WorldWideScience

Sample records for safety reporting period

  1. Annual report on reactor safety research projects. Reporting period 2013. Progress report

    2013-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  2. Annual report on reactor safety research projects. Reporting period 2011. Progress report

    2011-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  3. Annual report on reactor safety research projects. Reporting period 2014. Progress report

    NONE

    2014-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. lt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  4. Annual report on reactor safety research projects. Reporting period 2015. Progress report

    2015-01-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft tor Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are ·' prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. it has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  5. Technical Letter Report: Evaluation and Analysis of a Few International Periodic Safety Review Summary Reports

    Chopra, Omesh K. [Argonne National Lab., IL (United States). Environmental Science Division; Diercks, Dwight R. [Argonne National Lab., IL (United States). Nuclear Engineering Division; Ma, David Chia-Chiun [Argonne National Lab., IL (United States). Environmental Science Division; Garud, Yogendra S. [Argonne National Lab., IL (United States). Environmental Science Division

    2013-12-17

    At the request of the United States (U.S.) government, the International Atomic Energy Agency (IAEA) assembled a team of 20 senior safety experts to review the regulatory framework for the safety of operating nuclear power plants in the United States. This review focused on the effectiveness of the regulatory functions implemented by the NRC and on its commitment to nuclear safety and continuous improvement. One suggestion resulting from that review was that the U.S. Nuclear Regulatory Commission (NRC) incorporate lessons learned from periodic safety reviews (PSRs) performed in other countries as an input to the NRC’s assessment processes. In the U.S., commercial nuclear power plants (NPPs) are granted an initial 40-year operating license, which may be renewed for additional 20-year periods, subject to complying with regulatory requirements. The NRC has established a framework through its inspection, and operational experience processes to ensure the safe operation of licensed nuclear facilities on an ongoing basis. In contrast, most other countries do not impose a specific time limit on the operating licenses for NPPs, they instead require that the utility operating the plant perform PSRs, typically at approximately 10-year intervals, to assure continued safe operation until the next assessment. The staff contracted with Argonne National Laboratory (Argonne) to perform a pilot review of selected translated PSR assessment reports and related documentation from foreign nuclear regulatory authorities to identify any potential new regulatory insights regarding license renewal-related topics and NPP operating experience (OpE). A total of 14 PSR assessment documents from 9 countries were reviewed. For all of the countries except France, individual reports were provided for each of the plants reviewed. In the case of France, three reports were provided that reviewed the performance assessment of thirty-four 900-MWe reactors of similar design commissioned between 1978

  6. Technical Letter Report: Evaluation and Analysis of a Few International Periodic Safety Review Summary Reports

    Chopra, Omesh K.; Diercks, Dwight R.; Ma, David Chia-Chiun; Garud, Yogendra S.

    2013-01-01

    At the request of the United States (U.S.) government, the International Atomic Energy Agency (IAEA) assembled a team of 20 senior safety experts to review the regulatory framework for the safety of operating nuclear power plants in the United States. This review focused on the effectiveness of the regulatory functions implemented by the NRC and on its commitment to nuclear safety and continuous improvement. One suggestion resulting from that review was that the U.S. Nuclear Regulatory Commission (NRC) incorporate lessons learned from periodic safety reviews (PSRs) performed in other countries as an input to the NRC's assessment processes. In the U.S., commercial nuclear power plants (NPPs) are granted an initial 40-year operating license, which may be renewed for additional 20-year periods, subject to complying with regulatory requirements. The NRC has established a framework through its inspection, and operational experience processes to ensure the safe operation of licensed nuclear facilities on an ongoing basis. In contrast, most other countries do not impose a specific time limit on the operating licenses for NPPs, they instead require that the utility operating the plant perform PSRs, typically at approximately 10-year intervals, to assure continued safe operation until the next assessment. The staff contracted with Argonne National Laboratory (Argonne) to perform a pilot review of selected translated PSR assessment reports and related documentation from foreign nuclear regulatory authorities to identify any potential new regulatory insights regarding license renewal-related topics and NPP operating experience (OpE). A total of 14 PSR assessment documents from 9 countries were reviewed. For all of the countries except France, individual reports were provided for each of the plants reviewed. In the case of France, three reports were provided that reviewed the performance assessment of thirty-four 900-MWe reactors of similar design commissioned between 1978 and

  7. Periodical safety review of units 1 and 2 of PAKS NPP. Examples from summary report

    Hammar, K.

    1998-01-01

    On the basis of American practice of qualification and relevant IAEA recommendations detailed guidelines of the qualification procedure were developed and executed on the Units 1 and 2 of the Paks NPP. Periodic safety supervision will be performed by evaluation of the following reports to be submitted by NPP: real technical conditions of the facility; existing practice and proposals for equipment qualification; evaluation of the existing safety reports estimating their validity up to the plant lifetime; ageing and ageing management; procedures of operation, maintenance, supervision; organisation and administration; safety impact of human factor, training, education, qualification of personnel

  8. Aggregate analysis of regulatory authority assessors' comments to improve the quality of periodic safety update reports.

    Jullian, Sandra; Jaskiewicz, Lukasz; Pfannkuche, Hans-Jürgen; Parker, Jeremy; Lalande-Luesink, Isabelle; Lewis, David J; Close, Philippe

    2015-09-01

    Marketing authorization holders (MAHs) are expected to provide high-quality periodic safety update reports (PSURs) on their pharmaceutical products to health authorities (HAs). We present a novel instrument aiming at improving quality of PSURs based on standardized analysis of PSUR assessment reports (ARs) received from the European Union HAs across products and therapeutic areas. All HA comments were classified into one of three categories: "Request for regulatory actions," "Request for medical and scientific information," or "Data deficiencies." The comments were graded according to their impact on patients' safety, the drug's benefit-risk profile, and the MAH's pharmacovigilance system. A total of 476 comments were identified through the analysis of 63 PSUR HA ARs received in 2013 and 2014; 47 (10%) were classified as "Requests for regulatory actions," 309 (65%) as "Requests for medical and scientific information," and 118 (25%) comments were related to "Data deficiencies." The most frequent comments were requests for labeling changes (35 HA comments in 19 ARs). The aggregate analysis revealed commonly raised issues and prompted changes of the MAH's procedures related to the preparation of PSURs. The authors believe that this novel instrument based on the evaluation of PSUR HA ARs serves as a valuable mechanism to enhance the quality of PSURs and decisions about optimization of the use of the products and, therefore, contributes to improve further the MAH's pharmacovigilance system and patient safety. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Second quarterly report of the Nuclear Safety Bureau for the period 19 January 1988 to 18 April 1988

    1988-04-01

    The Nuclear Safety Bureau is responsible for monitoring and reviewing the safety of any nuclear plant operated by the Australian Nuclear Science and Technology Organisation (ANSTO). The report covers operation of the HIFAR and MOATA reactors at Lucas Heights, including unusual operating events, maintenance, periodic testing, inspection, HIFAR safety documentation, shift staffing, audit of HIFAR staff training and the emergency control room, HIFAR modifications, nuclear safety aspects of reactor fuel storage and the subcritical assembly

  10. Quarterly report on the Ferrocyanide Safety Program for the period ending June 30, 1995

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1995-07-01

    This is the seventeenth quarterly report on the progress of activities addressing the Ferrocyanide Safety Issue associated with Hanford Site high-level radioactive waste tanks. Progress in the Ferrocyanide Safety Program is reviewed, including work addressing the six pans of Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990). All work activities are described in the revised program plan (DOE 1994b), and this report follows the same format presented there. A summary of the key events occurring this quarter is presented

  11. Quarterly report on the ferrocyanide safety program for the period ending December 31, 1994

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1995-01-01

    This is the fifteenth quarterly report on the progress of active addressing the Ferrocyanide Safety Issue associated with Hanford Site high-level radioactive waste tanks. Progress in the Ferrocyanide Safety Program is reviewed, including work addressing the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990). All work activities are described in the revised program plan (DOE 1994b), and this report follows the same format presented there. A summary of the key events occurring this quarter is presented in Section 1.2. More detailed discussions of progress are located in Sections 2.0 through 4.0. 60 refs

  12. Quarterly report on the Ferrocyanide Safety Program for the period ending September 30, 1995

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1995-10-01

    This is the eighteenth quarterly report on the progress of activities addressing the Ferrocyanide Safety Issue associated with Hanford Site high-level radioactive waste tanks. Progress in the Ferrocyanide Safety Program is reviewed, including work addressing the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990). All work activities are described in the revised program plan (DOE 1994b), and this report follows the same format presented there. A summary of the key events occurring this quarter is presented in Section 1.2. More detailed discussions of progress are located in Sections 2.0 through 4.0

  13. Quarterly report on the Ferrocyanide Safety Program for the period ending, March 31, 1995

    Cash, R.J.; Meacham, J.E.; Dukelow, G.T.

    1995-04-01

    This quarterly report provides a status of the activities underway on the Ferrocyanide Safety Issue at the Hanford Site, including actions in response to Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 90-7 (FR 1990). In March 1991, a DNFSB implementation plan (Cash 1991) responding to the six parts of Recommendation 90-7 was prepared and sent to the DNFSB. A Ferrocyanide Safety Program Plan addressing the total Ferrocyanide Safety Program, including the six parts of DNFSB Recommendation 90-7, was released in October 1994 (DOE 1994b). Activities in the program plan are underway or have been completed, and the status of each is described in Sections 2.0 and 3.0 of this report

  14. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration

  15. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration.

  16. Reports on BMBF-sponsored research projects in the field of reactor safety. Reporting period 1 July - 31 December 1995

    1996-01-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit informs of the status of LWR tasks and projects on the safety of advanced reactors. Each progress report represents a compilation of individual reports about objectives, the work performed, the results, and the next steps of the works. The individual reports of quality assurance, safety of reactor component, emergency core cooling, lors of coolant, meltdown, fission product release, risk and reliability, are classified according to projects to the reactor safety research program. Another table uses the same classification system as applied in the nuclear safety index of the CEC. (DG)

  17. The second periodic safety review report of Tokai Reprocessing Plant [JAEA-Technology--2016-007-PT1

    Shirai, Nobutoshi; Miura, Yasushi; Tachibana, Ikuya; Omori, Satoru; Wake, Junichi; Fukuda, Kazuhito; Nakano, Takafumi; Nagasato, Yoshihiko

    2016-07-01

    The periodic safety review of Tokai Reprocessing Plant (TRP) is an activity to confirm the application of the safety activity implementation and to give effective additional measures for the facility safety and the improvement of its reliability. We implemented 4 items as follows; (1) evaluation of safety activity implementation, (2) evaluation of status of safety activities reflecting the latest technical knowledges, (3) technical evaluation about aging degradation, and (4) planning measures about a 10-years-plan that the operator shall implement in order to keep the facility condition. We summarized this report as the result of research and evaluation of above 4 items as the second periodic safety review at TRP. About (1), we researched about the 8 items that are QA activities, operation management, maintenance management, etc. We confirmed the result that we are adequately expanding its safety activities by preparing the necessary documents and schemes, and so on. About (2), we researched them in view point of safety research results and technology development results and confirmed that we reflect latest knowledges into our facility and make efforts for improvement of safety and reliability. About (3), we can keep the safety of the facilities important to safety and the sea discharge line, under assumption of the present maintenance till the next aging evaluation, because no 'focuses for aging degradation' exist which we cannot deny the gap between the initial prediction and actual condition, by measurements and technical view. About (4), by the technical results of aging degradation evaluation, we found no additional safety plans into maintenance strategies. (author)

  18. Health and Safety Research Division progress report for the period April 1, 1990--September 30, 1991

    Kaye, S.V.

    1992-03-01

    This is a brief progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology including Measurement Applications and Development, Pollutant Assessments, Measurement Systems Research, Dosimetry Applications Research, Metabolism and Dosimetry Research and Nuclear Medicine. Biological and Radiation Physics including Atomic, Molecular, and High Voltage Physics, Physics of Solids and Macromolecules, Liquid and Submicron Physics, Analytic Dosimetry and Surface Physics and Health Effects. Chemical Physics including Molecular Physics, Photophysics and Advanced Monitoring Development. Biomedical and Environmental Information Analysis including Human Genome and Toxicology, Chemical Hazard Evaluation and Communication, Environmental Regulations and Remediation and Information Management Technology. Risk Analysis including Hazardous Waste.

  19. Periodic safety analyses; Les essais periodiques

    Gouffon, A; Zermizoglou, R

    1990-12-01

    The IAEA Safety Guide 50-SG-S8 devoted to 'Safety Aspects of Foundations of Nuclear Power Plants' indicates that operator of a NPP should establish a program for inspection of safe operation during construction, start-up and service life of the plant for obtaining data needed for estimating the life time of structures and components. At the same time the program should ensure that the safety margins are appropriate. Periodic safety analysis are an important part of the safety inspection program. Periodic safety reports is a method for testing the whole system or a part of the safety system following the precise criteria. Periodic safety analyses are not meant for qualification of the plant components. Separate analyses are devoted to: start-up, qualification of components and materials, and aging. All these analyses are described in this presentation. The last chapter describes the experience obtained for PWR-900 and PWR-1300 units from 1986-1989.

  20. Health and Safety Research Division progress report for period ending April 30, 1978

    Kaye, S.V.

    1978-08-01

    The research goal of the Health and Safety Research Division is to conduct basic and applied research that contributes new scientific knowledge with emphasis in biophysical areas that lead to a better understanding of how alternative energy-related technologies affect man. Included in the basic research are fundamental processes that are important to understand formation, mobility, toxicity, detection, and characterization of pollutants. The applied research includes the integration of data from basic and applied studies through development of concepts and methodologies that can be used for energy-related assessments with primary focus on the health and safety of man. The division has no responsibilities for on-site health and safety.

  1. Health and Safety Research Division progress report for the period April 1, 1987--September 30, 1988

    Kaye, S.V.

    1989-03-01

    The mission of the Health and Safety Research Division (HASRD) is to provide a sound scientific basis for the measurement and assessment of human health impacts of radiological and chemical substances. Our approach to fulfilling this mission is to conduct a broad program of experimental, theoretical, and field research based on a strong foundation of fundamental physical studies that blend into well-established programs in life sciences. Topics include biomedical screening techniques, biological and chemical sensors, risk assessment, health hazards, dosimetry, nuclear medicine, environmental pollution monitoring, electron-molecule interactions, interphase physics, surface physics, data base management, environmental mutagens, carcinogens, and tetratogens

  2. Health and Safety Research Division progress report for the period April 1, 1987--September 30, 1988

    Kaye, S.V.

    1989-03-01

    The mission of the Health and Safety Research Division (HASRD) is to provide a sound scientific basis for the measurement and assessment of human health impacts of radiological and chemical substances. Our approach to fulfilling this mission is to conduct a broad program of experimental, theoretical, and field research based on a strong foundation of fundamental physical studies that blend into well-established programs in life sciences. Topics include biomedical screening techniques, biological and chemical sensors, risk assessment, health hazards, dosimetry, nuclear medicine, environmental pollution monitoring, electron-molecule interactions, interphase physics, surface physics, data base management, environmental mutagens, carcinogens, and tetratogens.

  3. NPP Krsko Periodic Safety Review action plan

    Bilic Zabric, T.

    2006-01-01

    In the current, internationally accepted, safety philosophy Periodic Safety Reviews (PSRs) are comprehensive reviews aimed at the verification that an operating NPP remains safe when judged against current safety objectives and practices and that adequate arrangements are in place to maintain an acceptable level of safety. These reviews are complementary to the routine and special safety reviews. They are long time-scale reviews intended to deal with the cumulative effects of plant ageing, modifications, operating experience and technical developments, which are not so easily comprehended over the shorter time-scale routine of safety reviews. The review was completed in 2005 and the next period will see the implementation of the action plan including some plant upgrades. The action plan lists issues that should be implemented at NPP Krsko together with associated milestones. The milestones were assumed based on best estimate resource availability and their ends can be potentially floated. In some cases, multiple corrective measures may be postulated to provide resolution for a given safety issue. The Slovenian Nuclear Safety Administration by decree approved the first periodic safety review and the implementation plan of activities arising from it. The entire implementation plan must be carried out by 15 October 2010. Report on the second periodic safety review must be submitted by the NEK not later than 15 December 2013. (author)

  4. Annual report on Reactor Safety Research Projects sponsored by the Ministry of Economics and Technology of the Federal Republic of Germany. Reporting period 1999. Progress report

    2000-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technologie (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to the classification system ''Joint Safety Research Index'' of the CEC (commission of the European communities). The reports are arranged in sequence of their project numbers. (orig.)

  5. Research projects into the safety of nuclear power plants. Period covered: 01. July - 31. December 2004. Progress report

    2004-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  6. Research projects into the safety of nuclear power plants. Period cover 01. January - 30. June 2017. Progress report

    2017-01-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to the topic areas of reactor safety research. The reports are arranged in sequence of their project numbers. Ilt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  7. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Technology of the Federal Republic of Germany. Reporting period 2005. Progress report

    2005-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  8. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Labour of the Federal Republic of Germany. Reporting period 2004. Progress report

    2004-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  9. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Labour of the Federal Republic of Germany. Reporting period 2004. Progress report

    NONE

    2004-07-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  10. Preparation of NPP Dukovany periodic safety review

    Dubsky, L.; Vymazal, P.

    2004-01-01

    Dukovany NPP in Czech Republic performs a periodic safety review for the second time after approximately 20 years of operation. The history of the Safety Report and its transformation into an internationally accepted form complying with IAEA standards is described. The deterministic and probabilistic assessment of the plant's safety-related design and state is applied to determine whether and to what extend the relevant protective goals are fulfilled by the existing plant design. A description of the step-by-step process is presented together with the creation of methods and criteria for PSR evaluation prepared by Nuclear Research Institute Rez

  11. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Technology of the Federal Republic of Germany. Reporting period 2007. Progress report

    2007-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Research Management Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system 'Joint Safety Research Index (JSRI)'. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  12. Quarterly report on Defense Nuclear Facilities Safety Board Recommendation 90-7 for the period ending December 31, 1991

    Cash, R.J.; Dukelow, G.T.; Atwood, J.M.

    1992-01-01

    This quarterly report provides a status of the activities underway at the Hanford Site on the ferrocyanide safety issues as requested by the Defense Nuclear Facilities Safety Board (DNFSB) in their Recommendation 90-7 (FR 1990). In March 1991, an DNFSB Implementation Plan (Cash 1991a) was prepared and sent to the DNFSB responding to the six parts of Recommendation 90-7. All of the activities in the DNFSB Implementation Plan are underway and the status of each is described

  13. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Labour of the Federal Republic of Germany. Reporting period 2003. Progress report

    2003-01-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of the investigations into the safety of nuclear power plants by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system ''Joint Safety Research Index'' of the CEC (commission of the european communities). The reports are arranged in sequence of their project numbers

  14. Periodic safety reviews of nuclear power plants

    Toth, Csilla

    2009-01-01

    Operational nuclear power plants (NPPs) are generally subject to routine reviews of plant operation and special safety reviews following operational events. In addition, many Member States of the International Atomic Energy Agency (IAEA) have initiated systematic safety reassessment, termed periodic safety review (PSR), to assess the cumulative effects of plant ageing and plant modifications, operating experience, technical developments, site specific, organizational and human aspects. These reviews include assessments of plant design and operation against current safety standards and practices. PSRs are considered an effective way of obtaining an overall view of actual plant safety, to determine reasonable and practical modifications that should be made in order to maintain a high level of safety throughout the plant's operating lifetime. PSRs can be used as a means to identify time limiting features of the plant. The trend is to use PSR as a condition for deciding whether to continue operation of the plant beyond the originally established design lifetime and for assessing the status of the plant for long term operation. To assist Member States in the implementation of PSR, the IAEA develops safety standards, technical documents and provides different services: training courses, workshops, technical meetings and safety review missions for the independent assessment of the PSR at NPPs, including the requirements for PSR, the review process and the PSR final reports. This paper describes the PSR's objectives, scopes, methods and the relationship of PSR with other plant safety related activities and recent experiences of Member States in implementation of PSRs at NPPs. (author)

  15. Progress report on safety research of high-level waste management for the period April 1986 to March 1987

    Nakamura, Haruto; Tashiro, Shingo

    1987-08-01

    Researches on high-level waste management at the High Level Waste Management Laboratory and the Waste Safety Testing Facility Operation Division of the Japan Atomic Energy Research Institute in the fiscal year of 1986 are reviewed in the report. Topics in the three sections are as follows: 1) Non-radioactive research has been continued on Synroc irradiation and modellings of waste form leaching. 2) Research results are described in the section of Safety Evaluation for Geological Disposal on engineered barriers, field tests, safety assessment models, migration, natural analogue, seabed disposal and conceptual design of a repository. 3) Adsorption behaviour of plutonium on leach-containers and migration of leached cesium in a rock column are described in the section of Safety Examination of Vitrified Forms in the Hot Cells of WASTEF. (author)

  16. Quarterly report on Defense Nuclear Facilities Safety Board Recommendation 90-7 for the period ending December 31, 1992

    Cash, R.J.; Dukelow, G.T.; Forbes, C.J.

    1993-03-01

    This is the seventh quarterly report on the progress of activities addressing safety issues associated with Hanford Site high-level radioactive waste tanks that contain ferrocyanide compounds. In the presence of oxidizing materials, such as nitrates or nitrites, ferrocyanide can be made to explode in the laboratory by heating it to high temperatures [above 285 degrees C (545 degrees F)]. In the mid 1950s approximately 140 metric tons of ferrocyanide were added to 24 underground high-level radioactive waste tanks. An implementation plan (Cash 1991) responding to the Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990) was issued in March 1991 describing the activities that were planned and underway to address each of the six parts of Recommendation 90-7. A revision to the original plan was transmitted to US Department of Energy by Westinghouse Hanford Company in December 1992. Milestones completed this quarter are described in this report. Contents of this report include: Introduction; Defense Nuclear Facilities Safety Board Implementation Plan Task Activities (Defense Nuclear Facilities Safety Board Recommendation for enhanced temperature measurement, Recommendation for continuous temperature monitoring, Recommendation for cover gas monitoring, Recommendation for ferrocyanide waste characterization, Recommendation for chemical reaction studies, and Recommendation for emergency response planning); Schedules; and References. All actions recommended by the Defense Nuclear Facilities Safety Board for emergency planning by Hanford Site emergency preparedness organizations have been completed

  17. Progress report on safety research on radioactive waste management for the period April 1992 to March 1993

    Muraoka, Susumu; Senoo, Muneaki; Sekine, Keiichi

    1994-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Shallow Land Migration Laboratory, Environmental Geochemistry Laboratory and Environmental Radiochemistry Laboratory of the Department of Environmental Safety Research during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms, buffer materials and mortar. 2) In the safety evaluation study for shallow land disposal, migration behavior in the soil layer were studied. 3) In the safety evaluation study for geological disposal, chemical behavior of nuclide in water, nuclide migration and fixation in geosphere were studied. 4) Distribution of uranium and migration of uranium series nuclide in uranium ore were examined as a natural analogue study. (author)

  18. Progress report on safety research on radioactive waste management for the period April 1995 to March 1996

    Sekine, Keiichi; Muraoka, Susumu; Banba, Tsunetaka

    1997-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Natural Barrier Laboratory and Environmental Geochemistry Laboratory of the Department of Environmental Safety Research during the fiscal year of 1995 (April 1, 1995 - March 31, 1996). The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms. 2) In the safety evaluation study for shallow land disposal, migration behavior of radionuclides in a soil layer was studied. 3) In the safety evaluation study for geological disposal, chemical behavior of radionuclides in water, nuclide migration in geosphere and groundwater flow system were studied. Migration of uranium series nuclides in uranium ore deposit was studied as a part of natural analog study. (author)

  19. Progress report on safety research on radioactive waste management for the period April 1993 to March 1995

    Sekine, Keiichi; Muraoka, Susumu; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [eds.

    1996-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Natural Barrier Laboratory and Environmental Geochemistry Laboratory of the Department of Environmental Safety Research during the fiscal years of 1993 and 1994 (April 1, 1993 - March 31, 1995). The topics are as follows: (1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms, buffer materials and mortar. (2) In the safety evaluation study for shallow land disposal, migration behaviour of nuclides in the soil layer was studied. (3) In the safety evaluation study for geological disposal, chemical behaviour of radionuclides in water, nuclide migration in geosphere and groundwater flow system were studied. Migration of uranium series nuclides in uranium ore deposit was studied as a part of natural analogue study. (author).

  20. Progress report on safety research on radioactive waste management for the period April 1993 to March 1995

    Sekine, Keiichi; Muraoka, Susumu; Banba, Tsunetaka

    1996-03-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Natural Barrier Laboratory and Environmental Geochemistry Laboratory of the Department of Environmental Safety Research during the fiscal years of 1993 and 1994 (April 1, 1993 - March 31, 1995). The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies were carried out on various waste forms, buffer materials and mortar. 2) In the safety evaluation study for shallow land disposal, migration behaviour of nuclides in the soil layer was studied. 3) In the safety evaluation study for geological disposal, chemical behaviour of radionuclides in water, nuclide migration in geosphere and groundwater flow system were studied. Migration of uranium series nuclides in uranium ore deposit was studied as a part of natural analogue study. (author)

  1. Annual report on reactor safety research projects sponsored by the Ministry for Research and Technology of the Federal Republic of Germany. Reporting period 1993. Progress report

    1994-10-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMFT, informs continuously of the status of such investigations by means of semi-annual and annual publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general information of progress in reactor safety research. The individual reports are classified according to the same classification system as applied in the nuclear index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig./HP)

  2. Evaluation of periodic safety status analyses

    Faber, C.; Staub, G.

    1997-01-01

    In order to carry out the evaluation of safety status analyses by the safety assessor within the periodical safety reviews of nuclear power plants safety goal oriented requirements have been formulated together with complementary evaluation criteria. Their application in an inter-disciplinary coopertion covering the subject areas involved facilitates a complete safety goal oriented assessment of the plant status. The procedure is outlined briefly by an example for the safety goal 'reactivity control' for BWRs. (orig.) [de

  3. Progress report on safety research of high-level waste management for the period April 1987 to March 1988

    Nakamura, Haruto; Tashiro, Shingo

    1988-10-01

    Researches on high-level waste management at the High Level Waste Management Laboratory and the Waste Safety Testing Facility Operation Division of the Japan Atomic Energy Research Institute in the fiscal year of 1987 are reviewed in the three sections of the report. The topics are as follows: 1) On performance and durability of waste forms and engineered barrier materials, accelerated alpha radiation stability of glass form and Synroc has been investigated and stress corrosion cracking of canister materials was examined under simulated conditions. 2) Sorption of 237 Np on granite samples and behavior of iron during weathering of granites were studied with respect to safety evaluation for geological disposal. 3) Actual waste was transported from the Tokai Reprocessing Plant and hot operation using the actual waste was initiated at WASTEF. (author)

  4. Progress report on safety research on radioactive waste management for the period April 1996 to March 1998

    Ohnuki, Toshihiko; Muraoka, Susumu; Banba, Tsunetaka

    1998-10-01

    This report summarizes the research and development activities on radioactive waste management at the Engineered Barrier Materials Laboratory, Natural Barrier Laboratory and Environmental Geochemistry Laboratory of the Department of Environmental Safety Research, JAERI during the fiscal year of 1996 and 1997 (April 1, 1996 - March 31, 1998). The topics are as follows: (1) In the research and development of waste forms and engineered barrier, studies on development of ceramic waste forms, the leaching behaviors from glass waste at reduced condition and sorption behaviors on backfill materials have been carried out. (2) In studies on shallow land disposal, studies on the migration behaviors of radionuclides in the presence of humic acid have been carried out. (3) In the studies on geological disposal, the studies on diffusivity in rock formation, in-situ migration and diffusion experiments, sorption mechanism, fixation mechanism, natural analogue study and geochronology have been carried out. (author)

  5. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology. Reported period: January 1 to June 30, 1993

    1993-01-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977 - 1980 of the BMFT. Another table of uses the same classification system as applied in the nuclear safety index of the CEC (Commision of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig.) [de

  6. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology. Reported period: January 1 to June 30, 1994

    1994-01-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977 - 1980 of the BMFT. Another table of uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig.) [de

  7. List of reports in the field of reactor safety research from BMFT, CEA, EPRI, JSTA and USNRC. Reported period: January 1 to June 30, 1994

    1994-01-01

    This list reviews reports from the Federal Republic of Germany, from France, from Japan and from the United States of America concerning single problems in the field of Reactor Safety Research. According to the cooperation of the Bundesministerium fuer Forschung und Technologie (BMFT) with the Commissariat a l'Energie Atomique (CEA), the Japan Science and Technologie Agency (ISTA), the Electric Power Research Institute (EPRI) and the United States Nuclear Regulatory Commission, these reports are available in the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS). The list pursues the following order: Country of origin, problem area concerned, according to the Reactor Safety Research Program of the BMFT, reporting organization. (orig./HP) [de

  8. List of reports in the field of reactor safety research from BMFT, CEA, EPRI, JSTA and USNRC. Reported period: July 1 to December 31, 1993

    1993-01-01

    This list reviews reports from the Federal Republic of Germany, from France, from Japan and from the United States of America concerning single problems in the field of Reactor Safety Research. According to the cooperation of the Bundesministerium fuer Forschung und Technologie (BMFT) with the Commissariat a l'Energie Atomique (CEA), the Japan Science and Technologie Agency (ISTA), the Electric Power Research Institute (EPRI) and the United States Nuclear Regulatory Commission, these reports are available in the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS). The list pursues the following order: Country of origin, problem area concerned, according to the Reactor Safety Research Program of the BMFT, reporting organization. (orig./HP) [de

  9. The necessity of periodic fire safety review

    Mowrer, D.S.

    1998-01-01

    Effective fire safety requires the coordinated integration of many diverse elements. Clear fire safety objectives are defined by plant management and/or regulatory authorities. Extensive and time-consuming systematic analyses are performed. Fire safety features (both active and passive) are installed and maintained, and administrative programs are established and implemented to achieve the defined objectives. Personnel are rigorously trained. Given the time, effort and monetary resources expended to achieve a specific level of fire safety, conducting periodic assessments to verify that the specified level of fire safety has been achieved and is maintained is a matter of common sense. Periodic fire safety reviews and assessment play an essential role in assuring continual nuclear safety in the world's power plants

  10. Progress report on safety research of high-level waste management for the period April, 1981 to March, 1982

    Tashiro, Shingo

    1982-10-01

    Main results obtained on Safety Research of High-Level Waste Management in 1981 were edited. The research tjeme are following. (1) Characterization of vitrified waste. (2) Alternative waste form development. (3) Durability tests for HLW storage facility. (4) Safety evaluation of geologic disposal. (5) Preparation for hot test. (author)

  11. List of reports in the field of reactor safety research sponsored by BMFT, CEA, EPRI, JSTA and USNRC. Reported period: April 1 - June 30, 1987

    1987-08-01

    The list reviews reports from the Federal Republic of Germany, from France, from Japan and from the United States of America concerning single problems in the field of reactor safety research. According to the cooperation of the Federal Minister for Research and Technology (BMFT) with the Commissariat a l'Energie Atomique (CEA), the Japan Science and Technology Agency (JSTA), the Electric Power Research Institute (EPRI) and the United States Nuclear Regulatory Commission, these reports are available in the Gesellschaft fuer Reaktorsicherheit (GRS). The list pursues the following order: Country of origin, problem area concerned, according to the Reactor Safety Research Programme of the BMFT, reporting organization. The list of reports appears quarterly. (orig.) [de

  12. Krsko NPP Periodic Safety Review program

    Basic, I.; Spiler, J.; Novsak, M.

    2001-01-01

    The need for conducting a Periodic Safety Review for the Krsko NPP has been clearly recognized both by the NEK and the regulator (SNSA). The PSR would be highly desirable both in the light of current trends in safety oversight practices and because of many benefits it is capable to provide. On January 11, 2001 the SNSA issued a decision requesting the Krsko NPP to prepare a program and determine a schedule for the implementation of the program for 'Periodic Safety Review of NPP Krsko'. The program, which is required to be in accordance with the IAEA safety philosophy and with the EU practice, was submitted for the approval to the SNSA by the end of March 2001. The paper summarizes Krsko NPP Periodic Safety Review Program [1] including implemented SNSA and IAEA Expert Mission comments.(author)

  13. Fusion safety status report

    1986-10-01

    This report includes information on a) tritium handling and safety; b) activation product generation and release; c) lithium safety; d) superconducting magnet safety; e) operational safety and shielding; f) environmental impact; g) recycling, decommissioning and waste management; and h) accident analysis. Recommendations for high priority research and development are presented, as well as the current status in each area

  14. Progress report on safety research of high-level waste management for the period April, 1982 to March, 1983

    Nakamura, Haruto; Tashiro, Shingo

    1983-06-01

    Main results obtained on Safety Research of High-Level waste Management in 1982 were editted. 1) The leaching mechanisms of the vitrified waste were studied to estimate the leach rate in disposal condition. 2) For the safety assessment of storage and disposal of the returning waste resulted from overseas reprocessing, properties of the glass simulating the composition by COGEMA are being measured. 3) In order to assess the integrity of the repository, influence of heat on the characteristics of rock mass and buffer materials was studied in underground drift. And also the retardation mechanism of the leached elements by rock mass was discussed. 4) The construction of Waste Safety Testing Facility (WASTEF) was completed, and vitrification test and near-field test using large radiation sources were initiated. (author)

  15. Patient safety incident reports related to traditional Japanese Kampo medicines: medication errors and adverse drug events in a university hospital for a ten-year period.

    Shimada, Yutaka; Fujimoto, Makoto; Nogami, Tatsuya; Watari, Hidetoshi; Kitahara, Hideyuki; Misawa, Hiroki; Kimbara, Yoshiyuki

    2017-12-21

    Kampo medicine is traditional Japanese medicine, which originated in ancient traditional Chinese medicine, but was introduced and developed uniquely in Japan. Today, Kampo medicines are integrated into the Japanese national health care system. Incident reporting systems are currently being widely used to collect information about patient safety incidents that occur in hospitals. However, no investigations have been conducted regarding patient safety incident reports related to Kampo medicines. The aim of this study was to survey and analyse incident reports related to Kampo medicines in a Japanese university hospital to improve future patient safety. We selected incident reports related to Kampo medicines filed in Toyama University Hospital from May 2007 to April 2017, and investigated them in terms of medication errors and adverse drug events. Out of 21,324 total incident reports filed in the 10-year survey period, we discovered 108 Kampo medicine-related incident reports. However, five cases were redundantly reported; thus, the number of actual incidents was 103. Of those, 99 incidents were classified as medication errors (77 administration errors, 15 dispensing errors, and 7 prescribing errors), and four were adverse drug events, namely Kampo medicine-induced interstitial pneumonia. The Kampo medicine (crude drug) that was thought to induce interstitial pneumonia in all four cases was Scutellariae Radix, which is consistent with past reports. According to the incident severity classification system recommended by the National University Hospital Council of Japan, of the 99 medication errors, 10 incidents were classified as level 0 (an error occurred, but the patient was not affected) and 89 incidents were level 1 (an error occurred that affected the patient, but did not cause harm). Of the four adverse drug events, two incidents were classified as level 2 (patient was transiently harmed, but required no treatment), and two incidents were level 3b (patient was

  16. Progress report on safety research on high-level waste management for the period April 1989 to March 1990

    Muraoka, Susumu; Senoo, Muneaki; Kobayashi, Yoshii

    1991-02-01

    Research on high-level waste management at the Engineered Barrier Materials Laboratory, Environmental Geochemistry Laboratory and Environmental Radiochemistry Laboratory of the Department of Environmental Safety Research, JAERI in the fiscal year of 1989 are described. The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies on glass and ceramic forms, and corrosion test of carbon steel were continued. 2) In the safety evaluation study for geological disposal, chemical behavior of nuclide in water, nuclide migration and retardation in geosphere were studied. New microspectrometers was developed to analyze the chemical form in rocks. 3) Distribution and migration of uranium in uranium ore were examined as a natural analogue study. (author)

  17. Progress report on safety research on high-level waste management for the period April 1991 to March 1992

    Muraoka, Susumu; Senoo, Muneaki; Kobayashi, Yoshii

    1993-03-01

    Research on high-level waste management at the Engineered Barrier Materials Laboratory, Environmental Geochemistry Laboratory and Environmental Radiochemistry Laboratory of the Department of Environmental Safety Research, JAERI in the fiscal year of 1991 are described. The topics are as follows: 1) As for waste forms and engineered barrier material, performance assessment studies on glass, ceramic and buffer materials were carried out. 2) In the safety evaluation study for geological disposal, behavior of radionuclide in deep underground water, nuclide migration in-situ and natural groundwater flow system were studied. 3) Changes in layer charge of smectite, alteration of uranium mineral and uranium fixation in uranium ore were examined as a natural analogue study. (author)

  18. Periodic safety review of the HTR-10 safety analysis

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  19. Krsko periodic safety review project prioritization process

    Basic, I.; Vrbanic, I.; Spiler, J.; Lambright, J.

    2004-01-01

    Definition of a Krsko Periodic Safety Review (PSR) project is a comprehensive safety review of a plant after last ten years of operation. The objective is a verification by means of a comprehensive review using current methods that Krsko NPP remains safety when judged against current safety objectives and practices and that adequate arrangements are in place to maintain plant safety. This objective encompasses the three main criteria or goals: confirmation that the plant is as safe as originally intended, determination if there are any structures, systems or components that could limit the life of the plant in the foreseeable future, and comparison the plant against modern safety standards and to identify where improvements would be beneficial at justifiable cost. Krsko PSR project is structured in the three phases: Phase 1: Preparation of Detailed 10-years PSR Program, Phase 2: Performing of 10-years PSR Program and preparing of associated documents (2001-2003), and Phase 3: Implementation of the prioritized compensatory measures and modifications (development of associated EEAR, DMP, etc.) after agreement with the SNSA on the design, procedures and time-scales (2004-2008). This paper presents the NEK PSR results of work performed under Phase 2 focused on the ranking of safety issues and prioritization of corrective measures needed for establishing an efficient action plan. Safety issues were identified in Phase 2 during the following review processes: Periodic Safety Review (PSR) task; Krsko NPP Regulatory Compliance Program (RCP) review; Westinghouse Owner Group (WOG) catalog items screening/review; SNSA recommendations (including IAEA RAMP mission suggestions/recommendations).(author)

  20. Injury & Safety Report - Legacy

    National Oceanic and Atmospheric Administration, Department of Commerce — The Injury & Safety Report is a mandatory post trip legal document observers fill out to report any injuries they have incurred, illnesses they have had, or...

  1. Preliminary Integrated Safety Analysis Status Report

    Gwyn, D.

    2001-01-01

    This report provides the status of the potential Monitored Geologic Repository (MGR) Integrated Safety Analysis (EA) by identifying the initial work scope scheduled for completion during the ISA development period, the schedules associated with the tasks identified, safety analysis issues encountered, and a summary of accomplishments during the reporting period. This status covers the period from October 1, 2000 through March 30, 2001

  2. NPP Krsko periodic safety review. Safety assessment and analyses

    Basic, I.; Spiler, J.; Thaulez, F.

    2002-01-01

    Definition of a PSR (Periodic Safety Review) project is a comprehensive safety review of a plant after ten years of operation. The objective is a verification by means of a comprehensive review using current methods that the plant remains safe when judged against current safety objectives and practices and that adequate arrangements are in place to maintain plant safety. The overall goals of the NEK PSR Program are defined in compliance with the basic role of a PSR and the current practice typical for most of the countries in EU. This practice is described in the related guides and good practice documents issued by international organizations. The overall goals of the NEK PSR are formulated as follows: to demonstrate that the plant is as safe as originally intended; to evaluate the actual plant status with respect to aging and wear-out identifying any structures, systems or components that could limit the life of the plant in the foreseeable future, and to identify appropriate corrective actions, where needed; to compare current level of safety in the light of modern standards and knowledge, and to identify where improvements would be beneficial for minimizing deviations at justifiable costs. The Krsko PSR will address the following safety factors: Operational Experience, Safety Assessment, EQ and Aging Management, Safety Culture, Emergency Planning, Environmental Impact and Radioactive Waste.(author)

  3. Annual Safety Report 1981

    1982-09-01

    A safety report from Section K (Nuclear Physics) of the Dutch National Institute for Nuclear and High Energy Physics is presented for 1981. The report begins with general matters concerning safety policy at NIKHEF, licences and expenditure. Works accidents (none of them radiological) are detailed and accident prevention considered. The measurement programme for neutron radiation in the vicinity of the accelerator is described and the results are discussed. The means and results of personnel dosimetry are also presented. The report is concluded with a list of publications concerning safety aspects at NIKHEF. (C.F.)

  4. Reports on research projects in the field of reactor safety sponsored by the Federal Ministry for Education, Science, Research and Technology. Period covered: January 1 - June 30, 1997

    1997-01-01

    Within the framework of its research programme on reactor safety, the Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technology (BMBF) (Federal Ministry for Education, Science, Research and Technology) sponsors investigations into the safety of nuclear reactors. These investigations that are carried out within the framework of the programme are to provide fundamental knowledge, procedures and methods contributing to realistic safety assessments of nuclear facilities, the further development of safety technology, and the use of the potential of innovative safety-related approaches. Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) bmH, by order of the BMBF, continuously issues information on the status of such investigations by publishing semiannual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. (orig./SR) [de

  5. Regulatory review of NPP Krsko Periodic Safety Review

    Lovincic, D.; Muehleisen, A.; Persic, A.

    2004-01-01

    At the request of the Slovenian Nuclear Safety Administration (SNSA), Krsko NPP prepared a Periodic Safety Review (PSR) program in January 2001. This is the first PSR of NPP Krsko, the only nuclear power plant in Slovenia. The program was reviewed by the IAEA mission in May 2001 and approved by SNSA in July 2001. The program is made in accordance with the IAEA Safety Guide 'Periodic Safety Review of Operational Nuclear Power Plants' No. 50-SG-012 and with European practice. It contains a systematic review of operation of the NPP Krsko, including the review of the changes as a result of the modernization of the facility. The main tasks of PSR are review of plant status for each safety factor, development of aging and life cycle management program, review of seismic design and PSHA analysis and update of regulatory compliance program. The prioritization process of findings and action plan are also important tasks of PSR. The basic safety factors of the PSR review are: Operational Experience, Safety Assessment and Analyses, Equipment Qualification and Ageing Management, Safety Culture, Emergency Planing, Environmental Impact and Radioactive Waste, Compliance with license requirements and Prioritization. It had been agreed that SNSA will have reviewed all PSR reports generated during the PSR process. At the end of 2003 the PSR Summary Report with selected recommendations for action plan was completed and delivered to SNSA for review. The paper presents regulatory review of NPP Krsko PSR with emphasis on the evaluation of the PSR issues ranking process. (author)

  6. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology. Reported period: July 1 to December 31, 1986. Progress report

    1987-05-01

    Investigations on the safety of light water reactors (LWR) being performed in the framework of the research program on reactor safety (RS-projects) are sponsored by the Federal Ministry for Research and Technology (BMFT). Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks also projects on the safety of advanced reactors are sponsored by the BMFT. The individual reports are classified according to the research program on the safety of LWRs 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  7. Periodic progress report, 6 months

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    This is the first progress report of the BriteEuram project named "High Power Laser Cutting for Heavy Industry" ("Powercut"). The report contains a summary of the objectives of the first period, an overview of the technical progress, a comparison between the planed and the accomplished work...

  8. List of reports on reactor safety research by BMFT, USNRC, EPRI and JSTA. Period under review: 1st January until 31st March 1978

    1978-05-01

    This list reviews reports from the Federal Republic of Germany, from the United States of America and from Japan concerning special problems in the field of Reactor Safety Research. According to the cooperation of the Bundesminister fuer Forschung und Technologie (BMFT) with the United States Regulatory Commisssion (USNRC), the Electric Power Research Institute (EPRI), and the Japan Science and Technology Agency (JSTA) these reports are available in the Gesellschaft fuer Reaktorsicherheit. The list pursues the following order: Country of origin, problem area concerned, according to the Reactor Safety Research Program of BMFT, reporting organisation. The list of reports appears quarterly. Requests for reports should be addressed to GRS, Forschungsbetreuung. Contractual view points have to be considered for the distribution of the reports. (orig.) [de

  9. Safety Basis Report

    R.J. Garrett

    2002-01-01

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities

  10. Safety Basis Report

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  11. 46 CFR 61.40-6 - Periodic safety tests.

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Periodic safety tests. 61.40-6 Section 61.40-6 Shipping... INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-6 Periodic safety tests. (a) Periodic Safety tests must demonstrate the proper operation of the primary and alternate...

  12. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology. Progress report. Reported period: July 1 to December 31, 1984

    1985-05-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWRS 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig./HP) [de

  13. Development of a Safety Assessment Information System for the Management of Periodic Safety Assessment Activities

    Song, Tae Young

    2007-01-01

    At present, the 10-year Periodic Safety Review(PSR) has been performing to confirm all the aspects of safety issues for all the operating plants in compliance with domestic nuclear law of article 23, subarticle 3. For each plant, in addition, Probabilistic Safety Assessment(PSA) and Severe Accident Management Guideline(SAMG) are being implemented and revised periodically to reflect the latest safety level according to principle fulfillment of severe accident policy statement. The assessment reports, as one of outcomes from these activities, are submitted into and reviewed by domestic regulatory body. During reviewing (in-office duty) and licensing (regulatory duty) process, a large number of outcomes of which most are the formal technical reports and licensing materials, are inevitably produced. Moreover, repeated review process over the plants can make them accumulated and produce a variety of documents additionally. This circumstance motivates to develop effective tool or system for the management of these reports and related technical documents for the future use in licensing process and for subsequent plant assessments. This paper presents the development status of Safety Assessment Information System(SAIS) which manages safety-related documents of PSR, PSA and SAMG for practical use for experienced engineers in charge of these areas

  14. Development of a Safety Assessment Information System for the Management of Periodic Safety Assessment Activities

    Song, Tae Young [Nuclear Engineering and Technology Institute, Daejeon (Korea, Republic of)

    2007-07-01

    At present, the 10-year Periodic Safety Review(PSR) has been performing to confirm all the aspects of safety issues for all the operating plants in compliance with domestic nuclear law of article 23, subarticle 3. For each plant, in addition, Probabilistic Safety Assessment(PSA) and Severe Accident Management Guideline(SAMG) are being implemented and revised periodically to reflect the latest safety level according to principle fulfillment of severe accident policy statement. The assessment reports, as one of outcomes from these activities, are submitted into and reviewed by domestic regulatory body. During reviewing (in-office duty) and licensing (regulatory duty) process, a large number of outcomes of which most are the formal technical reports and licensing materials, are inevitably produced. Moreover, repeated review process over the plants can make them accumulated and produce a variety of documents additionally. This circumstance motivates to develop effective tool or system for the management of these reports and related technical documents for the future use in licensing process and for subsequent plant assessments. This paper presents the development status of Safety Assessment Information System(SAIS) which manages safety-related documents of PSR, PSA and SAMG for practical use for experienced engineers in charge of these areas.

  15. China's Work Safety Report

    Liang Jiakun

    2005-01-01

    @@ General Situation of China's Work Safety in 2004 In 2004, the national work safety situation remained stable as a whole and gained momentum to improve. The totality of accidents held the line and began to drop. The safety conditions in industrial,mining, and commercial/trading enterprises improved. Progress was made in ensuring work safety in the relevant industries and fields. The safety situation in most provinces (autonomous regions, municipalities directly under the Central Government) kept stable.

  16. Report of the tunnel safety working group

    Gannon, J.

    1991-04-01

    On 18 February 1991 the Project Manager formed a working group to address the safety guidelines and requirements for the underground facilities during the period of accelerator construction, installation, and commissioning. The following report summarizes the research and discussions conducted by the group and the recommended guidelines for safety during this phase of the project

  17. Periodic inspection for safety of CANDU heat transport piping systems

    Ellyin, F.

    1979-10-01

    Periodic inspection of heat transport and emergency core cooling piping systems is intended to maintain an adequate level of safety throughout the life of the plant, and to protect plant personnel and the public from the consequences of a failure and release of fission products. This report outlines a rational approach to the periodic inspection based on a fully probabilistic model. It demonstrates the methodology based on theoretical treatment and experimental data whereby the strength of a pressurized pipe or vessel containing a defect could be evaluated. It also shows how the extension of the defect at various lifetimes could be predicted. These relationships are prerequisite for the probabilistic formulation and analysis for the periodic inspection of piping systems

  18. Status of safety analysis reports

    Cserhati, A.

    1999-01-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  19. Status of safety analysis reports

    Cserhati, A

    1999-06-01

    The safety regulation connected to both of the Atomic Acts from 1980 and 1996 requires preparation of the Preliminary Safety Analysis Report (PSAR) as well as Final SAR (FSAR). In this respect the licensing procedure for the construction and commissioning of Paks NPP did not formally deviate from the standards applied in developed countries; this is particularly true if comparison is made with the standards applied for commissioning NPPs in the second half of the seventies. By the time the overall development of internationally accepted safety standards and some existing deficiencies of earlier SAR made necessary a general reassessment of the plant safety (AGNES project). The carried out PSR for Paks-1 and 2 also added a valuable contribution to the SAR content, however a formal update of SAR is not made yet. A Hungarian nuclear authority decree from 1997 obligates the licensee to prepare and submit a major upgrade of FSAR until the mid of 2000, after finishing the PSR for Paks-3 and 4. From this date a periodic update of FSAR is required every year. The operational license renewal affects only the PSR but not the FSAR updating. The new Nuclear Safety Code outlines the contents of PSAR and FSAR, based on US NRC Reg. Guide 1. 70. Rev. 3. Hungary by now can fulfill the upgrading of SAR without major external technical or financial help. The AGNES project covered the safety analysis chapters of SAR. It was financed mainly by the country. In the project there have been involved in limited cases as performers the VTT (Finland), Belgatom (Belgium), GRS (Germany), etc., the IVO (Finland) fulfilled tasks of an independent reviewer for safety analysis. The AGNES had certain interconnection with the similar IAEA RER safety reassessment project for WWER-440/213. The PSR for Paks-1 and 2 have been carried out by the Paks staff from the resources of the plant. During the evaluation of several parts of Paks-3 and 4 PSR documentation the authority intends to use certain

  20. Report on the research projects into the safety of nuclear power plants in operation sponsored by Federal Ministry of Economics and Labour. Period under report: 1 January - 30 June 2004

    2004-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Arbeit (BMWA) (Federal Ministry of Economics and Labour) sponsors research projects into the safety of nuclear power plants in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations and to the further development of safety technology. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWA, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The reports are published by the Research Management Division of GRS. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWA does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  1. 76 FR 28696 - Periodic Reporting

    2011-05-18

    ... for Priority mailpieces; 2. The inclusion of D-Report adjustments; \\3\\ \\3\\ The D-Report is one of six.... Since the D- Report adjustment is computed as a cost per piece, it contends, ``Other'' costs should be distributed on a per-piece basis, rather than treated as proportionate to mail processing, transportation, and...

  2. Progress report within the series of GRS-F progress reports on reactor safety, sponsored by the Federal Ministry of Economics and Technology. Period: 1 July - 31 December 2001

    2002-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technologie (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order to the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Managment Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.) [de

  3. Progress report within the series of GRS-F progress reports on reactor safety, sponsored by the Federal Ministry of Economics and Technology. Period: 1 January - 30 June, 2002

    2002-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technologie (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order to the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Managment Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.) [de

  4. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Education, Science, Research and Technology. Reported period: January 1 to June 30, 1995

    1995-01-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Research Management Division at the GRS within the framework of general informations of progress in reactor safety research. The individual reports are classified according to projects of the reactor safety research program. Another table uses the same classification system as applied in the nuclear safety index of the CEC (Commision of the European Communities), IAEA (International Atomic Energy Agency) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig./HP) [de

  5. Aging evaluation methodology of periodic safety review in Korea

    Park, Heung-Bae; Jung, Sung-Gyu; Jin, Tae-Eun; Jeong, Ill-Seok

    2002-01-01

    In Korea plant lifetime management (PLIM) study for Kori Unit 1 has been performed since 1993. Meanwhile, periodic safety review (PSR) for all operating nuclear power plants (NPPs) has been started with Kori Unit 1 since 2000 per IAEA recommendation. The evaluation period is 10 years, and safety (evaluation) factors are 11 per IAEA guidelines as represented in table 1. The relationship between PSR factors and PLIM is also represented. Among these factors evaluation of 'management of aging' is one of the most important and difficult factor. This factor is related to 'actual condition of the NPP', 'use of experience from other nuclear NPPs and of research findings', and 'management of aging'. The object of 'management of aging' is to obtain plant safety through identifying actual condition of system, structure and components (SSCs) and evaluating aging phenomena and residual life of SSCs using operating experience and research findings. The paper describes the scope and procedure of valuation of 'management of aging', such as, screening criteria of SSCs, Code and Standards, evaluation of SSCs and safety issues as represented. Evaluating SSCs are determined using final safety analysis report (FSAR) and power unit maintenance system for Nuclear Ver. III (PUMAS/N-III). The screening criteria of SSCs are safety-related items (quality class Q), safety-impact items (quality class T), backfitting rule items (fire protection (10CFR50.48), environmental qualification (10CFR50.49), pressurized thermal shock (10CFR50.61), anticipated transient without scram (10CFR50.62), and station blackout (10CFR50.63)) and regulating authority requiring items[1∼3]. The purpose of review of Code and Standards is identifying actual condition of the NPP and evaluating aging management using effective Code and Standards corresponding to reactor facilities. Code and Standards is composed of regulating laws, FSAR items, administrative actions, regulating actions, agreement items, and other

  6. Domestic Regulation for Periodic Safety Review of Nuclear Power Plants

    Kim, Daesik; Ahn, Seunghoon; Auh, Geunsun; Lee, Jonghyeok

    2015-01-01

    The so-called Periodic Safety Review (PSR) has been carried out such safety assessment throughout its life, on a periodic basis. In January 2001, the Atomic Energy Act and related regulations were amended to adopt the PSR institutional scheme from IAEA Nuclear Safety Guide 50-SG-O12. At that time the safety assessment was made to review the plant safety on 10 safety factors, such as aging management and emergency planning, where the safety factor indicates the important aspects of safety of an operating NPP to be addressed in the PSR. According to this legislation, the domestic utility, the KHNP has conducted the PSR for the operating NPP of 10 years coming up from operating license date, starting since May 2000. Some revisions in the PSR rule were made to include the additional safety factors last year. This paper introduces the current status of the PSR review and regulation, in particular new safety factors and updated technical regulation. Comprehensive safety assessment for Korea Nuclear Power Plants have performed a reflecting design and procedure changes and considering the latest technology every 10 years. This paper also examined the PSR system changes in Korea. As of July 2015, reviews for PSR of 18 units have been completed, with 229 nuclear safety improvement items. And implementation have been completed for 165 of them. PSR system has been confirmed that it has contributed to improvement of plant safety. In addition, this paper examined the PSR system change in Korea

  7. 78 FR 70904 - Periodic Reporting

    2013-11-27

    ... ``Alternate CRA (Cost and Revenue Analysis Report)'' required by Commission rule 3050.14. 39 CFR 3050.14. The Postal Service proposes the Commission remove the requirement to prepare the Alternate CRA by striking... CRA Report, November 15, 2013 (Petition). Additionally, the Postal Service requests that if the...

  8. The aviation safety reporting system

    Reynard, W. D.

    1984-01-01

    The aviation safety reporting system, an accident reporting system, is presented. The system identifies deficiencies and discrepancies and the data it provides are used for long term identification of problems. Data for planning and policy making are provided. The system offers training in safety education to pilots. Data and information are drawn from the available data bases.

  9. Development of Safety Review Guide for the Periodic Safety Review of Reactor Vessel Internals

    Park, Jeongsoon; Ko, Hanok; Kim, Seonjae; Jhung, Myungjo

    2013-01-01

    Aging management of the reactor vessel internals (RVIs) is one of the important issues for long-term operation of nuclear power plants (NPPs). Safety review on the assessment and management of the RVI aging is conducted through the process of a periodic safety review (PSR). The regulatory body should check that reactor facilities sustain safety functions in light of degradation due to aging and that the operator of a nuclear power reactor establishes and implements management program to deal with degradation due to aging in order to guarantee the safety functions and the safety margin as a result of PSR. KINS(Korea Institute of Nuclear Safety) has utilized safety review guides (SRG) which provide guidance to KINS staffs in performing safety reviews in order to assure the quality and uniformity of staff safety reviews. The KINS SRGs for the continued operation of pressurized water reactors (PWRs) published in 2006 contain areas of review regarding aging management of RVIs in chapter 2 (III.2.15, Appendix 2.0.1). However unlike the SRGs for the continued operation, KINS has not officially published the SRGs for the PSR of PWRs, but published them as a form of the research report. In addition to that, the report provides almost same review procedures for aging assessment and management of RVIs with the ones provided in the SRGs for the continued operation, it cannot provide review guidance specific to PSRs. Therefore, a PSR safety review guide should be developed for RVIs in PWRs. In this study, a draft PSR safety review guide for reactor vessel internals in PWRs is developed and provided. In this paper, a draft PSR safety review guide for reactor vessel internals (PSR SRG-RVIs) in PWRs is introduced and main contents of the draft are provided. However, since the PSR safety review guides for areas other than RVIs in the pressurized water reactors (PWRs) are expected to be developed in the near future, the draft PSR SRG-RVIs should be revisited to be compatible with

  10. Progress report within the series of GRS-F progress reports on reactor safety, sponsored by the Federal Ministry of Economics and Labour. Period: 1 January - 30 June 2003

    2003-01-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of the investigations into the safety of nuclear power plants by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system ''Joint Safety Research Index'' of the CEC (commission of the european communities). The reports are arranged in sequence of their project numbers. (orig.) [de

  11. Progress report within the series of GRS-F progress reports on reactor safety, sponsored by the Federal Ministry of Economics and Labour. Period: 1 July - 31 December 2003

    2004-01-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of the investigations into the safety of nuclear power plants by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system ''Joint Safety Research Index'' of the CEC (commission of the european communities). The reports are arranged in sequence of their project numbers. (orig.) [de

  12. 76 FR 296 - Periodic Reporting

    2011-01-04

    ... part would update the mail processing portion of the Parcel Select/Parcel Return Service cost models. The other part would modify the Parcel Select/Parcel Return Service transportation cost model. This... Annual Compliance Report. \\1\\ Petition of the United States Postal Service Requesting Initiation of a...

  13. RB research reactor Safety Report

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This RB reactor safety report is a revised and improved version of the Safety report written in 1962. It contains descriptions of: reactor building, reactor hall, control room, laboratories, reactor components, reactor control system, heavy water loop, neutron source, safety system, dosimetry system, alarm system, neutron converter, experimental channels. Safety aspects of the reactor operation include analyses of accident causes, errors during operation, measures for preventing uncontrolled activity changes, analysis of the maximum possible accident in case of different core configurations with natural uranium, slightly and highly enriched fuel; influence of possible seismic events

  14. Optimization of maintenance periodicity of complex of NPP safety systems

    Kolykhanov, V.; Skalozubov, V.; Kovrigkin, Y.

    2006-01-01

    The analysis of the positive and negative aspects connected to maintenance of the safety systems equipment which basically is in a standby state is executed. Tests of systems provide elimination of the latent failures and raise their reliability. Poor quality of carrying out the tests can be a source of the subsequent failures. Therefore excess frequency of tests can result in reducing reliability of safety systems. The method of optimization of maintenance periodicity of the equipment taking into account factors of its reliability and restoration procedures quality is submitted. The unavailability factor is used as a criterion of optimization of maintenance periodicity. It is offered to use parameters of reliability of the equipment and each of safety systems of NPPs received at developing PSA. And it is offered to carry out the concordance of maintenance periodicity of systems within the NPP maintenance program taking into account a significance factor of the system received on the basis of the contribution of system in CDF. Basing on the submitted method the small computer code is developed. This code allows to calculate reliability factors of a separate safety system and to determine optimum maintenance periodicity of its equipment. Optimization of maintenance periodicity of a complex of safety systems is stipulated also. As an example results of optimization of maintenance periodicity at Zaporizhzhya NPP are presented. (author)

  15. Current Status of Periodic Safety Review of HANARO Research Reactor

    Kim, Minjin; Ahn, Guk-Hoon; Lee, Choong Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A PSR for a research reactor became a legal requirement as the Nuclear Safety Act was amended and came into effect in 2014. This paper describes the current status and methodology of the first Periodic Safety Review (PSR) of HANARO that is being performed. The legal requirements, work plan, and process of implementing a PSR are described. Because this is the first PSR for a research reactor, it is our understating that the operating organization and regulatory body should communicate well with each other to complete the PSR in a timely manner. The first PSR of HANARO is under way. In order to achieve a successful result, activities of the operation organization such as scheduling, maintaining consistency in input data for review, and reviewing the PSR reports that will require intensive resources should be well planned. This means the operating organization needs to incorporate appropriate measures to ensure the transfer of knowledge and expertise arising from the PSR via a contractor to the operation organization. It is desirable for the Regulatory Body to be involved in all stage of the PSR to prevent any waste of resources and minimize the potential for a reworking of the PSR and the need for an additional assessment and review as recommended by foreign experts.

  16. RB research reactor safety report

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This new version of the safety report is a revision of the safety report written in 1962 when the RB reactor started operation after reconstruction. The new safety report was needed because reactor systems and components have been improved and the administrative procedures were changed. the most important improvements and changes were concerned with the use of highly enriched fuel (80% enriched), construction of reactor converter outside the reactor vessel, improved control system by two measuring start-up channels, construction of system for heavy water leak detection, new inter phone connection between control room and other reactor rooms. This report includes description of reactor building with installations, rector vessel, reactor core, heavy water system, control system, safety system, dosimetry and alarm systems, experimental channels, neutron converter, reactor operation. Safety aspects contain analyses of accident reasons, method for preventing reactivity insertions, analyses of maximum hypothetical accidents for cores with natural uranium, 2% enriched and 80% enriched fuel elements. Influence of seismic events on the reactor safety and well as coupling between reactor and the converter are parts of this document

  17. 5 CFR 2634.908 - Reporting periods.

    2010-01-01

    ... DISCLOSURE, QUALIFIED TRUSTS, AND CERTIFICATES OF DIVESTITURE Confidential Financial Disclosure Reports § 2634.908 Reporting periods. (a) Incumbents. Each confidential financial disclosure report filed under... information required to be reported according to the provisions of this subpart for the preceding calendar...

  18. Status of safety-related qualification and design verification and support programs in support of HTGR PSARs. Biannual report for period ending January 31, 1975

    Tully, G.R. Jr.; Stiehl, G.L. Jr.

    1975-01-01

    Programs reported are core seismic studies, core support posts, primary coolant moisture monitor, moisture monitor compressor, control rod system, orifice and drive mechanism, reserve shutdown system, main loop coolant shutoff valve, auxiliary loop coolant shutoff valve, core auxiliary heat exchanger, auxiliary loop coolant circulator assembly, auxiliary loop coolant circulator motor speed controls, PPS electronic modules and main loop helium circulator. (U.S.)

  19. Safety analysis reports - new strategies

    Booth, J.A.

    1994-01-01

    Within the past year there have been many external changes in the requirements of safety analysis reports. Now there is emphasis on open-quotes graded approachesclose quotes depending on the Hazard Classification of the project. The Energy Facility Contractors Group (EFCOG) has a Safety Analysis Working Group. The results of this group for the past year are discussed as well as the implications for EG ampersand G. New strategies include ideas for incorporating the graded approach, auditable safety documents, additional guidance for Hazard Classification per DOE-STD-1027-92. The emphasis in the paper is on those projects whose hazard classification is category three or less

  20. The periodic safety review of nuclear power plants. Practices in OECD countries

    1992-01-01

    This report gives an overview of the regulatory concepts and practices for the periodic safety review of nuclear power plants in OECD countries with nuclear power programmes. The statutory bases for such reviews, their objectives and the processes adopted are summarised against the background of each country's regulatory practices. Although periodic safety reviews are now, or will soon be, part of the regulatory process in the majority of countries, the national approaches to these reviews still differ considerably. This report includes numerous examples of the different concepts and practices in OECD countries, thereby illustrating the variety of ways adopted to reach the common goal of maintaining and improving nuclear safety

  1. Project 2nd Periodic Report - Section 2

    Healy, Mark; Knowles, Emma; Johnstone, Cameron

    The work described in this publication has received support from the European Community - Research Infrastructure Action under the FP7 “Capacities” Specific Programme through grant agreement number 262552, MaRINET. Project Periodic Report. 2nd Period: October 2012 – March 2014 inclusive.......The work described in this publication has received support from the European Community - Research Infrastructure Action under the FP7 “Capacities” Specific Programme through grant agreement number 262552, MaRINET. Project Periodic Report. 2nd Period: October 2012 – March 2014 inclusive....

  2. Periodic safety re-evaluations in NPPs in EC member states, Finland and Sweden

    1990-01-01

    The work on periodic safety re-evaluations summarized in this report was performed by a Task Force of the CEC Working Group on the Safety of Thermal Reactors. The periodic safety re-evaluations under review in this study were those that are carried out in addition to other reviews which represent the primary means of safety assurance. The periodic safety re-evaluation is broader and more comprehensive in nature. The cumulative effects of experience (national and international), advances in knowledge and analysis techniques, improvements in safety standards and operating practices, overall effects of plant ageing, and the totality of all modifications over the period in question need to be taken into account. All countries have recognized the value of such periodic reviews, and licensees, either as a regulatory requirement or as a voluntary action, are carrying them out. The scope and contents of each country's review showed many similarities of approach, any differences being explained by the age and type of reactor in operation. Many similarities emerged in the topics selected for re-evaluation and in the approach to re-evaluation itself. The overall conclusion was that while approaches may differ in some respects, for practical purposes comparable levels of safety are achieved in the periodic safety re-evaluation of nuclear power plants

  3. Safety technical considerations on the 2012 periodic safety verification of the Beznau nuclear power plant

    2016-12-01

    According to nuclear legislation, the owner of an operational license for a nuclear power plant has to provide a periodic safety verification (PSU) every 10 years. The 'North Eastern Power Plants' company (NOK), today AXPO Power AG already performed such a PSU for the Beznau-2 nuclear reactor block (KKB2) in 2002. The Beznau-1 nuclear reactor block (KKB1) received its definitive operational license in October 1970, after test operation during 7 months. After the license for test operation received on July 16 th , 1971, the operational license of KKB2 was renewed several times, each time for a certain period of validity. In 1991, NOK requested a definitive operational license for KKB2, but in 1994 the Swiss Federal Council lengthened the license for only 10 years. Moreover, it laid down that NOK has to periodically report on the safety of the facility. With its letter of August 23 rd , 1998, the Federal Office of Energy defined the documents to be produced for the PSU. The extent of the PSU was defined in such a way that many documents concern the whole power plant, i.e. both nuclear reactor blocks. On December 3 rd , 2004, the Swiss Federal Council granted KKB2 an operational license of limited validity. The present report reviews the 2012 PSU, which covers the time interval from January 1 st , 2002, to December 31 st , 2011, from the point of view of safety. It contains documents for the evaluation of both reactor blocks at KKB. The Beznau interim storage pool was also taken into consideration; it is situated on the KKB site, but, according to a decision of the Swiss Federal Council of May 23 rd , 1991, it has an independent operational license. The evaluation of ageing surveillance takes the whole operational period of the facility into account, i.e. the ageing mechanisms acting as from the beginning of the operation. Moreover, important developments that occurred after the surveillance time interval have been taken into account, especially the status

  4. NASA aviation safety reporting system

    1981-01-01

    Aviation safety reports that relate to loss of control in flight, problems that occur as a result of similar sounding alphanumerics, and pilot incapacitation are presented. Problems related to the go around maneuver in air carrier operations, and bulletins (and FAA responses to them) that pertain to air traffic control systems and procedures are included.

  5. Annual report on occupational safety

    1985-09-01

    A report is given on the occupational safety relating to BNFL's employees for the year 1984 and the results compared to those obtained in 1983. Data are presented for each of the Company's Sites on whole body exposures, accidental deaths and major injuries and nuclear and non-nuclear incidents. The results show that the Company average body dose continues to be less than 5mSv, there were no accidental deaths but 15 major injuries. One nuclear incident and 9 non-nuclear incidents were notified to the Health and Safety Executive. (UK)

  6. Research projects into the safety of nuclear power plants. Period cover 01. January 2014 - 30. June 2014. Progress report; Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum 01. Januar 2014 - 30. Juni 2014. Fortschrittsbericht

    NONE

    2014-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi), formerly Federal Ministry of Economics and Technology, sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the 1st half-year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to general topics related to reactor safety research as well as to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  7. Research projects into the safety of nuclear power plants. Period cover 01. July 2015 - 31. December 2015. Progress report; Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum 01. Juli - 31. Dezember 2015. Fortschrittsbericht

    NONE

    2015-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to general topics related to reactor safety research as well as to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  8. Research projects into the safety of nuclear power plants. Period cover 01. July - 31. December 2016. Progress report; Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum 01. Juli - 31. Dezember 2016. Fortschrittsbericht

    NONE

    2016-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to general topics related to reactor safety research as well as to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. lt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  9. Research projects into the safety of nuclear power plants. Period cover 01. January - 30. June 2016. Progress report; Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum 01. Januar - 30. Juni 2016. Fortschrittsbericht

    NONE

    2016-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to general topics related to reactor safety research as well as to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  10. Periodic safety review of the experimental fast reactor JOYO. Review of the activity for safety

    Maeda, Yukimoto; Kashimura, Youichi; Suzuki, Toshiaki; Isozaki, Kazunori; Hoshiba, Hideaki; Kitamura, Ryoichi; Nakano, Tomoyuki; Takamatsu, Misao; Sekine, Takashi

    2005-02-01

    Periodic safety review (Review of the activity for safety) which consisted of 'Comprehensive evaluation of operation experience' and Incorporation of the latest technical knowledge' was carried out up to January 2005. 1. Comprehensive evaluation of operation experience. It was confirmed that the effectual activities for safety through the operation of JOYO were carried out in terms of (1) Operation management, (2) Maintenance management, (3) Fuel management, (4) Radiation management, (5) Radioactive waste management, (6) Emergency planning and (7) Feedback of incidents and failures. 2. Reflection of the latest technical knowledge. It was confirmed that the latest technical knowledge including regulation and guide line established by Nuclear Safety Commission of Japan until March 31st. 2003 were properly reflected in impressing the safety of the reactor. As a result, it was evaluated that the activity for safety was carried out effectually, and no additional measure was identified continual safe operation of the reactor. (author)

  11. National nuclear safety report 2005. Convention on nuclear safety

    2006-01-01

    This National Nuclear Safety Report was presented at the 3rd. Review meeting. In general the information contained in the report are: Highlights / Themes; Follow-up from 2nd. Review meeting; Challenges, achievements and good practices; Planned measures to improve safety; Updates to National report to 3rd. Review meeting; Questions from peer review of National Report; and Conclusions

  12. Research projects into the safety of nuclear power plants. Period covered: 01. July - 31. Dezember 2004. Progress report; Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum: 01. Juli - 31. Dezember 2004. Fortschrittsbericht

    NONE

    2004-07-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  13. Research projects into the safety of nuclear power plants. Period cover 01. January - 30. June 2017. Progress report; Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum 01. Januar - 30. Juni 2017. Fortschrittsbericht

    NONE

    2017-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to the topic areas of reactor safety research. The reports are arranged in sequence of their project numbers. Ilt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  14. AEA Technology safety report 1990

    1991-12-01

    AEA Technology is the trading name of the United Kingdom Atomic Energy Authority. Work in support of nuclear power at home and abroad continues to be an important part of our business but as nuclear power has matured AEA Technology has looked beyond its traditional role to other markets worldwide. We are a major commercial enterprise, with an annual turnover of Pound 450 million, selling a variety of technical services and products to customers worldwide. The scope of the business lies in the closely related fields of energy, environment and safety, targeted at both nuclear and non-nuclear markets. We also have a major role in providing innovative technology solutions to assist manufacturing industry. The 1990 report on safety within the Authority is presented here. (author).

  15. AEA Technology safety report 1990

    1991-12-01

    AEA Technology is the trading name of the United Kingdom Atomic Energy Authority. Work in support of nuclear power at home and abroad continues to be an important part of our business but as nuclear power has matured AEA Technology has looked beyond its traditional role to other markets worldwide. We are a major commercial enterprise, with an annual turnover of Pound 450 million, selling a variety of technical services and products to customers worldwide. The scope of the business lies in the closely related fields of energy, environment and safety, targeted at both nuclear and non-nuclear markets. We also have a major role in providing innovative technology solutions to assist manufacturing industry. The 1990 report on safety within the Authority is presented here. (author)

  16. TIS General Safety Group Annual Report 2000

    Weingarten, W

    2001-01-01

    This report summarises the main activities of the General Safety (GS) Group of the Technical Inspection and Safety Division (TIS) during the year 2000, and the results obtained. The different topics in which the Group is active are covered: general safety inspections and ergonomy, electrical, chemistry and gas safety, chemical pollution containment and control, industrial hygiene, the safety of civil engineering works and outside contractors, fire prevention and the safety aspects of the LHC experiments.

  17. Safety of vaccinations in patients with cryopyrin-associated periodic syndromes: a prospective registry based study

    Jaeger, Veronika K.; Hoffman, Hal M.; van der Poll, Tom; Tilson, Hugh; Seibert, Julia; Speziale, Antonio; Junge, Guido; Franke, Kristina; Vritzali, Eleni; Hawkins, Philip N.; Kuemmerle-Deschner, Jasmin; Walker, Ulrich A.

    2017-01-01

    Pneumococcal, tetanus and influenza vaccinations are recommended for patients with cryopyrin-associated periodic syndromes (CAPS) when treated with immunosuppressive medication. The aim of this publication is to report the safety of pneumococcal and other vaccinations in CAPS patients. All CAPS

  18. Second periodic safety review of Angra Nuclear Power Station, unit 1

    Martins, Carlos F.O.; Crepaldi, Roberto; Freire, Enio M., E-mail: ottoncf@tecnatom.com.br, E-mail: emfreire46@gmail.com, E-mail: robcrepaldi@hotmail.com [Tecnatom do Brasil Engenharia e Servicos Ltda, Rio de Janeiro, RJ (Brazil); Campello, Sergio A., E-mail: sacampe@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This paper describes the second Periodic Safety Review (PSR2-A1) of Angra Nuclear Power Station, Unit 1, prepared by Eletrobras Eletronuclear S.A. and Tecnatom do Brasil Engenharia e Servicos Ltda., during Jul.2013-Aug.2014, covering the period of 2004-2013. The site, in Angra dos Reis-RJ, Brazil, comprises: Unit 1, (640 MWe, Westinghouse PWR, operating), Unit 2 (1300 MWe, KWU/Areva, operating) and Unit 3 (1405 MWe, KWU/Areva, construction). The PSR2-A1 attends the Standards 1.26-Safety in Operation of Nuclear Power Plants, Brazilian Nuclear Regulatory Commission (CNEN), and IAEA.SSG.25-Periodic Safety Review of Nuclear Power Plants. Within 18 months after each 10 years operation, the operating organization shall perform a plant safety review, to investigate the evolution consequences of safety code and standards, regarding: Plant design; structure, systems and components behavior; equipment qualification; plant ageing management; deterministic and probabilistic safety analysis; risk analysis; safety performance; operating experience; organization and administration; procedures; human factors; emergency planning; radiation protection and environmental radiological impacts. The Review included 6 Areas and 14 Safety Parameters, covered by 33 Evaluations.After document evaluations and discussions with plant staff, it was generated one General and 33 Specific Guide Procedures, 33 Specific and one Final Report, including: Description, Strengths, Deficiencies, Areas for Improvement and Conclusions. An Action Plan was prepared by Electronuclear for the recommendations. It was concluded that the Unit was operated within safety standards and will attend its designed operational lifetime, including possible life extensions. The Final Report was submitted to CNEN, as one requisite for renewal of the Unit Permanent Operation License. (author)

  19. Second periodic safety review of Angra Nuclear Power Station, unit 1

    Martins, Carlos F.O.; Crepaldi, Roberto; Freire, Enio M.; Campello, Sergio A.

    2015-01-01

    This paper describes the second Periodic Safety Review (PSR2-A1) of Angra Nuclear Power Station, Unit 1, prepared by Eletrobras Eletronuclear S.A. and Tecnatom do Brasil Engenharia e Servicos Ltda., during Jul.2013-Aug.2014, covering the period of 2004-2013. The site, in Angra dos Reis-RJ, Brazil, comprises: Unit 1, (640 MWe, Westinghouse PWR, operating), Unit 2 (1300 MWe, KWU/Areva, operating) and Unit 3 (1405 MWe, KWU/Areva, construction). The PSR2-A1 attends the Standards 1.26-Safety in Operation of Nuclear Power Plants, Brazilian Nuclear Regulatory Commission (CNEN), and IAEA.SSG.25-Periodic Safety Review of Nuclear Power Plants. Within 18 months after each 10 years operation, the operating organization shall perform a plant safety review, to investigate the evolution consequences of safety code and standards, regarding: Plant design; structure, systems and components behavior; equipment qualification; plant ageing management; deterministic and probabilistic safety analysis; risk analysis; safety performance; operating experience; organization and administration; procedures; human factors; emergency planning; radiation protection and environmental radiological impacts. The Review included 6 Areas and 14 Safety Parameters, covered by 33 Evaluations.After document evaluations and discussions with plant staff, it was generated one General and 33 Specific Guide Procedures, 33 Specific and one Final Report, including: Description, Strengths, Deficiencies, Areas for Improvement and Conclusions. An Action Plan was prepared by Electronuclear for the recommendations. It was concluded that the Unit was operated within safety standards and will attend its designed operational lifetime, including possible life extensions. The Final Report was submitted to CNEN, as one requisite for renewal of the Unit Permanent Operation License. (author)

  20. NIKHEF-K safety report 1982

    1983-12-01

    In this safety report, general information is offered about the safety policy at the NIKHEF-K institute Amsterdam. Costs, prevention, training courses and inspection related to (radiation) safety are briefly discussed. Small accidents are reported. Some measurements have been carried out, but no measurable increase of radiation doses have been found. (Auth.)

  1. Annual report on occupational safety 1985

    1986-09-01

    This report presents information on occupational safety relating to the Company's employees for the year 1985, and compares data with figures for the previous year. The following headings are listed: principle activities of BNFL, general policy and organisation, radiological safety, including whole body, skin and extremity, and internal organ doses, non-radiological safety, incidents reportable to the health and safety executive. (U.K.)

  2. Comprehensive School Safety Initiative Report

    National Institute of Justice, 2014

    2014-01-01

    The National Institute of Justice (NIJ) developed the Comprehensive School Safety Initiative in consultation with federal partners and Congress. It is a research-focused initiative designed to increase the safety of schools nationwide through the development of knowledge regarding the most effective and sustainable school safety interventions and…

  3. Systems engineered health and safety criteria for safety analysis reports

    Beitel, G.A.; Morcos, N.

    1993-01-01

    The world of safety analysis is filled with ambiguous words: codes and standards, consequences and risks, hazard and accident, and health and safety. These words have been subject to disparate interpretations by safety analysis report (SAR) writers, readers, and users. open-quotes Principal health and safety criteriaclose quotes has been one of the most frequently misused phrases; rarely is it used consistently or effectively. This paper offers an easily understood definition for open-quotes principal health and safety criteriaclose quotes and uses systems engineering to convert an otherwise mysterious topic into the primary means of producing an integrated SAR. This paper is based on SARs being written for environmental restoration and waste management activities for the U.S. Department of Energy (DOE). Requirements for these SARs are prescribed in DOE Order 5480-23, open-quotes Nuclear Safety Analysis Reports.close quotes

  4. Annual report on occupational safety 1987

    1988-01-01

    This report presents detailed information on occupational safety relating to the Company's employees for 1987. Data are quoted in tables and text, together with data from the previous year for comparison where available. The report is presented under the following headings: radiological and non-radiological safety, incidents, appendices (statutory dose limits, nuclear incident criteria for reporting to ministers). (author)

  5. Safety analysis reports. Current status (third key report)

    1999-01-01

    A review of Ukrainian regulations and laws concerned with Nuclear power and radiation safety is presented with an overview of the requirements for the Safety Analysis Report Contents. Status of Safety Analysis Reports (SAR) is listed for each particular Ukrainian NPP including SAR development schedules. Organisational scheme of SAR development works includes: general technical co-ordination on Safety Analysis Report development; list of leading organisations and utilization of technical support within international projects

  6. Chemical Safety Vulnerability Working Group Report

    1994-09-01

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  7. Overview of the periodic safety review of nuclear power plants as practised in India

    Jhamb, N.K.; Chande, S.K.

    1997-01-01

    In India, routine and periodic safety reviews of nuclear facilities are carried out through a multitiered hierarchy of committees at the plant level, the operating organization level and the regulatory body level. In 1993, it was decided by the Atomic Energy Regulatory Board (AERB, the regulatory body) that, as a policy, authorization for operation of nuclear power plants (NPPs) shall have a validity period of 5 years, after which this authorization will have to be renewed. NPPs have to carry out a self-assessment according to an established procedure, prepare a Safety Assessment Report for Renewal of Authorization (SARRA) and submit it to the AERB for review. The procedure defines the objectives of the report and gives guidelines on the required review of the self-assessment of the operational plant safety. The paper discusses the objectives, the elements of the SARRA review, the review process, the SARRA review carried out in 1993-1994, the basis for acceptability of continued plant operation, and the lessons learned for future periodic safety reviews in India and for exchange of operating experience feedback. (author)

  8. National Nuclear Safety Report 2001. Convention on Nuclear Safety

    2001-01-01

    The First National Nuclear Safety Report was presented at the first review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This second National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the first review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex 1. In general, the information contained in this Report has been updated since March 31, 1998 to March 31, 2001. Those aspects that remain unchanged were not addressed in this second report with the objective of avoiding repetitions and in order to carry out a detailed analysis considering article by article. As a result of the above mentioned detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention

  9. National nuclear safety report 2004. Convention on nuclear safety

    2004-01-01

    The second National Nuclear Safety Report was presented at the second review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This third National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the second review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex I and those belonging to the second review meeting are included as Annex II. In general, the information contained in this Report has been updated since March 31, 2001 to April 30, 2004. Those aspects that remain unchanged were not addressed in this third report. As a result of the detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention. The questions and answers originated at the Second Review Meeting are included as Annex III

  10. Model for safety reports including descriptive examples

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository

  11. Aviation Safety Reporting System: Process and Procedures

    Connell, Linda J.

    1997-01-01

    The Aviation Safety Reporting System (ASRS) was established in 1976 under an agreement between the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). This cooperative safety program invites pilots, air traffic controllers, flight attendants, maintenance personnel, and others to voluntarily report to NASA any aviation incident or safety hazard. The FAA provides most of the program funding. NASA administers the program, sets its policies in consultation with the FAA and aviation community, and receives the reports submitted to the program. The FAA offers those who use the ASRS program two important reporting guarantees: confidentiality and limited immunity. Reports sent to ASRS are held in strict confidence. More than 350,000 reports have been submitted since the program's beginning without a single reporter's identity being revealed. ASRS removes all personal names and other potentially identifying information before entering reports into its database. This system is a very successful, proof-of-concept for gathering safety data in order to provide timely information about safety issues. The ASRS information is crucial to aviation safety efforts both nationally and internationally. It can be utilized as the first step in safety by providing the direction and content to informed policies, procedures, and research, especially human factors. The ASRS process and procedures will be presented as one model of safety reporting feedback systems.

  12. Exploring relationships between hospital patient safety culture and Consumer Reports safety scores.

    Smith, Scott Alan; Yount, Naomi; Sorra, Joann

    2017-02-16

    A number of private and public companies calculate and publish proprietary hospital patient safety scores based on publicly available quality measures initially reported by the U.S. federal government. This study examines whether patient safety culture perceptions of U.S. hospital staff in a large national survey are related to publicly reported patient safety ratings of hospitals. The Agency for Healthcare Research and Quality Hospital Survey on Patient Safety Culture (Hospital SOPS) assesses provider and staff perceptions of hospital patient safety culture. Consumer Reports (CR), a U.S. based non-profit organization, calculates and shares with its subscribers a Hospital Safety Score calculated annually from patient experience survey data and outcomes data gathered from federal databases. Linking data collected during similar time periods, we analyzed relationships between staff perceptions of patient safety culture composites and the CR Hospital Safety Score and its five components using multiple multivariate linear regressions. We analyzed data from 164 hospitals, with patient safety culture survey responses from 140,316 providers and staff, with an average of 856 completed surveys per hospital and an average response rate per hospital of 56%. Higher overall Hospital SOPS composite average scores were significantly associated with higher overall CR Hospital Safety Scores (β = 0.24, p Consumer Reports Hospital Safety Score, which is a composite of patient experience and outcomes data from federal databases. As hospital managers allocate resources to improve patient safety culture within their organizations, their efforts may also indirectly improve consumer-focused, publicly reported hospital rating scores like the Consumer Reports Hospital Safety Score.

  13. National nuclear safety report 1998. Convention on nuclear safety

    1998-01-01

    The Argentine Republic subscribed the Convention on Nuclear Safety, approved by a Diplomatic Conference in Vienna, Austria, in June 17th, 1994. According to the provisions in Section 5th of the Convention, each Contracting Party shall submit for its examination a National Nuclear Safety Report about the measures adopted to comply with the corresponding obligations. This Report describes the actions that the Argentine Republic is carrying on since the beginning of its nuclear activities, showing that it complies with the obligations derived from the Convention, in accordance with the provisions of its Article 4. The analysis of the compliance with such obligations is based on the legislation in force, the applicable regulatory standards and procedures, the issued licenses, and other regulatory decisions. The corresponding information is described in the analysis of each of the Convention Articles constituting this Report. The present National Report has been performed in order to comply with Article 5 of the Convention on Nuclear Safety, and has been prepared as much as possible following the Guidelines Regarding National Reports under the Convention on Nuclear Safety, approved in the Preparatory Meeting of the Contracting Parties, held in Vienna in April 1997. This means that the Report has been ordered according to the Articles of the Convention on Nuclear Safety and the contents indicated in the guidelines. The information contained in the articles, which are part of the Report shows the compliance of the Argentine Republic, as a contracting party of such Convention, with the obligations assumed

  14. Annual safety research report, JFY 2010

    2011-09-01

    In the safety infrastructure research working group report, 'the effective conducting of nuclear safety infrastructure research', published by METI in March 2010, the roles of regulatory agencies and JNES and their cooperation, and the research road map for nuclear safety regulation researches were summarized. As for the regulatory issues the governments or JNES considered necessary, JNES had compiled' safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (4 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 11), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 5), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 5) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 7). In JFY 2010, JNES worked on the 53 research projects of 17 subjects in 6 areas as safety researches. This annual safety research report summarized respective achievements and stage of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2010 Edition as well as the situation of the reflection for the safety regulations. (T. Tanaka)

  15. KKP 1. Report to inform the Reactor Safety Commission

    1987-01-01

    This report goes into details of the operation during its reporting period, giving the total activity in the primary events. Radiation exposure, activities, dose rates of persons, collective doses from activity and radioactive emission to water and waste air are given. Account is given of all modifications or extensions made on safety-related parts of the plant, on controls and regulation. (DG) [de

  16. Hot Cell Facility (HCF) Safety Analysis Report

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  17. Hot Cell Facility (HCF) Safety Analysis Report

    MITCHELL, GERRY W.; LONGLEY, SUSAN W.; PHILBIN, JEFFREY S.; MAHN, JEFFREY A.; BERRY, DONALD T.; SCHWERS, NORMAN F.; VANDERBEEK, THOMAS E.; NAEGELI, ROBERT E.

    2000-01-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  18. NASA Aviation Safety Reporting System (ASRS)

    Connell, Linda J.

    2017-01-01

    The NASA Aviation Safety Reporting System (ASRS) collects, analyzes, and distributes de-identified safety information provided through confidentially submitted reports from frontline aviation personnel. Since its inception in 1976, the ASRS has collected over 1.4 million reports and has never breached the identity of the people sharing their information about events or safety issues. From this volume of data, the ASRS has released over 6,000 aviation safety alerts concerning potential hazards and safety concerns. The ASRS processes these reports, evaluates the information, and provides selected de-identified report information through the online ASRS Database at http:asrs.arc.nasa.gov. The NASA ASRS is also a founding member of the International Confidential Aviation Safety Systems (ICASS) group which is a collection of other national aviation reporting systems throughout the world. The ASRS model has also been replicated for application to improving safety in railroad, medical, fire fighting, and other domains. This presentation will discuss confidential, voluntary, and non-punitive reporting systems and their advantages in providing information for safety improvements.

  19. Environment and safety research status report: 1993

    1993-03-01

    The 1993 status report discusses ongoing and planned research activities in the GRI Environment and Safety Program. The objectives and goals, accomplishments, and strategy along with the basis for each project area are presented for the supply, end use, and gas operations subprograms. Within the context of these subprograms, contract status summaries under their conceptual titles are given for the following project areas: Gas Supply Environmental and Safety Research, Air Quality Research, End Use Equipment Safety Research, Gas Operations Safety Research, Liquefied Natural Gas, Safety Research, and Gas Operations Environmental Research

  20. Storm water monitoring report for the 1995 reporting period

    Braun, D.R.; Brock, T.A.

    1995-10-01

    This report includes sampling results and other relevant information gathered in the past year by LITCO's Environmental Monitoring and Water Resources Unit. This report presents analytical data collected from storm water discharges as a part of the Environmental Monitoring Storm Water Monitoring Program for 1994--1995 for facilities located on the Idaho National Engineering Laboratory (INEL). The 1995 reporting period is October 1, 1994 through September 30, 1995. The storm water monitoring program tracks information about types and amounts of pollutants present. Data are required for the Environmental Protection Agency and are transmitted via Discharge Monitoring Reports. Additional information resulting from the program contributes to Best Management Practice to control pollution in runoff as well as Storm Water Pollution Prevention Plans

  1. Sixth national report of Brazil for the nuclear safety convention

    2013-01-01

    Brazil has presented periodically its National Report prepared by a group composed of representatives of the various Brazilian organizations with responsibilities related to nuclear safety. Due to the implications of the Fukushima nuclear accident in 2011, an Extraordinary National Report was presented in 2012. This Sixth National Report is an update of the Fifth National Report in relation to the Convention on Nuclear Safety articles and also an update of the Extraordinary Report with respect to the action taken related to lesson learned from the Fukushima accident. It includes relevant information for the period of 2010/2012. This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  2. Sixth national report of Brazil for the nuclear safety convention

    NONE

    2013-07-01

    Brazil has presented periodically its National Report prepared by a group composed of representatives of the various Brazilian organizations with responsibilities related to nuclear safety. Due to the implications of the Fukushima nuclear accident in 2011, an Extraordinary National Report was presented in 2012. This Sixth National Report is an update of the Fifth National Report in relation to the Convention on Nuclear Safety articles and also an update of the Extraordinary Report with respect to the action taken related to lesson learned from the Fukushima accident. It includes relevant information for the period of 2010/2012. This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations.

  3. Survey and analysis of radiation safety management systems at medical institutions. Second report. Radiation measurement, calibration of radiation survey meters, and periodic check of installations, equipment, and protection instruments

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2006-01-01

    We carried out a questionnaire survey to determine the actual situation of radiation safety management measures in all medical institutions in Japan that had nuclear medicine facilities. The questionnaire consisted of questions concerning the evaluation of shielding capacity; radiation measurement; periodic checks of installations, equipment, and protection instruments; and the calibration of radiation survey meters. The analysis was undertaken according to region, type of establishment, and number of beds. The overall response rate was 60 percent. For the evaluation of shielding capacity, the outsourcing rate was 53 percent of the total. For the radiation measurements of ''leakage radiation dose and radioactive contamination'' and contamination of radioactive substances in the air'', the outsourcing rates were 28 percent and 35 percent of the total, respectively (p<0.001, according to region and establishment). For the periodic check of radiation protection instruments, the implementation rate was 98 percent, and the outsourcing rate was 32 percent for radiation survey meters and 47 percent for lead aprons. The non-implemented rate for calibration of radiation survey meters was 25 percent of the total (p<0.001, according to region and establishment). The outsourcing rate for calibration of radiation survey meters accounted for 87 percent of the total, and of these medical institutions, 72 percent undertook annual calibration. The implementation rate for patient exposure measurement was 20 percent of the total (p<0.001, according to number of beds), and of these medical institutions 46 percent recorded measurement outcome. (author)

  4. 2011 NASA Range Safety Annual Report

    Dumont, Alan G.

    2012-01-01

    Welcome to the 2011 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides a NASA Range Safety overview for current and potential range users. As is typical with odd year editions, this is an abbreviated Range Safety Annual Report providing updates and links to full articles from the previous year's report. It also provides more complete articles covering new subject areas, summaries of various NASA Range Safety Program activities conducted during the past year, and information on several projects that may have a profound impact on the way business will be done in the future. Specific topics discussed and updated in the 2011 NASA Range Safety Annual Report include a program overview and 2011 highlights; Range Safety Training; Range Safety Policy revision; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. Once again the web-based format was used to present the annual report. We continually receive positive feedback on the web-based edition and hope you enjoy this year's product as well. As is the case each year, contributors to this report are too numerous to mention, but we thank individuals from the NASA Centers, the Department of Defense, and civilian organizations for their contributions. In conclusion, it has been a busy and productive year. I'd like to extend a personal Thank You to everyone who contributed to make this year a successful one, and I look forward to working with all of you in the upcoming year.

  5. Template for safety reports with descriptive example

    1995-12-01

    This report provides a template for future safety reports on long-term safety in support of important decisions and permit applications in connection with the construction of a deep repository system. The template aims at providing a uniform structure for describing long-term safety, after the repository has been closed and sealed. The availability of such a structure will simplify both preparation and review of the safety reports, and make it possible to follow how safety assessments are influenced by the progressively more detailed body of data that emerges. A separate section containing 'descriptive examples' has been appended to the template. This section illustrates what the different chapters of the template should contain. 279 refs

  6. Template for safety reports with descriptive example

    NONE

    1995-12-01

    This report provides a template for future safety reports on long-term safety in support of important decisions and permit applications in connection with the construction of a deep repository system. The template aims at providing a uniform structure for describing long-term safety, after the repository has been closed and sealed. The availability of such a structure will simplify both preparation and review of the safety reports, and make it possible to follow how safety assessments are influenced by the progressively more detailed body of data that emerges. A separate section containing `descriptive examples` has been appended to the template. This section illustrates what the different chapters of the template should contain. 279 refs.

  7. Annual report on occupational safety 1989

    1990-01-01

    This report presents detailed information on occupational safety relating to BNFL's employees for 1989 and data compared with the previous year. Routine monitoring, non-radiological safety and 'incidents' are discussed and 'statutory' whole-body exposures, nuclear incidents, lost-time accidents, and types of injury are tabulated. (author)

  8. Nuclear Safety Research Department annual report 2000

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  9. Nuclear Safety Research Department annual report 2001

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  10. ENSI's technical view on the periodic safety review 2008 of the nuclear power plant Goesgen

    2012-08-01

    The owner of a license for a nuclear power plant operation in Switzerland has to undergo every 10 years a comprehensive safety check called 'periodic safety review' (PSR). The regulatory authority, the Swiss Federal Nuclear Safety Inspectorate (ENSI), reviews the documents supplied by the licensee. The Goesgen power plant (KKG) obtained its operation license and started operation in 1978. A first PSR was performed in the years 1996 to 1998 (PSR 1998) and reported. KKG delivered an analysis of the safety status, an evaluation of subsystems as well as test reports. The new PSR covers the period 1998 to 2007. The basis of the evaluation by ENSI is the new nuclear energy law in force since 1 February 2005. In comparison to PSR 1998, new aspects have to be considered like the description of the safety concept, including the technical safety classification of buildings, systems and components, or consideration of the protection objective 'limitation of the radiation exposure'. The PSR 2008 is focussed on the estimate of the nuclear safety of KKG. Basically, for the operation of a nuclear power plant, a sufficient protection has to be guaranteed against the release of radioactive materials to the environment as well as the irradiation of persons, during normal operation as well as in the case of accidents. The licensee of a nuclear power plant in operation must retrofit his plant according to the experience already gained and the state-of-the-art. The purpose of the PSR is to check the quality of the plant in the domain of safety. A probabilistic safety assessment (PSA) study must prove that the probability of damages to the reactor core is smaller than 10 -5 /year. In Switzerland the life time of a nuclear power plant is not limited by a fixed maximum time of operation. On the contrary, the limitation proceeds from safety criteria. Insufficiencies in the plant design are often recognized only through the evolution of the technique or some unexpected events. Ageing

  11. Health and safety annual report 1992

    1993-01-01

    BNFL operates 6 sites in the United Kingdom concerned with the nuclear fuel cycle. The annual report on occupational health and safety gives information on all aspects of health and safety within BNFL with special reference to radiation doses received by the workforce and radiation protection measures taken by the company. BNFL's safety policy is set out. Radiation doses to all workers have remained low. Other industrial accidents are also listed and its safety measures for transport, radioactive effluents and in the event of an incident, are mentioned briefly. (UK)

  12. National report of Brazil. Nuclear Safety Convention

    1998-09-01

    This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  13. Human factors evaluation of man-machine interface for periodic safety review of nuclear power plants

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang; Hwang, In Koo; Lee, Hyun Cheol; Jang, Tong Il; Ku, Jin Young; Kim, Soo Jin

    2004-12-01

    This report describes the research results of human factors assessment on the MMI(Man Machine Interface) equipment as part of Periodic Safety Review(PSR) of Nuclear Power Plants(NPPs). As MMI is a key factor among human factors to be reviewed in PSR, we reviewed the MMI components of nuclear power plants in aspect of human factors engineering. The availability, suitability, and effectiveness of the MMI devices were chosen to be reviewed. The MMI devices were investigated through the review of design documents related to the MMI, survey of control panels, evaluation of experts, and experimental assessment. Checklists were used to perform this assessment and record the review results. The items mentioned by the expert comments to review in detail in relation with task procedures were tested by experiments with operators' participation. For some questionable issues arisen during this MMI review, operator workload and possibility of errors in operator actions were analysed. The reviewed MMI devices contain MCR(Main Control Room), SPDS(Safety Parameter Display System), RSP(Remote Shutdown Panel), and the selected LCBs(Local Control Boards) importantly related to safety. As results of the assessments, any significant problem challenging the safety was not found on human factors in the MMI devices. However, several small items to be changed and improved in suitability of MMI devices were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on MMI area

  14. Nuclear safety research project. Annual report 1995

    Hueper, R.

    1996-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1995 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1996. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  15. Nuclear Safety Project. Annual report 1983

    1984-06-01

    The annual report 1983 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1983 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig.) [de

  16. Nuclear safety project. Annual report 1985

    1986-07-01

    The annual report 1985 is a detailed description (in German language) of work within the nuclear safety project performed in 1985 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./HP) [de

  17. Annual report on occupational safety 1983

    1984-08-01

    The 1983 Annual Report on occupational safety at BNFL is presented. Data for whole-body radiation doses and skin and extremity doses are given for BNFL employees together with 1982 data for comparison. Similarly, accidental deaths and major injuries are recorded. Finally information on the frequency of both nuclear and non-nuclear incidents reported to the Health and Safety Executive is given. (U.K.)

  18. Safety and health annual report 1996

    1997-01-01

    The 1996 report on the Health and Safety performance of the nuclear fuel cycle company BNFL at its sites in the United Kingdom demonstrates a continuing improvement. The site locations and developments are briefly described and international developments in subsidiary organisations noted. Other sections of the report cover health and safety policy, radiological and industrial safety, emergency planning, incidents, occupational health services, compensation scheme developments, transport, putting radiation in perspective, and safety and health research. Data are provided on: radioactive discharges; industrial safety of BNFL and contractors' employees; radiation dose summaries for BNFL and contractors' employees. There is evidence of the expected plateauing out of doses to BNFL employees at a level less than or similar to background radiation. (UK)

  19. National Safety Council Final Report

    Norris, Karen; Shannon, Tom

    2005-01-01

    In December 1995, the National Safety Council (NSC) entered into Cooperative Agreement No.DE-FC02-96EW 12729 with the US Department of Energy (DOE) to work together over the next few years on safety and health initiatives surrounding the management of radioactive materials. As a result, three publications, including print and non-print deliverables, were developed and distributed: (1) Series of Backgrounders, Web Services for WIPP; (2) A Guide to Foreign Research Reactor Spent Fuel; and (3) A Guide to the US Department of Energy's Low-Level Radioactive Waste. DOE and its predecessor agencies have maintained a record of safe transportation of radioactive materials for more than 50 years. Thousands of shipments involving three million packages of radioactive materials are shipped each year in the United States. Historically, DOE shipments constitute less than one percent of the total radioactive material shipments; however, they comprise a significant portion (approaching 75 percent) of the curies, or amounts of radioactivity shipped annually. DOE operations and field offices are responsible for detailed planning and for ensuring full regulatory compliance for their shipments. Packaging is designed to protect workers and limit the risk to the public during transportation. DOE headquarters and program offices provide policy direction and oversight for packaging and transportation activities for their respective offices. The publications NSC produced under the agreement also included primary points of contact for external audiences, including the press, the public, and stakeholders who would not have access to DOE regulations, manuals, and practices

  20. Safety analysis report 231-Z Building

    Powers, C.S.

    1989-03-01

    This report provides an intensive review of the nuclear safety of the operation of the 231-Z Building. For background information complete descriptions of the floor plan, building services, alarm systems, and glove box systems are included in this report. In addition, references are included to The Plutonium Laboratory Radiation Work Procedures, Safety Guides, 231-Z Operating Procedures Manual and Nuclear Materials accountability Procedures. Engineered and administrative features contribute to the overall safety of personnel, the building, and environs. The consequences of credible incidents were considered and are discussed.

  1. Periodic Review Report: April 1984-June 1988.

    Williamsport Area Community Coll., PA.

    This report documents actions, accomplishments, and modifications at the Williamsport Area Community College (WACC) between April 1984 and June 1988. First, an executive summary highlights the following: (1) in 1985, WACC underwent a significant change in its governance when the City of Williamsport became the college's sole sponsor; (2) as a…

  2. KIT safety management. Annual report 2012

    Frank, Gerhard

    2013-01-01

    The KIT Safety Management Service Unit (KSM) guarantees radiological and conventional technical safety and security of Karlsruhe Institute of Technology and controls the implementation and observation of legal environmental protection requirements. KSM is responsible for - licensing procedures, - industrial safety organization, - control of environmental protection measures, - planning and implementation of emergency preparedness and response, - operation of radiological laboratories and measurement stations, - extensive radiation protection support and the - the execution of security tasks in and for all organizational units of KIT. Moreover, KSM is in charge of wastewater and environmental monitoring for all facilities and nuclear installations all over the KIT campus. KSM is headed by the Safety Commissioner of KIT, who is appointed by the Presidential Committee. Within his scope of procedure for KIT, the Safety Commissioner controls the implementation of and compliance with safety-relevant requirements. The KIT Safety Management is certified according to DIN EN ISO 9001, its industrial safety management is certified by the VBG as ''AMS-Arbeitsschutz mit System'' and, hence, fulfills the requirements of NLF / ISO-OSH 2001. KSM laboratories are accredited according to DIN EN ISO/IEC 17025. To the extent possible, KSM is committed to maintaining competence in radiation protection and to supporting research and teaching activities. The present reports lists the individual tasks of the KIT Safety Management and informs about the results achieved in 2012. Status figures in principle reflect the status at the end of the year 2012. The processes described cover the areas of competence of KSM.

  3. Plutonium Finishing Plant safety evaluation report

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE's independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91

  4. Complementary safety assessments - Report by the French Nuclear Safety Authority

    2011-12-01

    As an immediate consequence of the Fukushima accident, the French Authority of Nuclear Safety (ASN) launched a campaign of on-site inspections and asked operators (mainly EDF, AREVA and CEA) to make complementary assessments of the safety of the nuclear facilities they manage. The approach defined by ASN for the complementary safety assessments (CSA) is to study the behaviour of nuclear facilities in severe accidents situations caused by an off-site natural hazard according to accident scenarios exceeding the current baseline safety requirements. This approach can be broken into 2 phases: first conformity to current design and secondly an approach to the beyond design-basis scenarios built around the principle of defence in depth. 38 inspections were performed on issues linked to the causes of the Fukushima crisis. It appears that some sites have to reinforce the robustness of the heat sink. The CSA confirmed that the processes put into place at EDF to detect non-conformities were satisfactory. The complementary safety assessments demonstrated that the current seismic margins on the EDF nuclear reactors are satisfactory. With regard to flooding, the complementary safety assessments show that the complete reassessment carried out following the flooding of the Le Blayais nuclear power plant in 1999 offers the installations a high level of protection against the risk of flooding. Concerning the loss of electrical power supplies and the loss of cooling systems, the analysis of EDF's CSA reports showed that certain heat sink and electrical power supply loss scenarios can, if nothing is done, lead to core melt in just a few hours in the most unfavourable circumstances. As for nuclear facilities that are not power or experimental reactors, some difficulties have appeared to implement the CSA approach that was initially devised for reactors. Generally speaking, ASN considers that the safety of nuclear facilities must be made more robust to improbable risks which are not

  5. Research on review technology for three key safety factors of periodic safety review (PSR) and its application to Qinshan Nuclear Power Plant

    Xu Shoulv; Yao Weida; Dou Yikang; Lin Shaoxuan; Cao Yenan; Zhou Quanfu; Zheng Jiong; Zhang Ming

    2009-04-01

    In 2001, after 10 years' operation, Qinshan Nuclear Power Plant (Q1) started to carry out periodic safety review (PSR) based on a nuclear safety guideline, Periodic Safety Review for Operational Nuclear Power Plants (HAF0312), issued by National Nuclear Safety Administration of China (NNSA). Entrusted by the owner of Q1, Shanghai Nuclear Engineering Research and Design Institute (SNERDI) implemented reviews of three key safety factors including safety analysis, equipment qualification and ageing. PSR was a challenging work in China at that time and through three years' research and practice, SNERDI summarized a systematic achievement for the review including review methodology, scoping, review contents and implementation steps, etc.. During the process of review for the three safety factors, totally 148 review reports and 341 recommendations for corrections were submitted to Q1. These reports and recommendations have provided guidance for correction actions as follow-up of PSR. This paper focuses on technical aspects to carry out PSR for the above-mentioned three safety factors, including review scoping, contents, methodology and main steps. The review technology and relevant experience can be taken for reference for other NPPs to carry out PSR. (authors)

  6. Periodic safety review of operational nuclear power plants. A publication within the NUSS programme

    1994-01-01

    This Safety Guide which supplements the IAEA Safety Fundamentals: The Safety of Nuclear Installations and the Code on the Safety of Nuclear Power Plants: Operation, forms part of the Agency's programme, referred to as the NUSS programme, for establishing Codes and Guides relating to nuclear power plants. A list of NUSS publications is given at the end of this book. This Guide was drafted on the basis of a systematic review approach that was endorsed by the IAEA Conference on the Safety of Nuclear Power: Strategy for the Future. The purpose of this Safety Guide is to provide guidance on the conduct of Periodic Safety Reviews (PSRs) for an operational nuclear power plant. The Guide is directed at both owners/operators and regulators. This Safety Guide deals with the PSR of an operational nuclear power plant. A PSR is a comprehensive safety review addressing all important aspects of safety, carried out at regular intervals. 22 refs, 4 figs

  7. Periodic Safety Review of Nuclear Power Plants: Experience of Member States

    2010-04-01

    Routine reviews of nuclear power plant operation (including modifications to hardware and procedures, operating experience, plant management and personnel competence) and special reviews following major events of safety significance are the primary means of safety verification. In addition, many Member States of the IAEA have initiated systematic safety reassessments, termed periodic safety reviews, of nuclear power plants, to assess the cumulative effects of plant ageing and plant modifications, operating experience, technical developments and siting aspects. The reviews include an assessment of plant design and operation against current safety standards and practices, and they have the objective of ensuring a high level of safety throughout the plant's operating lifetime. They are complementary to the routine and special safety reviews and do not replace them. Periodic safety reviews of nuclear power plants are considered an effective way to obtain an overall view of actual plant safety, and to determine reasonable and practical modifications that should be made in order to maintain a high level of safety. They can be used as a means of identifying time limiting features of the plant in order to determine nuclear power plant operation beyond the designed lifetime. The periodic safety review process can be used to support the decision making process for long term operation or licence renewal. Since 1994, the use of periodic safety reviews by Member States has substantially broadened and confirmed its benefits. Periodic safety review results have, for example, been used by some Member States to help provide a basis for continued operation beyond the current licence term, to communicate more effectively with stakeholders regarding nuclear power plant safety, and to help identify changes to plant operation that enhance safety. This IAEA-TECDOC is intended to assist Member States in the implementation of a periodic safety review. This publication complements the

  8. Fifth national report of Brazil for the nuclear safety convention

    2010-01-01

    This Fifth National Report is a new update to include relevant information for the period of 2007/2009. This document represents the national report prepared as a fulfillment of the Brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  9. Annual safety research report, JFY 2012

    2013-08-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had compiled 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (5 subjects and each subject having several research projects totaled 20), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 6), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). In addition to these 49 research projects of 18 subjects in 6 areas, JNES worked on 19 research projects of 7 subjects in added areas (specific research projects on of the disaster at Fukushima Daiichi NPP accident and other challenges JNES considered necessary) in JFY 2012. This annual safety research report summarized respective achievements and state of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2012 Edition as well as the situation of the reflection for the safety regulations, and also described 16 research projects of 4 subjects: examination for new safety regulation (8 research projects), development of newly necessary evaluation methods (one research project), evaluation of the validity for the work for convergence at Fukushima Daiichi NPP accident (4 research project) and horizontal development to other nuclear power plants (3 research projects), and 3 research projects of 3 subjects as other challenges. A list of JNES

  10. Annual report ''nuclear safety in France''

    2001-01-01

    This document is the 2001 annual report of the French authority of nuclear safety (ASN). It summarizes the highlights of the year 2000 and details the following aspects: the nuclear safety in France, the organization of the control of nuclear safety, the regulation relative to basic nuclear facilities, the control of facilities, the information of the public, the international relations, the organisation of emergencies, the radiation protection, the transport of radioactive materials, the radioactive wastes, the PWR reactors, the experimental reactors and other laboratories and facilities, the nuclear fuel cycle facilities, and the shutdown and dismantling of nuclear facilities. (J.S.)

  11. Nuclear Safety Project - annual report 1980

    1981-08-01

    The Annual Report 1980 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1980 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work completed, essential results, plans for the near future. (orig./RW) [de

  12. Health and Safety annual report 1993

    1994-01-01

    In the 1993 Health and Safety Report for BNFL, data showing improvements in radiological and conventional safety are given. Other aspects discussed are emergency planning, the level of incidents, occupational health services, litigation and the compensation scheme, the transport of radioactive materials, research covering transgenerational epidemiology, mortality and cancer studies, genetics and radiobiology, and dosimetry, and finally a summary of radioactive discharges and environmental data. (UK)

  13. Nuclear Safety Research Department annual report 2000

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E.

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  14. Program nuclear safety research: report 2000

    Muehl, B.

    2001-09-01

    The reactor safety R and D work of forschungszentrum karlsruhe (FZK) had been part of the nuclear safety research project (PSF) since 1990. In 2000, a new organisational structure was introduced and the Nuclear Safety Research Project was transferred into the nuclear safety research programme (NUKLEAR). In addition to the three traditional main topics - Light Water Reactor safety, Innovative systems, Studies related to the transmutation of actinides -, the new Programme NUKLEAR also covers Safety research related to final waste storage and Immobilisation of HAW. These new topics, however, will only be dealt with in the next annual report. Some tasks related to the traditional topics have been concluded and do no longer appear in the annual report; other tasks are new and are described for the first time. Numerous institutes of the research centre contribute to the work programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2001. (orig.)

  15. 26 CFR 301.6059-1 - Periodic report of actuary.

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Periodic report of actuary. 301.6059-1 Section...-1 Periodic report of actuary. (a) In general. The actuarial report described in this section must be... funding deficiency (as defined in section 412(a)) to zero, (4) A statement by the enrolled actuary signing...

  16. Central Safety Department. Annual report 1986

    Kiefer, H.; Koenig, L.A.

    1987-03-01

    The Safety Officer and the Security Officer are responsible for radiation protection and technical safety, both conventional and nuclear, for the physical protection as well as the safeguards of nuclear materials and radioactive substances within the Kernforschungszentrum Karlsruhe GmbH (KfK). To fulfill these functions they rely on the assistance of the Central Safety Department. The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The r+d work concentrates on the following aspects: physical and chemical behavior of biologically particularly active radionuclides, behavior of HT in the air/plant/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. The report gives details of the different duties, indicates the results of 1986 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  17. Saclay transparency and nuclear safety report 2009

    2006-01-01

    After a general presentation of the Saclay CEA Centre, this report presents the various safety arrangements in the different basic nuclear installations it possesses. These arrangements can be administrative, technical, or related to emergency situations or to inspections. It describes the organisation of radioprotection in the Saclay CEA Centre, indicates highlights for 2009, and gives results of dose measurements performed on the personnel. It reports significant events regarding nuclear safety and radioprotection in the various installations, gives and comments release measurements results and their impact on the environment (gaseous and liquid releases). It gives an overview of radioactive wastes stored in the different installations

  18. The Interagency Nuclear Safety Review Panel's Galileo safety evaluation report

    Nelson, R.C.; Gray, L.B.; Huff, D.A.

    1989-01-01

    The safety evaluation report (SER) for Galileo was prepared by the Interagency Nuclear Safety Review Panel (INSRP) coordinators in accordance with Presidential directive/National Security Council memorandum 25. The INSRP consists of three coordinators appointed by their respective agencies, the Department of Defense, the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA). These individuals are independent of the program being evaluated and depend on independent experts drawn from the national technical community to serve on the five INSRP subpanels. The Galileo SER is based on input provided by the NASA Galileo Program Office, review and assessment of the final safety analysis report prepared by the Office of Special Applications of the DOE under a memorandum of understanding between NASA and the DOE, as well as other related data and analyses. The SER was prepared for use by the agencies and the Office of Science and Technology Policy, Executive Office of the Present for use in their launch decision-making process. Although more than 20 nuclear-powered space missions have been previously reviewed via the INSRP process, the Galileo review constituted the first review of a nuclear power source associated with launch aboard the Space Transportation System

  19. Status of Ignalina's safety analysis reports

    Uspuras, E.

    1999-01-01

    Ignalina NPP is unique among RBMK type reactors in the scope and comprehensiveness of international studies which have been performed to verify its design parameters and analyze risk levels. International assistance took several forms, a very valuable mod of assistance utilized the knowledge of international experts in extensive international studies whose purpose was: collection, systematization and verification of plant design data; analysis of risk levels; recommendations leading to improvements in the safety lave; transfer of state of the art analytical methodology to Lithuanian specialists. The major large scale international studies include: probabilistic risk analysis; extensive international study meant to provide comprehensive overview of plant status with special emphasis on safety aspects; an extensive review of the Safety Analysis Report by an independent group of international experts. In spite of the safety improvements and analyses which have been performed at the Ignalina NPP, much remains to be done in the nearest future

  20. Health and safety annual report 1988

    1989-01-01

    This report on health and safety provides a review of the impact of the Comapny's activities on its workforce, the public and the environment. New sections include safety auditing, emergency planning and health and safety research. BNFL operates five sites in north west England and southern Scotland. The head office and Engineering Design Centre is at Risley, near Warrington. Fuel is manufactured at Springfields near Preston, uranium is enriched for modern nuclear power stations at Capenhurst near Chester and spent fuel is reprocessed at Sellafield. BNFL also operate Calder Hall (Sellafield) and Chapelcross (Scotland) power stations and a disposal site for low-level radioactive wastes at Drigg near Sellafield. Radiation sources and BNFL's radioactive discharge are first explained generally and then specifically for each BNFL site. Industrial and radiological safety within BNFL are described. (UK)

  1. The NASA Aviation Safety Reporting System

    1983-01-01

    This is the fourteenth in a series of reports based on safety-related incidents submitted to the NASA Aviation Safety Reporting System by pilots, controllers, and, occasionally, other participants in the National Aviation System (refs. 1-13). ASRS operates under a memorandum of agreement between the National Aviation and Space Administration and the Federal Aviation Administration. The report contains, first, a special study prepared by the ASRS Office Staff, of pilot- and controller-submitted reports related to the perceived operation of the ATC system since the 1981 walkout of the controllers' labor organization. Next is a research paper analyzing incidents occurring while single-pilot crews were conducting IFR flights. A third section presents a selection of Alert Bulletins issued by ASRS, with the responses they have elicited from FAA and others concerned. Finally, the report contains a list of publications produced by ASRS with instructions for obtaining them.

  2. Safety culture in design. Final report

    Macchi, L.; Pietikaeinen, E.; Liinasuo, M.; Savioja, P.; Reiman, T.; Wahlstroem, M.; Kahlbom, U.; Rollenhagen, C.

    2013-04-01

    In this report we approach design from a safety culture approach As this research area is new and understudied, we take a wide scope on the issue. Different theoretical perspectives that can be taken when improving safety of the design process are considered in this report. We suggest that in the design context the concept of safety culture should be expanded from an organizational level to the level of the network of organizations involved in the design activity. The implication of approaching the design process from a safety culture perspective are discussed and the results of the empirical part of the research are presented. In the interview study in Finland and Sweden we identified challenges and opportunities in the design process from safety culture perspective. Also, a small part of the interview study concentrated on state of the art human factors engineering (HFE) practices in Finland and the results relating to that are presented. This report provide a basis for future development of systematic good design practices and for providing guidelines that can lead to safe and robust technical solutions. (Author)

  3. Safety culture in design. Final report

    Macchi, L.; Pietikaeinen, E.; Liinasuo, M.; Savioja, P.; Reiman, T.; Wahlstroem, M. [VTT Technical Research Centre of Finland, Espoo (Finland); Kahlbom, U. [Risk Pilot AB, Stockholm (Sweden); Rollenhagen, C. [Vattenfall, Stockholm, (Sweden)

    2013-04-15

    In this report we approach design from a safety culture approach As this research area is new and understudied, we take a wide scope on the issue. Different theoretical perspectives that can be taken when improving safety of the design process are considered in this report. We suggest that in the design context the concept of safety culture should be expanded from an organizational level to the level of the network of organizations involved in the design activity. The implication of approaching the design process from a safety culture perspective are discussed and the results of the empirical part of the research are presented. In the interview study in Finland and Sweden we identified challenges and opportunities in the design process from safety culture perspective. Also, a small part of the interview study concentrated on state of the art human factors engineering (HFE) practices in Finland and the results relating to that are presented. This report provide a basis for future development of systematic good design practices and for providing guidelines that can lead to safe and robust technical solutions. (Author)

  4. Characterization report for the ferrocyanide safety issue

    Pulsipher, B.A.; Burger, L.L.; Liebetrau, A.M.; Scheele, R.D.

    1997-06-01

    Recently PNNL was tasked by DOE to develop and demonstrate a risk-based strategic approach to characterizing Hanford's Nuclear Waste Tanks. This strategic approach was documented in a report entitled ''A Risk-Based Focused Decision-Management Approach for Justifying Characterization of Hanford Tank Waste''. In support of the general approach, a specific strategy for addressing each of the several safety issues associated with the tanks was developed. This report documents the approach for the Ferrocyanide Safety Issue. The purpose of this report is to describe a structured logic diagram (SLD) for determining the risk associated with the ferrocyanide tank safety issue and provide the supporting information for the SLD. The SLD addresses the resolution of risks resulting from the presence of ferrocyanide layers within the Hanford tanks. The informational requirements for determining risk from any reaction stemming from ferrocyanide are outlined in the SLD. This report will describe the potential paths to a successful resolution of the ferrocyanide safety issue. Complete development of the intervention pathway is outside the scope of this current activity. General descriptions of the approach, key components of the SLD, and conclusions are provided in the body of this report. The complete SLD, descriptions of each box shown in the SLD, a discussion on how to fill data needs, and a list of contributors is provided in the appendices

  5. Central Safety Department, annual report 1987

    Kiefer, H.; Koenig, L.A.

    1988-02-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The r+d work concentrates on the following aspects: physical and chemical behaviour of biologically particularly active radionuclides, behaviour of HT in the air/plan/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1987 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig./HP) [de

  6. Safety report on WWR-S reactor

    Horyna, J.; Kaisler, L.; Listik, E.

    1981-04-01

    The present Safety Report of the WWR-S reactor summarizes findings obtained during the trial and partially also permanent operation of the reactor after two stages of its reconstruction implemented between 1974 and 1976. Most data are presented necessary for assessing probable risks of possible accident conditions whose consequences pose health hazards to individuals of the population, radiation personnel and the facilities themselves. Attention is devoted to the description of the locality, to components and systems, heat removal from the core, design aspects, the quality of new and old parts of the technological circuits, the systems of protection and control, the emergency core cooling system, the problems of radiation safety, and to the safety analyses of the abnormal states envisaged. The Report was compiled with regard to IAEA and CMEA recommendations concerning safe operation of research reactors and to the recommendations and binding decisions of the Czechoslovak Atomic Energy Commission. (author)

  7. 76 FR 12300 - Safety Management System for Certificated Airports; Extension of Comment Period

    2011-03-07

    ...-0997; Notice No. 10-14] RIN 2120-AJ38 Safety Management System for Certificated Airports; Extension of...: Background On October 7, 2010, the FAA published Notice No. 10-14, entitled ``Safety Management System for... conclusions from the safety management systems proof of concept. The FAA anticipates making this report...

  8. An approach for Periodic Safety Review (PSR) of units 5 and 6 of Kozloduy NPP

    Kichev, Emil

    2014-01-01

    Periodic Safety Reviews (PSR) is complementary to the routine and special safety reviews and does not replaced them. It determines the level of compliance with current safety requirements and covers all safety aspects of NPP operation and all equipment (SSCs) on site. Three levels of importance are defined for the documents in PSR (towards higher conservatism): Bulgarian documents; IAEA documents; Documents of manufactures and suppliers of the equipment (SSCs). The scope and activities consists of four stages and includes 14 safety factors (SF). Cooperation with external companies and organizations in areas with proved experience is used.

  9. Periodic Safety Review in Interim Storage Facilities - Current Regulation and Experiences in Germany

    Neles, Julia Mareike; Schmidt, Gerhard

    2014-01-01

    Periodic safety reviews in nuclear power plants in Germany have been performed since the end of the 1980's as an indirect follow-up of the accident in Chernobyl and, in the meantime, are formally required by law. During this process the guidelines governing this review were developed in stages and reached their final form in 1996. Interim storage facilities and other nuclear facilities at that time were not included, so the guidelines were solely focused on the specific safety issues of nuclear power plants. Following IAEA's recommendations, the Western European Nuclear Regulator Association (WENRA) introduced PSRs in its safety reference levels for storage facilities (current version in WGWD report 2.1 as of Feb 2011: SRLs 59 - 61). Based on these formulations, Germany improved its regulation in 2010 with a recommendation of the Nuclear Waste Management Commission (Entsorgungskommission, ESK), an expert advisory commission for the federal regulatory body BMU. The ESK formulated these detailed requirements in the 'ESK recommendation for guides to the performance of periodic safety reviews for interim storage facilities for irradiated fuel elements and heat-generating radioactive waste'. Before finalization of the guideline a test phase was introduced, aimed to test the new regulation in practice and to later include the lessons learned in the final formulation of the guideline. The two-year test phase started in October 2011 in which the performance of a PSR will be tested at two selected interim storage facilities. Currently these recommendations are discussed with interested/concerned institutions. The results of the test phase shall be considered for improvements of the draft and during the final preparation of guidelines. Currently the PSR for the first ISF is in an advanced stage, the second facility just started the process. Preliminary conclusions from the test phase show that the implementation of the draft guideline requires interpretation. The aim of a

  10. 1982 annual status report: reactor safety

    1982-01-01

    This report presents the projects of the Reactor Safety Program at the JRC: 1) Reliability and risk evolution; 2) LWR loss of coolant accident studies; 3) Primary system integrity; 4) LMFBR core accident initiation and transition phase; and, 5) LMFBR accident post disassembly phase

  11. report transparency and nuclear safety 2007- CISBIO

    2007-01-01

    This report presents the activities of CISBIO, nuclear base installation, for the year 2007. CISBIO realizes at Saclay most of the radiopharmaceuticals and drugs distributed in France for the nuclear medicine. The actions concerning the safety, the radiation protection, the significant events, the release control and the environmental impacts and the wastes stored on the center are discussed. (A.L.B.)

  12. Preliminary safety analysis report for the TFTR

    Lind, K.E.; Levine, J.D.; Howe, H.J.

    A Preliminary Safety Analysis Report has been prepared for the Tokamak Fusion Test Reactor. No accident scenarios have been identified which would result in exposures to on-site personnel or the general public in excess of the guidelines defined for the project by DOE

  13. Bus safety study : a report to Congress.

    2013-11-01

    Section 20021(b) of the Moving Ahead for Progress for the 21st Century (MAP-21) legislation requires the Secretary of Transportation : to submit a report of the results of a Bus Safety Study to the Committee on Banking, Housing, and Urban Affai...

  14. Health and safety annual report 1989

    1989-01-01

    This 1989 annual report on Health and Safety in BNFL is intended to give the public a general review of the impact of the Company's activities on its workforce, the public and the environment. The activities at Sellafield, Springfields, Chapelcross, Drigg and Capenhurst are outlined, together with sections on medical services and transport, and radiation monitoring of workforce and the environment. (author)

  15. EURISOL MERCURY TARGET EXPERIMENT: CERN SAFETY REPORT

    J. Gulley (CERN SC/GS)

    Report on a visit to the mercury-handling lab at IPUL. The aim was to provide recommendations to IPUL on general health and safety issues relatring to the handling of mercury, the objective being to reduce exposure to acceptable levels, so far as is reasonably practical.

  16. Identification of potentially emerging food safety issues by analysis of reports published by the European Community's Rapid Alert System for Food and Feed (RASFF) during a four-year period

    Kleter, G.A.; Prandini, A.; Filippi, L.; Marvin, H.J.P.

    2009-01-01

    The SAFE FOODS project undertakes to design a new approach towards the early identification of emerging food safety hazards. This study explored the utility of notifications filed through RASFF, the European Commission¿s Rapid Alert System for Food and Feed, to identify emerging trends in food

  17. Human Factors Evaluation of Procedures for Periodic Safety Review of Yonggwang Unit no. 1, 2

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang (and others)

    2006-01-15

    This report describes the results of human factors assessment on the plant operating procedures as part of Periodic Safety Review(PSR) of Yonggwang Nuclear Power Plant Unit no. 1, 2. The suitability of item and appropriateness of format and structure in the key operating procedures of nuclear power plants were investigated by the review of plant operating experiences and procedure documents, field survey, and experimental assessment on some part of procedures. A checklist was used to perform this assessment and record the review results. The reviewed procedures include EOP(Emergency Operating Procedures), GOP(General Operating Procedures), AOP(Abnormal Operating Procedures), and management procedures of some technical departments. As results of the assessments, any significant problem challenging the safety was not found on the human factors in the operating procedures. However, several small items to be changed and improved were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on the operating procedure.

  18. Annual Report 1979 of the Safety Department

    Kiefer, H.; Koelzer, W.; Koenig, L.A.

    1980-04-01

    The Safety Officer and the Security Officer, respectively, are responsible for radiation protection and technical safety, both conventional and nuclear, for the physical protection as well as the security of nuclear materials and radioactive substances within the Kernforschungszentrum Karlsruhe GmbH. (KfK). To fulfill these functions they rely on the assistance of the Safety Department. The duties of this Department cover tasks relative to radiation protection, safety and security on behalf of the institutes and departments of KfK and environmental monitoring for the whole Karlsruhe Nuclear Research Center as well as research and development work, mainly performed under the Nuclear Safety Project and the Nuclear Safeguards Project. The centers of interest of r and d activities are: investigation of the atmospheric diffusion of nuclear pollutants on the micro- and meso-scales, evaluation of the radiological consequences of accidents in reactors under probabilistic aspects, studies of the physical and chemical behavior of radionuclides with particularly high biological effectiveness in the environment, implemantation of nuclear fuel safeguarding systems, improvements in radiation protection measurement technology. This report gives details of the different duties, indicates the results of 1979 routine tasks, and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  19. 1978 annual report of the safety department

    Kiefer, H.; Koelzer, W.

    1979-04-01

    The Safety Officer and the Security Officer, respectively, are responsible for radiation protection and technical safety, both conventional and nuclear, for the physical protection as well as the security of nuclear materials and radioactive substances within the Kernforschungszentrum Karlsruhe GmbH. (KfK). To fulfill these functions they rely on the assitance of the Safety Department. The duties of this Department cover tasks relative to radiation protection, safety and security on behalf of the institutes and departments of KfK and environmental monitoring for the whole Karlsruhe Nuclear Research Center as well as research and development work, mainly performed under the Nuclear Safety Project and the Nuclear Safeguards Project. The centers of interest of r and d activities are: investigation of the atmospheric diffusion of nuclear pollutants on the micro- and meso-scales, evaluation of the radiological consequences of accidents in reactors under probabilistic aspects, studies of the physical and chemical behavior of radionuclides with particularly high biological effectiveness in the environment, implementation of nuclear fuel safequarding systems, improvements in radiation protection measurement technology. This report gives details of the different duties, indicates the results of 1978 routine tasks, and reports about new results of investigations and developments of the working groups of the Department. (orig.) [de

  20. Fusion Safety Program. Annual report, FY 1982

    Crocker, J.G.; Cohen, S.

    1983-07-01

    The Fusion Safety Program major activities for Fiscal Year 1982 are summarized in this report. The program was started in FY-79, with the Idaho National Engineering Laboratory (INEL) designated as lead laboratory and EG and G Idaho, Inc., named as prime contractor to implement this role. The report contains four sections: EG and G Idaho, Inc., Activities at INEL includes major portions of papers dealing with ongoing work in tritium implantation experiments, tritium risk assessment, transient code development, heat transfer and fluid flow analysis, and high temperature oxidation and mobilization of structural material experiments. The section Outside Contracts includes studies of superconducting magnet safety conducted by Argonne National Laboratory, experiments concerning superconductor safety issues performed by the Francis Bitter Magnet Laboratory of the Massachusetts Institute of Technology (MIT) to verify analytical work, a continuation of safety and environmental studies by MIT, a summary of lithium safety experiments at Hanford Engineering Development Laboratory, and the results of tritium gas conversion to oxide experiments at Oak Ridge National Laboratory. A List of Publications and Proposed FY-83 Activities are also presented

  1. Waste Isolation Pilot Plant Safety Analysis Report

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  2. Waste Isolation Pilot Plant Safety Analysis Report

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  3. 12 CFR 563g.18 - Current and periodic reports.

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Current and periodic reports. 563g.18 Section 563g.18 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY SECURITIES OFFERINGS § 563g.18 Current and periodic reports. (a) Each savings association which files an offering circular...

  4. Safety administration division business report. The first quarter of 2002

    Ishibashi, Takashi

    2002-09-01

    The business of the Safety administration Division became a wide range such as the management of a labor safety health, the crisis management, the security and the management of an entrance, and the business of the following concerning the Tokai Works, the protection of nuclear materials, the business of the sanction, the nuclear material safeguards, the transport of nuclear materials and the business of a quality assurance. For the purpose of summarizing these businesses and utilizing the data concerning the businesses, the report about the businesses achievement has been periodically drawn up as quarter news since 2001, when the Safety Administration Division was established. This report describes about the business achievement of the first quarter news from April to June in 2002. (author)

  5. Safety administration division business report. The second quarter of 2001

    Kanamori, Masashi

    2001-12-01

    The business of the Safety administration Division became a wide range such as the management of a labor safety health, the crisis management, the security and the management of an entrance, and the business of the following concerning the Tokai Works, the protection of nuclear materials, the business of the sanction, the nuclear material safeguards, the transport of nuclear materials and the business of a quality assurance. For the purpose of summarizing these business and utilizing the data concerning the businesses, the report about the businesses achievement has been periodically drawn up as quarter news since 2001, when the Safety Administration Division was established. This report describes about the business achievement of the second quarter news from July to September in 2001. (author)

  6. 49 CFR 385.333 - What happens at the end of the 18-month safety monitoring period?

    2010-10-01

    ... SAFETY REGULATIONS SAFETY FITNESS PROCEDURES New Entrant Safety Assurance Program § 385.333 What happens at the end of the 18-month safety monitoring period? (a) If a safety audit has been performed within... the same basis as any other carrier. (d) If a safety audit or compliance review has not been performed...

  7. Safety as experienced by patients themselves: a Finnish survey of the most recent period of care.

    Sahlström, Merja; Partanen, Pirjo; Turunen, Hannele

    2014-06-01

    We examined patients' experiences of patient safety and participation in promoting safe care during their most recent care period. A survey of patients (N = 175) revealed that treatment, medication, and device safety were mostly experienced as very good or excellent, but responses varied by age and experience. Patients ages 66-75 were most critical of treatment and medication safety. Device safety was rated the worst aspect of safety. Twenty percent of respondents had experienced errors at some time during their care. Patients who had experienced errors and those who were treated at inpatient wards versus a day surgery unit were most critical towards patient participation. Open and transparent error management involving patients is needed to promote treatment, medication, and especially device safety. © 2014 Wiley Periodicals, Inc.

  8. Technical Issues and Proposes on the Legislation of Probabilistic Safety Assessment in Periodic Safety Review

    Hwang, Seok-Won; Jeon, Ho-Jun; Na, Jang-Hwan

    2015-01-01

    Korean Nuclear Power Plants have performed a comprehensive safety assessment reflecting design and procedure changes and using the latest technology every 10 years. In Korea, safety factors of PSR are revised to 14 by revision of IAEA Safety Guidelines in 2003. In the revised safety guidelines, safety analysis field was subdivided into deterministic safety analysis, PSA (Probabilistic safety analysis), and hazard analysis. The purpose to examine PSA as a safety factor on PSR is to make sure that PSA results and assumptions reflect the latest state of NPPs, validate the level of computer codes and analytical models, and evaluate the adequacy of PSA instructions. In addition, its purpose is to derive the plant design change, operating experience of other plants and safety enhancement items as well. In Korea, PSA is introduced as a new factor. Thus, the overall guideline development and long-term implementation strategy are needed. Today in Korea, full-power PSA model revision and low-power and shutdown (LPSD) PSA model development is being performed as a part of the post Fukushima action items for operating plants. The scope of the full-power PSA is internal/external level 1, 2 PSA. But in case of fire PSA, the scope is level 1 PSA using new method, NUREG/CR-6850. In case of LPSD PSA, level 1 PSA for all operating plants, and level 2 PSA for 2 demonstration plants are under development. The result of the LPSD PSA will be used as major input data for plant specific SAMG (Severe Accident Management Guideline). The scope of PSA currently being developed in Korea cannot fulfill 'All Mode, All Scope' requirements recommended in the IAEA Safety Guidelines. Besides the legislation of PSA, step-by-step development strategy for non-performed scopes such as level 3 PSA and new fire PSA is one of the urgent issues in Korea. This paper suggests technical issues and development strategies for each PSA technical elements.

  9. IRSN - Annual Report 2013. Financial Report 2013. Enhancing nuclear safety

    Schuler, Matthieu; Marchal, Valerie; Albert, Marc-Gerard; Aurelle, Jacques; Bigot, Marie-Pierre; Bruna, Giovanni; Charron, Sylvie; Clavelle, Stephanie; Cousinou, Patrick; Deschamps, Patrice; Delattre, Aleth; Demeillers, Didier; Dumas, Agnes; Franquard, Dominique; Laloi, Patrick; Lorthioir, Stephane; Monti, Pascale; Rollinger, Francois; Rouyer, Veronique; Rutschkovsky, Nathalie; Scott De Martinville, Edouard; Tharaud, Christine; Verpeaux, Jean-Luc; Jaunet, Camille; Hedouin, Jean-Christophe; Pascal-Heuze, Charlotte

    2014-03-01

    IRSN, a public entity with industrial and commercial activities, is placed under the joint authority of the Ministries of Defense, Environment, Industry, Research, and Health. It is the nation's public service expert in nuclear and radiation risks, and its activities cover all the related scientific and technical issues. Its areas of specialization include the environment and radiological emergency response, human radiation protection in both a medical and professional capacity, and in both normal and post-accident situations, the prevention of major accidents, nuclear reactor safety, as well as safety in nuclear plants and laboratories, transport and waste treatment, and nuclear defense and security expertise. IRSN interacts with all parties concerned by these risks (public authorities, in particular nuclear safety and security authorities, local authorities, companies, research organizations, stakeholders' associations, etc.) to contribute to public policy issues relating to nuclear safety, human and environmental protection against ionizing radiation, and the protection of nuclear materials, facilities, and transport against the risk of malicious acts. This document is the 2013 issue of IRSN's activity report. Content: 1 - Organization, key figures; 2 - Strategy: Progress and main activities in 2013, Transparency and communications policy, Promoting a safety and radiation protection culture; 3 - Activities: Safety (Safety of existing facilities, Studies and researches, About defense, Conducting assessments of future facilities); Nuclear security and non-proliferation (Nuclear security activities, International non-proliferation controls); Radiation protection - environment and human health (Environmental and population exposure, Radiation protection in the workplace, Effects of chronic exposure, Protection in health care); Emergency and post-accident situations efficiency; 4 - Efficiency: Health, safety, environmental, protection and quality, Human resources

  10. Nuclear Safety Project. Annual report 1986

    1987-09-01

    The annual report 1986 is a detailed description of work within the Nuclear Safety Project performed in 1986 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes individual research activities on dynamic loads and strains of reactor components under accident conditions, fuel behaviour under accident conditions, investigation and control of LWR core-meltdown accidents, improvement of fission product retention and reduction of radiation exposure, and on behaviour, impact and removal of released pollutants. (DG)

  11. Environment, safety, and health manual, closeout report

    1975-12-01

    A coordination draft of the Environment, Safety, and Health (ES and H) manual was submitted on 2 September 1975. Comments provided by Operational Safety personnel were being incorporated by a task team when the effort was terminated on 31 October 1975. This report documents the development history of the manual and provides a status of the manual up to the time the efforts were discontinued. Also discussed are issues which effect completion of the manual. Additionally a plan for completion of the manual is suggested

  12. Nuclear Safety Research Department annual report 2000

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  13. 76 FR 40648 - Safety Enhancements Part 139, Certification of Airports; Reopening of Comment Period

    2011-07-11

    ... that was published on February 1, 2011. In that document, the FAA proposed several safety enhancements...-0247; Notice No. 11-01] RIN 2120-AJ70 Safety Enhancements Part 139, Certification of Airports... comment period for the NPRM published on February 1, 2011 (76 FR 5510) and reopened (76 FR 20570) April 13...

  14. Institute for Safety Research. Annual report 1992

    Weiss, F.P.; Boehmert, J.

    1993-11-01

    The Institute is concerned with evaluating the design based safety and increasing the operational safety of technical systems which include serious sources of danger. It is further occupied with methods of mitigating the effects of incidents and accidents. For all these goals the institute does research work in the following fields: modelling and simulation of thermofluid dynamics and neutron kinetics in cases of accidents; two-phase measuring techniques; safety-related analyses and characterizing of mechanical behaviours of material; measurements and calculations of radiation fields; process and plant diagnostics; development and application of methods of decision analysis. This annual report gives a survey of projects and scientific contributions (e.g. Single rod burst tests with ZrNb1 cladding), lists publications, institute seminars and workshops, names the personal staff and describes the organizational structure. (orig./HP)

  15. Regulatory Aspect of Periodic Safety Review Performed in Nuclear Power Plants in the Slovak Republic

    Baszo, Z.

    2010-01-01

    The paper deals with the regulatory aspect of Nuclear Power Plant (NPP) Periodic Safety Review (PSR) as a part of license renewal process in the Slovak Republic. It summarizes the history of activities similar to PSR performed in the past for NPPs operated in the Slovak Republic. Furthermore, it describes both the requirements involved in the current Slovak legislation to be met by licensee in the Slovak Republic in this field and the procedures concerning the PSR as well. The objective and rules of PSR to be performed for NPPs in the Slovak Republic were derived from the internationally accepted International Atomic Energy Agency (IAEA) document and have been implemented into national legislation. PSR of two twin units located in Bohunice NPP and Mochovce NPP, respectively, has been initiated in the Slovak Republic based on evaluation of each area to be reviewed (safety factors) using recent methodology and practice. Other significant factors, such as ageing, modifications of NPP and the safe operation for a specified future period, have to be assessed in the frame of PSR. Report on performed PSR outlines the results of review for each area, the corrective plan, which considering mutual relations between assessed areas specifies the issues to be solved with the aim to eliminate shortcomings identified in the frame of PSR and to adopt safety improvements. The findings from PSR in the evaluated areas also serve as a source of information for updating of all documents to be attached to the written application of licensee for renewal of a nuclear power plant operating license. The presented procedure describes how the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) has reviewed the documents submitted during PSR. Based on results of submitted documents evaluation and licensee application for license renewal the license for next 10 years operation has been issued for Bohunice NPP. At present, similar procedure for Mochovce NPP unit 1 and 2 is underway.(author).

  16. Integrated safety assessment report, Haddam Neck Plant (Docket No. 50-213): Integrated Safety Assessment Program: Draft report

    1987-07-01

    The integrated assessment is conducted on a plant-specific basis to evaluate all licensing actions, licensee initiated plant improvements and selected unresolved generic/safety issues to establish implementation schedules for each item. Procedures allow for a periodic updating of the schedules to account for licensing issues that arise in the future. The Haddam Neck Plant is one of two plants being reviewed under the pilot program. This report indicates how 82 topics selected for review were addressed, and presents the staff's recommendations regarding the corrective actions to resolve the 82 topics and other actions to enhance plant safety. 135 refs., 4 figs., 5 tabs

  17. Safety Analysis Report for Ignalina NPP

    Negrivoda, G.

    1997-01-01

    In December 1994 an agreement was signed between the European Bank for Reconstruction and Development and the Republic of Lithuania for the grant of 32.86 MECU for the safety Improvement at Ignalina NPP. One of the conditions for the provision of the grant, was a requirement for an in-depth analysis of the safety level at Ignalina NPP in the scope and according to the standards acceptable for a western nuclear power plant, and to publish a Safety Analysis Report (SAR). The report should investigate and analyze any factor that could limit a safe operation of the plant, and provide recommendations for actual safety improvements. According to the agreement, Lithuania had to finalize the SAR until 31 December, 1995. The bank has also organized and financed investigation of safety at Ignalina NPP and preparation of the SAR. EBRD made an agreement with Sweden's Vattenfall, which subcontracted well-known companies from Canada, USA, Germany, etc., and also the Russian Research and Development Institute of Power Engineering (NIKIET), reactor designer of Ignalina NPP. The SAR is a very comprehensive document and contains about 8000 pages of text, diagrams and tables. The main findings of the SAR are provided in the article. A large number of discrepancies with modern rules and western practices was detected, but they were not proved to be serious enough to require reactors shutdown. Based on the recommendations of the SAR Ignalina NPP has worked out Safety Improvement Program No. 2 (SIP-2), which is planned for three years and will cost 486 MLT. (author)

  18. Probabilistic safety goals. Phase 3 - Status report

    Holmberg, J.-E. (VTT (Finland)); Knochenhauer, M. (Relcon Scandpower AB, Sundbyberg (Sweden))

    2009-07-15

    The first phase of the project (2006) described the status, concepts and history of probabilistic safety goals for nuclear power plants. The second and third phases (2007-2008) have provided guidance related to the resolution of some of the problems identified, and resulted in a common understanding regarding the definition of safety goals. The basic aim of phase 3 (2009) has been to increase the scope and level of detail of the project, and to start preparations of a guidance document. Based on the conclusions from the previous project phases, the following issues have been covered: 1) Extension of international overview. Analysis of results from the questionnaire performed within the ongoing OECD/NEA WGRISK activity on probabilistic safety criteria, including participation in the preparation of the working report for OECD/NEA/WGRISK (to be finalised in phase 4). 2) Use of subsidiary criteria and relations between these (to be finalised in phase 4). 3) Numerical criteria when using probabilistic analyses in support of deterministic safety analysis (to be finalised in phase 4). 4) Guidance for the formulation, application and interpretation of probabilistic safety criteria (to be finalised in phase 4). (LN)

  19. Probabilistic safety goals. Phase 3 - Status report

    Holmberg, J.-E.; Knochenhauer, M.

    2009-07-01

    The first phase of the project (2006) described the status, concepts and history of probabilistic safety goals for nuclear power plants. The second and third phases (2007-2008) have provided guidance related to the resolution of some of the problems identified, and resulted in a common understanding regarding the definition of safety goals. The basic aim of phase 3 (2009) has been to increase the scope and level of detail of the project, and to start preparations of a guidance document. Based on the conclusions from the previous project phases, the following issues have been covered: 1) Extension of international overview. Analysis of results from the questionnaire performed within the ongoing OECD/NEA WGRISK activity on probabilistic safety criteria, including participation in the preparation of the working report for OECD/NEA/WGRISK (to be finalised in phase 4). 2) Use of subsidiary criteria and relations between these (to be finalised in phase 4). 3) Numerical criteria when using probabilistic analyses in support of deterministic safety analysis (to be finalised in phase 4). 4) Guidance for the formulation, application and interpretation of probabilistic safety criteria (to be finalised in phase 4). (LN)

  20. Safety first. Status reports on the IAEA's safety standards

    Webb, G.; Karbassioun, A.; Linsley, G.; Rawl, R.

    1998-01-01

    Documents in the IAEA's Safety Standards Series known as RASS (Radiation Safety Standards) are produced to develop an internally consistent set of regulatory-style publications that reflects an international consensus on the principles of radiation protection and safety and their application through regulation. In this article are briefly presented the Agency's programmes on Nuclear Safety Standards (NUSS), Radioactive Waste Safety Standards (RADWASS), and Safe Transport of Radioactive Materials

  1. Draft pilot report - Approaches to the resolution of safety issues

    2006-01-01

    The purpose of this report is to present in a concise form how some safety matters associated with currently operating light water reactors have been addressed. The issues discussed in this report are common to member countries with currently operating LWRs (PWR, BWR, VVER) and, as such, have wide interest in the nuclear safety community. Accordingly, this report can serve as a reference for researchers, regulations and others (e.g., industry) interested in understanding the approach and status of issues. This report should also be useful for knowledge transfer by documenting what has been done or is planned regarding selected safety matters and as a source for identifying reference material containing additional detail. The issues addressed in this report should not be viewed as questioning the safety of operating reactors, which have reached very high operational safety record, but rather as areas where uncertainty in knowledge exists, where safety assessment has been based on conservative assumptions, and where regulatory decisions need, or will need to be confirmed. Thus, the development of sound technical bases through continuing research will improve the current knowledge and allow for more realistic safety assessment. The safety issues discussed in this initial version of the report are: - design basis accident spectrum; - severe accident issues; - reactor pressure vessel integrity; - hydrogen control; - containment integrity; - accident management; - station blackout; - high burnup fuel; - power up-rates; - ECCS strainer clogging; - boron dilution. For each issue, the scope of the issue is defined, its status discussed and planned work or research described, including schedule. This pilot version of the report is limited to input from nine countries (Belgium, Czech Republic, Finland, France, Germany, Japan, Korea, Sweden and the U.S.). An overview of this information for each issue by country is provided in the table. This document does not contain a

  2. Results of evaluation of periodic safety review for No. 1 plant in Mihama Power Station, Kansai Electric Power Co., Inc

    1994-01-01

    No. 1 plant in Mihama Power Station started the commercial power generation in November, 1970, and has continued the operation for more than 23 years. During this period, the counter measures to troubles, periodic inspections and the maintenance by the electric power company have been carried out. These states of No. 1 plant in Mihama Power Station for more than 23 years are to be recollected from the view-points of the comprehensive evaluation of operation experiences and the reflection of latest technological knowledge, and the safety and reliability are to be further improved in the periodic safety review. Agency of Natural Resources and Energy evaluated the report of the periodic safety review for No. 1 plant in Mihama Power Station made by Kansai Electric Power Co., and summarized the results. The course of the evaluation of the report is shown. The facility utilization factor is 43.3% on the average of about 23 years, but in the last 10 years, it was improved to 69.4%. In the last five years, the rate of occurrence of unexpected shutoff was 0.6 times/year. These are the results of preventive maintenance and the improvement of the facilities and operation management. Operation management, maintenance management, fuel management, radiation control, and radioactive waste management have been carried out properly. The work plan for preventing disasters was established, and the experience of troubles and the latest technological knowledge were well reflected to improve the safety. (K.I.)

  3. Fuel performance annual report, period through December 1978

    Houston, M.D.

    1979-12-01

    This annual report, intended to be the first in a series, provides a brief description of fuel performance in commercial nuclear power plants. Brief summaries are given for the reporting period of on-site fuel surveillance programs, fuel performance problems, and changes in commercial fuel designs. The report provides many references to more detailed information and to related NRC evaluations. 57 references

  4. Revision of AESJ standard 'the code of implemnetation of periodic safety review of nuclear power plants'

    Hirano, Masashi; Narumiya, Yoshiyuki

    2010-01-01

    The Periodic Safety Review (PSR) was launched in June 1992, when the Agency for Natural Resources and Energy issued a notification that required licensees to conduct comprehensive review on the safety of each existing nuclear power plant (NPP) once approximately every ten years based on the latest technical findings for the purpose of improving the safety of the NPP. In 2006, the Standard Committee of the Atomic Energy Society of Japan established the first version of 'The Standard of Implementation for Periodic Safety Review of Nuclear Power Plants: 2006'. Taking into account developments in safety regulation of PSR after the issuance of the first version, the Standard Committee has revised the Standard. This paper summarizes background on PSR, such developments are major contents of the Standard as well as the focal points of the revision. (author)

  5. Enhancing nuclear safety. Annual report 2014. Financial report 2014

    2015-01-01

    After some introductory texts proposed by several IRSN head managers, and a brief presentation of some key data illustrating the activity, the annual report presents the main strategic orientations, notably in the field of knowledge management, and of information and communication. After some images illustrating the past year, activities are presented. They first deal with safety: Reactor safety (operating experience feedback), From decommissioning old reactors to designing those of the future, Safety of laboratories and plants, Safety regarding risks due to infrastructure near nuclear facilities, Reactor aging, Fuel: research on corrosion and deformation, Research and assessments for improved understanding of accident situations, Earthquakes: research and assessments, About defense, Geological disposal of radioactive waste. They secondly deal with security and non-proliferation (nuclear security, nuclear non-proliferation, chemical weapon ban), thirdly with radiation protection for human and environment health (environment monitoring, radionuclide transfer in the environment, radon and polluted sites, human exposure, radiation protection in the workplace, effects of low-dose chronic exposures, Organization of radiation protection at the European level, protection in health care), and fourthly with emergency and post-accident situations (emergency and post-accident preparedness and response, Emergency response tools). The next part of the activity report addresses issues related to efficiency: Real estate program (construction projects get started), Hygiene, safety, social responsibility, Human resources, Organization chart, Board of directors, Steering committee for the nuclear defense expertise Division - CODEND, Scientific council, Ethics commission composition, Nuclear safety and radiation protection Research policy committee - COR. The financial report proposes a management report, financial statements with an appendix to annual accounts, and an auditor

  6. Revision of nuclear power plants safety systems' routine testing assigned periodicity during the design extension period

    Skalozubov, V.I.; Kozlov, Yi.L.; Chulkyin, O.O.

    2017-01-01

    When nuclear power plants safety systems thermal equipment operation extending, a necessary requirement shall rely on revising the scheduled equipment tests frequency to optimize those tests schedule taking into account the equipment remained lifespan. On the one hand, there exists a need for tests frequency increase to detect ''hidden'' failures, and on the another, frequent tests cause a premature wear of the equipment. Proposed is an original method for optimizing the frequency of NPPs safety systems thermal engineering equipment testing. Essential in the proposed method is the optimization criterion chosen: index of security system failure probability non-exceedance during the beyond-design operating period as referred to the failure probability expected considering the equipment residual resource during the design operating period. The developed method implementation when applied to NPPs safety systems operated beyond the design service life at nuclear power plants with WWER-1000 series reactors, allowed to establish that the optimal tests frequency makes half the designed one when the equipment service life is extended by five years and three times less that the designed frequency when subject lifespan extended by 10 years.

  7. Progress report within the series of GRS-F progress reports on reactor safety, sponsored by the Federal Ministry of Economics and Labour. Period: 1 July - 31 December 2003; Berichte ueber vom Bundesministerium fuer Wirtschaft und Arbeit gefoerderte Forschungsvorhaben auf dem Gebiet der Reaktorsicherheit. Berichtszeitraum: 01. Juli - 31. Dezember 2003

    NONE

    2004-07-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of the investigations into the safety of nuclear power plants by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system ''Joint Safety Research Index'' of the CEC (commission of the european communities). The reports are arranged in sequence of their project numbers. (orig.) [German] Die Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH informiert im Auftrag des BMWi halbjaehrlich und jaehrlich ueber den Stand der Untersuchungen zur Sicherheit von Kernreaktoren in den Fortschrittsberichten der GRS-F-Berichtsreihe. Jeder Fortschrittsbericht stellt eine Sammlung von Einzelberichten ueber Zielsetzung, durchgefuehrte Arbeiten, erzielte Ergebnisse, geplante Weiterarbeit etc. dar, die von den Forschungsstellen selbst als Dokumentation ihres Arbeitsfortschritts in einheitlicher Form erstellt und von der Forschungsbetreuung (FB) in der GRS im Rahmen der allgemeinen Information ueber die Fortschritte von Untersuchungen zur Reaktorsicherheit herausgegeben werden. Die inhaltliche Gliederung der Berichtssammlung erfolgt durch sachliche Zuordnung der Vorhaben zu uebergeordneten Themenbereichen der Reaktorsicherheitsforschung, ferner nach dem Klassifikationsschema

  8. Quarterly Financial Report for the period ending 30 September 2015

    Office 2004 Test Drive User

    2015-09-30

    Sep 30, 2015 ... This Management's Discussion and Analysis (MD&A) provides a narrative .... 8 | QUARTERLY FINANCIAL REPORT FOR THE PERIOD 1 JULY TO 30 ... The internally restricted equity for special programs and operational ...

  9. Environment, health and safety progress report 1997

    1998-01-01

    Imperial Oil is Canada's largest producer of crude oil and a major producer of natural gas. It is also the largest refiner and marketer of petroleum products, sold mainly under the Esso brand. Imperial Oil, in participation with Syncrude Canada, is also a major developer of the oil sands reserves in Cold Lake, Alberta. This review of environmental and health and safety performance in 1997 highlights the Company's comprehensive approach to risk management to reduce risk to safety, health and the environment. It is noted that in 1997, the Company's employee and contractor safety performance continued to be among the best in the industry. Potentially hazardous incidents decreased as a consequence of Imperial Oil's more stringent health and safety management system. Environmental compliance notifications fell by more than half in 1997. During the year there was a slight increase in hazardous wastes, due to the loss of outlets for recycling some materials. The National Pollutants Release Inventory indicates that Imperial has reduced emissions and offsite transfers by 25 per cent since 1993. Volatile organic compounds have been reduced by 60 per cent since 1993. According to the report all Imperial Oil facilities operate well within the guidelines for sulphur dioxide emissions. 1 tab., 10 figs

  10. Radioactivity in the environment of the RA nuclear reactor in Vinca for the period 1977-1980. Material prepared for the RA reactor safety report; Radioaktivnost okoline nuklearnog reaktora RA u Vinci u periodu 1977-1980, Materijal pripremljen za izradu Sigurnosnog izvestaja za reaktor RA

    Ajdacic, N; Martinc, R [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1980-12-15

    Review of the environmental monitoring data presented in this report is prepared for the RA reactor safety report. These data resulted from four-year monitoring of precipitations and deposited dust. Measurements were done daily. In addition to these data, tables contain mean daily values, total monthly values of beta activities of precipitation from 1977 - 1980. Radioactivity control of the RA reactor environment showed that there was no significant discrepancy compared to the mean values for several years, apart from seasonal variations and meteorological influences. In the period from October 1976 to mid 1978 a number of higher values were recorded probably due to nuclear explosions. During 1979 the general activity level was relatively low, showing increase tendency during 1980.

  11. Probabilistic safety goals. Phase 2 - Status report

    Holmberg, J.-E.; Bjoerkman, K.; Rossi, J.; Knochenhauer, M.; Xuhong He; Persson, A.; Gustavsson, H.

    2008-07-01

    The second phase of the project, the outcome of which is described in this project report has mainly dealt with four issues: 1) Consistency in the usage of safety goals 2) Criteria for assessment of results from PSA level 2 3) Overview of international safety goals and experiences from their use 4) Safety goals related to other man-made risks in society. Consistency in judgement over time has been perceived to be one of the main problems in the usage of safety goals. Safety goals defined in the 80ies were met in the beginning with PSA:s performed to the standards of that time, i.e., by PSA:s that were quite limited in scope and level of detail compared to today's state of the art. This issue was investigated by performing a comparative review was performed of three generations of the same PSA, focusing on the impact from changes over time in component failure data, IE frequency, and modelling of the plant, including plant changes and changes in success criteria. It proved to be very time-consuming and in some cases next to impossible to correctly identify the basic causes for changes in PSA results. A multitude of different sub-causes turned out to combined and difficult to differentiate. Thus, rigorous book-keeping is needed in order to keep track of how and why PSA results change. This is especially important in order to differentiate 'real' differences due to plant changes and updated component and IE data from differences that are due to general PSA development (scope, level of detail, modelling issues). (au)

  12. Probabilistic safety goals. Phase 2 - Status report

    Holmberg, J.-E.; Bjoerkman, K. Rossi, J. (VTT (Finland)); Knochenhauer, M.; Xuhong He; Persson, A.; Gustavsson, H. (Relcon Scandpower AB, Sundbyberg (Sweden))

    2008-07-15

    The second phase of the project, the outcome of which is described in this project report has mainly dealt with four issues: 1) Consistency in the usage of safety goals 2) Criteria for assessment of results from PSA level 2 3) Overview of international safety goals and experiences from their use 4) Safety goals related to other man-made risks in society. Consistency in judgement over time has been perceived to be one of the main problems in the usage of safety goals. Safety goals defined in the 80ies were met in the beginning with PSA:s performed to the standards of that time, i.e., by PSA:s that were quite limited in scope and level of detail compared to today's state of the art. This issue was investigated by performing a comparative review was performed of three generations of the same PSA, focusing on the impact from changes over time in component failure data, IE frequency, and modelling of the plant, including plant changes and changes in success criteria. It proved to be very time-consuming and in some cases next to impossible to correctly identify the basic causes for changes in PSA results. A multitude of different sub-causes turned out to combined and difficult to differentiate. Thus, rigorous book-keeping is needed in order to keep track of how and why PSA results change. This is especially important in order to differentiate 'real' differences due to plant changes and updated component and IE data from differences that are due to general PSA development (scope, level of detail, modelling issues). (au)

  13. Uncertainty analysis for Ulysses safety evaluation report

    Frank, M.V.

    1991-01-01

    As part of the effort to review the Ulysses Final Safety Analysis Report and to understand the risk of plutonium release from the Ulysses spacecraft General Purpose Heat Source---Radioisotope Thermal Generator (GPHS-RTG), the Interagency Nuclear Safety Review Panel (INSRP) and the author performed an integrated, quantitative analysis of the uncertainties of the calculated risk of plutonium release from Ulysses. Using state-of-art probabilistic risk assessment technology, the uncertainty analysis accounted for both variability and uncertainty of the key parameters of the risk analysis. The results show that INSRP had high confidence that risk of fatal cancers from potential plutonium release associated with calculated launch and deployment accident scenarios is low

  14. Safety regulations for radioisotopes, etc. (interim report)

    1980-01-01

    An (interim) report by an ad hoc expert committee to the Nuclear Safety Commission, on the safety regulations for radioisotopes, etc., was presented. For the utilization of radioisotopes, etc., there is the Law Concerning Prevention of Radiation Injury Due to Radioisotopes, etc. with the advances in this field and the improvement in international standards, the regulations by the law have been examined. After explaining the basic ideas of the regulations, the problems and countermeasures in the current regulations are described: legal system, rationalization in permission procedures and others, inspection on RI management, the system of the persons in charge of radiation handling, RI transport, low-level radioactive wastes, consumer goods, definitions of RIs, radiation and sealed sources, regulations by group partitioning, RI facilities, system of personnel exposure registration, entrusting of inspection, etc. to private firms, and reduction in the works for permission among governmental offices. (author)

  15. Progress report for the period October 1981 - June 1982

    Adams, J.M.

    1982-11-01

    This is the second report of work being carried out in the UK on Safeguards R and D in support of the IAEA. The majority of the work reported herein has been in progress throughout the period of this report, but some projects only commenced during this period. The projects included in the current UK Safeguards R and D Programme cover a wide diversity of aspects in the Safeguards field. It is convenient to classify the projects in terms of their applicability as follows, viz:- (a) service programmes (including training courses); (b) generic programmes; (c) FBR fuel cycle safeguards; (d) enrichment plant safeguards; and (e) stores safeguards and general accounting techniques. (author)

  16. 78 FR 5866 - Pipeline Safety: Annual Reports and Validation

    2013-01-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0319] Pipeline Safety: Annual Reports and Validation AGENCY: Pipeline and Hazardous Materials... 2012 gas transmission and gathering annual reports, remind pipeline owners and operators to validate...

  17. Enhancing nuclear safety. Annual report 2015. Financial report 2015

    Le Guludec, Dominique; Niel, Jean-Christophe; Mouton, Georges-Henri; Repussard, Jacques; Schuler, Matthieu; Marchal, Valerie; Albert, Marc-Gerard; Bigot, Marie-Pierre; Brisset, Yves; Bruna, Giovanni; Charron, Sylvie; Clavelle, Stephanie; Deschamps, Patrice; Delattre, Aleth; Demeillers, Didier; Laloi, Patrick; Lorthioir, Stephane; Monti, Pascale; Rollinger, Francois; Rouyer, Veronique; Tharaud, Christine; Jaunet, Camille; Pascal-Heuze, Charlotte

    2016-01-01

    After some introductory texts proposed by several IRSN head managers, and a brief presentation of some key data illustrating the activity, the annual report presents the main strategic orientations, notably in the field of knowledge management, and of information and communication. After some images illustrating the past year, activities are presented. They first deal with safety: safety of civil nuclear facilities, from decommissioning old reactors to designing those of the future, reactor ageing, severe accidents, fuel, criticality and neutronics, fire and containment, safety and radiation protection of defence-related facilities and activities, geological disposal of radioactive wastes. They secondly deal with security and non-proliferation (nuclear security, nuclear non-proliferation, chemical weapon ban), thirdly with radiation protection for human and environment health (environment monitoring, radionuclide transfer in the environment, radon and polluted sites, human exposure, radiation protection in the workplace, effects of chronic exposures, protection in health care), and fourthly with emergency and post-accident situations (emergency and post-accident preparedness and response). The next part of the activity report addresses issues related to efficiency: improved economic and financial management, property, computer security, quality and corporate social responsibility, human resources, organisation chart. The financial report proposes a management report, financial statements with an appendix to annual accounts, and an auditor's report

  18. Report on nuclear safety in EU applicant countries

    NONE

    1999-03-01

    Nuclear safety in the candidate countries to the European Union is a major issue which needs to be addressed in the frame of the enlargement process. The Heads of the nuclear safety Regulatory Bodies of the European Union member states having nuclear power plants, i.e. Belgium, Finland, France, Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom thought it was their duty to offer their assistance to the European Union institutions at a moment when the expansion of the Union is being considered. As a consequence, they decided to issue a report giving their collective opinion on nuclear safety in those applicant countries having at least one nuclear power reactor (Bulgaria, Czech Republic, Hungary, Lithuania, Romania, Slovak Republic, Slovenia) and covering: the status of the regulatory regime and regulatory body and the nuclear power plant safety status. This report is based on the knowledge they gained through multilateral assistance programmes, in particular the Phare programmes, and also through bilateral contacts. It must be stressed that in some cases, they recognised that their current knowledge was not sufficient to express a clear and exhaustive opinion. Also, it should be pointed out that the judgements are based on widely applied Western European design standards for the defence-in-depth and associated barriers. Quantitative comparisons of Probabilistic Safety Assessments have not been used as the available results are of widely different depth and quality. They also recognised that such a report could only present the situation at a given moment and they intend to periodically update it so as to reflect the changes which may occur in these countries. At this stage, the report does not cover radioactive waste or radiation protection issues in any detail. After they had taken the decision to issue this report, they decided to create an association, the Western European Nuclear Regulators Association (WENRA) in order to increase the co

  19. Report on nuclear safety in EU applicant countries

    1999-03-01

    Nuclear safety in the candidate countries to the European Union is a major issue which needs to be addressed in the frame of the enlargement process. The Heads of the nuclear safety Regulatory Bodies of the European Union member states having nuclear power plants, i.e. Belgium, Finland, France, Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom thought it was their duty to offer their assistance to the European Union institutions at a moment when the expansion of the Union is being considered. As a consequence, they decided to issue a report giving their collective opinion on nuclear safety in those applicant countries having at least one nuclear power reactor (Bulgaria, Czech Republic, Hungary, Lithuania, Romania, Slovak Republic, Slovenia) and covering: the status of the regulatory regime and regulatory body and the nuclear power plant safety status. This report is based on the knowledge they gained through multilateral assistance programmes, in particular the Phare programmes, and also through bilateral contacts. It must be stressed that in some cases, they recognised that their current knowledge was not sufficient to express a clear and exhaustive opinion. Also, it should be pointed out that the judgements are based on widely applied Western European design standards for the defence-in-depth and associated barriers. Quantitative comparisons of Probabilistic Safety Assessments have not been used as the available results are of widely different depth and quality. They also recognised that such a report could only present the situation at a given moment and they intend to periodically update it so as to reflect the changes which may occur in these countries. At this stage, the report does not cover radioactive waste or radiation protection issues in any detail. After they had taken the decision to issue this report, they decided to create an association, the Western European Nuclear Regulators Association (WENRA) in order to increase the co

  20. Nuclear Reactor RA Safety Report, Vol. 14, Safety protection measures

    1986-11-01

    Nuclear reactor accidents can be caused by three type of errors: failure of reactor components including (1) control and measuring instrumentation, (2) errors in operation procedure, (3) natural disasters. Safety during reactor operation are secured during its design and construction and later during operation. Both construction and administrative procedures are applied to attain safe operation. Technical safety features include fission product barriers, fuel elements cladding, primary reactor components (reactor vessel, primary cooling pipes, heat exchanger in the pump), reactor building. Safety system is the system for safe reactor shutdown and auxiliary safety system. RA reactor operating regulations and instructions are administrative acts applied to avoid possible human error caused accidents [sr

  1. The General Safety Group Annual Report 2001/2002

    Weingarten, W

    2003-01-01

    This report summarizes the main activities of the General Safety (GS) Group of the Technical Inspection and Safety Division during 2001 and 2002, and the results obtained. The different topics in which the group is active are covered: general safety inspections and ergonomics, electrical, chemical and gas safety, chemical pollution containment and control, industrial hygiene, the safety of civil engineering works and outside contractors, fire prevention and the safety aspects of the LHC experiments.

  2. 324 building safety analysis report supplement

    Dodd, A.O.; Wittenbrock, N.G.

    1977-01-01

    Process engineering designs, major equipment and plant facilities to be utilized in commercial nuclear waste preparation and vitrification in the 324 Radiochemical Engineering Building are reviewed with regard to accident potential and consequences. This Safety Analysis Report Supplement compares calculated environmental doses anticipated from the Commercial Nuclear Waste Vitrification Project (CNWVP) routine operations with the average doses from past waste management operations conducted at the Hanford Project and finds them to be significantly less. The calculated CNWVP environmental doses are found to be far below presently applicable ERDA standards and standards proposed by the EPA for nuclear power operations

  3. Safety assessment of Olkiluoto NPP units 1 and 2. Decision of the Radiation and Nuclear Safety Authority regarding the periodic safety review of the Olkiluoto NPP

    2010-02-01

    In this safety assessment the Radiation and Nuclear Safety Authority (STUK) has evaluated the safety of the Olkiluoto Nuclear Power Plant units 1 and 2 in connection with the periodic safety review. This safety assessment provides a summary of the reviews, inspections and continuous oversight carried out by STUK. The issues addressed in the assessment and the related evaluation criteria are set forth in the nuclear energy and radiation safety legislation and the regulations issued thereunder. The provisions of the Nuclear Energy Act concerning the safe use of nuclear energy, security and emergency preparedness arrangements, and waste management are specified in more detail in the Government Decrees and Regulatory Guides issued by STUK. Based on the assessment, STUK consideres that the Olkiluoto Nuclear Power Plant units 1 and 2 meet the set safety requirements for operational nuclear power plants, the emergency preparedness arrangements are sufficient and the necessary control to prevent the proliferation of nuclear weapons has been appropriately arranged. The physical protection of the Olkiluoto nuclear power plant is not yet completely in compliance with the requirements of Government Decree 734/2008, which came into force in December 2008. Further requirements concerning this issue based also on the principle of continuous improvement were included in the decision relating to the periodic safety review. The safety of the Olkiluoto nuclear power plant was assessed in compliance with the Government Decree on the Safety of Nuclear Power Plants (733/2008), which came into force in 2008. The decree notes that existing nuclear power plants need not meet all the requirements set out for new plants. Most of the design bases pertaining to the Olkiluoto 1 and 2 nuclear power plant units were set in the 1970s. Substantial modernisations have been carried out at the Olkiluoto 1 and 2 nuclear power plant units since their commissioning to improve safety. This is in line with

  4. 242-A evaporator safety analysis report

    CAMPBELL, T.A.

    1999-01-01

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR

  5. 242-A evaporator safety analysis report

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  6. Safety

    1998-01-01

    A brief account of activities carried out by the Nuclear power plants Jaslovske Bohunice in 1997 is presented. These activities are reported under the headings: (1) Nuclear safety; (2) Industrial and health safety; (3) Radiation safety; and Fire protection

  7. Periodic safety review of the experimental fast reactor JOYO. Review of aging management

    Isozaki, Kazunori; Ogawa, To-ru; Nishino, Kazunari

    2005-05-01

    Periodic safety review (Review of the aging management) which consisted of ''Technical review on aging for the safety related structures, systems and components'' and ''Establishment a long term maintenance program'' was carried out up to April 2005. 1. Technical review on aging for the safety related structures, systems and components. It was technically confirmed to prevent the loss of function of the safety related structures, systems and components due to aging phenomena, which (1) irradiation damage, (2) corrosion, (3) abrasion and erosion, (4) thermal aging, (5) creep and fatigue, (6) Stress Corrosion Cracking, (7) insulation deterioration and (8) general deterioration, under the periodic monitoring or renewal of them. 2. Establishment of long term maintenance program. The long term maintenance during JFY2005 to 2014 were established based on the technical review on aging for the safety related structures, systems and components. It was evaluated that the inspection and renewal based on the long term maintenance program, in addition to the spontaneous inspection of the long term voluntary long-term inspection plan, could prevent the loss of function of the safety related structures, systems and components. (author)

  8. Incorporation of advanced accident analysis methodology into safety analysis reports

    2003-05-01

    also a need to update the FSAR periodically (UFSAR) for holders of an operating licence and the corresponding guidance is being developed. Objectives and scope The first objective of this report is to give a short overview of the advanced codes that are available and are currently used for accident analyses of NPPs. The main tools for the accident analyses are thermal-hydraulic system codes. The other code types used for various purposes will be also discussed briefly. The second objective is to discuss the application of such codes for the analyses to be presented in the SAR of an individual plant. The report is applicable to the advanced codes to be used in the analysis of the plants that are mainly based on light water technology and to a certain extent to the pressurized heavy water reactor designs (CANDU). The report is generally applicable to existing plants as well as to new reactor power plants. It is noted, however, that most of the examples discussed here are connected to the pressurized water reactor (PWR) technology. The report can be considered as a complementary publication to the IAEA Safety Report on Accident Analysis for Nuclear Power Plants, describing in more detail the use of computer codes for specific applications needed for the SAR. Section 2 of this report gives an overview of the existing codes for thermal-hydraulics, reactor dynamics, containment analysis, severe accident analysis and other areas included in the scope of analyses and computation to support the SARs. Section 3 describes the use of advanced methods for various transient and accident analyses to be included in the SARs. The special emphasis is on describing the methods which are used and how to achieve a reliable and conservative evaluation of safety margins

  9. Westinghouse Hanford Company health and safety performance report

    Rogers, L.

    1996-05-15

    Topping the list of WHC Safety recognition during this reporting period is a commendation received from the National Safety Council (NSC). The NSC bestowed their Award of Honor upon WHC for significant reduction of incidence rates during CY 1995. The award is based upon a reduction of 48 % or greater in cases involving days away from work, a 30 % or greater reduction in the number of days away, and a 15% or greater reduction in the total number of occupational injuries and illnesses. (page 2-1). A DOE-HQ review team representing the Office of Envirorunent, Safety and Health (EH), visited the Hanford Site during several weeks of the quarter. Ile 40-member Safety Management Evaluation Team (SMET) assessed WHC in the areas of management responsibility, comprehensive requirements, and competence commensurate with responsibility. As part of their new approach to oversight, they focused on the existence of management systems and programs (comparable approach to VPP). Plant/project areas selected for review within WHC were PFP, B Plant/WESF, Tank Farms, and K-Basins (page 2-2). Effective safety meetings, prejob safety meetings, etc., are a cornerstone of any successful safety program. In an effort to improve the reporting of safety meetings, the Safety/Security Meeting Report form was revised. It now provides a mechanism for recording and tracking safety issues (page 2-4). WHC has experienced an increase in the occupational injury and illness incidence rates during the first quarter of CY 1996. Trends show this increase can be partially attributed to inattention to workplace activities due 0999to the uncertainty Hanford employees currently face with recent reduction of force, reorganization, and reengineering efforts (page 2-7). The cumulative CY 1995 lost/restricted workday case incidence rate for the first quarter of CY 1996 (1.28) is 25% below the DOE CY 1991-93 average (1.70). However, the incidence rate increased 24% from the CY 1995 rate of 1.03 (page 2-8). The

  10. Westinghouse Hanford Company health and safety performance report

    Rogers, L.

    1996-01-01

    Topping the list of WHC Safety recognition during this reporting period is a commendation received from the National Safety Council (NSC). The NSC bestowed their Award of Honor upon WHC for significant reduction of incidence rates during CY 1995. The award is based upon a reduction of 48 % or greater in cases involving days away from work, a 30 % or greater reduction in the number of days away, and a 15% or greater reduction in the total number of occupational injuries and illnesses. (page 2-1). A DOE-HQ review team representing the Office of Envirorunent, Safety and Health (EH), visited the Hanford Site during several weeks of the quarter. Ile 40-member Safety Management Evaluation Team (SMET) assessed WHC in the areas of management responsibility, comprehensive requirements, and competence commensurate with responsibility. As part of their new approach to oversight, they focused on the existence of management systems and programs (comparable approach to VPP). Plant/project areas selected for review within WHC were PFP, B Plant/WESF, Tank Farms, and K-Basins (page 2-2). Effective safety meetings, prejob safety meetings, etc., are a cornerstone of any successful safety program. In an effort to improve the reporting of safety meetings, the Safety/Security Meeting Report form was revised. It now provides a mechanism for recording and tracking safety issues (page 2-4). WHC has experienced an increase in the occupational injury and illness incidence rates during the first quarter of CY 1996. Trends show this increase can be partially attributed to inattention to workplace activities due 0999to the uncertainty Hanford employees currently face with recent reduction of force, reorganization, and reengineering efforts (page 2-7). The cumulative CY 1995 lost/restricted workday case incidence rate for the first quarter of CY 1996 (1.28) is 25% below the DOE CY 1991-93 average (1.70). However, the incidence rate increased 24% from the CY 1995 rate of 1.03 (page 2-8). The

  11. Safety evaluation status report for the prototype license application safety analysis report

    1989-07-01

    The US Nuclear Regulatory Commission (NRC) staff and consultants reviewed a Prototype License Application Safety Analysis Report (PLASAR) submitted by the US Department of Energy (DOE) for the earth-mounded concrete bunker (EMCB) alternative method of low-level radioactive waste disposal. The NRC reviewers relied extensively on the Standard Review Plan (SRP), Rev.1 (NUREG-1200), to evaluate the acceptability of the information provided in the EMCB PLASAR. The NRC staff selected certain review areas in the PLASAR for development of safety evaluation report input to provide examples of safety assessments that are necessary as part of a licensing review. Because of the fictitious nature of the assumed disposal site, and the decision to limit the review to essentially first-round review status, the NRC staff report is labeled a ''Safety Evaluation Status Report'' (SESR). Appendix A comprises the NRC review comments and questions on the information that DOE submitted in the PLASAR. The NRC concentrated its review on the design and operations-related portions of the EMCB PLASAR

  12. Mark I containment, short term program. Safety evaluation report

    1977-12-01

    Presented is a Safety Evaluation Report (SER) prepared by the Office of Nuclear Reactor Regulation addressing the Short Term Program (STP) reassessment of the containment systems of operating Boiler Water Reactor (BWR) facilities with the Mark I containment system design. The information presented in this SER establishes the basis for the NRC staff's conclusion that licensed Mark I BWR facilities can continue to operate safely, without undue risk to the health and safety of the public, during an interim period of approximately two years while a methodical, comprehensive Long Term Program (LTP) is conducted. This SER also provides one of the basic foundations for the NRC staff review of the Mark I containment systems for facilities not yet licensed for operation

  13. Chemical Technology Division progress report for the period July 1, 1988 to September 30, 1989

    1990-03-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period July 1, 1988, through September 30, 1989. The following major areas are covered: waste management and environmental programs, the Waste Management Technology Center, radiochemical and isotope programs, basic science and technology, Nuclear Regulatory Commission and Electric Power Research Institute severe accident research programs, the Office of Safety and Operational Readiness, and administrative resources and facilities.

  14. HTGR safety research program. Progress report, April--June 1975

    Kirk, W.L.

    1975-09-01

    Progress in HTGR safety research is reported under the following headings: fission product technology; primary coolant impurities; structural investigation; safety instrumentation and control systems; phenomena modeling and systems analysis. (JWR)

  15. Applied Health Physics and Safety annual report for 1975

    1976-08-01

    This report describes and summarizes the activities of the applied sections and/or groups of the Health Physics Division. Projects and activities covered include personnel monitoring, environmental monitoring, radiation and safety surveys, and industrial safety

  16. Geosphere process report for the safety assessment SR-Site

    Skagius, Kristina

    2010-11-01

    This report documents geosphere processes identified as relevant to the long-term safety of a KBS-3 repository, and forms an important part of the reporting of the safety assessment SR-Site. The detailed assessment methodology, including the role of the process reports in the assessment, is described in the SR-Site Main report /SKB 2011/

  17. Geosphere process report for the safety assessment SR-Site

    Skagius, Kristina (ed.) (Kemakta Konsult AB, Stockholm (Sweden))

    2010-11-15

    This report documents geosphere processes identified as relevant to the long-term safety of a KBS-3 repository, and forms an important part of the reporting of the safety assessment SR-Site. The detailed assessment methodology, including the role of the process reports in the assessment, is described in the SR-Site Main report /SKB 2011/

  18. Manpower analysis in transportation safety. Final report

    Bauer, C.S.; Bowden, H.M.; Colford, C.A.; DeFilipps, P.J.; Dennis, J.D.; Ehlert, A.K.; Popkin, H.A.; Schrader, G.F.; Smith, Q.N.

    1977-05-01

    The project described provides a manpower review of national, state and local needs for safety skills, and projects future manning levels for transportation safety personnel in both the public and private sectors. Survey information revealed that there are currently approximately 121,000 persons employed directly in transportation safety occupations within the air carrier, highway and traffic safety, motor carrier, pipeline, rail carrier, and marine carrier transportation industry groups. The projected need for 1980 is over 145,000 of which over 80 percent will be in highway safety. An analysis of transportation tasks is included, and shows ten general categories about which the majority of safety activities are focused. A skills analysis shows a generally high level of educational background and several years of experience are required for most transportation safety jobs. An overall review of safety programs in the transportation industry is included, together with chapters on the individual transportation modes.

  19. Preliminary report of radiological safety to hydrology 1993 campaign

    Badano, A.; Suarez Antola, R.; Dellepere, A.; Barreiro, M.

    1993-01-01

    This report has been prepared based on the interaction between project managers and division radiological Protection and Nuclear Safety. In seeking to establish a basis for approval from the point of view of radiation safety practices . The idea for the audit has been provided at all times because the interest was the exchange of ideas and the use of common sense to improve the safety of radioactive substances, security of operators and public safety and environment.The above shows that in the planned radiation safety condition described in this report,the practice can be carried out according to the criteria of safety accepted .

  20. Safety climate and self-reported injury: assessing the mediating role of employee safety control.

    Huang, Yueng-Hsiang; Ho, Michael; Smith, Gordon S; Chen, Peter Y

    2006-05-01

    To further reduce injuries in the workplace, companies have begun focusing on organizational factors which may contribute to workplace safety. Safety climate is an organizational factor commonly cited as a predictor of injury occurrence. Characterized by the shared perceptions of employees, safety climate can be viewed as a snapshot of the prevailing state of safety in the organization at a discrete point in time. However, few studies have elaborated plausible mechanisms through which safety climate likely influences injury occurrence. A mediating model is proposed to link safety climate (i.e., management commitment to safety, return-to-work policies, post-injury administration, and safety training) with self-reported injury through employees' perceived control on safety. Factorial evidence substantiated that management commitment to safety, return-to-work policies, post-injury administration, and safety training are important dimensions of safety climate. In addition, the data support that safety climate is a critical factor predicting the history of a self-reported occupational injury, and that employee safety control mediates the relationship between safety climate and occupational injury. These findings highlight the importance of incorporating organizational factors and workers' characteristics in efforts to improve organizational safety performance.

  1. Knowledge Representation in Patient Safety Reporting: An Ontological Approach

    Liang Chen; Yang Gong

    2016-01-01

    Purpose: The current development of patient safety reporting systems is criticized for loss of information and low data quality due to the lack of a uniformed domain knowledge base and text processing functionality. To improve patient safety reporting, the present paper suggests an ontological representation of patient safety knowledge. Design/methodology/approach: We propose a framework for constructing an ontological knowledge base of patient safety. The present paper describes our desig...

  2. Selection of detailed items for periodic safety review on PWR radwaste management system

    Sung, K. B.; Ahn, Y. S.; Park, Y. S.; Kim, S. H.; Kim, J. T. [Korea Hydric and Nuclear Power Company, Taejon (Korea, Republic of)

    2003-10-01

    Selection of detailed-items for Periodic Safety Review on PWR radwaste management system, the main component could be faithfully clarified according to the purpose of establishment on each system and basic purpose. It is proper to select detailed-items those of radioactivities in the reactor coolant activity levels and the released volume of liquid and gaseous radioactive material on safety performance. It's also proper to select solid radwaste production quantities as detailed-item that it would be predict the next ten years trends after PSR.

  3. Human Factors Evaluation of Man-Machine Interface for Periodic Safety Review of Yonggwang Unit no. 1, 2

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang

    2006-01-01

    This report describes the research results of human factors assessment on the MMI(Man Machine Interface) equipment as part of Periodic Safety Review(PSR) of Yonggwang Unit no. 1, 2. As MMI is a key factor among human factors to be reviewed in PSR, we reviewed the MMI components of nuclear power plants in aspect of human factors engineering. The availability, suitability, and effectiveness of the MMI devices were chosen to be reviewed. The MMI devices were investigated through the review of design documents related to the MMI, survey of control panels, evaluation of experts, and experimental assessment. Checklists were used to perform this assessment and record the review results. The items mentioned by the expert comments to review in detail in relation with task procedures were tested by experiments with operators' participation. For some questionable issues arisen during this MMI review, operator workload and possibility of errors in operator actions were analysed. The reviewed MMI devices contain MCR(Main Control Room), SPDS(Safety Parameter Display System), RSP(Remote Shutdown Panel), and the selected LCBs(Local Control Boards) importantly related to safety. As results of the assessments, any significant problem challenging the safety was not found on human factors in the MMI devices. However, several small items to be changed and improved in suitability of MMI devices were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on MMI area

  4. Human Factors Evaluation of Man-Machine Interface for Periodic Safety Review of Yonggwang Unit no. 1, 2

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang (and others)

    2006-01-15

    This report describes the research results of human factors assessment on the MMI(Man Machine Interface) equipment as part of Periodic Safety Review(PSR) of Yonggwang Unit no. 1, 2. As MMI is a key factor among human factors to be reviewed in PSR, we reviewed the MMI components of nuclear power plants in aspect of human factors engineering. The availability, suitability, and effectiveness of the MMI devices were chosen to be reviewed. The MMI devices were investigated through the review of design documents related to the MMI, survey of control panels, evaluation of experts, and experimental assessment. Checklists were used to perform this assessment and record the review results. The items mentioned by the expert comments to review in detail in relation with task procedures were tested by experiments with operators' participation. For some questionable issues arisen during this MMI review, operator workload and possibility of errors in operator actions were analysed. The reviewed MMI devices contain MCR(Main Control Room), SPDS(Safety Parameter Display System), RSP(Remote Shutdown Panel), and the selected LCBs(Local Control Boards) importantly related to safety. As results of the assessments, any significant problem challenging the safety was not found on human factors in the MMI devices. However, several small items to be changed and improved in suitability of MMI devices were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on MMI area.

  5. FAA National Aviation Safety Inspection Program. Annual Report FY90

    1991-06-01

    This report was undertaken to document, analyze, and place : into national perspective the findings from the 1990 National : Aviation Safety Inspection Program (NASIP). This report is the : fifth in a series of annual reports covering the results of ...

  6. Preparing a Safety Analysis Report using the building block approach

    Herrington, C.C.

    1990-01-01

    The credibility of the applicant in a licensing proceeding is severely impacted by the quality of the license application, particularly the Safety Analysis Report. To ensure the highest possible credibility, the building block approach was devised to support the development of a quality Safety Analysis Report. The approach incorporates a comprehensive planning scheme that logically ties together all levels of the investigation and provides the direction necessary to prepare a superior Safety Analysis Report

  7. Safety evaluation report of the Waste Isolation Pilot Plant safety analysis report: Contact-handled transuranic waste disposal operations

    1997-02-01

    DOE 5480.23, Nuclear Safety Analysis Reports, requires that the US Department of Energy conduct an independent, defensible, review in order to approve a Safety Analysis Report (SAR). That review and the SAR approval basis is documented in this formal Safety Evaluation Report (SER). This SER documents the DOE's review of the Waste Isolation Pilot Plant SAR and provides the Carlsbad Area Office Manager, the WIPP SAR approval authority, with the basis for approving the safety document. It concludes that the safety basis documented in the WIPP SAR is comprehensive, correct, and commensurate with hazards associated with planned waste disposal operations

  8. AMNT 2014. Key Topic: Reactor operation, safety - report. Pt. 1

    Schaffrath, Andreas

    2014-01-01

    Summary report on one session of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Safety of Nuclear Installations - Methods, Analysis, Results: Backfittings for the Improvement of Safety and Efficiency. The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' will be covered in further issues of atw.

  9. Industrial safety and applied health physics. Annual report for 1977

    Auxier, J.A.; Davis, D.M.

    1978-06-01

    Progress is reported on the following: radiation monitoring with regard to personnel monitoring and health physics instrumentation; environs surveillance with regard to atmospheric monitoring, water monitoring, radiation background measurements, and soil and grass samples; radiation and safety surveys with regard to laboratory operations monitoring, radiation incidents, and laundry monitoring; industrial safety and special projects with regard to accident analysis, disabling injuries, and safety awards

  10. Strengthening the Global Nuclear Safety Regime. INSAG-21. A report by the International Nuclear Safety Group

    2014-01-01

    The Global Nuclear Safety Regime is the framework for achieving the worldwide implementation of a high level of safety at nuclear installations. Its core is the activities undertaken by each country to ensure the safety and security of the nuclear installations within its jurisdiction. But national efforts are and should be augmented by the activities of a variety of international enterprises that facilitate nuclear safety - intergovernmental organizations, multinational networks among operators, multinational networks among regulators, the international nuclear industry, multinational networks among scientists, international standards setting organizations and other stakeholders such as the public, news media and non-governmental organizations (NGOs) that are engaged in nuclear safety. All of these efforts should be harnessed to enhance the achievement of safety. The existing Global Nuclear Safety Regime is functioning at an effective level today. But its impact on improving safety could be enhanced by pursuing some measured change. This report recommends action in the following areas: - Enhanced use of the review meetings of the Convention on Nuclear Safety as a vehicle for open and critical peer review and a source for learning about the best safety practices of others; - Enhanced utilization of IAEA Safety Standards for the harmonization of national safety regulations, to the extent feasible; - Enhanced exchange of operating experience for improving operating and regulatory practices; and - Multinational cooperation in the safety review of new nuclear power plant designs. These actions, which are described more fully in this report, should serve to enhance the effectiveness of the Global Nuclear Safety Regime

  11. Safety assessment of research reactors and preparation of the safety analysis report

    1994-01-01

    This Safety Guide presents guidelines, approved by international consensus, for the preparation, review and assessment of safety documentation for research reactors such as the Safety Analysis Report. While the Guide is most applicable to research reactors in the design and construction stage, it is also recommended for use during relicensing or reassessment of existing reactors

  12. Report on safety and the environment 1992-93

    1993-09-01

    The steps taken by AEA Technology to implement high safety and environmental standards and performance levels achieved are summarized. AEA's policy on safety and the environment is stated. The way that safety is organised, how plant safety cases are made, plant operations and safety 1992-93 and decommissioning work at several of AEA's plants are reported. Radiological doses for AEA plants are shown to have fallen since 1990. General industrial and office safety, what is learned from accidents and incidents, how the environment is protected, the occupational health services provided and the emergency arrangements in operation are also mentioned briefly. (UK)

  13. Current status of safety analysis report for ANPP

    Amirjanyan, A.

    1999-01-01

    Current situation concerning Armenian NPP safety analysis report is considered within the frame of accepted safety practice. Licensing procedure is being developed. Technical support group was established in the Armenian Nuclear Regulatory Authority (ANRA). The task of the group is to study modern methods of NPP in depth safety analysis for technical assistance for the ANRA, and perform independent safety assessments. ANRA will be obliged to demand assistance from various foreign organisations for preparation of different parts of the Safety Analysis Report like determination though certain parts can be prepared in Armenia

  14. LAMMPS Project Report for the Trinity KNL Open Science Period.

    Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thompson, Aidan P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wood, Mitchell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    LAMMPS is a classical molecular dynamics code (lammps.sandia.gov) used to model materials science problems at Sandia National Laboratories and around the world. LAMMPS was one of three Sandia codes selected to participate in the Trinity KNL (TR2) Open Science period. During this period, three different problems of interest were investigated using LAMMPS. The first was benchmarking KNL performance using different force field models. The second was simulating void collapse in shocked HNS energetic material using an all-atom model. The third was simulating shock propagation through poly-crystalline RDX energetic material using a coarse-grain model, the results of which were used in an ACM Gordon Bell Prize submission. This report describes the results of these simulations, lessons learned, and some hardware issues found on Trinity KNL as part of this work.

  15. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    Lyon, W.S.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period

  16. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    Lyon, W. S. [ed.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period.

  17. Ignalina Safety Analysis Group's report for the year 1998

    Uspuras, E.; Augutis, J.; Bubelis, E.; Cesna, B.; Kaliatka, A.

    1999-02-01

    Results of Ignalina NPP Safety Analysis Group's research are presented. The main fields of group's activities in 1998 were following: safety analysis of reactor's cooling system, safety analysis of accident localization system, investigation of the problem graphite - fuel channel, reactor core modelling, assistance to the regulatory body VATESI in drafting regulations and reviewing safety reports presented by Ignalina NPP during the process of licensing of unit 1

  18. Fusion safety program annual report fiscal year 1997

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2)

  19. Fusion safety program annual report fiscal year 1997

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C. [and others

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2).

  20. Health, safety and environment : annual report 2000

    2000-01-01

    A natural gas transmission and power services company, TransCanada Pipelines Limited operates approximately 38,000 kilometers of pipeline, thereby supplying the majority of natural gas production facilities in Western Canada. The company is also involved in the power generation industry by building, operating and owning interests in electric power plants. Located in Rhode Island, United States, the largest plant operated by TransCanada is a combined-cycle plant that generates in excess of 500 MW. TransCanada is committed to its health, safety and environment management system. The system is modeled after the elements of the International Organization for Standardization (ISO) 14001 which sets the standard for environmental management systems. Considerable efforts were expanded to implement programs and initiatives to protect the environment, such as the pipeline reclamation criteria, the hazardous materials and waste management, and proposed polychlorinated biphenyl (PCB) regulations, which are currently under consideration by Environment Canada. TransCanada PipeLines Limited has also set up an environmental research program to enable management and workers to minimize the environmental impacts of the business. Its objectives are the enhancement of the health and safety of employees and their communities, the mitigation of effects on lands, air and water. The topics covered by the research are: vegetation and wildlife with several sub-categories. The company is concerned about the effects on climate change, and developed plans and strategies to manage the emissions of greenhouse gases. In the process, it was awarded several awards for its commitment, action and leadership on voluntary reduction program of greenhouse gases. Full-time resources are dedicated to illness prevention and health promotion, employee assistance programs, short and long term disability management and others. During the year 2000, TransCanada invested 4 million dollars in communities

  1. European wind power integration study. Periodic report 1

    NONE

    1992-12-31

    This periodic report no. 1 describes the work done in the Danish part of the European Wind Power Integration Study in the period until 1.4.1991. The R and D project was initiated January 1, 1989 upon prior establishment of registration equipment at 7 wind farms and at the Tjaereborg turbine. ELSAM and the meteorological service centre in Karup (VTC-Karup) have supplied data for the task. Wind Predictability, Potential and Benefits, Wind Farm - Grid Interface, Distribution System Strength, Wind Farm Cost and Operation, and Co-generation Wind Turbines/Other renewables were measured and modelled. The statistical distribution of the wind speed variations (changes in wind speed from one period of time to another) has been established with great certainty in the report. The wind speed variations follow a Weibull distribution, irrespective of the time intervals with which the data are considered. Duration curves and power distributions for the 7 wind farms have been estimated. Registration equipment for one-minute measurements was chosen in order to clarify the short-term variations in the wind power production. The possibility of working out production forecasts, to be applied in the daily load dispatching, were to be assessed for the total amount of wind power production in Jutland and Funen. The report has examined whether it would be possible to have only one wind measurement and then let it be `guiding` for the total wind farm production. Some simulations are to be carried out in the attempt to set up guidelines for the connection between the strength of distribution systems and the requirements which must be made to the wind farms which are to be places in the system. (EG)

  2. Strategies for reactor safety. Final report

    Andersson, K

    1997-12-01

    The NKS/RAK-1 project formed part of a four-year nuclear research program (1994-1997) in the Nordic countries, the NKS Programme. The project aims were to investigate and evaluate the safety work, to increase realism and reliability of the safety analysis, and to give ideas for how safety can be improved in selected areas. An evaluation of the safety work in nuclear installations in Finland and Sweden was made, and a special effort was devoted to plant modernisation and to see how modern safety standards can be met up with. A combination of more resources and higher efficiency is recommended to meet requirements from plant modernisation and plant renovations. Both the utilities and the safety authorities are recommended to actively follow the evolving safety standards for new reactors. Various approaches to estimating LOCA frequencies have been explored. In particular, a probabilistic model for pipe ruptures due to intergranular stress corrosion has been developed. A survey has been done over methodologies for integrated sequence analysis (ISA), and different approaches have been developed and tested on four sequences. Structured frameworks for integration between PSA and behavioural sciences have been developed, which e.g. have improved PSA. The status of maintenance strategies in Finland and Sweden has been studied and a new maintenance data information system has been developed. (au) 41 refs.

  3. Strategies for reactor safety. Final report

    Andersson, K.

    1997-12-01

    The NKS/RAK-1 project formed part of a four-year nuclear research program (1994-1997) in the Nordic countries, the NKS Programme. The project aims were to investigate and evaluate the safety work, to increase realism and reliability of the safety analysis, and to give ideas for how safety can be improved in selected areas. An evaluation of the safety work in nuclear installations in Finland and Sweden was made, and a special effort was devoted to plant modernisation and to see how modern safety standards can be met up with. A combination of more resources and higher efficiency is recommended to meet requirements from plant modernisation and plant renovations. Both the utilities and the safety authorities are recommended to actively follow the evolving safety standards for new reactors. Various approaches to estimating LOCA frequencies have been explored. In particular, a probabilistic model for pipe ruptures due to intergranular stress corrosion has been developed. A survey has been done over methodologies for integrated sequence analysis (ISA), and different approaches have been developed and tested on four sequences. Structured frameworks for integration between PSA and behavioural sciences have been developed, which e.g. have improved PSA. The status of maintenance strategies in Finland and Sweden has been studied and a new maintenance data information system has been developed. (au)

  4. Physics Division progress report for period ending September 30, 1984

    Livingston, A.B. (ed.)

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes.

  5. Physics Division progress report for period ending September 30, 1984

    Livingston, A.B.

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes

  6. Safety-related LWR research. Annual report 1993

    Hueper, R.

    1994-06-01

    The reactor safety R and D work of the Karlsruhe Nuclear Research Centre (KfK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1993 summarizes the results on LWR safety. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status at the end of 1993. (orig./HP) [de

  7. Safety analysis report for the Waste Storage Facility. Revision 2

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  8. Re-assessment of seismic loads in conjunction with periodic safety review

    Jonczyk, Josef

    2002-01-01

    The objective of this paper is the fundamental consideration of a safeguard-aim-oriented approach for use in the re-assessment of seismic events with regard to the periodic safety review (PSR) of nuclear power plants (NPP). The re-assessment aspects of site-specific design earthquakes (DEQ), specially the procedure for seismic hazard analysis, will not, however, be considered in detail here. The proposed assessment concept clearly presents a general approach for safety assessments. The approach is based on a successive screening review of components that are considered sufficiently earthquake-resistant. In this respect, the principle of maximum practical application of the design documentation has been considered in the re-assessment process. On the other hand, the safeguard-aim-oriented evaluation will also be applied with regard to whether the requirements of the safety regulations are fulfilled with respect to the safety goals. The review in conjunction with PSR does not, however, attempt to perform this under all technical aspects. Moreover, it is possible to make extensive use of experimental knowledge and engineering judgement with regard to the structural capacity behaviour in case of a seismic event. Compared with design procedures, however, this proposed approach differs from the one applied in licensing procedures, in which such assessment freedom will not usually be exhausted. (author)

  9. Health and safety annual report 1987

    1988-01-01

    The principal activities and organisation of BNFL are reviewed in relation to the impact these activities have on the workforce, members of the general public and the environment, together with services for occupational safety within the company. (author)

  10. Using Addenda in Documented Safety Analysis Reports

    Swanson, D.S.; Thieme, M.A.

    2003-01-01

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update

  11. 78 FR 14877 - Pipeline Safety: Incident and Accident Reports

    2013-03-07

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2013-0028] Pipeline Safety: Incident and Accident Reports AGENCY: Pipeline and Hazardous Materials... PHMSA F 7100.2--Incident Report--Natural and Other Gas Transmission and Gathering Pipeline Systems and...

  12. The President's Report on Occupational Safety and Health.

    Department of Health, Education, and Welfare, Washington, DC.

    This report describes what has been done to implement the Occupational Safety and Health Act of 1970 during its first year of operation. The report examines the responsibilities of the Department of Labor for setting safety and health standards and also explores the activities of the Department of Health, Education, and Welfare in research and…

  13. Report on nuclear and radiation safety in Slovenia in 1999

    Lovincic, D.

    2000-09-01

    The Slovenian Nuclear Safety Administration (SNSA) has prepared Report on Nuclear and Radiation Safety in Slovenia in 1999. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia.

  14. New Automated System Available for Reporting Safety Concerns | Poster

    A new system has been developed for reporting safety issues in the workplace. The Environment, Health, and Safety’s (EHS’) Safety Inspection and Issue Management System (SIIMS) is an online resource where any employee can report a problem or issue, said Siobhan Tierney, program manager at EHS.

  15. Transit safety & security statistics & analysis 2002 annual report (formerly SAMIS)

    2004-12-01

    The Transit Safety & Security Statistics & Analysis 2002 Annual Report (formerly SAMIS) is a compilation and analysis of mass transit accident, casualty, and crime statistics reported under the Federal Transit Administrations (FTAs) National Tr...

  16. Transit safety & security statistics & analysis 2003 annual report (formerly SAMIS)

    2005-12-01

    The Transit Safety & Security Statistics & Analysis 2003 Annual Report (formerly SAMIS) is a compilation and analysis of mass transit accident, casualty, and crime statistics reported under the Federal Transit Administrations (FTAs) National Tr...

  17. Supplement to safety analysis report. 306-W building operations safety requirement

    Richey, C.R.

    1979-08-01

    The operations safety requirements (OSRs) presented in this report define the conditions, safe boundaries, and management control needed for safely conducting operations with radioactive materials in the Pacific Northwest Laboratory (PNL) 306-W building. The safety requirements are organized in five sections. Safety limits are safety-related process variables that are observable and measurable. Limiting conditions cover: equipment and technical conditions and characteristics of the facility and operations necessary for continued safe operation. Surveillance requirements prescribe the requirements for checking systems and components that are essential to safety. Equipment design controls require that changes to process equipment and systems be independently checked and approved to assure that the changes will have no adverse effect on safety. Administrative controls describe and discuss the organization and administrative systems and procedures to be used for safe operation of the facility. Details of the implementation of the operations safety requirements are prescribed by internal PNL documents such as criticality safety specifications and radiation work procedures

  18. The complexity of patient safety reporting systems in UK dentistry.

    Renton, T; Master, S

    2016-10-21

    Since the 'Francis Report', UK regulation focusing on patient safety has significantly changed. Healthcare workers are increasingly involved in NHS England patient safety initiatives aimed at improving reporting and learning from patient safety incidents (PSIs). Unfortunately, dentistry remains 'isolated' from these main events and continues to have a poor record for reporting and learning from PSIs and other events, thus limiting improvement of patient safety in dentistry. The reasons for this situation are complex.This paper provides a review of the complexities of the existing systems and procedures in relation to patient safety in dentistry. It highlights the conflicting advice which is available and which further complicates an overly burdensome process. Recommendations are made to address these problems with systems and procedures supporting patient safety development in dentistry.

  19. Developing a safety report for an existing conversion facility

    Carisse, Hess

    2013-01-01

    A review of the process used to meet the regulatory requirements for a Safety Report at an existing conversion facility is described. This paper will cover the establishment of the regulatory criteria, selection of appropriate methodologies, identification of events and modeling of credible events. Once established there is on-going maintenance to deal with design changes and the need for periodic reviews will also be discussed. Challenges in dealing with the various phases, including incorporation of historical licensing documents, and lessons learned are presented. Of specific interest is the failure of the selected methodology to deal with infrastructure issues. One aspect of lessons learned that will be explored is the lack of an available mechanism for sharing information with similar fuel cycle facilities which is compounded by the fact that there are a small number of fuel cycle facilities compared to nuclear power plants. Possible approaches to dealing with this issue are also discussed. (authors)

  20. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    Edmonds, P.H.

    1985-09-01

    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (10 22 atoms/cm 2 ) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project

  1. Nuclear and radiation safety in Slovenia. Annual report 1997

    1998-01-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 1997. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. Contributions to the report were furthermore prepared by competent authorities in the field of nuclear safety: the Agency for Radwaste Management (ARAO), the Milan Copic Nuclear Training Centre, etc. The report contains 17 chapters. (author)

  2. Report on nuclear and radiation safety in Slovenia in 1997

    1998-06-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 1997. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. Contributions to the report were furthermore prepared by competent authorities in the field of nuclear safety: the Agency for Radwaste Management (ARAO), the Milan Copic Nuclear Training Centre, etc. The report contains 19 chapters.

  3. Toward introduction of risk informed safety regulation. Nuclear Safety Commission taskforce's interim report

    2006-01-01

    Nuclear Safety Commission's taskforce on 'Introduction of Safety Regulation Utilizing Risk Information' completed the interim report on its future subjects and directions in December 2005. Although current safety regulatory activities have been based on deterministic approach, this report shows the risk informed approach is expected to be very useful for making nuclear safety regulation and assurance activities reasonable and also for appropriate allocation of regulatory resources. For introduction of risk informed regulation, it also recommends pileups of experiences with gradual introduction and trial of the risk informed approach, improvement of plant maintenance rules and regulatory requirements utilizing risk information, and establishment of framework to assure quality of risk evaluation. (T. Tanaka)

  4. Fusion safety program Annual report, Fiscal year 1995

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities

  5. Surgical treatment for thyrotoxic hypokalemic periodic paralysis: case report

    Lin Yi-Chu

    2012-01-01

    Full Text Available Abstract Thyrotoxic hypokalemic periodic paralysis (THPP is a rare, potentially life-threatening endocrine emergency. It is characterized by recurrent muscle weakness and hypokalemia. Because many THPP patients do not have obvious symptoms and signs of hyperthyroidism, misdiagnosis may occur. The published studies revealed that definitive therapy for THPP is control of hyperthyroidism by medical therapy, radioactive iodine or surgery, but the long-term post-operative follow-up result was not observed. We reported two cases of medically refractory THPP with recurrent paralysis of extremities and hypokalemia, and both were combined with thyroid nodules. Both patients were treated with total thyroidectomy; the pathology revealed that one is Graves' disease with thyroid papillary carcinoma, and the other is adenomatous goiter with papillary hyperplasia. No episode of periodic paralysis was noted and laboratory evaluation revealed normal potassium level during the post-operative follow up. Our experience suggests that total thyroidectomy by experienced surgeon is an appropriate and definite treatment for medically refractory THPP, especially in cases combined with thyroid nodules.

  6. Analytical Chemistry Division annual progress report for period ending December 31, 1992

    Shults, W.D.

    1993-04-01

    This report is divided into: Analytical spectroscopy (optical spectroscopy, organic mass spectrometry, inorganic mass spectrometry, secondary ion mass spectrometry), inorganic and radiochemistry (transuranium and activation analysis, low-level radiochemical analysis, inorganic analysis, radioactive materials analysis, special projects), organic chemistry (organic spectroscopy, separations and synthesis, special projects, organic analysis, ORNL/UT research program), operations (quality assurance/quality control, environmental protection, safety, analytical improvement, training, radiation control), education programs, supplementary activities, and presentation of research results. Tables are included for articles reviewed or refereed for periodicals, analytical service work, division manpower and financial summary, and organization chart; a glossary is also included.

  7. Organizational safety culture and medical error reporting by Israeli nurses.

    Kagan, Ilya; Barnoy, Sivia

    2013-09-01

    To investigate the association between patient safety culture (PSC) and the incidence and reporting rate of medical errors by Israeli nurses. Self-administered structured questionnaires were distributed to a convenience sample of 247 registered nurses enrolled in training programs at Tel Aviv University (response rate = 91%). The questionnaire's three sections examined the incidence of medication mistakes in clinical practice, the reporting rate for these errors, and the participants' views and perceptions of the safety culture in their workplace at three levels (organizational, departmental, and individual performance). Pearson correlation coefficients, t tests, and multiple regression analysis were used to analyze the data. Most nurses encountered medical errors from a daily to a weekly basis. Six percent of the sample never reported their own errors, while half reported their own errors "rarely or sometimes." The level of PSC was positively and significantly correlated with the error reporting rate. PSC, place of birth, error incidence, and not having an academic nursing degree were significant predictors of error reporting, together explaining 28% of variance. This study confirms the influence of an organizational safety climate on readiness to report errors. Senior healthcare executives and managers can make a major impact on safety culture development by creating and promoting a vision and strategy for quality and safety and fostering their employees' motivation to implement improvement programs at the departmental and individual level. A positive, carefully designed organizational safety culture can encourage error reporting by staff and so improve patient safety. © 2013 Sigma Theta Tau International.

  8. Safety oriented LWR research. Annual report 1990

    1991-07-01

    The contributions describe phenomenons of severe fuel damage and aspects of core meltdown accidents. These accidents deal with aerosol behaviour and ventilation systems and the methods for assessing and reducing the radiological concequences of nuclear accidents. Other contributions describe selected questions of safety of HCLWR type reactors. (DG)

  9. Developing and Testing the Health Care Safety Hotline: A Prototype Consumer Reporting System for Patient Safety Events.

    Schneider, Eric C; Ridgely, M Susan; Quigley, Denise D; Hunter, Lauren E; Leuschner, Kristin J; Weingart, Saul N; Weissman, Joel S; Zimmer, Karen P; Giannini, Robert C

    2017-06-01

    This article describes the design, development, and testing of the Health Care Safety Hotline, a prototype consumer reporting system for patient safety events. The prototype was designed and developed with ongoing review by a technical expert panel and feedback obtained during a public comment period. Two health care delivery organizations in one metropolitan area collaborated with the researchers to demonstrate and evaluate the system. The prototype was deployed and elicited information from patients, family members, and caregivers through a website or an 800 phone number. The reports were considered useful and had little overlap with information received by the health care organizations through their usual risk management, customer service, and patient safety monitoring systems. However, the frequency of reporting was lower than anticipated, suggesting that further refinements, including efforts to raise awareness by actively soliciting reports from subjects, might be necessary to substantially increase the volume of useful reports. It is possible that a single technology platform could be built to meet a variety of different patient safety objectives, but it may not be possible to achieve several objectives simultaneously through a single consumer reporting system while also establishing trust with patients, caregivers, and providers.

  10. Managing preventive occupational health and safety activities in Danish enterprises during a period of financial crisis

    Andersen, Hans H. K.; Bach, Elsa

    2017-01-01

    The onset of the financial crisis in 2008 has put pressure on enterprises that in turn have downsized and reorganized. Research has shown that economic recession has an effect on psychological and behavioral health that is attributed to working environment problems. The objective of this study is...... focus on the management of preventive workplace health and safety activities in enterprises during a period of economic recession....... is to unravel whether the onset of a general economic recession has had an impact on companies’ and public institutions’ preventive occupational health and safety activities. Hypotheses of the role of pro-cyclical and countercyclical effects are presented. This study is based on a survey of enterprise...... preventive occupational health safety activities. The baseline for the survey was established, in 2006 before the onset of the recession, with a follow up in 2011. Findings are discussed that support both the pro-cyclical and the countercyclical hypotheses. It is concluded that there is a need for a special...

  11. Physics division. Progress report for period ending September 30, 1995

    Ball, S.J.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Division have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, 69 As and 70 As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as 17,18 F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research

  12. Physics division. Progress report for period ending September 30, 1996

    Ball, S.J. [ed.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Division have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.

  13. AMNT 2014. Key Topic: Reactor operation, safety - report. Pt. 1

    Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Garching (Germany). Forschungszentrum

    2014-10-15

    Summary report on one session of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Safety of Nuclear Installations - Methods, Analysis, Results: Backfittings for the Improvement of Safety and Efficiency. The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' will be covered in further issues of atw.

  14. Forschungszentrum Rossendorf, Institute for Safety Research. Annual report 1995

    Weiss, F.P.; Rindelhardt, U.

    1996-09-01

    The scientific work of the Institute of Safety Research covers a wide range of safety related investigations. During 1995 important results on thermo-fluid dynamic single effects, thermalhydraulics and neutron kinetics for accident analysis, materials safety, simulation of radiation and particle transport, mechanical integrity of technical systems and process monitoring, risk management for waste deposits, magneto-hydrodynamics of conductive fluids, and of renewable energies were reached. The annual report presents also lists of publications, conference contributions, meetings, and workshops. (DG)

  15. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  16. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  17. LABOUR PROTECTION AND INDUSTRIAL SAFETY IN UKRAINE: PROBLEMS OF TRANSITION PERIOD AND PERSPECTIVE WAYS OF DEVELOPMENT

    A. P. BOCHKOVSKY

    2016-12-01

    1.9 fold greater than the corresponding figure in Ukraine, and the number of subjects with regard to the issues of the labour protection and industrial safety, which are taught to students in fulfilling the work programmes at nonspecialised Polish higher educational establishments is greater than that in Ukrainian several fold. The statistical data regarding the dynamics of the accident number increase in Ukraine and their causes within a period of  “Зернові продукти і комбікорми”, 201643 http://www.grain-mixedfodders.com Зернові продукти і комбікорми Vol.64, I.4/ 2016 2015 and 2016 are presented and analysed in the context of recent negative changes including the reduction of class hours for students learning the disciplines of "Sectoral Labour Protection", "Basics of Labour Protection", "Foundations of Life Activity Safety" and "Civil protection", merging such subjects, and cancellation of the graduation project relevant sections in most HEI of Ukraine On the grounds of the research, priority directions for developing the labour protection and industrial safety in Ukraine on the stage of European integration are proposed.Based on comparative analysis of the industrial accident causes in Ukraine and EU countries this article establishes that the main accident reasons are organizational ones (50 to 70% of the total number of cases, however such indicators as the registered in Ukraine fatal cases frequency coefficient (per 1 thousand of employees and the fatal accidents-total accidents number ratio are greater than the similar indicators in Europe by about 2- and 100-fold, respectively. It is noted that the issues of improving the work safety in Ukraine towards the association with the European Union should be considered in the context of two main planes, which are associated with changes in the legislative and educational systems. Within this article, the authors analyse the main inter-sectoral and sectoral

  18. Budget Period 1 Summary Report: Hywind Maine Project

    Keiser, Meagan [Statoil, Stavanger (Norway)

    2014-02-28

    In accordance with the Statement of Project Objectives (SOPO) agreed to between the Department of Energy (“DOE”) and Statoil for the Hywind Maine project, Statoil hereby submits a Budget Period 1 Summary Report which includes accomplishments for the project. The report includes summaries of the other submitted reports (see Section 1.2-2) and progress regarding innovations leading to potential reductions in the Cost of Energy (see Section 3). The Hywind Demo project, the world’s first full-scale 2.3 megawatts (MW) floating wind turbine, installed at a water depth of 200 meter (m), 10 kilometer (km) off the coast of Norway, has proven that the Hywind floating substructure is a suitable platform for conventional multi- MW turbines. A principal goal of the Hywind Maine Project was to leverage that experience, both to demonstrate the commercial feasibility of the technology and to further develop and optimize the technology all in order to bring the costs down in a larger scale development. With the Hywind Maine Project, Statoil planned to deploy four turbines of 3 MW in approximately 140 meters water depth. Although the project in Maine will not move forward, much value was gained through the BP1 work package. Advanced modeling related to the design basis, which will have applicability beyond the Maine project, was completed. In addition, initial supply chain analyses were conducted, which will help assist with development of updated cost of energy models. Geophysical and various environmental surveys were also conducted, the results of which Statoil has committed to share publicly, and which will help build a database of information that future developers may be able to access. Finally, Statoil gained a greater understanding of the US offshore wind industry and related markets, which will assist the company as it looks for full-scale, commercial opportunities.

  19. Fusion Safety Program annual report, fiscal year 1994

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities

  20. Centre de la Manche institutional control period: after the first safety review - 59236

    Dutzer, Michel; Vervialle, Jean Pierre; Andre, Alain; Marchiol, Albert

    2012-01-01

    Centre de la Manche disposal facility is the first French surface disposal facility dedicated to low and intermediate level short lived radioactive waste. It started up in 1969. After a continuous improvement, in the design of disposal vaults, in operational modes, in the whole process of waste management, in the safety approach, the last packages were received in 1994. 527, 000 m 3 of waste packages have been disposed during the 25 years of operation. The facility was licensed for the institutional control period in 2003. The disposal vaults are covered with a multilayer capping system that includes a bituminous membrane to provide protection against rainwater infiltration. Water that might infiltrate through the membrane is collected by the bottom slab of the vaults to a pipe network implemented in an underground gallery. Measurements show an overall infiltration rate of about 3 l/m 2 /year that complies with the objective of Andra of a few liters per square meter and per year. Investigations are performed in order to assess the behavior of the membrane in the long term. For this purpose periodically samples of the bituminous membrane are taken and measurements are performed. As at the beginning of the operational period waste packages were not conditioned in accordance with the specifications that are presently prescribed to waste generators, some settlements can be observed on the ancient part or the facilities. At the end of 2009 some excavation works were performed in an area where a settlement of few tens of centimeters was observed. The integrity of the membrane could be observed and the adequacy of the selection of this option for the water-tightness of the capping system was so confirmed. Environmental monitoring includes radiological and chemical measurements for discharge, underground water and surface water. In the particular framework of Centre de la Manche, a contamination of groundwater by tritiated wastes occurred in 1976. Theses wastes were

  1. Report on nuclear and radiological safety in 1994

    Lovincic, D.

    1995-01-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate, prepared the Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1994 as part of its regular practice of reporting on its activities to the Government and the Parliament of the Republic of Slovenia. The report is divided into seven thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activities of the Agency for Radwaste Management (ARAO), the activities of international safety missions in Slovenia, environmental radioactivity monitoring in Slovenia, ionizing radiation sources control by Slovenian Health Inspectorate and review of the operation of nuclear facilities around the world.

  2. Improving the safety of LWR power plants. Final report

    1980-04-01

    This report documents the results of the Study to identify current, potential research issues and efforts for improving the safety of Light Water Reactor (LWR) power plants. This final report describes the work accomplished, the results obtained, the problem areas, and the recommended solutions. Specifically, for each of the issues identified in this report for improving the safety of LWR power plants, a description is provided in detail of the safety significance, the current status (including information sources, status of technical knowledge, problem solution and current activities), and the suggestions for further research and development. Further, the issues are ranked for action into high, medium, and low priority with respect to primarily (a) improved safety (e.g. potential reduction in public risk and occupational exposure), and secondly (b) reduction in safety-related costs

  3. Fusion Safety Program annual report: Fiscal year 1986

    Holland, D.F.; Merrill, B.J.; Herring, J.S.; Piet, S.J.; Longhurst, G.R.

    1987-06-01

    This report summarizes the Fusion Safety Program's (FSP) major activities in fiscal year 1986. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and EG and G Idaho, Inc., is the prime contractor for FSP, which was initiated in 1979. Activities are conducted at the INEL and in participating facilities, including the Hanford Engineering Development Laboratory (HEDL), the Massachusetts Institute of Technology (MIT), and the University of Wisconsin. The technical areas covered in this report include tritium safety, activation product release, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruption, risk assessment methodology, and computer code development for reactor transients. Contributions to the Technical Planning Activity (TPA) and the ''white paper'' study by the Environmental, Safety,and Economics Committee (ESECOM) are summarized. The report also includes a summary of the safety and environmental analysis and documentation performed by the INEL for the Compact Ignition Tokamak (CIT) design project

  4. Summary report on safety objectives in nuclear power plants

    1989-01-01

    The special Task Force on Safety Objectives of the Commission of the European Communities (CEC) Working Group on the Safety of Light Water Reactors reported in May 1983 on its review of existing overall safety objectives in nuclear power plants. Since then much relevant worlwide activity has taken place. This report reviews those activities that have taken place since 1983 in European Community Member States, including more recent Members, as well as in Sweden and Finland. The report confines itself to issues related to probabilistic safety objectives, and concludes that significant progress has been made in many areas. Mutual understanding of safety objectives is leading to a convergence of views and approaches, but it is noted that much work remains to be completed

  5. Mathematics and statistics research department. Progress report, period ending June 30, 1981

    Lever, W.E.; Kane, V.E.; Scott, D.S.; Shepherd, D.E.

    1981-09-01

    This report is the twenty-fourth in the series of progress reports of the Mathematics and Statistics Research Department of the Computer Sciences Division, Union Carbide Corporation - Nuclear Division (UCC-ND). Part A records research progress in biometrics research, materials science applications, model evaluation, moving boundary problems, multivariate analysis, numerical linear algebra, risk analysis, and complementary areas. Collaboration and consulting with others throughout the UCC-ND complex are recorded in Part B. Included are sections on biology and health sciences, chemistry, energy, engineering, environmental sciences, health and safety research, materials sciences, safeguards, surveys, and uranium resource evaluation. Part C summarizes the various educational activities in which the staff was engaged. Part D lists the presentations of research results, and Part E records the staff's other professional activities during the report period.

  6. Mathematics and statistics research department. Progress report, period ending June 30, 1981

    Lever, W.E.; Kane, V.E.; Scott, D.S.; Shepherd, D.E.

    1981-09-01

    This report is the twenty-fourth in the series of progress reports of the Mathematics and Statistics Research Department of the Computer Sciences Division, Union Carbide Corporation - Nuclear Division (UCC-ND). Part A records research progress in biometrics research, materials science applications, model evaluation, moving boundary problems, multivariate analysis, numerical linear algebra, risk analysis, and complementary areas. Collaboration and consulting with others throughout the UCC-ND complex are recorded in Part B. Included are sections on biology and health sciences, chemistry, energy, engineering, environmental sciences, health and safety research, materials sciences, safeguards, surveys, and uranium resource evaluation. Part C summarizes the various educational activities in which the staff was engaged. Part D lists the presentations of research results, and Part E records the staff's other professional activities during the report period

  7. N Reactor updated safety analysis report, NUSAR

    1978-01-01

    An update of the N Reactor safety analysis is presented to reconfirm that the continued operation does not pose undue risk to DOE personnel and property, the public, or the environment. A reanalysis of LOCA and reactivity transients utilizing current codes and methods is made. The principal aspects of the overall submission, a general description, and site characteristics including geography and demography, nearby industrial, transportation and military facilities, meteorology, hydraulic engineering, and geology and seismology are described

  8. The PEC reactor. Safety analysis: Detailed reports

    1988-01-01

    In the safety-analysis of the PEC Brasimone reactor (Italy), attention was focused on the role of plant-incident analysis during the design stage and the conclusions reached. The analysis regarded the following: thermohydraulic incidents at full power; incidents with the reactor shut down; reactivity incidents; core local faults; analysis of fuel-handling incidents; engineered safeguards and passive safety features; coolant leakage and sodium fires; research and development studies on the seismic behaviour of the PEC fast reactor; generalized sodium fire; severe accidents, accident sequences with shudown; reference accident. Both the theoretical and experimental analyses demonstrated the adequacy of the design of the PEC fast reactor, aimed at minimizing the consequences of a hypothetical disruptive core accident with mechanical energy release. It was shown that the containment barriers were sized correctly and that the residual heat from a disassembled core would be removed. The re-evaluation of the source term emphasized the conservative nature of the hypotheses assumed in the preliminary safety analysis for calculating the risk to the public.

  9. Progress report: 1996 Radiation Safety Systems Division

    Bhagwat, A.M.; Sharma, D.N.; Abani, M.C.; Mehta, S.K.

    1997-01-01

    The activities of Radiation Safety Systems Division include (i) development of specialised monitoring systems and radiation safety information network, (ii) radiation hazards control at the nuclear fuel cycle facilities, the radioisotope programmes at Bhabha Atomic Research Centre (BARC) and for the accelerators programme at BARC and Centre for Advanced Technology (CAT), Indore. The systems on which development and upgradation work was carried out during the year included aerial gamma spectrometer, automated environment monitor using railway network, radioisotope package monitor and air monitors for tritium and alpha active aerosols. Other R and D efforts at the division included assessment of risk for radiation exposures and evaluation of ICRP 60 recommendations in the Indian context, shielding evaluation and dosimetry for the new upcoming accelerator facilities and solid state nuclear track detector techniques for neutron measurements. The expertise of the divisional members was provided for 36 safety committees of BARC and Atomic Energy Regulatory Board (AERB). Twenty three publications were brought out during the year 1996. (author)

  10. Planning report for the safety assessment SR-Can

    NONE

    2003-06-01

    This document is a planning report for SKB's next assessment of long-term safety for a KBS 3 repository. The assessment, SR-Can, is to be finished by the end of 2005 and will be used for SKB's application to build an Encapsulation plant for spent nuclear fuel. Apart from outlining the methodology, the report discusses the handling in SR-Can of a number of important issues regarding the near field, the geosphere, the biosphere, the climatic evolution etc. The Swedish nuclear safety and radiation protection authorities have recently issued regulations concerning the final disposal of nuclear waste. The principal compliance criterion states that the annual risk of harmful effects must not exceed 10{sup -6} for a representative individual in the group exposed to the greatest risk. There are also a number of requirements on methodological aspects of the safety assessment as well as on the contents of a safety report. The regulations are reproduced in an Appendix to this report. The primary safety function of the KBS 3 system is to completely isolate the spent nuclear fuel within copper canisters over the entire assessment period, which will be one million years in SR-Can. Should a canister be damaged, the secondary safety function is to retard any releases from the canisters. The main steps of the assessment are the following: 1. Qualitative system description, FEP processing: This step consists of defining a system boundary and of describing the system on a format suitable for the safety assessment. Databases of relevant features, events and processes influencing long-term safety are structured and used as one starting point for the assessment. 2. Initial state descriptions. 3. Process descriptions: In this step all identified processes within the system boundary involved in the long-term evolution of the system are described in detail. 4. Description of boundary conditions: This step is a broad description of the evolution of the boundaries of the system

  11. Planning report for the safety assessment SR-Can

    2003-06-01

    This document is a planning report for SKB's next assessment of long-term safety for a KBS 3 repository. The assessment, SR-Can, is to be finished by the end of 2005 and will be used for SKB's application to build an Encapsulation plant for spent nuclear fuel. Apart from outlining the methodology, the report discusses the handling in SR-Can of a number of important issues regarding the near field, the geosphere, the biosphere, the climatic evolution etc. The Swedish nuclear safety and radiation protection authorities have recently issued regulations concerning the final disposal of nuclear waste. The principal compliance criterion states that the annual risk of harmful effects must not exceed 10 -6 for a representative individual in the group exposed to the greatest risk. There are also a number of requirements on methodological aspects of the safety assessment as well as on the contents of a safety report. The regulations are reproduced in an Appendix to this report. The primary safety function of the KBS 3 system is to completely isolate the spent nuclear fuel within copper canisters over the entire assessment period, which will be one million years in SR-Can. Should a canister be damaged, the secondary safety function is to retard any releases from the canisters. The main steps of the assessment are the following: 1. Qualitative system description, FEP processing: This step consists of defining a system boundary and of describing the system on a format suitable for the safety assessment. Databases of relevant features, events and processes influencing long-term safety are structured and used as one starting point for the assessment. 2. Initial state descriptions. 3. Process descriptions: In this step all identified processes within the system boundary involved in the long-term evolution of the system are described in detail. 4. Description of boundary conditions: This step is a broad description of the evolution of the boundaries of the system, focussing mainly

  12. Report on safety related occurrences and reactor trips July 1, 1976-December 31, 1976

    Andermo, L.

    1977-04-01

    This is a systematically arranged report on all reported safety related occurrences and reactor trips in Swedish nuclear power plants in operation during July 1, 1976 to December 31, 1976 inclusive. The facilities involved are Oskarshamn 1 and 2, Ringhals 1 and 2 and Barsebaeck 1. During this period of the 6 months 37 safety related occurrences and 34 reactor trips have been reported to the Nuclear Power Inspectorate. As earlier experiences have shown it is to the greatest extent the conventional components which bring about the safety related occurrences or occurrences leading to outages or power reductions. However, the component errors discovered in the safety related systems have not affected the function of their redundant systems and other diverse systems have not been involved. Therefore the reactor safety has been satisfactory. The fact that even small deviations from prescribed operation results in automatic and safe shut down of the reactor, does not always imply a conflict with operational availability. The number of reactor trips are almost as low as during the last period, which is a drastic reduction compared to earlier time periods. The greatest outages are caused by occurrences without safety significance.(author)

  13. Report of safety of the characterizing system of radioactive waste

    Angeles C, A.; Jimenez D, J.; Reyes L, J.

    1998-09-01

    Report of safety of the system of radioactive waste of the ININ: Installation, participant personnel, selection of the place, description of the installation, equipment. Proposed activities: operations with radioactive material, calibration in energy, calibration in efficiency, types of waste. Maintenance: handling of radioactive waste, physical safety. Organization: radiological protection, armor-plating, personal dosemeter, risks and emergency plan, environmental impact, medical exams. (Author)

  14. Review of safety reports involving electronic flight bags

    2009-04-27

    Electronic Flight Bags (EFBs) are a relatively new device used by pilots. Even so, 37 safety-related events involving EFBs were identified from the public online Aviation Safety Reporting System (ASRS) database as of June 2008. In addition, two accid...

  15. Environmental and Occupational Safety Division annual progress report for 1983

    1984-11-01

    This report presents summaries of activities conducted during 1983 in the following areas: radiation monitoring; health physics instrumentation development; environmental management; atmospheric monitoring; water monitoring; background radiation measurements; soil and grass samples; deer samples; calculation of potential radiation dose to the public; industrial safety; and operational safety

  16. Training Course for Compliance Safety and Health Officers. Final Report.

    McKnight, A. James; And Others

    The report describes revision of the Compliance Safety and Health Officers (CSHO) course for the Department of Labor, Occupational Safety and Health Administration (OSHA). The CSHO's job was analyzed in depth, in accord with OSHA standards, policies, and procedures. A listing of over 1,700 violations of OSHA standards was prepared, and specialists…

  17. Preliminary report in radiological safety for 1993 hydrology campaign

    Badano, A.; Suraez, R.; Dellepere, A.; Barreiro, M.

    1993-01-01

    The purpose of this report is to provide a study about industrial effluents influence on water pollution of Montevideo coastal beaches. The methods which have been considered are nuclear tracer techniques with a special attention in the radioprotection supervision. Three points are considered as evaluation: handling of radioactive tracers and safety, radiation protection workers, environment and public safety. tabs

  18. AMNT 2014. Key topic: Reactor operation, safety - report. Pt. 2

    Fischer, Klaus-Christian; Willschuetz, Hans-Georg; Wortmann, Birgit

    2014-01-01

    Summary report on the following sessions of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Thermo Dynamics and Fluid Dynamics: Experiments and Backfittings for the Improvement of Safety and Efficiency; - Safety of Nuclear Installations - Methods, Analyses, Results: In-Vessel Phenomena; Ex-Vessel Phenomena; - Standards and Regulations; Hazard and Safety Analysis; and Validation and Uncertainty Analysis. The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' have been covered in atw 10 (2014) and will be covered in further issues of atw.

  19. DOE Defense Program (DP) safety programs. Final report, Task 003

    1998-01-01

    The overall objective of the work on Task 003 of Subcontract 9-X52-W7423-1 was to provide LANL with support to the DOE Defense Program (DP) Safety Programs. The effort included the identification of appropriate safety requirements, the refinement of a DP-specific Safety Analysis Report (SAR) Format and Content Guide (FCG) and Comprehensive Review Plan (CRP), incorporation of graded approach instructions into the guidance, and the development of a safety analysis methodologies document. All tasks which were assigned under this Task Order were completed. Descriptions of the objectives of each task and effort performed to complete each objective is provided here

  20. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR

  1. Safety Review Committee - Annual Report 1991-1992

    1993-01-01

    During the year under review. The Safety Review Committee (SRC) assessed the safety of ANSTO's operations. This was done by site visits, examination of documentation and briefing by ANSTO officers responsible for particular operations, and includes HIFAR and Moata reactors, radioisotope production, packing and dispatch, radioactive waste management practices, occupational health and safety activities and ANSTO's arrangements for public health and safety beyond the site. This report describes the activities and findings of the SRC during the year ending 30 June 1992. 8 figs., ills

  2. Knowledge Representation in Patient Safety Reporting: An Ontological Approach

    Liang Chen

    2016-10-01

    Full Text Available Purpose: The current development of patient safety reporting systems is criticized for loss of information and low data quality due to the lack of a uniformed domain knowledge base and text processing functionality. To improve patient safety reporting, the present paper suggests an ontological representation of patient safety knowledge. Design/methodology/approach: We propose a framework for constructing an ontological knowledge base of patient safety. The present paper describes our design, implementation, and evaluation of the ontology at its initial stage. Findings: We describe the design and initial outcomes of the ontology implementation. The evaluation results demonstrate the clinical validity of the ontology by a self-developed survey measurement. Research limitations: The proposed ontology was developed and evaluated using a small number of information sources. Presently, US data are used, but they are not essential for the ultimate structure of the ontology. Practical implications: The goal of improving patient safety can be aided through investigating patient safety reports and providing actionable knowledge to clinical practitioners. As such, constructing a domain specific ontology for patient safety reports serves as a cornerstone in information collection and text mining methods. Originality/value: The use of ontologies provides abstracted representation of semantic information and enables a wealth of applications in a reporting system. Therefore, constructing such a knowledge base is recognized as a high priority in health care.

  3. Psychological safety and error reporting within Veterans Health Administration hospitals.

    Derickson, Ryan; Fishman, Jonathan; Osatuke, Katerine; Teclaw, Robert; Ramsel, Dee

    2015-03-01

    In psychologically safe workplaces, employees feel comfortable taking interpersonal risks, such as pointing out errors. Previous research suggested that psychologically safe climate optimizes organizational outcomes. We evaluated psychological safety levels in Veterans Health Administration (VHA) hospitals and assessed their relationship to employee willingness of reporting medical errors. We conducted an ANOVA on psychological safety scores from a VHA employees census survey (n = 185,879), assessing variability of means across racial and supervisory levels. We examined organizational climate assessment interviews (n = 374) evaluating how many employees asserted willingness to report errors (or not) and their stated reasons. Finally, based on survey data, we identified 2 (psychologically safe versus unsafe) hospitals and compared their number of employees who would be willing/unwilling to report an error. Psychological safety increased with supervisory level (P hospital (71% would report, 13% would not) were less willing to report an error than at the psychologically safe hospital (91% would, 0% would not). A substantial minority would not report an error and were willing to admit so in a private interview setting. Their stated reasons as well as higher psychological safety means for supervisory employees both suggest power as an important determinant. Intentions to report were associated with psychological safety, strongly suggesting this climate aspect as instrumental to improving patient safety and reducing costs.

  4. NPP Temelin safety analysis reports and PSA status

    Mlady, O.

    1999-01-01

    To enhance the safety level of Temelin NPP, recommendations of the international reviews were implemented into the design as well as into organization of the plant construction and preparation for operation. The safety assessment of these design changes has been integrated and reflected in the Safety Analysis Reports, which follow the internationally accepted guidelines. All safety analyses within Safety Analysis Reports were repeated carefully considering technical improvements and replacements to complement preliminary safety documentation. These analyses were performed by advanced western computer codes to the depth and in the structure required by western standards. The Temelin NPP followed a systematic approach in the functional design of the Reactor Protection System and related safety analyses. Modifications of reactor protection system increase defense in depth and facilitate demonstrating that LOCA and radiological limits are met for non-LOCA events. The rigorous safety analysis methodology provides assurance that LOCA and radiological limits are met. Established and accepted safety analysis methodology and accepted criteria were applied to Temelin NPP meeting US NRC and Czech Republic requirements. IAEA guidelines and recommendations

  5. West Valley Reprocessing Plant. Safety analysis report, supplement 21

    1976-01-01

    Supplement No. 21 contains responses to USNRC questions on quality assurance contained in USNRC letter to NFS dated January 22, 1976, revised pages for the safety analysis report, and Appendix IX ''Quality Assurance Manual--West Valley Construction Projects.''

  6. Annual technical progress report: reactor safety, Government fiscal year 1978

    1978-01-01

    Progress in LMFBR safety studies on accident debris behavior is reported under the following subtask titles: high-temperature-concentration aerosols, large-scale molten fuel tests, sodium release tests, and risk analysis

  7. 77 FR 34457 - Pipeline Safety: Mechanical Fitting Failure Reports

    2012-06-11

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... notice provides clarification to owners and operators of gas distribution pipeline facilities when... of a gas distribution pipeline facility to file a written report for any mechanical fitting failure...

  8. Applied health physics and safety annual report for 1976

    Auxier, J.A.; Davis, D.M.

    1977-08-01

    Progress is reported in the following areas of research: personnel monitoring; health physics instrumentation; atmospheric monitoring; water monitoring; radiation background measurements; soil samples; laboratory operations monitoring; radiation incidents; laundry monitoring; accident analysis; and industrial safety

  9. Rankine bottoming cycle safety analysis. Final report

    Lewandowski, G.A.

    1980-02-01

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  10. Fusion Safety Program Annual Report, Fiscal Year 1996

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1996-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1996. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. The objective is to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, chemical reactions and activation product release, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Work done for ITER this year has focused on developing the needed information for the Non- Site- Specific Safety Report (NSSR-1). A final area of activity described is development of the new DOE Technical Standards for Safety of Magnetic Fusion Facilities

  11. KfK Nuclear Safety Project. First semiannual report 1985

    1985-11-01

    The semiannual progress report 1985/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1985 in the nuclear safety field by KfK institutes and departements and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics: work performed, results obtained and plans for future work. (orig./HP) [de

  12. Report on nuclear and radiation safety in Slovenia in 2000

    Lovincic, D.

    2001-09-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 2000. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia.

  13. Nuclear and radiological safety in Slovenia in 1998, Annual report

    Lovincic, D.

    1999-09-01

    The Slovenian Nuclear Safety Administration (SNSA), in cooperation with Health Inspectorate of the Republic of Slovenia and the Administration for Civil Protection and Disaster Relief, has prepared a Report of Nuclear and Radiological Safety in the Republic of Slovenia for 1998. The report presents activities of the SNSA, operation of nuclear facilities, activities of the Agency of Radwaste Management, work of international missions, emergency plan, authorized organizations, monitoring of radioactivity, control of ionizing radiation and nuclear electricity generation

  14. Nuclear and Radiological Safety in Slovenia. Annual Report 1996

    Lovincic, D.

    1997-08-01

    The Slovenian Nuclear Safety Administration (SNSA), in cooperation with Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1996. The report presents activities of the SNSA; operation of nuclear facilities; activities of the Agency for Radwaste Management; work of international missions; emergency plan; authorized organizations; monitoring of radioactivity; control of ionizing radiation and nuclear electricity generation

  15. Report on nuclear and radiological safety in 1995

    Lovincic, D.

    1996-07-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate of the Republic of Slovenia and the Administration for Rescue and Disaster Relief (URSZR) has prepared a Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1995. The report is presenting: the activities of the SNSA; the operation of nuclear facilities; monitoring of radioactivity; control of ionizing radiation and nuclear electricity generation.

  16. Nuclear and radiation safety in Slovenia. Annual report 2000

    Lovincic, D.

    2001-09-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 2000. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. (author)

  17. Research program on regulatory safety research - Synthesis report 2008

    Mailaender, R

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the program's main points of interest, work done in the year 2008 and the results obtained. The main points of the research program, which is co-ordinated by the Swiss Federal Nuclear Safety Inspectorate ENSI, are discussed. Topics covered concern reactor safety as well as human, organisational and safety aspects. Work done in several areas concerning reactor safety and materials as well as interactions in severe accidents in light-water reactors is described. Radiation protection, the transport and disposal of radioactive wastes and safety culture are also looked at. Finally, national and international co-operation is briefly looked at and work to be done in 2009 is reviewed. The report is completed with a list of research and development projects co-ordinated by ENSI

  18. Bowtie Risk Management methodology and Modern Nuclear Safety Reports

    Ilizastigui Pérez, F.

    2016-01-01

    The Safety Report (SR) plays a crucial role within the nuclear licensing regime as the principal means for demonstrating the adequacy of safety analysis for a nuclear facility to ensure that it can be constructed, operated, maintained, shut down, and decommissioned safely and in compliance with applicable laws and regulations. It serves as the basis for granting authorizations for the commencement of the main stages of the facility’s life cycle as well as decision-making processes related to safety. Historically, the majority of nuclear safety reports have operated under rather prescriptive regimes, with emphasis placed on demonstrations of the robustness of the facility’s design (design safety) against prescriptive technical requirements set by the regulatory body, and less attention paid to demonstrating the adequacy and effectiveness of Operator’s management system for managing risks to daily operation.

  19. National report of Brazil: nuclear safety convention - September 1998

    1998-09-01

    This National Report was prepared by a group composed of representatives of the various Brazilian organizations with responsibilities in the field of nuclear safety, aiming the fulfilling the Convention of Nuclear Energy obligations. The Report contains a description of the Brazilian policy and programme on the safety of nuclear installations, and an article by article description of the measures Brazil is undertaking in order to implement the obligations described in the Convention. The last chapter describes plans and future activities to further enhance the safety of nuclear installations in Brazil

  20. National report of Brazil: nuclear safety convention - September 1998

    NONE

    1998-09-01

    This National Report was prepared by a group composed of representatives of the various Brazilian organizations with responsibilities in the field of nuclear safety, aiming the fulfilling the Convention of Nuclear Energy obligations. The Report contains a description of the Brazilian policy and programme on the safety of nuclear installations, and an article by article description of the measures Brazil is undertaking in order to implement the obligations described in the Convention. The last chapter describes plans and future activities to further enhance the safety of nuclear installations in Brazil.

  1. Preliminary safety analysis report for the Waste Characterization Facility

    1994-10-01

    This safety analysis report outlines the safety concerns associated with the Waste Characterization Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are to: define and document a safety basis for the Waste Characterization Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume. 142 refs., 38 figs., 39 tabs

  2. Nuclear safety in Slovak Republic. Safety analysis reports for WWER 440 reactors

    Rohar, S.

    1999-01-01

    Implementation of nuclear power program is connected to establishment of regulatory body for safe regulation of siting, construction, operation and decommissioning of nuclear installations. Licensing being one of the most important regulatory surveillance activity is based on independent regulatory review and assessment of information on nuclear safety for particular nuclear facility. Documents required to be submitted to the regulatory body by the licensee in Slovakia for the review and assessment usually named Safety Analysis Report (SAR) are presented in detail in this paper. Current status of Safety Analysis Reports for Bohunice V-1, Bohunice V-2 and Mochovce NPP is shown

  3. 242-A evaporator safety analysis report

    Campbell, T.A.

    1998-01-01

    In compliance with DOE Orders, an update of the 242-A SAR has been prepared, as documented in the referenced ECN. Several categories of changes were identified for inclusion in this revision of the SAR. These categories will be utilized to simplify the discussion of the changes for this USQ document. However, it is important to note that no new tests or experiments were included in this revision of the SAR. Editorial changes and/or informational updates to Chapters 9 and 11 were included as part of this revision. However, no changes to Operational Safety Requirements (OSRs) contained in Chapter 11 were required. General categories of changes included in this revision are listed

  4. Results of evaluation of periodic safety review for No. 1 plant in Fukushima No. 1 Nuclear Power Station, Tokyo Electric Power Co., Inc

    1994-01-01

    No. 1 plant in Fukushima No. 1 Nuclear Power Station started the commercial power generation in March, 1971, and has continued the operation for more than 23 years. During this period, the countermeasures to troubles, periodic inspections, and the maintenance by the electric power company have been carried out. These states are to be recollected from the viewpoints of the comprehensive evaluation of the operation experiences and the reflection of the latest technological knowledge, and the safety and reliability are to be further improved in the periodic safety review. Agency of Natural Resources and Energy evaluated the report of the periodic safety review for No. 1 plant in Fukushima No. 1 Nuclear Power Station, and summarized the results. The course of the evaluation of the report is shown. The facility utilization factor was 50.1% on the average of about 23 years, but in the last 10 years, it was improved to 59.7%. In the last five years, the rate of occurrence of unexpected shutdown was 0.4 times/year. These are the results of preventive maintenance and the improvement of the facilities and operation management. Operation management, maintenance management, fuel management, radiation control, radioactive waste management and the reflection of the experience of troubles and the latest technological knowledge to the improvement of safety have been carried out properly. The work plan for disaster prevention was established. (K.I.)

  5. Report on equipment availability for the ten-year period, 1966--1975

    1976-12-01

    This is an annual report of availability and outage statistics for electric power generating facilities operating in the United States. A list of utility organizations voluntarily participating in the EEI Equipment Availability Program in 1975 is located in Appendix F. All summary reports in this publication are for the 10-year period 1966-1975. Each reporting utility company has received reports on individual units for which data were submitted. Also, selected major equipment manufacturers receive copies of computer reports showing an analysis of the data for their equipment. Revised reporting instructions to incorporate Safety and Environmental Requirement Cause Codes were issued effective January 1, 1976. In addition, provisions were made for identifying major equipment manufactured outisde of the United States or under foreign license. Recognizing that an Annual Report contains only a limited amount of general outage data in selected categories, the Task Force has agreed to perform special analyses of the data bank if the cost of computer services is met by the requestor and if the required analysis conforms to some designated policy guidelines.

  6. Fusion Safety Program annual report, Fiscal Year 1993

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1993-12-01

    This report summarizes the major activities of the Fusion Safety Program in Fiscal Year 1993. The Idaho National Engineering Laboratory (INEL) has been designated by DOE as the lead laboratory for fusion safety, and EG ampersand G Idaho, Inc., is the prime contractor for INEL operations. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations, including universities and private companies. Technical areas covered in the report include tritium safety, beryllium safety, activation product release, reactions involving potential plasma-facing materials, safety of fusion magnet systems, plasma disruptions and edge physics modeling, risk assessment failure rates, computer codes for reactor transient analysis, and regulatory support. These areas include work completed in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed at the INEL for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor projects at the Princeton Plasma Physics Laboratory and a summary of the technical support for the ARIES/PULSAR commercial reactor design studies

  7. Interim process report for the safety assessment SR-Can

    Sellin, Patrick

    2004-08-01

    This report is a documentation of buffer processes identified as relevant to the long-term safety of a KBS-3 repository. The report is part of the interim reporting of the safety assessment SR-Can, see further the Interim main report. The final SR-Can reporting will support SKB's application to build an Encapsulation plant for spent nuclear fuel and is to be produced in 2006. The purpose of this report is to document the scientific knowledge of the processes to a level required for an adequate treatment in the safety assessment. The documentation is thus from a scientific point of not exhaustive since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of an assessment. The purpose is further to determine the handling of each process in the safety assessment and to demonstrate how uncertainties are taken care of, given the suggested handling. The process documentation in the SR 97 version of the Process report is a starting point for this SR-Can interim version. As further described in the Interim main report, the list of relevant processes has been reviewed and slightly extended by comparison to other databases. Furthermore, the backfill has been included as a system part of its own, rather than being described together with the buffer as in SR 97. Apart from giving an interim account of the documentation and handling of buffer processes in SR-Can, this report is meant to serve as a template for the forthcoming documentation of processes occurring in other parts of the repository system. A complete list of processes can be found in the Interim FEP report for the safety assessment SR-Can. All material presented in this document is preliminary in nature and will possibly be updated as the SR-Can project progresses

  8. Interim process report for the safety assessment SR-Can

    Sellin, Patrick (ed.)

    2004-08-01

    This report is a documentation of buffer processes identified as relevant to the long-term safety of a KBS-3 repository. The report is part of the interim reporting of the safety assessment SR-Can, see further the Interim main report. The final SR-Can reporting will support SKB's application to build an Encapsulation plant for spent nuclear fuel and is to be produced in 2006. The purpose of this report is to document the scientific knowledge of the processes to a level required for an adequate treatment in the safety assessment. The documentation is thus from a scientific point of not exhaustive since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of an assessment. The purpose is further to determine the handling of each process in the safety assessment and to demonstrate how uncertainties are taken care of, given the suggested handling. The process documentation in the SR 97 version of the Process report is a starting point for this SR-Can interim version. As further described in the Interim main report, the list of relevant processes has been reviewed and slightly extended by comparison to other databases. Furthermore, the backfill has been included as a system part of its own, rather than being described together with the buffer as in SR 97. Apart from giving an interim account of the documentation and handling of buffer processes in SR-Can, this report is meant to serve as a template for the forthcoming documentation of processes occurring in other parts of the repository system. A complete list of processes can be found in the Interim FEP report for the safety assessment SR-Can. All material presented in this document is preliminary in nature and will possibly be updated as the SR-Can project progresses.

  9. Annual report on the activities in Safety Administration Department. Report of the fiscal year 2010

    Aoki, Yoshikazu [Japan Atomic Energy Agency, Nuclear Fuel Cycle Engineering Laboratories, Tokai, Ibaraki (Japan)

    2014-01-15

    The activities of Safety Administration Department covers many fields in Nuclear Fuel Cycle Engineering Laboratories such as the management of the occupational safety and health, the crisis management, the security, and the management of a quality assurance. This report is the summary of the activities of Safety Administration Department since April, 2010 until March, 2011. (author)

  10. 1980 Annual status report reactor safety

    1981-01-01

    The JRC reactor safety programme involves theoretical and experimental activities to analyse accidents and their consequences for LWRs and LMFBRs. The first project deals with the improvement and the application of methodologies for risk and reliability assessment. This activity involves the identification and modelling of accident sequences and events and the analysis of fault trees. In this project, the implementation of a centralized data bank system (European Reliability Data System) is foreseen, which should provide the information needed for risk assessment studies. In project 2 a major effort on LWRs is centered on the study of the loss-of-coolant accident following large, intermediate or small breaks of the primary circuit. These accidents are simulated out of pile in the LOBI facility. In project 3 a contribution is made to solve material problems and to provide data and calculation methods for end of life predictions of reactor components. It involves a contribution to the programme for the inspection of steel components (PISC) as well as the study of fracture and creep fatigue properties of stainless steel. In the project 4 and 5 a deterministic approach is adopted to solve some problems of large hypothetical accidents in an LMFBR. The calculation tools developed concern sodium thermohydraulics in fuel element bundles, fuel coolant interaction, whole core accident analysis, containment loading and response and post accident heat removal

  11. Integrated safety assessment report: Integrated Safety Assessment Program: Millstone Nuclear Power Station, Unit 1 (Docket No. 50-245): Draft report

    1987-04-01

    The Integrated Safety Assessment Program (ISAP) was initiated in November 1984, by the US Nuclear Regulatory Commission to conduct integrated assessments for operating nuclear power reactors. The integrated assessment is conducted in a plant-specific basis to evaluate all licensing actions, licensee initiated plant improvements and selected unresolved generic/safety issues to establish implementation schedules for each item. In addition, procedures will be established to allow for a periodic updating of the schedules to account for licensing issues that arise in the future. This report documents the review of Millstone Nuclear Power Station, Unit No. 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit No. 1, is one of two plants being reviewed under the pilot program for ISAP. This report indicates how 85 topics selected for review were addressed. This report presents the staff's recommendations regarding the corrective actions to resolve the 85 topics and other actions to enhance plant safety. The report is being issued in draft form to obtain comments from the licensee, nuclear safety experts, and the Advisory Committee for Reactor Safeguards (ACRS). Once those comments have been resolved, the staff will present its positions, along with a long-term implementation schedule from the licensee, in the final version of this report

  12. Fourth national report of Brazil for the nuclear safety convention. Sep. 2007

    NONE

    2007-09-15

    This Fourth National Report of Brazil is a new update to include relevant information of the period of 2004-2007. This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  13. Fourth national report of Brazil for the nuclear safety convention. Sep. 2007

    2007-09-01

    This Fourth National Report of Brazil is a new update to include relevant information of the period of 2004-2007. This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  14. quarterly financial report for the period ending 30 June 2012

    Office 2004 Test Drive User

    2012-06-30

    Jun 30, 2012 ... 2 IDRC QUARTERLY FINANCIAL REPORT JUNE 2012. Consolidated .... Accounting Standard 34, Interim Financial Reporting. ..... ceasing activities in the field of social innovation, the principal component of which is ending ...

  15. quarterly financial report for the period ending 31 December 2011

    Sophie Comeau

    2011-12-31

    Dec 31, 2011 ... 2 IDRC QUARTERLY FINANCIAL REPORT DECEMBER 2011. Consolidated ..... guiding principles and overarching strategies that formed the basis of the expenditure ... Accounting Standard 34, Interim Financial Reporting.

  16. Research on the maximum utilization of PSR (Periodic Safety Review) results

    Shin, Tae Myung; Lee, Jae Kyung; Ahn, Jin Chul; Kim, G. U.; Ryu, Y. S.; Lee, G. B.; Park, D. H. [Chungju Univ., Cheongju (Korea, Republic of)

    2002-03-15

    This is the final report of 'research on the maximum utilization of PSR results' focused on linkage strategy of PSR with continued operation over design life of operating NPP. Study was mace mainly on the analysis of current status of continued operation over plant design life in foreign countries, analysis of domestic PSR implementation status and establishment of basic strategy for linking PSR with continued operation. The results of the study performed so far can be summarized as below, the recent worldwide trend of promoting efficiency of NPP operation is focused on life extension of the plants rather than building of new. Considering the fact that some developed countries have already implemented the plant life extension and not a few countries at least have invested a good amount of fund for R and D of plant life management, we can not disregard the owner's request for review of life extension application without any reasonable description. As a result of investigation and analysis for the current status of continued operation over plant design life in foreign countries, it is concluded that most countries tend to link PSR with continued operation over plant design life and the extended operation has already been implemented in some developed countries. From the point, it turned out to be more desirable to couple those two systems for continued operation over plant design life of Korean NPP. A less than 7 years left until the end of design life for the oldest NPP Kori unit 1, it is strongly recommended to establish institutional frame including a legal basis and regulatory guidelines for continued operation over plant design life before long. For the prioritization methods of corrective actions in consideration of safety significance of shortcomings picked up from PSR, some related systems are reviewed including IAEA guidelines, PSR implementation experience of UK and US prioritization system for GSI (Generic Safety Issue). Basic principles are

  17. Nuclear Research Center Karlsruhe, Central Safety Department. Annual report 1992

    Koelzer, W.

    1993-05-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, biophysics of multicellular systems, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1992 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  18. Annual report 1991 of the Central Safety Department

    Koelzer, W.

    1992-04-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, behavior of tritium in the air/plant/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1989 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of the Table of Contents and of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  19. Annual report 1988 of the Central Safety Department

    Koelzer, W.; Urban, M.

    1989-04-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The r+d work concentrates on the following aspects: physical and chemical behavior of biologically particularly active radionuclides, behavior of tritium in the air/plant/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1988 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of the Table of Contents and of Chapter 1 describing the duties and organization of the Central Safety Department. (orig./HP) [de

  20. Annual report 1990 of the Central Safety Department

    Koelzer, W.; Urban, M.

    1991-04-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, behavior of tritium in the air/plant/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1989 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of the Table of Contents and of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  1. Nuclear safety research project (PSF). 1999 annual report

    Muehl, B.

    2000-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report summarizes the R and D results of PSF during 1999. The research tasks cover three main topics: Light Water Reactor safety, innovative systems, and studies related to the transmutation of actinides. The importance of the Light Water Reactor safety, however, has decreased during the last year in favour of the transmutation of actinides. Numerous institutes of the research centre contribute to the PSF programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2000. (orig.) [de

  2. Designing a Safety Reporting Smartphone Application to Improve Patient Safety After Total Hip Arthroplasty.

    Krumsvik, Ole Andreas; Babic, Ankica

    2017-01-01

    This paper presents a safety reporting smartphone application which is expected to reduce the occurrence of postoperative adverse events after total hip arthroplasty (THA). A user-centered design approach was utilized to facilitate optimal user experience. Two main implemented functionalities capture patient pain levels and well-being, the two dimensions of patient status that are intuitive and commonly checked. For these and other functionalities, mobile technology could enable timely safety reporting and collection of patient data out of a hospital setting. The HCI expert, and healthcare professionals from the Haukeland University Hospital in Bergen have assessed the design with respect to the interaction flow, information content, and self-reporting functionalities. They have found it to be practical, intuitive, sufficient and simple for users. Patient self-reporting could help recognizing safety issues and adverse events.

  3. Safety management as a foundation for evidence-based aeromedical standards and reporting of medical events.

    Evans, Anthony D; Watson, Dougal B; Evans, Sally A; Hastings, John; Singh, Jarnail; Thibeault, Claude

    2009-06-01

    The different interpretations by States (countries) of the aeromedical standards established by the International Civil Aviation Organization has resulted in a variety of approaches to the development of national aeromedical policy, and consequently a relative lack of harmonization. However, in many areas of aviation, safety management systems have been recently introduced and may represent a way forward. A safety management system can be defined as "A systematic approach to managing safety, including the necessary organizational structures, accountabilities, policies, and procedures" (1). There are four main areas where, by applying safety management principles, it may be possible to better use aeromedical data to enhance flight safety. These are: 1) adjustment of the periodicity and content of routine medical examinations to more accurately reflect aeromedical risk; 2) improvement in reporting and analysis of routine medical examination data; 3) improvement in reporting and analysis of in-flight medical events; and 4) support for improved reporting of relevant aeromedical events through the promotion of an appropriate culture by companies and regulatory authorities. This paper explores how the principles of safety management may be applied to aeromedical systems to improve their contribution to safety.

  4. Supplement report to the Nuclear Criticality Safety Handbook of Japan

    Okuno, Hiroshi; Komuro, Yuichi; Nakajima, Ken

    1995-10-01

    Supplementing works to 'The Nuclear Criticality Safety Handbook' of Japan have been continued since 1988, the year the handbook edited by the Science and Technology Agency first appeared. This report publishes the fruits obtained in the supplementing works. Substantial improvements are made in the chapters of 'Modelling the evaluation object' and 'Methodology for analytical safety assessment', and newly added are chapters of 'Criticality safety of chemical processes', 'Criticality accidents and their evaluation methods' and 'Basic principles on design and installation of criticality alarm system'. (author)

  5. Buff book 1: status summary report, water reactor safety research

    1980-01-01

    This Management Report, to provide information for monitoring and controlling the progress of LWR Safety Research Projects Associated with the Office of Nuclear Regulatory Research and other agencies and organizations engaged in nuclear safety research. It utilizes data pertaining to project schedules, cost, and status which have been integrated into a network-based management information system, The purpose of this publication is to provide a vehicle for review of the current status and overall progress of the safety Research Program from a managerial point of view

  6. Safety

    2001-01-01

    This annual report of the Senior Inspector for the Nuclear Safety, analyses the nuclear safety at EDF for the year 1999 and proposes twelve subjects of consideration to progress. Five technical documents are also provided and discussed concerning the nuclear power plants maintenance and safety (thermal fatigue, vibration fatigue, assisted control and instrumentation of the N4 bearing, 1300 MW reactors containment and time of life of power plants). (A.L.B.)

  7. Annual health, safety and environmental performance report for 1992

    Orman, R.F.; Richards, S.

    1993-12-01

    This report summarizes the safety and environmental record of the operations of Atomic Energy of Canada Limited (AECL) during 1992. An introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices

  8. Safety analysis report for packaging (onsite) steel drum

    McCormick, W.A.

    1998-01-01

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum

  9. Design review report for modifications to RMCS safety class equipment

    Corbett, J.E.

    1997-01-01

    This report documents the completion of the formal design review for modifications to the Rotary Mode Core Sampling (RMCS) safety class equipment. These modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve the Engineering Change Notices affecting safety class equipment used in the RMCS system. The conclusion reached by the review committee was that these changes are acceptable

  10. Health physics, safety and medical services report for 1989

    Burt, A.K.; Bird, R.W.

    1990-09-01

    The Health Physics, Safety and Medical Services Report for Harwell Laboratory for 1989 includes data on the monitoring of the working environment, personnel monitoring, radiological incidents, disposal of radioactive waste and protection of the public. Work on emergency planning, non-radiological health and safety, occupational hygiene, operations support is also discussed. Finally the medical services available and the medical examinations performed are described. (UK)

  11. Annual health, safety and environmental performance report for 1992

    Orman, R.F.; Richards, S.

    1993-12-01

    This report summarizes the safety and environmental record of the operations of Atomic Energy of Canada Limited (AECL) during 1992. an introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices

  12. Design review report for modifications to RMCS safety class equipment

    Corbett, J.E.

    1997-05-30

    This report documents the completion of the formal design review for modifications to the Rotary Mode Core Sampling (RMCS) safety class equipment. These modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve the Engineering Change Notices affecting safety class equipment used in the RMCS system. The conclusion reached by the review committee was that these changes are acceptable.

  13. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed

  14. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed.

  15. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    Lyon, W.S.

    1983-05-01

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period

  16. Engineered safeguards and passive safety features (safety analysis detailed report no. 6)

    1988-01-15

    The Safety-Analysis Summary lists the reactor's safety aspects for passive and active prevention of severe accidents and mitigation of accident consequences, i.e., intrinsic and passive protections of the plant; intrinsic and passive protections of the core; inherent decay-heat removal systems; rapid-shutdown systems; four physical containment barriers. This report goes into further details regarding some of this aspects.

  17. Thyrotoxic periodic paralysis: a case report and literature review.

    Barahona, M J; Vinagre, I; Sojo, L; Cubero, J M; Pérez, Antonio

    2009-09-01

    We describe a 37-year-old man with a 4-month history of episodic muscular weakness, involving mainly lower-limbs. Hypokalemia was documented in one episode and managed with intravenous potassium chloride. Hyperthyroidism was diagnosed 4 months after onset of attacks because of mild symptoms. The patient was subsequently diagnosed as having thyrotoxic periodic paralysis associated with Graves' disease. Treatment with propranolol and methimazol was initiated and one year later he remains euthyroid and symptom free. Thyrotoxic periodic paralysis is a rare disorder, especially among Caucasians, but it should always be considered in patients with acute paralysis and hypokalemia, and thyroid function should be evaluated.

  18. Fusion Safety Program annual report, fiscal year 1992

    Holland, D.F.; Cadwallader, L.C.; Herring, J.S.; Longhurst, G.R.; McCarthy, K.A.; Merrill, B.J.; Piet, S.J.

    1993-01-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1992. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG ampersand G Idaho, Inc. is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations including the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory, the Massachusetts Institute of Technology, and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving beryllium, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment failure rate data base, and computer code development for reactor transients. Also included in the report is a summary of the safety and environmental studies performed by the INEL for the Tokamak Physics Experiments and the Tokamak Fusion Test Reactor, the safety analysis for the International Thermonuclear Experimental Reactor design, and the technical support for the ARIES commercial reactor design study

  19. Fusion Safety Program annual report: Fiscal year 1987

    Holland, D.F.; Herring, J.S.; Longhurst, G.R.; Lyon, R.E.; Merrill, B.J.; Piet, S.J.

    1988-02-01

    This report summarizes the Fusion Safety Program major activities in fiscal year 1987. The Idaho National Engineering Laboratory (INEL) is the designated lead laboraotry and EG and G Idaho, Inc., is the prime contractor for this program, which was initiated in 1979. Activities are conducted at the INEL and in participating laboratories including the Hanford Engineering Development Laboratory (HEDL), the Massachusetts Institute of Technology (MIT), and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment methodology, computer codes development for reactor transients, and fusion waste management. Also included in the report is a summary of the safety and environmental analysis and conventional facilities design performed by INEL for the Compact Ignition Tokamak design project, the safety analysis and documentation performed for the Tokamak Ignition/Burn Experimental Reactor design, and the technical support provided to the Environmental Safety and Economics Committee (ESECOM). 42 refs., 17 figs., 4 tabs

  20. 75 FR 1656 - Draft Safety Culture Policy Statement: Request for Public Comments; Extension of Comment Period

    2010-01-12

    ... culture policy statement, including: (1) development of a common safety culture definition; and (2... NUCLEAR REGULATORY COMMISSION [NRC-2009-0485] Draft Safety Culture Policy Statement: Request for...: Issuance of draft safety culture policy statement and notice of opportunity for public comment; Extension...

  1. 75 FR 76928 - Safety Management System for Certificated Airports; Extension of Comment Period

    2010-12-10

    ...-0997; Notice No. 10-14] RIN 2120-AJ38 Safety Management System for Certificated Airports; Extension of... holder to establish a safety management system (SMS) for its entire airfield environment (including... ``Safety Management System for Certificated Airports'' (75 FR 62008). Comments to that document were to be...

  2. Green light for the methodology file. Periodical safety review 2016 has begun

    2014-01-01

    Every ten years, the organisational framework and the facilities of the Belgian Nuclear Research Center SCK-CEN are subject to an encompassing safety evaluation. Together with initiatives arising from the stress tests, a large number of safety studies and actions are scheduled until 2018. The article discusses the ongoing safety review.

  3. Statistical analysis of incidents reported in the Greek Petrochemical Industry for the period 1997-2003

    Konstandinidou, Myrto; Nivolianitou, Zoe; Markatos, Nikolaos; Kiranoudis, Chris

    2006-01-01

    This paper makes an analysis of all reported accidents and incidents in the Greek Petrochemical Industry for the period spanning from 1997 to 2003. The work performed is related to the analysis of important parameters of the incidents, their inclusion in a database adequately designed for the purposes of this analysis and an importance assessment of this reporting scheme. Indeed, various stakeholders have highlighted the importance of a reporting system for industrial accidents and incidents. The European Union has established for this purpose the Major Accident Reporting System (MARS) for the reporting of major accidents in the Member States. However, major accidents are not the only measure that can characterize the safety status of an establishment; neither are the former the only events from which important lessons can be learned. Near misses, industrial incidents without major consequences, as well as occupational accidents could equally supply with important findings the interested analyst, while statistical analysis of these incidents could give significant insight in the understanding and the prevention of similar incidents or major accidents in the future. This analysis could be more significant, if each industrial sector was separately analyzed, as the authors do for the petrochemical sector in the present article

  4. 77 FR 41336 - Analytical Methods Used in Periodic Reporting

    2012-07-13

    ... IOCS Reporting Codes. The Postal Service proposes to make changes to In-Office Cost System activity... comments electronically via the Commission's Filing Online system at http://www.prc.gov . Commenters who... Postal Service proposes to eliminate the separate, shape-based reporting of unit costs within Standard...

  5. Report on nuclear and radiation safety in Slovenia in 2001

    Janzekovic, H.

    2002-01-01

    The Slovenian Nuclear Safety Administration (SNSA) has prepared a Report on Nuclear and Radiation Safety in Slovenia for 2001 as a regular form of reporting to the citizens of the Republic of Slovenia on the activities related to the nuclear fuel cycle and the use of the ionising sources. The report has been prepared in collaboration with the Health Inspectorate of the Republic of Slovenia (HIRS), the Administration for Civil Protection and Disaster Relief (ACPDR), the Pool for Assurance and Reinsurance of Liability for Nuclear Damage and the Pool for Decommissioning of the NPP Krsko and for the Radwaste Disposal from the NPP Krsko. The reports of the Agency for Radioactive Waste Management (ARAO), the Institute of Oncology, the Department of Nuclear Medicine of the Medical Centre Ljubljana and the technical support organisations are also included. The SNSA made no crucial modifications to the reports of the above mentioned institutions. The modifications were made just facilitate a reading of the reports.

  6. Nuclear and radiation safety in Slovenia. Annual report 2001

    Janzekovic, H.

    2002-01-01

    The Slovenian Nuclear Safety Administration (SNSA) has prepared a Report on Nuclear and Radiation Safety in Slovenia for 2001 as a regular form of reporting to the citizens of the Republic of Slovenia on the activities related to the nuclear fuel cycle and the use of the ionising sources. The report has been prepared in collaboration with the Health Inspectorate of the Republic of Slovenia (HIRS), the Administration for Civil Protection and Disaster Relief (ACPDR), the Pool for Assurance and Reinsurance of Liability for Nuclear Damage and the Pool for Decommissioning of the NPP Krsko and for the Radwaste Disposal from the NPP Krsko. The reports of the Agency for Radioactive Waste Management (ARAO), the Institute of Oncology, the Department of Nuclear Medicine of the Medical Centre Ljubljana and the technical support organisations are also included. The SNSA made no crucial modifications to the reports of the above mentioned institutions. The modifications were made just facilitate a reading of the reports. (author)

  7. Nuclear Reactor RA Safety Report, Format and Contents

    1986-11-01

    This is a new complete version of the safety report of nuclear reactor RA is made according to the recommendations of the IAEA. Report includes all the relevant data needed for evaluation of safe operation of this nuclear facility. Each of seven volumes of this report cover separate topics as follows: (1) introduction; (2) Site characteristics; (3) description of the reactor building and installations; (4) description of the reactor; (5) description of the coolant system; (6) description of the regulation and safety instrumentation; (7) description of the power supply system; (8) description of the auxiliary systems; (9) radiation protection issues; (10) radioactive waste management (11) reactor operation; (12) accident analysis during previous operation; (13) analysis of possible accident causes; (14) safety analysis and preventive actions: (15) analysis of significant accidents; (16) analysis of maximum possible accident; (17) environmental impact analysis in case of accident [sr

  8. Guidance for identifying, reporting and tracking nuclear safety noncompliances

    NONE

    1995-12-01

    This document provides Department of Energy (DOE) contractors, subcontractors and suppliers with guidance in the effective use of DOE`s Price-Anderson nuclear safety Noncompliance Tracking System (NTS). Prompt contractor identification, reporting to DOE, and correction of nuclear safety noncompliances provides DOE with a basis to exercise enforcement discretion to mitigate civil penalties, and suspend the issuance of Notices of Violation for certain violations. Use of this reporting methodology is elective by contractors; however, this methodology is intended to reflect DOE`s philosophy on effective identification and reporting of nuclear safety noncompliances. To the extent that these expectations are met for particular noncompliances, DOE intends to appropriately exercise its enforcement discretion in considering whether, and to what extent, to undertake enforcement action.

  9. Engineering Physics Division progress report period ending May 31, 1982

    1982-07-01

    Progress is described in the following areas: nuclear cross sections and related quantities; methods for generating and validating multigroup cross-section libraries; methods for reactor and shield analysis; methods for sensitivity and uncertainty analysis; integral experiments and nuclear analyses (integral experiments supporting fusion reactor designs, nuclear analyses supporting fusion reactor designs, high-energy particle transport calculations, integral experiments supporting gas-cooled fast breeder reactor designs, nuclear analyses supporting gas-cooled reactor designs, nuclear analyses supporting utilization of light-water reactors, and integral experiment analyses supporting surveillance dosimetry improvement program); energy economics modeling and analysis; safety and reliability assessments for nuclear power reactors; and information analysis and distribution. Publications and papers presented are listed

  10. Engineering Physics Division progress report period ending May 31, 1982

    1982-07-01

    Progress is described in the following areas: nuclear cross sections and related quantities; methods for generating and validating multigroup cross-section libraries; methods for reactor and shield analysis; methods for sensitivity and uncertainty analysis; integral experiments and nuclear analyses (integral experiments supporting fusion reactor designs, nuclear analyses supporting fusion reactor designs, high-energy particle transport calculations, integral experiments supporting gas-cooled fast breeder reactor designs, nuclear analyses supporting gas-cooled reactor designs, nuclear analyses supporting utilization of light-water reactors, and integral experiment analyses supporting surveillance dosimetry improvement program); energy economics modeling and analysis; safety and reliability assessments for nuclear power reactors; and information analysis and distribution. Publications and papers presented are listed. (WHK)

  11. A study of adopting maintenance rule under the periodic safety review and reliability centered maintenance program

    Kilyoo, Kim

    2001-01-01

    U.S Maintenance Rule (MR) has three main functions. One is to monitor the performance changes of SSCs (Structure, System, and Component) caused by risk informed applications. Periodic Safety Review (PSR) program is widely adopted in Europe while it is not adopted in U. S. A where MR and new oversight program are instead used. Recently, in Korea, it was determined to adopt PSR, and the first PSR program has started this year for Kori unit 1 as a pilot plant. Also, a traditional Reliability Centered Maintenance (RCM) has been performed for 4 systems of YGN unit 1 and 2 and it will be applied to the other nuclear power plants in Korea. However, since MR is adopting many useful concept of RCM, traditional RCM could not be further performed without being associated with MR. Thus, MR, RCM and PSR have recently become hot issue policies which should be well associated each other in Korea, and this paper suggests a desirable new maintenance process which would embrace the concepts of the three policies, and also discusses whether U.S. MR is necessary even though a PSR program is already adopted, and if necessary, then how cost-effectively it can be introduced to. (author)

  12. Interim summary report of the safety case 2009

    2010-03-01

    Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy), Posiva is preparing to submit a construction license application for the final disposal spent nuclear fuel at the Olkiluoto site, Finland, by the end of the year 2012. Disposal will take place in a geological repository implemented according to the KBS-3 method. The long-term safety section supporting the license application will be based on a safety case that, according to the internationally adopted definition, will be a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository. The present Interim Summary Report represents a major contribution to the development of this safety case. The report has been compiled in accordance with Posiva's current plan for preparing this safety case. A full safety case for the KBS-3V variant will be developed to support the Preliminary Safety Assessment Report (PSAR) in 2012. The report outlines the current design and safety concept for the planned repository. It summarises the approach used to formulate scenarios for the evolution of the disposal system over time, describes these scenarios and presents the main models and computer codes used to analyse them. It also discusses compliance with Finnish regulatory requirements for long-term safety of a geological repository and gives the main evidence, arguments and analyses that lead to confidence, on the part of Posiva, in the long-term safety of the planned repository. Current understanding of the evolution of the disposal system indicates that, except a few unlikely circumstances affecting a small number of canisters, spent fuel will remain isolated, and the radionuclides contained within the canisters, for hundreds of thousands of years or more, in accordance with the base scenario. Confidence in this base scenario derives, in the first place, from the

  13. Reporter Concerns in 300 Mode-Related Incident Reports from NASA's Aviation Safety Reporting System

    McGreevy, Michael W.

    1996-01-01

    A model has been developed which represents prominent reporter concerns expressed in the narratives of 300 mode-related incident reports from NASA's Aviation Safety Reporting System (ASRS). The model objectively quantifies the structure of concerns which persist across situations and reporters. These concerns are described and illustrated using verbatim sentences from the original narratives. Report accession numbers are included with each sentence so that concerns can be traced back to the original reports. The results also include an inventory of mode names mentioned in the narratives, and a comparison of individual and joint concerns. The method is based on a proximity-weighted co-occurrence metric and object-oriented complexity reduction.

  14. Reports about Occurrence of Events with Effect on Aviation Safety

    Vladimír Plos

    2014-07-01

    Full Text Available This article deals with a system, that is established to report the events with effect on safety. This system is based on requirements published in Annex 13 to the Chicago Convention and legislative foundations laid down in Regulation L13, Regulation of the European Parliament and of the Council (EU No 376/2014, Decree No. 359/2006 Sb. and Act No. 49/1997 Sb. Standards and legislative rules precisely define the types of events that are subject of reporting and also define the structure and content of the reporting message. This content is consists mainly of the identification data about the airplane and crew, information about the route and a short description of the damage to the airplane. In the following, we discuss the possible use of such a system of mandatory reporting for the needs of safety indicators. Then there are proposals of changes in the content of the reporting message for the need of safety indicators. The present knowledge indicates that the use of all opportunities provided by the law for the reporting of events can lead to a creating of sufficient basis for safety indicators.

  15. quarterly financial report for the period ending 31 December 2012

    acray

    2012-12-31

    Dec 31, 2012 ... Condensed Interim Statement of Cash Flows. 15. Notes to the ... This Management's Discussion and Analysis (MD&A) provides a narrative discussion outlining ... Work and Budget and IDRC's Annual Report 2011-2012.

  16. Solid state division progress report, period ending February 29, 1980

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  17. Solid state division progress report, period ending February 29, 1980

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials

  18. quarterly financial report for the period ending 30 June 2014

    Office 2004 Test Drive User

    2014-06-30

    Jun 30, 2014 ... This Management's Discussion and Analysis (MD&A) provides a narrative outlining the financial ... Cost of operations. (33 422) ..... Accounting Standard 34 (Interim Financial Reporting) and the Standard on Quarterly Financial.

  19. Quarterly Financial Report for the period ending 31 December 2014

    Office 2004 Test Drive User

    2014-12-31

    Dec 31, 2014 ... This Management's Discussion and Analysis (MD&A) provides a narrative ..... International Accounting Standard 34 (Interim Financial Reporting) and the Standard on ... Cost of operations before Parliamentary appropriation.

  20. Report on safety related occurrences and reactor trips July 1, 1977 - December 31, 1977

    Andermo, L.; Sundman, B.

    1974-04-01

    This is a systematically arranged report on all reported safety related occurrences and reactor trips in Swedish nuclear power plants in operation during July 1 to December 31, 1977 inclusive. The facilities involved are Barsebaeck 1 and 2, Oskarshamn 1 and 2 and Ringhals 1 and 2. During this period of 6 months 48 safety related occurrences and 49 reactor trips have been reported to the Nuclear Power Inspectorate. Included is also one incident June 21 in Barsebaeck 2 which was not included in the last compilation of occurrences. As earlier experiences have shown it is to the greatest extent the conventional components which bring about the safety related occurrences or occurrences leading to outages or power reductions. However, the component errors discovered in the safety related systems have not affected the function of their redundant systems and other diverse systems have not been involved. Therefore the reactor safety has been satisfactory. The total number of reactor trips have increased nearly 30% since the last period. Those occurred during power operation however, were less. More than 50% of the reactor trips happened in the shutdown condition. The fact that even small deviations from prescribed operation result in automatic and safe shut down of the reactor, does not always imply a conflict with operational availability. The greatest outages are caused by occurrences withou02068NRM 0000169 450

  1. Annual report 1982 of the Central Safety Department

    Kiefer, H.; Koelzer, W.; Koenig, L.A.

    1983-04-01

    The Safety Officer and the Security Officer are responsible for radiation protection and technical safety, both conventional and nuclear, for the physical protection as well as the safeguards of nuclear materials and radioactive substances within the Kernforschungszentrum Karlsruhe GmbH (KfK). To fulfill these functions they rely on the assistance of the Safety Department. The duties of this Department cover tasks relative to radiation protection, safety and security on behalf of the institutes and departments of KfK and environmental monitoring for the whole Karlsruhe Nuclear Research Center as well as research and development work, mainly performed under the Nuclear Safety Project. The centers of interest of r + d activities are: investigation of the atmospheric diffusion of nuclear pollutants on the micro- and meso-scales, evaluation of the radiological consequences of accidents in reactors under probabilistic aspects, studies of the physical and chemical behavior of radionuclides with particularly high biological effectiveness in the environment, improvements in radiation protection measurement technology. This report gives details of the different duties, indicates the results of 1982 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of the Table of Contents and of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  2. Report on the Uranium Mine Radiation Safety Course

    1987-06-01

    Since 1981 the Canadian Institute for Radiation Safety (CAIRS) has administered a semi-annual course on radiation safety in uranium mines under contract to and in consultation with the Atomic Energy Control Board (AECB). The course is intended primarily for representatives from mining companies, regulatory agencies, unions, and mine and mill workers. By the terms of its contract with the AECB, CAIRS is required to submit a report on each course it conducts. This is the report on the June 1987 course. It lists the course objectives and the timetable, outlines for each lecture, the lecturers' resumes, and the participants. The students' evaluations of the course are included

  3. Data report for the safety assessment SR-Site

    2010-12-01

    This report compiles, documents, and qualifies input data identified as essential for the long-term safety assessment of a KBS-3 repository, and forms an important part of the reporting of the safety assessment project SR-Site. The input data concern the repository system, broadly defined as the deposited spent nuclear fuel, the engineered barriers surrounding it, the host rock, and the biosphere in the proximity of the repository. The input data also concern external influences acting on the system, in terms of climate related data. Data are provided for a selection of relevant conditions and are qualified through traceable standardised procedures

  4. Data report for the safety assessment SR-Site

    2010-12-15

    This report compiles, documents, and qualifies input data identified as essential for the long-term safety assessment of a KBS-3 repository, and forms an important part of the reporting of the safety assessment project SR-Site. The input data concern the repository system, broadly defined as the deposited spent nuclear fuel, the engineered barriers surrounding it, the host rock, and the biosphere in the proximity of the repository. The input data also concern external influences acting on the system, in terms of climate related data. Data are provided for a selection of relevant conditions and are qualified through traceable standardised procedures

  5. Tritium Research Laboratory safety analysis report

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment. (ERB)

  6. Tritium Research Laboratory safety analysis report

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment

  7. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    Busche, D.M.

    1995-09-01

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ''Unreviewed Safety Questions,'' DOE 5480.22, ''Technical Safety Requirements,'' and DOE 5480.23, ''Nuclear Safety Analysis Reports.'' WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ''Safety Basis'' for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules

  8. Institutional glovebox safety committee (IGSC) annual report FY2010

    Cournoyer, Michael E [Los Alamos National Laboratory; Roybal, Richard F [Los Alamos National Laboratory; Lee, Roy J [Los Alamos National Laboratory

    2011-01-04

    The Institutional Glovebox Safety Committee (IGSC) was chartered to minimize and/or prevent glovebox operational events. Highlights of the IGSC's third year are discussed. The focus of this working committee is to address glovebox operational and safety issues and to share Lessons Learned, best practices, training improvements, and glovebox glove breach and failure data. Highlights of the IGSC's third year are discussed. The results presented in this annual report are pivotal to the ultimate focus of the glovebox safety program, which is to minimize work-related injuries and illnesses. This effort contributes to the LANL Continuous Improvement Program by providing information that can be used to improve glovebox operational safety.

  9. Sizewell 'B' PWR pre-construction safety report

    1982-04-01

    The Pre-Construction Safety Report (PCSR) for a PWR power station to be constructed as Sizewell 'B' is presented in 13 volumes containing 16 chapters. The PCSR has been submitted to the Nuclear Installations Inspectorate in support of the Central Electricity Generating Board's application for consent to the extension at Sizewell. It describes the design and provides the safety case for the proposed station, which comprises a 4-loop pressurized water reactor with associated generating plant and supporting auxiliary equipment. A general description of the station and its site is given. The strategy for ensuring nuclear safety is set out and the general design aspects of systems and plant outlined. The plant and systems, including their safety design bases and the fault analyses carried out for the design are described. Finally the way in which the plant will be decommissioned at the end of its useful life is outlined. (U.K.)

  10. An examination of safety reports involving electronic flight bags and portable electronic devices

    2014-06-01

    The purpose of this research was to develop a better understanding of safety considerations with the use of Electronic Flight Bags (EFBs) and Portable Electronic Devices (PEDs) by examining safety reports from Aviation Safety Reporting System (ASRS),...

  11. Physics and safety of transmutation systems. A status report

    2006-01-01

    The safe and efficient management of spent fuel from the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from currently operating reactors will require disposal. These numbers account for only high-level radioactive waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium.When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred to a thousand years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus de done in controlled environments having timescales of centuries rather than millennia stretching beyond 10 000 years. Transmutation is one of the means being explored to address the disposal of transuranic elements. To achieve this, advanced reactors systems, appropriate fuels, separation techniques and associated fuel cycle strategies are required. This status report begins by providing a clear definition of partitioning and transmutation (P and T), and then describes the state of the art concerning the challenges facing the implementation of P and T, scenario studies and specific issues related to accelerator-driven systems (ADS) dynamics and safety, long-lived fission product transmutation and the impact of nuclear data uncertainty on transmutation system design. The report will be of particular interest to nuclear scientists working on P and T issues as well as advanced fuel cycles in general. (author)

  12. SKI - ASAR - O3. As operated Safety Analysis Report. Recurring safety review 1996 Oskarshamn 3

    1997-12-01

    According to Swedish law, the reactor owner is responsible for performing a safety review and writing a ''ASAR''-report. The Nuclear Power Inspectorate (SKI) examines this report, and reports the findings to the government (the ''SKI-ASAR'' report). Each Swedish reactor should pass through three full ASAR reviews during its life-time, similar to the licensing inspection before start-up of the reactor. The first series ASAR was delivered by OKG to SKI in December 1996, and forms the basis for the SKI analysis in the present report

  13. SKI - ASAR - F3. As operated Safety Analysis Report. Recurring safety review 1996 Forsmark 3

    1997-12-01

    According to Swedish law, the reactor owner is responsible for performing a safety review and writing a ''ASAR''-report. The Nuclear Power Inspectorate (SKI) examines this report, and reports the findings to the government (the ''SKI-ASAR'' report). Each Swedish reactor should pass through three full ASAR reviews during its life-time, similar to the licensing inspection before start-up of the reactor. The first series ASAR was delivered by FKA to SKI in December 1996, and forms the basis for the SKI analysis in the present report

  14. SKI - ASAR - R1. As operated Safety Analysis Report. Recurring safety review 1995 Ringhals 1

    2000-01-01

    According to Swedish law, the reactor owner is responsible for performing a safety review and writing a so called ASAR-report. The Nuclear Power Inspectorate (SKI) examines this report, and reports the findings to the government (the so called SKI-ASAR-report). Each Swedish reactor should pass through three full ASAR reviews during its lifetime, similar to the licensing inspection before start-up of the reactor. The second series ASAR was delivered by the Ringhals utility to SKI in September 1995, and forms the basis for the SKI analysis in the present report

  15. Regulatory control of nuclear safety in Finland. Annual report 2008

    Kainulainen, E.

    2009-06-01

    This report covers the regulatory control of nuclear safety in 2008, including the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The control of nuclear facilities and nuclear waste management, as well as nuclear non-proliferation, concern two STUK departments: Nuclear Reactor Regulation and Nuclear Waste and Material Regulation. It constitutes the report on regulatory control in the field of nuclear energy, which the Radiation and Nuclear Safety Authority (STUK) is required to submit to the Ministry of Employment and the Economy pursuant to section 121 of the Finnish Nuclear Energy Decree. The first parts of the report explain the basics of the nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision. The chapter also includes a summary of the application of the updated YVL Guides to nuclear facilities. The section concerning the regulation of nuclear facilities contains a complete safety assessment of the nuclear facilities currently in operation or under construction. For the nuclear facilities in operation, the section describes plant operation, events during operation, annual maintenance, development of the plants and their safety, and observations made during monitoring. Data and observations gained during regulatory activities are reviewed with a focus on ensuring the safety functions of nuclear facilities and the integrity of structures and components. The report also includes a description of the oversight of the operations and quality management of organisations, oversight of operational experience feedback activities, and the results of these oversight activities. The radiation safety of nuclear

  16. Progress report for the period September 1980 - September 1981

    Adams, J.M.

    1982-03-01

    This is the first comprehensive report of work carried out in the UK on Safeguards R and D in support of the IAEA. The bulk of the work herein has been completed during the last six months though for the sake of completeness, work of the preceding half year has been included for a few projects. The report falls under the headings: service programmes (including training courses); generic programmes, covering those elements of instruments and systems that are common to many systems; plant studies (general); centrifuge enrichment plant safeguards; field trials; exploratory and short projects. (U.K.)

  17. Annual Report of Project Coordinators RAF038. Period: 2012

    Tall, Moustapha Sadibou

    2012-01-01

    This report highlights the 2012 acomplishments related to main objective announced in 2011 report. They concern: Implementation of the regulatory body that is the Autorite de radioprotection et de securite nucleaire (ARSN) as provided by the 2009 law (loi No2009-14 du 02 mars 2009); Important progress has been made for the training of staff; Communication and information sharing with end-users have been achieved through the web site of ARSN which is now operational; The Regulatory Information system of ARSN (RAIS) is now implemented; Many sources of ionizing radiation have been inventoried

  18. Task Group on Safety Margins Action Plan (SMAP). Safety Margins Action Plan - Final Report

    Hrehor, Miroslav; Gavrilas, Mirela; Belac, Josef; Sairanen, Risto; Bruna, Giovanni; Reocreux, Michel; Touboul, Francoise; Krzykacz-Hausmann, B.; Park, Jong Seuk; Prosek, Andrej; Hortal, Javier; Sandervaag, Odbjoern; Zimmerman, Martin

    2007-01-01

    The international nuclear community has expressed concern that some changes in existing plants could challenge safety margins while fulfilling all the regulatory requirements. In 1998, NEA published a report by the Committee on Nuclear Regulatory Activities on Future Nuclear Regulatory Challenges. The report recognized 'Safety margins during more exacting operating modes' as a technical issue with potential regulatory impact. Examples of plant changes that can cause such exacting operating modes include power up-rates, life extension or increased fuel burnup. In addition, the community recognized that the cumulative effects of simultaneous changes in a plant could be larger than the accumulation of the individual effects of each change. In response to these concerns, CSNI constituted the safety margins action plan (SMAP) task group with the following objectives: 'To agree on a framework for integrated assessments of the changes to the overall safety of the plant as a result of simultaneous changes in plant operation / condition; To develop a CSNI document which can be used by member countries to assess the effect of plant change on the overall safety of the plant; To share information and experience.' The two approaches to safety analysis, deterministic and probabilistic, use different methods and have been developed mostly independently of each other. This makes it difficult to assure consistency between them. As the trend to use information on risk (where the term risk means results of the PSA/PRA analysis) to support regulatory decisions is growing in many countries, it is necessary to develop a method of evaluating safety margin sufficiency that is applicable to both approaches and, whenever possible, integrated in a consistent way. Chapter 2 elaborates on the traditional view of safety margins and the means by which they are currently treated in deterministic analyses. This chapter also discusses the technical basis for safety limits as they are used today

  19. Report on safety related occurrences and reactor trips July 1, 1979 - December 31, 1979

    Olsson, S.; Andermo, L.

    1980-01-01

    This is a report on all reported safety related occurrences and reactor trips in Swedish nuclear power plants in operation during July 1 to December 31, 1979 inclusive. The facilities involved are Barsebaeck 1 and 2, Oskarshamn 1 and 2 and Ringhals 1 and 2. During this period of 6 months 76 safety related occurrences and 27 reactor trips have been reported to the Nuclear Power Inspectorate. It is to the greatest extent conventional components such as valves and pumps which bring about the safety related occurrences or occurrences leading to outages or power reductions. However, the component errors discovered in the safety related systems have not affected the function of their redundant system and other diverse systems have not been involved. Therefore the reactor safety has been satisfactory. The total number of reactor trips are normal. The average value for these 6 months is 4.5 trips/unit. Approximetely one half of the reactor trips happened at zero or very low power operation. The fact that even small deviations from prescribed operation result in an automatic and safe shut down of the reactor, does not always imply a conflict with operational availability. The greatest outages are caused by occurrences without safety significance. (author)

  20. Safety Culture Enhancement Project. Final Report. A Field Study on Approaches to Enhancement of Safety Culture

    Lowe, Andrew; Hayward, Brent

    2006-08-01

    This report documents a study with the objective of enhancing safety culture in the Swedish nuclear power industry. A primary objective of this study was to ensure that the latest thinking on human factors principles was being recognised and applied by nuclear power operators as a means of ensuring optimal safety performance. The initial phase of the project was conducted as a pilot study, involving the senior management group at one Swedish nuclear power-producing site. The pilot study enabled the project methodology to be validated after which it was repeated at other Swedish nuclear power industry sites, providing a broad-ranging analysis of opportunities across the industry to enhance safety culture. The introduction to this report contains an overview of safety culture, explains the background to the project and sets out the project rationale and objectives. The methodology used for understanding and analysing the important safety culture issues at each nuclear power site is then described. This section begins with a summary of the processes used in the information gathering and data analysis stage. The six components of the Management Workshops conducted at each site are then described. These workshops used a series of presentations, interactive events and group exercises to: (a) provide feedback to site managers on the safety culture and safety leadership issues identified at their site, and (b) stimulate further safety thinking and provide 'take-away' information and leadership strategies that could be applied to promote safety culture improvements. Section 3, project Findings, contains the main observations and output from the project. These include: - a brief overview of aspects of the local industry operating context that impinge on safety culture; - a summary of strengths or positive attributes observed within the safety culture of the Swedish nuclear industry; - a set of identified opportunities for further improvement; - the aggregated results of the

  1. Physics Division progress report for period ending June 30, 1981

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)

  2. Physics division progress report for period ending September 30 1991

    Livingston, A.B. (ed.)

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)

  3. Physics division progress report for period ending September 30 1991

    Livingston, A.B.

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development

  4. Physics Division progress report for period ending September 30, 1989

    Livingston, A.B.

    1990-03-01

    This report discusses topics in the following areas: Holifield heavy ion research; Experimental Nuclear physics; The Uniser program; Experimental Atomic Physics; Theoretical Physics; Laser and electro-optics lab; High Energy Physics; compilations and evaluations; and accelerator design and development. (FI)

  5. 77 FR 56176 - Analytical Methods Used in Periodic Reporting

    2012-09-12

    ... informal rulemaking proceeding to consider changes in analytical principles (Proposals Six and Seven) used... (Proposals Six and Seven), September 4, 2012 (Petition). Proposal Six: Use of Foreign Postal Settlement System as Sole Source for Reporting of Inbound International Revenue, Pieces, and Weights. The Postal...

  6. Physics Division progress report for period ending June 30, 1981

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers

  7. Beneficial uses program. Progress report, period ending June 30, 1979

    1979-10-01

    Progress in research on the irradiation of sewage sludge, the potential use of dried sewage sludge as animal feed or soil conditioners, the inactivation of rotavirus in sewage sludge, fruit fly control by the irradiation of citrus fruits, and the production of /sup 137/Cs source pellets is reported. (LCL)

  8. Electronic clinical safety reporting system: a benefits evaluation.

    Elliott, Pamela; Martin, Desmond; Neville, Doreen

    2014-06-11

    Eastern Health, a large health care organization in Newfoundland and Labrador (NL), started a staged implementation of an electronic occurrence reporting system (used interchangeably with "clinical safety reporting system") in 2008, completing Phase One in 2009. The electronic clinical safety reporting system (CSRS) was designed to replace a paper-based system. The CSRS involves reporting on occurrences such as falls, safety/security issues, medication errors, treatment and procedural mishaps, medical equipment malfunctions, and close calls. The electronic system was purchased from a vendor in the United Kingdom that had implemented the system in the United Kingdom and other places, such as British Columbia. The main objective of the new system was to improve the reporting process with the goal of improving clinical safety. The project was funded jointly by Eastern Health and Canada Health Infoway. The objectives of the evaluation were to: (1) assess the CSRS on achieving its stated objectives (particularly, the benefits realized and lessons learned), and (2) identify contributions, if any, that can be made to the emerging field of electronic clinical safety reporting. The evaluation involved mixed methods, including extensive stakeholder participation, pre/post comparative study design, and triangulation of data where possible. The data were collected from several sources, such as project documentation, occurrence reporting records, stakeholder workshops, surveys, focus groups, and key informant interviews. The findings provided evidence that frontline staff and managers support the CSRS, identifying both benefits and areas for improvement. Many benefits were realized, such as increases in the number of occurrences reported, in occurrences reported within 48 hours, in occurrences reported by staff other than registered nurses, in close calls reported, and improved timelines for notification. There was also user satisfaction with the tool regarding ease of use

  9. Nuclear power safety reporting system feasibility analysis and concept description

    Finlayson, F.C.; Ims, J.R.; Hussman, T.A.

    1984-01-01

    The Aerospace Corporation is assisting the US Nuclear Regulatory Commission (NRC) in the evaluation of the potential attributes of a voluntary, nonpunitive data gathering system for identifying and quantifying the factors that contribute to the occurrence of significant safety problems involving humans in nuclear power plants. The objectives of the Aerospace Administration (FAA)/National Aeronautics and Space Administration (NASA) Aviation Safety Reporting System (ASRS) in order to determine whether it would be feasible to apply part (or all) of the ASRS concepts for collecting data on human factor related incidents to the nuclear industry; and (2) to identify and define the basic elements and requirements of a Nuclear Power Safety Reporting System (NPSRS), assuming the feasibility of implementing such a system was established

  10. Status of safety at Areva group facilities. 2007 annual report

    2007-01-01

    This report describes the status of nuclear safety and radiation protection in the facilities of the AREVA group and gives information on radiation protection in the service operations, as observed through the inspection programs and analyses carried out by the General Inspectorate in 2007. Having been submitted to the group's Supervisory Board, this report is sent to the bodies representing the personnel. Content: 1 - A look back at 2007 by the AREVA General Inspector: Visible progress in 2007, Implementation of the Nuclear Safety Charter, Notable events; 2 - Status of nuclear safety and radiation protection in the nuclear facilities and service operations: Personnel radiation protection, Event tracking, Service operations, Criticality control, Radioactive waste and effluent management; 3 - Performance improvement actions; 4 - Description of the General Inspectorate; 5 - Glossary

  11. Final Safety Analysis Report (FSAR) for Building 332, Increment III

    Odell, B. N.; Toy, Jr., A. J.

    1977-08-31

    This Final Safety Analysis Report (FSAR) supplements the Preliminary Safety Analysis Report (PSAR), dated January 18, 1974, for Building 332, Increment III of the Plutonium Materials Engineering Facility located at the Lawrence Livermore Laboratory (LLL). The FSAR, in conjunction with the PSAR, shows that the completed increment provides facilities for safely conducting the operations as described. These documents satisfy the requirements of ERDA Manual Appendix 6101, Annex C, dated April 8, 1971. The format and content of this FSAR complies with the basic requirements of the letter of request from ERDA San to LLL, dated March 10, 1972. Included as appendices in support of th FSAR are the Building 332 Operational Safety Procedure and the LLL Disaster Control Plan.

  12. Karlsruhe Nuclear Research Center, Central Safety Department. Annual report 1993

    Koelzer, W.

    1994-04-01

    The Central Safety Department is responsible for handling all tasks of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: behavior of trace elements in the environment and decontamination of soil, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurements and personnel dosimetry. This report gives details of the different duties, indicates the results of 1993 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  13. Safety Culture Enhancement Project. Final Report. A Field Study on Approaches to Enhancement of Safety Culture

    Lowe, Andrew; Hayward, Brent (Dedale Asia Pacific, Albert Park VIC 3206 (Australia))

    2006-08-15

    This report documents a study with the objective of enhancing safety culture in the Swedish nuclear power industry. A primary objective of this study was to ensure that the latest thinking on human factors principles was being recognised and applied by nuclear power operators as a means of ensuring optimal safety performance. The initial phase of the project was conducted as a pilot study, involving the senior management group at one Swedish nuclear power-producing site. The pilot study enabled the project methodology to be validated after which it was repeated at other Swedish nuclear power industry sites, providing a broad-ranging analysis of opportunities across the industry to enhance safety culture. The introduction to this report contains an overview of safety culture, explains the background to the project and sets out the project rationale and objectives. The methodology used for understanding and analysing the important safety culture issues at each nuclear power site is then described. This section begins with a summary of the processes used in the information gathering and data analysis stage. The six components of the Management Workshops conducted at each site are then described. These workshops used a series of presentations, interactive events and group exercises to: (a) provide feedback to site managers on the safety culture and safety leadership issues identified at their site, and (b) stimulate further safety thinking and provide 'take-away' information and leadership strategies that could be applied to promote safety culture improvements. Section 3, project Findings, contains the main observations and output from the project. These include: - a brief overview of aspects of the local industry operating context that impinge on safety culture; - a summary of strengths or positive attributes observed within the safety culture of the Swedish nuclear industry; - a set of identified opportunities for further improvement; - the aggregated

  14. Beneficial uses program. Progress report, Period ending September 30, 1976

    1976-11-01

    Progress is reported in the development of a technology to utilize 137 Cs, a nuclear power plant by-product, as a γ source for the treatment of sewage sludge for use as a fertilizer or animal feed supplement. Results are reported from studies on the radiosensitivity of Escherichia coli and Salmonella in sewage sludge; the effects of ammonia on the survival of viruses in sludges; heat inactivation rates for bacteria in sludges; the combined effects of heat and radiation on odor from sludge; and the cost advantages of irradiation over heat treatment of sewage sludge. Animal studies demonstrated the nutritional advantages of the addition of sludge to animal feeds and plant studies demonstrated the beneficial effects on plant growth of the use of sludge as fertilizer

  15. Synthesis by IRSN of UNSCEAR reports - period 2003 - 2007

    2006-09-01

    The present document describes in a concise way nine reports examined during the UNSCEAR 54. session that stood in may 2006 and took its place in a working cycle covering the years from 2003 to 2007. The subjects treated during this 54. session are as different as the radiations sources, the public and workers exposures, the radon exposure, the medical exposures, the radiation effects on human being and on animal and vegetal species, the physiopathology of radiation effects, the mechanisms and epidemiology of the radioinduced carcinogenesis, the mechanisms of radiation effects, the effects other than cancer, the radiation effects on the immune system, the non-targeted effects and the long-term effects. These reports are all practically in their definitive version; some have to be completed. (N.C.)

  16. Report by the parliamentary mission of nuclear safety, the place and future of the sector - Intermediary report: the nuclear safety

    2011-01-01

    Notably based on visits, meetings and auditions, this report first discusses the management of nuclear safety in France and stresses how rigorous it is. It comments how the different types of risks (natural, industrial, human) are taken into account, how safety is physically present (protection barriers, warehousing, operator training) and monitored, how this organisation is always improved as far as monitoring, information and preparedness to crisis are concerned. Then, the authors present the main orientations for the strengthening of safety: by taking new major risks into account, by anticipating possible situations (for installations, for matters of civil security, for population information and sensitization), and by investing on the issue of safety (in a financial way as well as in an organisational way, or by investing on research)

  17. Implementation and evaluation of a prototype consumer reporting system for patient safety events.

    Weingart, Saul N; Weissman, Joel S; Zimmer, Karen P; Giannini, Robert C; Quigley, Denise D; Hunter, Lauren E; Ridgely, M Susan; Schneider, Eric C

    2017-08-01

    No methodologically robust system exists for capturing consumer-generated patient safety reports. To address this challenge, we developed and pilot-tested a prototype consumer reporting system for patient safety, the Health Care Safety Hotline. Mixed methods evaluation. The Hotline was implemented in two US healthcare systems from 1 February 2014 through 30 June 2015. Patients, family members and caregivers associated with two US healthcare systems. A consumer-oriented incident reporting system for telephone or web-based administration was developed to elicit medical mistakes and care-related injuries. Key informant interviews, measurement of website traffic and analysis of completed reports. Key informants indicated that Hotline participation was motivated by senior leaders' support and alignment with existing quality and safety initiatives. During the measurement period from 1 October 2014 through 30 June 2015, the home page had 1530 visitors with a unique IP address. During its 17 months of operation, the Hotline received 37 completed reports including 20 mistakes without harm and 15 mistakes with injury. The largest category of mistake concerned problems with diagnosis or advice from a health practitioner. Hotline reports prompted quality reviews, an education intervention, and patient follow-ups. While generating fewer reports than its capacity to manage, the Health Care Safety Hotline demonstrated the feasibility of consumer-oriented patient safety reporting. Further research is needed to understand how to increase consumers' use of these systems. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Patient safety event reporting in critical care: a study of three intensive care units.

    Harris, Carolyn B; Krauss, Melissa J; Coopersmith, Craig M; Avidan, Michael; Nast, Patricia A; Kollef, Marin H; Dunagan, W Claiborne; Fraser, Victoria J

    2007-04-01

    To increase patient safety event reporting in three intensive care units (ICUs) using a new voluntary card-based event reporting system and to compare and evaluate observed differences in reporting among healthcare workers across ICUs. Prospective, single-center, interventional study. A medical ICU (19 beds), surgical ICU (24 beds), and cardiothoracic ICU (17 beds) at a 1,371-bed urban teaching hospital. Adult patients admitted to these three study ICUs. Use of a new, internally designed, card-based reporting program to solicit voluntary anonymous reporting of medical errors and patient safety concerns. During a 14-month period, 714 patient safety events were reported using a new card-based reporting system, reflecting a significant increase in reporting compared with pre-intervention Web-based reporting (20.4 reported events/1,000 patient days pre-intervention to 41.7 reported events/1,000 patient days postintervention; rate ratio, 2.05; 95% confidence interval, 1.79-2.34). Nurses submitted the majority of reports (nurses, 67.1%; physicians, 23.1%; other reporters, 9.5%); however, physicians experienced the greatest increase in reporting among their group (physicians, 43-fold; nurses, 1.7-fold; other reporters, 4.3-fold) relative to pre-intervention rates. There were significant differences in the reporting of harm by job description: 31.1% of reports from nurses, 36.2% from other staff, and 17.0% from physicians described events that did not reach/affect the patient (p = .001); and 33.9% of reports from physicians, 27.2% from nurses, and 13.0% from other staff described events that caused harm (p = .005). Overall reported patient safety events per 1,000 patient days differed by ICU (medical ICU = 55.5, cardiothoracic ICU = 25.3, surgical ICU = 40.2; p reporting system increased reporting significantly compared with pre-intervention Web-based reporting and revealed significant differences in reporting by healthcare worker and ICU. These differences may reveal

  19. Standard model for safety analysis report of fuel fabrication plants

    1980-09-01

    A standard model for a safety analysis report of fuel fabrication plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  20. Standard model for safety analysis report of fuel reprocessing plants

    1979-12-01

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  1. Nuclear Safety Research Department annual progress report 1993

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hoejerup, C.F.

    1994-02-01

    The report describes the work of the Nuclear Safety Research Department during 1993. The activities cover health physics, reactor physics, operation of the small reactor DR1, and radioactive waste management. Lists of staff and publications are included together with a summary of the staff's participation in international committees. (au) (2 tabs., 12 ills.)

  2. Safety analysis report on Model UC-609 shipping package

    Sandberg, R.R.

    1977-08-01

    This Safety Analysis Report for Packaging demonstrates that model UC-609 shipping package can safely transport tritium in any of its forms. The package and its contents are described. The package when subjected to the transport conditions specified in the Code of Federal Regulations, Title 10, Part 71 is evaluated. Finally, compliance with these regulations is discussed

  3. Nuclear Safety Research Department annual progress report 1994

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hoejerup, C.F.

    1995-03-01

    The report describes the work of the Nuclear Safety Research Department during 1994. The activities cover health physics, reactor physics, operation of the small reactor DR1, and radioactive waste management. Lists of staff and publications are included together with a summary of the staff's participation in international committees. (au) (1 tab., 12 ills.)

  4. Nuclear Safety Research Department annual progress report 1994

    Majborn, B; Brodersen, K; Damkjaer, A; Hoejerup, C F [eds.

    1995-03-01

    The report describes the work of the Nuclear Safety Research Department during 1994. The activities cover health physics, reactor physics, operation of the small reactor DR1, and radioactive waste management. Lists of staff and publications are included together with a summary of the staff`s participation in international committees. (au) (1 tab., 12 ills.).

  5. Nuclear Safety Research Department. Annual progress report 1991

    Majborn, B.; Brodersen, K.; Hoejerup, C.F.; Heikel Vinther, F.

    1992-03-01

    The report describes the work of the Nuclear Safety Research Department during 1991. The activities cover health physics, reactor physics, operation of the educational reactor DR 1, and waste management. Lists of staff and publications are included together with a summary of participation in international working groups etc. (au) (5 ills., 59 refs.)

  6. Nuclear Safety Research Department annual progress report 1992

    Majborn, B.; Brodersen, K.; Hoejerup, C.F.; Heikel Vinther, F.

    1993-03-01

    The report describes the work of the Nuclear Safety Research Department during 1992. The activities cover health physics, reactor physics, operation of the Danish educational reactor DR1, and waste management. Lists of staff and publications are included together with a summary of the staff's participation in international committees. (au)

  7. Nuclear Safety Research Department. Annual progress report 1990

    Heikel Vinther, F.

    1991-07-01

    The report describes the work of the Nuclear Safety Research Department during 1990. The activities cover health physics, reactor physics, operation of the educational reactor DR 1, and waste management. Lists of staff and publications are included together with a summary of participation in international working groups etc. (au) 3 ills., 30 refs

  8. 76 FR 5494 - Pipeline Safety: Mechanical Fitting Failure Reporting Requirements

    2011-02-01

    ... style'' fittings ( provides no explanation or e.g. stab, nut follower, bolted). justification for the...-RELATED CONDITION REPORTS 0 1. The authority citation for part 191 continues to read as follows: Authority... OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS 0 3. The authority citation...

  9. Space Nuclear Safety Program. Progress report, March 1984

    Zocher, R.W.; George, T.G.

    1985-08-01

    This technical monthly report covers studies related to the use of 238 PuO 2 in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos Laboratory. They are divided into: general-purpose heat source, lightweight radioisotope heater unit, and safety technology program. 43 figs., 2 tabs

  10. Evidence report : psychiatric disorders and commercial motor vehicle driver safety.

    2008-08-29

    This report was prepared by ECRI Institute under subcontract to MANILA Consulting Group, Inc., which holds prime GS-10F-0177N/DTMC75-06-F-00039 with the Department of Transportations Federal Motor Carrier Safety Administration. ECRI Institute is a...

  11. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the Atmospheric Environment Safety Technology Project

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This study analyzed aircraft incidents in the NASA Aviation Safety Reporting System (ASRS) that apply to two of the three technical challenges (TCs) in NASA's Aviation Safety Program's Atmospheric Environment Safety Technology Project. The aircraft incidents are related to airframe icing and atmospheric hazards TCs. The study reviewed incidents that listed their primary problem as weather or environment-nonweather between 1994 and 2011 for aircraft defined by Federal Aviation Regulations (FAR) Parts 121, 135, and 91. The study investigated the phases of flight, a variety of anomalies, flight conditions, and incidents by FAR part, along with other categories. The first part of the analysis focused on airframe-icing-related incidents and found 275 incidents out of 3526 weather-related incidents over the 18-yr period. The second portion of the study focused on atmospheric hazards and found 4647 incidents over the same time period. Atmospheric hazards-related incidents included a range of conditions from clear air turbulence and wake vortex, to controlled flight toward terrain, ground encounters, and incursions.

  12. Progress report concerning safety research for nuclear reactor facilities

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  13. [The experience of involvement of volunteers into maintenance of infection safety during period of implementation of mass activities].

    Imamov, A A; Balabanova, L A; Zamalieva, M A

    2016-01-01

    The article presents experience of Rospotrebnadzor in the Republic of Tatarstan in the field of preventive medicine concerning training of volunteers on issues of infection safety with purpose of prevention of ictuses of infection diseases during mass activities with international participation in the period of XXVII World Summer Students Games. The model of hygienic training for volunteers provides two directions: training for volunteers ’ leaders on issues of infection safety and remote course for involved volunteers. During period of preparation for the Students Games-2013 hygienic training was organized for volunteers-leaders in the field of infection safety with following attestation. The modern training technologies were applied. The volunteers-leaders familiarized with groups of infection diseases including the most dangerous ones, investigated with expert algorithm of actions to be applied in case of suspicion on infection disease in gest or participant of the Games-2013 to secure one's health and health of immediate population. The active volunteers-leaders became trainers and coaches in the field of infection safety. The second stage of infection safety training organized by youth trainers' pool in number of 30 individuals the training technology "Equal trains equal" was applied for hygienic training of volunteers involved at epidemiologically significant objects (food objects, hotels, accompaniment of guests and sportsmen). The volunteers-leaders trained to infection safety 1400 volunteers. The format of electronic personal cabinet and remote course were selected as tools of post-training monitoring.

  14. Regulatory oversight of nuclear safety in Finland. Annual report 2011

    Kainulainen, E. (ed.)

    2012-07-01

    The report constitutes the report on regulatory control in the field of nuclear energy which the Radiation and Nuclear Safety Authority (STUK) is required to submit once a year to the Ministry of Employment and the Economy pursuant to Section 121 of the Nuclear Energy Decree. The report is also delivered to the Ministry of Environment, the Finnish Environment Institute, and the regional environmental authorities of the localities in which a nuclear facility is located. The regulatory control of nuclear safety in 2011 included the design, construction and operation of nuclear facilities, as well as nuclear waste management and nuclear materials. The first parts of the report explain the basics of nuclear safety regulation included as part of STUK's responsibilities, as well as the objectives of the operations, and briefly introduce the objects of regulation. The chapter concerning the development and implementation of legislation and regulations describes changes in nuclear legislation, as well as the progress of STUK's YVL Guide revision work. The section concerning the regulation of nuclear facilities contains an overall safety assessment of the nuclear facilities currently in operation or under construction. The chapter concerning the regulation of the final disposal project for spent nuclear fuel de-scribes the preparations for the final disposal project and the related regulatory activities. The section concerning nuclear non-proliferation describes the nuclear non-proliferation control for Finnish nuclear facilities and final disposal of spent nuclear fuel, as well as measures required by the Additional Protocol of the Safeguards Agreement. The chapter describing the oversight of security arrangements in the use of nuclear energy discusses oversight of the security arrangements in nuclear power plants and other plants, institutions and functions included within the scope of STUK's regulatory oversight. The chapter also discusses the national and

  15. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-091201) Report No: 22

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-12-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-091201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  16. Prototype Repository - Sensor data report (period 100917-110101) Report no 24

    Goudarzi, Reza

    2012-08-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. At the end of November 2010 stared the dismantling of the outer section. This report presents data from measurements in the Prototype Repository during the period 2001-09-17-2011-01-01. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  17. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-090601) Report No: 21

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-07-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-090601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  18. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-081201) Report No: 20

    Goudarzi, Reza; Johannesson, Lars-Erik

    2009-03-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-081201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements

  19. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-090601) Report No: 21

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-07-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-090601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  20. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-081201) Report No: 20

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-03-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-081201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by BBK) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  1. Aespoe Hard Rock Laboratory. Prototype Repository. Sensors data report (Period 010917-091201) Report No: 22

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2009-12-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 010917-091201. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  2. Prototype Repository - Sensor data report (period 100917-110101) Report no 24

    Goudarzi, Reza [Clay Technology AB, Lund (Sweden)

    2012-08-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. At the end of November 2010 stared the dismantling of the outer section. This report presents data from measurements in the Prototype Repository during the period 2001-09-17-2011-01-01. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements.

  3. Report transparency and nuclear safety 2007 CEA Cadarache

    2007-01-01

    This report presents the activities of the CEA Center of Cadarache for the year 2007. The actions concerning the safety, the radiation protection, the significant events, the release control and the environmental impacts and the wastes stored on the center are discussed. More especially the report discusses the beginning of the RJH reactor construction, the fourth generation reactors research programs, the implementing of la Rotonde the new radioactive wastes management installation, the renovation of the LECA. (A.L.B.)

  4. Progress report - list of reports from BMFT, CEA, EPRI, JSTA and USNRC reactor safety research

    1982-10-01

    This list reviews reports from the Federal Republic of Germany, from France, from Japan and from the United States of America concerning special problems in the field of reactor safety research. The list pursues the following order: Country of origin, problem area concerned, according to the Reactor Safety Research Programm of the BMFT, reporting organization. The list of reports appears quarterly. (orig./HP) [de

  5. Patient involvement in patient safety: Protocol for developing an intervention using patient reports of organisational safety and patient incident reporting

    Armitage Gerry

    2011-05-01

    Full Text Available Abstract Background Patients have the potential to provide a rich source of information on both organisational aspects of safety and patient safety incidents. This project aims to develop two patient safety interventions to promote organisational learning about safety - a patient measure of organisational safety (PMOS, and a patient incident reporting tool (PIRT - to help the NHS prevent patient safety incidents by learning more about when and why they occur. Methods To develop the PMOS 1 literature will be reviewed to identify similar measures and key contributory factors to error; 2 four patient focus groups will ascertain practicality and feasibility; 3 25 patient interviews will elicit approximately 60 items across 10 domains; 4 10 patient and clinician interviews will test acceptability and understanding. Qualitative data will be analysed using thematic content analysis. To develop the PIRT 1 individual and then combined patient and clinician focus groups will provide guidance for the development of three potential reporting tools; 2 nine wards across three hospital directorates will pilot each of the tools for three months. The best performing tool will be identified from the frequency, volume and quality of reports. The validity of both measures will be tested. 300 patients will be asked to complete the PMOS and PIRT during their stay in hospital. A sub-sample (N = 50 will complete the PMOS again one week later. Health professionals in participating wards will also be asked to complete the AHRQ safety culture questionnaire. Case notes for all patients will be reviewed. The psychometric properties of the PMOS will be assessed and a final valid and reliable version developed. Concurrent validity for the PIRT will be assessed by comparing reported incidents with those identified from case note review and the existing staff reporting scheme. In a subsequent study these tools will be used to provide information to wards/units about their

  6. Nuclear safety

    Tarride, Bruno

    2015-10-01

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  7. The Nirex Safety Assessment Research Programme; annual report for 1988/89

    Cooper, M.J.

    1989-07-01

    This report summarises progress of the Nirex Safety Assessment Research Programme during 1988/89, in support of assessments of the post-emplacement radiological safety of a repository for the disposal of low-level and intermediate-level radioactive waste. During this period the assessments were concentrating on a comparative study of concepts and areas for deep emplacement of waste, in order to assist in the selection of preferred sites, and the research programme was therefore focussed on providing the data necessary for broad comparisons between different options to be made. (author)

  8. Safety administration division business report. The fourth quarter of 2001. Document on present state of affairs

    Kanamori, Masashi

    2002-06-01

    The business of the Safety administration Division became a wide range such as the management of a labor safety health, the crisis management, the security and the management of an entrance, and the business of the following concerning the Tokai Works, the protection of nuclear materials, the business of the sanction, the nuclear material safeguards, the transport of nuclear materials and the business of a quality assurance. For the purpose of summarizing these businesses and utilizing the data concerning the businesses, the report about the businesses achievement has been periodically drawn up as quarter news since 2001, when the Safety Administration Division was established. This report describes about the business achievement of the fourth quarter news from January to March in 2002. (author)

  9. Safety administration division business report. The third quarter of 2001. Document on present state of affairs

    Kanamori, Masashi

    2002-04-01

    The business of the Safety administration Division became a wide range such as the management of a labor safety health, the crisis management, the security and the management of an entrance, and the business of the following concerning the Tokai Works, the protection of nuclear materials, the business of the sanction, the nuclear material safeguards, the transport of nuclear materials and the business of a quality assurance. For the purpose of summarizing these business and utilizing the data concerning the business, the report about the businesses achievement has been periodically drawn up as quarter news since 2001, when the Safety Administration Division was established. This report describes about the business achievement of the third quarter news from October to December in 2001. (author)

  10. Automated driving and its effects on the safety ecosystem: How do compatibility issues affect the transition period?

    van Loon, R.J.; Martens, Marieke Hendrikje

    2015-01-01

    Different components of automated vehicles are being made available commercially as we speak. Much research has been conducted into these components and many of these have been studied with respect to their effects on safety, but the transition period from non-automated driving to fully automated

  11. Automated driving and its effect on the safety ecosystem: how do compatibility issues affect the transition period?

    Loon, R.J. van; Martens, M.H.

    2015-01-01

    Different components of automated vehicles are being made available commercially as we speak. Much research has been conducted into these components and many of these have been studied with respect to their effects on safety, but the transition period from non-automated driving to fully automated

  12. Status of the safety concept and safety demonstration for an HLW repository in salt. Summary report

    Bollingerfehr, W.; Buhmann, D.; Filbert, W.; and others

    2013-12-15

    Salt formations have been the preferred option as host rocks for the disposal of high level radioactive waste in Germany for more than 40 years. During this period comprehensive geological investigations have been carried out together with a broad spectrum of concept and safety related R and D work. The behaviour of an HLW repository in salt formations, particularly in salt domes, has been analysed in terms of assessment of the total system performance. This was first carried out for concepts of generic waste repositories in salt and, since 1998, for a repository concept with specific boundary conditions, taking the geology of the Gorleben salt dome as an example. Suitable repository concepts and designs were developed, the technical feasibility has been proven and operational and long-term safety evaluated. Numerical modelling is an important input into the development of a comprehensive safety case for a waste repository. Significant progress in the development of numerical tools and their application for long-term safety assessment has been made in the last two decades. An integrated approach has been used in which the repository concept and relevant scientific and engineering data are combined with the results from iterative safety assessments to increase the clarity and the traceability of the evaluation. A safety concept that takes full credit of the favourable properties of salt formations was developed in the course of the R and D project ISIBEL, which started in 2005. This concept is based on the safe containment of radioactive waste in a specific part of the host rock formation, termed the containment providing rock zone, which comprises the geological barrier, the geotechnical barriers and the compacted backfill. The future evolution of the repository system will be analysed using a catalogue of Features, Events and Processes (FEP), scenario development and numerical analysis, all of which are adapted to suit the safety concept. Key elements of the

  13. Physics Division progress report for period ending September 30, 1985

    Livingston, A.B. (ed.)

    1986-04-01

    This report covers the research and development activities of the Physics Division for the 1985 fiscal year. The research activities were centered on experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The experimental nuclear physics program is dominated by heavy ion research. A major part of this effort is the responsibility for operating the Holifield Heavy Ion Research Facility as a national user facility. A major new activity described is the preparation for participation in an ultrarelativistic heavy ion experiment to be performed at CERN in 1986. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. Theory efforts associated with the UNISOR program are described, as well as smaller programs in applications and high-energy physics. (LEW)

  14. Physics Division progress report for period ending September 30, 1985

    Livingston, A.B.

    1986-04-01

    This report covers the research and development activities of the Physics Division for the 1985 fiscal year. The research activities were centered on experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The experimental nuclear physics program is dominated by heavy ion research. A major part of this effort is the responsibility for operating the Holifield Heavy Ion Research Facility as a national user facility. A major new activity described is the preparation for participation in an ultrarelativistic heavy ion experiment to be performed at CERN in 1986. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. Theory efforts associated with the UNISOR program are described, as well as smaller programs in applications and high-energy physics

  15. Physics Division progress report for period ending September 30, 1988

    Livingston, A.B. (ed.)

    1989-03-01

    This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning October 1, 1987, and ending September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the 25-MV tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at 25.5 MV. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies and especially ultrarelativistic beams. The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. In addition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as ''User Resources.'' The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported.

  16. Physics Division progress report for period ending September 30, 1988

    Livingston, A.B.

    1989-03-01

    This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning October 1, 1987, and ending September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the 25-MV tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at 25.5 MV. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies and especially ultrarelativistic beams. The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. In addition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as ''User Resources.'' The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported

  17. Annual health, safety and environmental performance report for 1993

    Gallapher, J D; Wright, M G

    1994-05-01

    This report summarizes the occupational health and safety and the environmental protection record of the operations of Atomic Energy of Canada Limited (AECL) during 1993. An introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes, and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices. (author). 14 figs.

  18. Annual health, safety and environmental performance report for 1993

    Gallapher, J.D.; Wright, M.G.

    1994-05-01

    This report summarizes the occupational health and safety and the environmental protection record of the operations of Atomic Energy of Canada Limited (AECL) during 1993. An introduction highlights the results and describes the facilities and organizational systems. Subsequent sections indicate the performance of the company with respect to personnel radiation exposures, occupational injuries, the handling of wastes, and the release of materials into the environment. Programs in health, safety and environmental protection are presented, along with site remediation and emergency preparedness practices. (author). 14 figs

  19. Nuclear Safety Research and Facilities Department. Annual report 1999

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  20. Critical evaluation of nuclear safety reports Pt. 1

    Egely, Gy.

    1987-01-01

    Licensing procedures of siting, commissioning and operation of nuclear power plants in the USA, FRG, France and Japan are compared. The standard format and content of nuclear safety analysis reports including the general description of the plant, the presentation of the characteristics of siting, building structures, components, facilities, the reactors, the cooling system, the safety system, the measuring and control system, the power supply system, the auxilliary system, the energy transformation system, etc. are discussed in detail by the example of the US procedure. (V.N.)