF running patterns are present in a FFS pattern when wearing shoes. Additionally, both patterns result in increased demand at the foot and ankle as compared to the knee.

  3. Normal anatomy of the female pelvis in axial, coronal, and sagittal planes demonstrated with reformatted CT

    International Nuclear Information System (INIS)

    Constant, O.C.; Cooke, J.C.; Parsons, C.A.

    1987-01-01

    Axial CT is used in assessing gynecologic malignancies. Accurate delineation of local tumor extent in carcinoma of the cervix is important in initial staging and in planning subsequent management. A modified scanning technique produces reformatted coronal and sagittal images, which demonstrate additional valuable information about the cardinal ligaments, parametria, ureters, boundaries between the cervix, bladder, and rectum, and extension to vagina and uterus. This information is illustrated by representative axial, coronal, and sagittal scans. Familiarity with normal appearances is essential to allow correct interpretation of pathology

  4. Magnetic resonance evaluation of anterior cruciate ligament repair using the patellar tendon double bone block technique

    International Nuclear Information System (INIS)

    Autz, G.; Singson, R.D.; Goodwin, C.

    1991-01-01

    The magnetic resonance (MR) appearance of the anterior cruciate ligament reconstruction was determined in 20 clinically stable and 2 clinically unstable knees for a total of 22 examinations. All patients studied had undergone knee reconstruction using the patellar tendon as graft material. The reconstructed anterior cruciate ligament varies in appearance. It appeared as a thick, well-defined, low signal band on T1- and T2-weighted sagittal and coronal images in 14 of 22 examinations. The remaining 8 knees showed a graft having one or more thin and attenuated, low signal intensity bands in the sagittal and/or coronal plane. Arthroscopy confirmed an intact but lax graft in the clinically unstable knees. (orig.)

  5. Magnetic resonance evaluation of anterior cruciate ligament repair using the patellar tendon double bone block technique

    Energy Technology Data Exchange (ETDEWEB)

    Autz, G.; Singson, R.D. (St. Luke' s Roosevelt Hospital Center, New York, NY (United States). Dept. of Radiology); Goodwin, C. (St. Luke' s Roosevelt Hospital Center, New York, NY (United States). Dept. of Orthopedics)

    1991-11-01

    The magnetic resonance (MR) appearance of the anterior cruciate ligament reconstruction was determined in 20 clinically stable and 2 clinically unstable knees for a total of 22 examinations. All patients studied had undergone knee reconstruction using the patellar tendon as graft material. The reconstructed anterior cruciate ligament varies in appearance. It appeared as a thick, well-defined, low signal band on T1- and T2-weighted sagittal and coronal images in 14 of 22 examinations. The remaining 8 knees showed a graft having one or more thin and attenuated, low signal intensity bands in the sagittal and/or coronal plane. Arthroscopy confirmed an intact but lax graft in the clinically unstable knees. (orig.).

  6. The elementary discussion of volumetric modulated arc therapy using the orthogonal plane dose verification

    International Nuclear Information System (INIS)

    Shi Jinping; Chen Lixin; Xie Qiuying; Zhang Liwen; Teng Jianjian

    2012-01-01

    Objective: This study was to explore the feasibility of using the orthogonal plane dose formed by the coronal and sagittal plane to verify the volumetric modulated arc therapy (VMAT) plan. Methods: The VMAT plans of 12 patients were included in this study. The orthogonal plane dose formed by the coronal and sagittal plane were measured based on the combination of 2D ionization chamber array and multicube phantom, and the point dose were measured based on a multiple hole cylindrical phantom attached with two 0.125 cm 3 ionization chamber probes. Results: In the measurement of the point dose, the average error was 1.5% in high dose area (more than 80% of maximum), and 1.7% in low dose area (less than 80% of maximum), respectively. The discrepancy of point dose measurement was 1.3% between the 2D ionization chamber array and the VMAT planning system. In the measurement of the orthogonal plane dose, the pass rate of γ were 93.7% for 2%/2 mm and 97.2% for 3%/3 mm. Conclusion: It is reliable for using the orthogonal plane dose formed by the coronal and sagittal plane to verify the VMAT plan. (authors)

  7. The influence of incline walking on joint mechanics.

    Science.gov (United States)

    Haggerty, Mason; Dickin, D Clark; Popp, Jennifer; Wang, Henry

    2014-04-01

    Walking is a popular form of exercise and is associated with many health benefits; however, frontal-plane knee joint loading brought about by a large internal knee-abduction moment and cyclic loading could lead to cartilage degeneration over time. Therefore, knee joint mechanics during an alternative walking exercise needs to be analyzed. The purpose of this study was to examine the lower-extremity joint mechanics in the frontal and sagittal planes during incline walking. Fifteen healthy males walked on a treadmill at five gradients (0%, 5%, 10%, 15%, and 20%) at 1.34m/s, and lower-extremity joint mechanics in the frontal and sagittal planes were quantified. The peak internal knee-abduction moment significantly decreased from the level walking condition at all gradients except 5%. Also, a negative relationship between the internal knee-abduction moment and the treadmill gradient was found to exist in 10% increments (0-10%, 5-15%, and 10-20%). The decrease in the internal knee-abduction moment during incline walking could have positive effects on knee joint health such as potentially reducing cartilage degeneration of the knee joint, reducing pain, and decreasing the rate of development of medial tibiofemoral osteoarthritis. This would be beneficial for a knee surgery patient, obese persons, and older adults who are using incline walking for rehabilitation and exercise protocols. Findings from the current study can provide guidance for the development of rehabilitation and exercise prescriptions incorporating incline walking. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies.

    Directory of Open Access Journals (Sweden)

    Mu Qiao

    Full Text Available The strategies that humans use to control unsteady locomotion are not well understood. A "spring-mass" template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, "spring-mass" systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a "pogo stick" strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a "unicycle" strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.

  9. Clinical value of SPECT/CT for evaluation of patients with painful knees after total knee arthroplasty- a new dimension of diagnostics?

    OpenAIRE

    Hirschmann, Michael T; Konala, Praveen; Iranpour, Farhad; Kerner, Anna; Rasch, Helmut; Friederich, Niklaus F

    2011-01-01

    Abstract Background The purpose of our study was to evaluate the clinical value of hybrid SPECT/CT for the assessment of patients with painful total knee arthroplasty (TKA). Methods Twenty-three painful knees in patients following primary TKA were assessed using Tc-99m-HDP-SPECT/CT. Rotational, sagittal and coronal position of the TKA was assessed on 3D-CT reconstructions. The level of the SPECT-tracer uptake (0-10) and its anatomical distribution was mapped using a validated localization sch...

  10. Can axial-based nodal size criteria be used in other imaging planes to accurately determine "enlarged" head and neck lymph nodes?

    Science.gov (United States)

    Bartlett, Eric S; Walters, Thomas D; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as "enlarged" if equal to or exceeding size criteria. Results. 222 lymph nodes were "enlarged" in one imaging plane; however, 53.2% (118/222) of these were "enlarged" in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = -0.09 and -0.07, resp., P planes. Conclusion. Classification of "enlarged" lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data.

  11. MR imaging of the flexed knee: comparison to the extended knee in delineation of meniscal lesions

    International Nuclear Information System (INIS)

    Niitsu, M.; Itai, Y.; Endo, H.; Ikeda, K.

    2000-01-01

    The aim of this study was to obtain MR images in the flexed-knee position and to compare the diagnostic value to the extended position in delineation of the menisci. With a mobile knee brace and a flexible surface coil, the knee joint was either fully extended or bent to a semi-flexed position (average 45 of flexion) within a 1.5-T superconducting magnet. Sets of sagittal MR images were obtained for both the extended- and flexed-knee positions. Using the arthroscopic results as gold standards, 97 menisci were evaluated. Two observers interpreted each MR image of the extended and flexed positions independently without knowledge of the arthroscopic results. Flexed-knee MR images revealed 22 of the 27 arthroscopically proven torn menisci and 69 of the 70 intact menisci, for a sensitivity of 81.5 %, a specificity of 98.6 %, and an accuracy of 93.8 %. Extended-knee MR images indicated a sensitivity of 81.5 %, a specificity of 92.9 %, and an accuracy of 89.7 %. No statistically significant difference was found between the two positions. To enhance MR visualization of all the knee components, we recommend examining the knee in a flexed position within the magnet. (orig.)

  12. MR imaging of the flexed knee: comparison to the extended knee in delineation of meniscal lesions

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, M.; Itai, Y. [Dept. of Radiology, Institute of Clinical Medicine, University of Tsukuba Tennodai, Tsukuba, Ibaraki (Japan); Endo, H. [Tsukuba Medical Center Hospital, Ibaraki (Japan); Ikeda, K. [Dept. of Orthopedic Surgery, University of Tsukuba Tennodai, Tsukuba (Japan)

    2000-11-01

    The aim of this study was to obtain MR images in the flexed-knee position and to compare the diagnostic value to the extended position in delineation of the menisci. With a mobile knee brace and a flexible surface coil, the knee joint was either fully extended or bent to a semi-flexed position (average 45 of flexion) within a 1.5-T superconducting magnet. Sets of sagittal MR images were obtained for both the extended- and flexed-knee positions. Using the arthroscopic results as gold standards, 97 menisci were evaluated. Two observers interpreted each MR image of the extended and flexed positions independently without knowledge of the arthroscopic results. Flexed-knee MR images revealed 22 of the 27 arthroscopically proven torn menisci and 69 of the 70 intact menisci, for a sensitivity of 81.5 %, a specificity of 98.6 %, and an accuracy of 93.8 %. Extended-knee MR images indicated a sensitivity of 81.5 %, a specificity of 92.9 %, and an accuracy of 89.7 %. No statistically significant difference was found between the two positions. To enhance MR visualization of all the knee components, we recommend examining the knee in a flexed position within the magnet. (orig.)

  13. Occlusal plane rotation: aesthetic enhancement in mandibular micrognathia.

    Science.gov (United States)

    Rosen, H M

    1993-06-01

    Patients afflicted with extreme degrees of mandibular micrognathia typically have vertically deficient rami as well as sagittally deficient mandibular bodies. This results in deficient posterior facial height, an obtuse gonial angle, excessively steep occlusal and mandibular planes, and a compensatory increase in anterior facial height. The entire maxillomandibular complex is overrotated in a clockwise direction. Standard orthognathic surgical correction fails to address this rotational deformity. As a consequence, the achieved projection of the lower face is inadequate, posterior facial height is further reduced, and occlusal and mandibular planes remain steep. Eleven patients with severe mandibular micrognathia underwent a surgical correction involving occlusal plane rotation to its normal orientation relative to Frankfort horizontal. This was accomplished by Le Fort I osteotomy to shorten the anterior maxilla (creating open bites in seven patients and making preexisting open bites worse in four patients) and sagittal split ramus osteotomies to advance and rotate the mandibular body counterclockwise, thus closing the surgically produced open bite. Counterclockwise rotation of the mandible afforded significantly greater sagittal displacement at the B point (mean 17 mm) than at the first molar (mean 10 mm) and produced adequate degrees of projection of the lower face when accompanied by a modest sliding genioplasty (mean 6.9 mm). Total advancement at the pogonion was a mean of 25.2 mm. In addition, posterior facial height was preserved, and mandibular and occlusal planes were normalized to mean angles of 27 and 10 degrees, respectively. At follow-up, which ranged from 9 to 24 months with a mean of 14.1 months, the mean sagittal relapse at the B point was 1.9 mm. Although heretofore considered unstable and therefore not clinically accepted, maxillomandibular counterclockwise rotation to normalize the occlusal plane rotational deformity provides stable, aesthetically

  14. Relationship between flexion contractures of the joints of the lower extremities and the sagittal profile of the spine in patients with cerebral palsy: a preliminary report

    Directory of Open Access Journals (Sweden)

    Valery V. Umnov

    2016-11-01

    Full Text Available Background. The considerable incidence of kyphosis in patients with cerebral palsy (CP causes back pain and aggravates movement disorders. However, few studies have investigated the pathogenesis of this condition. Aim. To identify the relationship between patient motor abilities, the severity of flexion contractures of the knee and hip joints and spinal sagittal profile changes, and the impact on the latter by surgical correction of flexion contracture of the knee joint. Material and methods. The study cohort included 17 pediatric CP patients (11 boys and 6 girls with a mean age of 13.1 ± 1.3 (range, 10–16 years and level 2–4 spastic diplegia according to the Gross Motor Function Classification System. The relationship between radiological indicators of the spine sagittal profile and motor abilities of children, as well as the severity of flexion contractures at the hip and knee, and the degree of insufficiency of the active extension of the knee were investigated. Of these 17 patients, 12 underwent surgery to correct flexion contracture of the knee, which involved lengthening of leg flexors, to analyze the impact of contracture on the sagittal profile of the spine. The following radiological indicators were assessed: angle of thoracic kyphosis (CC, lordosis angle (UL of the lumbar spine, and sacral inclination angle (SS. The study included patients with a CC of at least 30°. Results. Results of an X-ray study showed that the severity of kyphosis was 50.7° ± 2.1°, lordosis was 30.3° ± 4.3°, and SS was 30.5° ± 3.3°. There was a significant association between kyphosis and flexion contracture of the knee joint, as well as between lordosis and insufficient active extension of the knee joint. After elimination of the flexion contracture of the knee, the degree of severity of the CC (thoracic kyphosis was unchanged, while UL (lordosis angle and SS (sacral inclination angle increased by approximately 10°. Conclusion. The severity of

  15. Increased external hip-rotation strength relates to reduced frontal-plane knee control during drop jumping in recreational female athletes: paradox or adaptation?

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Thorborg, Kristian; Andersson, Elin

    2011-01-01

    The purpose of the present study was to examine the relationship between hip muscle strength (abduction and external rotation) and frontal-plane knee control during drop jumping in recreational female athletes. Thirty-three healthy young recreational female athletes were included. Maximal isometric...

  16. Sectional anatomy of the fetal brain in uterus at term on the sagittal plane

    Directory of Open Access Journals (Sweden)

    Fan-Zhen Kong

    2011-06-01

    Conclusion: Through the comparison study between sagittal sections and corresponding MRI of fetal brain at term, we could obtain morphological anatomic structures and MRI of fetal brain, providing morphological demonstration of the intrauterine development of fetal brain and auxiliary diagnosis of ultrasound and MRI in pregnant woman.

  17. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee.

    Science.gov (United States)

    Voos, James E; Suero, Eduardo M; Citak, Musa; Petrigliano, Frank P; Bosscher, Marianne R F; Citak, Mustafa; Wickiewicz, Thomas L; Pearle, Andrew D

    2012-08-01

    We aimed to quantify the effect of changes in tibial slope on the magnitude of anterior tibial translation (ATT) in the anterior cruciate ligament (ACL)-deficient knee during the Lachman and mechanized pivot shift tests. We hypothesized that increased posterior tibial slope would increase the amount of ATT of an ACL-deficient knee, while leveling the slope of the tibial plateau would decrease the amount of ATT. Lachman and mechanized pivot shift tests were performed on hip-to-toe cadaveric specimens, and ATT of the lateral and the medial compartments was measured using navigation (n = 11). The ACL was then sectioned. Stability testing was repeated, and ATT was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5 or -5° of tibial slope variation after which stability testing was repeated (n = 10). Sectioning the ACL resulted in a significant increase in ATT in both the Lachman and mechanized pivot shift tests (P slope of the tibial plateau had no effect on ATT during the Lachman test (n.s.). During the mechanized pivot shift tests, a 5° increase in posterior slope resulted in a significant increase in ATT compared to the native knee (P slope reduced ATT to a level similar to that of the intact knee. Tibial slope changes did not affect the magnitude of translation during a Lachman test. However, large changes in tibial slope variation affected the magnitude of the pivot shift.

  18. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings.

    Science.gov (United States)

    Malfait, Bart; Dingenen, Bart; Smeets, Annemie; Staes, Filip; Pataky, Todd; Robinson, Mark A; Vanrenterghem, Jos; Verschueren, Sabine

    2016-01-01

    The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ). Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping. The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (phamstrings medialis activity) during the preparatory and initial contact phase and an increased lateral neuromuscular activation (dominant vastus lateralis activity) during the peak loading phase.

  19. Frontal plane stability following UKA in a biomechanical study.

    Science.gov (United States)

    Heyse, Thomas J; Tucker, Scott M; Rajak, Yogesh; Kia, Mohammad; Lipman, Joseph D; Imhauser, Carl W; Westrich, Geoffrey H

    2015-06-01

    Function and kinematics following unicondylar knee arthroplasty (UKA) have been reported to be close to the native knee. Gait, stair climbing and activities of daily living expose the knee joint to a combination of varus and valgus moments. Replacement of the medial compartment via UKA is likely to change the physiologic knee stability and its ability to respond to varus and valgus moments. It was hypothesized that UKA implantation would stiffen the knee and decrease range of motion in the frontal plane. Six fresh frozen cadaver knees were prepared and mounted in a six-degrees-of-freedom robot. An axial load of 200 N was applied with the knee in 15°, 45° and 90° of flexion. Varus and valgus moments were added, respectively, before and after implantation of medial UKA. Tests were than redone with a thicker polyethylene inlay to simulate overstuffing of the medial compartment. Range of motion in the frontal plane and the tibial response to moments were recorded via the industrial robot. The range of motion in the frontal plane was decreased with both, balanced and overstuffed UKA and shifted towards valgus. When exposed to valgus moments, knees following UKA were stiffer in comparison with the native knee. The effect was even more pronounced with medial overstuffing. In UKA, the compressive anatomy is replaced by much stiffer components. This lack of medial compression and relative overstuffing leads to a tighter medial collateral ligament. This drives the trend towards a stiffer joint as documented by a decrease in frontal plane range of motion. Overstuffing should strictly be avoided when performing UKA.

  20. MRI of normal anterior cruciate ligament (ACL) and reconstructed ACL: comparison of when the knee is extended with when the knee is flexed

    International Nuclear Information System (INIS)

    Nakanishi, K.; Horibe, S.; Shiozaki, Y.; Ishida, T.; Narumi, Y.; Ikezoe, J.; Nakamura, H.

    1997-01-01

    The purpose of this study was to evaluate, using MRI, the morphology of normal anterior cruciate ligament (ACL) and ACL grafts when the knee was extended compared with when the knee was flexed. Eighteen normal controls and 22 ACL graft patients were studied. Spin-echo (SE) T1-weighted images (TR 330 ms/TE 15 ms, NEX 1) were obtained with a slice thickness of 3 mm. Oblique sagittal images parallel to the ACL were obtained at various flexed angles of the knee joint. In 12 of the 18 normal controls the ACL appeared convex toward the posterior side when the knee was extended and gradually became straight when the knee was flexed. In 15 of the 22 ACL graft patients the grafts appeared straight when the knee was extended and became convex toward the anterior side when the knee was flexed. It is concluded that the morphological changes seen on MR images of ACL grafts from when the knee is extended to when the knee is flexed are different from those in the normal ACL. (orig.). With 7 figs., 1 tab

  1. Knee joint motion and muscle activation patterns are altered during gait in individuals with moderate hip osteoarthritis compared to asymptomatic cohort.

    Science.gov (United States)

    Rutherford, Derek; Moreside, Janice; Wong, Ivan

    2015-07-01

    Knee replacements are common after hip replacement for end stage osteoarthritis. Whether abnormal knee mechanics exist in moderate hip osteoarthritis remains undetermined and has implications for understanding early osteoarthritis joint mechanics. The purpose of this study was to determine whether three-dimensional (3D) knee motion and muscle activation patterns in individuals with moderate hip osteoarthritis differ from an asymptomatic cohort and whether these features differ between contra- and ipsilateral knees. 3D motions and medial and lateral quadriceps and hamstring surface electromyography were recorded on 20 asymptomatic individuals and 20 individuals with moderate hip osteoarthritis during treadmill walking, using standardized collection and processing procedures. Principal component analysis was used to derive electromyographic amplitude and temporal waveform features. 3D stance-phase range of motion was calculated. A 2-factor repeated analysis of variance determined significant within-group leg and muscle differences. Student's t-tests identified between group differences, with Bonferroni corrections where applicable (α=0.05). Lower sagittal plane motion between early and mid/late stance (5°, P=0.004, effect size: 0.96) and greater mid-stance quadriceps activity was found in the osteoarthritis group (P=0.01). Compared to the ipsilateral knee, a borderline significant increase in mid-stance hamstring activity was found in the contra-lateral knee of the hip osteoarthritis group (P=0.018). Bilateral knee mechanics were altered, suggesting potentially increased loads and knee muscle fatigue. There was no indication that one knee is more susceptible to osteoarthritis than the other, thus clinicians should include bilateral knee analysis when treating patients with hip osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Determination of a sagittal plane axis of rotation for a dynamic office chair.

    Science.gov (United States)

    Bauer, C M; Rast, F M; Böck, C; Kuster, R P; Baumgartner, D

    2018-10-01

    This study investigated the location of the axis of rotation in sagittal plane movement of the spine in a free sitting condition to adjust the kinematics of a mobile seat for a dynamic chair. Dynamic office chairs are designed to avoid continuous isometric muscle activity, and to facilitate increased mobility of the back during sitting. However, these chairs incorporate increased upper body movement which could distract office workers from the performance of their tasks. A chair with an axis of rotation above the seat would facilitate a stable upper back during movements of the lower back. The selection of a natural kinematic pattern is of high importance in order to match the properties of the spine. Twenty-one participants performed four cycles of flexion and extension of the spine during an upper arm hang on parallel bars. The location of the axis of rotation relative to the seat was estimated using infrared cameras and reflective skin markers. The median axis of rotation across all participants was located 36 cm above the seat for the complete movement and 39 cm for both the flexion and extension phases, each with an interquartile range of 20 cm. There was no significant effect of the movement direction on the location of the axis of rotation and only a weak, non-significant correlation between body height and the location of the axis of rotation. Individual movement patterns explained the majority of the variance. The axis of rotation for a spinal flexion/extension movement is located above the seat. The recommended radius for a guide rail of a mobile seat is between 36 cm and 39 cm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Can Axial-Based Nodal Size Criteria Be Used in Other Imaging Planes to Accurately Determine “Enlarged” Head and Neck Lymph Nodes?

    Science.gov (United States)

    Bartlett, Eric S.; Walters, Thomas D.; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as “enlarged” if equal to or exceeding size criteria. Results. 222 lymph nodes were “enlarged” in one imaging plane; however, 53.2% (118/222) of these were “enlarged” in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = −0.09 and −0.07, resp., P planes. Conclusion. Classification of “enlarged” lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data. PMID:23984099

  4. Correction of coronal plane deformities around the knee using a tension band plate in children younger than 10 years

    Directory of Open Access Journals (Sweden)

    Ruta M Kulkarni

    2015-01-01

    Full Text Available Background: Guided growth through temporary hemiepiphysiodesis has gained acceptance as the preferred primary treatment in treating pediatric lower limb deformities as it is minimally invasive with a lesser morbidity than the traditional osteotomy. The tension band plate is the most recent development in implants used for temporary hemiepiphysiodesis. Our aim was to determine its safety and efficacy in correcting coronal plane deformities around the knee in children younger than 10 years. Materials and Methods: A total of 24 children under the age of 10 were operated for coronal plane deformities around the knee with a single extra periosteal tension band plate and two nonlocking screws. All the children had a pathological deformity for which a detailed preoperative work-up was carried out to ascertain the cause of the deformity and rule out physiological ones. The average age at hemiepiphysiodesis was 5 years 3 months (range: 2 years to 9 years 1 month. Results: The plates were inserted for an average of 15.625 months (range: 7 months to 29 months. All the patients showed improvement in the mechanical axis. Two patients showed partial correction. Two cases of screw loosening were observed. In the genu valgum group, the tibiofemoral angle improved from a preoperative mean of 19.89° valgus (range: 10° valgus to 40° valgus to 5.72° valgus (range: 2° varus to 10° valgus. In patients with genu varum the tibiofemoral angle improved from a mean of 28.27° varus (range: 13° varus to 41° varus to 1.59° valgus (range: 0-8° valgus. Conclusion: Temporary hemiepiphysiodesis through the application of the tension band plate is an effective method to correct coronal plane deformities around the knee with minimal complications. Its ease and accuracy of insertion has extended the indication of temporary hemiepiphysiodesis to patients younger than 10 years and across a wide variety of diagnosis including pathological physis, which were traditionally

  5. Influence of time restriction, 20 minutes and 94.6 months, of visual information on angular displacement during the sit-to-stand (STS) task in three planes.

    Science.gov (United States)

    Aylar, Mozhgan Faraji; Firouzi, Faramarz; Araghi, Mandana Rahnama

    2016-12-01

    [Purpose] The purpose of this investigation was to assess whether or not restriction of visual information influences the kinematics of sit-to-stand (STS) performance in children. [Subjects and Methods] Five girls with congenital blindness (CB) and ten healthy girls with no visual impairments were randomly selected. The girls with congenital blindness were placed in one group and the ten girls with no visual impairments were divided into two groups of five, control and treatment groups. The participants in the treatment group were asked to close their eyes (EC) for 20 minutes before the STS test, whereas those in the control group kept their eyes open (EO). The performance of the participants in all three groups was measured using a motion capture system and two force plates. [Results] The results show that the constraint duration of visual sensory information affected the range of motion (ROM), the excursion of the dominant side ankle, and the ROM of the dominant side knee in the EC group. However, only ankle excursion on the non-dominant side was affected in the CB group, and this was only observed in the sagittal plane. [Conclusion] These results indicate that visual memory does not affect the joint angles in the frontal and transverse planes. Moreover, all of the participants could perform the STS transition without falling, indicating; the participants performed the STS maneuver correctly in all planes except the sagittal one.

  6. Comparison of lower limb kinetics during vertical jumps in turnout and neutral foot positions by classical ballet dancers.

    Science.gov (United States)

    Imura, Akiko; Iino, Yoichi

    2017-03-01

    The purpose of this study was to investigate the effect of hip external rotation (turnout) on lower limb kinetics during vertical jumps by classical ballet dancers. Vertical jumps in a turnout (TJ) and a neutral hip position (NJ) performed by 12 classical female ballet dancers were analysed through motion capture, recording of the ground reaction forces, and inverse dynamics analysis. At push-off, the lower trunk leaned forward 18.2° and 20.1° in the TJ and NJ, respectively. The dancers jumped lower in the TJ than in the NJ. The knee extensor and hip abductor torques were smaller, whereas the hip external rotator torque was larger in the TJ than in the NJ. The work done by the hip joint moments in the sagittal plane was 0.28 J/(Body mass*Height) and 0.33 J/(Body mass*Height) in the TJ and NJ, respectively. The joint work done by the lower limbs were not different between the two jumps. These differences resulted from different planes in which the lower limb flexion-extension occurred, i.e. in the sagittal or frontal plane. This would prevent the forward lean of the trunk by decreasing the hip joint work in the sagittal plane and reduce the knee extensor torque in the jump.

  7. MR imaging of the knee using fat suppression technique: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jin Suck; Kim, Mi Hye; Cho, Jae Hyun; Park, Chang Yun; Lee, Yeon Hee [Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Yong Soo [Inje University College of Medicine, Kimhae (Korea, Republic of)

    1994-03-15

    The purpose of this study is to evaluate the usefulness of fat suppression technique for MR imaging of the knee. Twenty-eight knees of 26 patients were imaged at a 1.5 T MR system. Sagittal and coronal T2-weighted spin echo imaged (SET2) and sagittal fat suppression SET2(FSSE) were obtained in all cases. We used a chemical shift imaging method for fat suppression. We compared FSSE with SET2 in terms of the conspicuity of lesions of menisci, cruciate ligaments, cartilage, bone and soft tissue of the knee. Meniscal lesions were detected on FSSE and SET2 as well. FSSE depicted the lesion more conspicuously in 6 cases. For the depiction of ACL tear, SET2 was superior to FSSE in 5 cases. FSSE was better for the visualization of the normal structure of cartilage and it also depicted the cartilaginous lesions more conspicuously in 3 cases. Though bone bruise could be detected on both techniques, FSSE was better. FSSE could provide the improved delineation of menisci, cartilage, bone bruise and other soft tissues except the injuries of anterior cruciate ligament. Although FSSE is a reliable method, it can not replace SET2. It may be used as a complemental method in the imaging of the knee.

  8. Three-dimensional shear wave elastography for differentiation of breast lesions: An initial study with quantitative analysis using three orthogonal planes.

    Science.gov (United States)

    Wang, Qiao

    2018-05-25

    To prospectively evaluate the diagnostic performance of three-dimensional (3D) shear wave elastography (SWE) for breast lesions with quantitative stiffness information from transverse, sagittal and coronal planes. Conventional ultrasound (US), two-dimensional (2D)-SWE and 3D-SWE were performed for 122 consecutive patients with 122 breast lesions before biopsy or surgical excision. Maximum elasticity values of Young's modulus (Emax) were recorded on 2D-SWE and three planes of 3D-SWE. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity of US, 2D-SWE and 3D-SWE were evaluated. Two combined sets (i.e., BI-RADS and 2D-SWE; BI-RADS and 3D-SWE) were compared in AUC. Observer consistency was also evaluated. On 3D-SWE, the AUC and sensitivity of sagittal plane were significantly higher than those of transverse and coronal planes (both P 0.05). However, the combined set of BI-RADS and sagittal plane of 3D-SWE had significantly higher sensitivity than the combined set of BI-RADS and 2D-SWE. The sagittal plane shows the best diagnostic performance among 3D-SWE. The combination of BI-RADS and 3D-SWE is a useful tool for predicting breast malignant lesions in comparison with BI-RADS alone.

  9. Cine MR imaging of internal derangements of the knee

    International Nuclear Information System (INIS)

    Niitsu, M.; Anno, I.; Ishikawa, N.; Akisada, M.; Fukubayashi, T.

    1990-01-01

    This paper assesses internal derangements of the knee joint by a new method of cine MR imaging. Cine MR imaging, involving cine acquisition of kinematic sagittal images during knee movement, was used to evaluate 51 symptomatic patients and 19 healthy subjects. Cine MR images of cruciate ligament fears showed disappearance of low-intensity bundles during knee movement, periodic appearance of joint fluid in the area of the ligament, and irregular tibial movement. Cine MR images of meniscal tears showed independent movement of meniscal fragments and periodic tear opening and closing. Twenty-seven of the 28 anterior cruciate ligament (ACL) tears confirmed arthroscopically were correctly identified with cine MR imaging, with a sensitivity of 96% and a specificity of 92%

  10. Anterior sagittal transanorectal approach to the posterior urethra in the pediatric age group.

    Science.gov (United States)

    Rossi, F; De Castro, R; Ceccarelli, P L; Dòmini, R

    1998-09-01

    Surgical access to the posterior urethra is often difficult and several surgical solutions have been proposed. We suggest an anterior sagittal transanorectal approach based on splitting the anterior rectal wall only. This alternative technique provides excellent exposure to the retrourethral region, permitting simple and safe surgery. Between 1994 and 1996 we performed surgery via the anterior sagittal transanorectal approach in 8 patients with a mean age of 9.06 years. Patients included 1 girl with a posttraumatic urethrovaginal fistula, 3 with intersex disorders (2 with mixed gonadal dysgenesis raised as boys and 1 with male dysgenetic pseudohermaphroditism with an enlarged urtricle) and 4 boys (1 with penile agenesis raised as girl, 2 with urethral duplication and 1 with prostatic rhabdomyosarcoma). The patient was placed in a knee-chest position. A midline sagittal incision was made through the anterior anorectal wall only and deepened through the perineal body to expose the posterior urethra and retrovesical space. After the pathological condition was corrected the anterior rectal wall and perineal body were reconstructed. The operation was completed with protective colostomy. In our final patient with prostatic rhabdomyosarcoma the anterior sagittal transanorectal approach was used without colostomy. Anorectal manometry was done 6 months postoperatively. All patients were completely continent of stool and urine. Convalescence was unremarkable in all cases. Postoperative manometry in 7 patients revealed no differences from preoperative measurements. This procedure should be considered a useful alternative to other techniques for various congenital and acquired pelvic disorders.

  11. Evaluation of chondromalacia in the knee joint using three dimensional Fourier transformation constructive interference in steady state (CISS)

    International Nuclear Information System (INIS)

    Yoon, Sam Hyun; Ha, Doo Hoe; Kwak, Jin Young; Lee, Young Soo

    2000-01-01

    To assess the usefulness of three-dimensional Fourier transformation constructive interference in steady state (CISS) for the evaluation of chondromalacia. In 110 knee joints which underwent both MR imaging and arthroscopy, the findings were retrospectively reviewed. MR imaging sequences included two-dimensional dual-echo turbo spin-echo imaging along the sagittal and coronal planes, two-dimensional fast low-angle shot (FLASH) with magnetization transfer along the axial plane, and three-dimensional CISS along the sagittal plane. After the cartilage surfaces of each joint were divided into eight areas (each medial and lateral area of patellar facets, trochlear surfaces, femoral condyles, and tibial plateaux), a total of 880 areas were assessed. Using both combined two-dimensional (2-D turbo spin-echo and FLASH) and CISS imaging during different sessions, each chondromalacia case was assigned one of five grades. Arthroscopy revealed the presence of chondromalacia in 162 areas. This was first grade in 77 areas, second grade in 38, third grade in 21, and fourth grade in 26. The sensitivity, specificity, and accuracy of 2-D and CISS imaging were 48.1%, 93.7% and 85.3%, and 45.7%, 95.3% and 86.1%, respectively. Agreement between MR and arthroscopic staging occurred in 81.48% of 2-D imaging procedures and 82.16% of CISS procedures. If a difference of one grade was accepted, these proportions rose to 84.32% and 85.22%, respectively, though this increase was statistically insignificant. Though CISS imaging was less sensitive than 2-D imaging in the grading of chondromalacia, additional CISS imaging can help improve the accuracy of this grading

  12. Evaluation of chondromalacia in the knee joint using three dimensional Fourier transformation constructive interference in steady state (CISS)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sam Hyun; Ha, Doo Hoe; Kwak, Jin Young [College of Medicine, Pochon CHA University, Sungnam (Korea, Republic of); Lee, Young Soo [Pundang CHA General Hospital, College of Medicine, Pochon CHA University, Seoul (Korea, Republic of)

    2000-10-01

    To assess the usefulness of three-dimensional Fourier transformation constructive interference in steady state (CISS) for the evaluation of chondromalacia. In 110 knee joints which underwent both MR imaging and arthroscopy, the findings were retrospectively reviewed. MR imaging sequences included two-dimensional dual-echo turbo spin-echo imaging along the sagittal and coronal planes, two-dimensional fast low-angle shot (FLASH) with magnetization transfer along the axial plane, and three-dimensional CISS along the sagittal plane. After the cartilage surfaces of each joint were divided into eight areas (each medial and lateral area of patellar facets, trochlear surfaces, femoral condyles, and tibial plateaux), a total of 880 areas were assessed. Using both combined two-dimensional (2-D turbo spin-echo and FLASH) and CISS imaging during different sessions, each chondromalacia case was assigned one of five grades. Arthroscopy revealed the presence of chondromalacia in 162 areas. This was first grade in 77 areas, second grade in 38, third grade in 21, and fourth grade in 26. The sensitivity, specificity, and accuracy of 2-D and CISS imaging were 48.1%, 93.7% and 85.3%, and 45.7%, 95.3% and 86.1%, respectively. Agreement between MR and arthroscopic staging occurred in 81.48% of 2-D imaging procedures and 82.16% of CISS procedures. If a difference of one grade was accepted, these proportions rose to 84.32% and 85.22%, respectively, though this increase was statistically insignificant. Though CISS imaging was less sensitive than 2-D imaging in the grading of chondromalacia, additional CISS imaging can help improve the accuracy of this grading.

  13. A new approach to knee joint arthroplasty.

    Science.gov (United States)

    Zarychta, P

    2018-04-01

    The main aim of this new approach dedicated to knee arthroplasty is to provide an automated method for determining the cutting planes of both the head of femur and the head of tibia in knee replacement surgery. This paper shows a new approach differing from standard procedures associated with manual determination of the mechanical axis of the lower extremity (during surgery) and replacing them with a procedure based on the imprints (with selected cutting planes) of the two heads of bones. Both these imprints have been performed on the basis of the toposcan of the lower limb (before surgery). This methodology has been implemented in MATLAB and tested in clinical CT images of the lower limb in the coronal and transverse planes (61 studies) and in clinical MRI studies of the knee joint in coronal plane (107 studies). Correct results were obtained for about 90% cases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Comparison of erector spinae and hamstring muscle activities and lumbar motion during standing knee flexion in subjects with and without lumbar extension rotation syndrome.

    Science.gov (United States)

    Kim, Si-hyun; Kwon, Oh-yun; Park, Kyue-nam; Kim, Moon-Hwan

    2013-12-01

    The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Influence of implant rod curvature on sagittal correction of scoliosis deformity.

    Science.gov (United States)

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2014-08-01

    Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8

  16. Reliability and reproducibility analysis of the Cobb angle and assessing sagittal plane by computer-assisted and manual measurement tools.

    Science.gov (United States)

    Wu, Weifei; Liang, Jie; Du, Yuanli; Tan, Xiaoyi; Xiang, Xuanping; Wang, Wanhong; Ru, Neng; Le, Jinbo

    2014-02-06

    Although many studies on reliability and reproducibility of measurement have been performed on coronal Cobb angle, few results about reliability and reproducibility are reported on sagittal alignment measurement including the pelvis. We usually use SurgimapSpine software to measure the Cobb angle in our studies; however, there are no reports till date on its reliability and reproducible measurements. Sixty-eight standard standing posteroanterior whole-spine radiographs were reviewed. Three examiners carried out the measurements independently under the settings of manual measurement on X-ray radiographies and SurgimapSpine software on the computer. Parameters measured included pelvic incidence, sacral slope, pelvic tilt, Lumbar lordosis (LL), thoracic kyphosis, and coronal Cobb angle. SPSS 16.0 software was used for statistical analyses. The means, standard deviations, intraclass and interclass correlation coefficient (ICC), and 95% confidence intervals (CI) were calculated. There was no notable difference between the two tools (P = 0.21) for the coronal Cobb angle. In the sagittal plane parameters, the ICC of intraobserver reliability for the manual measures varied from 0.65 (T2-T5 angle) to 0.95 (LL angle). Further, for SurgimapSpine tool, the ICC ranged from 0.75 to 0.98. No significant difference in intraobserver reliability was found between the two measurements (P > 0.05). As for the interobserver reliability, measurements with SurgimapSpine tool had better ICC (0.71 to 0.98 vs 0.59 to 0.96) and Pearson's coefficient (0.76 to 0.99 vs 0.60 to 0.97). The reliability of SurgimapSpine measures was significantly higher in all parameters except for the coronal Cobb angle where the difference was not significant (P > 0.05). Although the differences between the two methods are very small, the results of this study indicate that the SurgimapSpine measurement is an equivalent measuring tool to the traditional manual in coronal Cobb angle, but is advantageous in spino

  17. Case-control study to estimate the performance of dual-energy computed tomography for anterior cruciate ligament tears in patients with history of knee trauma

    Energy Technology Data Exchange (ETDEWEB)

    Glazebrook, Katrina N.; Leng, Shuai; Murthy, Naveen S.; Howe, B.M.; Ringler, Michael D.; McCollough, Cynthia H.; Fletcher, J.G. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Brewerton, Lee J. [Alberta Health Services South Zone, Department of Radiology, Lethbridge, Alberta (Canada); Carter, Rickey E. [Mayo Clinic, Department of Biostatistics, Rochester, MN (United States); Rhee, Peter C.; Dahm, Diane L.; Stuart, Michael J. [Mayo Clinic, Department of Orthopedics, Rochester, MN (United States)

    2014-03-15

    Computed tomography (CT) is used to assess for fracture after knee trauma, but identification of ligamentous injuries may also be beneficial. Our purpose is to assess the potential of dual-energy computed tomography (DECT) for the detection of complete anterior cruciate ligament (ACL) disruption. Sixteen patients with unilateral traumatic ACL disruption (average of 58 days following trauma) confirmed by MRI, and 11 control patients without trauma, underwent DECT of both knees. For each knee, axial, sagittal, and oblique sagittal images (with DECT bone removal, single-energy (SE) bone removal, and DECT tendon-specific color mapping) were reconstructed. Four musculoskeletal radiologists randomly evaluated the 324 DECT reconstructed series (54 knees with 6 displays) separately, to assess for ACL disruption using a five-point scale (1 = definitely not torn, to 5 = definitely torn). ROC analysis was used to compare performance across readers and displays. Sagittal oblique displays (mixed kV soft tissue, SE bone removal, and DECT bone removal) demonstrated higher areas under the curve for ACL disruption (AUC = 0.95, 0.93 and 0.95 respectively) without significant differences in performance between readers (p > 0.23). Inter-reader agreement was also better for these display methods (ICC range 0.62-0.69) compared with other techniques (ICC range 0.41-0.57). Mean sensitivity for ACL disruption was worst for DECT tendon-specific color map and axial images (24 % and 63 % respectively). DECT knee images with oblique sagittal reconstructions using either mixed kV or bone removal displays (either DECT or SE) depict ACL disruption in the subacute or chronic setting with reliable identification by musculoskeletal radiologists. (orig.)

  18. MRI findings of the knee in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Kanno, Hiromasa; Yuasa, Shoichi; Choukan, Toshinori; Oonuma, Shinichi; Matsunaga, Toshiki

    1996-01-01

    The studies were done to know in what extent MRI can image the pannus invasion and cysts in the subcartilagious tissues which are not revealed by the scout roentgenogram and how the synovial membrane can be enhanced by gadolinium-DTPA (Gd-DTPA). Twenty five knees in rheumatoid arthritis of 21 patients, mean age of 57.8 years, were subjected to the studies. Thirteen knees were in Larsen grade 0, 3 in grade I, 4 in grade II, 2 in grade III and 3 in grade IV, whose osteolytic degree were small. MRI system was 0.5 Tesla superconducting Toshiba MRT50A. Imaging was performed by the field echo method with 4 mm-thick slice of T1, T2 weighted images of sagittal and frontal sections, and 5 min after intravenous injection of Gd-DTPA, of T1 weighted images of frontal and sagittal sections. Subcartilagious cysts not detectable on the scout roentgenogram were found in 13 knees (52%) on the MRI image. MRI after Gd-DTPA gave the enhanced images of surroundings of joint capsule in 15 cases, of dotted or reticular synovial membrane in 2 and of joint capsule surroundings with dotted membrane in 2. One case showed no enhancement. MRI was thus found useful for detection of cysts and pannus in the early knee rheumatoid arthritis with insignificant osteolysis. MRI after Gd-DTPA enhanced the surroundings of joint capsule in most cases, and in some cases, the synovial membrane in a dotted or reticular manner, which was considered to show the dilated blood vessels or necrotic coagulations of synovial villi. (H.O.)

  19. MRI findings of the knee in rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Hiromasa; Yuasa, Shoichi; Choukan, Toshinori; Oonuma, Shinichi; Matsunaga, Toshiki [Jusendo General Hospital, Koriyama, Fukushima (Japan)

    1996-03-01

    The studies were done to know in what extent MRI can image the pannus invasion and cysts in the subcartilagious tissues which are not revealed by the scout roentgenogram and how the synovial membrane can be enhanced by gadolinium-DTPA (Gd-DTPA). Twenty five knees in rheumatoid arthritis of 21 patients, mean age of 57.8 years, were subjected to the studies. Thirteen knees were in Larsen grade 0, 3 in grade I, 4 in grade II, 2 in grade III and 3 in grade IV, whose osteolytic degree were small. MRI system was 0.5 Tesla superconducting Toshiba MRT50A. Imaging was performed by the field echo method with 4 mm-thick slice of T1, T2 weighted images of sagittal and frontal sections, and 5 min after intravenous injection of Gd-DTPA, of T1 weighted images of frontal and sagittal sections. Subcartilagious cysts not detectable on the scout roentgenogram were found in 13 knees (52%) on the MRI image. MRI after Gd-DTPA gave the enhanced images of surroundings of joint capsule in 15 cases, of dotted or reticular synovial membrane in 2 and of joint capsule surroundings with dotted membrane in 2. One case showed no enhancement. MRI was thus found useful for detection of cysts and pannus in the early knee rheumatoid arthritis with insignificant osteolysis. MRI after Gd-DTPA enhanced the surroundings of joint capsule in most cases, and in some cases, the synovial membrane in a dotted or reticular manner, which was considered to show the dilated blood vessels or necrotic coagulations of synovial villi. (H.O.)

  20. Pericruciate fat pad of the knee: anatomy and pericruciate fat pad inflammation: cadaveric and clinical study emphasizing MR imaging

    International Nuclear Information System (INIS)

    Skaf, Abdalla Youssef; Hernandez Filho, Guinel; Dirim, Berna; Wangwinyuvirat, Mani; Trudell, Debra; Resnick, Donald; Haghigi, Parvitz

    2012-01-01

    The pericruciate fat pad is located in the intercondylar fossa, intimate with the cruciate ligaments. With MR imaging, signal abnormality of the pericruciate fat pad has been observed in patients with posterior knee pain. The purpose of this study was to describe the anatomy of the pericruciate fat pad in cadaveric specimens and to document the clinical spectrum of pericruciate fat pad inflammation. Twelve cadaveric knees underwent MR imaging with T1 and T2 multiplanar images. Cadaveric sections were then prepared for macroscopic evaluation, with additional histologic analysis performed in four cases. MR images in seventeen patients (ten males, seven females; average age, 31.5 years; age range, 19-57 years) involved in intensive sporting activity and with posterior knee pain were reviewed. MR images in cadaveric specimens showed a fat pad that was located above and between the cruciate ligaments, near their attachment sites in the inner portion of the femoral condyles, within the intercondylar fossa. Fatty tissue covered by a thin layer of synovial membrane was confirmed at histology. Seventeen patients with posterior knee pain and without gross cartilage, meniscal, or ligamentous abnormalities all revealed an increased signal in this fat pad in fluid-sensitive fat-suppressed images, mainly in the sagittal and axial planes. In eight cases, enhancement of this fat pad was demonstrated following intravenous gadolinium administration. The pericruciate fat pad is a structure located in the intercondylar fossa, intimate with both the anterior and posterior cruciate ligaments. Inflammatory changes in this fat pad may be found in patients, especially athletes with posterior knee pain. (orig.)

  1. Pericruciate fat pad of the knee: anatomy and pericruciate fat pad inflammation: cadaveric and clinical study emphasizing MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Skaf, Abdalla Youssef [Hospital do Coracao (HCor), Department of Radiology, Sao Paulo, SP (Brazil); Hernandez Filho, Guinel [Santa Casa de Sao Paulo Hospital, Department of Radiology, Sao Paulo, SP (Brazil); Dirim, Berna [Izmir Atatuerk Training and Research Hospital, Department of Radiology, Karsiyaka, izmir (Turkey); Wangwinyuvirat, Mani [Rajavithi Hospital, Department of Radiology, Bangkok (Thailand); Trudell, Debra; Resnick, Donald [University of California, San Diego, Department of Radiology, Veterans Affairs Medical Center, La Jolla, CA (United States); Haghigi, Parvitz [University of California, San Diego, Department of Pathology, Veterans Affairs Medical Center, La Jolla, CA (United States)

    2012-12-15

    The pericruciate fat pad is located in the intercondylar fossa, intimate with the cruciate ligaments. With MR imaging, signal abnormality of the pericruciate fat pad has been observed in patients with posterior knee pain. The purpose of this study was to describe the anatomy of the pericruciate fat pad in cadaveric specimens and to document the clinical spectrum of pericruciate fat pad inflammation. Twelve cadaveric knees underwent MR imaging with T1 and T2 multiplanar images. Cadaveric sections were then prepared for macroscopic evaluation, with additional histologic analysis performed in four cases. MR images in seventeen patients (ten males, seven females; average age, 31.5 years; age range, 19-57 years) involved in intensive sporting activity and with posterior knee pain were reviewed. MR images in cadaveric specimens showed a fat pad that was located above and between the cruciate ligaments, near their attachment sites in the inner portion of the femoral condyles, within the intercondylar fossa. Fatty tissue covered by a thin layer of synovial membrane was confirmed at histology. Seventeen patients with posterior knee pain and without gross cartilage, meniscal, or ligamentous abnormalities all revealed an increased signal in this fat pad in fluid-sensitive fat-suppressed images, mainly in the sagittal and axial planes. In eight cases, enhancement of this fat pad was demonstrated following intravenous gadolinium administration. The pericruciate fat pad is a structure located in the intercondylar fossa, intimate with both the anterior and posterior cruciate ligaments. Inflammatory changes in this fat pad may be found in patients, especially athletes with posterior knee pain. (orig.)

  2. Adolescent idiopathic scoliosis: sagital plane and low density pedicle screws

    Directory of Open Access Journals (Sweden)

    Rodrigo Augusto do Amaral

    2014-03-01

    Full Text Available OBJECTIVE: To examine the sagittal curves of patients treated with CD instrumentation using exclusively pedicle screws. METHODS: Image analysis of medical records of 27 patients (26 M and 1 F with a minimum follow-up of 6 months, who underwent surgical treatment in our service between January 2005 and December 2010. The curves were evaluated on coronal and sagittal planes, taking into account the potential correction of the technique. RESULTS: In the coronal plan the following curves were evaluated: proximal thoracic (TPx, main thoracic (TPp, and thoracolumbar; lumbar (TL, L, and the average flexibility was 52%, 52%, and 92% and the capacity of correction was 51%, 72%, and 64%, respectively. In the sagittal plane there was a mean increase in thoracic kyphosis (CT of 41% and an average reduction of lumbar lordosis (LL of 17%. Correlation analysis between variables showed Pearson coefficient of correlation of 0.053 and analysis of dispersion of R2 = <0.001. CONCLUSION: The method has shown satisfactory results with maintenance of kyphosis correction in patients with normal and hyper kyphotic deformities.

  3. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    International Nuclear Information System (INIS)

    Tuite, M.J.; Asinger, D.; Orwin, J.F.

    2001-01-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  4. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J; Asinger, D; Orwin, J F [Dept. of Radiology, Univ. of Wisconsin Hospital and Clinics, Madison, WI (United States)

    2001-05-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  5. Design, implementation and control of rehabilitation robots for upper and lower limbs

    OpenAIRE

    Ergin, Alper Mehmet

    2011-01-01

    We present two novel rehabilitation robots for stroke patients. For lower limb stroke rehabilitation, we present a novel self-aligning exoskeleton for the knee joint. The primal novelty of the design originates from its kinematic structure that allows translational movements of the knee joint on the sagittal plane along with the knee rotation. Automatically adjusting its joint axes, the exoskeleton enables a perfect match between human joint axes and the device axes. Thanks to this feature, t...

  6. Neuromuscular strategies for lumbopelvic control during frontal and sagittal plane movement challenges differ between people with and without low back pain.

    Science.gov (United States)

    Nelson-Wong, E; Poupore, K; Ingvalson, S; Dehmer, K; Piatte, A; Alexander, S; Gallant, P; McClenahan, B; Davis, A M

    2013-12-01

    Observation-based assessments of movement are a standard component in clinical assessment of patients with non-specific low back pain. While aberrant motion patterns can be detected visually, clinicians are unable to assess underlying neuromuscular strategies during these tests. The purpose of this study was to compare coordination of the trunk and hip muscles during 2 commonly used assessments for lumbopelvic control in people with low back pain (LBP) and matched control subjects. Electromyography was recorded from hip and trunk muscles of 34 participants (17 with LBP) during performance of the Active Hip Abduction (AHAbd) and Active Straight Leg Raise (ASLR) tests. Relative muscle timing was calculated using cross-correlation. Participants with LBP demonstrated a variable strategy, while control subjects used a consistent proximal to distal activation strategy during both frontal and sagittal plane movements. Findings from this study provide insight into underlying neuromuscular control during commonly used assessment tests for patients with LBP that may help to guide targeted intervention approaches. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The Effect of Local Fatigue Induced at Proximal and Distal Muscles of Lower Extremity in Sagittal Plane on Visual Dependency in Quiet Standing Postural Stability of Healthy Young Females

    Directory of Open Access Journals (Sweden)

    Manijeh Soleymani-Far

    2007-10-01

    Full Text Available Objective: The purpose of the present study was to assess the effect of local muscle fatigue induced at proximal and distal segments of lower extremity on sagittal plane mover on visual dependency in quiet standing postural stability. Materials & Methods: In this Quasi–experimental study (before – after comparison sagittal plane prime movers of the ankle and hip musculature were fatigued using isokinetic contractions at two test sessions with a randomized order and one week interval. Twenty five healthy young female students were َselected by using non probability selection and sample of convenience and asked to maintain single leg upright posture as immobile as possible. RMS and SD of Center of Pressure displacements were assessed in 30 seconds and consequently, the eyes were closed after 15 seconds. A analysis of variance (ANOVA for repeated measures was used to analyze the effect of the following factors over two periods of 5 seconds immediately before and after eye closure: (1 fatigue, (2 vision, (3 segment of fatigue. Results: The main effects of each within-subject factors (fatigue, vision and segment of fatigue were significant (P<0.05. The analysis of RMS and SD of Center of Pressure demonstrated a significant interaction between fatigue and vision, and fatigue and segment of fatigue so that the effects of Fatigue on Proximal segment and eye closed conditions were increased. Conclusion: The visual dependency for control of postural stability incremented following muscle fatigue. Proximal muscle fatigue lead to exaggeration of visual dependency for control of postural stability. Based on the present results, emphasis on the proprioception of proximal segment of lower extremity may be recommended for postural stability training.

  8. The Impact of Imaging Modality on the Measurement of Coronal Plane Alignment After Total Knee Arthroplasty.

    Science.gov (United States)

    Nam, Denis; Vajapey, Sravya; Nunley, Ryan M; Barrack, Robert L

    2016-10-01

    The optimal coronal alignment after total knee arthroplasty (TKA) has become an area of increased debate. Sources of variability among investigations include the radiographic technique used for both preoperative surgical planning and postoperative alignment assessments. This study's purpose was to assess the impact of the imaging modality used on the measurement of coronal plane alignment after TKA. A consecutive series of patients undergoing TKA using the same cruciate-retaining prosthesis were included for analysis. Postoperatively, all patients received both a rotationally controlled, scout computed tomography scan and a hip-knee-ankle (HKA) image using the EOS Imaging system (EOS Inc., Paris, France). Two, independent observers measured the HKA angle, and femoral and tibial component alignment from each image. After classifying overall and component alignment as neutral, varus, or valgus, 40.6% (65 of 160) of knees had a discordant alignment classification for HKA, 28.1% (45 of 160) for femoral component alignment, and 26.9% (43 of 160) for tibial component alignment between their computed tomography and EOS images. Overall, 24.4% (39 of 160) of patients had a HKA difference of ≥3° between the 2 images, whereas 18.8% (30 of 160) and 20.0% (32 of 160) of patients had a femoral and tibial component alignment difference of ≥2°, respectively. Significant differences are present when comparing 2 measurement techniques of mechanical alignment after TKA. The impact of imaging modality on postoperative assessments must be accounted for and be consistent when comparing the results of different investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The effect on knee-joint load of instruction in analgesic use compared with neuromuscular exercise in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Clausen, Brian; Holsgaard-Larsen, Anders; Søndergaard, Jens

    2014-01-01

    , compared with optimized analgesics and antiinflammatory drug use, on the measures of knee-joint load in people with mild to moderate medial tibiofemoral knee osteoarthritis. METHOD/DESIGN: One hundred men and women with mild to moderate medial knee osteoarthritis will be recruited from general medical...... during walking (the Knee Index, a composite score of the first external peak total reaction moment on the knee joint from all three planes based on 3D movement analysis) after 8 weeks of intervention. Secondary outcomes include changes in the external peak knee-adduction moment and impulse and functional...

  10. Impaired Varus-Valgus Proprioception and Neuromuscular Stabilization in Medial Knee Osteoarthritis

    Science.gov (United States)

    Chang, Alison H.; Lee, Song Joo; Zhao, Heng; Ren, Yupeng; Zhang, Li-Qun

    2014-01-01

    Impaired proprioception and poor muscular stabilization in the frontal plane may lead to knee instability during functional activities, a common complaint in persons with knee osteoarthritis (KOA). Understanding these frontal plane neuromechanical properties in KOA will help elucidate the factors contributing to knee instability and aid in the development of targeted intervention strategies. The study objectives were to compare knee varus-valgus proprioception, isometric muscle strength, and active muscular contribution to stability between persons with medial KOA and healthy controls. We evaluated knee frontal plane neuromechanical parameters in 14 participants with medial KOA and 14 age- and gender-matched controls, using a joint driving device (JDD) with a customized motor and a 6-axis force sensor. Analysis of covariance with BMI as a covariate was used to test the differences in varus-valgus neuromechanical parameters between these two groups. The KOA group had impaired varus proprioception acuity (1.08 ± 0.59° vs. 0.69 ± 0.49°, p < 0.05), decreased normalized varus muscle strength (1.31 ± 0.75% vs. 1.79 ± 0.84% body weight, p < 0.05), a trend toward decreased valgus strength (1.29 ± 0.67% vs. 1.88 ± 0.99%, p = 0.054), and impaired ability to actively stabilize the knee in the frontal plane during external perturbation (4.67 ± 2.86 vs. 8.26 ± 5.95 Nm/degree, p < 0.05). The knee frontal plane sensorimotor control system is compromised in persons with medial KOA. Our findings suggest varus-valgus control deficits in both the afferent input (proprioceptive acuity) and muscular effectors (muscle strength and capacity to stabilize the joint). PMID:24321442

  11. Neuromuscular exercise as treatment for knee osteoarthritis in middle aged patients

    DEFF Research Database (Denmark)

    Clausen, Brian

    influence knee joint load and decrease knee pain. It includes exercises to improve balance, muscle activation, functional alignment, and functional knee stability. The overall aim of this thesis was to compare the effectiveness of a specific neuromuscular exercise program with optimized analgesics and anti......, a novel measure of total knee joint load that incorporates all three planes, and has been shown to be sensitive to changes in pain in subjects with moderate knee OA. However, the relative contribution and inter-subject variation of each plane to the Knee Index has not previously been described...... and adherence, to indicate if NEMEX-KOA could be a suitable intervention for subjects with mild to moderate knee OA. The third study (papers III and IV) described and reported a pragmatic randomized controlled trial (the EXERPHARMA trial), that was designed to investigate the effectiveness of NEMEX...

  12. PARAMETERS FOR THE EVALUATION OF CERVICAL SAGITTAL BALANCE IN IDIOPATHIC SCOLIOSIS

    Directory of Open Access Journals (Sweden)

    MAURICIO COELHO LIMA

    Full Text Available ABSTRACT Objective: There are no values defined as standard in the literature for the parameters of assessment of cervical sagittal balance in patients with idiopathic scoliosis. This study describes the sagittal cervical parameters in patients with idiopathic scoliosis. Methods: Study carried out in a tertiary public hospital in patients with adolescent idiopathic scoliosis, through the evaluation of panoramic radiographs in lateral view. The Cobb method was used to evaluate cervical lordosis from C2 to C7, distance from the center of gravity (COG of the skull to C7, measurement of T1 slope, thoracic inlet angle (TIA, neck tilt, and plumb line from C7 to S1 (SVA C7-S1. A statistical analysis was performed, to demonstrate the relationship between the alignment of the thoracic spine in the sagittal plane and the cervical sagittal balance of patients with scoliosis. Results: Thirty-four patients were female (69.4% and 15 male (30.6%. The mean values for COG-C7 were 0.71 mm (median 0.8 mm/standard deviation [SD]= 0.51 mm. For Cobb C2-C7, the mean was -11.7° (median -10°/SD= 20.4°. The mean slope of T1 was 23.5° (median 25°/SD= 9.5°. The mean cervical version was 58.8° (median 60°/DP= 15.4°. The mean TIA was 81.8° (median 85°/SD= 16.7°. The mean plumb line C7-S1 was -0.28 (-0.3/SD= 1.0. Conclusion: The analysis of the results showed that the mean values for the cervical lordosis are lower than the values described as normal in the literature, suggesting a loss of sagittal cervical balance in these patients.

  13. Pocket atlas of MRI body anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Berquist, T.H.; Ehman, R.L.; May, G.R.

    1987-01-01

    This book is a guide to the anatomy of extracranial organs as seen in magnetic resonance images. This collection of 96 magnetic resonance images, accompanied by explanatory line drawings, covers all the major organs of the body- shoulder and humerus; elbow and forearm; hand and wrist; chest; abdomen; pelvis; thigh; knee; calf; and ankle. The images are displayed in the axial, coronal, and sagittal planes, enabling radiologists to quickly review coronal and sagittal anatomy as it applies to routine MRI practice. Special emphasis is placed on the extremities, where spatial resolution, coronal and sagittal planes, and soft tissue contrast provide important anatomic detail. Each MRI image is carefully labeled - using numbers with legends at the top of the page - to highlight key anatomic features. Where applicable, special parameters and positioning are noted below the images. Accompanying each image is a line drawing demonstrating the level and plane of the image.

  14. Compensatory mechanisms in basketball players with jumper's knee.

    Science.gov (United States)

    Siegmund, Julie A; Huxel, Kellie C; Swanik, C Buz

    2008-11-01

    Determining whether there are compensations in those with jumper's knee (JK) might further our understanding of the condition. Comparing lower extremity kinematics and jump performance of basketball athletes with JK with those of healthy controls (C). Repeated-measures control-match design. University laboratory. 24 male basketball players (12 JK, 12 C) matched by height, weight, position, experience, and frequency of play. Standing counter-movement and running layup jumps. Maximum vertical-jump height, footfall landing, and lower extremity sagittal-plane kinematics. There were no significant group differences (P > .05) in vertical-jump height (JK = 64.3 +/- 8.6 cm, C = 63.0 +/- 9.8 cm) or layup height (JK = 71.3 +/- 11.6 cm, C = 73.3 +/- 11.0 cm). JK subjects landed flat footed (50%) more than controls (8%). JK subjects showed significantly more hip flexion (JK = 105 degrees +/- 24.8 degrees, C = 89.8 degrees +/- 14.1 degrees; P = .039) with decreased hip acceleration during the countermovement (JK = -3039 +/- 1392 degrees /s2, C = -4229 +/- 1765 degrees /s2; P = .040). When landing from the countermovement jump, JK subjects had significantly less knee acceleration (JK = -4960 +/- 1512 degrees/s2, C = -6736 +/- 2009 degrees/s2, P = .023) and in the layup showed significantly less ankle dorsiflexion (JK = 106.5 degrees +/- 9.0 degrees, C = 112.5 degrees +/- 7.7 degrees; P = .048) and hip acceleration (JK = -2841 +/- 1094 degrees/s2, C = -3912 +/- 1575 degrees/s2; P = .033). Compensatory strategies observed in JK subjects might help maintain performance, because their jump height was similar to that of healthy controls.

  15. The Nature of Age-Related Differences in Knee Function during Walking: Implication for the Development of Knee Osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Katherine A Boyer

    Full Text Available Changes in knee kinematics have been identified in the early stages of osteoarthritis (OA. However, there is a paucity of information on the nature of kinematic change that occur with aging prior to the development of OA, This study applied a robust statistical method (Principal Component Analysis to test the hypothesis that coupling between primary (flexion and secondary (anterior-posterior translation, internal-external rotation joint motions in walking would differ for age groupings of healthy subjects.Seventy-four healthy participants divided into three groups with mean ages of 24 ± 2.3 years (younger, 48 ± 4.7years (middle-age and 64 ± 2.4 years (older were examined. Principal Component Analysis was used to characterize and statistically compare the patterns of knee joint movement and their relationships in walking.There were significant differences between the younger group and both the middle-age and older groups in the knee frontal plane angle and the coupling between knee flexion (PC1, p≤0.04 and the relative magnitudes of secondary plane motions in early and late stance (PC3, p<0.01. Two additional principal components (PC2, p = 0.03 and PC5, p<0.01 described differences in early stance knee flexion and relationship with secondary plane motion through-out stance for the older compared with middle-age group.It appears there are changes in knee kinematics that occur with aging. The kinematic differences were identified for middle-aged as well as older adults suggesting midlife changes in neuromuscular physiology or behavior may have important consequences. These kinematic measures offer the potential to identify early markers for the risk of developing knee OA with aging.

  16. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: Implications for injury risk assessments✩

    Science.gov (United States)

    Bates, Nathaniel A.; Ford, Kevin R.; Myer, Gregory D.; Hewett, Timothy E.

    2013-01-01

    Background Though the first landing of drop vertical jump task is commonly used to assess biomechanical performance measures that are associated with anterior cruciate ligament injury risk in athletes, the implications of the second landing in this task have largely been ignored. We examined the first and second landings of a drop vertical jump for differences in kinetic and kinematic behaviors at the hip and knee. Methods Acohort of 239 adolescent female basketball athletes (age = 13.6 (1.6) years) completed drop vertical jump tasks from an initial height of 31 cm. A three dimensional motion capture system recorded positional data while dual force platforms recorded ground reaction forces for each trial. Findings The first landing demonstrated greater hip adduction angle, knee abduction angle, and knee abduction moment than the second landing (P-values kinetics for both the frontal and sagittal planes (P-values < 0.044). Interpretation The results have important implications for the future use of the drop vertical jump as an assessment tool for anterior cruciate ligament injury risk behaviors in adolescent female athletes. The second landing may be a more rigorous task and provides a superior tool to evaluate sagittal plane risk factors than the first landing, which may be better suited to evaluate frontal plane risk factors. PMID:23562293

  17. A flexible wearable sensor for knee flexion assessment during gait.

    Science.gov (United States)

    Papi, Enrica; Bo, Yen Nee; McGregor, Alison H

    2018-05-01

    Gait analysis plays an important role in the diagnosis and management of patients with movement disorders but it is usually performed within a laboratory. Recently interest has shifted towards the possibility of conducting gait assessments in everyday environments thus facilitating long-term monitoring. This is possible by using wearable technologies rather than laboratory based equipment. This study aims to validate a novel wearable sensor system's ability to measure peak knee sagittal angles during gait. The proposed system comprises a flexible conductive polymer unit interfaced with a wireless acquisition node attached over the knee on a pair of leggings. Sixteen healthy volunteers participated to two gait assessments on separate occasions. Data was simultaneously collected from the novel sensor and a gold standard 10 camera motion capture system. The relationship between sensor signal and reference knee flexion angles was defined for each subject to allow the transformation of sensor voltage outputs to angular measures (degrees). The knee peak flexion angle from the sensor and reference system were compared by means of root mean square error (RMSE), absolute error, Bland-Altman plots and intra-class correlation coefficients (ICCs) to assess test-retest reliability. Comparisons of knee peak flexion angles calculated from the sensor and gold standard yielded an absolute error of 0.35(±2.9°) and RMSE of 1.2(±0.4)°. Good agreement was found between the two systems with the majority of data lying within the limits of agreement. The sensor demonstrated high test-retest reliability (ICCs>0.8). These results show the ability of the sensor to monitor knee peak sagittal angles with small margins of error and in agreement with the gold standard system. The sensor has potential to be used in clinical settings as a discreet, unobtrusive wearable device allowing for long-term gait analysis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. The use of the greater trochanter marker in the thigh segment model: Implications for hip and knee frontal and transverse plane motion

    Directory of Open Access Journals (Sweden)

    Valentina Graci

    2016-03-01

    Conclusion: Hip and knee kinematics differed across different segment definitions including or excluding the greater trochanter marker, especially in the transverse plane. Therefore when considering whether to include the greater trochanter in the thigh segment model when using a surface markers to calculate 3D kinematics for movement assessment, it is important to have a clear understanding of the effect of different marker sets and segment models in use.

  19. Two-plane symmetry in the structural organization of man.

    Science.gov (United States)

    Ermolenko, A E

    2005-01-01

    Manifestations of symmetry in the human structural organization in ontogenesis and phylogenetic development are analysed. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant: (a) the location of the organs is governed by two principles: in compliance with the symmetry planes and in compliance with the radial symmetry around cavities; (b) the location of the radial symmetry organs is also governed by the principle of two-plane symmetry; (c) out of the four antimeres of two-plane symmetry, two are paired while the other two have merged into one organ; (d) some organs which are antimeres relative to the horizontal plane are located at the cranial end of the organism (sensory organs, cerebrum-cerebellum, heart-spleen and others). The two-plane symmetry is formed by two mechanisms--(a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and (b) genetic mechanisms of the development of chromosomes having two-plane symmetry. When comparing mineral and biological entities we should consider not the whole immobile crystal but only the active superficial part of a growing or dissolving crystal, the interface between the crystal surface and the crystal-forming environment which directly controls crystal growth and adapts itself to it, as well as crystal feed stock expressed in the structure of concentration flows. The symmetry of the chromosome, of the embrion at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described.

  20. The transverse ligament as a landmark for tibial sagittal insertions of the anterior cruciate ligament: a cadaveric study.

    Science.gov (United States)

    Kongcharoensombat, Wirat; Ochi, Mitsuo; Abouheif, Mohamed; Adachi, Nobuo; Ohkawa, Shingo; Kamei, Goki; Okuhara, Atushi; Shibuya, Hoyatoshi; Niimoto, Takuya; Nakasa, Tomoyuki; Nakamae, Atsuo; Deie, Masataka

    2011-10-01

    The purpose of this study was to determine the relation between the position of the transverse ligament, the anterior edge of the anterior cruciate ligament (ACL) tibial footprint, and the center of the ACL tibial insertion. We used arthroscopy for localization of the anatomic landmarks, followed by insertions of guide pins under direct visualization, and then the position of these guide pins was checked on plain lateral radiographs. The transverse ligament and the anterior aspect of the ACL tibial footprint were identified by arthroscopy in 20 unpaired cadaveric knees (10 left and 10 right). Guide pins were inserted with tibial ACL adapter drill guides under direct observation at the transverse ligament, the anterior aspect of the tibial footprint, and the center of tibial insertion of the ACL. Then, plain lateral radiographs of specimens were taken. The Amis and Jakob line was used to define the attachment of the ACL tibial insertion and the transverse ligament. A sagittal percentage of the location of the insertion point was determined and calculated from the anterior margin of the tibia in the anteroposterior direction. The transverse ligament averaged 21.20% ± 4.1%, the anterior edge of the ACL tibial insertion averaged 21.60% ± 4.0%, and the center of the ACL tibial insertion averaged 40.30% ± 4.8%. There were similar percent variations between the transverse ligament and the anterior edge of the ACL tibial insertion, with no significant difference between them (P = .38). Intraobserver and interobserver reliability was high, with small standard errors of measurement. This study shows that the transverse ligament coincides with the anterior edge of the ACL tibial footprint in the sagittal plane. The transverse ligament can be considered as a new landmark for tibial tunnel positioning during anatomic ACL reconstruction. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  1. Sagittal plane mal-alignment in lumbar spinal radiographs in a ...

    African Journals Online (AJOL)

    Background: Plane radiograph of the spine is still the primary or first line investigation in patients with a variety of symptoms including back pain in a resource limited setting like ours. Methods: A crosssectional study of radiographs of patients who were referred to Radiology Department of Jos University Teaching Hospital for ...

  2. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS) - inter-observer and intra-observer reproducibility of a compartment-based scoring system

    International Nuclear Information System (INIS)

    Kornaat, Peter R.; Ceulemans, Ruth Y.T.; Kroon, Herman M.; Bloem, Johan L.; Riyazi, Naghmeh; Kloppenburg, Margreet; Carter, Wayne O.; Woodworth, Thasia G.

    2005-01-01

    To develop a scoring system for quantifying osteoarthritic changes of the knee as identified by magnetic resonance (MR) imaging, and to determine its inter- and intra-observer reproducibility, in order to monitor medical therapy in research studies. Two independent observers evaluated 25 consecutive MR examinations of the knee in patients with previously defined clinical symptoms and radiological signs of osteoarthritis. We acquired on a 1.5 T system: coronal and sagittal proton density- and T2-weighted dual spin echo (SE) images, sagittal three-dimensional T1-weighted gradient echo (GE) images with fat suppression, and axial dual turbo SE images with fat suppression. Images were scored for the presence of cartilaginous lesions, osteophytes, subchondral cysts, bone marrow edema, and for meniscal abnormalities. Presence and size of effusion, synovitis and Baker's cyst were recorded. All parameters were ranked on a previously defined, semiquantitative scale, reflecting increasing severity of findings. Kappa, weighted kappa and intraclass correlation coefficient (ICC) were used to determine inter- and intra-observer variability. Inter-observer reproducibility was good (ICC value 0.77). Inter- and intra-observer reproducibility for individual parameters was good to very good (inter-observer ICC value 0.63-0.91; intra-observer ICC value 0.76-0.96). The presented comprehensive MR scoring system for osteoarthritic changes of the knee has a good to very good inter-observer and intra-observer reproducibility. Thus the score form with its definitions can be used for standardized assessment of osteoarthritic changes to monitor medical therapy in research studies. (orig.)

  3. Influence of Body Mass Index on Sagittal Knee Range of Motion and Gait Speed Recovery 1-Year After Total Knee Arthroplasty.

    Science.gov (United States)

    Bonnefoy-Mazure, Alice; Martz, Pierre; Armand, Stéphane; Sagawa, Yoshimasa; Suva, Domizio; Turcot, Katia; Miozzari, Hermes H; Lübbeke, Anne

    2017-08-01

    The purpose of this prospective study was to investigate the influence of body mass index (BMI) on gait parameters preoperatively and 1 year after total knee arthroplasty (TKA). Seventy-nine patients were evaluated before and 1 year after TKA using clinical gait analysis. The gait velocity, the knee range of motion (ROM) during gait, their gains (difference between baseline and 1 year after TKA), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), quality of life, and patient satisfaction were assessed. Nonobese (BMI gait speed and ROM gains. Adjustment was performed for gender, age, and WOMAC pain improvement. At baseline, gait velocity and knee ROM were significantly lower in obese compared with those in the nonobese patients (0.99 ± 0.27 m/s vs 1.11 ± 0.18 m/s; effect size, 0.53; P = .021; and ROM, 41.33° ± 9.6° vs 46.05° ± 8.39°; effect size, 0.52; P = .022). Univariate and multivariate linear regressions did not show any significant relation between gait speed gain or knee ROM gain and BMI. At baseline, obese patients were more symptomatic than nonobese (WOMAC pain: 36.1 ± 14.0 vs 50.4 ± 16.9; effect size, 0.9; P < .001), and their improvement was significantly higher (WOMAC pain gain, 44.5 vs 32.3; effect size, 0.59; P = .011). These findings show that all patients improved biomechanically and clinically, regardless of their BMI. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. 21 CFR 888.3510 - Knee joint femorotibial metal/polymer constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer constrained... Knee joint femorotibial metal/polymer constrained cemented prosthesis. (a) Identification. A knee joint... of a knee joint. The device limits translation or rotation in one or more planes and has components...

  5. Correlation of intra-articular osseous measurements with posterior cruciate ligament length on MRI scans.

    LENUS (Irish Health Repository)

    Orakzai, S H

    2010-01-01

    Six patients with a clinical diagnosis of chronic posterior cruciate ligament (PCL) rupture, based on a positive posterior drawer test, had a normal appearance of the PCL on an MRI scan. It is postulated that the PCL had been ruptured but healed in a lengthened state. 12 volunteers with no history of knee trauma underwent an MRI scan of the knee. In this control group (n = 12), there was a close correlation between the lateral femoral condylar width in the sagittal plane and the PCL length, with a ratio of 2:1 (95% confidence interval (CI) = 1.817-2.095). In the clinically abnormal group (n = 6), the ratio was 1.49:1 (95% CI = 1.206-1.782) (p< 0.0005). In conclusion, the ratio of the lateral femoral condylar width in the sagittal plane to the PCL length is a useful index for diagnosing PCL attenuation and lengthening in the presence of a normal morphological MR appearance.

  6. Drilling the femoral tunnel during ACL reconstruction: transtibial versus anteromedial portal techniques.

    Science.gov (United States)

    Tudisco, Cosimo; Bisicchia, Salvatore

    2012-08-01

    Incorrect bone tunnel position, particularly on the femoral side, is a frequent cause of failed anterior cruciate ligament reconstruction. Several studies have reported that drilling the femoral tunnel through the anteromedial portal allows a more anatomical placement on the lateral femoral condyle and higher knee stability than does transtibial reconstruction.In the current study, the femoral tunnel was drilled with transtibial (n=6) and anteromedial (n=6) portal techniques in 12 cadaveric knees. With appropriate landmarks inserted into bone tunnels, the direction and length of the tunnels were determined on anteroposterior and lateral radiographs. Knee stability was evaluated with a KT1000 arthrometer (MEDmetric Corporation, San Diego, California) and pivot shift test, comparing the pre- and postoperative values of both techniques. Finally, all knees were dissected to enhance vision of the insertion of the reconstructed ligament. The anteromedial portal technique led to better placement of the femoral tunnel in the coronal and sagittal planes, with higher knee stability according to the pivot shift test but not the KT1000 arthrometer. Anatomical and clinical results reported in the literature on transtibial and anteromedial portal techniques are controversial, but most of studies report better results with the anteromedial portal technique, especially regarding rotational stability. The current cadaveric study showed that the anteromedial portal technique provided better tunnel placement on the lateral femoral condyle in the coronal and sagittal planes, with an improvement in the rotational stability of the knee. Copyright 2012, SLACK Incorporated.

  7. Effects of prophylactic knee bracing on knee joint kinetics and kinematics during netball specific movements.

    Science.gov (United States)

    Sinclair, Jonathan K; Vincent, Hayley; Richards, Jim D

    2017-01-01

    To investigate the effects of a prophylactic knee brace on knee joint kinetics and kinematics during netball specific movements. Repeated measures. Laboratory. Twenty university first team level female netball players. Participants performed three movements, run, cut and vertical jump under two conditions (brace and no-brace). 3-D knee joint kinetics and kinematics were measured using an eight-camera motion analysis system. Knee joint kinetics and kinematics were examined using 2 × 3 repeated measures ANOVA whilst the subjective ratings of comfort and stability were investigated using chi-squared tests. The results showed no differences (p > 0.05) in knee joint kinetics. However the internal/external rotation range of motion was significantly (p < 0.05) reduced when wearing the brace in all movements. The subjective ratings of stability revealed that netballers felt that the knee brace improved knee stability in all movements. Further study is required to determine whether reductions in transverse plane knee range of motion serve to attenuate the risk from injury in netballers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques.

    Science.gov (United States)

    Hampp, Emily L; Chughtai, Morad; Scholl, Laura Y; Sodhi, Nipun; Bhowmik-Stoker, Manoshi; Jacofsky, David J; Mont, Michael A

    2018-05-01

    This study determined if robotic-arm assisted total knee arthroplasty (RATKA) allows for more accurate and precise bone cuts and component position to plan compared with manual total knee arthroplasty (MTKA). Specifically, we assessed the following: (1) final bone cuts, (2) final component position, and (3) a potential learning curve for RATKA. On six cadaver specimens (12 knees), a MTKA and RATKA were performed on the left and right knees, respectively. Bone-cut and final-component positioning errors relative to preoperative plans were compared. Median errors and standard deviations (SDs) in the sagittal, coronal, and axial planes were compared. Median values of the absolute deviation from plan defined the accuracy to plan. SDs described the precision to plan. RATKA bone cuts were as or more accurate to plan based on nominal median values in 11 out of 12 measurements. RATKA bone cuts were more precise to plan in 8 out of 12 measurements ( p  ≤ 0.05). RATKA final component positions were as or more accurate to plan based on median values in five out of five measurements. RATKA final component positions were more precise to plan in four out of five measurements ( p  ≤ 0.05). Stacked error results from all cuts and implant positions for each specimen in procedural order showed that RATKA error was less than MTKA error. Although this study analyzed a small number of cadaver specimens, there were clear differences that separated these two groups. When compared with MTKA, RATKA demonstrated more accurate and precise bone cuts and implant positioning to plan. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used?

    Science.gov (United States)

    Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham

    2014-09-01

    Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.

  10. Intramedullary versus extramedullary alignment of the tibial component in the Triathlon knee

    LENUS (Irish Health Repository)

    Cashman, James P

    2011-08-20

    Abstract Background Long term survivorship in total knee arthroplasty is significantly dependant on prosthesis alignment. Our aim was determine which alignment guide was more accurate in positioning of the tibial component in total knee arthroplasty. We also aimed to assess whether there was any difference in short term patient outcome. Method A comparison of intramedullary versus extramedullary alignment jig was performed. Radiological alignment of tibial components and patient outcomes of 103 Triathlon total knee arthroplasties were analysed. Results Use of the intramedullary was found to be significantly more accurate in determining coronal alignment (p = 0.02) while use of the extramedullary jig was found to give more accurate results in sagittal alignment (p = 0.04). There was no significant difference in WOMAC or SF-36 at six months. Conclusion Use of an intramedullary jig is preferable for positioning of the tibial component using this knee system.

  11. Impact of knee support and shape of tabletop on rectum and prostate position

    International Nuclear Information System (INIS)

    Steenbakkers, Roel; Duppen, Joop C.; Betgen, Anja; Lotz, Heidi; Remeijer, Peter; Fitton, Isabelle; Nowak, Peter; Herk, Marcel van; Rasch, Coen

    2004-01-01

    Purpose: To evaluate the impact of different tabletops with or without a knee support on the position of the rectum, prostate, and bulb of the penis; and to evaluate the effect of these patient-positioning devices on treatment planning. Methods and materials: For 10 male volunteers, five MRI scans were made in four different positions: on a flat tabletop with knee support, on a flat tabletop without knee support, on a rounded tabletop with knee support, and on a rounded tabletop without knee support. The fifth scan was in the same position as the first. With image registration, the position differences of the rectum, prostate, and bulb of the penis were measured at several points in a sagittal plane through the central axis of the prostate. A planning target volume was generated from the delineated prostates with a margin of 10 mm in three dimensions. A three-field treatment plan with a prescribed dose of 78 Gy to the International Commission on Radiation Units and Measurements point was automatically generated from each planning target volume. Dose-volume histograms were calculated for all rectal walls. Results: The shape of the tabletop did not affect the rectum and prostate position. Addition of a knee support shifted the anterior and posterior rectal walls dorsally. For the anterior rectal wall, the maximum dorsal shift was 9.9 mm (standard error of the mean [SEM] 1.7 mm) at the top of the prostate. For the posterior rectal wall, the maximum dorsal shift was 10.2 mm (SEM 1.5 mm) at the middle of the prostate. Therefore, the rectal filling was pushed caudally when a knee support was added. The knee support caused a rotation of the prostate around the left-right axis at the apex (i.e., a dorsal rotation) by 5.6 deg (SEM 0.8 deg ) and shifts in the caudal and dorsal directions of 2.6 mm (SEM 0.4 cm) and 1.4 mm (SEM 0.6 mm), respectively. The position of the bulb of the penis was not influenced by the use of a knee support or rounded tabletop. The volume of the

  12. Retrospective Evaluation Of MRI Findings Of Knee Joint In 255 Patients

    Directory of Open Access Journals (Sweden)

    Ahmet Mete

    2003-03-01

    Full Text Available Retrospective evaluation of knee MRI obtained from 255 cases and to demonstrate most common knee joint pathologies in our region.In our study knee joints of 255 cases who admitted to different clinics of our hospital with various complains of knee between October 1996 and December 1998 were examined in wide spectrum with MRI. Via 1.0 Tesla MRI device and special knee coil in sagittal, coronal and axial plains MRI images were obtained. The number of male and female patients were 173 and 82 and their ages were ranged between 14 and 70, and the mean age was 3413.The most common knee pathologies were intra-articular fluid (%58.04, medial (%46,66 and lateral (%12.55 meniscal injuries, anterior cruciate ligament injury (%17.25 and osteoarthritis (%14.9. The other important lesions were degeneration of medial and lateral meniscus, Baker’s cyst, bursitis, posterior cruciate ligament injury , medial and lateral collateral ligament injuries, synovial hypertrophy, chondromalasia of patella, and contusion.In our images of knee the most common lesions were injuries of meniscus and ligament. Because of being noninvasive technique for knee joint pathologies, capacity of multiplanar imaging, high contrast resolution and chance of detailed anatomic evaluation MR imaging was found to be most appropriate imaging technique for knee joint pathologies.

  13. Effects of neuromuscular fatigue on perceptual-cognitive skills between genders in the contribution to the knee joint loading during side-stepping tasks.

    Science.gov (United States)

    Khalid, Abdul Jabbar; Harris, Sujae Ian; Michael, Loke; Joseph, Hamill; Qu, Xingda

    2015-01-01

    This study investigated whether neuromuscular fatigue affects the neuromuscular control of an athlete within a sports context setting and whether these effects were more pronounced in the females. Lower limb joint kinetics of 6 male and 6 female inter-varsity soccer players performing side-stepping tasks in non-fatigue versus fatigue and anticipated versus unanticipated conditions were quantified using 10 Motion Analysis Corporation cameras and a Kistler(™) force platform. The Yo-Yo intermittent recovery Level 1 fatigue protocol was employed. Stance foot initial contact and peak forces, and peak joint knee moments of the lower limb were submitted to a 3-way mixed-model repeated measure ANOVA. The results suggested that males tend to elicit significantly higher knee joint loadings when fatigued. In addition, males elicited significantly higher peak proximal tibia anterior/posterior shear force, vertical ground reaction force at initial contact and peak internal rotational moments than females. These findings suggested that males were at greater overall injury risk than females, especially in the sagittal plane. Neuromuscular control-based training programmes/interventions that are designed to reduce the risk of the non-contact ACL injury need to be customised for the different genders.

  14. Prospective comparison of 3D FIESTA versus fat-suppressed 3D SPGR MRI in evaluating knee cartilage lesions

    International Nuclear Information System (INIS)

    Li, X.; Yu, C.; Wu, H.; Daniel, K.; Hu, D.; Xia, L.; Pan, C.; Xu, A.; Hu, J.; Wang, L.; Peng, W.; Li, F.

    2009-01-01

    Aim: To prospectively compare the accuracy of three-dimensional fast imaging employing steady-state acquisition (3D FIESTA) sequences with that of fat-suppressed three-dimensional spoiled gradient-recalled (3D SPGR) in the diagnosis of knee articular cartilage lesions, using arthroscopy as the reference standard. Materials and methods: Fifty-eight knees in 54 patients (age range 21-82 years; mean 36 years) were prospectively evaluated by using sagittal 3D FIESTA and sagittal fat-suppressed 3D SPGR sequences. Articular cartilage lesions were graded on MRI and during arthroscopy with a modified Noyes scoring system. Sensitivity, specificity, and accuracy were assessed. Interobserver agreement was determined with κ statistics. Results: The performance of 3D FIESTA sequences (sensitivity, specificity, and accuracy were 80, 94, and 92%, respectively, for reader 1 and 76, 94, and 90%, respectively, for reader 2) was similar to that of fat-suppressed 3D SPGR sequences (sensitivity, specificity, and accuracy were 82, 92, and 90%, respectively, for reader 1 and 82, 90, and 88%, respectively, for reader 2) in the detection of knee articular cartilage lesions. The interobserver agreement varied from fair to good to excellent (kappa values from 0.43-0.83). Conclusion: 3D FIESTA has good diagnostic performance, comparable with fat-suppressed 3D SPGR in evaluating knee cartilage lesions, and it can be incorporated into routine knee MRI protocols due to the short acquisition time.

  15. Prospective comparison of 3D FIESTA versus fat-suppressed 3D SPGR MRI in evaluating knee cartilage lesions

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Yu, C. [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Wu, H. [Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)], E-mail: lilyboston2002@163.com; Daniel, K. [Department of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Hu, D.; Xia, L.; Pan, C.; Xu, A.; Hu, J.; Wang, L.; Peng, W. [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Li, F. [Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2009-10-15

    Aim: To prospectively compare the accuracy of three-dimensional fast imaging employing steady-state acquisition (3D FIESTA) sequences with that of fat-suppressed three-dimensional spoiled gradient-recalled (3D SPGR) in the diagnosis of knee articular cartilage lesions, using arthroscopy as the reference standard. Materials and methods: Fifty-eight knees in 54 patients (age range 21-82 years; mean 36 years) were prospectively evaluated by using sagittal 3D FIESTA and sagittal fat-suppressed 3D SPGR sequences. Articular cartilage lesions were graded on MRI and during arthroscopy with a modified Noyes scoring system. Sensitivity, specificity, and accuracy were assessed. Interobserver agreement was determined with {kappa} statistics. Results: The performance of 3D FIESTA sequences (sensitivity, specificity, and accuracy were 80, 94, and 92%, respectively, for reader 1 and 76, 94, and 90%, respectively, for reader 2) was similar to that of fat-suppressed 3D SPGR sequences (sensitivity, specificity, and accuracy were 82, 92, and 90%, respectively, for reader 1 and 82, 90, and 88%, respectively, for reader 2) in the detection of knee articular cartilage lesions. The interobserver agreement varied from fair to good to excellent (kappa values from 0.43-0.83). Conclusion: 3D FIESTA has good diagnostic performance, comparable with fat-suppressed 3D SPGR in evaluating knee cartilage lesions, and it can be incorporated into routine knee MRI protocols due to the short acquisition time.

  16. Sagittal crest formation in great apes and gibbons.

    Science.gov (United States)

    Balolia, Katharine L; Soligo, Christophe; Wood, Bernard

    2017-06-01

    The frequency of sagittal crest expression and patterns of sagittal crest growth and development have been documented in hominoids, including some extinct hominin taxa, and the more frequent expression of the sagittal crest in males has been traditionally linked with the need for larger-bodied individuals to have enough attachment area for the temporalis muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of four hominoid taxa (Pan troglodytes schweinfurthii, Gorilla gorilla gorilla, Pongo pygmaeus pygmaeus and Hylobates lar). We investigate whether sagittal crest size increases with age beyond dental maturity in males and females of G. g. gorilla and Po. pyg. pygmaeus, and whether these taxa show sex differences in the timing of sagittal crest development. We evaluate the hypothesis that the larger sagittal crest of males may not be solely due to the requirement for a larger surface area than the un-crested cranial vault can provide for the attachment of the temporalis muscle, and present data on sex differences in temporalis muscle attachment area and sagittal crest size relative to cranial size. Gorilla g. gorilla and Po. pyg. pygmaeus males show significant relationships between tooth wear rank and sagittal crest size, and they show sagittal crest size differences between age groups that are not found in females. The sagittal crest emerges in early adulthood in the majority of G. g. gorilla males, whereas the percentage of G. g. gorilla females possessing a sagittal crest increases more gradually. Pongo pyg. pygmaeus males experience a three-fold increase in the number of specimens exhibiting a sagittal crest in mid-adulthood, consistent with a secondary growth spurt. Gorilla g. gorilla and Po. pyg. pygmaeus show significant sex differences in the size of the temporalis muscle attachment area, relative to cranial size, with males of both taxa showing positive allometry not shown in females. Gorilla g

  17. MR imaging of the injured meniscus of the knee

    International Nuclear Information System (INIS)

    Sakai, Naotaka; Imamura, Kiyohiko; Uematsu, Koichi; Iwamura, Yuichi; Ohniwa, Hideo; Ishii, Masayoshi

    1992-01-01

    MR imagings (0.5 Tesla 5 mm slice, TR/TE: 510-620 msec/27-30) of the injured menisci in 38 knees of 38 patients (28 men and 10 women, with an average age of 25.9) were compared with their arthroscopic findings and classified into two types, the one with linear high-density area and the non-linear one. Menisci with longitudinal tears in 10 knees of 17 and with horizontal tears in 4 of 8 showed a linear high-density area in MRI, but the others including menisci with transverse tears (in 8 knees) or bucket-handle tears (in 7 knees) showed a non-linear high density area. These results may be due to both the angle between the tear and the slice lines of MR imaging, and the degeneration of menisci. The MRI of normal menisci in 10 knees were also investigated. A false-positive high-density area was often seen at the synovia-meniscal junction in the coronal plane of MR imaging and was seen at the posterior or anterior menisci in the saggital plane. (author)

  18. Three-Dimensional Isotropic Fat-Suppressed Proton Density-Weighted MRI at 3 Tesla Using a T/R-Coil Can Replace Multiple Plane Two-Dimensional Sequences in Knee Imaging.

    Science.gov (United States)

    Homsi, R; Gieseke, J; Luetkens, J A; Kupczyk, P; Maedler, B; Kukuk, G M; Träber, F; Agha, B; Rauch, M; Rajakaruna, N; Willinek, W; Schild, H H; Hadizadeh, D R

    2016-10-01

    To evaluate whether a 3 D proton density-weighted fat-suppressed sequence (PDwFS) of the knee is able to replace multiplanar 2D-PDwFS. 52 patients (26 men, mean age: 41.9 ± 14.5years) underwent magnetic resonance imaging (MRI) of the knee at 3.0 Tesla using a T/R-coil. The imaging protocol included 3 planes of 2D-PDwFS (acquisition time (AT): 6:40 min; voxel sizes: 0.40 - 0.63 × 0.44 - 0.89 × 3mm³) and a 3D-PDwFS (AT: 6:31 min; voxel size: 0.63 × 0.68 × 0.63mm³). Homogeneity of fat suppression (HFS), artifacts, and image sharpness (IS) were evaluated on a 5-point scale (5[excellent] - 1[non-diagnostic]). The sum served as a measure for the overall image quality (OIQ). Contrast ratios (CR) compared to popliteal muscle were calculated for the meniscus (MEN), anterior (ACL) and posterior cruciate ligaments (PCL). In 13 patients who underwent arthroscopic knee surgery, two radiologists evaluated the presence of meniscal, ligamental and cartilage lesions to estimate the sensitivity and specificity of lesion detection. The CR was higher in the ACL, PCL and MEN in 3D- PDwFS compared to 2D-PDwFS (p Tesla Using a T/R-Coil Can Replace Multiple Plane Two-Dimensional Sequences in Knee Imaging. Fortschr Röntgenstr 2016; 188: 949 - 956. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Effects of Quadriceps Muscle Fatigue on Stiff-Knee Gait in Patients with Hemiparesis

    Science.gov (United States)

    Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Delouf, Eric; Bensmail, Djamel; Zory, Raphael

    2014-01-01

    The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients. PMID:24718087

  20. Knee extension and flexion: MR delineation of normal and torn anterior cruciate ligaments

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, Mamoru; Ikeda, Kotaroh; Fukubayashi, Tohru; Anno, Izumi; Itai, Yuji [Univ. of Tsukuba, Ibaraki (Japan)

    1996-03-01

    Our goal was to assess the effect of joint position of semiflexed and extended knees in MR delineation of the anterior cruciate ligament (ACL). With a mobile knee brace and a flexible surface coil, the knee joint was either fully extended or bent to a semiflexed position (average 45{degrees} of flexion) within the magnet bore. Sets of oblique sagittal MR images were obtained for both extended and flexed knee positions. Thirty-two knees with intact ACLs and 43 knees with arthroscopically proven ACL tears were evaluated. Two observers compared paired MR images of both extended and flexed positions and rated them by a relative three point scale. Anatomic correlation in MR images was obtained by a cadaveric knee with incremental flexion. The MR images of flexed knees were more useful than of extended knees in 53% of the case reviews of femoral attachments and 36% of reviews of midportions of normal ACLs. Compared with knee extensions, the MR images for knee flexion provided better clarity in 48% of reviews of disrupted sites and 52% of residual bundles of torn ACLs. Normal ACL appeared taut in the knee extension and lax in semiflexion. Compared with MR images of knees in extension, MR images of knees in flexion more clearly delineate the femoral side of the ligament with wider space under the intercondylar roof and with decreased volume-averaging artifacts, providing superior visualization of normal and torn ACLs. 13 refs., 7 figs., 1 tab.

  1. The horizontal plane appearances of scoliosis

    DEFF Research Database (Denmark)

    Illés, Tamás S.; Burkus, Máté; Somoskeőy, Szabolcs

    2017-01-01

    Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two-/three-dimen......Purpose: A posterior-anterior vertebral vector is proposed to facilitate visualization and understanding of scoliosis. The aim of this study was to highlight the interest of using vertebral vectors, especially in the horizontal plane, in clinical practice. Methods: We used an EOS two...... cases of a normal spine and a thoracic scoliosis are presented. Results: For a normal spine, vector projections in the transverse plane are aligned with the posterior-anterior anatomical axis. For a scoliotic spine, vector projections in the horizontal plane provide information on the lateral...... decompensation of the spine and the lateral displacement of vertebrae. In the horizontal plane view, vertebral rotation and projections of the sagittal curves can also be analyzed simultaneously. Conclusions: The use of posterior-anterior vertebral vector facilitates the understanding of the 3D nature...

  2. Axial plane dissimilarities of two identical Lenke-type 6C scoliosis cases visualized and analyzed by vertebral vectors

    DEFF Research Database (Denmark)

    Illés, Tamás S.; Burkus, Máté; Somoskeőy, Szabolcs

    2018-01-01

    is essential to completely evaluate the scoliosis curves, because, despite the similar representations in the frontal and sagittal planes, the occurrence of scoliosis in the horizontal plane can be completely different. Graphical abstract: These slides can be retrieved under Electronic Supplementary Material...

  3. Report of the Primary Outcomes for Gait Mechanics in Men of the ACL-SPORTS Trial: Secondary Prevention With and Without Perturbation Training Does Not Restore Gait Symmetry in Men 1 or 2 Years After ACL Reconstruction.

    Science.gov (United States)

    Capin, Jacob John; Zarzycki, Ryan; Arundale, Amelia; Cummer, Kathleen; Snyder-Mackler, Lynn

    2017-10-01

    Movement asymmetries during walking are common after anterior cruciate ligament (ACL) injury and reconstruction and may influence the early development of posttraumatic osteoarthritis. Preoperative neuromuscular training (like perturbation training, which is neuromuscular training requiring selective muscle activation in response to surface perturbations) improves gait asymmetries and functional outcomes among people who are ACL-deficient, but the effect of postoperative perturbation training on gait mechanics after ACL reconstruction is unknown. Among men undergoing ACL reconstruction, we sought to compare strength, agility, and secondary prevention (SAP) treatment with SAP plus perturbation training (SAP+PERT) with respect to (1) gait mechanics; and (2) elimination of gait asymmetries 1 and 2 years after ACL reconstruction. Forty men were randomized into a SAP group or a SAP+PERT group after ACL reconstruction and before returning to preinjury activities. Participants were required to achieve ≥ 80% quadriceps muscle strength symmetry, minimal knee effusion, full ROM, no reports of pain, and completion of a running progression (all between 3 and 9 months postoperatively) before enrollment. Of 94 potentially eligible athletic male patients evaluated knee angles and moments at peak knee flexion angle; (2) sagittal plane hip and knee angles and moments at peak knee extension angle; (3) sagittal plane hip and knee excursion during weight acceptance; and (4) sagittal plane hip and knee excursion during midstance. We also calculated the proportion of athletes in each group who walked with clinically meaningful interlimb asymmetry in sagittal plane hip and knee variables and compared these proportions using odds ratios. There was no differential loss to followup between groups. There were no differences between the SAP or SAP+PERT groups for the biomechanical gait variables. The involved limb's knee excursion during midstance for the SAP (mean ± SD: 1 year: 15° ± 5

  4. THE INFLUENCE OF SEX AND MATURATION ON LANDING BIOMECHANICS: IMPLICATIONS FOR ACL INJURY

    Science.gov (United States)

    Sigward, S. M.; Pollard, C. D.; Powers, C. M.

    2010-01-01

    During landing and cutting, females exhibit greater frontal plane moments at the knee (internal knee adductor moments or external knee abduction moments) and favor use of the knee extensors over the hip extensors to attenuate impact forces when compared to males. However, it is not known when this biomechanical profile emerges. The purpose of this study was to compare landing biomechanics between sexes across maturation levels. One hundred and nineteen male and female soccer players (9–22 years) participated. Subjects were grouped based on maturational development. Lower extremity kinematics and kinetics were obtained during a drop-land task. Dependent variables included the average internal knee adductor moment and sagittal plane knee/hip moment and energy absorption ratios during the deceleration phase of landing. When averaged across maturation levels, females demonstrated greater internal knee adductor moments (0.06±0.03 vs. 0.01±0.02 Nm/kg*m; Pbiomechanical pattern that increases ACL loading. This biomechanical strategy already was established in pre-pubertal female athletes. PMID:21210853

  5. Spinal sagittal balance substantially influences locomotive syndrome and physical performance in community-living middle-aged and elderly women.

    Science.gov (United States)

    Muramoto, Akio; Imagama, Shiro; Ito, Zenya; Hirano, Kenichi; Ishiguro, Naoki; Hasegawa, Yukiharu

    2016-03-01

    Spinal sagittal imbalance has been well known risk factor of decreased quality of life in the field of adult spinal deformity. However, the impact of spinal sagittal balance on locomotive syndrome and physical performance in community-living elderly has not yet been clarified. The present study investigated the influence of spinal sagittal alignment on locomotive syndrome (LS) and physical performance in community-living middle-aged and elderly women. A total of 125 women between the age of 40-88 years (mean 66.2 ± 9.7 years) who completed the questionnaires, spinal mouse test, physical examination and physical performance tests in Yakumo study were enrolled in this study. Participants answered the 25-Question Geriatric Locomotive Function Scale (GLFS-25), the visual analog scale (VAS) for low back pain (LBP), knee pain. LS was defined as having a score of >16 points on the GLFS-25. Using spinal mouse, spinal inclination angle (SIA), thoracic kyphosis angle (TKA), lumbar lordosis angle (LLA), sacral slope angle (SSA), thoracic spinal range of motion (TSROM), lumbar spinal range of motion (LSROM) were measured. Timed-up-and-go test (TUG), one-leg standing time with eyes open (OLS), and maximum stride, back muscle strength were also measured. The relationship between spinal sagittal parameters and GLFS-25, VAS and physical performance tests were analyzed. 26 people were diagnosed as LS and 99 were diagnosed as non-LS. LBP and knee pain were greater, physical performance tests were poorer, SIA were greater, LLA were smaller in LS group compared to non-LS group even after adjustment by age. SIA significantly correlated with GLFS-25, TUG, OLS and maximum stride even after adjustment by age. The cutoff value of SIA for locomotive syndrome was 6°. People with a SIA of 6° or greater were grouped as "Inclined" and people with a SIA of less than 6° were grouped as "Non-inclined". 21 people were "Inclined" and 104 were "Non-inclined". Odds ratio to fall in LS of

  6. Influence of mandibular fixation method on stability of the maxillary occlusal plane after occlusal plane alteration.

    Science.gov (United States)

    Yosano, Akira; Katakura, Akira; Takaki, Takashi; Shibahara, Takahiko

    2009-05-01

    In this study, we investigated how method of mandibular fixation influenced longterm postoperative stability of the maxilla in Class III cases. In particular, we investigated change in the maxillary occlusal plane after Occlusal Plane Alteration. Therefore, we focused on change in the palatal plane to evaluate stability of the maxillary occlusal plane, as the position of the palatal plane affects the maxillary occlusal plane. This study included 16 patients diagnosed with mandibular protrusion. Alteration of the occlusal plane was achieved by clockwise rotation of the maxilla by Le Fort I osteotomy and mandibular setback was performed by bilateral sagittal split ramus osteotomy. We analyzed and examined lateral cephalometric radiographs taken at 1 month, 3 months, 6 months, and 1 year after surgery. Stability achieved by two methods of mandibular fixation was compared. In one group of patients (group S) titanium screws were used, and in the other group (group P) titanium-locking mini-plates were used. No significant displacement was recognized in group S, whereas an approximately 0.7mm upward vertical displacement was recognized in the anterior nasal spine in group P. As a result, not only the angle of the palatal plane and S-N plane, but also occlusal plane angle in group P showed a greater decrease than that in group S. The results suggest that fixing the mandible with screws yielded greater stability of the maxilla and maxillary occlusal plane than fixing the mandible with titanium plates.

  7. Three-dimensional isotropic fat-suppressed proton density-weighted MRI at 3 tesla using a T/R-coil can replace multiple plane two-dimensional sequences in knee imaging

    Energy Technology Data Exchange (ETDEWEB)

    Homsi, R.; Luetkens, J.A. [Bonn Univ. (Germany). Dept. of Radiology; Gieseke, J. [Philips Healthcare, Hamburg (Germany); and others

    2016-10-15

    To evaluate whether a 3D proton density-weighted fat-suppressed sequence (PDwFS) of the knee is able to replace multiplanar 2D-PDwFS. 52 patients (26 men, mean age: 41.9±14.5 years) underwent magnetic resonance imaging (MRI) of the knee at 3.0 Tesla using a T/R-coil. The imaging protocol included 3 planes of 2D-PDwFS (acquisition time (AT): 6:40 min; voxel sizes: 0.40-0.63 x 0.44-0.89 x 3 mm{sup 3}) and a 3D-PDwFS (AT: 6:31 min; voxel size: 0.63 x 0.68 x 0.63 mm{sup 3}). Homogeneity of fat suppression (HFS), artifacts, and image sharpness (IS) were evaluated on a 5-point scale (5[excellent] - 1[non-diagnostic]). The sum served as a measure for the overall image quality (OIQ). Contrast ratios (CR) compared to popliteal muscle were calculated for the meniscus (MEN), anterior (ACL) and posterior cruciate ligaments (PCL). In 13 patients who underwent arthroscopic knee surgery, two radiologists evaluated the presence of meniscal, ligamental and cartilage lesions to estimate the sensitivity and specificity of lesion detection. The CR was higher in the ACL, PCL and MEN in 3D- PDwFS compared to 2D-PDwFS (p<0.01 for ACL and PCL; p=0.07 for MEN). Compared to 2D images, the OIQ was rated higher in 3D-PDwFS images (p<0.01) due to fewer artifacts and HFS despite the lower IS (p<0.01). The sensitivity and specificity of lesion detection in 3D- and 2D-PDwFS were similar. Compared to standard multiplanar 2D-PDwFS knee imaging, isotropic high spatial resolution 3D-PDwFS of the knee at 3.0T can be acquired with high image quality in a reasonable scan time. Multiplanar reformations in arbitrary planes may serve as an additional benefit of 3D-PDwFS.

  8. The Effect of Foot Progression Angle on Knee Joint Compression Force during Walking

    DEFF Research Database (Denmark)

    Baldvinsson, Henrik Koblauch; Heilskov-Hansen, Thomas; Alkjær, Tine

    2013-01-01

    males walked at a fixed speed of 4.5 km/h under three conditions: Normal walking, internally rotated and externally rotated. All gait-trials were recorded by six infrared cameras. Net joint moments were calculated by 3D inverse dynamics. The results revealed that the medial knee joint compartment......It is unclear how rotations of the lower limb affect the knee joint compression forces during walking. Increases in the frontal plane knee moment have been reported when walking with internally rotated feet and a decrease when walking with externally rotated feet. The aim of this study...... was to investigate the knee joint compressive forces during walking with internal, external and normal foot rotation and to determine if the frontal plane knee joint moment is an adequate surrogate for the compression forces in the medial and lateral knee joint compartments under such gait modifications. Ten healthy...

  9. Spine evaluation: Determination of the relationship between thoracic spinal deformity and sagittal curves by a noninvasive method DOI: 10.5007/1980-0037.2010v12n4p282

    Directory of Open Access Journals (Sweden)

    Dalva Minonroze Albuquerque Ferreira

    2010-01-01

    Full Text Available The objectives of this study were to compare sagittal plane alignment between subjects with spinal deformities and a group presenting no changes; to test the reliability of the tool used, and to determine the existence of correlations between spinal deformity and sagittal curvature measures. Forty young subjects were divided into two groups: a control group (n=20 presenting no changes or spinal deformity less than 0.5 cm in the dorsal curvature and 0.7 cm in the lumbar curvature, and an experimental group (n=20 with spinal deformities greater than those described for the control group. Spinal deformity and sagittal plane curvatures were measured using a water level-based tool and by the Adams test. Data were collected from the two groups on two distinct occasions. The Mann-Whitney test showed no difference between sampling times. A significant difference between the two groups was only observed in terms of cervical curvature. Spearman’s test revealed a linear correlation between dorsal curvature and dorsal spinal deformity in the control group, between dorsal and lumbar curves in the two groups, and between dorsal spinal deformity and lumbar and sacral curves and between sacral curvature and dorsal and lumbar curves in the experimental group. In conclusion, spinal deformity measurement is associated with sagittal plane curvatures. The method proposed here is reliable, simple and accessible and can be reproduced without high costs and damage to the patient’s health.

  10. Associations of knee extensor strength and standing balance with physical function in knee osteoarthritis.

    Science.gov (United States)

    Pua, Yong-Hao; Liang, Zhiqi; Ong, Peck-Hoon; Bryant, Adam L; Lo, Ngai-Nung; Clark, Ross A

    2011-12-01

    Knee extensor strength is an important correlate of physical function in patients with knee osteoarthritis; however, it remains unclear whether standing balance is also a correlate. The purpose of this study was to evaluate the cross-sectional associations of knee extensor strength, standing balance, and their interaction with physical function. One hundred four older adults with end-stage knee osteoarthritis awaiting a total knee replacement (mean ± SD age 67 ± 8 years) participated. Isometric knee extensor strength was measured using an isokinetic dynamometer. Standing balance performance was measured by the center of pressure displacement during quiet standing on a balance board. Physical function was measured by the self-report Short Form 36 (SF-36) questionnaire and by the 10-meter fast-pace gait speed test. After adjustment for demographic and knee pain variables, we detected significant knee strength by standing balance interaction terms for both SF-36 physical function and fast-pace gait speed. Interrogation of the interaction revealed that standing balance in the anteroposterior plane was positively related to physical function among patients with lower knee extensor strength. Conversely, among patients with higher knee extensor strength, the standing balance-physical function associations were, or tended to be, negative. These findings suggest that although standing balance was related to physical function in patients with knee osteoarthritis, this relationship was complex and dependent on knee extensor strength level. These results are of importance in developing intervention strategies and refining theoretical models, but they call for further study. Copyright © 2011 by the American College of Rheumatology.

  11. Radial MR images of the knee

    International Nuclear Information System (INIS)

    Hewes, R.C.; Miller, T.R.

    1988-01-01

    To profile optimally each portion of the meniscus, the authors use the multiangle, multisection feature of a General Electric SIGNA 1.5-T imager to produce radial images centered on each meniscus. A total of 12-15 sections are imaged at 10 0 -15 0 intervals of each meniscus, yielding perpendicular images of the entire meniscus, comparable with the arthrographic tangential views. The authors review their technique and demonstrate correlation cases between the radial gradient recalled acquisition in a steady state sequences, sagittal and coronal MR images, and arthrograms. Radial images should be a routine part of knee MR imaging

  12. Clinical value of SPECT/CT for evaluation of patients with painful knees after total knee arthroplasty- a new dimension of diagnostics?

    Directory of Open Access Journals (Sweden)

    Rasch Helmut

    2011-02-01

    Full Text Available Abstract Background The purpose of our study was to evaluate the clinical value of hybrid SPECT/CT for the assessment of patients with painful total knee arthroplasty (TKA. Methods Twenty-three painful knees in patients following primary TKA were assessed using Tc-99m-HDP-SPECT/CT. Rotational, sagittal and coronal position of the TKA was assessed on 3D-CT reconstructions. The level of the SPECT-tracer uptake (0-10 and its anatomical distribution was mapped using a validated localization scheme. Univariate analysis (Wilcoxon-Mann-Whitney, Spearmean`s-rho test, p Results SPECT/CT imaging changed the suspected diagnosis and the proposed treatment in 19/23 (83% knees. Progression of patellofemoral OA (n = 11, loosening of the tibial (n = 3 and loosening of the femoral component (n = 2 were identified as the leading causes of pain after TKA. Patients with externally rotated tibial trays showed higher tracer uptake in the medial patellar facet (p = 0.049 and in the femur (p = 0.051. Patients with knee pain due to patellofemoral OA showed significantly higher tracer uptake in the patella than others (p Conclusions SPECT/CT was very helpful in establishing the diagnosis and guiding subsequent management in patients with painful knees after TKA, particularly in patients with patellofemoral problems and malpositioned or loose TKA.

  13. Variability of Measurement of Patellofemoral Indices with Knee Flexion and Quadriceps Contraction: An MRI-Based Anatomical Study

    Science.gov (United States)

    Laugharne, Edward; Bali, Navi; Purushothamdas, Sanjay; Almallah, Faris; Kundra, Rik

    2016-01-01

    Purpose The purpose of this study was to investigate the impact of varying knee flexion and quadriceps activity on patellofemoral indices measured on magnetic resonance imaging (MRI). Materials and Methods MRI of the knee was performed in 20 patients for indications other than patellar or patellofemoral pathology. Axial and sagittal sequences were performed in full extension of the knee with the quadriceps relaxed, full extension of the knee with the quadriceps contracted, 30° flexion of the knee with the quadriceps relaxed, and 30° flexion with the quadriceps contracted. Bisect offset, patella tilt angle, Insall-Salvati ratio and Caton-Deschamps index were measured. Results With the knee flexed to 30° and quadriceps relaxed, the mean values of patellar tilt angle, bisect offset, Insall-Salvati ratio and Caton-Deschamps index were all within normal limits. With the knee extended and quadriceps contracted, the mean patellar tilt angle (normal value, patellofemoral indices. MRI taken with the knee in 30° of flexion allows more reliable assessment of the patellofemoral joint and minimises the confounding effect of quadriceps contraction. PMID:27894177

  14. MR imaging of the knee extension and flexion. Diagnostic value for reconstructed anterior cruciate ligament

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, Mamoru; Ikeda, Kotaroh; Fukubayashi, Tohru [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine] [and others

    1995-09-01

    The purpose of this study is to determine the value of extended and flexed knee positions in MR imaging of the surgically reconstructed anterior cruciate ligament (ACL). With a mobile knee brace and a flexible surface coil, knee joint was enabled to extend to a full-extension and bend vertically to a semi-flexion (average 45deg of flexion) within the confines of the magnet bore. Sets of 3-mm-thick oblique sagittal proton-weighted turbo spin echo MR images were obtained at both extended and flexed positions. Twenty-five knees with intact ACL grafts and three knees with arthroscopically proved graft tears were evaluated. Compared to the extended position, MR images of flexed knee provided better delineation of the intact and complicated ACL grafts with statistical significance. The intact graft appeared relaxed at the semi-flexion and taut at the extension. Overall lengths of the intact grafts were readily identified at the flexion. Stretched along the intercondylar roof, the grafts were poorly outlined at the extension. MR images with knee flexion delineated the disrupted site from the impingement more clearly than that with knee extension. (author).

  15. Sagittal crest formation in great apes and gibbons

    OpenAIRE

    Balolia, K. L.; Soligo, C.; Wood, B.

    2017-01-01

    The frequency of sagittal crest expression and patterns of sagittal crest growth and development have been documented in hominoids, including some extinct hominin taxa, and the more frequent expression of the sagittal crest in males has been traditionally linked with the need for larger-bodied individuals to have enough attachment area for the temporalis muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of four hominoid taxa (Pan troglodytes schweinfur...

  16. Analysis of sagittal spinopelvic parameters in achondroplasia.

    Science.gov (United States)

    Hong, Jae-Young; Suh, Seung-Woo; Modi, Hitesh N; Park, Jong-Woong; Park, Jung-Ho

    2011-08-15

    Prospective radiological analysis of patients with achondroplasia. To analyze sagittal spinal alignment and pelvic orientation in achondroplasia patients. Knowledge of sagittal spinopelvic parameters is important for the treatment of achondroplasia, because they differ from those of the normal population and can induce pain. The study and control groups were composed of 32 achondroplasia patients and 24 healthy volunteers, respectively. All underwent lateral radiography of the whole spine including hip joints. The radiographic parameters examined were sacral slope (SS), pelvic tilt, pelvic incidence (PI), S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis (LL1, LL2), and sagittal balance. Statistical analysis was performed to identify significant differences between the two groups. In addition, correlations between parameters and symptoms were sought. Sagittal spinopelvic parameters, namely, pelvic tilt, pelvic incidence, S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis 1 and sagittal balance were found to be significantly different in the patient and control groups (P achondroplasia patients and normal healthy controls. The present study shows that sagittal spinal and pelvic parameters can assist the treatment of spinal disorders in achondroplasia patients.

  17. Analysis of knee movement with low-field MR equipment. A normal volunteer study

    International Nuclear Information System (INIS)

    Ando, Yoko; Fukatsu, Hiroshi; Ishigaki, Takeo; Aoki, Ikuo; Yamada, Takashi.

    1994-01-01

    This study was performed to make a normal standard by analyzing knee movement in detail. An open low-field unit was used for 23 healthy knee joints. With three-dimensional Fourier transformation (3DFT) gradient echo sequence, 50 sagittal slices of 4.5 mm in thickness were obtained at four flexion angles: 0, 30, 60, and 90 degrees (lateral position). Although the tension ratio of the anterior and posterior cruciate ligaments (ACL, PCL) increased during knee flexion, the change in the tension ratio was significantly different between the ACL and PCL. The femur-ACL angle and femur-PCL angle were parallel with the knee flexion angle, but the tibia-ACL angle and tibia-PCL angle changed complexly. The lateral and medial condyles rolled and slid during knee flexion, and the medial side moved more than the lateral side, consistent with rotation of the lower thigh. The difference in backward movement distance on the tibia between the two condyles was significantly larger in females than in males. This might explain the dominance of knee osteoarthritis in women. Although the lateral position is not completely physiological, we could show initial cinematic data of up to 90 degrees of knee flexion using open-type MRI, which is impossible with high- and middle-field machines. (author)

  18. A clinico-radiographic study to compare and co-relate sagittal condylar guidance determined by intraoral gothic arch tracing method and panoramic radiograph in completely edentulous patients.

    Science.gov (United States)

    Shetty, Sanath; Kunta, Mythili; Shenoy, Kamalakanth

    2018-01-01

    The purpose of this study was to compare and correlate sagittal condylar guidance determined by intraoral gothic arch tracing method and panoramic radiograph in edentulous patients. Twelve completely edentulous patients were selected by the inclusion and exclusion criteria. Conventional steps in the fabrication of complete denture till jaw relation were carried out. Intraoral gothic arch tracing and protrusive interocclusal records were obtained for each patient. Protrusive interocclusal record was used to program the Hanau Wide-Vue semi-adjustable articulator, thus obtaining the sagittal condylar guidance angle. Using RadiAnt DICOM software, on the orthopantomogram obtained for each patient in the study, two reference lines were drawn. The Frankfort's horizontal plane and the mean curvature line (joining the most superior and the inferior points on the glenoid fossa curvature) were drawn. The mean curvature line was extended to intersect the Frankfort's horizontal plane, thus obtaining the radiographic sagittal condylar guidance angle. The condylar guidance angles obtained by these two methods were compared and subjected to paired t -test. There was no statistically significant difference between the sagittal condylar guidance angles obtained between right and left sides with intraoral gothic arch tracing and radiographic methods ( P = 0.107 and 0.07, respectively). Within the limitations of this study, it was concluded that the protrusive condylar guidance angles obtained by panoramic radiograph may be used for programming semi-adjustable articulators.

  19. Symptomatic versus asymptomatic knees after bilateral total knee arthroplasty: what is the difference in SPECT/CT?

    Energy Technology Data Exchange (ETDEWEB)

    Awengen, R.; Hirschmann, M.T. [Kantonsspital Baselland (Bruderholz, Liestal, Laufen), Department of Orthopaedic Surgery and Traumatology, Bruderholz (Switzerland); Rasch, H. [Kantonsspital Baselland (Bruderholz, Liestal, Laufen), Institute of Radiology and Nuclear Medicine, Bruderholz (Switzerland); Amsler, F. [Amsler Consulting, Basel (Switzerland)

    2016-04-15

    The primary purpose of this retrospective study was to evaluate the differences of bone tracer uptake (BTU) in symptomatic and asymptomatic knees after bilateral total knee arthroplasty (TKA) and identify typical BTU patterns with regards to TKA component position and alignment. A consecutive number of 37 patients after bilateral TKA were retrospectively included. The knees were grouped into symptomatic (group A) and asymptomatic (group B) knees. All patients underwent 99m-Tc-HDP-SPECT/CT. Coronal, rotational, and sagittal TKA component position was analysed in 3D reconstructed CT. BTU was anatomically localised and quantified using a validated standardized localization scheme. Maximum BTU values for each area were recorded and normalized values calculated. Signed log-rank test, chi-square test, paired t-tests, and Pearson correlations were used (p <0.05). Symptomatic TKAs were significantly more flexed and had a tendency to be more internally rotated when compared to asymptomatic ones (p < 0.05). In all regions, the mean BTU in asymptomatic knees was lower than in symptomatic knees. In both groups the highest mean BTU was found around the tibial stem (symptomatic 7.30; asymptomatic 6.30, p = 0.061) and at the tip of the tibial stem (symptomatic 5.49; asymptomatic 4.74, p = 0.062). Superior patellar regions showed higher BTU than inferior regions. The highest patellar BTU was found in the superior medial patella (symptomatic 4.99; asymptomatic 3.98, p = 0.048). The lowest BTU was found in the posterior femoral regions (flatsp, flatip, fmedsp, fmedip) (Table 3). Tibial and patellar areas showed twice as high mean BTUs than femoral areas (Fig. 3). A significant correlation of TKA component position and BTU was demonstrated. Distribution and intensity of BTU in SPECT/CT depends on TKA component position and alignment. In addition, typical BTU patterns in symptomatic and asymptomatic knees were identified. A profound knowledge of BTU pattern, TKA component position

  20. Screw-Home Movement of the Tibiofemoral Joint during Normal Gait: Three-Dimensional Analysis.

    Science.gov (United States)

    Kim, Ha Yong; Kim, Kap Jung; Yang, Dae Suk; Jeung, Sang Wook; Choi, Han Gyeol; Choy, Won Sik

    2015-09-01

    The purpose of this study was to evaluate the screw-home movement at the tibiofemoral joint during normal gait by utilizing the 3-dimensional motion capture technique. Fifteen young males and fifteen young females (total 60 knee joints) who had no history of musculoskeletal disease or a particular gait problem were included in this study. Two more markers were attached to the subject in addition to the Helen-Hayes marker set. Thus, two virtual planes, femoral coronal plane (P f ) and tibial coronal plane (P t ), were created by Skeletal Builder software. This study measured the 3-dimensional knee joint movement in the sagittal, coronal, and transverse planes of these two virtual planes (P f and P t ) during normal gait. With respect to kinematics and kinetics, both males and females showed normal adult gait patterns, and the mean difference in the temporal gait parameters was not statistically significant (p > 0.05). In the transverse plane, the screw-home movement occurred as expected during the pre-swing phase and the late-swing phase at an angle of about 17°. However, the tibia rotated externally with respect to the femur, rather than internally, while the knee joint started to flex during the loading response (paradoxical screw-home movement), and the angle was 6°. Paradoxical screw-home movement may be an important mechanism that provides stability to the knee joint during the remaining stance phase. Obtaining the kinematic values of the knee joint during gait can be useful in diagnosing and treating the pathological knee joints.

  1. Ground reaction forces and knee kinetics during single and repeated badminton lunges.

    Science.gov (United States)

    Lam, Wing Kai; Ding, Rui; Qu, Yi

    2017-03-01

    Repeated movement (RM) lunge that frequently executed in badminton might be used for footwear evaluation. This study examined the influence of single movement (SM) and RM lunges on the ground reaction forces (GRFs) and knee kinetics during the braking phase of a badminton lunge step. Thirteen male university badminton players performed left-forward lunges in both SM and RM sessions. Force platform and motion capturing system were used to measure GRFs and knee kinetics variables. Paired t-test was performed to determine any significant differences between SM and RM lunges regarding mean and coefficient of variation (CV) in each variable. The kinetics results indicated that compared to SM lunges, the RM lunges had shorter contact time and generated smaller maximum loading rate of impact force, peak knee anterior-posterior force, and peak knee sagittal moment but generated larger peak horizontal resultant forces (Ps < 0.05). Additionally, the RM lunges had lower CV for peak knee medial-lateral and vertical forces (Ps < 0.05). These results suggested that the RM testing protocols had a distinct loading response and adaptation pattern during lunge and that the RM protocol showed higher within-trial reliability, which may be beneficial for the knee joint loading evaluation under different interventions.

  2. Fibre recruitment and shape changes of knee ligaments during motion: as revealed by a computer graphics-based model.

    Science.gov (United States)

    Lu, T W; O'Connor, J J

    1996-01-01

    A computer graphics-based model of the knee ligaments in the sagittal plane was developed for the simulation and visualization of the shape changes and fibre recruitment process of the ligaments during motion under unloaded and loaded conditions. The cruciate and collateral ligaments were modelled as ordered arrays of fibres which link attachment areas on the tibia and femur. Fibres slacken and tighten as the ligament attachment areas on the bones rotate and translate relative to each other. A four-bar linkage, composed of the femur, tibia and selected isometric fibres of the two cruciates, was used to determine the motion of the femur relative to the tibia during passive (unloaded) movement. Fibres were assumed to slacken in a Euler buckling mode when the distances between their attachments are less than chosen reference lengths. The ligament shape changes and buckling patterns are demonstrated with computer graphics. When the tibia is translated anteriorly or posteriorly relative to the femur by muscle forces and external loads, some ligament fibres tighten and are recruited progressively to transmit increasing shear forces. The shape changes and fibre recruitment patterns predicted by the model compare well qualitatively with experimental results reported in the literature. The computer graphics approach provides insight into the micro behaviour of the knee ligaments. It may help to explain ligament injury mechanisms and provide useful information to guide the design of ligament replacements.

  3. Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T

    International Nuclear Information System (INIS)

    Horng, Annie; Stockinger, M.; Notohamiprodjo, M.; Raya, J.G.; Pietschmann, M.; Hoehne-Hueckstaedt, U.; Glitsch, U.; Ellegast, R.; Hering, K.G.; Glaser, C.

    2015-01-01

    To implement a novel voxel-based technique to identify statistically significant local cartilage deformation and analyze in-vivo topographic knee cartilage deformation patterns using a voxel-based thickness map approach for high-flexion postures. Sagittal 3T 3D-T1w-FLASH-WE-sequences of 10 healthy knees were acquired before and immediately after loading (kneeling/squatting/heel sitting/knee bends). After cartilage segmentation, 3D-reconstruction and 3D-registration, colour-coded deformation maps were generated by voxel-based subtraction of loaded from unloaded datasets to visualize cartilage thickness changes in all knee compartments. Compression areas were found bifocal at the peripheral medial/caudolateral patella, both posterior femoral condyles and both anterior/central tibiae. Local cartilage thickening were found adjacent to the compression areas. Significant local strain ranged from +13 to -15 %. Changes were most pronounced after squatting, least after knee bends. Shape and location of deformation areas varied slightly with the loading paradigm, but followed a similar pattern consistent between different individuals. Voxel-based deformation maps identify individual in-vivo load-specific and posture-associated strain distribution in the articular cartilage. The data facilitate understanding individual knee loading properties and contribute to improve biomechanical 3 models. They lay a base to investigate the relationship between cartilage degeneration patterns in common osteoarthritis and areas at risk of cartilage wear due to mechanical loading in work-related activities. (orig.)

  4. Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Horng, Annie; Stockinger, M.; Notohamiprodjo, M. [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Raya, J.G. [New York University Langone Medical Center, Center for Biomedical Imaging, New York, NY (United States); Pietschmann, M. [Ludwig-Maximilians-University Hospital Munich, Department of Orthopedic Surgery, Munich (Germany); Hoehne-Hueckstaedt, U.; Glitsch, U.; Ellegast, R. [Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin (Germany); Hering, K.G. [Miner' s Hospital, Department of Diagnostic Radiology, Dortmund (Germany); Glaser, C. [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); RZM Zentrum, Munich (Germany)

    2015-06-01

    To implement a novel voxel-based technique to identify statistically significant local cartilage deformation and analyze in-vivo topographic knee cartilage deformation patterns using a voxel-based thickness map approach for high-flexion postures. Sagittal 3T 3D-T1w-FLASH-WE-sequences of 10 healthy knees were acquired before and immediately after loading (kneeling/squatting/heel sitting/knee bends). After cartilage segmentation, 3D-reconstruction and 3D-registration, colour-coded deformation maps were generated by voxel-based subtraction of loaded from unloaded datasets to visualize cartilage thickness changes in all knee compartments. Compression areas were found bifocal at the peripheral medial/caudolateral patella, both posterior femoral condyles and both anterior/central tibiae. Local cartilage thickening were found adjacent to the compression areas. Significant local strain ranged from +13 to -15 %. Changes were most pronounced after squatting, least after knee bends. Shape and location of deformation areas varied slightly with the loading paradigm, but followed a similar pattern consistent between different individuals. Voxel-based deformation maps identify individual in-vivo load-specific and posture-associated strain distribution in the articular cartilage. The data facilitate understanding individual knee loading properties and contribute to improve biomechanical 3 models. They lay a base to investigate the relationship between cartilage degeneration patterns in common osteoarthritis and areas at risk of cartilage wear due to mechanical loading in work-related activities. (orig.)

  5. Comparison of Joint Loading in Badminton Lunging between Professional and Amateur Badminton Players

    Directory of Open Access Journals (Sweden)

    Lin Fu

    2017-01-01

    Full Text Available The knee and ankle are the two most injured joints associated with the sport of badminton. This study evaluates biomechanical factors between professional and amateur badminton players using an injury mechanism model. The aim of this study was to investigate the kinematic motion and kinetic loading differences of the right knee and ankle while performing a maximal right lunge. Amateur players exhibited greater ankle range of motion (p<0.05, r=0.89 and inversion joint moment (p<0.05, r=0.54 in the frontal plane as well as greater internal joint rotation moment (p<0.05, r=0.28 in the horizontal plane. In contrast, professional badminton players presented a greater knee joint moment in the sagittal (p<0.05, r=0.59 and frontal (p<0.05, r=0.37 planes, which may be associated with increased knee ligamentous injury risk. To avoid injury, the players need to forcefully extend the knee with internal rotation, strengthen the muscles around the ankle ligament, and maximise joint coordination during training. The injuries recorded and the forces responsible for the injuries seem to have developed during training activity. Training programmes and injury prevention strategies for badminton players should account for these findings to reduce potential injury to the ankle and knee.

  6. Imaging of postoperative knee extensor mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Motamedi, Kambiz [David Geffen School of Medicine at UCLA, Musculoskeletal Imaging-Department of Radiology, 200 Medical Plaza, Suite 165-59, Los Angeles, CA 90095 (United States); Seeger, Leanne L. [David Geffen School of Medicine at UCLA, Musculoskeletal Imaging-Department of Radiology, 200 Medical Plaza, Suite 165-57, Los Angeles, CA 90095 (United States); Hame, Sharon L. [David Geffen School of Medicine at UCLA, Department of Orthopedic Surgery, Box 956902, 76-143 CHS, Los Angeles, CA 90095 (United States)

    2005-05-01

    Disorders of the anterior knee are common and include patellofemoral syndrome, patella instability, patella fracture, and patellar and quadriceps tendon ruptures. Depending on the operative procedure performed, the post-operative imaging appearance of these knees may be confusing. It is crucial for the radiologist to be familiar with the procedures performed in order to recognize the postoperative findings. Radiologists must be able to interpret hardware (anchors, screw and wires) and disruptions in soft tissue planes that may persist with these types of procedures.

  7. Knee joint laxity does not moderate the relationship between quadriceps strength and physical function in knee osteoarthritis patients: A cross-sectional study.

    Science.gov (United States)

    Altubasi, Ibrahim M

    2018-06-07

    Knee osteoarthritis is a common and a disabling musculoskeletal disorder. Patients with knee osteoarthritis have activity limitations which are linked to the strength of the quadriceps muscle. Previous research reported that the relationship between quadriceps muscle strength and physical function is moderated by the level of knee joint frontal plane laxity. The purpose of the current study is to reexamine the moderation effect of the knee joint laxity as measured by stress radiographs on the relationship between quadriceps muscle strength and physical function. One-hundred and sixty osteoarthritis patients participated in this cross-sectional study. Isometric quadriceps muscle strength was measured using an isokinetic dynamometer. Self-rated and performance-based physical function were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and Get Up and Go test, respectively. Stress radiographs which were taken while applying varus and valgus loads to knee using the TELOS device. Knee joint laxity was determined by measuring the distance between joint surfaces on the medial and lateral sides. Hierarchical multiple regression models were constructed to study the moderation effect of laxity on the strength function relationship. Two regression models were constructed for self-rated and performance-based function. After controlling for demographics, strength contributed significantly in the models. The addition of laxity and laxity-strength interaction did not add significant contributions in the regression models. Frontal plane knee joint laxity measured by stress radiographs does not moderate the relationship between quadriceps muscle strength and physical function in patients with osteoarthritis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The Cruciate Ligaments in Total Knee Arthroplasty.

    Science.gov (United States)

    Parcells, Bertrand W; Tria, Alfred J

    2016-01-01

    The early knee replacements were hinge designs that ignored the ligaments of the knee and resurfaced the joint, allowing freedom of motion in a single plane. Advances in implant fixation paved the way for modern designs, including the posterior-stabilized (PS) total knee arthroplasty (TKA) that sacrifices both cruciate ligaments while substituting for the posterior cruciate ligament (PCL), and the cruciate-retaining (CR) TKA designs that sacrifice the anterior cruciate ligament but retain the PCL. The early bicruciate retaining (BCR) TKA designs suffered from loosening and early failures. Townley and Cartier designed BCR knees that had better clinical results but the surgical techniques were challenging.Kinematic studies suggest that normal motion relies on preservation of both cruciate ligaments. Unicompartmental knee arthroplasty retains all knee ligaments and closely matches normal motion, while PS and CR TKA deviate further from normal. The 15% to 20% dissatisfaction rate with current TKA has renewed interest in the BCR design. Replication of normal knee kinematics and proprioception may address some of the dissatisfaction.

  9. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane

    DEFF Research Database (Denmark)

    Sandau, Martin; Koblauch, Henrik; Moeslund, Thomas B.

    2014-01-01

    Estimating 3D joint rotations in the lower extremities accurately and reliably remains unresolved in markerless motion capture, despite extensive studies in the past decades. The main problems have been ascribed to the limited accuracy of the 3D reconstructions. Accordingly, the purpose of the pr......Estimating 3D joint rotations in the lower extremities accurately and reliably remains unresolved in markerless motion capture, despite extensive studies in the past decades. The main problems have been ascribed to the limited accuracy of the 3D reconstructions. Accordingly, the purpose...... subjects in whom hip, knee and ankle joint were analysed. Flexion/extension angles as well as hip abduction/adduction closely resembled those obtained from the marker based system. However, the internal/external rotations, knee abduction/adduction and ankle inversion/eversion were less reliable....

  10. Magnetic resonance imaging for the internal derangement of the knee

    International Nuclear Information System (INIS)

    Obara, Noboru; Yamauchi, Kazunori; Ohyama, Naoki; Kura, Hideharu; Tokita, Fumio; Sasaki, Tetsuhito

    1990-01-01

    To assess the usefulness of magnetic resonance imaging (MRI) in the preoperative diagnosis of internal derangement of the knee, MRI findings of 44 knees were reviewed. Definitive diagnoses were made by arthroscopy or arthrotomy: posterior cruciate ligament failure (8 knees), anterior cruciate ligament failure (21), inner meniscus injury (16), and outer meniscus injury (13). T1- and T2-weighted images were obtained by using a 1.5-T superconducting Signa MRI unit. The diagnostic accuracy was 100% for posterior cruciate ligament failure and anterior cruciate ligament failure, 89% for inner meniscus injury, and 93% for outer meniscus injury, suggesting the great potential of MRI in the preoperative diagnosis. For anterior cruciate ligament failure, the diagnostic accuracy was even more increased by combined use of T1-weighted sagittal imaging and T2-weighted coronal imaging. False positive findings for meniscus disorder included rupture of the posterior segment of meniscus, especially in the cnemis end. Longitudinal fissure of the posterior segment of the outer meniscus was misdiagnosed as lacuna of the popliteal muscle tendon. (N.K.)

  11. Comparison of 3D vs. 2D fast spin echo imaging for evaluation of articular cartilage in the knee on a 3 T system scientific research

    International Nuclear Information System (INIS)

    Milewski, Matthew D.; Smitaman, Edward; Moukaddam, Hicham; Katz, Lee D.; Essig, David A.; Medvecky, Michael J.; Haims, Andrew H.

    2012-01-01

    Highlights: ► Compared 3D to 2D MR sequences for articular cartilage in the knee. ► 3D imaging acquired in a single plane, 2D acquired in 3 separate planes. ► No significant difference in accuracy between 3D and 2D sequences. - Abstract: Purpose: We sought to retrospectively compare the accuracy of a three-dimensional fat-suppressed, fast spin-echo sequences acquired in the sagittal plane, with multiplanar reconstructions to that of two-dimensional fat-suppressed, fast spin echo sequences acquired in three planes on a 3 T MR system for the evaluation of articular cartilage in the knee. Materials and methods: Our study group consisted of all patients (N = 34) that underwent 3 T MR imaging of the knee at our institution with subsequent arthroscopy over an 18-month period. There were 21 males and 13 females with an average age of 36 years. MR images were reviewed by 3 musculoskeletal radiologists, blinded to operative results. 3D and 2D sequences were reviewed at different sittings separated by 4 weeks to prevent bias. Six cartilage surfaces were evaluated both with MR imaging and arthroscopically with a modified Noyes scoring system and arthroscopic results were used as the gold standard. Sensitivity, specificity, and accuracy were calculated for each reader along with Fleiss Kappa assessment agreement between the readers. Accuracies for each articular surface were compared using a difference in proportions test with a 95% confidence interval and statistical significance was calculated using a Fisher's Exact Test. Results: Two hundred and four articular surfaces were evaluated and 49 articular cartilage lesions were present at arthroscopy. For the patellofemoral surfaces, the sensitivity, specificity, and accuracy were 76.5%, 83%, and 78.2% for the 3D sequences and were 82.3%, 76%, and 82% respectively for the 2D sequences. For the medial compartment surfaces, the sensitivity, specificity, and accuracy were 81.1%, 65.1%, and 78.5% for the 3D sequences and were

  12. Investigation of the Effects of High-Intensity, Intermittent Exercise and Unanticipation on Trunk and Lower Limb Biomechanics During a Side-Cutting Maneuver Using Statistical Parametric Mapping.

    Science.gov (United States)

    Whyte, Enda F; Richter, Chris; OʼConnor, Siobhan; Moran, Kieran A

    2018-06-01

    Whyte, EF, Richter, C, O'Connor, S, and Moran, KA. Investigation of the effects of high-intensity, intermittent exercise and unanticipation on trunk and lower limb biomechanics during a side-cutting maneuver using statistical parametric mapping. J Strength Cond Res 32(6): 1583-1593, 2018-Anterior cruciate ligament (ACL) injuries frequently occur during side-cutting maneuvers when fatigued or reacting to the sporting environment. Trunk and hip biomechanics are proposed to influence ACL loading during these activities. However, the effects of fatigue and unanticipation on the biomechanics of the kinetic chain may be limited by traditional discrete point analysis. We recruited 28 male, varsity, Gaelic footballers (21.7 ± 2.2 years; 178.7 ± 14.6 m; 81.8 ± 11.4 kg) to perform anticipated and unanticipated side-cutting maneuvers before and after a high-intensity, intermittent exercise protocol (HIIP). Statistical parametric mapping (repeated-measures analysis of varience) identified differences in phases of trunk and stance leg biomechanics during weight acceptance. Unanticipation resulted in less trunk flexion (p < 0.001) and greater side flexion away from the direction of cut (p < 0.001). This led to smaller (internal) knee flexor and greater (internal) knee extensor (p = 0.002-0.007), hip adductor (p = 0.005), and hip external rotator (p = 0.007) moments. The HIIP resulted in increased trunk flexion (p < 0.001) and side flexion away from the direction of cut (p = 0.038), resulting in smaller (internal) knee extensor moments (p = 0.006). One interaction effect was noted demonstrating greater hip extensor moments in the unanticipated condition post-HIIP (p = 0.025). Results demonstrate that unanticipation resulted in trunk kinematics considered an ACL injury risk factor. A subsequent increase in frontal and transverse plane hip loading and sagittal plane knee loading was observed, which may increase ACL strain. Conversely, HIIP-induced trunk kinematic alterations

  13. Assessment of knee laxity using a robotic testing device: a comparison to the manual clinical knee examination.

    Science.gov (United States)

    Branch, T P; Stinton, S K; Siebold, R; Freedberg, H I; Jacobs, C A; Hutton, W C

    2017-08-01

    The purpose of this study was to collect knee laxity data using a robotic testing device. The data collected were then compared to the results obtained from manual clinical examination. Two human cadavers were studied. A medial collateral ligament (MCL) tear was simulated in the left knee of cadaver 1, and a posterolateral corner (PLC) injury was simulated in the right knee of cadaver 2. Contralateral knees were left intact. Five blinded examiners carried out manual clinical examination on the knees. Laxity grades and a diagnosis were recorded. Using a robotic knee device which can measure knee laxity in three planes of motion: anterior-posterior, internal-external tibia rotation, and varus-valgus, quantitative data were obtained to document tibial motion relative to the femur. One of the five examiners correctly diagnosed the MCL injury. Robotic testing showed a 1.7° larger valgus angle, 3° greater tibial internal rotation, and lower endpoint stiffness (11.1 vs. 24.6 Nm/°) in the MCL-injured knee during varus-valgus testing when compared to the intact knee and 4.9 mm greater medial tibial translation during rotational testing. Two of the five examiners correctly diagnosed the PLC injury, while the other examiners diagnosed an MCL tear. The PLC-injured knee demonstrated 4.1 mm more lateral tibial translation and 2.2 mm more posterior tibial translation during varus-valgus testing when compared to the intact knee. The robotic testing device was able to provide objective numerical data that reflected differences between the injured knees and the uninjured knees in both cadavers. The examiners that performed the manual clinical examination on the cadaver knees proved to be poor at diagnosing the injuries. Robotic testing could act as an adjunct to the manual clinical examination by supplying numbers that could improve diagnosis of knee injury. Level II.

  14. Knee joint anterior malalignment and patellofemoral osteoarthritis: an MRI study

    International Nuclear Information System (INIS)

    Tsavalas, Nikolaos; Karantanas, Apostolos H.; Katonis, Pavlos

    2012-01-01

    To evaluate patellofemoral congruency measurements on MRI and correlate the findings with severity of ipsilateral osteoarthritis. We retrospectively reviewed 650 consecutive knee MRI examinations from 622 patients divided into two age groups: ≤50 and >50 year-old. The femoral sulcus angle (SA) and depth (SD), lateral patellar displacement (LPD), lateral patellofemoral angle (LPFA), tibial tubercle-trochlear groove (TT-TG) distance and Insall-Salvati index as well as the grade of focal cartilage defects (ranging from I to IV) in the patellofemoral region were assessed in each subject on axial and sagittal fat-saturated intermediate-w MR images. A significant difference exists between normal and knees with patellofemoral joint osteoarthritis regarding SA (p = 0.0002 and 50 respectively). Significant correlation was found between grading of cartilage defects and SA (rho = 0.21, p = 0.0001 and 0.443, <0.0001), SD (rho = -0.198, p = 0.0003 and -0.418, <0.0001), LPD (rho = 0.176, p = 0.0013 and 0.251, 0.0002) and LPFA (rho = -0.204, p = 0.0002 and -0.239, 0.0005) in both age groups. Knee joint anterior malalignment is multivariably associated with patellofemoral osteoarthritis. circle MRI is an excellent method to evaluate knee alignment and articular cartilage damage. (orig.)

  15. The effect of instruction in analgesic use compared with neuromuscular exercise on knee-joint load in patients with knee osteoarthritis: a randomized, single-blind, controlled trial.

    Science.gov (United States)

    Holsgaard-Larsen, A; Clausen, B; Søndergaard, J; Christensen, R; Andriacchi, T P; Roos, E M

    2017-04-01

    To investigate the effect of a neuro-muscular exercise (NEMEX) therapy program compared with instructions in optimized analgesics and anti-inflammatory drug use (PHARMA), on measures of knee-joint load in people with mild to moderate knee osteoarthritis (OA). We hypothesized that knee joint loading during walking would be reduced by NEMEX and potentially increased by PHARMA. Single-blind, randomized controlled trial (RCT) comparing NEMEX therapy twice a week with PHARMA. Participants with mild-to-moderate medial tibiofemoral knee OA were randomly allocated (1:1) to one of two 8-week treatments. Primary outcome was change in knee load during walking (Knee Index, a composite score from all three planes based on 3D movement analysis) after 8 weeks of intervention. Secondary outcomes were frontal plane peak knee adduction moment (KAM), Knee Injury and Osteoarthritis Outcome Scores (KOOS) and functional performance tests. Ninety three participants (57% women, 58 ± 8 years with a body mass index [BMI] of 27 ± 4 kg/m 2 (mean ± standard deviation [SD])) were randomized to NEMEX group (n = 47) or PHARMA (n = 46); data from 44 (94%) and 41 (89%) participants respectively, were available at follow-up. 49% of the participants in NEMEX and only 7% in PHARMA demonstrated good compliance. We found no difference in the primary outcome as evaluated by the Knee Index -0.07 [-0.17; 0.04] Nm/%BW HT. Secondary outcomes largely supported this finding. We found no difference in the primary outcome; knee joint load change during walking from a NEMEX program vs information on the recommended use of analgesics and anti-inflammatory drugs. ClinicalTrials.gov Identifier: NCT01638962 (July 3, 2012). Ethical Committee: S-20110153. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Minimally invasive unicompartmental knee replacement: retrospective clinical and radiographic evaluation of 83 patients.

    Science.gov (United States)

    Bruni, Danilo; Iacono, Francesco; Russo, Alessandro; Zaffagnini, Stefano; Marcheggiani Muccioli, Giulio Maria; Bignozzi, Simone; Bragonzoni, Laura; Marcacci, Maurilio

    2010-06-01

    We performed a retrospective clinical and radiographic evaluation of 83 nonconsecutive patients operated in our institute between February 1996 and March 2003 with a mean follow-up of 60 months to assess the efficiency of unicompartmental knee replacement (UKR) performed with a minimally invasive technique. The aim of this study was to correlate the clinical outcome with the pre- and post-operative alignment and with implant positioning on coronal and sagittal plane. Eighty-three nonconsecutive patients (60 males, 23 females) underwent cemented UKR (De Puy Preservation Uni with all-poly tibial component), for both medial OA (80 patients) and AVN of the medial femoral condyle (3 patients). All patients were available at final follow-up evaluation, and they all presented an evident varus alignment at pre-operative clinical and radiographic evaluation. At radiographic measurement, we considered a knee with femoro-tibial angle (FTA) > 175 degrees as varus knee, 170 degrees FTA FTA 90 degrees for valgus knee and a TPA clinical result presented a mean varus deformity of 7.2 degrees (3.6 degrees-10.8 degrees) pre-operatively. According to literature, we demonstrated that a small amount of undercorrection with a small amount of residual varus deformity of 3 degrees-5 degrees is the goal to be reached in order to avoid both rapid degeneration of the nonreplaced compartment and the premature loosening of the replaced compartment. We performed a mean axial correction of 5 degrees (SD 3.9 degrees), leaving a mean axial varus deformity of 2.2 degrees in the excellent group. In our series, the group with excellent results also showed a post-operative PTS of 7 degrees (2.4 degrees-11.6 degrees), while mean pre-operative PTS was 6.5 degrees (2.7 degrees-10.3 degrees). In this study, results have shown that minimally invasive UKR producing a small amount of varus undercorrection in selected patients with medial tibio-femoral osteoarthritis or moderate avascular necrosis of the

  17. [Occlusal plane control in hyperdivergents: regarding one case].

    Science.gov (United States)

    Rerhrhaye, Wiam; Zaoui, Fatima; Aalloula, El Housseine

    2009-06-01

    Management of occlusal plane inclination in the sagittal dimension is one of the main concerns of practitioners. Inclination maintenance or correction can condition the success and stability of treatment. By means of a clinical case, we will attempt to discuss the different aspects of management from diagnosis to treatment, bearing in mind the local and regional context. The adopted treatment plan takes into consideration the functional and esthetic issues specific to Moroccan patients without neglecting soft tissue harmony.

  18. Differences in lumbar spine and lower extremity kinematics during a step down functional task in people with and people without low back pain.

    Science.gov (United States)

    Hernandez, Alejandra; Gross, Karlie; Gombatto, Sara

    2017-08-01

    When functional movements are impaired in people with low back pain, they may be a contributing factor to chronicity and recurrence. The purpose of the current study was to examine lumbar spine, pelvis, and lower extremity kinematics during a step down functional task between people with and without a history of low back pain. A 3-dimensional motion capture system was used to analyze kinematics during a step down task. Total excursion of the lumbar spine, pelvis, and lower extremity segments in each plane were calculated from the start to end of the task. Separate analysis of variance tests (α=0.05) were conducted to determine the effect of independent variables of group and plane on lumbar spine, pelvis, and lower extremity kinematics. An exploratory analysis was conducted to examine kinematic differences among movement-based low back pain subgroups. Subjects with low back pain displayed less lumbar spine movement than controls across all three planes of movement (P-values=0.001-0.043). This group difference was most pronounced in the sagittal plane. For the lower extremity, subjects with low back pain displayed more frontal and axial plane knee movement than controls (P-values=0.001). There were no significant differences in kinematics among movement-based low back pain subgroups. People with low back pain displayed less lumbar region movement in the sagittal plane and more off-plane knee movements than the control group during a step down task. Clinicians can use this information when assessing lumbar spine and lower extremity movement during functional tasks, with the goal of developing movement-based interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biomechanical evaluation of sagittal maxillary internal distraction osteogenesis in unilateral cleft lip and palate patient and noncleft patients: a three-dimensional finite element analysis.

    Science.gov (United States)

    Olmez, Sultan; Dogan, Servet; Pekedis, Mahmut; Yildiz, Hasan

    2014-09-01

    To compare the pattern and amount of stress and displacement during maxillary sagittal distraction osteogenesis (DO) between a patient with unilateral cleft lip and palate (UCLP) and a noncleft patient. Three-dimensional finite element models for both skulls were constructed. Displacements of the surface landmarks and stress distributions in the circummaxillary sutures were analyzed after an anterior displacement of 6 mm was loaded to the elements where the inferior plates of the distractor were assumed to be fixed and were below the Le Fort I osteotomy line. In sagittal plane, more forward movement was found on the noncleft side in the UCLP model (-6.401 mm on cleft side and -6.651 mm on noncleft side for the central incisor region). However, similar amounts of forward movement were seen in the control model. In the vertical plane, a clockwise rotation occurred in the UCLP model, whereas a counterclockwise rotation was seen in the control model. The mathematical UCLP model also showed higher stress values on the sutura nasomaxillaris, frontonasalis, and zygomatiomaxillaris on the cleft side than on the normal side. Not only did the sagittal distraction forces produce advancement forces at the intermaxillary sutures, but more stress was also present on the sutura nasomaxillaris, sutura frontonasalis, and sutura zygomaticomaxillaris on the cleft side than on the noncleft side.

  20. Tibial Slope Strongly Influences Knee Stability After Posterior Cruciate Ligament Reconstruction: A Prospective 5- to 15-Year Follow-up.

    Science.gov (United States)

    Gwinner, Clemens; Weiler, Andreas; Roider, Manoussos; Schaefer, Frederik M; Jung, Tobias M

    2017-02-01

    The reported failure rate after posterior cruciate ligament (PCL) reconstruction remains high. Previous studies have shown that the tibial slope (TS) influences sagittal plane laxity. Consequently, alterations of TS might have an effect on postoperative knee stability after PCL reconstruction. We hypothesized that flattening of TS is associated with increased posterior laxity after PCL reconstruction. Cohort study; Level of evidence 3. This study consisted of 48 patients who underwent PCL reconstruction in a single-surgeon series. Eight patients underwent an isolated PCL reconstruction, 27 patients underwent an additional posterolateral corner reconstruction, and 13 patients underwent a combined reconstruction of the PCL, anterior cruciate ligament, and posterolateral corner. Three blinded observers measured TS and the side-to-side difference (SSD) of posterior tibial translation (PTT) before and after PCL reconstruction using standardized stress radiographs. The minimum follow-up was 5 years. At a mean follow-up of 103 months (range, 65-187), the mean SSD of PTT was significantly reduced (10.9 ± 2.9 vs 4.9 ± 4.3 mm; P slope.

  1. Discoid meniscus of the knee: MR imaging

    International Nuclear Information System (INIS)

    Kim, Sung Moon; Kang, Heung Sik; Ahn, Joong Mo; Seong, Sang Cheol

    1992-01-01

    To evaluate the role of magnetic resonance (MR) imaging in the diagnosis of the discoid meniscus, the authors reviewed 31 cases of discoid menisci diagnosed by MR imaging among which 16 cases received arthroscopy. Using knee surface coil, sagittal T1, T2 and proton density images and coronal T1 weighted images were obtained with 18 cm FOV and 4 mm/ 1 mm thickness/gap. A discoid meniscus was considered if three or more contiguous sagittal images demonstrated continuity of the meniscus between the anterior and posterior horns or the diameter of the mid-portion of the meniscus exceeded 15 mm on the coronal image. The authors also observed the associated abnormalities including tears of meniscus and ligament, meniscal cyst, and osteochondral defects. All discoid menisci were lateral menisci and torn discoid lateral menisci were present in 26 cases (83%). In two cases, tears of the contralateral medial meniscus were present. The tears of anterior and posterior cruciate ligaments, meniscal cyst, and osteochondral defects were present in 4, 2, 4, and 5 cases respectively. All collateral ligaments were intact. In conclusion MR imaging was useful for the detection of discoid meniscus and associated abnormalities

  2. Reliability of tunnel angle in ACL reconstruction: two-dimensional versus three-dimensional guide technique.

    Science.gov (United States)

    Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B

    2011-08-01

    To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.

  3. Relationships among spinal mobility and sagittal alignment of spine and lower extremity to quality of life and risk of falls.

    Science.gov (United States)

    Ishikawa, Yoshinori; Miyakoshi, Naohisa; Hongo, Michio; Kasukawa, Yuji; Kudo, Daisuke; Shimada, Yoichi

    2017-03-01

    Spinal deformities can affect quality of life (QOL) and risk of falling, but no studies have explored the relationships of spinal mobility and sagittal alignment of spine and the lower extremities simultaneously. Purpose of this study is to clarify the relationship of those postural parameters to QOL and risk of falling. The study evaluated 110 subjects (41 men, 69 women; mean age, 73 years). Upright and flexion and extension angles for thoracic kyphosis, lumbar lordosis, and spinal inclination were evaluated with SpinalMouse ® . Total-body inclination and hip and knee flexion angles in upright position were measured from lateral photographs. Subjects were divided into Fallers (n=23, 21%) and Non-fallers (n=87, 79%) based on past history of falls. QOL was assessed using the Short Form 36 Health Survey (SF-36 ® ). Age, total-body inclination, spinal inclination upright and in extension, thoracic kyphosis in flexion, lumbar lordosis upright and in extension, and knee flexion correlated significantly with the SF-36. Multiple regression analysis revealed total-body inclination and knee flexion to have the most significant relationships with the SF-36. SF-36, total-body inclination, spinal inclination in extension, thoracic kyphosis in flexion, lumbar lordosis upright and in extension, and hip and knee flexion angles differed significantly between Fallers and Non-fallers (Pfalling (P=0.038). Forward-stooped posture and knee-flexion deformity could be important indicator of lower QOL. Moreover, limited extension in the lumbar spine could be a useful screening examination for fall prevention in the elderly. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Positive Benefits of Negative Movement Patterns Following Total Knee Arthroplasty.

    Science.gov (United States)

    Christensen, Jesse C; Foreman, K Bo; LaStayo, Paul C

    2018-01-01

    Eccentric (negative) resistance exercise of the legs using specialized machines has been reported to be useful and often superior to standard exercise following total knee arthroplasty (TKA). Movements that utilize body mass and gravity as a mode of eccentric resistance exercise in a more pragmatic rehabilitation paradigm may also be useful in reversing chronic muscle impairments observed years following surgery. This study explores whether an eccentrically biased, body mass resistance exercise induces greater magnitude of sagittal plane extensor angular impulse of the support torque and individual net joint torque contributions during both squatting and lunging movement patterns 6 weeks following TKA. Cross-sectional laboratory-based study design including 10 patients following primary unilateral TKA (6.5 ± 0.8 weeks.). All patients completed 3 trials of the squat and lunge movement pattern under both a concentric and an eccentric condition. Extensor angular impulse of the support torque and net joint torque contributions were calculated by integrating the joint torque versus time curves. A Two-way analysis of covariance was conducted and contracts of clinical interest were computed using Wald posttest. P Values for all pairwise comparisons were adjusted for multiplicity using Bonferroni multiple comparison procedure. The eccentric condition, compared to the concentric condition, displayed larger magnitude of extensor angular impulse during both the squat ( P movement patterns for the support torques. Similarly, the eccentric condition, compared to the concentric condition, displayed larger magnitude of extensor angular impulse of the hip, knee, and ankle ( P movement patterns. Eccentrically biased, body mass movement exercises can produce higher levels of extensor angular impulse on the surgical limb in patients early after TKA. Patients in this study were able to tolerate the higher extensor angular impulse demands and performed the eccentrically biased

  5. Medio-lateral knee fluency in anterior cruciate ligament-injured athletes during dynamic movement trials.

    Science.gov (United States)

    Panos, Joseph A; Hoffman, Joshua T; Wordeman, Samuel C; Hewett, Timothy E

    2016-03-01

    Correction of neuromuscular impairments after anterior cruciate ligament injury is vital to successful return to sport. Frontal plane knee control during landing is a common measure of lower-extremity neuromuscular control and asymmetries in neuromuscular control of the knee can predispose injured athletes to additional injury and associated morbidities. Therefore, this study investigated the effects of anterior cruciate ligament injury on knee biomechanics during landing. Two-dimensional frontal plane video of single leg drop, cross over drop, and drop vertical jump dynamic movement trials was analyzed for twenty injured and reconstructed athletes. The position of the knee joint center was tracked in ImageJ software for 500 milliseconds after landing to calculate medio-lateral knee motion velocities and determine normal fluency, the number of times per second knee velocity changed direction. The inverse of this calculation, analytical fluency, was used to associate larger numerical values with fluent movement. Analytical fluency was decreased in involved limbs for single leg drop trials (P=0.0018). Importantly, analytical fluency for single leg drop differed compared to cross over drop trials for involved (Pinjury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Diagnostic performance of in vivo 3-T MRI for articular cartilage abnormalities in human osteoarthritic knees using histology as standard of reference

    International Nuclear Information System (INIS)

    Saadat, Ehsan; Jobke, Bjoern; Chu, Bill; Lu, Ying; Cheng, Jonathan; Li, Xiaojuan; Majumdar, Sharmila; Link, Thomas M.; Ries, Michael D.

    2008-01-01

    The purpose of this study was (1) to evaluate the sensitivity, specificity and accuracy of sagittal in vivo 3-T intermediate-weighted fast spin-echo (iwFSE) sequences in the assessment of knee cartilage pathologies using histology as the reference standard in patients undergoing total knee replacement, and (2) to correlate MR imaging findings typically associated with osteoarthritis such as bone marrow edema pattern (BMEP) and cartilage swelling with histological findings. Tibial plateaus and femoral condyles of eight knees of seven patients were resected during surgery, and sagittal histological sections were prepared for histology. Preoperative MRI findings were compared to the corresponding region in histological sections for thickness, surface integrity and signal pattern of cartilage, and histological findings in areas of BMEP and swelling were documented. The overall sensitivity, specificity and accuracy were 72%, 69% and 70% for thickness, 69%, 74% and 73% for surface and 36%, 62% and 45% for intracartilaginous signal pattern. For all cases of BMEP on MRI subchondral ingrowth of fibrovascular tissue and increased bone remodeling were observed. MRI using fat-saturated iwFSE sequences showed good performance in assessing cartilage thickness and surface lesions, while signal changes of cartilage were not suited to characterize the severity of cartilage degeneration as validated by histology. (orig.)

  7. Diagnostic performance of in vivo 3-T MRI for articular cartilage abnormalities in human osteoarthritic knees using histology as standard of reference

    Energy Technology Data Exchange (ETDEWEB)

    Saadat, Ehsan [University of California San Francisco, School of Medicine and Department of Radiology, San Francisco, CA (United States); Jobke, Bjoern; Chu, Bill; Lu, Ying; Cheng, Jonathan; Li, Xiaojuan; Majumdar, Sharmila; Link, Thomas M. [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Ries, Michael D. [University of California San Francisco, Department of Orthopaedic Surgery, San Francisco, CA (United States)

    2008-10-15

    The purpose of this study was (1) to evaluate the sensitivity, specificity and accuracy of sagittal in vivo 3-T intermediate-weighted fast spin-echo (iwFSE) sequences in the assessment of knee cartilage pathologies using histology as the reference standard in patients undergoing total knee replacement, and (2) to correlate MR imaging findings typically associated with osteoarthritis such as bone marrow edema pattern (BMEP) and cartilage swelling with histological findings. Tibial plateaus and femoral condyles of eight knees of seven patients were resected during surgery, and sagittal histological sections were prepared for histology. Preoperative MRI findings were compared to the corresponding region in histological sections for thickness, surface integrity and signal pattern of cartilage, and histological findings in areas of BMEP and swelling were documented. The overall sensitivity, specificity and accuracy were 72%, 69% and 70% for thickness, 69%, 74% and 73% for surface and 36%, 62% and 45% for intracartilaginous signal pattern. For all cases of BMEP on MRI subchondral ingrowth of fibrovascular tissue and increased bone remodeling were observed. MRI using fat-saturated iwFSE sequences showed good performance in assessing cartilage thickness and surface lesions, while signal changes of cartilage were not suited to characterize the severity of cartilage degeneration as validated by histology. (orig.)

  8. Magnetic resonance imaging of anterior cruciate ligament of the knee: a comparison of four sequences

    International Nuclear Information System (INIS)

    Casillas, C.; Marti-Bonmati, L.; Molla, E.; Ferrer, P.; Dosda, R.

    1999-01-01

    To compare the diagnostic efficacy of the four magnetic resonance imaging (MRI) sequences that compose the standard protocol for the study of the knee in our center when employed in the examination of anterior cruciate ligament (ACL). A prospective study was carried out based on MRI findings in the knees of 326 consecutive patients. Sagittal [proton density (PD w eighted turbo-spin-echo and T2*-weighted gradient echo], coronal (PD-weighted turbo-spin-echo with fat suppression) and transverse (T2*-weighted gradient echo with magnetization transfer) images were evaluated. Each sequence was analyzed independently by two radiologists, while another two assessed all the sequences together with the clinical findings. Four categories were established: normal ACL, partially torn, completely torn and synovialized. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) with respect to the definitive diagnosis were calculated for each sequence. The statistical analysis of the findings for each category was done using the chi-squared test and the Kappa test was employed to assess the degree of agreement. According to the final diagnosis, 263 ACL were normal, 29 were partially torn, 33 were completely torn and there was 1 case of synovialization associated with a completely torn ACL. The relationship between the analysis of the ACL according to each sequence and the definitive diagnosis was very significant (p<0.001) and the agreement was excellent. All the sequences presented similar levels of diagnostic precision. The coronal sequence had least number of diagnostic errors (2.1%). The combinations of imaging techniques that resulted in the lowest error rate with respect to the definitive diagnosis were coronal PD-weighted turbo-spin-echo with fat suppression and sagittal PD-weighted turbo-spin-echo. Coronal images are highly precise in the evaluation of ACL. Sagittal sequences are the most valid for diagnosis of torn ACL. Transverse

  9. The usefulness of sagittal reformation for diagnosis of sternal fracture

    Energy Technology Data Exchange (ETDEWEB)

    Im, Dong Jin; Hahn, Seok; Kim, Young Ju [Dept. of Radiology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of)

    2014-01-15

    The purpose of our study was to evaluate the usefulness of sagittal reformation of chest computed tomography for the diagnosis of sternal fracture after trauma. We retrospectively reviewed medical records and chest computer tomography (CT) of 716 patients in the emergency department after trauma between January and December 2010. Two radiologists investigated chest CT images. We investigated numbers and locations of sternal fractures on axial images only and on both axial and sagittal images for each radiologist. First, radiologist found sternal fractures in 58 patients (70.7%) on only axial images, and 80 (97.5%) on both axial and sagittal images. Second, radiologist found fractures in 67 patients (81.7%) on axial image only and 81 (98.7%) on both axial and sagittal images. The sensitivity increased after adding sagittal reformation images for each radiologist (p < 0.05, respectively). On the axial images, the interobserver agreement was low (k 0.596) between the two radiologists. However, on both axial and sagittal images, the interobserver agreement increased (k = 0.872). Sagittal reformation of chest CT increases the chance of diagnosis for sternal fracture and leads to early diagnosis resulting in appropriate treatment.

  10. The usefulness of sagittal reformation for diagnosis of sternal fracture

    International Nuclear Information System (INIS)

    Im, Dong Jin; Hahn, Seok; Kim, Young Ju

    2014-01-01

    The purpose of our study was to evaluate the usefulness of sagittal reformation of chest computed tomography for the diagnosis of sternal fracture after trauma. We retrospectively reviewed medical records and chest computer tomography (CT) of 716 patients in the emergency department after trauma between January and December 2010. Two radiologists investigated chest CT images. We investigated numbers and locations of sternal fractures on axial images only and on both axial and sagittal images for each radiologist. First, radiologist found sternal fractures in 58 patients (70.7%) on only axial images, and 80 (97.5%) on both axial and sagittal images. Second, radiologist found fractures in 67 patients (81.7%) on axial image only and 81 (98.7%) on both axial and sagittal images. The sensitivity increased after adding sagittal reformation images for each radiologist (p < 0.05, respectively). On the axial images, the interobserver agreement was low (k 0.596) between the two radiologists. However, on both axial and sagittal images, the interobserver agreement increased (k = 0.872). Sagittal reformation of chest CT increases the chance of diagnosis for sternal fracture and leads to early diagnosis resulting in appropriate treatment.

  11. Valoración de la disposición sagital del raquis en gimnastas especialistas en trampolín. (Assessment of the sagittal plane of the spine in trampoline gymnasts.

    Directory of Open Access Journals (Sweden)

    Pilar Sainz de Baranda

    2009-07-01

    Full Text Available ResumenSe valoró la disposición sagital de la columna vertebral en gimnastas especialistas en la modalidad de trampolín. Se realizó un estudio transversal, en el que participaron 69 gimnastas de trampolín (35 mujeres y 34 varones con una edad media de 14.97 + 4.77 años, y de 6.61+4 años de entrenamiento. La valoración se realizó en tres posiciones: bipedestación relajada, sedentación relajada y flexión máxima del tronco. En todas las posiciones se diferenció la curva dorsal y la lumbar. Para la cuantificación de los grados se utilizó un inclinómetro ISOMED Unilevel-95. En bipedestación la cifosis dorsal media fue 44.96º+8.23º, la lordosis lumbar fue de 36.25º+10.1º. En máxima flexión del tronco desde la bipedestación posición test dedos suelo (FMT-DDS los grados de la curvatura dorsal y lumbar fueron de 51.55º+11º y 29.29º+7.89º. En máxima flexión del tronco desde la sedentación test dedos planta (FMT-DDP los grados de la curvatura dorsal y lumbar fueron de 57.94º+15º y 27.72º+7.51º. En sedentación relajada los grados de la curvatura dorsal y lumbar fueron de 50.28º+10º y 17.48º+9.6º respectivamente. Los valores medios del plano sagital de los gimnastas especialistas en trampolín muestran en bipedestación valores de hipercifosis para la curva dorsal, con una lordosis lumbar normal. En la flexión máxima del tronco se observan valores normales para la cifosis dorsal y valores hipercifóticos para la curva lumbar. En sedentación se observan valores hipercifóticos tanto en la curva dorsal como en la lumbar. Los gimnastas presentan tendencia a una mayor cifosis dorsal en bipedestación y en flexión de tronco. Las gimnastas presentan tendencia a una mayor lordosis en bipedestación y menor cifosis lumbar en flexióny sedentación.Abstract The sagittal plane of the spine was measured in trampoline gymnasts. In this cross-sectional study, 69 club-level trampoline gymnasts (35 females and 34 males

  12. Evolution of the postoperative sagittal spinal profile in early-onset scoliosis: is there a difference between rib-based and spine-based growth-friendly instrumentation?

    Science.gov (United States)

    Chen, Zhonghui; Li, Song; Qiu, Yong; Zhu, Zezhang; Chen, Xi; Xu, Liang; Sun, Xu

    2017-12-01

    OBJECTIVE Although the vertical expandable prosthetic titanium rib (VEPTR) and growing rod instrumentation (GRI) encourage spinal growth via regular lengthening, they can create different results because of their different fixation patterns and mechanisms in correcting scoliosis. Previous studies have focused comparisons on coronal plane deformity with minimal attention to the sagittal profile. In this retrospective study, the authors aimed to compare the evolution of the sagittal spinal profile in early-onset scoliosis (EOS) treated with VEPTR versus GRI. METHODS The data for 11 patients with VEPTR and 22 with GRI were reviewed. All patients had more than 2 years' follow-up with more than 2 lengthening procedures. Radiographic measurements were performed before and after the index surgery and at the latest follow-up. The complications in both groups were recorded. RESULTS Patients in both groups had similar diagnoses, age at the index surgery, and number of lengthening procedures. The changes in the major coronal Cobb angle and T1-S1 spinal height were not significantly different between the 2 groups. Compared with the GRI group, the VEPTR group had less correction in thoracic kyphosis (23% ± 12% vs 44% ± 16%, p GRI: 8° ± 5°, p = 0.569), the incidence of proximal junctional kyphosis was relatively lower in the VEPTR group (VEPTR: 18.2% vs GRI: 22.7%). No significant changes in the spinopelvic parameters were observed, while the sagittal vertical axis showed a tendency toward a neutral position in both groups. The overall complication rate was higher in the VEPTR group than in the GRI group (72.7% vs 54.5%). CONCLUSIONS The VEPTR had coronal correction and spinal growth results similar to those with GRI. In the sagittal plane, however, the VEPTR was not comparable to the GRI in controlling thoracic kyphosis. Thus, for hyperkyphotic EOS patients, GRI is recommended over VEPTR.

  13. Relationship of maxillary 3-dimensional posterior occlusal plane to mandibular spatial position and morphology.

    Science.gov (United States)

    Coro, Jorge C; Velasquez, Roberto L; Coro, Ivette M; Wheeler, Timothy T; McGorray, Susan P; Sato, Sadao

    2016-07-01

    The purpose of this study was to examine the relationship of the 3-dimensional (3D) posterior occlusal plane (POP) and the mandibular 3D spatial position. The relationship of the POP to mandibular morphology was also investigated. Retrospective data from a convenience sample of pretreatment diagnostic cone-beam computed tomography scans were rendered using InVivo software (Anatomage, San Jose, Calif). The sample consisted of 111 subjects (51 male, 60 female) and included growing and nongrowing subjects of different races and ethnicities. The 3D maxillary POP was defined by selecting the cusp tips of the second premolars and the second molars on the rendered images of the subjects. The angles made by this plane, in reference to the Frankfort horizontal plane, were measured against variables that described the mandibular position in the coronal, sagittal, and axial views. The POP was also compared with bilateral variables that described mandibular morphology. There were significant differences of the POP among the different skeletal malocclusions (P <0.0001). The POP showed significant correlations with mandibular position in the sagittal (P <0.0001), coronal (P <0.05), and axial (P <0.05) planes. The POP also showed a significant correlation with mandibular morphology (P <0.0001). These findings suggest that there is a distinct and significant relationship between the 3D POP and the mandibular spatial position and its morphology. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  14. Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis.

    Science.gov (United States)

    Mootanah, R; Imhauser, C W; Reisse, F; Carpanen, D; Walker, R W; Koff, M F; Lenhoff, M W; Rozbruch, S R; Fragomen, A T; Dewan, Z; Kirane, Y M; Cheah, K; Dowell, J K; Hillstrom, H J

    2014-01-01

    A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 65°-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligament-tuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between FE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning.

  15. Effect of trunk sagittal attitude on shoulder, thorax and pelvis three-dimensional kinematics in able-bodied subjects during gait.

    Directory of Open Access Journals (Sweden)

    Alberto Leardini

    Full Text Available It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling.

  16. Role of thoracoscopy for the sagittal correction of hypokyphotic adolescent idiopathic scoliosis patients.

    Science.gov (United States)

    Ferrero, E; Pesenti, S; Blondel, B; Jouve, J L; Mazda, K; Ilharreborde, B

    2014-12-01

    Thoracic adolescent idiopathic scoliosis (AIS) curves (Lenke 1-4) are often characterized by hypokyphosis. Sagittal alignment remains challenging to correct, even with recent posterior segmental instrumentation. Some authors recommend anterior endoscopic release (AER) to reduce anterior column height, and facilitate thoracic kyphosis correction. The aim of this study was to assess the contribution of AER to sagittal correction in hypokyphotic AIS. Fifty-six hypokyphotic (T4T12<20°) AIS patients were included. In group 1 (28 patients), patients first underwent AER, followed by posterior instrumentation and correction 5-7 days later. In group 2 (28 patients), patients underwent the same posterior procedure without AER. Posterior correction was performed in all cases using posteromedial translation and hybrid constructs consisting of lumbar pedicle screws and thoracic sublaminar bands. From radiological measurements performed using low-dose EOS radiographs, the correction of thoracic kyphosis was compared between the two groups. Groups 1 and 2 were comparable regarding demographic data and preoperative thoracic kyphosis (group 1: 11.7° ± 6.9° vs group 2: 12.1° ± 6.3°, p = 0.89). Postoperative thoracic kyphosis increase averaged 18.3° ± 13.6° in group 1 and 15.2° ± 9.0° in group 2. The benefit of anterior release was not statistically significant (p = 0.35). Although previous studies have suggested that thoracoscopic release improved correction compared to posterior surgery alone, the current study did not confirm this finding. Moreover, results of the current series showed that no significant benefit can be expected from AER in terms of sagittal plane improvement when the posteromedial translation technique is used, even in challenging hypokyphotic patients.

  17. Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects.

    Science.gov (United States)

    Keshner, E A; Dhaher, Y

    2008-07-01

    Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29-31 years) and 3 visually sensitive (27-57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a three-dimensional model of joint motion was developed to examine gross head motion in three planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (pplane of platform motion significantly increased (phistory of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (pplanes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms.

  18. Patellar tendon-lateral femoral condyle friction syndrome: MR imaging in 42 patients

    International Nuclear Information System (INIS)

    Chung, C.B.; Skaf, A.; Campos, J.; Stump, X.; Resnick, D.; Roger, B.

    2001-01-01

    Objective: To demonstrate the MR imaging findings that occur between the posterior inferolateral patellar tendon and the lateral femoral condyle in patients with chronic anterior and or lateral knee pain. Patients and design: A retrospective review of the MR images in 42 patients who presented with chronic anterior or lateral knee pain was performed by two musculoskeletal radiologists. In 15 patients, post-contrast images were available. Results: Sagittal and axial imaging planes best demonstrated the patellar tendon and its relationship with the lateral femoral condyle. In 40 patients, there was obliteration of the fat planes and abnormal signal intensity in the lateral soft tissues of the inferior patellofemoral joint. Enhancement after administration of gadolinium was noted in all cases in which contrast was administered. Eighteen patients showed cystic changes in the soft tissues adjacent to the lateral femoral condyle in addition to fat plane obliteration. In two patients, only cystic changes were noted in the lateral soft tissues. Abnormal patellar alignment was noted in 37 patients. Patellar tendon pathology was seen in nine patients. Conclusion: In evaluating anterior knee symptoms, MR imaging allows identification of changes that may be related to patellar tendon-lateral femoral condyle friction syndrome and that should be distinguished from other causes of anterior or lateral knee pain. (orig.)

  19. Patellar tendon-lateral femoral condyle friction syndrome: MR imaging in 42 patients

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C.B.; Skaf, A.; Campos, J.; Stump, X.; Resnick, D. [Dept. of Radiology, University of California, San Diego (United States); Roger, B. [Service de Radiologie Polyvalente, Groupe Hospitalier Pitie-Salpetriere, Paris (France)

    2001-12-01

    Objective: To demonstrate the MR imaging findings that occur between the posterior inferolateral patellar tendon and the lateral femoral condyle in patients with chronic anterior and or lateral knee pain. Patients and design: A retrospective review of the MR images in 42 patients who presented with chronic anterior or lateral knee pain was performed by two musculoskeletal radiologists. In 15 patients, post-contrast images were available. Results: Sagittal and axial imaging planes best demonstrated the patellar tendon and its relationship with the lateral femoral condyle. In 40 patients, there was obliteration of the fat planes and abnormal signal intensity in the lateral soft tissues of the inferior patellofemoral joint. Enhancement after administration of gadolinium was noted in all cases in which contrast was administered. Eighteen patients showed cystic changes in the soft tissues adjacent to the lateral femoral condyle in addition to fat plane obliteration. In two patients, only cystic changes were noted in the lateral soft tissues. Abnormal patellar alignment was noted in 37 patients. Patellar tendon pathology was seen in nine patients. Conclusion: In evaluating anterior knee symptoms, MR imaging allows identification of changes that may be related to patellar tendon-lateral femoral condyle friction syndrome and that should be distinguished from other causes of anterior or lateral knee pain. (orig.)

  20. Forefoot strikers exhibit lower running-induced knee loading than rearfoot strikers.

    Science.gov (United States)

    Kulmala, Juha-Pekka; Avela, Janne; Pasanen, Kati; Parkkari, Jari

    2013-12-01

    Knee pain and Achilles tendinopathies are the most common complaints among runners. The differences in the running mechanics may play an important role in the pathogenesis of lower limb overuse injuries. However, the effect of a runner's foot strike pattern on the ankle and especially on the knee loading is poorly understood. The purpose of this study was to examine whether runners using a forefoot strike pattern exhibit a different lower limb loading profile than runners who use rearfoot strike pattern. Nineteen female athletes with a natural forefoot strike (FFS) pattern and pair-matched women with rearfoot strike (RFS) pattern (n = 19) underwent 3-D running analysis at 4 m·s⁻¹. Joint angles and moments, patellofemoral contact force and stresses, and Achilles tendon forces were analyzed and compared between groups. FFS demonstrated lower patellofemoral contact force and stress compared with heel strikers (4.3 ± 1.2 vs 5.1 ± 1.1 body weight, P = 0.029, and 11.1 ± 2.9 vs 13.0 ± 2.8 MPa, P = 0.04). In addition, knee frontal plane moment was lower in the FFS compared with heel strikers (1.49 ± 0.51 vs 1.97 ± 0.66 N·m·kg⁻¹, P =0.015). At the ankle level, FFS showed higher plantarflexor moment (3.12 ± 0.40 vs 2.54 ± 0.37 N·m·kg⁻¹; P = 0.001) and Achilles tendon force (6.3 ± 0.8 vs 5.1 ± 1.3 body weight; P = 0.002) compared with RFS. To our knowledge, this is the first study that shows differences in patellofemoral loading and knee frontal plane moment between FFS and RFS. FFS exhibit both lower patellofemoral stress and knee frontal plane moment than RFS, which may reduce the risk of running-related knee injuries. On the other hand, parallel increase in ankle plantarflexor and Achilles tendon loading may increase risk for ankle and foot injuries.

  1. Acute proximal junctional failure in patients with preoperative sagittal imbalance.

    Science.gov (United States)

    Smith, Micah W; Annis, Prokopis; Lawrence, Brandon D; Daubs, Michael D; Brodke, Darrel S

    2015-10-01

    Proximal junctional failure (PJF) is a recognized complication of spinal deformity surgery. Acute PJF (APJF) has recently been demonstrated to be 5.6% in the adult spinal deformity (ASD) population. The incidence and rate of return to the operating room for APJF have not been specifically investigated in individuals with sagittal imbalance. The purpose of this study was to report the incidence of APJF in patients with preoperative sagittal imbalance and the rate of return to the operating room for APJF. This study is based on a retrospective review of prospectively collected database of ASD patients. One hundred seventy-three consecutive patients were included with preoperative sagittal imbalance according to one of the following common parameters: sagittal vertical axis (SVA) greater than 50 mm, global sagittal alignment greater than 45°, or pelvic incidence minus lumbar lordosis greater than 10°. Outcome measure was presence and/or absence of APJF defined as fracture at the upper instrumented vertebra (UIV) or UIV+1, failure of UIV fixation, 15° or more proximal junctional kyphosis, or need for extension of instrumentation within 6 months of surgery. We performed radiographic measurements on X-rays at preoperative, immediate postoperative, and 6-month follow-up visits. The APJF rate was reported for the entire patient population with preoperative sagittal imbalance. Acute PJF incidence was calculated postoperatively for each of the accepted sagittal balance parameters and/or formulas. Patients with persistent postoperative sagittal imbalance were compared with the sagittally balanced group. We also assessed for threshold values. Acute PJF was observed in 60 of 173 patients (35%) and was least common in fusions with the UIV in the upper thoracic (UT) spine (p=.035). Of those who developed APJF, 21.7% required surgery. Proximal junctional kyphosis 15° or more was the most common form of APJF in fusions to the UT spine but least likely to need revision (p=.014

  2. FUNCTIONAL DISABILITY, SAGITTAL ALIGNMENT AND PELVIC BALANCE IN LUMBAR SPONDYLOLISTHESIS

    Directory of Open Access Journals (Sweden)

    Luis Muñiz Luna

    2016-03-01

    Full Text Available ABSTRACT Objectives: To demonstrate the recovery of lumbar sagittal pelvic alignment and sagittal pelvic balance after surgical reduction of lumbar spondylolisthesis and establish the benefits of the surgery for reduction and fixation of the lumbar spondylolisthesis with 360o circumferential arthrodesis for 2 surgical approaches by clinical and functional evaluation. Method: Eight patients with lumbar spondylolisthesis treated with surgical reduction and fixation of listhesis and segmental circumferential fusion with two surgical approaches were reviewed. They were evaluated before and after treatment with Oswestry, Visual Analogue for pain and Odom scales, performing radiographic measurement of lumbar sagittal alignment and pelvic sagittal balance with the technique of pelvic radius. Results: Oswestry scales and EVA reported improvement of symptoms after treatment in 8 cases; the Odom scale had six outstanding cases reported. The lumbar sagittal alignment presented a lumbosacral lordosis angle and a lumbopelvic lordosis angle reduced in 4 cases and increased in 4 other cases; pelvic sagittal balance increased the pelvic angle in 4 cases and decreased in 3 cases and the sacral translation of the hip axis to the promontory increased in 6 cases. Conclusion: The surgical procedure evaluated proved to be useful by modifying the lumbar sagittal alignment and the pelvic balance, besides reducing the symptoms, enabling the patient to have mobility and movement and the consequent satisfaction with the surgery.

  3. Magnetic resonance imaging of the posterior cruciate ligament in flexion.

    Science.gov (United States)

    Craddock, William; Smithers, Troy; Harris, Craig; du Moulin, William; Molnar, Robert

    2018-06-01

    Posterior cruciate ligament (PCL) injuries of the knee are common and sometimes difficult to diagnose. Magnetic resonance imaging (MRI), performed using standard orthogonal plane views, is the investigation of choice. It can be particularly difficult to differentiate acute partial and complete tears and identify elongation of chronic healed tears. The aim of the paper is to describe a new method of positioning the patient with the knee flexed at 90°, allowing the PCL to be visualised in a position of greatest length and tension which may assist in differentiating and identifying these injuries. Four symptomatic patients with suspected PCL injuries, two acute and two chronic, were MRI scanned using a routine protocol with the knee in extension before performing oblique sagittal fast spin-echo (FSE) proton-density (PD) sequences with the knee positioned in 90° of flexion. The appearance of the PCLs were then qualitatively assessed. MRI scanning with the knee in flexion identified more extensive PCL injury than standard imaging. In the two patients with acute injuries, partial tears on the standard orthogonal plane views were found to be complete ruptures. In the two patients with chronic injuries, elongation of the PCL not identifiable on the standard orthogonal plane views was apparent. MRI scanning of the PCL with the knee flexed at 90° may help in differentiating partial and complete ruptures of the PCL and identifying elongation of the PCL in chronic injuries. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.

    Science.gov (United States)

    Eltoukhy, Moataz; Oh, Jeonghoon; Kuenze, Christopher; Signorile, Joseph

    2017-01-01

    A cost-effective, clinician friendly gait assessment tool that can automatically track patients' anatomical landmarks can provide practitioners with important information that is useful in prescribing rehabilitative and preventive therapies. This study investigated the validity and reliability of the Microsoft Kinect v2 as a potential inexpensive gait analysis tool. Ten healthy subjects walked on a treadmill at 1.3 and 1.6m·s -1 , as spatiotemporal parameters and kinematics were extracted concurrently using the Kinect and three-dimensional motion analysis. Spatiotemporal measures included step length and width, step and stride times, vertical and mediolateral pelvis motion, and foot swing velocity. Kinematic outcomes included hip, knee, and ankle joint angles in the sagittal plane. The absolute agreement and relative consistency between the two systems were assessed using interclass correlations coefficients (ICC2,1), while reproducibility between systems was established using Lin's Concordance Correlation Coefficient (rc). Comparison of ensemble curves and associated 90% confidence intervals (CI90) of the hip, knee, and ankle joint angles were performed to investigate if the Kinect sensor could consistently and accurately assess lower extremity joint motion throughout the gait cycle. Results showed that the Kinect v2 sensor has the potential to be an effective clinical assessment tool for sagittal plane knee and hip joint kinematics, as well as some spatiotemporal temporal variables including pelvis displacement and step characteristics during the gait cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Comprehensive Analysis of Mandibular Residual Asymmetry after Bilateral Sagittal Split Ramus Osteotomy Correction of Menton Point Deviation.

    Science.gov (United States)

    Lin, Han; Zhu, Ping; Lin, Qiuping; Huang, Xiaoqiong; Xu, Yue; Yang, Xiaoping

    2016-01-01

    Facial asymmetry often persists even after mandibular deviation corrected by the bilateral sagittal split ramus osteotomy (BSSRO) operation, since the reference facial sagittal plane for the asymmetry analysis is usually set up before the mandibular menton (Me) point correction. Our aim is to develop a predictive and quantitative method to assess the true asymmetry of the mandible after a midline correction performed by a virtual BSSRO, and to verify its availability by evaluation of the post-surgical improvement. A retrospective cohort study was conducted at the Hospital of Stomatology, Sun Yat-sen University (China) of patients with pure hemi-mandibular elongation (HE) from September 2010 through May 2014. Mandibular models were reconstructed from CBCT images of patients with pre-surgical orthodontic treatment. After mandibular de-rotation and midline alignment with virtual BSSRO, the elongation hemi-mandible was virtually mirrored along the facial sagittal plane. The residual asymmetry, defined as the superimposition and boolean operation of the mirrored elongation side on the normal side, was calculated, including the volumetric differences and the length of transversal and vertical asymmetry discrepancy. For more specific evaluation, both sides of the hemi-mandible were divided into the symphysis and parasymphysis (SP), mandibular body (MB), and mandibular angle (MA) regions. Other clinical variables include deviation of Me point, dental midline and molar relationship. The measurement of volumetric discrepancy between the two sides of post-surgical hemi-mandible were also calculated to verify the availability of virtual surgery. Paired t-tests were computed and the P value was set at .05. This study included 45 patients. The volume differences were 407.8±64.8 mm3, 2139.1±72.5 mm3, and 422.5±36.9 mm3; residual average transversal discrepancy, 1.9 mm, 1.0 mm, and 2.2 mm; average vertical discrepancy, 1.1 mm, 2.2 mm, and 2.2 mm (before virtual surgery). The

  6. MR imaging appearance of discoid menisci of the knee

    International Nuclear Information System (INIS)

    Silverman, J.; Mink, J.H.; Deutsch, A.L.

    1988-01-01

    Although discoid menisci of the knee have been recognized with magnetic resonance (MR) imaging, there are no MR criteria for their diagnosis. In this paper the authors define a discord meniscus as three or more 5-mm-thick interleaved sagittal sections that demonstrate continuity of the meniscus between the anterior and posterior horns. High-resolution coronal images allow more graphic depiction of the abnormally wide meniscus. They present a total of 29 cases imaged with MR. In approximately one-third of their cases, the measurable height difference between the discoid meniscus and the adjacent meniscus was at least 2 mm. Surgical correlation revealed only two discrepancies between MR imaging and arthrography

  7. Using fibula as a reference can be beneficial for the tibial component alignment after total knee arthroplasty, a retrospective study.

    Science.gov (United States)

    Erdem, Mehmet; Gulabi, Deniz; Cecen, Gultekin Sitki; Avci, Cem Coskun; Asci, Murat; Saglam, Fevzi

    2015-07-01

    One of the important factors in a successful arthroplasty is component alignment. The primary objective of this study was to determine whether the fibular shaft reference technique is beneficial for the tibial component position on the postoperative plain radiograph after total knee arthroplasty. A total of 42 patients between 2009 and 2011 were analysed retrospectively. The surgeon prepared the tibia using an extramedullary cutting guide and set the posterior tibial slope with respect to the fibular reference rod. In the postoperative radiographic measurements, a true anteroposterior and lateral radiograph of the lower leg covering the whole length of the tibia was used. Five patients were excluded as they did not meet the inclusion criteria, four patients were excluded due to improper radiographs and the study group was reduced to 33 patients and 35 knees. The mean preoperative tibiofibular angle was 2.1° ± 0.8°. The mean postoperative tibial sagittal angle measurements were 83.3° ± 1.4° (81°-86°). 33 (94 %) Knees gained the desired tibial sagittal angle within the desired alignment (5° ± 3°). The mean postoperative tibial coronal angle was 89.3° ± 1.5°. The tibial component coronal angle of two knees was more than 3 alignment from the neutral mechanical axis. The major clinical relevance of the technique described in the present study is cost-effectiveness, and it does not require any extra time or surgical equipment. This method can be used as an alternative choice for bulky extremities which is a cause of malalignment of the components. Retrospective case series, Level IV.

  8. Imaging the degenerative lesions of osteoarthritis

    International Nuclear Information System (INIS)

    Adams, M.E.; Li, D.K.B.

    1985-01-01

    The importance of developing better diagnostic methods for osteoarthritis (OA) is highlighted. In this paper, magnetic resonance images were obtained with a Picker International Vista MR imager based on a 0.30 Tesla cryogenic magnetic operating at 0.15 Tesla. Examinations were performed with one knee. A small knee coil was utilized (15 cm field of view). Simultaneous multi-slice (eight, twelve or sixteen) examinations are routinely obtained in transverse, coronal, or sagittal planes. These slices are 10 mm thick and contiguous. Examination times ranged from 45 to 150 minutes depending upon the pulse sequences and number of sections and number of orientations obtained. Faster examination times were obtained with smaller knee coil because of its higher sensitivity, which allows for imaging with fewer averages. (Auth.)

  9. Knee joint kinematics and kinetics during the hop and cut after soft tissue artifact suppression: Time to reconsider ACL injury mechanisms?

    Science.gov (United States)

    Smale, Kenneth B; Potvin, Brigitte M; Shourijeh, Mohammad S; Benoit, Daniel L

    2017-09-06

    The recent development of a soft tissue artifact (STA) suppression method allows us to re-evaluate the tibiofemoral kinematics currently linked to non-contact knee injuries. The purpose of this study was therefore to evaluate knee joint kinematics and kinetics in six degrees of freedom (DoF) during the loading phases of a jump lunge and side cut using this in silico method. Thirty-five healthy adults completed these movements and their surface marker trajectories were then scaled and processed with OpenSim's inverse kinematics (IK) and inverse dynamics tools. Knee flexion angle-dependent kinematic constraints defined based on previous bone pin (BP) marker trajectories were then applied to the OpenSim model during IK and these constrained results were then processed with the standard inverse dynamics tool. Significant differences for all hip, knee, and ankle DoF were observed after STA suppression for both the jump lunge and side cut. Using clinically relevant effect size estimates, we conclude that STA contamination had led to misclassifications in hip transverse plane angles, knee frontal and transverse plane angles, medial/lateral and distractive/compressive knee translations, and knee frontal plane moments between the NoBP and the BP IK solutions. Our results have substantial clinical implications since past research has used joint kinematics and kinetics contaminated by STA to identify risk factors for musculoskeletal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Redistribution of Mechanical Work at the Knee and Ankle Joints During Fast Running in Minimalist Shoes.

    Science.gov (United States)

    Fuller, Joel T; Buckley, Jonathan D; Tsiros, Margarita D; Brown, Nicholas A T; Thewlis, Dominic

    2016-10-01

    Minimalist shoes have been suggested as a way to alter running biomechanics to improve running performance and reduce injuries. However, to date, researchers have only considered the effect of minimalist shoes at slow running speeds. To determine if runners change foot-strike pattern and alter the distribution of mechanical work at the knee and ankle joints when running at a fast speed in minimalist shoes compared with conventional running shoes. Crossover study. Research laboratory. Twenty-six trained runners (age = 30.0 ± 7.9 years [age range, 18-40 years], height = 1.79 ± 0.06 m, mass = 75.3 ± 8.2 kg, weekly training distance = 27 ± 15 km) who ran with a habitual rearfoot foot-strike pattern and had no experience running in minimalist shoes. Participants completed overground running trials at 18 km/h in minimalist and conventional shoes. Sagittal-plane kinematics and joint work at the knee and ankle joints were computed using 3-dimensional kinematic and ground reaction force data. Foot-strike pattern was classified as rearfoot, midfoot, or forefoot strike based on strike index and ankle angle at initial contact. We observed no difference in foot-strike classification between shoes (χ 2 1 = 2.29, P = .13). Ankle angle at initial contact was less (2.46° versus 7.43°; t 25 = 3.34, P = .003) and strike index was greater (35.97% versus 29.04%; t 25 = 2.38, P = .03) when running in minimalist shoes compared with conventional shoes. We observed greater negative (52.87 J versus 42.46 J; t 24 = 2.29, P = .03) and positive work (68.91 J versus 59.08 J; t 24 = 2.65, P = .01) at the ankle but less negative (59.01 J versus 67.02 J; t 24 = 2.25, P = .03) and positive work (40.37 J versus 47.09 J; t 24 = 2.11, P = .046) at the knee with minimalist shoes compared with conventional shoes. Running in minimalist shoes at a fast speed caused a redistribution of work from the knee to the ankle joint. This finding suggests that runners changing from conventional to minimalist

  11. Patient-specific positioning guides for total knee arthroplasty: no significant difference between final component alignment and pre-operative digital plan except for tibial rotation.

    Science.gov (United States)

    Boonen, Bert; Schotanus, Martijn G M; Kerens, Bart; Hulsmans, Frans-Jan; Tuinebreijer, Wim E; Kort, Nanne P

    2017-09-01

    To assess whether there is a significant difference between the alignment of the individual femoral and tibial components (in the frontal, sagittal and horizontal planes) as calculated pre-operatively (digital plan) and the actually achieved alignment in vivo obtained with the use of patient-specific positioning guides (PSPGs) for TKA. It was hypothesised that there would be no difference between post-op implant position and pre-op digital plan. Twenty-six patients were included in this non-inferiority trial. Software permitted matching of the pre-operative MRI scan (and therefore calculated prosthesis position) to a pre-operative CT scan and then to a post-operative full-leg CT scan to determine deviations from pre-op planning in all three anatomical planes. For the femoral component, mean absolute deviations from planning were 1.8° (SD 1.3), 2.5° (SD 1.6) and 1.6° (SD 1.4) in the frontal, sagittal and transverse planes, respectively. For the tibial component, mean absolute deviations from planning were 1.7° (SD 1.2), 1.7° (SD 1.5) and 3.2° (SD 3.6) in the frontal, sagittal and transverse planes, respectively. Absolute mean deviation from planned mechanical axis was 1.9°. The a priori specified null hypothesis for equivalence testing: the difference from planning is >3 or plan in all planes, except for the tibial rotation in the transverse plane. Possible explanations for outliers are discussed and highlight the importance for adequate training surgeons before they start using PSPG in their day-by-day practise. Prospective cohort study, Level II.

  12. Decreased Knee Joint Loading Associated With Early Knee Osteoarthritis After Anterior Cruciate Ligament Injury.

    Science.gov (United States)

    Wellsandt, Elizabeth; Gardinier, Emily S; Manal, Kurt; Axe, Michael J; Buchanan, Thomas S; Snyder-Mackler, Lynn

    2016-01-01

    Anterior cruciate ligament (ACL) injury predisposes individuals to early-onset knee joint osteoarthritis (OA). Abnormal joint loading is apparent after ACL injury and reconstruction. The relationship between altered joint biomechanics and the development of knee OA is unknown. Altered knee joint kinetics and medial compartment contact forces initially after injury and reconstruction are associated with radiographic knee OA 5 years after reconstruction. Case-control study; Level of evidence, 3. Individuals with acute, unilateral ACL injury completed gait analysis before (baseline) and after (posttraining) preoperative rehabilitation and at 6 months, 1 year, and 2 years after reconstruction. Surface electromyographic and knee biomechanical data served as inputs to an electromyographically driven musculoskeletal model to estimate knee joint contact forces. Patients completed radiographic testing 5 years after reconstruction. Differences in knee joint kinetics and contact forces were compared between patients with and those without radiographic knee OA. Patients with OA walked with greater frontal plane interlimb differences than those without OA (nonOA) at baseline (peak knee adduction moment difference: 0.00 ± 0.08 N·m/kg·m [nonOA] vs -0.15 ± 0.09 N·m/kg·m [OA], P = .014; peak knee adduction moment impulse difference: -0.001 ± 0.032 N·m·s/kg·m [nonOA] vs -0.048 ± 0.031 N·m·s/kg·m [OA], P = .042). The involved limb knee adduction moment impulse of the group with osteoarthritis was also lower than that of the group without osteoarthritis at baseline (0.087 ± 0.023 N·m·s/kg·m [nonOA] vs 0.049 ± 0.018 N·m·s/kg·m [OA], P = .023). Significant group differences were absent at posttraining but reemerged 6 months after reconstruction (peak knee adduction moment difference: 0.02 ± 0.04 N·m/kg·m [nonOA] vs -0.06 ± 0.11 N·m/kg·m [OA], P = .043). In addition, the OA group walked with lower peak medial compartment contact forces of the involved limb

  13. Orthotic intervention in forefoot and rearfoot strike running patterns.

    Science.gov (United States)

    Stackhouse, Carrie Laughton; Davis, Irene McClay; Hamill, Joseph

    2004-01-01

    To compare the differential effect of custom orthoses on the lower extremity mechanics of a forefoot and rearfoot strike pattern. Fifteen subjects ran with both a forefoot and a rearfoot strike pattern with and without orthoses. Lower extremity kinematic and kinetic variables were compared between strike pattern and orthotic conditions. Foot orthoses have been shown to be effective in controlling excessive rearfoot motion in rearfoot strikers. The effect of orthotic intervention on rearfoot motion in forefoot strikers has not been previously reported. Five trials were collected for each condition. Peak rearfoot eversion, eversion excursion, eversion velocity, peak inversion moment, and inversion work were compared between conditions. Kinematic variables in the sagittal plane of the rearfoot and in the frontal and sagittal plane of the knee were also determined. Increased rearfoot excursions and velocities and decreased peak eversion were noted in the forefoot strike pattern compared to the rearfoot strike pattern. Orthotic intervention, however,did not significantly change rearfoot motion in either strike pattern. Reductions in internal rotation and abduction of the knee were noted with orthotic intervention. Foot orthoses do not differentially effect rearfoot motion of a rearfoot strike and a forefoot strike running pattern. Orthotic intervention has a larger and more systematic effect on rearfoot kinetics compared to rearfoot kinematics.

  14. Kinematic Adaptations of Forward and Backward Walking on Land and in Water

    Directory of Open Access Journals (Sweden)

    Cadenas-Sanchez Cristina

    2015-12-01

    Full Text Available The aim of this study was to compare sagittal plane lower limb kinematics during walking on land and submerged to the hip in water. Eight healthy adults (age 22.1 ± 1.1 years, body height 174.8 ± 7.1 cm, body mass 63.4 ± 6.2 kg were asked to cover a distance of 10 m at comfortable speed with controlled step frequency, walking forward or backward. Sagittal plane lower limb kinematics were obtained from three dimensional video analysis to compare spatiotemporal gait parameters and joint angles at selected events using two-way repeated measures ANOVA. Key findings were a reduced walking speed, stride length, step length and a support phase in water, and step length asymmetry was higher compared to the land condition (p<0.05. At initial contact, knees and hips were more flexed during walking forward in water, whilst, ankles were more dorsiflexed during walking backward in water. At final stance, knees and ankles were more flexed during forward walking, whilst the hip was more flexed during backward walking. These results show how walking in water differs from walking on land, and provide valuable insights into the development and prescription of rehabilitation and training programs.

  15. The role of the posterior cruciate ligament in total knee replacement

    Science.gov (United States)

    Ritter, M. A.; Davis, K. E.; Meding, J. B.; Farris, A.

    2012-01-01

    Objectives The purpose of this study was to examine the effect of posterior cruciate ligament (PCL) retention, PCL recession, and PCL excision during cruciate-retaining total knee replacement. Methods A total of 3018 anatomic graduated component total knee replacements were examined; 1846 of these retained the PCL, 455 PCLs were partially recessed, and in 717 the PCL was completely excised from the back of the tibia. Results Clinical scores between PCL groups favored excision for flexion (p knees, 98.2% for recessed knees, and 96.4% for excised knees (p = 0.0934, Wilcoxon; p = 0.0202, log-rank). Conclusions Despite some trade off in clinical performance, if the PCL is detached at the time of operation, conversion to a posterior-stabilised prosthesis may not be necessarily required as long as stability in the anteroposterior and coronal planes is achieved. PMID:23610673

  16. Test-retest reliability of knee kinematics measurement during gait ...

    African Journals Online (AJOL)

    ACLR) is crucial to minimize the risk of joint degeneration. To achieve this, it is essential that the chosen measurement method can accurately assess knee kinematics and detect the changes in multi-planes of motion. However to date, limited ...

  17. Multiplanar lumbopelvic control in patients with low back pain: is multiplanar assessment better than single plane assessment in discriminating between patients and healthy controls?

    Science.gov (United States)

    Nelson-Wong, E; Gallant, P; Alexander, S; Dehmer, K; Ingvalson, S; McClenahan, B; Piatte, A; Poupore, K; Davis, A M

    2016-02-01

    Patients with low back pain (LBP) commonly have lumbopelvic control deficits. Lumbopelvic assessment during sagittal motion is incorporated into commonly used clinical examination algorithms for Treatment Based Classification. The purpose of this study was to investigate whether combined assessment of lumbopelvic control during sagittal and frontal plane motion discriminates between people with and without LBP better than single plane assessment alone. Nineteen patients with LBP and 18 healthy control participants volunteered for this study. The active straight leg raise (ASLR) and active hip abduction (AHAbd) tests were used to assess lumbopelvic control during sagittal and frontal plane motion, respectively. The tests were scored as positive or negative using published scoring criteria. Contingency tables were created for each test alone and for the combined tests (both positive/both negative) with presence/absence of LBP as the reference standard to calculate accuracy statistics of sensitivity (sn), specificity (sp), likelihood (+LR and -LR), and diagnostic odds ratios (OR). Active straight leg raise and AHAbd tests alone had sn of 0·63, 0·74, respectively, sp of 0·61, 0·50, respectively, and OR of 2·7, 2·8, respectively. The combined tests had sn = 0·89, sp = 0·60, and OR = 12·0. Forty percent of patients with LBP had control deficits in both planes of motion. The AHAbd and ALSR tests appear to have greater diagnostic discrimination when used in combination than when used independently. A percentage of patients with LBP had control deficits in both planes, while others demonstrated uniplanar deficits only. These findings highlight the importance of multiplanar assessment in patients with LBP.

  18. Knee joint anterior malalignment and patellofemoral osteoarthritis: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Tsavalas, Nikolaos; Karantanas, Apostolos H. [University Hospital, University of Crete, Department of Medical Imaging, Heraklion, Crete (Greece); Katonis, Pavlos [University Hospital, University of Crete, Department of Orthopaedic Surgery, Heraklion, Crete (Greece)

    2012-02-15

    To evaluate patellofemoral congruency measurements on MRI and correlate the findings with severity of ipsilateral osteoarthritis. We retrospectively reviewed 650 consecutive knee MRI examinations from 622 patients divided into two age groups: {<=}50 and >50 year-old. The femoral sulcus angle (SA) and depth (SD), lateral patellar displacement (LPD), lateral patellofemoral angle (LPFA), tibial tubercle-trochlear groove (TT-TG) distance and Insall-Salvati index as well as the grade of focal cartilage defects (ranging from I to IV) in the patellofemoral region were assessed in each subject on axial and sagittal fat-saturated intermediate-w MR images. A significant difference exists between normal and knees with patellofemoral joint osteoarthritis regarding SA (p = 0.0002 and <0.0001), SD (p = 0.0004 and <0.0001), LPD (p = 0.0014 and 0.0009) and LPFA (p = 0.0002 and 0.0003) in both age groups ({<=}50 and >50 respectively). Significant correlation was found between grading of cartilage defects and SA (rho = 0.21, p = 0.0001 and 0.443, <0.0001), SD (rho = -0.198, p = 0.0003 and -0.418, <0.0001), LPD (rho = 0.176, p = 0.0013 and 0.251, 0.0002) and LPFA (rho = -0.204, p = 0.0002 and -0.239, 0.0005) in both age groups. Knee joint anterior malalignment is multivariably associated with patellofemoral osteoarthritis. circle MRI is an excellent method to evaluate knee alignment and articular cartilage damage. (orig.)

  19. Which oblique plane is more helpful in diagnosing an anterior cruciate ligament tear?

    International Nuclear Information System (INIS)

    Kwon, J.W.; Yoon, Y.C.; Kim, Y.N.; Ahn, J.H.; Choe, B.K.

    2009-01-01

    Aim: To evaluate the diagnostic role of additional oblique coronal and oblique sagittal magnetic resonance imaging (MRI) for an anterior cruciate ligament (ACL) tear. Materials and methods: A total of 101 patients who had undergone preoperative knee MRI examinations with orthogonal and two sets of oblique images were enrolled in the study. Two radiologists evaluated the MRI images by the use of four methods: orthogonal images only (method A); orthogonal and additional oblique coronal images (method B); orthogonal and oblique sagittal images (method C); and orthogonal images with oblique coronal and sagittal images (method D). The status of the ACL (normal or tear) was determined by consensus. The sensitivity, specificity, and accuracy for an ACL tear with the use of each method were calculated in comparison with arthroscopy as the reference standard, and values were statistically analysed using the McNemar test. The diagnostic accuracies were compared using receiver operating characteristic (ROC) analysis. Results: Arthroscopy identified 10 partial ACL tears and 30 complete ACL tears. The specificities and accuracies for methods B, C, and D were significantly higher than the specificities and accuracies for method A (p 0.05). Conclusions: Additional oblique imaging for an ACL tear improved the specificity. Either of the oblique imaging methods is sufficient, and no further improvement in the diagnostic efficacy was achieved by simultaneous use

  20. Development and preliminary evaluation of a new anatomically based prosthetic alignment method for below-knee prosthesis.

    Science.gov (United States)

    Tafti, Nahid; Karimlou, Masoud; Mardani, Mohammad Ali; Jafarpisheh, Amir Salar; Aminian, Gholam Reza; Safari, Reza

    2018-04-20

    The objectives of current study were to a) assess similarities and relationships between anatomical landmark-based angles and distances of lower limbs in unilateral transtibial amputees and b) develop and evaluate a new anatomically based static prosthetic alignment method. First sub-study assessed the anthropometrical differences and relationships between the lower limbs in the photographs taken from amputees. Data were analysed via paired t-test and regression analysis. Results show no significant differences in frontal and transverse planes. In the sagittal plane, the anthropometric parameters of the amputated limb were significantly correlated to the corresponding variables of the sound limb. The results served as bases for the development of a new prosthetic alignment method. The method was evaluated on a single subject study. Prosthetic alignment carried out by an experienced prosthetist was compared with such alignment adjusted by an inexperienced prosthetist but with the use of the developed method. In sagittal and frontal planes, the socket angle was tuned with respect to the shin angle, and the position of the prosthetic foot was tuned in relation to the pelvic landmarks. Further study is needed to assess the proposed method on a larger sample of amputees and prosthetists.

  1. Development of synthetic simulators for endoscope-assisted repair of metopic and sagittal craniosynostosis.

    Science.gov (United States)

    Eastwood, Kyle W; Bodani, Vivek P; Haji, Faizal A; Looi, Thomas; Naguib, Hani E; Drake, James M

    2018-06-01

    OBJECTIVE Endoscope-assisted repair of craniosynostosis is a safe and efficacious alternative to open techniques. However, this procedure is challenging to learn, and there is significant variation in both its execution and outcomes. Surgical simulators may allow trainees to learn and practice this procedure prior to operating on an actual patient. The purpose of this study was to develop a realistic, relatively inexpensive simulator for endoscope-assisted repair of metopic and sagittal craniosynostosis and to evaluate the models' fidelity and teaching content. METHODS Two separate, 3D-printed, plastic powder-based replica skulls exhibiting metopic (age 1 month) and sagittal (age 2 months) craniosynostosis were developed. These models were made into consumable skull "cartridges" that insert into a reusable base resembling an infant's head. Each cartridge consists of a multilayer scalp (skin, subcutaneous fat, galea, and periosteum); cranial bones with accurate landmarks; and the dura mater. Data related to model construction, use, and cost were collected. Eleven novice surgeons (residents), 9 experienced surgeons (fellows), and 5 expert surgeons (attendings) performed a simulated metopic and sagittal craniosynostosis repair using a neuroendoscope, high-speed drill, rongeurs, lighted retractors, and suction/irrigation. All participants completed a 13-item questionnaire (using 5-point Likert scales) to rate the realism and utility of the models for teaching endoscope-assisted strip suturectomy. RESULTS The simulators are compact, robust, and relatively inexpensive. They can be rapidly reset for repeated use and contain a minimal amount of consumable material while providing a realistic simulation experience. More than 80% of participants agreed or strongly agreed that the models' anatomical features, including surface anatomy, subgaleal and subperiosteal tissue planes, anterior fontanelle, and epidural spaces, were realistic and contained appropriate detail. More

  2. Evaluation of meniscal subluxation of the knee with MR imaging

    International Nuclear Information System (INIS)

    Kim, Hyun Chul; Park, Jin Gyoon; Kang, Heoung Keun; Kim, Jae Kyu; Seo, Jeong Jin; Kim, Yun Hyeon; Chung, Tae Woong

    2000-01-01

    The purpose of this study was to determine the normal meniscal position and meniscal subluxation by means of MR imaging. The normal position of the meniscus was determined by measuring the distance between the peripheral meniscal borders and the tibial plateau, as seen on coronal, sagittal and oblique MR images of 40 normal knees. For 33 abnormal knees in which outward subluxation of the meniscus from the tibial plateau was noted, the involved site, the predisposing factor, and the frequency of meniscus tearing were analyzed. In normal knees, the peripheral border of the meniscus extruded 3mm or less from the peripheral border of the tibial plateau. Among 33 abnormal knees, in which 5mm or more outward subluxation of the meniscus was seen, 19 menisci were medial and 14 were lateral. Among the 19, the body was involved in 12, the anterior horn in six, and the posterior horn in one. With regard to the 14 lateral subluxations, involvement of the posterior horn occurred in ten, of both the body and posterior horn in two, of the anterior horn in one, and of the body in one. The common predisposing factor in medial meniscus subluxation was osteoarthritis, seen in 89% of such cases, and in lateral subluxation, anterior cruciate ligament tear, which occurred in 79% of cases. Medial meniscus tear was noted in 89% of medial meniscus subluxations and lateral meniscus tear in 43% of lateral subluxations. Meniscal subluxation was easily detected by MR imaging of the knee. The common predisposing factor in medial meniscus subluxation was osteoarthritis, and in lateral meniscus subluxation, anterior cruciate ligament tear. A torn meniscus frequently co-occurred

  3. Meniscal position on routine MR imaging of the knee

    International Nuclear Information System (INIS)

    Miller, T.T.; Staron, R.B.; Feldman, F.; Cepel, E.

    1997-01-01

    Objective. To determine the prevalence of meniscal protrusion (i.e. location of the outer edge of a meniscus beyond the tibial articular surface), and to determine its relationship with internal derangement, joint effusion, and degenerative arthropathy. Design and patients. Sagittal and coronal MR images of 111 abnormal and 46 normal knees were evaluated for the presence of meniscal protrusion. We set 25% as the minimum amount of displacement considered abnormal because this was the smallest amount of displacement we could confidently discern. Presence of meniscal tear, anterior cruciate ligament (ACL) injury, joint effusion, or osteophytosis was also recorded. Results and conclusion. Normal examinations demonstrated protrusion of the medial meniscus in 6.5% of sagittal images and 15% of coronal images, and of the lateral meniscus in 2% and 13%, respectively. Fisher's exact test demonstrated a statistically significant difference between the normal and abnormal groups for the medial meniscus on both sagittal (P 0.2). A protruding medial meniscus was associated with effusion and osteophytosis (P 0.1). Posterior protrusion of the lateral meniscus was only associated with ACL injury (P<0.0001); protruding anterior horns and bodies of lateral menisci were not associated with any of the four abnormalities. It is concluded that the medial meniscus may occasionally protrude more than 25% of its width, but protrusion is more often due to effusion and osteophytes. Protrusion of the posterior horn of the lateral meniscus is associated with ACL insufficiency, while protrusion of the body and anterior horn of the lateral meniscus is a normal variant. (orig.). With 4 figs

  4. The influence of elastic orthotic belt on sagittal profile in adolescent idiopathic thoracic scoliosis: a comparative radiographic study with Milwaukee brace

    Directory of Open Access Journals (Sweden)

    Qian Bangping

    2010-09-01

    Full Text Available Abstract Background The effectiveness of bracing on preventing curve progression in coronal plane for mild and moderate adolescent idiopathic scoliosis (AIS patients has been confirmed by previous radiographic researches. However, a hypokyphotic effect on the sagittal plane has been reported by a few studies. A relatively increasing number of AIS patients were noticed to wear a new kind of elastic orthotic belt for the treatments of scoliosis without doctors' instructions. We postulate the correcting mechanism of this new appliance may cause flattening of the spine. To our knowledge, no study has investigated the effects of this new orthosis on the sagittal profile of AIS patients. The aim of this study was to evaluate and compare the effects of elastic orthotic belt and Milwaukee brace on the sagittal alignment in AIS patients. Methods Twenty-eight female AIS patients with mild or moderate thoracic curves were included in this study. Standing full-length lateral radiographs were obtained in three conditions: natural standing posture without any treatment, with elastic orthotic belt and with Milwaukee brace. Thoracic kyphosis (TK, lumber lordosis (LL and pelvic incidence (PI were measured and compared between the above three conditions. Results Both elastic orthotic belt and Milwaukee brace can lead to significant decrease of TK, however, the decrease of TK after wearing elastic orthotic belt is significantly larger than that after wearing Milwaukee brace. Compared with no treatment, LL was found to be significantly smaller after wearing Milwaukee brace, however, such significant decrease was not noted after wearing elastic orthotic belt. No significant changes were observed for the PI between 3 conditions. Conclusions The elastic orthotic belt could lead to more severe thoracic hypokyphosis when compared with Milwaukee brace. This belt may not be a suitable conservative method for the treatment of mild and moderate AIS patients.

  5. Back to the future: sagittal CT in the evaluation of COPD

    International Nuclear Information System (INIS)

    Hightower, Jessica S.; Amadi, Chiemezie; Den, Elana; Schmitt, James E.; Shah, Rosita M.; Miller, Wallace T.

    2016-01-01

    To identify features of obstructive airway disease on sagittal reconstruction, compare the accuracy of findings to traditional imaging characteristics of COPD, and determine the fraction of additional cases identified using new characteristics. The study was approved by the centre's Institutional Review Board and is HIPAA compliant. Two hundred sixteen patients with HRCT and spirometry within a 3-month window were included. Four radiologists evaluated each HRCT for traditional characteristics of COPD and new quantitative and qualitative features of obstruction on axial and sagittal reconstructions. Imaging characteristics were assessed for correlation with the spirometric diagnosis of obstructive airway disease. Quantitative and qualitative findings on sagittal reconstruction are highly specific for COPD (specificity >90 %). Features of hyperinflation on sagittal reconstruction are more accurate predictors of obstruction than traditional axial measures, with greater interobserver reliability (hyperinflation left hemidiaphragm: accuracy: 70.08 % ± 2.49 %; kappa: 0.511 versus traditional measures: accuracy: 62.00 % ± 5.38 %; kappa: 0.407). Sagittal reconstruction identified 27-70 % more patients with COPD than traditional axial findings (p < 0.05). Analysis of sagittal reconstruction enables greater accuracy and specificity in the diagnosis of obstructive airway disease compared to traditional measures on axial imaging. Use of sagittal reconstructions can help identify up to 70 % more patients with COPD than traditional imaging findings alone. (orig.)

  6. Assessment of Isometric Trunk Strength - The Relevance of Body Position and Relationship between Planes of Movement.

    Science.gov (United States)

    Kocjan, Andrej; Sarabon, Nejc

    2014-05-01

    The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R(2) = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key pointsMaximal voluntary isometric force of the trunk extensors increased with the angle at the hips (highest in sitting, medium in kneeling and lowest in upright standing).The opposite trend was true for isometric MVC force of trunk flexors (both genders together and men only).In the sitting position, the strongest correlation between MVC forces was found between sagittal (average flexion/extension) and transverse plane (average left/right rotation).IN ORDER TO INCREASE THE VALIDITY OF TRUNK STRENGTH TESTING THE LETTER SHOULD INCLUDE: specific warm-up, good pelvic fixation and visual feedback.

  7. The effects of fatigue and anticipation on the mechanics of the knee during cutting in female athletes.

    Science.gov (United States)

    Collins, Joseph D; Almonroeder, Thomas G; Ebersole, Kyle T; O'Connor, Kristian M

    2016-06-01

    Unanticipated cutting tasks which do not allow for pre-planning of a movement have been reported to promote knee mechanics which may increase the risk of anterior cruciate ligament injury. Fatigue has also been reported to have similar effects. Athletes must often perform unanticipated tasks when they are fatigued. Previous studies have reported that the effects of anticipation become more prominent as an athlete progresses through a fatigue protocol. However, the protocols previously utilized may not mimic the demands of sports participation. Three-dimensional knee joint kinematics and kinetics were collected from 13 female athletes while they performed a run-and-cut task, before and after completion of an intermittent shuttle run. Trials were further divided (pre-planned, unanticipated) to assess the effects of anticipation. There were no significant interactions between the effects of fatigue and anticipation for the peak knee angles or moments of the knee joint in any plane. Subjects did demonstrate a 68% increase in their peak knee abduction angles following completion of the intermittent shuttle run. Anticipation also had a significant effect on the mechanics of the knee in all planes. Most notably, there was a 23% increase in peak knee abduction angles and a 33% increase in the peak internal knee adduction moments. Both fatigue and anticipation promoted knee mechanics which are associated with an increased risk of knee injury. However, it does not appear that their effects combine when athletes are at a level of fatigue which is thought to reflect sports participation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Anthropometric outcome of sagittal craniosynostosis following surgery

    International Nuclear Information System (INIS)

    Takagi, Toshinori; Morota, Nobuhito; Ihara, Satoshi; Kaneko, Tsuyoshi

    2011-01-01

    Several studies have shown good short-term outcomes after surgery for sagittal synostosis. However, the improvement in head shape usually regresses over the long term. The aim of this study was to compare anthropometric changes after surgery between osteoplastic expansion surgery and distraction osteogenesis for correcting sagittal synostosis. From November 2002 through December 2008, 17 patients with sagittal synostosis were analyzed. Anthropometric changes were assessed with cephalic indices obtained with computed tomography of the skull. The age of the patients at the time of surgery ranged from 2 to 25 months (mean, 8.2 months), and the follow-up period ranged from 6 to 63 months (mean, 17 months). In 16 patients, the cephalic index showed improvement immediately after surgery but gradually decreased in the follow-up period. The improving rate was decreased more after osteoplastic expansion surgery than after distraction osteogenesis (p<0.01). Although long-term follow-up is necessary, morphological improvement persists to a greater degree after distraction surgery. (author)

  9. Young Athletes After Anterior Cruciate Ligament Reconstruction With Single-Leg Landing Asymmetries at the Time of Return to Sport Demonstrate Decreased Knee Function 2 Years Later.

    Science.gov (United States)

    Ithurburn, Matthew P; Paterno, Mark V; Ford, Kevin R; Hewett, Timothy E; Schmitt, Laura C

    2017-09-01

    Previous work shows that young athletes after anterior cruciate ligament reconstruction (ACLR) demonstrate single-leg (SL) landing movement asymmetries at the time of return to sport (RTS); however, the effect of movement asymmetries on longitudinal knee-related function after ACLR has not been examined. Hypothesis/Purpose: The purpose of this study was to examine the effect of SL drop-landing movement symmetry at the time of RTS on knee-related function 2 years later in young athletes after ACLR. The first hypothesis was that young athletes who demonstrated SL drop-landing asymmetries at RTS would demonstrate decreased knee function 2 years later compared with those who demonstrated symmetric SL drop-landing mechanics. The second hypothesis was that SL drop-landing movement symmetry at RTS would be associated with knee functional recovery 2 years later. Cohort study; Level of evidence, 2. This study included 48 young athletes who had undergone ACLR and were assessed at the time of RTS (77% female; mean [±SD] age at RTS, 17.6 ± 2.6 years) and followed for 2 years after RTS. Three sagittal-plane landing variables of interest were calculated using 3-dimensional motion analysis during an SL drop-landing task at the time of RTS: knee flexion excursion, peak internal knee extension moment, and peak trunk flexion. The limb symmetry index (LSI) was calculated for each landing variable using the following: LSI = (involved/uninvolved) × 100%. The LSI was used to divide the cohort into symmetric (SYM) and asymmetric (ASYM) groups for each landing variable: knee flexion excursion (SYM: LSI ≥ 90% [n = 23]; ASYM: LSI 115% [n = 19]). At 2 years after RTS, knee-related function was evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS), International Knee Documentation Committee (IKDC) subjective knee form, and performance on SL hop tests. Functional recovery was defined based on literature cutoffs for knee-related functional measures. Differences in 2-year

  10. Pedicle subtraction osteotomy in elderly patients with degenerative sagittal imbalance.

    Science.gov (United States)

    Cho, Kyu-Jung; Kim, Ki-Tack; Kim, Whoan-Jeang; Lee, Sang-Hoon; Jung, Jae-Hoon; Kim, Young-Tae; Park, Hae-Bong

    2013-11-15

    Retrospective, radiographical analysis. To evaluate pedicle subtraction osteotomy (PSO) as a means of correcting severe degenerative sagittal imbalance in elderly patients. PSO in patients with degenerative sagittal imbalance is likely to cause more complications than in patients with iatrogenic flatback deformity. This study analyzed 34 patients who underwent fusion to the sacrum, with a minimum 2-year follow-up. Age of the patients were in the range from 58 to 73 with the mean at 65.5 years. PSO was performed at one segment in all cases, consisting of L3 (n = 26), L4 (n = 4), L2 (n = 3), and L1 (n = 1). The average number of levels fused was 8.15. Ten patients had structural interbody fusion at the lumbosacral junction. Applying PSO at one segment, the mean correction of the lordotic angle at the osteotomy site was 33.3°, of which the loss of correction (LOC) was 4.0° at the last visit. The correction of lumbar lordosis was 33.7° and the LOC was 8.5°. The sagittal C7 plumb was 215.9 mm before surgery, corrected to 35.1 mm after surgery, and changed to 95.9 mm by the last visit. The correction of the sagittal C7 plumb was 119.9 mm and the LOC was 60.9 mm. There was substantial LOC in lumbar lordosis and sagittal C7 plumb. In 10 patients with addition of posterior lumbar interbody fusion, the LOC of lumbar lordosis was 7.4°, which was less than 9° in those without it. PSO for the correction of degenerative sagittal imbalance in elderly patients resulted in correction of sagittal alignment with a significant LOC of lumbar lordosis and sagittal C7 plumb. The LOC of lumbar lordosis occurred at both the osteotomy and non-osteotomy site. The addition of anterior column support is helpful to maintain correction and reduce complications. N/A.

  11. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement

    OpenAIRE

    Smith, Colin R.; Vignos, Michael F.; Lenhart, Rachel L.; Kaiser, Jarred; Thelen, Darryl G.

    2016-01-01

    The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization ...

  12. Factors influencing spinal sagittal balance, bone mineral density, and Oswestry Disability Index outcome measures in patients with rheumatoid arthritis.

    Science.gov (United States)

    Masamoto, Kazutaka; Otsuki, Bungo; Fujibayashi, Shunsuke; Shima, Koichiro; Ito, Hiromu; Furu, Moritoshi; Hashimoto, Motomu; Tanaka, Masao; Lyman, Stephen; Yoshitomi, Hiroyuki; Tanida, Shimei; Mimori, Tsuneyo; Matsuda, Shuichi

    2018-02-01

    To identify the factors influencing spinal sagittal alignment, bone mineral density (BMD), and Oswestry Disability Index (ODI) outcome measures in patients with rheumatoid arthritis (RA). We enrolled 272 RA patients to identify the factors influencing sagittal vertical axis (SVA). Out of this, 220 had evaluation of bone mineral density (BMD) and vertebral deformity (VD) on the sagittal plane; 183 completed the ODI questionnaire. We collected data regarding RA-associated clinical parameters and standing lateral X-ray images via an ODI questionnaire from April to December 2012 at a single center. Patients with a history of spinal surgery or any missing clinical data were excluded. Clinical parameters included age, sex, body mass index, RA disease duration, disease activity score 28 erythrocyte sedimentation rate (DAS28-ESR), serum anti-cyclic citrullinated peptide antibody, serum rheumatoid factor, serum matrix metalloproteinase-3, BMD and treatment type at survey, such as methotrexate (MTX), biological disease-modifying anti-rheumatic drugs, and glucocorticoids. We measured radiological parameters including pelvic incidence (PI), lumbar lordosis (LL), and SVA. We statistically identified the factors influencing SVA, BMD, VD, and ODI using multivariate regression analysis. Multivariate regression analysis showed that larger SVA correlated with older age, higher DAS28-ESR, MTX nonuse, and glucocorticoid use. Lower BMD was associated with female, older age, higher DAS28-ESR, and MTX nonuse. VD was associated with older age, longer disease duration, lower BMD, and glucocorticoid use. Worse ODI correlated with older age, larger PI-LL mismatch or larger SVA, higher DAS28-ESR, and glucocorticoid use. In managing low back pain and spinal sagittal alignment in RA patients, RA-related clinical factors and the treatment type should be taken into consideration.

  13. Lenke 1 and 5: changes in sagittal balance

    Directory of Open Access Journals (Sweden)

    Delson Valdemir Pessin

    2014-09-01

    Full Text Available OBJECTIVE: To assess in a cross-sectional study whether there are changes in sagittal balance in patients with adolescent idiopathic scoliosis Lenke types 1 and 5 compared with patients without pathology of the spine and compare the values of the parameters of normal subjects with the parameters found in the literature. METHODS: We measured the values of the parameters of sagittal balance of 21 patients with scoliosis and 14 patients without scoliosis in panoramic radiographs or simply collected data previously measured from the medical records. We compared the mean values of normal subjects, the mean values found in the literature, and the means between normal subjects and patients with scoliosis. For this, we used the Student t test. RESULTS: Using a confidence interval of 5% (p < 0.05 and the Student t test we obtained statistical significance in the comparison of two parameters of sagittal balance between normal subjects and patients with scoliosis. We observed similarities in the measurements of the average parameters of normal subjects with regard to the work already published. CONCLUSIONS: The adolescent idiopathic scoliosis causes changes in two parameters of sagittal balance with statistical significance but suggests changes in all other parameters. As for comparison with previously published work, the results were similar.

  14. Real-time knee adduction moment feedback training using an elliptical trainer.

    Science.gov (United States)

    Kang, Sang Hoon; Lee, Song Joo; Ren, Yupeng; Zhang, Li-Qun

    2014-03-01

    The external knee adduction moment (EKAM) is associated with knee osteoarthritis (OA) in many aspects including presence, progression, and severity of knee OA. Despite of its importance, there is a lack of EKAM estimation methods that can provide patients with knee OA real-time EKAM biofeedback for training and clinical evaluations without using a motion analysis laboratory. A practical real-time EKAM estimation method, which utilizes kinematics measured by a simple six degree-of-freedom goniometer and kinetics measured by a multi-axis force sensor underneath the foot, was developed to provide real-time feedback of the EKAM to the patients during stepping on an elliptical trainer, which can potentially be used to control and alter the EKAM. High reliability (ICC(2,1): 0.9580) of the real-time EKAM estimation method was verified through stepping trials of seven subjects without musculoskeletal disorders. Combined with advantages of elliptical trainers including functional weight-bearing stepping and mitigation of impulsive forces, the real-time EKAM estimation method is expected to help patients with knee OA better control frontal plane knee loading and reduce knee OA development and progression.

  15. Demonstrating optical aberrations in the laboratory

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2009-07-01

    Full Text Available THE TANGENTIAL AND SAGITTAL FOCI DO NOT COINCIDE AND THE SYSTEM APPEARS TO HAVE 2 POINTS OF FOCUS SAGITTAL PLANE TANGENTIAL PLANE TANGENTIAL IMAGE OPTICAL AXIS OBJECT POINT SAGITTAL IMAGE ASTIGMATISM © CSIR 2008 www....csir.co.za ASTIGMATISM ARISES WHEN THE TANGENTIAL AND SAGITTAL FOCI DO NOT COINCIDE AND THE SYSTEM APPEARS TO HAVE 2 POINTS OF FOCUS SAGITTAL PLANE TANGENTIAL PLANE TANGENTIAL IMAGE OPTICAL AXIS OBJECT POINT SAGITTAL IMAGE FOCAL PLANE COMA IMAGE A B θ COMA...

  16. T1-weighted vs. short-TE-long-TR images. Usefulness for knee MR examinations of ligament and meniscal lesions

    International Nuclear Information System (INIS)

    Endo, Hideho; Wada, Mitsuyoshi; Shiotani, Seiji; Niitsu, Mamoru; Itai, Yuji

    2000-01-01

    The purpose of this study was to compare short-TE-long-TR images with T1-weighed images in knee MR examinations. Sagittal MR images of the knee were obtained in 31 patients with knee pain. T1-weighted images were obtained by the spin-echo technique (TR/TE =350/15), and short-TE-long-TR images by fast spin-echo (TR/TE =1300/15) with an echo-train length of 5. Contrast-to-noise-ratios (CNRs) of the anterior cruciate ligament and synovial space, meniscus and articular cartilage, and meniscal lesion and normal meniscus were compared between short-TE-long-TR images and T1-weighted images. On each of the three examinations, short-TE-long-TR images provided significantly higher CNRs than T1-weighted images. It was concluded that short-TE-long-TR images can be a useful alternative to T1-weighted images in evaluating the anterior cruciate ligament and meniscal lesions. (author)

  17. T1-weighted vs. short-TE-long-TR images. Usefulness for knee MR examinations of ligament and meniscal lesions

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Hideho; Wada, Mitsuyoshi; Shiotani, Seiji [Tsukuba Medical Center Hospital, Ibaraki (Japan); Niitsu, Mamoru; Itai, Yuji

    2000-11-01

    The purpose of this study was to compare short-TE-long-TR images with T1-weighed images in knee MR examinations. Sagittal MR images of the knee were obtained in 31 patients with knee pain. T1-weighted images were obtained by the spin-echo technique (TR/TE =350/15), and short-TE-long-TR images by fast spin-echo (TR/TE =1300/15) with an echo-train length of 5. Contrast-to-noise-ratios (CNRs) of the anterior cruciate ligament and synovial space, meniscus and articular cartilage, and meniscal lesion and normal meniscus were compared between short-TE-long-TR images and T1-weighted images. On each of the three examinations, short-TE-long-TR images provided significantly higher CNRs than T1-weighted images. It was concluded that short-TE-long-TR images can be a useful alternative to T1-weighted images in evaluating the anterior cruciate ligament and meniscal lesions. (author)

  18. Accuracy and repeatability of quantitative fluoroscopy for the measurement of sagittal plane translation and finite centre of rotation in the lumbar spine.

    Science.gov (United States)

    Breen, Alexander; Breen, Alan

    2016-07-01

    Quantitative fluoroscopy (QF) was developed to measure intervertebral mechanics in vivo and has been found to have high repeatability and accuracy for the measurement of intervertebral rotations. However, sagittal plane translation and finite centre of rotation (FCR) are potential measures of stability but have not yet been fully validated for current QF. This study investigated the repeatability and accuracy of QF for measuring these variables. Repeatability was assessed from L2-S1 in 20 human volunteers. Accuracy was investigated using 10 consecutive measurements from each of two pairs of linked and instrumented dry human vertebrae as reference; one which tilted without translation and one which translated without tilt. The results found intra- and inter-observer repeatability for translation to be 1.1mm or less (SEM) with fair to substantial reliability (ICC 0.533-0.998). Intra-observer repeatability of FCR location for inter-vertebral rotations of 5° and above ranged from 1.5mm to 1.8mm (SEM) with moderate to substantial reliability (ICC 0.626-0.988). Inter-observer repeatability for FCR ranged from 1.2mm to 5.7mm, also with moderate to substantial reliability (ICC 0.621-0.878). Reliability was substantial (ICC>0.81) for 10/16 measures for translation and 5/8 for FCR location. Accuracy for translation was 0.1mm (fixed centre) and 2.2mm (moveable centre), with an FCR error of 0.3mm(x) and 0.4mm(y) (fixed centre). This technology was found to have a high level of accuracy and with a few exceptions, moderate to substantial repeatability for the measurement of translation and FCR from fluoroscopic motion sequences. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Direct coronary and sagittal computerized tomography of the pelvis

    International Nuclear Information System (INIS)

    Maier, W.; Bargon, G.

    1981-01-01

    Whereas quite a number of reports have been published on direct coronary and sagittal computed tomography of the cranium, no extensive experience has been collected on multidimensional computerized tomography of the pelvis. In this article, the authors report on their preliminary experiences in direct approximately sagittal and coronary computerized tomography of the pelvis in a group of 76 patients. (orig.) [de

  20. Spinal Schmorl's nodes: Sagittal sectional imaging and pathological examination

    International Nuclear Information System (INIS)

    Silberstein, M.; Opeskin, K.

    1999-01-01

    The presence, location and number of Schmorl's nodes was determined in the thoracolumbar spines of 70 motor vehicle accident victims using radiographic examination of a midline sagittal section and subsequent pathological examinations, including histology. In 28% of spines, a greater number of Schmorl's nodes were identified with radiography, while in 44%, pathological examination revealed a greater number of nodes. The visibility of Schmorl's nodes was enhanced by using a sagittal radiographic approach, and, in contrast to previous work, nodes below 0.5 cm 2 were readily detected. The results of the present study offer an additional imaging technique for postmortem analysis of the spine, and support the use of sagittal MR imaging for the evaluation of this condition. Copyright (1999) Blackwell Science Pty Ltd

  1. How is sagittal balance acquired during bipedal gait acquisition? Comparison of neonatal and adult pelves in three dimensions. Evolutionary implications.

    Science.gov (United States)

    Tardieu, Christine; Bonneau, Noémie; Hecquet, Jérôme; Boulay, Christophe; Marty, Catherine; Legaye, Jean; Duval-Beaupère, Geneviève

    2013-08-01

    We compare adult and intact neonatal pelves, using a pelvic sagittal variable, the angle of sacral incidence, which presents significant correlations with vertebral curvature in adults and plays an important role in sagittal balance of the trunk on the lower limbs. Since the lumbar curvature develops in the child in association with gait acquisition, we expect a change in this angle during growth which could contribute to the acquisition of sagittal balance. To understand the mechanisms underlying the sagittal balance in the evolution of human bipedalism, we also measure the angle of incidence of hominid fossils. Fourty-seven landmarks were digitized on 50 adult and 19 intact neonatal pelves. We used a three-dimensional model of the pelvis (DE-VISU program) which calculates the angle of sacral incidence and related functional variables. Cross-sectional data from newborns and adults show that the angle of sacral incidence increases and becomes negatively correlated with the sacro-acetabular distance. During ontogeny the sacrum becomes curved, tends to sink down between the iliac blades as a wedge and moves backward in the sagittal plane relative to the acetabula, thus contributing to the backwards displacement of the center of gravity of the trunk. A chain of correlations links the degree of the sacral slope and of the angle of incidence, which is tightly linked with the lumbar lordosis. We sketch a model showing the coordinated changes occurring in the pelvis and vertebral column during the acquisition of bipedalism in infancy. In the australopithecine pelves, Sts 14 and AL 288-1, and in the Homo erectus Gona pelvis the angle of sacral incidence reaches the mean values of humans. Discussing the incomplete pelves of Ardipithecus ramidus, Australopithecus sediba and the Nariokotome Boy, we suggest how the functional linkage between pelvis and spine, observed in humans, could have emerged during hominid evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Kinematic MR imaging of the knee for evaluating patellar tracking

    International Nuclear Information System (INIS)

    Shellock, F.G.; Mink, J.H.; Fox, J.

    1988-01-01

    A new technique to evaluate patellar tracking uses MR imaging and a specially designed positioning device (MEDRAD). T1-weighted, axial plane imaging was performed on both knees at the following joint angles: 0 0 , 5 0 , 10 0 , 15 0 , 20 0 , 25 0 , and 30 0 . The total examination time was approximately 12 minutes. Images were viewed in a cine loop to produce a kinematic study that depicted the relationship of the patella to the trochlear groove during the different angles of knee flexion. To date, 102 subjects (204 knees) have been examined. Dislocation, subluxatino, lateral tilt, lateral and medial displacement of the patella, and normal patellar tracking could all be identified with this technique. Abnormal configurations of the patella and/or trochlear groove were also clearly demonstrated. In conclusion, kinematic MR imaging of the knee provided important clinical information concerning patellar tracking and other related abnormalities of the patellofemoral joint

  3. Occult fractures of the knee: tomographic evaluation

    International Nuclear Information System (INIS)

    Apple, J.S.; Martinez, S.; Allen, N.B.; Caldwell, D.S.; Rice, J.R.

    1983-01-01

    Seven adults with painful effusions of the knee were examined for occult fractures using pluridirectional tomograph in the coronal and lateral planes. Six patients (ages 50 to 82 years) were osteopenic and gave histories ranging from none to mild trauma; one 26-year-old man was not osteopenic and had severe trauma. In all cases, routine radiographs were interpreted as negative, but tomography demonstrated a fracture. Five fractures were subchondral. Bone scans in 2 patients were positive. The authors conclude that osteopenic patients with a painful effusion of the knee should be considered to have an occult fracture. While bone scans may be helpful, tomography is recommended as the procedure of choice to define the location and extent of the fracture

  4. MRI of the cartilages of the knee, 3-D imaging with a rapid computer system

    Energy Technology Data Exchange (ETDEWEB)

    Adam, G.; Bohndorf, K.; Prescher, A.; Drobnitzky, M.; Guenther, R.W.

    1989-01-01

    2-D spin-echo sequences were compared with 3-D gradient-echo sequences using normal and cadaver knee joints. The important advantages of 3-D-imaging are: sections of less than 1 mm, reconstruction in any required plane, which can be related to the complex anatomy of the knee joint, and very good distinction between intra-articular fluid, fibrocartilage and hyaline cartilage. (orig./GDG).

  5. Noninvasive lifting of arm, thigh, and knee skin with transcutaneous intense focused ultrasound.

    Science.gov (United States)

    Alster, Tina S; Tanzi, Elizabeth L

    2012-05-01

    Transcutaneous intense focused ultrasound is a novel Food and Drug Administration-approved technology for noninvasive skin tightening of the face and neck. No studies have reported on its safety and effectiveness on nonfacial areas. Eighteen paired areas (6 each) on the upper arms, medial thighs, and extensor knees were randomly treated with two different transducers (4.0 MHz, 4.5-mm focal depth and 7.0 MHz, 3.0-mm focal depth). One side was randomly assigned to receive a single pass (single plane) of microthermal coagulation zones over the involved area with the 4.0 MHz, 4.5-mm-depth transducer, and the contralateral side was assigned to receive consecutive single passes (dual plane) using both transducers (4.0 MHz, 4.5-mm depth followed by 7.0 MHz, 3.0-mm depth). Two independent masked assessors determined clinical improvement scores using comparative standardized photographs obtained at baseline and 3 and 6 months after treatment. Subjective assessments of clinical improvement and side effects of treatment were obtained. Global assessment scores revealed significant improvement in all treated areas, with the upper arms and knees demonstrating more skin lifting and tightening than the thighs. Areas receiving dual-plane treatment had slightly better clinical scores than those receiving single-plane treatment in all three sites. Clinical scores from single-plane and dual-plane treated areas continued to improve between 3 and 6 months after treatment. Side effects were mild and transient and included erythema, warmth, and skin tenderness. Rare focal bruising was noted in two patients on the upper arms that resolved within 7 days. No other side effects were reported or observed. Transcutaneous intense focused ultrasound can be safely and effectively used to improve the clinical appearance (texture and contour) of the upper arms, extensor knees, and medial thighs. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  6. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    Science.gov (United States)

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  7. Knee joint laxity and passive stiffness in meniscectomized patients compared with healthy controls.

    Science.gov (United States)

    Thorlund, Jonas B; Creaby, Mark W; Wrigley, Tim V; Metcalf, Ben R; Bennell, Kim L

    2014-10-01

    Passive mechanical behavior of the knee in the frontal plane, measured as angular laxity and mechanical stiffness, may play an important role in the pathogenesis of knee osteoarthritis (OA). Little is known about knee laxity and stiffness prior to knee OA onset. We investigated knee joint angular laxity and passive stiffness in meniscectomized patients at high risk of knee OA compared with healthy controls. Sixty patients meniscectomized for a medial meniscal tear (52 men, 41.4 ± 5.5 years, 175.3 ± 7.9 cm, 83.6 ± 12.8 kg, mean ± SD) and 21 healthy controls (18 men, 42.0 ± 6.7 years, 176.8 ± 5.7 cm, 77.8 ± 13.4 kg) had their knee joint angular laxity and passive stiffness assessed twice ~2.3 years apart. Linear regression models including age, sex, height and body mass as covariates in the adjusted model were used to assess differences between groups. Greater knee joint varus (-10.1 vs. -7.3°, pknee joint angular laxity and reduced passive stiffness ~3 months post surgery compared with controls. In addition, the results indicated that knee joint laxity may increase over time in meniscectomized patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Cartilage volume quantification with multi echo data image combination sequence in swine knee at 3.0 T MRI

    International Nuclear Information System (INIS)

    Zhang Lirong; Wang Dongqing; Wei Chuanshe; Ma Cong; Wang Dehang

    2010-01-01

    Objective: To investigate the accuracy and reproducibility of multi echo data imagine combination (MEDIC) sequence with water excitation at 3.0 T in swine knee cartilage. Methods: Sagittal MEDIC sequences (0.6 mm slice thickness, isotropic) were acquired twice at 3.0 T MRI in 30 swine knees. The knee cartilage was then removed and the volume was directly measured with water substitution method. The cartilage volume was also determined with a validated open source image software OsiriX by two observers (A and B). The cartilage volumes obtained by two methods were compared. The reproducibility of MEDIC for quantitative measurement was accessed by the root-mean-square (RMS) of variation coefficient. Interobserver and intraobserver precision errors were compared using a paired students t-test. The accuracy of MEDIC for quantitative measurement was determined by the random pairwise differences, systematic pairwise differences and the Pearson, correlation coefficients. Time of semiautomatic and manual segmentation were recorded. Results: Time was saved about 75% by using semiautomatic segmentation methods [(4.0± 1.5) min] versus manual segmentation [(16.0±0.9) min]. Interobserver precision errors (RMS CV% for paired analysis) between A and B for cartilage volume measurement were (2.66±0.82) ml and(2.61± 0.81) ml, t=0.24, P=0.81 (patella); (2.40±0.69) ml and (2.49±0.85) ml, t=-0.45, P=0.65 (medial femoral condyle); (2.28±0.74) ml and(2.41±0.78) ml, t=-0.66, P=0.51 (lateral femoral condyle); (3.43±1.28) ml and (3.51±1.08) ml, t=-0.26, P=0.79 (femora trochlea) with sagittal MEDIC. Intraobserver precision errors (RMS CV% for paired analysis) of observer A for the first and second cartilage volume measurement were (2.64±0.62) ml and (2.67±0.60) ml, t=-0.19, P=0.85 (patella); (2.43±0.60) ml and (2.39±0.59) ml, t=0.26, P=0.80 (medial femoral condyle); (2.26±0.56) ml and (2.30±0.57) ml, t=-0.27, P=0.78 (lateral femoral condyle); (3.40± 1.20) ml and (3.47±1

  9. THE INFLUENCE OF HIP STRENGTH ON KNEE KINEMATICS DURING A SINGLE-LEGGED MEDIAL DROP LANDING AMONG COMPETITIVE COLLEGIATE BASKETBALL PLAYERS.

    Science.gov (United States)

    Suzuki, Hidetomo; Omori, Go; Uematsu, Daisuke; Nishino, Katsutoshi; Endo, Naoto

    2015-10-01

    A smaller knee flexion angle and larger knee valgus angle during weight-bearing activities have been identified as risk factors for non-contact anterior cruciate ligament (ACL) injuries. To prevent such injuries, attention has been focused on the role of hip strength in knee motion control. However, gender differences in the relationship between hip strength and knee kinematics during weight-bearing activities in the frontal plane have not been evaluated. The purpose of this study was to determine the influence of hip strength on knee kinematics in both genders during a single-legged landing task in the frontal plane. The hypotheses were that 1) subjects with a greater hip strength would demonstrate larger knee flexion and smaller knee valgus and internal rotation angles and 2) no gender differences would exist during the single-legged landing task. Forty-three Japanese collegiate basketball players (20 males, 23 females) participated in this study. Three-dimensional motion analysis was used to evaluate knee kinematics during a single-legged medial drop landing (SML). A hand-held dynamometer was used to assess hip extensor (HEXT), abductor (HAB), and external rotator (in two positions: seated position [SHER] and prone [PHER]) isometric strength. Spearman rank correlation coefficients (ρ) were determined for correlations between hip strength and knee kinematics at initial contact (IC) and peak (PK) during SML (p genders. Hip strength may, therefore, play an important role in knee motion control during sports activities, suggesting that increased hip strength may help to prevent non-contact ACL injuries in athletes of both genders. Moreover, gender-specific programs may be needed to control abnormal knee motion, as the influence of hip strength on knee kinematics may differ based on gender. 3.

  10. Temporal gene expression profiling of the rat knee joint capsule during immobilization-induced joint contractures.

    Science.gov (United States)

    Wong, Kayleigh; Sun, Fangui; Trudel, Guy; Sebastiani, Paola; Laneuville, Odette

    2015-05-26

    Contractures of the knee joint cause disability and handicap. Recovering range of motion is recognized by arthritic patients as their preference for improved health outcome secondary only to pain management. Clinical and experimental studies provide evidence that the posterior knee capsule prevents the knee from achieving full extension. This study was undertaken to investigate the dynamic changes of the joint capsule transcriptome during the progression of knee joint contractures induced by immobilization. We performed a microarray analysis of genes expressed in the posterior knee joint capsule following induction of a flexion contracture by rigidly immobilizing the rat knee joint over a time-course of 16 weeks. Fold changes of expression values were measured and co-expressed genes were identified by clustering based on time-series analysis. Genes associated with immobilization were further analyzed to reveal pathways and biological significance and validated by immunohistochemistry on sagittal sections of knee joints. Changes in expression with a minimum of 1.5 fold changes were dominated by a decrease in expression for 7732 probe sets occurring at week 8 while the expression of 2251 probe sets increased. Clusters of genes with similar profiles of expression included a total of 162 genes displaying at least a 2 fold change compared to week 1. Functional analysis revealed ontology categories corresponding to triglyceride metabolism, extracellular matrix and muscle contraction. The altered expression of selected genes involved in the triglyceride biosynthesis pathway; AGPAT-9, and of the genes P4HB and HSP47, both involved in collagen synthesis, was confirmed by immunohistochemistry. Gene expression in the knee joint capsule was sensitive to joint immobility and provided insights into molecular mechanisms relevant to the pathophysiology of knee flexion contractures. Capsule responses to immobilization was dynamic and characterized by modulation of at least three

  11. COMPARATIVE BIOMECHANICAL ANALYSES OF SQUAT JUMP WITHOUT AND WITH FLEXION IN KNEE JOINT

    Directory of Open Access Journals (Sweden)

    Saša Bubanj

    2009-11-01

    Full Text Available In sports hall of Faculty of sports and physical education in Niš, student demon- strated technique of squat jump – without and with flexion in knee joint. Elements of technique were recorded by using one digital video camera in sagital plane. By using comparative kinematics analyses, there were establish differences in values of kinema- tics parametres of different body segments. Bigger elevation of body centre of gravity was ascertain at bounce without flexion in knee joint.

  12. Patients with proximal junctional kyphosis requiring revision surgery have higher postoperative lumbar lordosis and larger sagittal balance corrections.

    Science.gov (United States)

    Kim, Han Jo; Bridwell, Keith H; Lenke, Lawrence G; Park, Moon Soo; Song, Kwang Sup; Piyaskulkaew, Chaiwat; Chuntarapas, Tapanut

    2014-04-20

    Case control study. To evaluate risk factors in patients in 3 groups: those without proximal junctional kyphosis (PJK) (N), with PJK but not requiring revision (P), and then those with PJK requiring revision surgery (S). It is becoming clear that some patients maintain stable PJK angles, whereas others progress and develop severe PJK necessitating revision surgery. A total of 206 patients at a single institution from 2002 to 2007 with adult scoliosis with 2-year minimum follow-up (average 3.5 yr) were analyzed. Inclusion criteria were age more than 18 years and primary fusions greater than 5 levels from any thoracic upper instrumented vertebra to any lower instrumented vertebrae. Revisions were excluded. Radiographical assessment included Cobb measurements in the coronal/sagittal plane and measurements of the PJK angle at postoperative time points: 1 to 2 months, 2 years, and final follow-up. PJK was defined as an angle greater than 10°. The prevalence of PJK was 34%. The average age in N was 49.9 vs. 51.3 years in P and 60.1 years in S. Sex, body mass index, and smoking status were not significantly different between groups. Fusions extending to the pelvis were 74%, 85%, and 91% of the cases in groups N, P, and S. Instrumentation type was significantly different between groups N and S, with a higher number of upper instrumented vertebra hooks in group N. Radiographical parameters demonstrated a higher postoperative lumbar lordosis and a larger sagittal balance change, with surgery in those with PJK requiring revision surgery. Scoliosis Research Society postoperative pain scores were inferior in group N vs. P and S, and Oswestry Disability Index scores were similar between all groups. Patients with PJK requiring revision were older, had higher postoperative lumbar lordosis, and larger sagittal balance corrections than patients without PJK. Based on these data, it seems as though older patients with large corrections in their lumbar lordosis and sagittal balance

  13. Collateral ligament strains during knee joint laxity evaluation before and after TKA.

    Science.gov (United States)

    Delport, Hendrik; Labey, Luc; De Corte, Ronny; Innocenti, Bernardo; Vander Sloten, Jos; Bellemans, Johan

    2013-08-01

    Passive knee stability is provided by the soft tissue envelope. There is consensus among orthopedic surgeons that good outcome in Total Knee Arthroplasty requires equal tension in the medial/lateral compartment of the knee joint, as well as equal tension in the flexion/extension gap. The purpose of this study was to quantify the ligament laxity in the normal non-arthritic knee before and after Posterior-Stabilized Total Knee Arthroplasty. We hypothesized that the Medial/Lateral Collateral Ligament shows minimal changes in length when measured directly by extensometers in the native human knee during varus/valgus laxity testing. We also hypothesized that due to differences in material properties and surface geometry, native laxity is difficult to reconstruct using a Posterior-Stabilized Total Knee. Six specimens were used to perform this in vitro cadaver test using extensometers to provide numerical values for laxity and varus-valgus tilting in the frontal plane. This study enabled a precise measurement of varus-valgus laxity as compared with the clinical assessment. The strains in both ligaments in the replaced knee were different from those in the native knee. Both ligaments were stretched in extension, in flexion the Medial Collateral Ligament tends to relax and the Lateral Collateral Ligament remains tight. As material properties and surface geometry of the replaced knee add stiffness to the joint, we recommend to avoid overstuffing the joint, when using this type of Posterior-Stabilized Total Knee Arthroplasty, in order to obtain varus/valgus laxity close to the native joint. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Correction Capability in the 3 Anatomic Planes of Different Pedicle Screw Designs in Scoliosis Instrumentation.

    Science.gov (United States)

    Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy

    2017-05-01

    Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of

  15. Superior sagittal sinus thrombosis: a rare complication of nephrotic syndrome.

    Directory of Open Access Journals (Sweden)

    Tullu M

    1999-10-01

    Full Text Available A two and half year-old-male child, known case of steroid responsive nephrotic syndrome presented with fever and vomiting of acute onset. He was diagnosed to have superior sagittal sinus thrombosis on a contrast computerised tomographic scan of brain. Recovery was complete without anticoagulant therapy. Superior sagittal sinus thrombosis is an extremely rare complication of nephrotic syndrome.

  16. MR angiography of the carotid arteries in 3 D TOF-technique with sagittal ''double-slab'' acquisition using a new head-neck coil

    International Nuclear Information System (INIS)

    Link, J.; Mueller-Huelsbeck, S.; Heller, M.

    1996-01-01

    Purpose: The aim of the study was to assess the value of MR angiography (MRA) in sagittal technique compared to DSA in the evaluation of carotid artery stenosis. Methods: 80 Carotid arteries in 40 symptomatic patients were prospectively studied with DSA and MRA. MRA was carried out by means of 3D time-of-flight technique with a FISP sequence (T E 6 ms/T R 80 ms, flip angle 25 , FOV 240x210 mm, matrix 157x256 mm, in-plane resolution 1.34x0.94 mm, partition thickness 1.32 mm, slab thickness 45 mm, acquisition time 7 min) using a new head-neck coil. Data acquisition was performed in sagittal orientation with the 'double-slab' technique. Imaging quality of the extracranial carotid arteries and correctness of quantification of stenosis was performed. Results: Imaging quality was good at the origin of the carotid arteries in 65%, at the bifurcation region in 98% and near the skull base in 81%. The agreement of DSA and MRA was 96% of the normal arteries (24/25), 90% of the severe stenoses (28/31) and 100% of the occluded arteries (9/9). Conclusion: MRA in sagittal 'double-slab' technique is a noninvasive technique allowing to detect normal arteries and candidates for surgery with high degree of certainity. (orig.) [de

  17. Loss of knee-extension strength is related to knee swelling after total knee arthroplasty

    DEFF Research Database (Denmark)

    Holm, Bente; Kristensen, Morten T; Bencke, Jesper

    2010-01-01

    To examine whether changes in knee-extension strength and functional performance are related to knee swelling after total knee arthroplasty (TKA).......To examine whether changes in knee-extension strength and functional performance are related to knee swelling after total knee arthroplasty (TKA)....

  18. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.

    Science.gov (United States)

    Giffin, J Robert; Stabile, Kathryne J; Zantop, Thore; Vogrin, Tracy M; Woo, Savio L-Y; Harner, Christopher D

    2007-09-01

    Previous studies have shown that increasing tibial slope can shift the resting position of the tibia anteriorly. As a result, sagittal osteotomies that alter slope have recently been proposed for treatment of posterior cruciate ligament (PCL) injuries. Increasing tibial slope with an osteotomy shifts the resting position anteriorly in a PCL-deficient knee, thereby partially reducing the posterior tibial "sag" associated with PCL injury. This shift in resting position from the increased slope causes a decrease in posterior tibial translation compared with the PCL-deficient knee in response to posterior tibial and axial compressive loads. Controlled laboratory study. Three knee conditions were tested with a robotic universal force-moment sensor testing system: intact, PCL-deficient, and PCL-deficient with increased tibial slope. Tibial slope was increased via a 5-mm anterior opening wedge osteotomy. Three external loading conditions were applied to each knee condition at 0 degrees, 30 degrees, 60 degrees, 90 degrees, and 120 degrees of knee flexion: (1) 134-N anterior-posterior (A-P) tibial load, (2) 200-N axial compressive load, and (3) combined 134-N A-P and 200-N axial loads. For each loading condition, kinematics of the intact knee were recorded for the remaining 5 degrees of freedom (ie, A-P, medial-lateral, and proximal-distal translations, internal-external and varus-valgus rotations). Posterior cruciate ligament deficiency resulted in a posterior shift of the tibial resting position to 8.4 +/- 2.6 mm at 90 degrees compared with the intact knee. After osteotomy, tibial slope increased from 9.2 degrees +/- 1.0 degrees in the intact knee to 13.8 degrees +/- 0.9 degrees. This increase in slope reduced the posterior sag of the PCL-deficient knee, shifting the resting position anteriorly to 4.0 +/- 2.0 mm at 90 degrees. Under a 200-N axial compressive load with the osteotomy, an additional increase in anterior tibial translation to 2.7 +/- 1.7 mm at 30 degrees was

  19. Effect of knee joint icing on knee extension strength and knee pain early after total knee arthroplasty: a randomized cross-over study.

    Science.gov (United States)

    Holm, Bente; Husted, Henrik; Kehlet, Henrik; Bandholm, Thomas

    2012-08-01

    To investigate the acute effect of knee joint icing on knee extension strength and knee pain in patients shortly after total knee arthroplasty. A prospective, single-blinded, randomized, cross-over study. A fast-track orthopaedic arthroplasty unit at a university hospital. Twenty patients (mean age 66 years; 10 women) scheduled for primary unilateral total knee arthroplasty. The patients were treated on two days (day 7 and day 10) postoperatively. On one day they received 30 minutes of knee icing (active treatment) and on the other day they received 30 minutes of elbow icing (control treatment). The order of treatments was randomized. Maximal knee extension strength (primary outcome), knee pain at rest and knee pain during the maximal knee extensions were measured 2-5 minutes before and 2-5 minutes after both treatments by an assessor blinded for active or control treatment. The change in knee extension strength associated with knee icing was not significantly different from that of elbow icing (knee icing change (mean (1 SD)) -0.01 (0.07) Nm/kg, elbow icing change -0.02 (0.07) Nm/kg, P = 0.493). Likewise, the changes in knee pain at rest (P = 0.475), or knee pain during the knee extension strength measurements (P = 0.422) were not different between treatments. In contrast to observations in experimental knee effusion models and inflamed knee joints, knee joint icing for 30 minutes shortly after total knee arthroplasty had no acute effect on knee extension strength or knee pain.

  20. Inter-rater reliability of three musculoskeletal physical examination techniques used to assess motion in three planes while standing.

    Science.gov (United States)

    Prather, Heidi; Hunt, Devyani; Steger-May, Karen; Hayes, Marcie Harris; Knaus, Evan; Clohisy, John

    2009-07-01

    The objective of the study was to measure the reliability between examiners of 3 basic maneuvers of the Total Body Functional Profile physical examination test. The hypothesis was musculoskeletal health care providers of different disciplines could reliably use the 3 basic maneuvers as part of the musculoskeletal physical examination. A prospective observational study was conducted. Twenty-eight adult volunteers were measured on both the left and right side by 2 independent raters on a single occasion. The subjects were recruited through advertisements placed by the orthopedic department at a tertiary university. Twenty-eight volunteers were recruited and completed the study. The volunteers were between the ages of 18 and 51 years of age, had no symptoms in the lower extremity or spine, had no previous history of surgery or tumor involving the lower extremity, and no medical conditions that would preclude participation. On a single occasion, 2 examiners per 1 volunteer were blinded to their own and each others' measurements. Each examiner assessed the distance of frontal and sagittal plane lunge and angle of motion for transverse plane testing. Inter-rater agreement is expressed with intraclass correlation coefficients (ICCs) and corresponding 95% confidence intervals (CIs). The difference between raters is reported with 95% CIs. Baseline demographics, University of California Los Angeles (UCLA), and Harris hip questionnaires were completed by all participants. The UCLA and Harris hip scores showed no significant activity restrictions or pain limitations in all participants. The inter-rater reliability for sagittal, frontal, and transverse plane matrix testing was good with ICCs of 0.86 (95% CI 0.77-0.91), 0.90 (95% CI 0.84-0.94), and 0.85 (95% CI 0.75-0.91), respectively. The rater reliability between disciplines for transverse, sagittal, and frontal plane matrix testing was good with ICCs of 0.89 (95% CI 0.80-0.94), 0.88 (95% CI 0.79-0.94), and 0.90 (95% CI 0

  1. Alterations in walking knee joint stiffness in individuals with knee osteoarthritis and self-reported knee instability.

    Science.gov (United States)

    Gustafson, Jonathan A; Gorman, Shannon; Fitzgerald, G Kelley; Farrokhi, Shawn

    2016-01-01

    Increased walking knee joint stiffness has been reported in patients with knee osteoarthritis (OA) as a compensatory strategy to improve knee joint stability. However, presence of episodic self-reported knee instability in a large subgroup of patients with knee OA may be a sign of inadequate walking knee joint stiffness. The objective of this work was to evaluate the differences in walking knee joint stiffness in patients with knee OA with and without self-reported instability and examine the relationship between walking knee joint stiffness with quadriceps strength, knee joint laxity, and varus knee malalignment. Overground biomechanical data at a self-selected gait velocity was collected for 35 individuals with knee OA without self-reported instability (stable group) and 17 individuals with knee OA and episodic self-reported instability (unstable group). Knee joint stiffness was calculated during the weight-acceptance phase of gait as the change in the external knee joint moment divided by the change in the knee flexion angle. The unstable group walked with lower knee joint stiffness (p=0.01), mainly due to smaller heel-contact knee flexion angles (pknee flexion excursions (pknee stable counterparts. No significant relationships were observed between walking knee joint stiffness and quadriceps strength, knee joint laxity or varus knee malalignment. Reduced walking knee joint stiffness appears to be associated with episodic knee instability and independent of quadriceps muscle weakness, knee joint laxity or varus malalignment. Further investigations of the temporal relationship between self-reported knee joint instability and walking knee joint stiffness are warranted. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments.

    Science.gov (United States)

    Bates, Nathaniel A; Ford, Kevin R; Myer, Gregory D; Hewett, Timothy E

    2013-04-01

    Though the first landing of drop vertical jump task is commonly used to assess biomechanical performance measures that are associated with anterior cruciate ligament injury risk in athletes, the implications of the second landing in this task have largely been ignored. We examined the first and second landings of a drop vertical jump for differences in kinetic and kinematic behaviors at the hip and knee. A cohort of 239 adolescent female basketball athletes (age=13.6 (1.6) years) completed drop vertical jump tasks from an initial height of 31 cm. A three dimensional motion capture system recorded positional data while dual force platforms recorded ground reaction forces for each trial. The first landing demonstrated greater hip adduction angle, knee abduction angle, and knee abduction moment than the second landing (P-valuesvertical jump as an assessment tool for anterior cruciate ligament injury risk behaviors in adolescent female athletes. The second landing may be a more rigorous task and provides a superior tool to evaluate sagittal plane risk factors than the first landing, which may be better suited to evaluate frontal plane risk factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Reproduction of superior sagittal sinus animal model by bypass transplantation of biomaterial graft

    Directory of Open Access Journals (Sweden)

    Qing-yong LUO

    2011-03-01

    Full Text Available Objective To establish the beagles model of superior sagittal sinus bypass graft,and explore the feasibility of reconstruction of superior sagittal sinus with biomaterials using this model.Methods Eight adult male beagles(weight: 12.5-22.0kg were involved in the present study.The superior sagittal sinus was exposed and blocked via bone window,and then anastomosed side-to-end to the biomaterial graft under the dedicated microscope of neurosurgery surgery,expectant treatment such as anti-inflammatory was given for the animals.The digital subtraction venography(DSV and color Doppler flow imaging(CDFI of superior sagittal sinus were performed in 1,2,4 and 8 weeks after the operation.Eight weeks after the operation,all the animals were sacrificed and the material graft was examined histologically.Results The DSV and CDFI of superior sagittal sinus showed that the stomas of 2 beagles were with slight stenosis and high flow velocity,of 1 beagle with small leakage and low flow velocity,while of other 5 beagles were normal.The histological examination showed endothelial cells were growing on the graft and superior sagittal sinus,and crawling toward the lumen of graft 8 weeks after the operation.Conclusion The beagles model of superior sagittal sinus bypass graft was established successfully.The short-term effect of the model was satisfactory,while further work should be performed to determine the long-term effects.

  4. Interceptive orthopedics for the correction of maxillary transverse and sagittal deficiency in the early mixed dentition period

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Talapaneni

    2011-01-01

    Full Text Available Dentofacial Orthopedics directed to a hypoplastic maxilla in the prepubertal period redirects growth of the maxilla in the vertical, transverse and sagittal planes of space. The orthopedic correction of maxillary hypoplasia in the early mixed dentition period thus intercepts the establishment of permanent structural asymmetry in the mandible and helps in the achievement of optimal dentofacial esthetics. This paper presents the growth redirection in a hypoplastic maxilla of an 8-year-old girl with simultaneous rapid maxillary expansion and protraction headgear therapy for a period of 11 months which corrected the posterior unilateral cross-bite, the positional asymmetry of the mandible and established an orthognathic profile in the individual.

  5. Knee Joint Distraction Compared to Total Knee Arthroplasty for Treatment of End Stage Osteoarthritis: Simulating Long-Term Outcomes and Cost-Effectiveness.

    Science.gov (United States)

    van der Woude, J A D; Nair, S C; Custers, R J H; van Laar, J M; Kuchuck, N O; Lafeber, F P J G; Welsing, P M J

    2016-01-01

    In end-stage knee osteoarthritis the treatment of choice is total knee arthroplasty (TKA). An alternative treatment is knee joint distraction (KJD), suggested to postpone TKA. Several studies reported significant and prolonged clinical improvement of KJD. To make an appropriate decision regarding the position of this treatment, a cost-effectiveness and cost-utility analysis from healthcare perspective for different age and gender categories was performed. A treatment strategy starting with TKA and a strategy starting with KJD for patients of different age and gender was simulated. To extrapolate outcomes to long-term health and economic outcomes a Markov (Health state) model was used. The number of surgeries, QALYs, and treatment costs per strategy were calculated. Costs-effectiveness is expressed using the cost-effectiveness plane and cost-effectiveness acceptability curves. Starting with KJD the number of knee replacing procedures could be reduced, most clearly in the younger age categories; especially revision surgery. This resulted in the KJD strategy being dominant (more effective with cost-savings) in about 80% of simulations (with only inferiority in about 1%) in these age categories when compared to TKA. At a willingness to pay of 20.000 Euro per QALY gained, the probability of starting with KJD to be cost-effective compared to starting with a TKA was already found to be over 75% for all age categories and over 90-95% for the younger age categories. A treatment strategy starting with knee joint distraction for knee osteoarthritis has a large potential for being a cost-effective intervention, especially for the relatively young patient.

  6. Prosthetic alignment after total knee replacement is not associated with dissatisfaction or change in Oxford Knee Score: A multivariable regression analysis.

    Science.gov (United States)

    Huijbregts, Henricus J T A M; Khan, Riaz J K; Fick, Daniel P; Jarrett, Olivia M; Haebich, Samantha

    2016-06-01

    Approximately 18% of the patients are dissatisfied with the result of total knee replacement. However, the relation between dissatisfaction and prosthetic alignment has not been investigated before. We retrospectively analysed prospectively gathered data of all patients who had a primary TKR, preoperative and one-year postoperative Oxford Knee Scores (OKS) and postoperative computed tomography (CT). The CT protocol measures hip-knee-ankle (HKA) angle, and coronal, sagittal and axial component alignment. Satisfaction was defined using a five-item Likert scale. We dichotomised dissatisfaction by combining '(very) dissatisfied' and 'neutral/not sure'. Associations with dissatisfaction and change in OKS were calculated using multivariable logistic and linear regression models. 230 TKRs were implanted in 105 men and 106 women. At one year, 12% were (very) dissatisfied and 10% neutral. Coronal alignment of the femoral component was 0.5 degrees more accurate in patients who were satisfied at one year. The other alignment measurements were not different between satisfied and dissatisfied patients. All radiographic measurements had a P-value>0.10 on univariate analyses. At one year, dissatisfaction was associated with the three-months OKS. Change in OKS was associated with three-months OKS, preoperative physical SF-12, preoperative pain and cruciate retaining design. Neither mechanical axis, nor component alignment, is associated with dissatisfaction at one year following TKR. Patients get the best outcome when pain reduction and function improvement are optimal during the first three months and when the indication to embark on surgery is based on physical limitations rather than on a high pain score. 2. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A three-plane architectonic atlas of the rat hippocampal region.

    Science.gov (United States)

    Boccara, Charlotte N; Kjonigsen, Lisa J; Hammer, Ingvild M; Bjaalie, Jan G; Leergaard, Trygve B; Witter, Menno P

    2015-07-01

    The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource. © 2014 Wiley Periodicals, Inc.

  8. Reproducibility and repeatability of a new computerized software for sagittal spinopelvic and scoliosis curvature radiologic measurements: Keops(®).

    Science.gov (United States)

    Maillot, C; Ferrero, E; Fort, D; Heyberger, C; Le Huec, J-C

    2015-07-01

    The purpose of this study was to evaluate the inter- and intra-observer variability of the computerized radiologic measurements using Keops(®) and to determine the bias between the software and the standard paper measurement. Four individuals measured all frontal and sagittal variables on the 30 X-rays randomly selected on two occasions (test and retest conditions). The Bland-Altman plot was used to determine the degree of agreement between the measurement on paper X-ray and the measurement using Keops(®) for all reviewers and for the two measures; the intraclass correlation coefficient (ICC) was calculated for each pair of analyses to assess interobserver reproducibility among the four reviewers for the same patient using either paper X-ray or Keops(®) measurement and finally, concordance correlation coefficient (rc) was calculated to assess intraobserver repeatability among the same reviewer for one patient between the two measure using the same method (paper or Keops(®)). The mean difference calculated between the two methods was minimal at -0, 4° ± 3.41° [-7.1; 6.4] for frontal measurement and 0.1° ± 3.52° [-6.7; 6.8] for sagittal measurement. Keops(®) has a better interobserver reproducibility than paper measurement for determination of the sagittal pelvic parameter (ICC = 0.9960 vs. 0.9931; p = 0.0001). It has a better intraobserver repeatability than paper for determination of Cobbs angle (rc = 0.9872 vs. 0.9808; p rc = 0.9981 vs. 0.9953; p plane and that the use of this software can be recommended for clinical application. Diagnostic, level III.

  9. Clinical practice guidelines for rest orthosis, knee sleeves, and unloading knee braces in knee osteoarthritis.

    Science.gov (United States)

    Beaudreuil, Johann; Bendaya, Samy; Faucher, Marc; Coudeyre, Emmanuel; Ribinik, Patricia; Revel, Michel; Rannou, François

    2009-12-01

    To develop clinical practice guidelines concerning the use of bracing--rest orthosis, knee sleeves and unloading knee braces--for knee osteoarthritis. The French Physical Medicine and Rehabilitation Society (SOFMER) methodology, associating a systematic literature review, collection of everyday clinical practice, and external review by multidisciplinary expert panel, was used. Few high-level studies of bracing for knee osteoarthritis were found. No evidence exists for the effectiveness of rest orthosis. Evidence for knee sleeves suggests that they decrease pain in knee osteoarthritis, and their use is associated with subjective improvement. These actions do not appear to depend on a local thermal effect. The effectiveness of knee sleeves for disability is not demonstrated for knee osteoarthritis. Short- and mid-term follow-up indicates that valgus knee bracing decreases pain and disability in medial knee osteoarthritis, appears to be more effective than knee sleeves, and improves quality of life, knee proprioception, quadriceps strength, and gait symmetry, and decreases compressive loads in the medial femoro-tibial compartment. However, results of response to valgus knee bracing remain inconsistent; discomfort and side effects can result. Thrombophlebitis of the lower limbs has been reported with the braces. Braces, whatever kind, are infrequently prescribed in clinical practice for osteoarthritis of the lower limbs. Modest evidence exists for the effectiveness of bracing--rest orthosis, knee sleeves and unloading knee braces--for knee osteoarthritis, with only low level recommendations for its use. Braces are prescribed infrequently in French clinical practice for osteoarthritis of the knee. Randomized clinical trials concerning bracing in knee osteoarthritis are still necessary.

  10. Posteromedial corner of the knee: MR imaging with gross anatomic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Loredo, R. (Texas Univ., San Antonio, TX (United States). Dept. of Radiology); Hodler, J. (Department of Radiology, Univ. of Zurich (Switzerland)); Pedowitz, R. (Department of Orthopedic Surgery, Veterans Administration Medical Center (VAMC), San Diego, CA (United States)); Yeh, L.-R.; Trudell, D.; Resnick, D. (Department of Radiology, Veterans Administration Medical Center (VAMC), 3350 La Jolla Village Drive, San Diego, CA 92161 (United States))

    1999-06-01

    Objective. The objective of this study was to illustrate the magnetic resonance (MR) image appearance of the structures of the posteromedial ''corner'' of the knee with particular emphasis on the anatomy and differentiation between the medial collateral ligament and the posterior oblique ligament.Design. Six cadaveric knee specimens underwent MR imaging, before and following instillation of intra-articular contrast material. The knees were sectioned in the axial, coronal, and coronal oblique planes and the gross morphology of the posteromedial corner and surrounding structures was studied and correlated with the MR images.Patients. The human cadaveric specimens were from two female and four male patients (age at death, 72-86 years; average, 78 years).Results and conclusions. The contrast-enhanced sequences and the coronal oblique images allowed for improved visualization of the structures. (orig.) With 8 figs., 7 refs.

  11. Sagittal synostosis in X-linked hypophosphatemic rickets and related diseases

    Energy Technology Data Exchange (ETDEWEB)

    Currarino, Guido [Texas Scottish Rite Hospital, Department of Radiology, Dallas, TX (United States)

    2007-08-15

    The recent observations of two new cases of X-linked hypophosphatemic rickets associated with premature closure of the sagittal suture prompted a review of similar cases seen in this institution. To review the clinical records and skull radiographs of 28 children with hypophosphatemic rickets in order to investigate the frequency and type of craniosynostosis and other cranial vault changes seen in these conditions and to review the literature for relevant findings. Clinical and imaging records were reviewed on 28 patients with hypophosphatemic rickets, all younger than 18 years. Most patients had X-linked hypophosphatemic rickets and a few had autosomal-dominant hypophosphatemic rickets or were non-familial cases. Of the 28 patients, 13 had sagittal synostosis. Dolichocephaly was present in ten patients. The configuration of the cranial vault in some of these ten patients with dolichocephaly varied somewhat from that seen in nonsyndromic sagittal synostosis. In one patient, a Chiari I malformation was demonstrated by MRI. In another patient with increased intracranial pressure the sagittal suture closure was associated with lambdoidal synostosis. Dolichocephaly was not present in three patients, suggesting that the synostosis started later than in the other patients, probably in the second year of life, a period of slower brain growth than in the first year. The two patients in this group of three showed thickening and sclerosis of the cranial vault of uncertain etiology. There is an increased risk of sagittal synostosis in hypophosphatemic rickets and related diseases in children. The appearance of the cranial vault in this type of synostosis can vary from that seen in nonsyndromic synostosis. In this setting, careful clinical and imaging follow-up is warranted. (orig.)

  12. Sagittal synostosis in X-linked hypophosphatemic rickets and related diseases

    International Nuclear Information System (INIS)

    Currarino, Guido

    2007-01-01

    The recent observations of two new cases of X-linked hypophosphatemic rickets associated with premature closure of the sagittal suture prompted a review of similar cases seen in this institution. To review the clinical records and skull radiographs of 28 children with hypophosphatemic rickets in order to investigate the frequency and type of craniosynostosis and other cranial vault changes seen in these conditions and to review the literature for relevant findings. Clinical and imaging records were reviewed on 28 patients with hypophosphatemic rickets, all younger than 18 years. Most patients had X-linked hypophosphatemic rickets and a few had autosomal-dominant hypophosphatemic rickets or were non-familial cases. Of the 28 patients, 13 had sagittal synostosis. Dolichocephaly was present in ten patients. The configuration of the cranial vault in some of these ten patients with dolichocephaly varied somewhat from that seen in nonsyndromic sagittal synostosis. In one patient, a Chiari I malformation was demonstrated by MRI. In another patient with increased intracranial pressure the sagittal suture closure was associated with lambdoidal synostosis. Dolichocephaly was not present in three patients, suggesting that the synostosis started later than in the other patients, probably in the second year of life, a period of slower brain growth than in the first year. The two patients in this group of three showed thickening and sclerosis of the cranial vault of uncertain etiology. There is an increased risk of sagittal synostosis in hypophosphatemic rickets and related diseases in children. The appearance of the cranial vault in this type of synostosis can vary from that seen in nonsyndromic synostosis. In this setting, careful clinical and imaging follow-up is warranted. (orig.)

  13. The X-ray and MRI diagnosis of osteochondritis dissecans in the knee joint

    International Nuclear Information System (INIS)

    Ge Xihong; Wang Bin; Sun Xihe; Chang Guanghui

    2002-01-01

    Objective: To investigate the X-ray and MRI manifestations of osteochondritis dissecans (OCD) and to compare the sensitivity of detection among different sequences. Methods: Thirty-six OCD cases (thirty-eight knees) with complete data were selected and analyzed. The sagittal and coronal images were acquired on T 1 WI, T 2 WI, PDWI and FLASH T 2 WI. MRI manifestations were analyzed retrospectively with double blind contrast method. The radiography were obtained on the same day. The sensitivity of detection among different sequences was also compared. Results: (1) The medial femoral condyle was the most commonly affected location in the knee (63.2%). The proportion of classical type, expanded type, and infero-central type was 55.3%, 15.8% and 28.9%, respectively. (2) On radiographs, the lesions typically appeared as a well circumscribed area of sclerotic subchondral bone separated from the remainder of the epiphysis by a radiolucent line. (3) Subchondral bone lesion was displayed as small and crescent-shaped (n = 38) on the sagittal image and as wedge (14) or short bar (24) shape on coronal image. The signal of the lesion was hypointense or isointense on T 1 WI, surrounded by a hypointense or hyperintense (FLASH T 2 WI, T 2 WI) line. The subchondral plate disappeared or became thinner. Interruption or disappearance of the hyaline cartilage could be seen sometimes. (4) The detection rate on T 1 WI was higher than that of PDWI, T 2 WI and FLASH T 2 WI. Conclusion: (1) Osteochondritis dissecans has specific X-ray and MRI manifestations. The abnormality of the hyaline cartilage and the subchondral bone can be displayed by MRI. Thus a proper diagnosis can be made. (2) The detection rate on T 1 WI is higher than that of PDWI, T 2 WI and FLASH T 2 WI

  14. Observation of femoral and tibial insertion of the posterior cruciate ligament by using conventional CT and transparent 3D-CT

    International Nuclear Information System (INIS)

    Inoue, Masayuki; Tsukuda, Koichiro; Yasojima, Nobutoshi; Oota, Masahiro; Kasahara, Yasuhiko

    2011-01-01

    Presented are image data acquisitioned by the volume rendering (VR)-3D-CT and authors' transparent (T)-3D-CT to depict the bone contour, of medial intercondylar ridge (MIR) and posterior intercodylar fossa (PIF) at femoral and tibial insertion, respectively, of the posterior cruciate ligament (PCL) as those data are helpful for planning the reconstruction surgery of PCL and for confirming the femoral PCL insertion by using the C-arm during operation. Helical scanning is conducted with GE MD-CT (64DAS) to reconstruct VR-3D-CT image with the workstation ZIO's ZIO900M Quadra and T-3D-CT image, by reducing the opacity by pixel exclusion of the intraosseous lumen. MIR is observed in all 70 normal knees tested in VR-3D-CT and the bifurcate ridge, in 15 knees among them. In T-3D-CT image, distance data of the origin of MIR from Blumensaat's line and the angle of MIR and bone axis are calculated and presented. In VR-3D-CT and T-3D-CT images of PIF from 20 knees, actual measures of PIF slope angle (degree), PIF area ratio to joint surface (JS) (%), distance from JS to centers of anterolateral (AL) and posterolateral (PM) slopes (mm), and from medial and lateral JS to PIF posterior border (mm), and distance ratios of PM and AL to medial and lateral tibia, respectively, (%) are calculated and presented. Findings are: MIR originates at 45% distal point of Blumensaat's line; the articular line crosses with PIF at its center in T-3D-CT sagittal plane; centers of tibial AL and PM exist at the middle of frontal plane, and at 1.00 and 5.5 mm, respectively, distal points of JS of sagittal plane. The PIF data are rather comparable to those obtained in cadavers reported in 3 literatures and the present procedure is concluded to be valid. (author)

  15. Meniscus tears of the knee: Postarthrogram high resolution CT

    International Nuclear Information System (INIS)

    Kim, Jae Hyoung; Do, Young Soo; You, Jin Jong; Gong, Jae Chul; Kim, Hyung Jin; Chung, Sung Hoon

    1990-01-01

    Thirty-eight knees with clinically suspected meniscal tears were examined with high resolution computed tomography(HRCT) immediately following double contrast arthrography. All subsequently underwent arthroscopy. The findings of postarthrogram HRCT and arthroscopy were compared to evaluated the usefulness of postarthrogram HRCT in diagnosis of the meniscal tears. The sensitivity, specificity and accuracy of HRCT were 96.2%. 83.3% and 92.1% respectively. The anatomic details of the meniscal tears were clearly visible on the HRCT scans. Sagittal and coronal reformation views well visualized the horizontal tears and the relationship of torn meniscal fragments, and well differential the peripheral tears from the synovial recess. Our result indicate that postarthrogram HRCT not only is a sensitive and effective method for the detection and characterization of the meniscal tears, but also provides arthroscopists with the appropriate surgical plans

  16. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement.

    Science.gov (United States)

    Smith, Colin R; Vignos, Michael F; Lenhart, Rachel L; Kaiser, Jarred; Thelen, Darryl G

    2016-02-01

    The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial-lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and -23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.

  17. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement

    Science.gov (United States)

    Smith, Colin R.; Vignos, Michael F.; Lenhart, Rachel L.; Kaiser, Jarred; Thelen, Darryl G.

    2016-01-01

    The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement. PMID:26769446

  18. Grading system for migrated lumbar disc herniation on sagittal magnetic resonance imaging. An agreement study

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.; Jeong, T.S. [Gachon University Gil Medical Center, Department of Neurosurgery, Incheon (Korea, Republic of); Lim, T.; Jeon, J.Y. [Gachon University Gil Medical Center, Department of Radiology, Incheon (Korea, Republic of)

    2018-01-15

    Migrated lumbar disc herniations (LDHs) in the sagittal plane are common. Disc migration grading can be applied as a useful measurement tool in the diagnosis, treatment, and outcome evaluation of migrated LDH. No study has evaluated the reliability of migrated LDH grading. We evaluated the reliability and functionality of the current magnetic resonance imaging (MRI) grading system for migrated LDH. We assessed a six-level grading system developed based on sagittal MRI and graded according to the direction (rostral and caudal) and degree (low, high, and very high) of disc migration. One-hundred and one migrated LDHs treated with minimally invasive endoscopic discectomy were analyzed independently by two experienced radiologists. Intraobserver and interobserver agreements were assessed by kappa statistics. The most common migrated LDH grade was grade 4 (30.94%; caudal, low-grade migration). Rostral and caudal migrations were more common in the upper and lower lumbar levels, respectively. Interobserver agreement in the grading of migrated LDH was good at both the first (kappa = 0.737) and second assessment (kappa = 0.657). The intraobserver agreement for reader 1 was very good (kappa = 0.827) and for reader 2 was good (kappa = 0.620). The current grading system for migrated LDH was found to be reliable and functional with good interobserver and intraobserver agreement. It may be useful in the interpretation of disc migration patterns and outcomes of various minimally invasive surgical procedures. (orig.)

  19. Sagittal synostosis: I. Preoperative morphology of the skull

    DEFF Research Database (Denmark)

    Guimaraes-Ferreira, J.; Gewalli, F.; David, L.

    2006-01-01

    The aim of this study was to characterise the preoperative morphology of the skull in sagittal synostosis in an objective and quantified way. The shapes of the skulls of 105 patients with isolated premature synostosis of the sagittal suture ( SS group) were studied and compared with those......, skull base, and orbit ( 42 in the lateral and 46 in the frontal projections), the production of plots of mean shape for each group, and the intergroup comparison of a series of 81 variables ( linear distance between selected landmarks, and angles defined by groups of three landmarks). Data from...... skull width. Comparison of the mean values of an SS subgroup to age-matched normative data showed a longer (p differ significantly...

  20. Effect of knee joint icing on knee extension strength and knee pain early after total knee arthroplasty: a randomized cross-over study

    DEFF Research Database (Denmark)

    Holm, Bente; Husted, Henrik; Kehlet, Henrik

    2012-01-01

    Objective: To investigate the acute effect of knee joint icing on knee extension strength and knee pain in patients shortly after total knee arthroplasty.Design: A prospective, single-blinded, randomized, cross-over study.Setting: A fast-track orthopaedic arthroplasty unit at a university hospital.......Participants: Twenty patients (mean age 66 years; 10 women) scheduled for primary unilateral total knee arthroplasty.Interventions: The patients were treated on two days (day 7 and day 10) postoperatively. On one day they received 30 minutes of knee icing (active treatment) and on the other day they received 30...... minutes of elbow icing (control treatment). The order of treatments was randomized.Main outcome measures: Maximal knee extension strength (primary outcome), knee pain at rest and knee pain during the maximal knee extensions were measured 2-5 minutes before and 2-5 minutes after both treatments...

  1. The Valgus Inclination of the Tibial Component Increases the Risk of Medial Tibial Condylar Fractures in Unicompartmental Knee Arthroplasty.

    Science.gov (United States)

    Inoue, Shinji; Akagi, Masao; Asada, Shigeki; Mori, Shigeshi; Zaima, Hironori; Hashida, Masahiko

    2016-09-01

    Medial tibial condylar fractures (MTCFs) are a rare but serious complication after unicompartmental knee arthroplasty. Although some surgical pitfalls have been reported for MTCFs, it is not clear whether the varus/valgus tibial inclination contributes to the risk of MTCFs. We constructed a 3-dimensional finite elemental method model of the tibia with a medial component and assessed stress concentrations by changing the inclination from 6° varus to 6° valgus. Subsequently, we repeated the same procedure adding extended sagittal bone cuts of 2° and 10° in the posterior tibial cortex. Furthermore, we calculated the bone volume that supported the tibial component, which is considered to affect stress distribution in the medial tibial condyle. Stress concentrations were observed on the medial tibial metaphyseal cortices and on the anterior and posterior tibial cortices in the corner of cut surfaces in all models; moreover, the maximum principal stresses on the posterior cortex were larger than those on the anterior cortex. The extended sagittal bone cuts in the posterior tibial cortex increased the stresses further at these 3 sites. In the models with a 10° extended sagittal bone cut, the maximum principal stress on the posterior cortex increased as the tibial inclination changed from 6° varus to 6° valgus. The bone volume decreased as the inclination changed from varus to valgus. In this finite element method, the risk of MTCFs increases with increasing valgus inclination of the tibial component and with increased extension of the sagittal cut in the posterior tibial cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Sagittal imbalance in patients with lumbar spinal stenosis and outcomes after simple decompression surgery.

    Science.gov (United States)

    Shin, E Kyung; Kim, Chi Heon; Chung, Chun Kee; Choi, Yunhee; Yim, Dahae; Jung, Whei; Park, Sung Bae; Moon, Jung Hyeon; Heo, Won; Kim, Sung-Mi

    2017-02-01

    Lumbar spinal stenosis (LSS) is the most common lumbar degenerative disease, and sagittal imbalance is uncommon. Forward-bending posture, which is primarily caused by buckling of the ligamentum flavum, may be improved via simple decompression surgery. The objectives of this study were to identify the risk factors for sagittal imbalance and to describe the outcomes of simple decompression surgery. This is a retrospective nested case-control study PATIENT SAMPLE: This was a retrospective study that included 83 consecutive patients (M:F=46:37; mean age, 68.5±7.7 years) who underwent decompression surgery and a minimum of 12 months of follow-up. The primary end point was normalization of sagittal imbalance after decompression surgery. Sagittal imbalance was defined as a C7 sagittal vertical axis (SVA) ≥40 mm on a 36-inch-long lateral whole spine radiograph. Logistic regression analysis was used to identify the risk factors for sagittal imbalance. Bilateral decompression was performed via a unilateral approach with a tubular retractor. The SVA was measured on serial radiographs performed 1, 3, 6, and 12 months postoperatively. The prognostic factors for sagittal balance recovery were determined based on various clinical and radiological parameters. Sagittal imbalance was observed in 54% (45/83) of patients, and its risk factors were old age and a large mismatch between pelvic incidence and lumbar lordosis. The 1-year normalization rate was 73% after decompression surgery, and the median time to normalization was 1 to 3 months. Patients who did not experience SVA normalization exhibited low thoracic kyphosis (hazard ratio [HR], 1.04; 95% confidence interval [CI], 1.02-1.10) (pimbalance was observed in more than 50% of LSS patients, but this imbalance was correctable via simple decompression surgery in 70% of patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Magnetic Resonance Imaging based Cartilage Loss in Painful Contra-Lateral Knees with and without Radiographic Joint Space Narrowing – Data from the Osteoarthritis Initiative (OAI)

    Science.gov (United States)

    Eckstein, Felix; Benichou, Olivier; Wirth, Wolfgang; Nelson, David R; Maschek, Susanne; Hudelmaier, Martin; Kwoh, C. Kent; Guermazi, Ali; Hunter, David

    2010-01-01

    Objective Magnetic resonance imaging (MRI) was used to assess whether knees with advanced radiographic disease (medial joint space narrowing = mJSN) encounter greater longitudinal cartilage loss than contra-lateral knees with earlier disease (no or less mJSN). Methods Participants were selected from 2678 cases in the Osteoarthritis Initiative, based on exhibition of bilateral pain, BMI>25, mJSN in one knee, no or less mJSN in the contra-lateral knee, and no lateral JSN in both knees. 80 participants (age 60.6±9.1 yrs) fulfilled these criteria. Medial tibial and femoral cartilage morphology was analyzed from baseline and 1-year follow-up sagittal DESSwe 3 Tesla MRI of both knees, by experienced readers blinded to the timepoint and mJSN status. Results Knees with more radiographic mJSN displayed greater medial cartilage loss (-80 μm), assessed by MRI, than contra-lateral knees with less mJSN (-57μm). The difference reached statistical significance in participants with mJSN grade 2 or 3 (p=0.005 to p=0.08), but not in participants with mJSN grade 1 (p=0.28 to 0.98). In knees with more mJSN, cartilage loss increased with higher grades of mJSN (p=0.003 in the medial femur). Knees with mJSN grade 2 or 3 displayed greater cartilage loss in the weight-bearing medial femur than in the posterior femur or in the medial tibia (p=0.048). Conclusion Knees with advanced mJSN displayed greater cartilage loss than contra-lateral knees with less mJSN. These data suggest that radiography can be used to stratify fast structural progressors, and that MRI cartilage thickness loss is more pronounced at advanced radiographic disease stage. PMID:19714595

  4. Does post-operative knee awareness differ between knees in bilateral simultaneous total knee arthroplasty? Predictors of high or low knee awareness

    DEFF Research Database (Denmark)

    Nielsen, Katrine Abildgaard; Thomsen, Morten Grove; Latifi, Roshan

    2016-01-01

    PURPOSE: To evaluate the difference in post-operative knee awareness between knees in patients undergoing bilateral simultaneous total knee arthroplasty (TKA) and to assess factors predicting high or low knee awareness. METHODS: This study was conducted on 99 bilateral simultaneous TKAs performed...... at our institution from 2008 to 2012. All patients received one set of questionnaires [Forgotten Joint Score (FJS) and Oxford Knee Score (OKS)] for each knee. Based on the FJS, the patients' knees were divided into two groups: "best" and "worst" knees. The median of the absolute difference in FJS and OKS...... within each patient was calculated. Multivariate linear regression was performed to identify factors affecting FJS. RESULTS: The difference between knees was 1 point (CI 0-5) for the FJS and 1 point (CI 0-2) for the OKS. The FJS for females increased (decreasing awareness) with increasing age. Males had...

  5. Total knee arthroplasty for severe valgus knee deformity.

    Science.gov (United States)

    Zhou, Xinhua; Wang, Min; Liu, Chao; Zhang, Liang; Zhou, Yixin

    2014-01-01

    Primary total knee arthroplasty (TKA) in severe valgus knees may prove challenging, and choice of implant depends on the severity of the valgus deformity and the extent of soft-tissue release. The purpose of this study was to review 8 to 11 years (mean, 10 years) follow-up results of primary TKA for varient-III valgus knee deformity with use of different type implants. Between January 2002 and January 2005, 20 women and 12 men, aged 47 to 63 (mean, 57.19 ± 6.08) years old, with varient-III valgus knees underwent primary TKA. Of the 32 patients, 37 knees had varient-III deformities. Pie crusting was carefully performed with small, multiple inside-out incisions, bone resection balanced the knee in lieu of soft tissue releases that were not used in the series. Cruciate-retaining knees (Gemini MKII, Link Company, Germany) were used in 13 knees, Genesis II (Simth & Nephew Company, USA) in 14 knees, and hinged knee (Endo-Model Company, Germany) in 10 knees. In five patients with bilateral variant-III TKAs, three patients underwent 1-stage bilateral procedures, and two underwent 2-stage procedures. All implants were cemented and the patella was not resurfaced. The Hospital for Special Surgery (HSS) knee score was assessed. Patients were followed up from 8 to 11 years. The mean HSS knee score were improved from 50.33 ± 11.60 to 90.06 ± 3.07 (P managed with rivaroxaban and thrombo-embolic deterrent stockings. There was no incidence of pulmonary embolism. Post-operative patient satisfaction was 80.7 ± 10.4 points in the groups. Prosthetic survival rate was 100% at mean 10 years postoperative. Not only hinged implants can be successfully used in variant-III valgus knees. As our results show, if proper ligament balancing techniques are used and proper ligament balance is attained, the knee may not require the use of a more constrained components. Our results also present alternative implant choices for severe knee deformities.

  6. The Influence of Natural Head Position on the Cervical Sagittal Alignment

    Directory of Open Access Journals (Sweden)

    Kuan Wang

    2017-01-01

    Full Text Available Introduction. This study investigated the relationship between the parameters related to the natural head position and cervical segmental angles and alignment of patients with neck pain. Material and Methods. The lateral radiographs of the cervical spine were collected from 103 patients and were used to retrospectively analyze the correlation between the natural head position, cervical local sagittal angles, and alignment. Sagittal measurements were as follows: cervical curvature classification, slope of McGregor’s line (McGS, local sagittal angles (C0–C2 angle, C2–C5 angle, C5–C7 angle, and C2–C7 angle, T1 slope, center of gravity of the head to sagittal vertical axis (CG–C7 SVA, and local sagittal alignment (C0–C2 SVA and C2–C7 SVA. Results. McGS was significantly correlated to C0–C2 angle (r=0.57, C0–C2 SVA (r=−0.53, C2–C7 SVA (r=−0.28, and CG–C7 SVA (r=−0.47. CG–C7 SVA was also significantly correlated to curvature type (r=0.27, C5–C7 angle (r=−0.37, and C2–C7 angle (r=−0.39. Conclusions. A backward shift with an extended head position may accompany a relatively normal curvature of the cervical spine. The effect of posture control in relieving abnormal mechanical state of the cervical spine needs to be further confirmed by biomechanical analysis.

  7. A study on MR images of the articular cartilage in medial-type osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Miyazaki, Hiroyuki; Ishii, Yoshiaki; Hayashi, Mitsutoshi; Kotani, Akihiro

    2001-01-01

    Changes in the articular cartilage of 88 knees of 73 cases (age range 40-78) diagnosed clinically and radiologically as OA (osteoarthritis) were studied by obtaining fat-suppressed MR images of the knee. On 27 knees out of the 88, moreover, macroscopic observation was performed to make a comparative study between the directly-observed findings and MR findings. Fat-suppressed MR images were obtained sagittally by 3D-FLASH (fast low angle shot) sequence. The examined regions consisted of the following 4 sites; the medial condyle of the femur, its lateral condyle, the medial condyle of the tibia, and its lateral condyle. The revealed conditions of the cartilage were morphologically classified into 4 Stages. The evidence of cartilage defect on MR images was most frequently found at the medial condyle of the femur, with the medial condyle of the tibia, the lateral condyle of the femur, and the lateral condyle of the tibia following in a less frequent order. Fat-suppressed MRI's sensitivity to cartilage defect against macroscopy was 94.5%, specificity 95.4%, and accuracy 95.2%. MR imaging using fat-suppression can reveal cartilaginous degeneration and defect so well that this technique provides an important indication for selecting a proper method of treatment. (author)

  8. Effect of exoskeletal joint constraint and passive resistance on metabolic energy expenditure: Implications for walking in paraplegia.

    Directory of Open Access Journals (Sweden)

    Sarah R Chang

    Full Text Available An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses. These mechanisms added passive resistance to the hip (15 Nm and knee (6 Nm joints while the exoskeleton constrained joint motion to the sagittal plane. The average oxygen consumption when walking with the exoskeleton was 22.5 ± 3.4 ml O2/min/kg as compared to 11.7 ± 2.0 ml O2/min/kg when walking without the exoskeleton at a comparable speed. The heart rate and physiological cost index with the exoskeleton were at least 30% and 4.3 times higher, respectively, than walking without it. The maximum average speed achieved with the exoskeleton was 1.2 ± 0.2 m/s, at a cadence of 104 ± 11 steps/min, and step length of 70 ± 7 cm. Average peak hip joint angles (25 ± 7° were within normal range, while average peak knee joint angles (40 ± 8° were less than normal. Both hip and knee angular velocities were reduced with the exoskeleton as compared to normal. While the walking speed achieved with the exoskeleton could be sufficient for community ambulation, metabolic energy expenditure was significantly increased and unsustainable for such activities. This suggests that passive resistance, constraining leg motion to the sagittal plane, reciprocally coupling the hip joints, and weight of exoskeleton place considerable limitations on the utility of the device and need to be minimized in future designs of practical hybrid neuroprostheses for walking after paraplegia.

  9. Preserving the PCL during the tibial cut in total knee arthroplasty.

    Science.gov (United States)

    Cinotti, G; Sessa, P; Amato, M; Ripani, F R; Giannicola, G

    2017-08-01

    Previous studies have shown that the PCL insertion may be damaged during the tibial cut performed in total knee arthroplasty. We investigated the maximum thickness of a tibial cut that preserves the PCL insertion and to what extent the posterior slope of the tibial cut and that of the patient's tibial plateaus affect the outcome. MR images of 83 knees were analysed. The maximum thickness of a tibial cut that preserves the PCL using a posterior slope of 0°, 3°, 5° and parallel to the patient's slope of the tibial plateau, was evaluated. Correlations between the results and the degrees of the posterior slope of the patient's tibial plateaus were also investigated. The maximum thickness of a tibial cut that preserves the entire PCL insertion was, on average, 5.5, 4.7, 4.2 and 3.1 mm when a posterior slope of 0°, 3°, 5° and parallel to the patients' tibial plateaus was used, respectively. When the 25th percentile was considered, the maximum thickness of a tibial cut that preserved the PCL was 4 and 3 mm with a tibial cut of 0° and 5° of posterior slope, respectively. The maximum thickness of a tibial cut that preserved the PCL was significantly greater in patients with a sagittal slope of the tibial plateaus more than 8° than in those with a sagittal slope less than 8°. In cruciate retaining implants, the PCL insertion may be spared in the majority of patients by performing a tibial cut of 4 mm, or even less when a posterior slope of 3°-5° is used. The clinical relevance of our study is that the execution of a conservative tibial cut, followed by a second tibial resection to achieve the thickness required for the tibial component to be implanted, may be an alternative technique to spare the PCL in CR TKA. II.

  10. Spontaneous Improvement of Compensatory Knee Flexion After Surgical Correction of Mismatch Between Pelvic Incidence and Lumbar Lordosis.

    Science.gov (United States)

    Cheng, Xiaofei; Zhang, Feng; Wu, Jigong; Zhu, Zhenan; Dai, Kerong; Zhao, Jie

    2016-08-15

    A retrospective study. The aim of this study was to investigate the correlation between pelvic incidence (PI) and lumbar lordosis (LL) mismatch and knee flexion during standing in patients with lumbar degenerative diseases and to examine the effects of surgical correction of the PI-LL mismatch on knee flexion. Only several studies focused on knee flexion as a compensatory mechanism of the PI-LL mismatch. Little information is currently available on the effects of lumbar correction on knee flexion in patients with the PI-LL mismatch. A group of patients with lumbar degenerative diseases were divided into PI-LL match group (PI-LL ≤ 10°) and PI-LL mismatch group (PI-LL > 10°). A series of radiographic parameters and knee flexion angle (KFA) were compared between the two groups. The PI-LL mismatch group was further subdivided into operative and nonoperative group. The changes in KFA with PI-LL were examined. The PI-LL mismatch group exhibited significantly greater sagittal vertical axis (SVA), pelvic tilt (PT) and KFA, and smaller LL, thoracic kyphosis (TK), and sacral slope than the PI-LL match group. PI-LL, LL, PI, SVA, and PT were significantly correlated with KFA in the PI-LL mismatch group. From baseline to 6-month follow-up, all variables were significantly different in the operative group with the exception of PI, although there was no significant difference in any variable in the nonoperative group. The magnitude of surgical correction in the PI-LL mismatch was significantly correlated with the degree of spontaneous changes in KFA, PT, and TK. The PI-LL mismatch would contribute to compensatory knee flexion during standing in patients with lumbar degenerative disease. Surgical correction of the PI-LL mismatch could lead to a spontaneous improvement of compensatory knee flexion. The degree of improvement in knee flexion depends in part on the amount of correction in the PI-LL mismatch. 3.

  11. Pictorial essay of ultrasound-reconstructed coronal plane images of the uterus in different uterine pathologies.

    Science.gov (United States)

    Grigore, Mihaela; Grigore, Anamaria; Gafitanu, Dumitru; Furnica, Cristina

    2018-04-01

    Imaging in the major planes (horizontal, coronal, and sagittal) of the uterus is important for determining anatomy and allowing the findings to be standardized, and for evaluating and diagnosing different pathological conditions in clinical practice. Examination of the coronal plane is an important step in identifying uterine pathologies and their relationships to the endometrial canal. Three-dimensional (3D) ultrasound reveals the normal anatomy better and improves the depiction of abnormal anatomy, as the coronal plane of the uterus can easily be obtained using 3D reconstruction techniques. Our pictorial essay demonstrates that adding 3D ultrasound to a routine gynecological workup can be beneficial for clinicians, enabling a precise diagnosis to be made. In addition, the volumes obtained and stored by 3D ultrasound can allow students or residents to become more familiar with normal and abnormal pelvic structures. Clin. Anat. 31:373-379, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. High-resolution MR imaging of the knee at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, M.; Nakai, T.; Ikeda, K.; Tang, G.Y.; Yoshioka, H.; Itai, Y. [Tsukuba Univ., Ibaraki (Japan). Dept. of Radiology

    2000-07-01

    In order to examine the practical feasibility of using a 3.0-T MR unit to obtain high-quality, high-resolution images of the knee joint, one human cadaveric and 5 porcine knees were imaged with the 3.0-T unit. Sets of T1-weighted spin echo images were obtained with in-plane resolution of 0.195x0.39 mm and an acquisition time of approximately 5 min. Two porcine knees were also imaged with the 1.0-T unit with an identical imaging protocol and the signal-to-noise (S/N) ratios were measured on images at 3 T and 1 T. The 3-T MR system provided detailed delineation of the knees. Deep layers of the medial collateral ligament and associated fine fibers beneath the medial and lateral collateral ligament were demarcated. We observed precise demonstration of the tibial attachment of the anterior cruciate ligament, irregularity of the meniscal free edge, and conjoint tendon formation together with the lateral collateral ligament and the biceps femoris tendon. Compared to the 1-T unit, the S/N ratio with the 3-T unit was increased by a factor of 1.39 to 1.72. Due to the potential advantage of obtaining detailed images, the 3-T MR system suggests a practical utility for fine demonstration of the knee morphology.

  13. High-resolution MR imaging of the knee at 3 T

    International Nuclear Information System (INIS)

    Niitsu, M.; Nakai, T.; Ikeda, K.; Tang, G.Y.; Yoshioka, H.; Itai, Y.

    2000-01-01

    In order to examine the practical feasibility of using a 3.0-T MR unit to obtain high-quality, high-resolution images of the knee joint, one human cadaveric and 5 porcine knees were imaged with the 3.0-T unit. Sets of T1-weighted spin echo images were obtained with in-plane resolution of 0.195x0.39 mm and an acquisition time of approximately 5 min. Two porcine knees were also imaged with the 1.0-T unit with an identical imaging protocol and the signal-to-noise (S/N) ratios were measured on images at 3 T and 1 T. The 3-T MR system provided detailed delineation of the knees. Deep layers of the medial collateral ligament and associated fine fibers beneath the medial and lateral collateral ligament were demarcated. We observed precise demonstration of the tibial attachment of the anterior cruciate ligament, irregularity of the meniscal free edge, and conjoint tendon formation together with the lateral collateral ligament and the biceps femoris tendon. Compared to the 1-T unit, the S/N ratio with the 3-T unit was increased by a factor of 1.39 to 1.72. Due to the potential advantage of obtaining detailed images, the 3-T MR system suggests a practical utility for fine demonstration of the knee morphology

  14. The role of knee joint moments and knee impairments on self-reported knee pain during gait in patients with knee osteoarthritis.

    Science.gov (United States)

    O'Connell, Megan; Farrokhi, Shawn; Fitzgerald, G Kelley

    2016-01-01

    The association between high mechanical knee joint loading during gait with onset and progression of knee osteoarthritis has been extensively studied. However, less attention has been given to risk factors related to increased pain during gait. The purpose of this study was to evaluate knee joint moments and clinical characteristics that may be associated with gait-related knee pain in patients with knee osteoarthritis. Sixty-seven participants with knee osteoarthritis were stratified into three groups of no pain (n=18), mild pain (n=27), or moderate/severe pain (n=22) based on their self-reported symptoms during gait. All participants underwent three-dimensional gait analysis. Quadriceps strength, knee extension range of motion, radiographic knee alignment and self-reported measures of global pain and function were also quantified. The moderate/severe pain group demonstrated worse global pain (Pknee flexion moments during the midstance phase of gait compared to the no pain group (P=0.02). Additionally, the moderate/severe pain group demonstrated greater varus knee malalignment (P=0.009), which was associated with higher weight acceptance peak knee adduction moments (P=0.003) and worse global pain (P=0.003) and physical function scores (P=0.006). Greater knee flexion moment is present during the midstance phase of gait in patients with knee osteoarthritis and moderate/severe pain during gait. Additionally, greater varus malalignment may be a sign of increased global knee joint dysfunction that can influence many activities of daily living beyond gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. [Custom-designed 3D tibial augmentation for knee replacement].

    Science.gov (United States)

    Jirman, R; Vavrík, P; Horák, Z

    2009-02-01

    Reconstruction with the use of custom-made implants aims at optimal replacement of lost or damaged bone structures and restoration of their funkction. In this study the development and construction of a custom-made implant and the operative technique used for the treatment of an extensive tibial defect are described. The patient was a 65-year-old man treated for over 20 years for psoriatic arthritis and severe instability of the right knee, particularly in the frontal plane, with a worsening varus deformity. The radiogram showed an extensive destruction of the medial tibial condyle that also deeply involved the lateral condyle. The extent of defect made it impossible to use any commercial tibial augmentation. The geometry of the custom-designed implant for the medial tibial condyle was constructed on the basis of a 3D defect model and the shape of the medial tibial condyle of the collateral knee seen on CT scans. After its correct shape was verified on a plastic model, its coordinates were set in the software of a machine tool, and a titanium augmentation otherwise compatible with a standard knee replacement was produced.The use of such a custom implant to complete standard total knee arthroplasty has so far been demanding in terms of organisation and manufacture. Its production in the future could be facilitated by substituting titanium for plastic material such as poly-ether-ether-ketone (PEEK). Key words: custom-made implant, tibial augmentation, knee prosthesis.

  16. The effect on knee-joint load of instruction in analgesic use compared with neuromuscular exercise in patients with knee osteoarthritis: study protocol for a randomized, single-blind, controlled trial (the EXERPHARMA trial).

    Science.gov (United States)

    Clausen, Brian; Holsgaard-Larsen, Anders; Søndergaard, Jens; Christensen, Robin; Andriacchi, Thomas P; Roos, Ewa M

    2014-11-15

    Knee osteoarthritis (OA) is a mechanically driven disease, and it is suggested that medial tibiofemoral knee-joint load increases with pharmacologic pain relief, indicating that pharmacologic pain relief may be positively associated with disease progression. Treatment modalities that can both relieve pain and reduce knee-joint load would be preferable. The knee-joint load is influenced by functional alignment of the trunk, pelvis, and lower-limb segments with respect to the knee, as well as the ground-reaction force generated during movement. Neuromuscular exercise can influence knee load and decrease knee pain. It includes exercises to improve balance, muscle activation, functional alignment, and functional knee stability. The primary objective of this randomized controlled trial (RCT) is to investigate the efficacy of a NEuroMuscular EXercise (NEMEX) therapy program, compared with optimized analgesics and antiinflammatory drug use, on the measures of knee-joint load in people with mild to moderate medial tibiofemoral knee osteoarthritis. One hundred men and women with mild to moderate medial knee osteoarthritis will be recruited from general medical practices and randomly allocated (1:1) to one of two 8-week treatments, either (a) NEMEX therapy twice a week or (b) information on the recommended use of analgesics and antiinflammatory drugs (acetaminophen and oral NSAIDs) via a pamphlet and video materials. The primary outcome is change in knee load during walking (the Knee Index, a composite score of the first external peak total reaction moment on the knee joint from all three planes based on 3D movement analysis) after 8 weeks of intervention. Secondary outcomes include changes in the external peak knee-adduction moment and impulse and functional performance measures, in addition to changes in self-reported pain, function, health status, and quality of life. These findings will help determine whether 8 weeks of neuromuscular exercise is superior to optimized use

  17. Joint Coordination and Muscle Activities of Ballet Dancers During Tiptoe Standing.

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Kouzaki, Motoki

    2017-01-01

    We aimed to investigate joint coordination of lower limbs in dancers during tiptoe standing and the relationship between joint coordination and muscle coactivation. Seven female ballet dancers performed tiptoe standing with six leg positions (fi e classical dance positions and one modern dance position) for 10 s. The kinematic data of the metatarsophalangeal (MP), ankle, knee, and hip joints was collected, and surface electromyography (EMG) of over 13 lower limb muscles was conducted. Principal component analysis was performed to determine joint coordination. MP-ankle and ankle-knee had in-phase coordination, whereas knee-hip showed anti-phase coordination in the sagittal plane. In addition, most EMG-EMG coherence around the MP and ankle joints was significant up to 50 Hz when these two joints swayed with in-phase. This suggests that different joint coordination patterns are associated with neural processing related to different muscle coactivation patterns. In conclusion, ballet dancers showed in-phase coordination from the MP to knee joints, which was associated with muscle coactivation to a higher frequency domain (up to 50 Hz) in comparison with anti-phase coordination.

  18. Sagittal alignment after single cervical disc arthroplasty.

    Science.gov (United States)

    Guérin, Patrick; Obeid, Ibrahim; Gille, Olivier; Bourghli, Anouar; Luc, Stéphane; Pointillart, Vincent; Vital, Jean-Marc

    2012-02-01

    Prospective study. To analyze the sagittal balance after single-level cervical disc replacement (CDR) and range of motion (ROM). To define clinical and radiologic parameters those have a significant correlation with segmental and overall cervical curvature after CDR. Clinical outcomes and ROM after CDR with Mobi-C (LDR, Troyes, France) prosthesis have been documented in few studies. No earlier report of this prosthesis has studied correlations between static and dynamic parameters or those between static parameters and clinical outcomes. Forty patients were evaluated. Clinical outcome was assessed using the Short Form-36 questionnaire, Neck Disability Index, and a Visual Analog Scale. Spineview software (Surgiview, Paris, France) was used to investigate sagittal balance parameters and ROM. The mean follow-up was 24.3 months (range: 12 to 36 mo). Clinical outcomes were satisfactory. There was a significant improvement of Short Form-36, Neck Disability Index, and Visual Analog Scale scores. Mean ROM was 8.3 degrees preoperatively and 11.0 degrees postoperatively (P=0.013). Mean preoperative C2C7 curvature was 12.8 and 16.0 degrees at last follow-up (P=0.001). Mean preoperative functional spinal unit (FSU) angle was 2.3 and 5.3 degrees postoperatively (P<0.0001). Mean postoperative shell angle was 5.5 degrees. There was a significant correlation between postoperative C2C7 alignment and preoperative C2C7 alignment, change of C2C7 alignment, preoperative and postoperative FSU angle, and prosthesis shell angle. There was also a significant correlation between postoperative FSU angle and preoperative C2C7 alignment, preoperative FSU angle, change of FSU angle, and prosthesis shell angle. Regression analysis showed that prosthesis shell angle and preoperative FSU angle contributed significantly to postoperative FSU angle. Moreover, preoperative C2C7 alignment, preoperative FSU angle, postoperative FSU angle, and prosthesis shell angle contributed significantly to

  19. Strategic Considerations for Effective Sagittal Resection of the Mandible to Achieve a Slim and Attractive Jawline.

    Science.gov (United States)

    Park, Sanghoon; Lee, Tae Sung

    2018-01-01

    Sagittal resection of the mandible has been widely used to reduce the width of the lower face and is usually carried out in combination with a mandibular contouring procedure. However, the surgical outcomes of this procedure are unclear because sagittal resection is rarely performed as a single procedure. The authors clarify misunderstandings regarding this procedure and introduce an improved strategic approach for sagittal resection of the mandible. Under general anesthesia, mandible contouring was performed first with a curved osteotomy, followed by sagittal resection of the outer cortex of mandible. The amount and extent of each procedure was determined in accordance with preoperative analysis. From 2012 to 2014, a consecutive series of 212 patients who underwent mandible contouring surgery without concomitant chin surgery were included in the study. A total of 189 patients underwent both mandibular contouring surgery and sagittal resection, whereas 13 underwent only sagittal resection and 10 underwent only mandibular contouring surgery. All operations were carried out successfully without any severe complications, and most patients had satisfactory aesthetic outcomes. The authors found that the sagittal resection of the mandible should be performed in accordance with the shape of the mandible to effectively reduce facial width and achieve better aesthetic outcomes for both profile and frontal views. In an outcurved-type mandible, conventional mandibular contouring may be effective alone, whereas sagittal resection focusing on removing the mandible body region is essential for incurved-type mandibles. In straight line-type mandibles, both procedures are necessary. Therapeutic, IV.

  20. Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Li, Hong; Chen, Shuang; Tao, Hongyue; Chen, Shiyi

    2015-04-01

    Associated meniscal injury is well recognized at anterior cruciate ligament (ACL) reconstruction, and it is a known risk factor for osteoarthritis. To evaluate and characterize the postoperative appearance of articular cartilage after different meniscal treatment in ACL-reconstructed knees using T2 relaxation time evaluation on MRI. Cohort study; Level of evidence, 3. A total of 62 consecutive patients who under ACL reconstruction were recruited in this study, including 23 patients undergoing partial meniscectomy (MS group), 21 patients undergoing meniscal repair (MR group), and 18 patients with intact menisci (MI group) at time of surgery. Clinical evaluation, including subjective functional scores and physical examination, was performed on the same day as the MRI examination and at follow-up times ranging from 2 to 4.2 years. The MRI multiecho sagittal images were segmented to determine the T2 relaxation time value of each meniscus and articular cartilage plate. Differences in each measurement were compared among groups. No patient had joint-line tenderness or reported pain or clicking on McMurray test or instability. There were also no statistically significant differences in functional scores or medial or lateral meniscus T2 values among the 3 groups (P > .05 for both). There was a significantly higher articular cartilage T2 value in the medial femorotibial articular cartilage for the MS group (P T2 value between the MS and MR groups (P > .05) in each articular cartilage plate. The medial tibial articular cartilage T2 value had a significant positive correlation with medial meniscus T2 value (r = 0.287; P = .024) CONCLUSION: This study demonstrates that knees with meniscectomy or meniscal repair had articular cartilage degeneration at 2 to 4 years postoperatively, with higher articular cartilage T2 relaxation time values compared with the knees with an intact meniscus. © 2015 The Author(s).

  1. Biomechanical Measures During Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury After Anterior Cruciate Ligament Reconstruction and Return to Sport

    Science.gov (United States)

    Paterno, Mark V.; Schmitt, Laura C.; Ford, Kevin R.; Rauh, Mitchell J.; Myer, Gregory D.; Huang, Bin; Hewett, Timothy E.

    2016-01-01

    Background Athletes who return to sport participation after anterior cruciate ligament reconstruction (ACLR) have a higher risk of a second anterior cruciate ligament injury (either reinjury or contralateral injury) compared with non–anterior cruciate ligament–injured athletes. Hypotheses Prospective measures of neuromuscular control and postural stability after ACLR will predict relative increased risk for a second anterior cruciate ligament injury. Study Design Cohort study (prognosis); Level of evidence, 2. Methods Fifty-six athletes underwent a prospective biomechanical screening after ACLR using 3-dimensional motion analysis during a drop vertical jump maneuver and postural stability assessment before return to pivoting and cutting sports. After the initial test session, each subject was followed for 12 months for occurrence of a second anterior cruciate ligament injury. Lower extremity joint kinematics, kinetics, and postural stability were assessed and analyzed. Analysis of variance and logistic regression were used to identify predictors of a second anterior cruciate ligament injury. Results Thirteen athletes suffered a subsequent second anterior cruciate ligament injury. Transverse plane hip kinetics and frontal plane knee kinematics during landing, sagittal plane knee moments at landing, and deficits in postural stability predicted a second injury in this population (C statistic = 0.94) with excellent sensitivity (0.92) and specificity (0.88). Specific predictive parameters included an increase in total frontal plane (valgus) movement, greater asymmetry in internal knee extensor moment at initial contact, and a deficit in single-leg postural stability of the involved limb, as measured by the Biodex stability system. Hip rotation moment independently predicted second anterior cruciate ligament injury (C = 0.81) with high sensitivity (0.77) and specificity (0.81). Conclusion Altered neuromuscular control of the hip and knee during a dynamic landing task

  2. Magnetic resonance imaging of anterior cruciate ligament of the knee: a comparison of four sequences; Valoracion del ligamento cruzado anterior de la rodilla con RM: comparacion de cuatro secuencias

    Energy Technology Data Exchange (ETDEWEB)

    Casillas, C.; Marti-Bonmati, L.; Molla, E.; Ferrer, P.; Dosda, R. [Clinical Quiron-ATQ. Valencia (Spain)

    1999-07-01

    To compare the diagnostic efficacy of the four magnetic resonance imaging (MRI) sequences that compose the standard protocol for the study of the knee in our center when employed in the examination of anterior cruciate ligament (ACL). A prospective study was carried out based on MRI findings in the knees of 326 consecutive patients. Sagittal [proton density (PD{sub w}eighted turbo-spin-echo and T2*-weighted gradient echo], coronal (PD-weighted turbo-spin-echo with fat suppression) and transverse (T2*-weighted gradient echo with magnetization transfer) images were evaluated. Each sequence was analyzed independently by two radiologists, while another two assessed all the sequences together with the clinical findings. Four categories were established: normal ACL, partially torn, completely torn and synovialized. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) with respect to the definitive diagnosis were calculated for each sequence. The statistical analysis of the findings for each category was done using the chi-squared test and the Kappa test was employed to assess the degree of agreement. According to the final diagnosis, 263 ACL were normal, 29 were partially torn, 33 were completely torn and there was 1 case of synovialization associated with a completely torn ACL. The relationship between the analysis of the ACL according to each sequence and the definitive diagnosis was very significant (p<0.001) and the agreement was excellent. All the sequences presented similar levels of diagnostic precision. The coronal sequence had least number of diagnostic errors (2.1%). The combinations of imaging techniques that resulted in the lowest error rate with respect to the definitive diagnosis were coronal PD-weighted turbo-spin-echo with fat suppression and sagittal PD-weighted turbo-spin-echo. Coronal images are highly precise in the evaluation of ACL. Sagittal sequences are the most valid for diagnosis of torn ACL

  3. SAGITTAL DIAMETER OF FORAMEN MAGNUM IN NORMAL POPULATION: AN MRI STUDY

    OpenAIRE

    Lakshmi

    2015-01-01

    Lower position of cerebellar tonsils was frequently noticed in Western studies. In some of the studies, sagittal diameter of foramen magnum was found to be larger in cases of Chiari malformation. However, there are no Indian studies for comparison. Our study was proposed to determine the standard values for sagittal diameter of foramen magnum in various age groups and both sexes. This gives a guideline for further studies in pathological conditions like Craniovertebral Junctional ...

  4. Knee Replacement

    Science.gov (United States)

    Knee replacement is surgery for people with severe knee damage. Knee replacement can relieve pain and allow you to ... Your doctor may recommend it if you have knee pain and medicine and other treatments are not ...

  5. Knee Injuries

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Knee Injuries KidsHealth / For Teens / Knee Injuries What's in ... can do to protect them. What's in a Knee? The knee is a joint , actually the largest ...

  6. Effect of Acute Alterations in Foot Strike Patterns during Running on Sagittal Plane Lower Limb Kinematics and Kinetics.

    Science.gov (United States)

    Valenzuela, Kevin A; Lynn, Scott K; Mikelson, Lisa R; Noffal, Guillermo J; Judelson, Daniel A

    2015-03-01

    The purpose of this study was to determine the effect of foot strike patterns and converted foot strike patterns on lower limb kinematics and kinetics at the hip, knee, and ankle during a shod condition. Subjects were videotaped with a high speed camera while running a 5km at self-selected pace on a treadmill to determine natural foot strike pattern on day one. Preferred forefoot group (PFFG, n = 10) and preferred rear foot group (PRFG, n = 11) subjects were identified through slow motion video playback (n = 21, age = 22.8±2.2 years, mass = 73.1±14.5 kg, height 1.75 ± 0.10 m). On day two, subjects performed five overground run trials in both their natural and unnatural strike patterns while motion and force data were collected. Data were collected over two days so that foot strike videos could be analyzed for group placement purposes. Several 2 (Foot Strike Pattern -forefoot strike [FFS], rearfoot strike [RFS]) x 2 (Group - PFFG, PRFG) mixed model ANOVAs (p strike patterns during shod running can create alterations in certain lower limb kinematic and kinetic measures that are not dependent on the preferred foot strike pattern of the individual. This research also challenges the contention that the impact transient spike in the vertical ground reaction force curve is only present during a rear foot strike type of running gait. Key pointsFootstrike pattern changes should be individually considered and implemented based on individual histories/abilitiesForefoot strike patterns increase external dorsiflexion momentsRearfoot strike patterns increase external knee flexion momentsRecreational shod runners are able to mimic habitual mechanics of different foot strike patterns.

  7. 'Lumbar Degenerative Kyphosis' Is Not Byword for Degenerative Sagittal Imbalance: Time to Replace a Misconception.

    Science.gov (United States)

    Lee, Chang-Hyun; Chung, Chun Kee; Jang, Jee-Soo; Kim, Sung-Min; Chin, Dong-Kyu; Lee, Jung-Kil

    2017-03-01

    Lumbar degenerative kyphosis (LDK) is a subgroup of the flat-back syndrome and is most commonly caused by unique life styles, such as a prolonged crouched posture during agricultural work and performing activities of daily living on the floor. Unfortunately, LDK has been used as a byword for degenerative sagittal imbalance, and this sometimes causes confusion. The aim of this review was to evaluate the exact territory of LDK, and to introduce another appropriate term for degenerative sagittal deformity. Unlike what its name suggests, LDK does not only include sagittal balance disorder of the lumbar spine and kyphosis, but also sagittal balance disorder of the whole spine and little lordosis of the lumbar spine. Moreover, this disease is closely related to the occupation of female farmers and an outdated Asian life style. These reasons necessitate a change in the nomenclature of this disorder to prevent misunderstanding. We suggest the name "primary degenerative sagittal imbalance" (PDSI), which encompasses degenerative sagittal misalignments of unknown origin in the whole spine in older-age patients, and is associated with back muscle wasting. LDK may be regarded as a subgroup of PDSI related to an occupation in agriculture. Conservative treatments such as exercise and physiotherapy are recommended as first-line treatments for patients with PDSI, and surgical treatment is considered only if conservative treatments failed. The measurement of spinopelvic parameters for sagittal balance is important prior to deformity corrective surgery. LDK can be considered a subtype of PDSI that is more likely to occur in female farmers, and hence the use of LDK as a global term for all degenerative sagittal imbalance disorders is better avoided. To avoid confusion, we recommend PDSI as a newer, more accurate diagnostic term instead of LDK.

  8. Radiographic assessment of knee-ankle alignment after total knee arthroplasty for varus and valgus knee osteoarthritis.

    Science.gov (United States)

    Gao, Fuqiang; Ma, Jinhui; Sun, Wei; Guo, Wanshou; Li, Zirong; Wang, Weiguo

    2017-01-01

    There are unanswered questions about knee-ankle alignment after total knee arthroplasty (TKA) for varus and valgus osteoarthritis (OA) of the knee. The aim of this retrospective study was to assess knee-ankle alignment after TKA. The study consisted of 149 patients who had undergone TKA due to varus and valgus knee OA. The alignment and angles in the selected knees and ankles were measured on full-length standing anteroposterior radiographs, both pre-operatively and post-operatively. The paired t-test and Pearson's correlation tests were used for statistical analysis. The results showed that ankle alignment correlated with knee alignment both pre-operatively and postoperatively (Pknee was corrected (Pknee-ankle alignment on the non-operative side (P>0.05). These findings indicated that routine TKA could correct the varus or valgus deformity of a knee, and improve the tilt of the ankle. Ankle alignment correlated with knee alignment both pre-operatively and postoperatively. Both pre-operative knee and ankle malalignment can be simultaneously corrected following TKA. Level III. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Does shoe heel design influence ground reaction forces and knee moments during maximum lunges in elite and intermediate badminton players?

    Science.gov (United States)

    Lam, Wing-Kai; Ryue, Jaejin; Lee, Ki-Kwang; Park, Sang-Kyoon; Cheung, Jason Tak-Man; Ryu, Jiseon

    2017-01-01

    Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton.

  10. Self-reported previous knee injury and low knee function increase knee injury risk in adolescent female football.

    Science.gov (United States)

    Clausen, M B; Tang, L; Zebis, M K; Krustrup, P; Hölmich, P; Wedderkopp, N; Andersen, L L; Christensen, K B; Møller, M; Thorborg, K

    2016-08-01

    Knee injuries are common in adolescent female football. Self-reported previous knee injury and low Knee injury and Osteoarthritis Outcome Score (KOOS) are proposed to predict future knee injuries, but evidence regarding this in adolescent female football is scarce. The aim of this study was to investigate self-reported previous knee injury and low KOOS subscale score as risk factors for future knee injuries in adolescent female football. A sample of 326 adolescent female football players, aged 15-18, without knee injury at baseline, were included. Data on self-reported previous knee injury and KOOS questionnaires were collected at baseline. Time-loss knee injuries and football exposures were reported weekly by answers to standardized text-message questions, followed by injury telephone interviews. A priori, self-reported previous knee injury and low KOOS subscale scores (female football. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Sagittal Alignment As a Predictor of Clinical Adjacent Segment Pathology requiring Surgery after Anterior Cervical Arthrodesis

    Science.gov (United States)

    Park, Moon Soo; Kelly, Michael P.; Lee, Dong-Ho; Min, Woo-Kie; Rahman, Ra’Kerry K.; Riew, K. Daniel

    2014-01-01

    BACKGROUND CONTEXT Postoperative malalignment of the cervical spine may alter cervical spine mechanics, and put patients at risk for clinical adjacent segment pathology requiring surgery. PURPOSE To investigate whether a relationship exists between cervical spine sagittal alignment and clinical adjacent segment pathology requiring surgery (CASP-S) following anterior cervical fusion (ACF). STUDY DESIGN Retrospective matched study. PATIENT SAMPLE One hundred twenty two patients undergoing ACF from 1996 to 2008 were identified, with a minimum of 2 year follow-up. OUTCOME MEASURES Radiographs were reviewed to measure the sagittal alignment using C2 and C7 sagittal plumb lines, distance from the fusion mass plumb line to the C2 and C7 plumb lines, the alignment of the fusion mass, caudally adjacent disc angle, the sagittal slope angle of the superior endplate of the vertebra caudally adjacent to the fusion mass, T1 sagittal angle, overall cervical sagittal alignment, and curve patterns by Katsuura classification. METHODS One hundred twenty two patients undergoing ACF from 1996 to 2008 were identified, with a minimum of 1 year follow-up. Patients were divided into groups according to the development of CASP requiring surgery (Control / CASP-S) and by number/location of levels fused. Radiographs were reviewed to measure the sagittal alignment using C2 and C7 sagittal plumb lines, distance from the fusion mass plumb line to the C2 and C7 plumb lines, the alignment of the fusion mass, caudally adjacent disc angle, the sagittal slope angle of the superior endplate of the vertebra caudally adjacent to the fusion mass, T1 sagittal angle, overall cervical sagittal alignment, and curve patterns by Katsuura classification. Appropriate statistical tests were performed to calculate relationships between the variables and the development of CASP-S. No funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related

  12. Reliability and Validity Measurement of Sagittal Lumbosacral Quiet Standing Posture with a Smartphone Application in a Mixed Population of 183 College Students and Personnel

    Directory of Open Access Journals (Sweden)

    George A. Koumantakis

    2016-01-01

    Full Text Available Accurate recording of spinal posture with simple and accessible measurement devices in clinical practice may lead to spinal loading optimization in occupations related to prolonged sitting and standing postures. Therefore, the purpose of this study was to establish the level of reliability of sagittal lumbosacral posture in quiet standing and the validity of the method in differentiating between male and female subjects, establishing in parallel a normative database. 183 participants (83 males and 100 females, with no current low back or pelvic pain, were assessed using the “iHandy Level” smartphone application. Intrarater reliability (3 same-day sequential measurements was high for both the lumbar curve (ICC2,1: 0.96, SEM: 2.13°, and MDC95%: 5.9° and the sacral slope (ICC2,1: 0.97, SEM: 1.61°, and MDC95%: 4.46° sagittal alignment. Data analysis for each gender separately confirmed equally high reliability for both male and female participants. Correlation between lumbar curve and sacral slope was high (Pearson’s r=0.86, p<0.001. Between-gender comparisons confirmed the validity of the method to differentiate between male and female lumbar curve and sacral slope angles, with females generally demonstrating greater lumbosacral values (p<0.001. The “iHandy Level” application is a reliable and valid tool in the measurement of lumbosacral quiet standing spinal posture in the sagittal plane.

  13. Comparison of accuracy of uncorrected and corrected sagittal tomography in detection of mandibular condyle erosions: An exvivo study

    Directory of Open Access Journals (Sweden)

    Asieh Zamani Naser

    2010-01-01

    Full Text Available Background: Radiographic examination of TMJ is indicated when there are clinical signs of pathological conditions, mainly bone changes that may influence the diagnosis and treatment planning. The purpose of this study was to evaluate and to compare the validity and diagnostic accuracy of uncorrected and corrected sagittal tomographic images in the detection of simulated mandibular condyle erosions. Methods : Simulated lesions were created in 10 dry mandibles using a dental round bur. Using uncorrected and corrected sagittal tomography techniques, mandibular condyles were imaged by a Cranex Tome X-ray unit before and after creating the lesions. The uncorrected and corrected tomography images were examined by two independent observers for absence or presence of a lesion. The accuracy for detecting mandibular condyle lesions was expressed as sensitivity, specificity, and validity values. Differences between the two radiographic modalities were tested by Wilcoxon for paired data tests. Inter-observer agreement was determined by Cohen′s Kappa. Results: The sensitivity, specificity and validity were 45%, 85% and 30% in uncorrected sagittal tomographic images, respectively, and 70%, 92.5% and 60% in corrected sagittal tomographic images, respectively. There was a significant statistical difference between the accuracy of uncorrected and corrected sagittal tomography in detection of mandibular condyle erosions (P = 0.016. The inter-observer agreement was slight for uncorrected sagittal tomography and moderate for corrected sagittal tomography. Conclusion: The accuracy of corrected sagittal tomography is significantly higher than that of uncorrected sagittal tomography. Therefore, corrected sagittal tomography seems to be a better modality in detection of mandibular condyle erosions.

  14. Kinematic Measurement of Knee Prosthesis from Single-Plane Projection Images

    Science.gov (United States)

    Hirokawa, Shunji; Ariyoshi, Shogo; Takahashi, Kenji; Maruyama, Koichi

    In this paper, the measurement of 3D motion from 2D perspective projections of knee prosthesis is described. The technique reported by Banks and Hodge was further developed in this study. The estimation was performed in two steps. The first-step estimation was performed on the assumption of orthogonal projection. Then, the second-step estimation was subsequently carried out based upon the perspective projection to accomplish more accurate estimation. The simulation results have demonstrated that the technique archived sufficient accuracies of position/orientation estimation for prosthetic kinematics. Then we applied our algorithm to the CCD images, thereby examining the influences of various artifacts, possibly incorporated through an imaging process, on the estimation accuracies. We found that accuracies in the experiment were influenced mainly by the geometric discrepancies between the prosthesis component and computer generated model and by the spacial inconsistencies between the coordinate axes of the positioner and that of the computer model. However, we verified that our algorithm could achieve proper and consistent estimation even for the CCD images.

  15. Changes in fatigue, multiplanar knee laxity, and landing biomechanics during intermittent exercise.

    Science.gov (United States)

    Shultz, Sandra J; Schmitz, Randy J; Cone, John R; Henson, Robert A; Montgomery, Melissa M; Pye, Michele L; Tritsch, Amanda J

    2015-05-01

    Knee laxity increases during exercise. However, no one, to our knowledge, has examined whether these increases contribute to higher-risk landing biomechanics during prolonged, fatiguing exercise. To examine associations between changes in fatigue (measured as sprint time [SPTIME]), multiplanar knee laxity (anterior-posterior [APLAX], varus-valgus [VVLAX] knee laxity, and internal-external rotation [IERLAX]) knee laxity and landing biomechanics during prolonged, intermittent exercise. Descriptive laboratory study. Laboratory and gymnasium. A total of 30 male (age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg) and 29 female (age = 20.5 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) competitive athletes. A 90-minute intermittent exercise protocol (IEP) designed to simulate the physiologic and biomechanical demands of a soccer match. We measured SPTIME, APLAX, and landing biomechanics before and after warm-up, every 15 minutes during the IEP, and every 15 minutes for 1 hour after the IEP. We measured VVLAX and IERLAX before and after the warm-up, at 45 and 90 minutes during the IEP, and at 30 minutes after the IEP. We used hierarchical linear modeling to examine associations between exercise-related changes in SPTIME and knee laxity with exercise-related changes in landing biomechanics while controlling for initial (before warm-up) knee laxity. We found that SPTIME had a more global effect on landing biomechanics in women than in men, resulting in a more upright landing and a reduction in landing forces and out-of-plane motions about the knee. As APLAX increased with exercise, women increased their knee internal-rotation motion (P = .02), and men increased their hip-flexion motion and energy-absorption (P = .006) and knee-extensor loads (P = .04). As VVLAX and IERLAX increased, women went through greater knee-valgus motion and dorsiflexion and absorbed more energy at the knee (P ≤ .05), whereas men were positioned in greater hip

  16. Influence of implant rod curvature on sagittal correction of scoliosis deformity

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Tadano, Shigeru; Abe, Yuichiro

    2014-01-01

    of the implant rod’s angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. STUDY DESIGN: A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. PATIENT SAMPLE: Twenty adolescent idiopathic......BACKGROUND CONTEXT: Deformation of in vivo–implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. PURPOSE: To analyze the changes...... scoliosis patients underwent surgery. Average age at the time of operation was 14 years. OUTCOME MEASURES: The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. METHODS: Two implant rods were attached to the concave and convex side...

  17. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity

    Directory of Open Access Journals (Sweden)

    Mohammad Al-Amri

    2018-02-01

    Full Text Available The aim of this study was to investigate the reliability and concurrent validity of a commercially available Xsens MVN BIOMECH inertial-sensor-based motion capture system during clinically relevant functional activities. A clinician with no prior experience of motion capture technologies and an experienced clinical movement scientist each assessed 26 healthy participants within each of two sessions using a camera-based motion capture system and the MVN BIOMECH system. Participants performed overground walking, squatting, and jumping. Sessions were separated by 4 ± 3 days. Reliability was evaluated using intraclass correlation coefficient and standard error of measurement, and validity was evaluated using the coefficient of multiple correlation and the linear fit method. Day-to-day reliability was generally fair-to-excellent in all three planes for hip, knee, and ankle joint angles in all three tasks. Within-day (between-rater reliability was fair-to-excellent in all three planes during walking and squatting, and poor-to-high during jumping. Validity was excellent in the sagittal plane for hip, knee, and ankle joint angles in all three tasks and acceptable in frontal and transverse planes in squat and jump activity across joints. Our results suggest that the MVN BIOMECH system can be used by a clinician to quantify lower-limb joint angles in clinically relevant movements.

  18. Q-angle in patellofemoral pain: relationship with dynamic knee valgus, hip abductor torque, pain and function

    Directory of Open Access Journals (Sweden)

    Gabriel Peixoto Leão Almeida

    2016-04-01

    Full Text Available OBJECTIVE: To investigate the relationship between the q-angle and anterior knee pain severity, functional capacity, dynamic knee valgus and hip abductor torque in women with patellofemoral pain syndrome (PFPS. METHODS: This study included 22 women with PFPS. The q-angle was assessed using goniometry: the participants were positioned in dorsal decubitus with the knee and hip extended, and the hip and foot in neutral rotation. Anterior knee pain severity was assessed using a visual analog scale, and functional capacity was assessed using the anterior knee pain scale. Dynamic valgus was evaluated using the frontal plane projection angle (FPPA of the knee, which was recorded using a digital camera during step down, and hip abductor peak torque was recorded using a handheld dynamometer. RESULTS: The q-angle did not present any significant correlation with severity of knee pain (r = -0.29; p = 0.19, functional capacity (r = -0.08; p = 0.72, FPPA (r = -0.28; p = 0.19 or isometric peak torque of the abductor muscles (r = -0.21; p = 0.35. CONCLUSION: The q-angle did not present any relationship with pain intensity, functional capacity, FPPA, or hip abductor peak torque in the patients with PFPS.

  19. The longitudinal sagittal growth changes of maxilla and mandible according to quantitative cervical vertebral maturation.

    Science.gov (United States)

    Chen, Lili; Lin, Jiuxiang; Xu, Tianmin; Long, Xiaosi

    2009-04-01

    To investigate the longitudinal sagittal growth changes of maxilla and mandible according to the quantitative cervical vertebral maturation (QCVM) for adolescents with normal occlusion, mixed longitudinal data were used. The samples included 87 adolescents aged from 8 to 18 y old with normal occlusion (32 males, 55 females) selected from 901 candidates. Sequential lateral cephalograms and hand-wrist films were taken once a year, lasting for 6 y. The longitudinal sagittal growth changes of maxilla and mandible according to QCVM were measured. There were some significant differences between maxilla and mandible according to QCVM. The sagittal growth change of maxilla showed a trend towards high velocity-->decelerating velocity-->completing velocity from QCVM stage I to stage IV. The sagittal growth change of mandible showed a trend towards accelerating velocity-->high velocity-->decelerating velocity-->completing velocity from QCVM stage I to stage IV. With sagittal relationship, growth magnitude was almost the same between maxilla and mandible at QCVM stage I. At stage II the growth of mandible exceeded that of maxilla and growth in mandible continued at stages III and IV, while the maxilla ceased to grow. Growth magnitude was greater and the growth duration was longer with male mandible. It is concluded that the longitudinal sagittal growth changes of maxilla and mandible on the basis of QCVM is of value in the orthodontic practice.

  20. Partial knee replacement

    Science.gov (United States)

    ... good range of motion in your knee. The ligaments in your knee are stable. However, most people with knee arthritis have a surgery called a total knee arthroplasty (TKA). Knee replacement is most often done in people age 60 ...

  1. Visualization of femorotibial contact in total knee arthroplasty using X-ray fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Takaharu E-mail: yamazaki@image.med.osaka-u.ac.jp; Watanabe, Tetsu; Nakajima, Yoshikazu; Sugamoto, Kazuomi; Tomita, Tetsuya; Maeda, Daisuke; Sahara, Wataru; Yoshikawa, Hideki; Tamura, Shinichi

    2005-01-01

    The purpose of this study was to build a visualization technique of the femorotibial contact in fixed-bearing total knee arthroplasty (TKA) using X-ray fluoroscopy, and to apply this technique to a TKA patient during dynamic motion. In vivo kinametcis of the metallic knee implant was determined using a 2D/3D registration technique, which uses computer assisted design (CAD) model of the implant to estimate the 3D pose of radiopaque metallic femoral and tibial components from a single-plane fluoroscopic image. In fixed-bearing TKA, a 3D pose of radiolucent tibial polyethylene insert can be determined from the estimated pose of the tibial component. To visualize femorotibial contact, the proximity between surfaces of femoral component and tibial insert was calculated, and mapped onto the insert surface model. For the clinical application, dynamic states of contact on the tibial insert were observed including axial rotation and unilateral loading during knee flexion, and post-cam contact of posterior stabilized TKA. The present technique provided us new information and enabled us to better understand the relationship between in vivo knee kinematics and articular shape of the implant.

  2. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses.

    Directory of Open Access Journals (Sweden)

    Kathrin Freyler

    Full Text Available Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG activity, centre of pressure (COP displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR, medium (MLR and long latency response (LLR of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane, medial-lateral (frontal plane, displacement (2 vs. 3 cm and velocity (0.11 vs. 0.18 m/s of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (P<0.05; LLR was scaled to increased displacement (P<0.05. Segments: phasic interrelationships were accompanied by segmental distinctions: distal muscles were used for fast compensation in SLR (P<0.05 and proximal muscles to stabilise in LLR (P<0.05. Kinematics: ankle joints compensated for both increasing displacement and velocity in all directions (P<0.05, whereas knee joint deflections were particularly sensitive to increasing displacement in the sagittal (P<0.05 and hip joint deflections to increasing velocity in the frontal plane (P<0.05. COP measures increased with increasing perturbation velocity and displacement (P<0.05. Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb

  3. ‘Lumbar Degenerative Kyphosis’ Is Not Byword for Degenerative Sagittal Imbalance: Time to Replace a Misconception

    Science.gov (United States)

    Lee, Chang-Hyun; Chung, Chun Kee; Jang, Jee-Soo; Kim, Sung-Min; Chin, Dong-Kyu; Lee, Jung-Kil

    2017-01-01

    Lumbar degenerative kyphosis (LDK) is a subgroup of the flat-back syndrome and is most commonly caused by unique life styles, such as a prolonged crouched posture during agricultural work and performing activities of daily living on the floor. Unfortunately, LDK has been used as a byword for degenerative sagittal imbalance, and this sometimes causes confusion. The aim of this review was to evaluate the exact territory of LDK, and to introduce another appropriate term for degenerative sagittal deformity. Unlike what its name suggests, LDK does not only include sagittal balance disorder of the lumbar spine and kyphosis, but also sagittal balance disorder of the whole spine and little lordosis of the lumbar spine. Moreover, this disease is closely related to the occupation of female farmers and an outdated Asian life style. These reasons necessitate a change in the nomenclature of this disorder to prevent misunderstanding. We suggest the name “primary degenerative sagittal imbalance” (PDSI), which encompasses degenerative sagittal misalignments of unknown origin in the whole spine in older-age patients, and is associated with back muscle wasting. LDK may be regarded as a subgroup of PDSI related to an occupation in agriculture. Conservative treatments such as exercise and physiotherapy are recommended as first-line treatments for patients with PDSI, and surgical treatment is considered only if conservative treatments failed. The measurement of spinopelvic parameters for sagittal balance is important prior to deformity corrective surgery. LDK can be considered a subtype of PDSI that is more likely to occur in female farmers, and hence the use of LDK as a global term for all degenerative sagittal imbalance disorders is better avoided. To avoid confusion, we recommend PDSI as a newer, more accurate diagnostic term instead of LDK. PMID:28264231

  4. Spinal pedicle subtraction osteotomy for fixed sagittal imbalance patients

    Science.gov (United States)

    Hyun, Seung-Jae; Kim, Yongjung J; Rhim, Seung-Chul

    2013-01-01

    In addressing spinal sagittal imbalance through a posterior approach, the surgeon now may choose from among a variety of osteotomy techniques. Posterior column osteotomies such as the facetectomy or Ponte or Smith-Petersen osteotomy provide the least correction, but can be used at multiple levels with minimal blood loss and a lower operative risk. Pedicle subtraction osteotomies provide nearly 3 times the per-level correction of Ponte/Smith-Petersen osteotomies; however, they carry increased technical demands, longer operative time, and greater blood loss and associated significant morbidity, including neurological injury. The literature focusing on pedicle subtraction osteotomy for fixed sagittal imbalance patients is reviewed. The long-term overall outcomes, surgical tips to reduce the complications and suggestions for their proper application are also provided. PMID:24340276

  5. A Retrospective Review from 2006 to 2011 of Lower Extremity Injuries in Badminton in New Zealand

    Directory of Open Access Journals (Sweden)

    Joanna Reeves

    2015-06-01

    Full Text Available Aim: To describe lower extremity injuries for badminton in New Zealand. Methods: Lower limb badminton injuries that resulted in claims accepted by the national insurance company Accident Compensation Corporation (ACC in New Zealand between 2006 and 2011 were reviewed. Results: The estimated national injury incidence for badminton injuries in New Zealand from 2006 to 2011 was 0.66%. There were 1909 lower limb badminton injury claims which cost NZ$2,014,337 (NZ$ value over 2006 to 2011. The age-bands frequently injured were 10–19 (22%, 40–49 (22%, 30–39 (14% and 50–59 (13% years. Sixty five percent of lower limb injuries were knee ligament sprains/tears. Males sustained more cruciate ligament sprains than females (75 vs. 39. Movements involving turning, changing direction, shifting weight, pivoting or twisting were responsible for 34% of lower extremity injuries. Conclusion: The knee was most frequently injured which could be due to multi-planar loading. Turning or cutting movements typically involve motion in the frontal and transverse planes that may place the knee at greater risk of injury than movement in the sagittal plane alone. Further research on badminton specific movements is warranted to better understand the mechanisms of lower extremity injuries in the sport. Sports medicine and support personnel should take into account the susceptibility of the knee to injury when designing training and injury prevention programmes given the large number of change of direction movements during badminton.

  6. Knee arthroscopy

    Science.gov (United States)

    ... debridement; Meniscus repair; Lateral release; Knee surgery; Meniscus - arthroscopy; Collateral ligament - arthroscopy ... pain relief (anesthesia) may be used for knee arthroscopy surgery: Local anesthesia. Your knee may be numbed ...

  7. Maxillomandibular Advancement in Obstructive Sleep Apnea Syndrome Patients: a Restrospective Study on the Sagittal Cephalometric Variables

    Directory of Open Access Journals (Sweden)

    Paolo Ronchi

    2013-06-01

    Full Text Available Objectives: The present retrospective study analyzes sagittal cephalometric changes in patients affected by obstructive sleep apnea syndrome submitted to maxillomandubular advancement. Material and Methods: 15 adult sleep apnea syndrome (OSAS patients diagnosed by polysomnography (PSG and treated with maxillomandubular advancement (MMA were included in this study. Pre- (T1 and postsurgical (T2 PSG studies assessing the apnea/hypopnea index (AHI and the lowest oxygen saturation (LSAT level were compared. Lateral cephalometric radiographs at T1 and T2 measuring sagittal cephalometric variables (SNA, SNB, and ANB were analyzed, as were the amount of maxillary and mandibular advancement (Co-A and Co-Pog, the distance from the mandibular plane to the most anterior point of the hyoid bone (Mp-H, and the posterior airway space (PAS.Results: Postoperatively, the overall mean AHI dropped from 58.7 ± 16 to 8.1 ± 7.8 events per hour (P < 0.001. The mean preoperative LSAT increased from 71% preoperatively to 90% after surgery (P < 0.001. All the patients in our study were successfully treated (AHI < 20 or reduced by 50%. Cephalometric analysis performed after surgery showed a statistically significant correlation between the mean SNA variation and the decrease in the AHI (P = 0.01. The overall mean SNA increase was 6°.Conclusions: Our findings suggest that the improvement observed in the respiratory symptoms, namely the apnea/hypopnea episodes, is correlated with the SNA increase after surgery. This finding may help maxillofacial surgeons to establish selective criteria for the surgical approach to sleep apnea syndrome patients.

  8. Anterior knee pain

    Science.gov (United States)

    Patellofemoral syndrome; Chondromalacia patella; Runner's knee; Patellar tendinitis; Jumper's knee ... kneecap (patella) sits over the front of your knee joint. As you bend or straighten your knee, ...

  9. Knee Arthrodesis After Failure of Knee Arthroplasty

    DEFF Research Database (Denmark)

    Gottfriedsen, Tinne B; Morville Schrøder, Henrik; Odgaard, Anders

    2016-01-01

    BACKGROUND: Arthrodesis is considered a salvage procedure after failure of a knee arthroplasty. Data on the use of this procedure are limited. The purpose of this study was to identify the incidence, causes, surgical techniques, and outcomes of arthrodesis after failed knee arthroplasty...... in a nationwide population. METHODS: Data were extracted from the Danish Civil Registration System, the Danish National Patient Register, and the Danish Knee Arthroplasty Register. A total of 92,785 primary knee arthroplasties performed in Denmark from 1997 to 2013 were identified by linking the data using....... Differences in cumulative incidence were compared with the Gray test. RESULTS: A total of 164 of the 165 arthrodeses were performed for causes related to failed knee arthroplasty. The 15-year cumulative incidence of arthrodesis was 0.26% (95% confidence interval, 0.21% to 0.31%). The 5-year cumulative...

  10. [Knee disarticulation and through-knee amputation].

    Science.gov (United States)

    Baumgartner, R

    2011-10-01

    A knee disarticulation or a through-knee stump is superior compared to a transfemoral stump. The thigh muscles are all preserved, and the muscle balance remains undisturbed. The range of motion of the hip joint is not limited. The bulbous shape of the stump allows full weight bearing at the stump end and can easily be fitted with a prosthesis. An amputee with a bilateral knee disarticulation is able to walk "barefoot". A more distal amputation level, e.g., an ultra-short transtibial amputation, is not possible. Important alternative to transfemoral amputations. Possible for any etiology except for Buerger-Winiwarter's disease. New indications are infected and loosened total knee replacements. Preservation of the knee joint is possible. Knee disarticulation is a very atraumatic procedure, compared to transfemoral amputations. Neither bones nor muscles have to be severed, just skin, ligaments, vessels, and nerves. Even the meniscal cartilages may be left in place to act as axial shock absorbers. The cartilage of the femur is not resected, but only bevelled in case of osteoarthritis. There are no tendon attachments or myoplastic procedures necessary. The patella remains in place and is held in position only by the retinacula. Skin closure must be performed without the slightest tension, and if possible not in the weight-bearing area. Transcondylar amputations across the femoral condyles only are indicated when there are not sufficient soft tissues for wound closure of a knee disarticulation. Alternatives as the techniques of Gritti, Klaes, and Eigler, the shortening of the femur and the Sauerbruch's rotation plasty [14] are presented and discussed. The risk of decubital ulcers is rather high. Correct bandaging of the stump is, therefore, particularly important. Prosthetic fitting is possible 3-6 weeks after surgery. The type of prosthesis depends on the amputee's activity level. The superior performance of amputees with knee disarticulations in sports prove the

  11. Does knee awareness differ between different knee arthroplasty prostheses?

    DEFF Research Database (Denmark)

    Thomsen, Morten G; Latifi, Roshan; Kallemose, Thomas

    2016-01-01

    BACKGROUND: Low knee awareness after Total Knee Arthroplasty (TKA) has become the ultimate goal in trying to achieve a natural feeling knee that meet patient expectations. To accommodate this manufacturers of TKAs have developed new prosthetic designs that potentially could give patients a more...... natural feeling knee during activities. The purpose af this study was to compare the Forgotten Joint Score (FJS) and Oxford Knee Score (OKS) of patients treated with a previous generation standard Cruciate Retaining (CR) TKA to the scores obtained by patients treated with a newer generation CR TKA...

  12. Joint laxity and the relationship between muscle strength and functional ability in patients with osteoarthritis of the knee.

    Science.gov (United States)

    van der Esch, M; Steultjens, M; Knol, D L; Dinant, H; Dekker, J

    2006-12-15

    To establish the impact of knee joint laxity on the relationship between muscle strength and functional ability in osteoarthritis (OA) of the knee. A cross-sectional study of 86 patients with OA of the knee was conducted. Tests were performed to determine varus-valgus laxity, muscle strength, and functional ability. Laxity was assessed using a device that measures the angular deviation of the knee in the frontal plane. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by observation (100-meter walking test) and self report (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]). Regression analyses were performed to assess the impact of joint laxity on the relationship between muscle strength and functional ability. In regression analyses, the interaction between muscle strength and joint laxity contributed to the variance in both walking time (P = 0.002) and WOMAC score (P = 0.080). The slope of the regression lines indicated that the relationship between muscle strength and functional ability (walking time, WOMAC) was stronger in patients with high knee joint laxity. Patients with knee OA and high knee joint laxity show a stronger relationship between muscle strength and functional ability than patients with OA and low knee joint laxity. Patients with OA, high knee joint laxity, and low muscle strength are most at risk of being disabled.

  13. 21 CFR 888.3570 - Knee joint femoral (hemi-knee) metallic uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femoral (hemi-knee) metallic uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3570 Knee joint femoral (hemi-knee) metallic uncemented prosthesis. (a) Identification. A knee joint femoral (hemi-knee...

  14. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system.

    Science.gov (United States)

    Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás

    2012-11-01

    Three-dimensional (3D) deformations of the spine are predominantly characterized by two-dimensional (2D) angulation measurements in coronal and sagittal planes, using anteroposterior and lateral X-ray images. For coronal curves, a method originally described by Cobb and for sagittal curves a modified Cobb method are most widely used in practice, and these methods have been shown to exhibit good-to-excellent reliability and reproducibility, carried out either manually or by computer-based tools. Recently, an ultralow radiation dose-integrated radioimaging solution was introduced with special software for realistic 3D visualization and parametric characterization of the spinal column. Comparison of accuracy, correlation of measurement values, intraobserver and interrater reliability of methods by conventional manual 2D and sterEOS 3D measurements in a routine clinical setting. Retrospective nonrandomized study of diagnostic X-ray images created as part of a routine clinical protocol of eligible patients examined at our clinic during a 30-month period between July 2007 and December 2009. In total, 201 individuals (170 females, 31 males; mean age, 19.88 years) including 10 healthy athletes with normal spine and patients with adolescent idiopathic scoliosis (175 cases), adult degenerative scoliosis (11 cases), and Scheuermann hyperkyphosis (5 cases). Overall range of coronal curves was between 2.4° and 117.5°. Analysis of accuracy and reliability of measurements were carried out on a group of all patients and in subgroups based on coronal plane deviation: 0° to 10° (Group 1, n=36), 10° to 25° (Group 2, n=25), 25° to 50° (Group 3, n=69), 50° to 75° (Group 4, n=49), and more than 75° (Group 5, n=22). Coronal and sagittal curvature measurements were determined by three experienced examiners, using either traditional 2D methods or automatic measurements based on sterEOS 3D reconstructions. Manual measurements were performed three times, and sterEOS 3D

  15. Helical axes of skeletal knee joint motion during running.

    Science.gov (United States)

    van den Bogert, A J; Reinschmidt, C; Lundberg, A

    2008-01-01

    The purpose of this study was to determine the changes in the axis of rotation of the knee that occur during the stance phase of running. Using intracortical pins, the three-dimensional skeletal kinematics of three subjects were measured during the stance phase of five running trials. The stance phase was divided into equal motion increments for which the position and orientation of the finite helical axes (FHA) were calculated relative to a tibial reference frame. Results were consistent within and between subjects. At the beginning of stance, the FHA was located at the midepicondylar point and during the flexion phase moved 20mm posteriorly and 10mm distally. At the time of peak flexion, the FHA shifted rapidly by about 10-20mm in proximal and posterior direction. The angle between the FHA and the tibial transverse plane increased gradually during flexion, to about 15 degrees of medial inclination, and then returned to zero at the start of the extension phase. These changes in position and orientation of FHA in the knee should be considered in analyses of muscle function during human movement, which require moment arms to be defined relative to a functional rotation axis. The finding that substantial changes in axis of rotation occurred independent of flexion angle suggests that musculoskeletal models must have more than one kinematic degree-of-freedom at the knee. The same applies to the design of knee prostheses, if the goal is to restore normal muscle function.

  16. Size and asymmetry of the planum temporale. A new three-dimensional method for analysis of the supratemporal plane using MR imaging and computer-aided graphics

    International Nuclear Information System (INIS)

    Utsunomiya, H.; Nawata, M.; Ogasawara, T.; Okazaki, M.; Miyoshi, M.

    1996-01-01

    The planum temporale of the supratemporal plane is important for language function and shows left-right asymmetry in most brains. To estimate the size and allow side comparison of the planum temporale, we developed a new technique for 3-D MR analysis of the supratemporal plane using a personal computer and computer-aided graphics. The temporal lobes of 5 human cadavers were imaged by MR in the sagittal plane, at a slice thickness of 3 mm. The images of the supratemporal plane were entered into a personal computer using the original software to determine the positions of anatomic landmarks and the size of the planum temporale. The data were then transferred to a supercomputer to reconstruct the 3-D surface image of the supratemporal plane. Computer images of the spuratemporal plane agreed with macroscopic observations. The positions of anatomic landmarks and the size of the planum temporale also agreed with macroscopic measurements. Thus, the persent technique provides valuable anatomic data on the spuratemporal plane which should be useful for further clarification of the anatomic basis of language function. (orig.)

  17. Self-reported previous knee injury and low knee function increase knee injury risk in adolescent female football

    DEFF Research Database (Denmark)

    Clausen, Mikkel Bek; Tang, L; Zebis, M K

    2016-01-01

    with low KOOS subscale scores (Sport/Recreational (RR: 2.2) and Quality of Life (RR: 3.0) (P time-loss knee...... questionnaires were collected at baseline. Time-loss knee injuries and football exposures were reported weekly by answers to standardized text-message questions, followed by injury telephone interviews. A priori, self-reported previous knee injury and low KOOS subscale scores (... as independent variables in the risk factor analyses. The study showed that self-reported previous knee injury significantly increased the risk of time-loss knee injury [relative risk (RR): 3.65, 95% confidence (CI) 1.73-7.68; P time-loss knee injury was also significantly increased in players...

  18. Magnification bone scan of knees for knee pain evaluation

    International Nuclear Information System (INIS)

    Lee, Myoung Hoon; Park, Chan H.; Yoon, Seok Nam; Hwang, Kyung Hoon

    2001-01-01

    Knee pain is one of the common complaints of patients seen in our orthopedic clinic. Routine anterior and posterior views of whole body bone scan (WBBS) is often not sufficient in the evaluation of these patients. An ideal bone scan using pinhole collimator or single photon emission tomography (SPECT), however, is impractical and time consuming in busy nuclear medicine department with limited resources. Therefore, the aim of the study is to assess limited bone scan of knees with magnification (LNSKM) for knee pain evaluation. Technical aspect of LBSKM and diagnostic efficacy are discussed on this poster. Adult patients with knee pain were reffered for LBSKM from an orthopedic surgen specializing knees. Four hundred fifteen LBSKMs were performed since 1999. patients were given 740 MBq (20mCi) Tc-99m MDP intravenously and 3 hours later LBSKM was performed using a low energy high resolution parallel hole collimator and Siemens Orbitor camera. (Simens medical systems. Inc., Hoffman Estates, III., USA). Anterior view of the knees was taken for 5 min, without magnification and both lateral views of symptomatic knees were obtained with electronic magnification (1.25, upto 2.0) for 8 min each. Disease processes such as DJD, traumatic arthritis, P-F tendonitis, SONK, meniscus tear are detected and illustrated along with normal knee scan finding. We believe LBSKM may not be as good as SPECT or pinhole imaging of the knees in the evaluation of knee pain but superior to routine WBBS in the nuclear medicine department with limited resources of instrumentation and manpower

  19. Association of knee confidence with pain, knee instability, muscle strength, and dynamic varus-valgus joint motion in knee osteoarthritis.

    Science.gov (United States)

    Skou, Søren T; Wrigley, Tim V; Metcalf, Ben R; Hinman, Rana S; Bennell, Kim L

    2014-05-01

    To investigate associations between self-reported knee confidence and pain, self-reported knee instability, muscle strength, and dynamic varus-valgus joint motion during walking. We performed a cross-sectional analysis of baseline data from 100 participants with symptomatic and radiographic medial tibiofemoral compartment osteoarthritis (OA) and varus malalignment recruited for a randomized controlled trial. The extent of knee confidence, assessed using a 5-point Likert scale item from the Knee Injury and Osteoarthritis Outcome Score, was set as the dependent variable in univariable and multivariable ordinal regression, with pain during walking, self-reported knee instability, quadriceps strength, and dynamic varus-valgus joint motion during walking as independent variables. One percent of the participants were not troubled with lack of knee confidence, 17% were mildly troubled, 50% were moderately troubled, 26% were severely troubled, and 6% were extremely troubled. Significant associations were found between worse knee confidence and higher pain intensity, worse self-reported knee instability, lower quadriceps strength, and greater dynamic varus-valgus joint motion. The multivariable model consisting of the same variables significantly accounted for 24% of the variance in knee confidence (P knee confidence is associated with higher pain, worse self-reported knee instability, lower quadriceps muscle strength, and greater dynamic varus-valgus joint motion during walking. Since previous research has shown that worse knee confidence is predictive of functional decline in knee OA, addressing lack of knee confidence by treating these modifiable impairments could represent a new therapeutic target. Copyright © 2014 by the American College of Rheumatology.

  20. Relationship between Widening and Position of the Tunnels and Clinical Results of Anterior Cruciate Ligament Reconstruction to Knee Osteoarthritis: 30 Patients at a Minimum Follow-Up of 10 Years.

    Science.gov (United States)

    Ayala-Mejias, Juan Diego; Garcia-Gonzalez, Benjamin; Alcocer-Perez-España, Luis; Villafañe, Jorge Hugo; Berjano, Pedro

    2017-07-01

    To evaluate the relationship between tunnel position and widening and long-term clinical results in anterior cruciate ligament (ACL) reconstruction, a retrospective cohort of 30 patients undergoing ACL reconstruction with double semitendinous plus double gracilis (SAC technique) with longer than 10-year follow-up was selected. CT scans in the first 3 months and at final follow-up was evaluated. Position, angle, and widening of tunnels including Nebelung criteria were recorded in all CT scans. Physical, KT-1000, and clinical evaluation were performed at final follow-up. Outcomes and knee arthritis severity were evaluated at final follow-up. Mean follow-up was 11.2 ± 1.2. At final follow-up, 85 and 57% of tibial and femoral tunnels, respectively, developed some degree of enlargement. Frontal tibial angle (mean) was 72°, sagittal tibial angle 63°, frontal femoral angle 47°, sagittal femoral angle 20°, and tunnels divergence angle 36°. Preoperatively, KT-1000 30L and Lachman test scores were 5.52 and 5.79 respectively. In the last follow-up, 30L and manual Lachman test scores were 0.97 and 1.13, respectively ( p  verticalization. Tibial tunnel dilation was associated with long-term degenerative changes but not with final knee instability. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Noninvasive Optoelectronic Assessment of Induced Sagittal Imbalance Using the Vicon System.

    Science.gov (United States)

    Ould-Slimane, Mourad; Latrobe, Charles; Michelin, Paul; Chastan, Nathalie; Dujardin, Franck; Roussignol, Xavier; Gauthé, Rémi

    2017-06-01

    Spinal diseases often induce gait disorders with multifactorial origins such as lumbar pain, radicular pain, neurologic complications, or spinal deformities. However, radiography does not permit an analysis of spinal dynamics; therefore, sagittal balance dynamics during gait remain largely unexplored. This prospective and controlled pilot study assessed the Vicon system for detecting sagittal spinopelvic imbalance, to determine the correlations between optoelectronic and radiographic parameters. Reversible anterior sagittal imbalance was induced in 24 healthy men using a thoracolumbar corset. Radiographic, optoelectronic, and comparative analyses were conducted. Corset wearing induced significant variations in radiographic parameters indicative of imbalance; the mean C7-tilt and d/D ratio increased by 15° ± 7.4° and 359%, respectively, whereas the mean spinosacral angle decreased by 16.8° ± 8° (all P imbalance; the mean spinal angle increased by 15.4° ± 5.6° (P imbalance detected using the Vicon system. Optoelectronic C7'S1' correlated with radiographic C7-tilt and d/D ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A previously unreported variant of the synostotic sagittal suture: Case report and review of salient literature

    Directory of Open Access Journals (Sweden)

    Madison Budinich

    2016-12-01

    Full Text Available Introduction: Sagittal synostosis is a rare congenital disease caused by the premature fusion of the sagittal suture. Craniosynostosis occurs for a variety of reasons, different for every case, and often the etiology is unclear but the anomaly can frequently be seen as part of Crouzon's or Apert's syndromes. Herein, we discuss a rare case of craniosynostosis where the patient presented with a, to our knowledge, a previously undescribed variant of sagittal synostosis. Case report: A 3-month-old female infant presented to a craniofacial clinic for a consultation regarding an abnormal head shape. Images of the skull were performed, demonstrating that the patient had craniosynostosis. The patient displayed no other significant symptoms besides abnormalities in head shape. The sagittal suture was found to extend into the occipital bone where it was synostotic. Conclusion: To our knowledge, a synostotic sagittal suture has not been reported that extended posteriorly it involve the occipital bone. Those who interpret imaging or operate on this part of the skull should consider such a variation. Keywords: Anatomy, Craniosynostosis, Skull, Malformation, Pediatrics

  3. INFLUENCE OF THE SAGITTAL BALANCE ON THE CLINICAL OUTCOME IN SPINAL FUSION

    Directory of Open Access Journals (Sweden)

    Marcela Almeida Campos Coutinho

    2016-03-01

    Full Text Available ABSTRACT Objective: Evaluates which radiographic parameters of the sagittal and spinopelvic balance influence the clinical and functional outcomes of a sample of patients undergoing spinal fusion. Methods: We studied 32 patients who underwent spinal fusion. Radiographs of the total spine were obtained from all patients. The clinical and functional parameters studied were analysis of pain by visual analogic scale (VAS and Oswestry and SRS-30 questionnaires. We analyzed the correlation between the clinical and functional parameters and radiographic parameters of the sagittal and spinopelvic balance. Results: There was no significant correlation between parameters pelvic incidence (PI, pelvic tilt (PT, lumbar lordosis (LL and difference between PI and LL (PI-LL and clinical parameters (p > 0.05 and r <0.2. Significant correlation were identified only between Sagittal Vertical Axis (SVA and Satisfaction with Treatment domain of SRS-30 (r = 0.402 e p = 0.023 and between thoracic kyphosis (TK and the total SRS-30 (r = 0.419 and p = 0.017. Conclusions: According to the study results, it was not possible to precisely characterize the role of the parameters of the sagittal and spinopelvic balance in the post-operative analysis of the clinical outcome of spinal fusion. There was a significant correlation only between SVA and the Satisfaction with Treatment domain of SRS-30 and between TK and total SRS-30.

  4. MR imaging reflects cartilage proteoglycan degradation in the rabbit knee joint

    International Nuclear Information System (INIS)

    Paul, P.K.; O'Byrne, E.M.; Blancuzzi, V.; Wilson, D.; Douglas, F.L.; Mezrich, R.S.

    1989-01-01

    Depletion of proteoglycan (PG) from articular cartilage is an early feature of osteoarthritis (OA). Noninvasive assessment of joint morphology corresponding to changes in cartilage PG is crucial for early diagnosis of OA and for demonstration of efficacy of drugs for OA. Intraarticular injection of papain causes a reversible loss of cartilage PG in intact joints. Both knees of NZW rabbits were scanned with a 1.5-T Signa MR imager with a 3-inch surface coil. A spin-echo technique was used, and coronal and sagittal MR images were obtained at 0, 24, 48, and 72 hours after injection of 5 U papain. An 8-cm field of view, a 3-mm section thickness, and a 128 x 256 matrix was used to obtain T1-, proton density-, and T2-weighted images. Cartilage was dissected from the femur for measurement of PG with 1,9-dimethylmethylene blue. Results are presented

  5. Conjoined lumbosacral nerve roots compromised by disk herniation: sagittal shoulder sign for the preoperative diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Ho [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea); Korea University College of Medicine, Department of Radiology, Anam Hospital, Seoul (Korea); Shin, Myung Jin; Kim, Sung Moon; Lee, Sang Hoon; Kim, Hee Kyung; Ryu, Jeong Ah [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea); Lee, Choon-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Orthopedic Surgery, Seoul (Korea); Kim, Sam Soo [Kangwon National University College of Medicine, Department of Radiology, Kangwon (Korea)

    2008-03-15

    The objective was to determine the importance of the ''sagittal shoulder sign'' on magnetic resonance (MR) images for the diagnosis of conjoined lumbosacral nerve roots (CLNR) that are compromised by herniated disks. Magnetic resonance images of 11 patients (6 men and 5 women; age range, 25-71 years; average age, 48.7 years) with surgically proven CLNR, which was compromised by herniated disks, were retrospectively evaluated by two musculoskeletal radiologists. MR images were evaluated for the presence or absence of the sagittal shoulder sign - a vertical structure connecting two consecutive nerve roots and overlying disk on the sagittal MR images. The radiologists noted the type of accompanying disk herniation and bony spinal canal changes, as well as other characteristic MR features of CLNR, the common passage of two consecutive nerve roots through the neural foramen on axial MR images. The sagittal shoulder sign was identified with a mean frequency of 90.9% by the two observers (in 10 of 11 patients). The common passage of two consecutive nerve roots through the neural foramen on axial MR images was identified with a mean frequency of 59.1% (in 7 and 6 out of 11 patients, by observers 1 and 2, respectively). Good interobserver agreement for the sagittal shoulder sign was present (k = 0.621, p < 0.05). Observation of the sagittal shoulder sign may prove helpful for diagnosing CLNR in patients with disk herniation. In particular, this sign appears to be useful when there is no evidence of CLNR on axial MR images. (orig.)

  6. The effect of knee brace and knee sleeve on the proprioception of the knee in young non-professional healthy sportsmen.

    Science.gov (United States)

    Bottoni, G; Herten, A; Kofler, P; Hasler, M; Nachbauer, W

    2013-12-01

    Proprioception has been defined as the capacity to feel the position of a joint in space as sensed by the central nervous system. Prophylactic knee braces are supposed to help in knee injury prevention not just with a mechanical support of the joint but also improving proprioception. The main aim of this study was to determine the effects of a knee brace and a knee sleeve on knee proprioception. The secondary aim was to determine if different starting angles of the knee and different movement directions influence knee proprioception. We tested a group of twenty healthy male sport students without knee injuries. They were tested with the brace, with the sleeve and without support. The threshold of detection of passive knee movement with a starting knee angle of 30° and 60°, both in flexion and extension was determined. We did not find any statistically significant change in the threshold of detection of passive knee movement wearing the brace or the sleeve compared to the unsupported condition (p=0.462, α=0.05). We found a significantly lower proprioceptive sensitivity starting at the more flexed knee angle (p=0.005, α=0.05) and moving in extension than in the other test situations (p=0.001, α=0.05). Movement direction and starting position appear to influence the threshold of detection of passive knee movement. The results of this study also suggest that knee supports do not influence either positively or negatively knee proprioception of uninjured active subjects. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Bouncy knee in a semi-automatic knee lock prosthesis.

    Science.gov (United States)

    Fisher, L D; Lord, M

    1986-04-01

    The Bouncy Knee concept has previously proved of value when fitted to stabilised knee units of active amputees. The stance phase flex-extend action afforded by a Bouncy Knee increased the symmetry of gait and also gave better tolerance to slopes and uneven ground. A bouncy function has now been incorporated into a knee of the semi-automatic knee lock design in a pilot laboratory trial involving six patients. These less active patients did not show consistent changes in symmetry of gait, but demonstrated an improved ability to walk on slopes and increased their walking range. Subjective response was positive, as noted in the previous trials.

  8. Skeletal Stability after Large Mandibular Advancement (> 10 mm) with Bilateral Sagittal Split Osteotomy and Skeletal Elastic Intermaxillary Fixation

    DEFF Research Database (Denmark)

    Schwartz, Kristoffer; Rodrigo, Maria; Jensen, Thomas

    2016-01-01

    OBJECTIVES: The aim of the present study was to assess the skeletal stability after large mandibular advancement (> 10 mm) with bilateral sagittal split osteotomy and skeletal elastic intermaxillary fixation and to correlate the skeletal stability with the vertical facial type. MATERIAL AND METHODS......: A total of 33 consecutive patients underwent bimaxillary surgery to correct skeletal Class II malocclusion with a mandibular advancement (> 10 mm) measured at B-point and postoperative skeletal elastic intermaxillary fixation for 16 weeks. Skeletal stability was evaluated using lateral cephalometric...... radiographs obtained preoperative (T1), 8 weeks postoperatively (T2), and 18 month postoperatively (T3). B-point and pogonion (Pog) was used to measure the skeletal relapse and the mandibular plane angle (MP-angle) was used to determine the vertical facial type. RESULTS: The mean advancement from T1 to T2...

  9. Knee pain (image)

    Science.gov (United States)

    The location of knee pain can help identify the problem. Pain on the front of the knee can be due to bursitis, arthritis, or ... synovial fluid) that forms behind the knee. Overall knee pain can be due to bursitis, arthritis, tears in ...

  10. Not all sagittal band tears come with extensor instability. A case report with radiological and operative correlation

    International Nuclear Information System (INIS)

    Li, Shuo; Jacob, Jubin; Ghasemiesfe, Ahmadreza; Marrinan, Greg B.; Brooks, Jeffrey J.

    2018-01-01

    The sagittal bands are a component of the extensor hood. They serve an important role in stabilizing the extensor tendon by forming a ''check-rein'' to radial-ulnar translation of the tendon over the metacarpal head, and extending the metacarpophalangeal (MCP) joint by virtue of attaching the extensor tendon to the palmar plate. Injury to the sagittal band is thought to cause extensor instability and subluxation to the contralateral side by disruption of this ''check-rein'' function, although recent evidence from cadaver studies suggests that ulnar sagittal band tear may be spared of extensor instability. As a case in point, we encountered a patient with surgically proven ulnar sagittal band tear, who did not have any extensor tendon subluxation or any limitation in motion. Intraoperative findings demonstrated a chronic-appearing ulnar sagittal band tear, indicating that chronic injury with fibrosis may stabilize the central band. Therefore, in patients with metacarpophalangeal pain without central tendon subluxation or limitation of motion, it remains important to raise the concern of sagittal band tear for appropriate treatment. We present the clinical course of this case, with radiological and operative findings, followed by a review of the relevant literature. (orig.)

  11. Not all sagittal band tears come with extensor instability. A case report with radiological and operative correlation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Jacob, Jubin; Ghasemiesfe, Ahmadreza; Marrinan, Greg B. [Yale New Haven Health Bridgeport Hospital, Bridgeport, CT (United States); Brooks, Jeffrey J. [Orthopedic Surgery and Sports Medicine Center, New Canaan, CT (United States)

    2018-04-15

    The sagittal bands are a component of the extensor hood. They serve an important role in stabilizing the extensor tendon by forming a ''check-rein'' to radial-ulnar translation of the tendon over the metacarpal head, and extending the metacarpophalangeal (MCP) joint by virtue of attaching the extensor tendon to the palmar plate. Injury to the sagittal band is thought to cause extensor instability and subluxation to the contralateral side by disruption of this ''check-rein'' function, although recent evidence from cadaver studies suggests that ulnar sagittal band tear may be spared of extensor instability. As a case in point, we encountered a patient with surgically proven ulnar sagittal band tear, who did not have any extensor tendon subluxation or any limitation in motion. Intraoperative findings demonstrated a chronic-appearing ulnar sagittal band tear, indicating that chronic injury with fibrosis may stabilize the central band. Therefore, in patients with metacarpophalangeal pain without central tendon subluxation or limitation of motion, it remains important to raise the concern of sagittal band tear for appropriate treatment. We present the clinical course of this case, with radiological and operative findings, followed by a review of the relevant literature. (orig.)

  12. 21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be implanted...

  13. 21 CFR 888.3580 - Knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellar (hemi-knee) metallic... § 888.3580 Knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint patellar (hemi-knee) metallic resurfacing uncemented prosthesis is a device made of...

  14. The relationship between changes of cervical sagittal alignment after anterior cervical discectomy and fusion and spino-pelvic sagittal alignment under roussouly classification: a four-year follow-up study.

    Science.gov (United States)

    Huang, Dong-Ning; Yu, Miao; Xu, Nan-Fang; Li, Mai; Wang, Shao-Bo; Sun, Yu; Jiang, Liang; Wei, Feng; Liu, Xiao-Guang; Liu, Zhong-Jun

    2017-02-20

    Anterior cervical discectomy and fusion (ACDF) is widely used in the treatment of cervical degenerative disease; however, the variation of cervical sagittal alignment changes after ACDF has been rarely explored. The purpose of this study is to determine the relationship between changes of cervical sagittal alignment after ACDF and spino-pelvic sagittal alignment under Roussouly classification. A cohort of 133 Chinese cervical spondylotic patients who received ACDF from 2011 to 2012 was recruited. All patients were categorized with Roussouly Classification. Lateral X-ray images of global spine were obtained, and preoperative and postoperative parameters were measured and analyzed, including C2-C7 angles (C2-C7), C0-C7 angles (C0-C7), external auditory meatus (EAM) tilt, sacral slope (SS), thoracic kyphosis (TK), lumbar lordosis (LL), spinal sacral angles (SSA), Superior adjacent inter-vertebral angle (SAIV), inferior adjacent inter-vertebral angle (IAIV) and et al. The Wilcoxon signed-rank test was used for intragroup comparisons preoperatively and at postoperative 48 months. Among the parameters, C2-C7 and C0-C7 showed significant increase, while EAM TK, and IAIV decreased significantly. In type I, EAM and TK decreased significantly, however SS showed a significant increase; in type II, TK showed a significant decrease, but SSA showed a significant increase; in type III, a significant increase of C0-C7 was observed with a significant decrease in EAM, nevertheless, LL, SS and SSA showed significant decreases; and in type IV, C2-C7 showed a significant increase and EAM decreased significantly. The percentage of lordotic alignment in cervical spine increased, which was presenting in type I, III and IV. Nevertheless, the amount of patients with straight cervical alignment increased in type II. The backward movement of head occurs is the compensatory mechanism in cervical sagittal alignment modifications after ACDF. The compensatory alteration of spino-pelvic sagittal

  15. The relationship between changes of cervical sagittal alignment after anterior cervical discectomy and fusion and spino-pelvic sagittal alignment under roussouly classification: a four-year follow-up study

    Directory of Open Access Journals (Sweden)

    Dong-Ning Huang

    2017-02-01

    Full Text Available Abstract Background Anterior cervical discectomy and fusion (ACDF is widely used in the treatment of cervical degenerative disease; however, the variation of cervical sagittal alignment changes after ACDF has been rarely explored. The purpose of this study is to determine the relationship between changes of cervical sagittal alignment after ACDF and spino-pelvic sagittal alignment under Roussouly classification. Methods A cohort of 133 Chinese cervical spondylotic patients who received ACDF from 2011 to 2012 was recruited. All patients were categorized with Roussouly Classification. Lateral X-ray images of global spine were obtained, and preoperative and postoperative parameters were measured and analyzed, including C2–C7 angles (C2–C7, C0–C7 angles (C0–C7, external auditory meatus (EAM tilt, sacral slope (SS, thoracic kyphosis (TK, lumbar lordosis (LL, spinal sacral angles (SSA, Superior adjacent inter-vertebral angle (SAIV, inferior adjacent inter-vertebral angle (IAIV and et al. The Wilcoxon signed-rank test was used for intragroup comparisons preoperatively and at postoperative 48 months. Results Among the parameters, C2–C7 and C0–C7 showed significant increase, while EAM TK, and IAIV decreased significantly. In type I, EAM and TK decreased significantly, however SS showed a significant increase; in type II, TK showed a significant decrease, but SSA showed a significant increase; in type III, a significant increase of C0–C7 was observed with a significant decrease in EAM, nevertheless, LL, SS and SSA showed significant decreases; and in type IV, C2–C7 showed a significant increase and EAM decreased significantly. The percentage of lordotic alignment in cervical spine increased, which was presenting in type I, III and IV. Nevertheless, the amount of patients with straight cervical alignment increased in type II. Conclusion The backward movement of head occurs is the compensatory mechanism in cervical sagittal alignment

  16. The influence of sex and obesity on gait biomechanics in people with severe knee osteoarthritis scheduled for arthroplasty.

    Science.gov (United States)

    Paterson, K L; Sosdian, L; Hinman, R S; Wrigley, T V; Kasza, J; Dowsey, M; Choong, P; Bennell, K L

    2017-11-01

    Sex and body mass may influence knee biomechanics associated with poor total knee arthroplasty (TKA) outcomes for knee osteoarthritis (OA). This study aimed to determine if gait differed between men and women, and overweight and class I obese patients with severe knee OA awaiting TKA. 34 patients with severe knee OA (average age 70.0 (SD 7.2) years, body mass index 30.3 (4.1kg/m 2 )) were recruited from a TKA waiting list. Three-dimensional gait analysis was performed at self-selected walking speed. Comparisons were made between men and women, and overweight (body mass index (BMI) 25.0-29.9kg/m 2 ) and class I obese (BMI 30.0-34.9kg/m 2 ) participants. Biomechanical outcomes included absolute and body size-adjusted peak knee adduction moment (KAM), KAM impulse, peak knee flexion moment, as well as peak knee flexion and varus-valgus angles, peak varus-valgus thrust, and peak vertical ground reaction force (GRF). Men had a higher absolute peak KAM, KAM impulse and peak GRF compared to women, and this sex-difference in frontal plane moments remained after adjusting for body size. However, when additionally adjusting for static knee alignment, differences disappeared. Knee biomechanics were similar between obesity groups after adjusting for the greater body weight of those with class I obesity. Men had greater KAM and KAM impulse even after adjustment for body size; however adjustment for their more varus knees removed this difference. Obesity group did not influence knee joint kinematics or moments. This suggests sex- and obesity-differences in these variables may not be associated with TKA outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Accuracy of the sagittal vertical axis in a standing lateral radiograph as a measurement of balance in spinal deformities

    NARCIS (Netherlands)

    van Royen, B.J.; Toussaint, H.M.; Kingma, I.; Bot, S.D.M.; Caspers, M.; Harlaar, J.

    1998-01-01

    Sagittal balance of the spine is becoming an important issue in the assessment of the degree of spinal deformity. On a standing lateral full- length radiograph of the spine, the plumb line, or sagittal vertical axis (SVA), can be used to determine the spinal sagittal balance. In this procedure

  18. Difference in kinematical behavior between two landing tasks in male volleyball athletes

    Directory of Open Access Journals (Sweden)

    Glauber Ribeiro Pereira

    2010-09-01

    Full Text Available Anterior cruciate ligament (ACL injuries are common in sports. Studies investigating injury mechanisms have demonstrated that most injuries arise from landing tasks. Despite the demonstration of differences between male and female kinematics, there are no studies showing how males behave during different landing tasks. The objective of this study was to compare the angular and temporal kinematics of the lower limbs between two different landing tasks. Double leg and single leg landings were recorded in the frontal and sagittal plane in 15 male volleyball athletes by videogrammetry. Reduced hip and knee flexion and increased knee valgus were observed in the single leg landing task compared to the double leg landing task. No significant difference in landing time was observed between the two tasks. In conclusion, the results support the premise that lower limb kinematics change according to the task performed. Further studies are necessary to explore the impact of these kinematic differences on knee loading and to relate them to ACL injury mechanisms in men.

  19. Difference in kinematical behavior between two landing tasks in male volleyball athletes doi: 10.5007/1980-0037.2010v12n6p464

    Directory of Open Access Journals (Sweden)

    Gustavo Leporace

    2010-09-01

    Full Text Available Anterior cruciate ligament (ACL injuries are common in sports. Studies investigating injury mechanisms have demonstrated that most injuries arise from landing tasks. Despite the demonstration of differences between male and female kinematics, there are no studies showing how males behave during different landing tasks. The objective of this study was to compare the angular and temporal kinematics of the lower limbs between two different landing tasks. Double leg and single leg landings were recorded in the frontal and sagittal plane in 15 male volleyball athletes by videogrammetry. Reduced hip and knee flexion and increased knee valgus were observed in the single leg landing task compared to the double leg landing task. No significant difference in landing time was observed between the two tasks. In conclusion, the results support the premise that lower limb kinematics change according to the task performed. Further studies are necessary to explore the impact of these kinematic differences on knee loading and to relate them to ACL injury mechanisms in men.

  20. Reliability and measurement error of sagittal spinal motion parameters in 220 patients with chronic low back pain using a three-dimensional measurement device.

    Science.gov (United States)

    Mieritz, Rune M; Bronfort, Gert; Jakobsen, Markus D; Aagaard, Per; Hartvigsen, Jan

    2014-09-01

    A basic premise for any instrument measuring spinal motion is that reliable outcomes can be obtained on a relevant sample under standardized conditions. The purpose of this study was to assess the overall reliability and measurement error of regional spinal sagittal plane motion in patients with chronic low back pain (LBP), and then to evaluate the influence of body mass index, examiner, gender, stability of pain, and pain distribution on reliability and measurement error. This study comprises a test-retest design separated by 7 to 14 days. The patient cohort consisted of 220 individuals with chronic LBP. Kinematics of the lumbar spine were sampled during standardized spinal extension-flexion testing using a 6-df instrumented spatial linkage system. Test-retest reliability and measurement error were evaluated using interclass correlation coefficients (ICC(1,1)) and Bland-Altman limits of agreement (LOAs). The overall test-retest reliability (ICC(1,1)) for various motion parameters ranged from 0.51 to 0.70, and relatively wide LOAs were observed for all parameters. Reliability measures in patient subgroups (ICC(1,1)) ranged between 0.34 and 0.77. In general, greater (ICC(1,1)) coefficients and smaller LOAs were found in subgroups with patients examined by the same examiner, patients with a stable pain level, patients with a body mass index less than below 30 kg/m(2), patients who were men, and patients in the Quebec Task Force classifications Group 1. This study shows that sagittal plane kinematic data from patients with chronic LBP may be sufficiently reliable in measurements of groups of patients. However, because of the large LOAs, this test procedure appears unusable at the individual patient level. Furthermore, reliability and measurement error varies substantially among subgroups of patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Clinical effect of total knee arthroplasty on patients with knee osteoarthritis combined with mild to moderate valgus knee deformity].

    Science.gov (United States)

    Chen, Peng; Zeng, Min; Xie, Jie; Wang, Long; Su, Weiping; Hu, Yihe

    2016-09-28

    To investigate the clinical effect of total knee arthroplasty on patients with knee osteoarthritis combined with mild to moderate valgus knee deformity.
 A total of 15 patients received total knee arthroplasty for correcting mild (10°-15°) to moderate (15°-30°) valgus knee between January 2011 and February 2014 in Xiangya Hospital of Central South University. We adopted a stable prosthesis surgery through patellar medial approach, osteophytes cleaning, conventional osteotomy, a selective soft tissue release and balance technical correcting of knee valgus deformity. Then conventional anticoagulation and symptomatic rehabilitation was utilized. Preoperative and postoperative X-ray was conducted in patients with measuring femor-tibial angle (FTA) and inspecting the prosthesis position. FTA, visual analog scale (VAS) standard, and parallel knee scoring system (KSS) were used to evaluate the clinical effect.
 Fifteen patients were followed up for 14 to 36 (22.40±11.88) months. The hospitalization time was 7-13 (7.73±1.58) d; operative time was 58-110 (81.8±16.85) min, the dominant blood loss was 140-600 (337.30±143.65) mL. Two cases had knee extension hysteresis, and the knee activity recovered after exercise. Leg power lines were normal. Three postoperative cases suffered anterior knee pain. They were subjected to celecoxib analgesic treatment and the pain gradually eased after 3 months. One postoperative case showed incision discharge and swelling, which was healed after change of dressing. During follow-up, review of X-ray film does not show prosthesis loose, subsidence and other complications. The knee valgus angle (8.1±1.8)°, knee motion range (107.33±9.61)°, KSS knee score (74.7±14.5, 75.3±2.7) and pain score (2.5±0.9) were significantly better than the preoperative (Pclinical and function KSS scores showed that the improvement rate was 80%. 
 Total knee arthroplasty is an effective way to treat patients with knee osteoarthritis combined with

  2. Quantitative Postural Analysis of Children With Congenital Visual Impairment.

    Science.gov (United States)

    de Pádua, Michelle; Sauer, Juliana F; João, Silvia M A

    2018-01-01

    The aim of this study was to compare the postural alignment of children with visual impairment with that of children without visual impairment. The sample studied was 74 children of both sexes ages 5 to 12 years. Of these, 34 had visual impairment and 40 were control children. Digital photos from the standing position were used to analyze posture. Postural variables, such as tilt of the head, shoulder position, scapula position, lateral deviation of the spine, ankle position in the frontal plane and head posture, angle of thoracic kyphosis, angle of lumbar lordosis, pelvis position, and knee position in the frontal and sagittal planes, were measured with the Postural Assessment Software 0.63, version 36 (SAPO, São Paulo, Brazil), with markers placed in predetermined bony landmarks. The main results of this study showed that children with visual impairment have increased head tilt (P Visual impairment influences postural alignment. Children with visual impairment had increased head tilt, uneven shoulders, greater lateral deviation of the spine, thoracic kyphosis, lower lumbar lordosis, and more severe valgus deformities on knees. Copyright © 2017. Published by Elsevier Inc.

  3. Knee joint loading in knee osteoarthritis: influence of abdominal and thigh fat.

    Science.gov (United States)

    Messier, Stephen P; Beavers, Daniel P; Loeser, Richard F; Carr, J Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J; Hunter, David J; Devita, Paul

    2014-09-01

    Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee joint loads in older overweight and obese adults with knee osteoarthritis (OA). Fat depots were quantified using computed tomography, and total lean and fat mass were determined with dual energy x-ray absorptiometry in 176 adults (age, 66.3 yr; body mass index, 33.5 kg·m) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Higher total body mass was significantly associated (P ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (P knee extensor moments (P = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (P = 0.0001), shear (P knee extension moment (P = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (P = 0.002). A regression model that included total thigh and total abdominal fat found that both were significantly associated with knee compressive and shear forces (P ≤ 0.04). Thigh fat was associated with knee abduction (P = 0.03) and knee extension moment (P = 0.02). Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA.

  4. Dynamic balance deficits in individuals with chronic ankle instability compared to ankle sprain copers 1 year after a first-time lateral ankle sprain injury.

    Science.gov (United States)

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2016-04-01

    To quantify the dynamic balance deficits that characterise a group with chronic ankle instability compared to lateral ankle sprain copers and non-injured controls using kinematic and kinetic outcomes. Forty-two participants with chronic ankle instability and twenty-eight lateral ankle sprain copers were initially recruited within 2 weeks of sustaining a first-time, acute lateral ankle sprain and required to attend our laboratory 1 year later to complete the current study protocol. An additional group of non-injured individuals were also recruited to act as a control group. All participants completed the anterior, posterior-lateral and posterior-medial reach directions of the star excursion balance test. Sagittal plane kinematics of the lower extremity and associated fractal dimension of the centre of pressure path were also acquired. Participants with chronic ankle instability displayed poorer performance in the anterior, posterior-medial and posterior-lateral reach directions compared with controls bilaterally, and in the posterior-lateral direction compared with lateral ankle sprain copers on their 'involved' limb only. These performance deficits in the posterior-lateral and posterior-medial directions were associated with reduced flexion and dorsiflexion displacements at the hip, knee and ankle at the point of maximum reach, and coincided with reduced complexity of the centre of pressure path. In comparison with lateral ankle sprain copers and controls, participants with chronic ankle instability were characterised by dynamic balance deficits as measured using the SEBT. This was attested to reduced sagittal plane motions at the hip, knee and ankle joints, and reduced capacity of the stance limb to avail of its supporting base. III.

  5. Jumper's Knee (Patellar Tendonitis)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Jumper's Knee KidsHealth / For Teens / Jumper's Knee What's in this ... continued damage to the knee. How Does the Knee Work? To understand how jumper's knee happens, it ...

  6. Knee extensor muscle weakness is a risk factor for development of knee osteoarthritis

    DEFF Research Database (Denmark)

    Oiestad, B E; Juhl, C B; Eitzen, I

    2015-01-01

    The objective of this study was to perform a systematic review and meta-analysis on the association between knee extensor muscle weakness and the risk of developing knee osteoarthritis. A systematic review and meta-analysis was conducted with literature searches in Medline, SPORTDiscus, EMBASE......, CINAHL, and AMED. Eligible studies had to include participants with no radiographic or symptomatic knee osteoarthritis at baseline; have a follow-up time of a minimum of 2 years, and include a measure of knee extensor muscle strength. Hierarchies for extracting data on knee osteoarthritis and knee...... extensor muscle strength were defined prior to data extraction. Meta-analysis was applied on the basis of the odds ratios (ORs) of developing symptomatic knee osteoarthritis or radiographic knee osteoarthritis in subjects with knee extensor muscle weakness. ORs for knee osteoarthritis and 95% confidence...

  7. KNEE-JOINT LOADING IN KNEE OSTEOARTHRITIS: INFLUENCE OF ABDOMINAL AND THIGH FAT

    Science.gov (United States)

    Messier, Stephen P.; Beavers, Daniel P.; Loeser, Richard F.; Carr, J. Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J.; Hunter, David J.; DeVita, Paul

    2014-01-01

    Purpose Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee-joint loads in older overweight and obese adults with knee osteoarthritis (OA). Methods Fat depots were quantified using computed tomography and total lean and fat mass determined with dual energy x-ray absorptiometry in 176 adults (age = 66.3 yr., BMI = 33.5 kg·m−2) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Results Higher total body mass was significantly associated (p ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (p knee extensor moments (p = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (p = 0.0001), shear (p knee extension moment (p = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (p = 0.002). A regression model that included total thigh and total abdominal fat found both were significantly associated with knee compressive and shear forces (p ≤ 0.04). Thigh fat was associated with the knee abduction (p = 0.03) and knee extension moment (p = 0.02). Conclusions Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA. PMID:25133996

  8. Superior sagittal sinus thrombosis: a rare complication in a child with nephrotic syndrome

    International Nuclear Information System (INIS)

    Pirogovsky, A.; Adi, M.; Barzilai, N.; Dagan, A.; Sinai, L.; Sthoeger, D.; Tabachnik, E.

    2001-01-01

    A 2-year-old boy with new-onset nephrotic syndrome developed recurrent vomiting, apathy and papilloedema. Superior sagittal sinus thrombosis was diagnosed on cranial CT and MRI. He gradually recovered after treatment with heparin, fresh frozen plasma and warfarin with complete resolution of the thrombosis after 1 month. Superior sagittal sinus thrombosis is an extremely rare complication of nephrotic syndrome in children. Early diagnosis is essential for institution of anticoagulation therapy and a successful outcome. (orig.)

  9. Superior sagittal sinus thrombosis: a rare complication in a child with nephrotic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Pirogovsky, A.; Adi, M.; Barzilai, N. [Dept. of Radiology, Kaplan Medical Center, Rehovot (Israel); Dagan, A.; Sinai, L.; Sthoeger, D. [Div. of Paediatrics, Kaplan Medical Center, Rehovot (Israel); Tabachnik, E. [Div. of Paediatrics, Kaplan Medical Center, Rehovot (Israel); Paediatric ICU, Kaplan Hospital, Rehovot (Israel)

    2001-10-01

    A 2-year-old boy with new-onset nephrotic syndrome developed recurrent vomiting, apathy and papilloedema. Superior sagittal sinus thrombosis was diagnosed on cranial CT and MRI. He gradually recovered after treatment with heparin, fresh frozen plasma and warfarin with complete resolution of the thrombosis after 1 month. Superior sagittal sinus thrombosis is an extremely rare complication of nephrotic syndrome in children. Early diagnosis is essential for institution of anticoagulation therapy and a successful outcome. (orig.)

  10. Exoskeleton for gait rehabilitation of children: Conceptual design.

    Science.gov (United States)

    Cornejo, Jorge L; Santana, Jesus F; Salinas, Sergio A

    2017-07-01

    This paper presents the conceptual design of an exoskeleton for gait rehabilitation of children. This system has electronics, mechanicals and software sections, which are implemented and tested using a mannequin of a child. The prototype uses servomotors to move robotic joints that are attached to simulated patient's legs. The design has 4 DOF (degrees of freedom) two for hip joints and other two for knee joints, in the sagittal plane. A microcontroller measures sensor signals, controls motors and exchanges data with a computer. The user interacts with a graphical interface to configure, control and monitor the exoskeleton activities. The laboratory tests show soften movements in joint angle tracking.

  11. T1ρ is superior to T2 mapping for the evaluation of articular cartilage denaturalization with osteoarthritis: radiological-pathological correlation after total knee arthroplasty.

    Science.gov (United States)

    Takayama, Yukihisa; Hatakenaka, Masamitsu; Tsushima, Hidetoshi; Okazaki, Ken; Yoshiura, Takashi; Yonezawa, Masato; Nishikawa, Kei; Iwamoto, Yukihide; Honda, Hiroshi

    2013-04-01

    We compared the diagnostic performance of T1ρ and T2 mappings in the evaluation of denatured articular cartilage with osteoarthritis of the knee. 2D-Sagittal T1ρ and T2 mappings of the knee were obtained from 16 patients before total knee arthroplasty. After surgery, specimens of the femur and tibia were regionally segmented according to a 5-point scale of the severity of denaturalization. The T1ρ and T2 values in the full thickness of the articular cartilage in each region were measured by two observers. The two mappings were compared for their ability to differentiate between normal and denatured articular cartilage and also for their usefulness in grading the severity of the denaturalization using the area under receiver operating characteristic curves (Az). A pT2 mapping for the differentiation between normal and denatured articular cartilage (pT2 mapping could not. However, there were no significant differences between the two mappings in the discrimination of mild versus moderate denaturalization or of moderate versus severe denaturalization. The two observers showed good agreement in the results (intraclass correlation coefficient=0.81 for T1ρ and 0.92 for T2). T1ρ mapping is superior to T2 mapping for the evaluation of denatured articular cartilage with osteoarthritis of the knee. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Real-Time Tracking of Knee Adduction Moment in Patients with Knee Osteoarthritis

    Science.gov (United States)

    Kang, Sang Hoon; Lee, Song Joo; Zhang, Li-Qun

    2014-01-01

    Background The external knee adduction moment (EKAM) is closely associated with the presence, progression, and severity of knee osteoarthritis (OA). However, there is a lack of convenient and practical method to estimate and track in real-time the EKAM of patients with knee OA for clinical evaluation and gait training, especially outside of gait laboratories. New Method A real-time EKAM estimation method was developed and applied to track and investigate the EKAM and other knee moments during stepping on an elliptical trainer in both healthy subjects and a patient with knee OA. Results Substantial changes were observed in the EKAM and other knee moments during stepping in the patient with knee OA. Comparison with Existing Method(s) This is the first study to develop and test feasibility of real-time tracking method of the EKAM on patients with knee OA using 3-D inverse dynamics. Conclusions The study provides us an accurate and practical method to evaluate in real-time the critical EKAM associated with knee OA, which is expected to help us to diagnose and evaluate patients with knee OA and provide the patients with real-time EKAM feedback rehabilitation training. PMID:24361759

  13. The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study.

    Science.gov (United States)

    James, Darren C; Farmer, Laura J; Sayers, Jason B; Cook, David P; Mileva, Katya N

    2015-05-01

    The net contribution of all muscles that act about a joint can be represented as an internal joint moment profile. This approach may be advantageous when studying footwear-induced perturbations during walking since the contribution of the smaller deeper muscles that cross the ankle joint cannot be evaluated with surface electromyography. Therefore, the present study aimed to advance the understanding of FitFlop™ footwear interaction by investigating lower extremity joint moment, and kinematic and centre of pressure profiles during gait. 28 healthy participants performed 5 walking trials in 3 conditions: a FitFlop™ sandal, a conventional sandal and an athletic trainer. Three-dimensional ankle joint, and sagittal plane knee and hip joint moments, as well as corresponding kinematics and centre of pressure trajectories were evaluated. FitFlop™ differed significantly to both the conventional sandal and athletic trainer in: average anterior position of centre of pressure trajectory (Pgait pattern of wearers. An anterior displacement of the centre of pressure trajectory during early stance is the primary response to the destabilising effect of the mid-sole technology, and this leads to reductions in sagittal plane ankle joint range of motion and corresponding kinetics. Future investigations should consider the clinical implications of these findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Sagittal alignment and complications following lumbar 3-column osteotomy: does the level of resection matter?

    Science.gov (United States)

    Ferrero, Emmanuelle; Liabaud, Barthelemy; Henry, Jensen K; Ames, Christopher P; Kebaish, Khaled; Mundis, Gregory M; Hostin, Richard; Gupta, Munish C; Boachie-Adjei, Oheneba; Smith, Justin S; Hart, Robert A; Obeid, Ibrahim; Diebo, Bassel G; Schwab, Frank J; Lafage, Virginie

    2017-11-01

    OBJECTIVE Three-column osteotomy (3CO) is a demanding technique that is performed to correct sagittal spinal malalignment. However, the impact of the 3CO level on pelvic or truncal sagittal correction remains unclear. In this study, the authors assessed the impact of 3CO level and postoperative apex of lumbar lordosis on sagittal alignment correction, complications, and revisions. METHODS In this retrospective study of a multicenter spinal deformity database, radiographic data were analyzed at baseline and at 1- and 2-year follow-up to quantify spinopelvic alignment, apex of lordosis, and resection angle. The impact of 3CO level and apex level of lumbar lordosis on the sagittal correction was assessed. Logistic regression analyses were performed, controlling for cofounders, to investigate the effects of 3CO level and apex level on intraoperative and postoperative complications as well as on the need for subsequent revision surgery. RESULTS A total of 468 patients were included (mean age 60.8 years, mean body mass index 28.1 kg/m 2 ); 70% of patients were female. The average 3CO resection angle was 25.1° and did not significantly differ with regard to 3CO level. There were no significant correlations between the 3CO level and amount of sagittal vertical axis or pelvic tilt correction. The postoperative apex level significantly correlated with greater correction of pelvic tilt (2° per more caudal level, R = -0.2, p = 0.006). Lower-level 3CO significantly correlated with revisions for pseudarthrosis (OR = 3.88, p = 0.001) and postoperative motor deficits (OR = 2.02, p = 0.026). CONCLUSIONS In this study, a more caudal lumbar 3CO level did not lead to greater sagittal vertical axis correction. The postoperative apex of lumbar lordosis significantly impacted pelvic tilt. 3CO levels that were more caudal were associated with more postoperative motor deficits and revisions.

  15. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    Science.gov (United States)

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Knee Deformities in Children With Down Syndrome: A Focus on Knee Malalignment.

    Science.gov (United States)

    Duque Orozco, Maria Del Pilar; Abousamra, Oussama; Chen, Brian Po-Jung; Rogers, Kenneth J; Sees, Julieanne P; Miller, Freeman

    Patellofemoral instability (PFI) has been the most reported knee abnormality in people with Down syndrome. Other reported knee abnormalities have been associated with PFI and different management approaches have been described with variable outcomes. The aim of this study was to describe the anatomic variations of the knee in children with Down syndrome. A comparison between knees with and without PFI was performed and our experience in treating knee abnormalities in Down syndrome was also reported. Records of all children with Down syndrome were reviewed. Two groups were identified (knees with and without PFI). Radiographic measurements included the mechanical and anatomic lateral distal femoral angles, medial proximal tibial angle, angle of depression of medial tibial plateau, lateral tibial translation, and distal femoral physis-joint angle. On the lateral view, Insall-Salvati and Blackburne-Peel ratios were measured. The sulcus angle was measured on the tangential view. Measurements were compared between the 2 groups (with and without PFI).Knees with PFI were divided into 3 subgroups based on their treatment (group A: surgical valgus correction, group B: surgical soft tissue procedures for PFI, and group C: conservative treatment). Preoperative radiographs were used for the surgical group and last available radiographs were used for the conservative group. Clinical and radiographic data were compared between the groups. For groups A and B, clinical and radiographic data were also compared between preoperative and last visits. Of the 581 children with Down syndrome, 5% (31 children: 22 females, 9 males) had PFI in 56 knees. Mean age at diagnosis was 11.5±3.5 years. Of the remaining 550 children, 75 children had radiographs for 130 knees. Knees with PFI had significantly more valgus and a larger distal femoral physis-joint angle. Depression of the medial tibial plateau and lateral tibial translation were noted in knees with PFI. Insall-Salvati ratio was higher

  17. Influence of the sagittal anatomy of the pelvis on the intercrestal line position.

    Science.gov (United States)

    Horduna, M; Legaye, J

    2008-03-01

    The line joining the two iliac crests is classically regarded as the anatomical landmark determining the inter-vertebral space L4-L5 for the spinal punctures. Its variability has been reported but never related to predictive clinical anatomic factors identifying patients groups in which there is increased risk of miscalculation of the spinal level. Two sagittal pelvic anatomical angles, called 'pelvic incidence' and 'pelvic lordosis' were measured on lateral X-rays of the pelvis of 132 normal individuals and 49 spondylolysis patients. The values were compared with the sagittal projection of the intercrestal line on the disco-vertebral lumbar structures. A strict relation was observed between this projection of the intercrestal line and the sagittal pelvic anatomical angles. The greater the pelvic incidence, the higher the intercrestal line was projected, all the more in patients with spondylolysis with a listhesis or a disc narrowing. The relation between the pelvic sagittal angles and the intercrestal line projection explains the variability described for this anatomical landmark. It implies precautions minimizing neurological risk in the case of a puncture carried out more cranially than expected, particularly for high values of pelvic incidence occurring in spinal pathologies such as spondylolysis, in the elderly or in the obese patients. In these cases, we recommend the use of spinal imaging during the procedure to assist selection of the desired insertion level.

  18. Traumatic knee extension deficit (the locked knee)

    DEFF Research Database (Denmark)

    Helmark, I C; Neergaard, K; Krogsgaard, M R

    2007-01-01

    In the present study we investigated the validity of magnetic resonance imaging (MRI) and arthroscopy in knees with acute, traumatic extension deficit (the "locked knee"), and evaluated whether arthroscopy of knees with no mechanical pathology could be avoided by MRI evaluation. The study consisted...... of 50 patients who had an acute, traumatic extension deficit of the knee. All patients were submitted to MRI prior to arthroscopy. Following MRI and surgery, standardized forms were filled out, attempting to objectify the findings. The orthopaedic surgeon was not aware of the MRI result prior to surgery....... Evaluating MRI, all grade-3 meniscal lesions were considered able to cause a mechanical block as well as acute partial or total anterior cruciate ligament (ACL)-ruptures. ACL-ruptures with an old appearance were not considered able to cause locking. Assuming that arthroscopy was the gold standard...

  19. Knee rotation influences the femoral tunnel angle measurement after anterior cruciate ligament reconstruction: a 3-dimensional computed tomography model study

    Science.gov (United States)

    Tang, Jing; Thorhauer, Eric; Marsh, Chelsea; Fu, Freddie H.

    2013-01-01

    Purpose Femoral tunnel angle (FTA) has been proposed as a metric for evaluating whether ACL reconstruction was performed anatomically. In clinic, radiographic images are typically acquired with an uncertain amount of internal/external knee rotation. The extent to which knee rotation will influence FTA measurement is unclear. Furthermore, differences in FTA measurement between the two common positions (0° and 45° knee flexion) have not been established. The purpose of this study was to investigate the influence of knee rotation on FTA measurement after ACL reconstruction. Methods Knee CT data from 16 subjects were segmented to produce 3D bone models. Central axes of tunnels were identified. The 0° and 45° flexion angles were simulated. Knee internal/external rotations were simulated in a range of ±20°. FTA was defined as the angle between the tunnel axis and femoral shaft axis, orthogonally projected into the coronal plane. Results Femoral tunnel angle was positively/negatively correlated with knee rotation angle at 0°/45° knee flexion. At 0° knee flexion, FTA for anterio-medial (AM) tunnels was significantly decreased at 20° of external knee rotation. At 45° knee flexion, more than 16° external or 19° internal rotation significantly altered FTA measurements for single-bundle tunnels; smaller rotations (±9° for AM, ±5° for PL) created significant errors in FTA measurements after double-bundle reconstruction. Conclusion Femoral tunnel angle measurements were correlated with knee rotation. Relatively small imaging malalignment introduced significant errors with knee flexed 45°. This study supports using the 0° flexion position for knee radiographs to reduce errors in FTA measurement due to knee internal/external rotation. Level of evidence Case–control study, Level III. PMID:23589127

  20. RELIABILITY AND RESPONSIVENESS OF THE DANISH MODIFIED INTERNATIONAL KNEE DOCUMENTATION COMMITTEE SUBJECTIVE KNEE FORM FOR CHILDREN WITH KNEE DISORDERS

    DEFF Research Database (Denmark)

    Jacobsen, Julie Sandell; Knudsen, Pernille; Fynbo, Charlotte

    2016-01-01

    Introduction The modified international Knee Documentation Committee Subjective Knee Form (Pedi-IKDC) is a widely used patient-reported tool applicable for children with knee disorders ranging on a scale from 0-100. We aimed to translate the Pedi-IKDC Subjective Knee Form into Danish......, and furthermore to assess its reliability and responsiveness. Material and Methods The Pedi-IKDC Subjective Knee Form was translated to Danish according to international guidelines. Reliability was assessed with Bland Altman plots, standard error of measurement (SEM), Minimal Detectable Change (MDC) and the Intra....... Reliability and responsiveness were assessed in 50 children (median 15 years) referred to hospital due to different knee disorders. Results The SEM was 4.2 points and the MDC was 11.5 points. The ICC was 0.91 (0.9-1.0). The change score of the Pedi-IKDC Subjective Knee form was correlated to the external...

  1. Gait changes in patients with knee osteoarthritis are replicated by experimental knee pain

    DEFF Research Database (Denmark)

    Henriksen, Marius; Nielsen, Thomas Graven; Aaboe, Jens

    2010-01-01

    Medial knee osteoarthritis (OA) is characterized by pain and associated with abnormal knee moments during walking. The relationship between knee OA pain and gait changes remains to be clarified, and a better understanding of this link could advance the treatment and prevention of disease...... progression. This study investigated changes in knee moments during walking following experimental knee pain in healthy volunteers, and whether these changes replicated the joint moments observed in medial knee OA patients....

  2. Evidence for differential control of tibial position in perturbed unilateral stance after acute ACL rupture.

    Science.gov (United States)

    Chmielewski, T L; Ramsey, D K; Snyder-Mackler, L

    2005-01-01

    Functional outcomes in anterior cruciate ligament-deficient "potential copers" and "non-copers" may be related to their knee stabilization strategies. Therefore, the purpose of this study was to differentiate dynamic knee stabilization strategies of potential copers and non-copers through analysis of sagittal plane knee angle and tibia position during disturbed and undisturbed unilateral standing. Ten uninjured potential coper and non-coper subjects stood in unilateral stance on a platform that translated anteriorly, posteriorly and laterally. Knee angle and tibia position with reference to the femur were calculated before and after platform movement. During perturbation trials, potential copers maintained kinematics that were similar to uninjured subjects across conditions. Conversely, non-copers stood with greater knee flexion than uninjured subjects and a tibia position that was more posterior than the other groups. Both non-copers and potential copers demonstrated small changes in tibia position following platform movement, but direction of movement was not similar. The similarities between the knee kinematics of potential copers and uninjured subjects suggest that potential copers compensated well from their injury by utilizing analogous dynamic knee stabilization strategies. In comparison to the other groups, by keeping the knee in greater flexion and the tibia in a more posterior position, non-copers appear to constrain the tibia in response to a challenging task, which is consistent with a "stiffening strategy". Based on the poor functional outcomes of non-copers, a stiffening strategy does not lead to dynamic knee stability, and the strategy may increase compressive forces which could contribute to or exacerbate articular cartilage degeneration.

  3. Knee arthroscopy - discharge

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000199.htm Knee arthroscopy - discharge To use the sharing features on this ... surgery to treat problems in your knee (knee arthroscopy). You may have been checked for: Torn meniscus. ...

  4. Knee microfracture surgery

    Science.gov (United States)

    Cartilage regeneration - knee ... Three types of anesthesia may be used for knee arthroscopy surgery: Medicine to relax you, and shots of painkillers to numb the knee Spinal (regional) anesthesia General anesthesia (you will be ...

  5. Preventing Knee Injuries

    Science.gov (United States)

    ... Our Newsletter Donate Blog Skip breadcrumb navigation Preventing Knee Injuries Knee injuries in children and adolescent athletes ... this PDF Share this page: WHAT ARE COMMON KNEE INJURIES? Pain Syndromes One of the most common ...

  6. MR imaging of the knee

    International Nuclear Information System (INIS)

    Kramer, J.

    2006-01-01

    intensity. A complete tear of the anterior cruciate ligament is accompanied by disruption of all of its fibers and an irregular or wavy contour. Anterior cruciate ligament injuries are associated with anterolateral instability that may be manifested as a forward shift of the tibia with respect to the femur (MR drawer sign). The uncovered lateral meniscus sign is positive if a vertical line drawn tangent to the posterior- most cortical margin of the lateral tibial plateau on sagittal MR images intersects any part of the posterior horn of the lateral meniscus. A forward shift of the tibia with respect for the femur may alter the appearance of the smooth curve of the posterior cruciate ligament. In patients with acute tears of the anterior cruciate ligament, bone bruises have been observed most often in the weight-bearing portion of the lateral femoral condyle and in the posterior aspect of the lateral tibial epiphysis. Articular cartilage is a uniquely adapted, highly differentiated tissue that acts as buffer to transmitted forces across the joint, protecting the underlying bone. Unlike other tissues such as muscels and tendons, cartilage has a very limited repair capability, which indicates the obvious need to detect these defects early in the course of the disease. Condral lesions of the knee are a common and important orthopedic problem in both young and old patients. Chondromalacia represents a localized lesion confined to the articular hyaline cartilage. Differentiation from osteoarthritis is not possible by means of histology. Because of the excellent soft-tissue contrast, the ability to visualize directly hyaline cartilage, and the multiplanar capabilities, MRI appears to be the best imaging technique for the evaluation of articular cartilage

  7. Patients Unicondylar Knee Replacement vs. Total Knee Replacement

    OpenAIRE

    Hedra Eskander

    2017-01-01

    The aim of this review article is to analyse the clinical effectiveness of total knee replacement (TKR) compared to unicondylar knee replacement (UKR) on patients. In terms of survival rates, revision rates and postoperative complications. The keywords used were: knee arthroplasty. Nearly three thousand articles were found on 25 August 2016. Of those, only twenty-five were selected and reviewed because they were strictly focused on the topic of this article. Compared with those who have TKR, ...

  8. Reliability of the xipho-pubic angle in patients with sagittal imbalance of the spine.

    Science.gov (United States)

    Langella, Francesco; Villafañe, Jorge H; Ismael, Maryem; Buric, Josip; Piazzola, Andrea; Lamartina, Claudio; Berjano, Pedro

    2018-04-01

    Proximal junctional kyphosis (PJK) is a frequent complication that compromises the outcomes of spinal surgery, especially for adult deformity. To the date no single risk factor or cause has been identified that explains its occurrence. The purpose of this study was to investigate the test-retest reliability of the radiologic measurements using xipho-pubic angle (XPA) for subjects undergoing surgery for sagittal misalignment of the spine. Retrospective observational cross-sectional study of prospectively collected data. Full-spine standing lateral radiographs of 50 patients who underwent surgery for fixed sagittal imbalance (preoperative and postoperative) were evaluated. Internal consistency, reproducibility, concurrent validity, and discriminative ability of the XPA. Two physicians measured XPA on the 100 randomly sorted and anonymized radiographs on two occasions, one week apart (test and retest conditions), were calculated for inter and intraobserver agreement. Test-retest reliability of XPA measurement was excellent for pre- (ICC=0.98; P=0.001) and post-surgical (ICC=0.86; P=0.001) radiographs of subjects with sagittal imbalance of the spine. XPA was able to discriminate between preoperative and postoperative radiographs F=17.924, Pimbalance for both raters. There were significant differences between pre- vs. postoperative XPA, pelvic tilt, lumbar lordosis and sagittal vertical axis values (all Pimbalance.

  9. Relationship between thoracic hypokyphosis, lumbar lordosis and sagittal pelvic parameters in adolescent idiopathic scoliosis.

    Science.gov (United States)

    Clément, Jean-Luc; Geoffray, Anne; Yagoubi, Fatima; Chau, Edouard; Solla, Federico; Oborocianu, Ioana; Rampal, Virginie

    2013-11-01

    Sagittal spine and pelvic alignment of adolescent idiopathic scoliosis (AIS) is poorly described in the literature. It generally reports the sagittal alignment with regard to the type of curve and never correlated to the thoracic kyphosis. The objective of this study is to investigate the relationship between thoracic kyphosis, lumbar lordosis and sagittal pelvic parameters in thoracic AIS. Spinal and pelvic sagittal parameters were evaluated on lateral radiographs of 86 patients with thoracic AIS; patients were separated into hypokyphosis group (n = 42) and normokyphosis group (n = 44). Results were statistically analyzed. The lumbar lordosis was lower in the hypokyphosis group, due to the low proximal lordosis. The thoracic kyphosis was not correlated with any pelvic parameters but with the proximal lordosis. The pelvic incidence was correlated with sacral slope, pelvic tilt, lumbar lordosis and highly correlated with distal lumbar lordosis in the two groups. There was a significant linear regression between thoracic kyphosis and proximal lordosis and between pelvic incidence and distal lordosis. We can consider that the proximal part of the lordosis depends on the thoracic kyphosis and the distal part depends on the pelvic incidence. The hypokyphosis in AIS is independent of the pelvic parameters and could be described as a structural parameter, characteristic of the scoliotic deformity.

  10. Knee Confidence as it Relates to Self-Reported and Objective Correlates of Knee Osteoarthritis

    DEFF Research Database (Denmark)

    Skou, Søren T; Rasmussen, Sten; Simonsen, Ole

    2015-01-01

    osteoarthritis (OA). Background Lack of knee confidence is a frequent symptom in patients with knee OA, but little is known of associations between knee confidence and other common correlates of knee OA. Methods Baseline data from 220 patients with knee OA were applied in ordinal regression analyses, with knee...... confidence, assessed using item Q3 of the Knee injury and Osteoarthritis Outcome Score, as the dependent variable and self-reported (pain on walking, general health, fear of movement, self-efficacy, function, and previous serious injury) and objective measures (muscle strength, 20-m walk time.......21; 95% CI: 1.09, 1.34), and general health (OR = 0.024; 95% CI: 0.002, 0.259) explained 19% of the variance in knee confidence (Pcommon finding in individuals with knee OA. Pain on walking was confirmed as a correlate of knee confidence, whereas...

  11. Prevention and management of knee osteoarthritis and knee cartilage injury in sports.

    Science.gov (United States)

    Takeda, Hideki; Nakagawa, Takumi; Nakamura, Kozo; Engebretsen, Lars

    2011-04-01

    Articular cartilage defects in the knee of young or active individuals remain a problem in orthopaedic practice. These defects have limited ability to heal and may progress to osteoarthritis. The prevalence of knee osteoarthritis among athletes is higher than in the non-athletic population. The clinical symptoms of osteoarthritis are joint pain, limitation of range of motion and joint stiffness. The diagnosis of osteoarthritis is confirmed by the symptoms and the radiological findings (narrowing joint space, osteophyte formation and subchondral sclerosis). There is no strong correlation between symptoms and radiographic findings. The aetiology of knee osteoarthritis is multifactorial. Excessive musculoskeletal loading (at work or in sports), high body mass index, previous knee injury, female gender and muscle weakness are well-known risk factors. The high-level athlete with a major knee injury has a high incidence of knee osteoarthritis. Cartilage injuries are frequently observed in young and middle-aged active athletes. Often this injury precedes osteoarthritis. Reducing risk factors can decrease the prevalence of knee osteoarthritis. The prevention of knee injury, especially anterior cruciate ligament and meniscus injury in sports, is important to avoid progression of knee osteoarthritis.

  12. CRPS Knee: How frequently encountered in differential diagnosis of Knee pain?

    Science.gov (United States)

    Aggarwal, Aakanksha; Agarwal, Anil

    2018-04-13

    We have read with great interest the paper by Catelijne M. van Bussel [1] recently published in Pain Practice. I wish to congratulate the authors for their valuable contributions. In the said article, 12 patients who had complex regional pain syndrome confined to the knee have been included. Though reports have been published involving primarily the knee after total knee arthroplasty [2,3] the incidence of CRPS knee following trauma or otherwise is not well appreciated. We would have appreciated if presence or absence of any inciting event for the development CRPS knee in these 12 patients could be mentioned, which could be helpful in a better diagnosis and management of the patients with CRPS knee. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Finite element analysis of sagittal balance in different morphotype: Forces and resulting strain in pelvis and spine.

    Science.gov (United States)

    Filardi, Vincenzo; Simona, Portaro; Cacciola, Giorgio; Bertino, Salvatore; Soliera, Luigi; Barbanera, Andrea; Pisani, Alessandro; Milardi, Demetrio; Alessia, Bramanti

    2017-06-01

    In humans, vertical posture acquisition caused several changes in bones and muscles which can be assumed as verticalization. Pelvis, femur, and vertebral column gain an extension position which decreases muscular work by paravertebral muscles in the latter. It's widely known that six different morphological categories exist; each category differs from the others by pelvic parameters and vertebral column curvatures. Both values depend on the Pelvic Incidence, calculated as the angle between the axes passing through the rotation centre of the two femur heads and the vertical axis passing through the superior plate of the sacrum. The aim of this study is to evaluate the distribution of stress and the resulting strain along the axial skeleton using finite element analysis. The use of this computational method allows performing different analyses investigating how different bony geometries and skeletal structures can behavior under specific loading conditions. A computerized tomography (CT) of artificial bones, carried on at 1.5 mm of distance along sagittal, coronal and axial planes with the knee at 0° flexion (accuracy 0.5 mm), was used to obtain geometrical data of the model developed. Lines were imported into a commercial code (Hypermesh by Altair ® ) in order to interpolate main surfaces and create the solid version of the model. In particular six different models were created according Roussoly's classification, by arranging geometrical position of the skeletal components. Loading conditions were obtained by applying muscular forces components to T1 till to L5, according to a reference model (Daniel M. 2011), and a fixed constrain was imposed on the lower part of the femurs. Materials were assumed as elastic with an Elastic modulus of 15 GPa, a Shear Modulus of 7 GPa for bony parts, and an Elastic modulus of 6 MPa, a Shear Modulus of 3 MPa for cartilaginous parts. Six different simulations have been carried out in order to evaluate the mechanical behavior

  14. Effect of compression therapy on knee swelling and pain after total knee arthroplasty

    DEFF Research Database (Denmark)

    Munk, Stig; Jensen, Niels J. F.; Andersen, Ida Bøgh

    2013-01-01

    PURPOSE: Knee swelling after total knee arthroplasty may impair postoperative mobilisation and training, and as medical elastic compression stockings are well tolerated and effective to prevent oedema, haematoma and postoperative pain after venous surgery, we wanted to study whether this effect...... could be transferred to total knee arthroplasty surgery reducing postoperative swelling and pain and thereby facilitating mobilisation and improving patient-reported knee function. METHODS: In a randomised controlled study, 88 patients were randomised to use either a medical elastic compression stocking...... or no stocking from the first postoperative day and the following 4 weeks after total knee arthroplasty. Outcome measures were knee, calf and ankle swelling, knee flexion, pain and patient-reported knee function. RESULTS: Seventy per cent of the swelling had occurred before application of the stocking the day...

  15. Extensor Tendon Instability Due to Sagittal Band Injury in a Martial Arts Athlete: A Case Report.

    Science.gov (United States)

    Kochevar, Andrew; Rayan, Ghazi

    2017-03-01

    A Taekwondo participant sustained a hand injury from punching an opponent that resulted in painful instability of the ring finger extensor digitorum communis tendon due to sagittal band damage. His symptoms resolved after reconstructive surgery on the sagittal band (SB) with stabilization of the extensor tendon over the metacarpophalangeal joint.

  16. Longitudinal in vivo reproducibility of cartilage volume and surface in osteoarthritis of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Brem, M.H. [Harvard Medical School, Brigham and Women' s Hospital, Musculoskeletal Division, Department of Radiology, ASB-1, L-1, Room 003E, Boston, MA (United States); University of Erlangen-Nuremberg, Division of Trauma Surgery and Orthopaedic Surgery, Department of Surgery, Erlangen (Germany); Pauser, J.; Yoshioka, H.; Stratmann, J.; Kikinis, R.; Duryea, J.; Lang, P. [Harvard Medical School, Brigham and Women' s Hospital, Musculoskeletal Division, Department of Radiology, ASB-1, L-1, Room 003E, Boston, MA (United States); Brenning, A. [University of Erlangen-Nuremberg, Department of Medical Informatics, Biometry and Epidemiology, Erlangen (Germany); Hennig, F.F. [University of Erlangen-Nuremberg, Division of Trauma Surgery and Orthopaedic Surgery, Department of Surgery, Erlangen (Germany); Winalski, C.S. [Harvard Medical School, Brigham and Women' s Hospital, Musculoskeletal Division, Department of Radiology, ASB-1, L-1, Room 003E, Boston, MA (United States); Cleveland Clinic Foundation, Division of Radiology, Cleveland, OH (United States)

    2007-04-15

    The aim of this study was to evaluate the longitudinal reproducibility of cartilage volume and surface area measurements in moderate osteoarthritis (OA) of the knee. We analysed 5 MRI (GE 1.5T, sagittal 3D SPGR) data sets of patients with osteoarthritis (OA) of the knee (Kellgren Lawrence grade I-II). Two scans were performed: one baseline scan and one follow-up scan 3 months later (96 {+-} 10 days). For segmentation, 3D Slicer 2.5 software was used. Two segmentations were performed by two readers independently who were blinded to the scan dates. Tibial and femoral cartilage volume and surface were determined. Longitudinal and cross-sectional precision errors were calculated using the standard deviation (SD) and coefficient of variation (CV%=100 x [SD/mean]) from the repeated measurements in each patient. The in vivo reproducibility was then calculated as the root mean square of these individual reproducibility errors. The cross-sectional root mean squared coefficient of variation (RMSE-CV) was 1.2, 2.2 and 2.4% for surface area measurements (femur, medial and lateral tibia respectively) and 1.4, 1.8 and 1.3% for the corresponding cartilage volumes. Longitudinal RMSE-CV was 3.3, 3.1 and 3.7% for the surface area measurements (femur, medial and lateral tibia respectively) and 2.3, 3.3 and 2.4% for femur, medial and lateral tibia cartilage volumes. The longitudinal in vivo reproducibility of cartilage surface and volume measurements in the knee using this segmentation method is excellent. To the best of our knowledge we measured, for the first time, the longitudinal reproducibility of cartilage volume and surface area in participants with mild to moderate OA. (orig.)

  17. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    International Nuclear Information System (INIS)

    Hopper, M.A.; Robinson, P.; Grainger, A.J.

    2011-01-01

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  18. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, M.A.; Robinson, P. [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Grainger, A.J., E-mail: andrew.grainger@leedsth.nhs.u [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)

    2011-04-15

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  19. Knee Injuries and Disorders

    Science.gov (United States)

    Your knee joint is made up of bone, cartilage, ligaments and fluid. Muscles and tendons help the knee joint move. When any of these structures is hurt or diseased, you have knee problems. Knee problems can cause pain and difficulty ...

  20. Association Between Pain at Sites Outside the Knee and Knee Cartilage Volume Loss in Elderly People Without Knee Osteoarthritis: A Prospective Study.

    Science.gov (United States)

    Pan, Feng; Laslett, Laura; Tian, Jing; Cicuttini, Flavia; Winzenberg, Tania; Ding, Changhai; Jones, Graeme

    2017-05-01

    Pain is common in the elderly. Knee pain may predict knee cartilage loss, but whether generalized pain is associated with knee cartilage loss is unclear. This study, therefore, aimed to determine whether pain at multiple sites predicts knee cartilage volume loss among community-dwelling older adults, and, if so, to explore potential mechanisms. Data from the prospective Tasmanian Older Adult Cohort study was utilized (n = 394, mean age 63 years, range 52-79 years). Experience of pain at multiple sites was assessed using a questionnaire at baseline. T1-weighted fat-saturated magnetic resonance imaging of the right knee was performed to assess the cartilage volume at baseline and after 2.6 years. Linear regression modeling was used with adjustment for potential confounders. The median number of painful sites was 3 (range 0-7). There was a dose-response relationship between the number of painful sites and knee cartilage volume loss in the lateral and total tibiofemoral compartments (lateral β = -0.28% per annum; total β = -0.25% per annum, both P for trend knee osteoarthritis (OA) (P pain medication, and knee structural abnormalities. The number of painful sites independently predicts knee cartilage volume loss, especially in people without knee OA, suggesting that widespread pain may be an early marker of more rapid knee cartilage loss in those without radiographic knee OA. The underlying mechanism is unclear, but it is independent of anthropometrics, physical activity, and knee structural abnormalities. © 2016, American College of Rheumatology.