WorldWideScience

Sample records for safety radiation transport

  1. Radiation protection programmes for the transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide provides guidance on meeting the requirements for the establishment of radiation protection programmes (RPPs) for the transport of radioactive material, to optimize radiation protection in order to meet the requirements for radiation protection that underlie the Regulations for the Safe Transport of Radioactive Material. This Guide covers general aspects of meeting the requirements for radiation protection, but does not cover criticality safety or other possible hazardous properties of radioactive material. The annexes of this Guide include examples of RPPs, relevant excerpts from the Transport Regulations, examples of total dose per transport index handled, a checklist for road transport, specific segregation distances and emergency instructions for vehicle operators

  2. Radiation safety in sea transport of radioactive material in Japan

    International Nuclear Information System (INIS)

    Odano, N.; Yanagi, H.

    2004-01-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured

  3. Radiation safety in sea transport of radioactive material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.

  4. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2c, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Europe via the Regional Project RER/9/109 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Greece and Belarus are key partners in the European region.

  5. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2d, June 2013

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Latin America via the Regional Project RLA/9/070 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Argentina and Brazil are key partners in the Latin-American region.

  6. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2b, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Asia and the Pacific via the Regional project RAS/9/066 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Malaysia and Syrian Arabic Republic are key partners in the Asian and the Pacific region.

  7. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2a, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Africa via the Regional project RAF/9/04 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. AFRA Regional Designated Centres, in Algeria, Ghana and Morocco, equivalent to the IAEA's Regional Training Centres (RTCs) present in all the other regions, are key partners in the African region.

  8. Regulatory practices of radiation safety of SNF transportation in Russia

    International Nuclear Information System (INIS)

    Kuryndina, Lidia; Kuryndin, Anton; Stroganov, Anatoly

    2008-01-01

    This paper overviews current regulatory practices for the assurance of nuclear and radiation safety during railway transportation of SNF on the territory of Russian Federation from NPPs to longterm-storage of reprocessing sites. The legal and regulatory requirements (mostly compliant with IAEA ST-1), licensing procedure for NM transportation are discussed. The current procedure does not require a regulatory approval for each particular shipment if the SNF fully comply with the Rosatom's branch standard and is transported in approved casks. It has been demonstrated that SNF packages compliant with the branch standard, which is knowingly provide sufficient safety margin, will conform to the federal level regulations. The regulatory approval is required if a particular shipment does not comply with the branch standard. In this case, the shipment can be approved only after regulatory review of Applicant's documents to demonstrate that the shipment still conformant to the higher level (federal) regulations. The regulatory review frequently needs a full calculation test of the radiation safety assurance. This test can take a lot of time. That's why the special calculation tools were created in SEC NRS. These tools aimed for precision calculation of the radiation safety parameters by SNF transportation use preliminary calculated Green's functions. Such approach allows quickly simulate any source distribution and optimize spent fuel assemblies placement in cask due to the transport equation property of linearity relatively the source. The short description of calculation tools are presented. Also, the paper discusses foreseen implications related to transportation of mixed-oxide SNF. (author)

  9. Radiation safety of crew and passengers of air transportation in civil aviation. Provisional standards

    Science.gov (United States)

    Aksenov, A. F.; Burnazyan, A. I.

    1985-01-01

    The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.

  10. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 3, May 2014

    International Nuclear Information System (INIS)

    2014-05-01

    Building competence through education and training in radiation protection, radioactive waste safety, and safety in transport of radioactive material is fundamental to the establishment of a comprehensive and sustainable national infrastructure for radiation safety, which in turn is essential for the beneficial uses of radiation while ensuring appropriate protection of workers, patients, the public and the environment. IAEA’s Division of Radiation, Transport and Waste Safety provides direct assistance to Member States via a range of tools and mechanisms, such as by organizing educational and training events, developing standardized syllabi with supporting material and documents, and by fostering methodologies to build sustainable competence and enhance effectiveness in the provision of training. The main objective is to support Member States in the application of the IAEA Safety Standards. Seminars and additional activities are also promoted to broaden knowledge on relevant areas for an effective application of the standards

  11. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  12. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  13. Radiation safety and gynaecological brachytherapy

    International Nuclear Information System (INIS)

    Crawford, L.

    1985-01-01

    In 1983, the Radiation Control Section of the South Australian Health Commission conducted an investigation into radiation safety practices in gynaecological brachytherapy. Part of the investigation included a study of the transportation of radioactive sources between hospitals. Several deficiences in radiation safety were found in the way these sources were being transported. New transport regulations came into force in South Australia in July 1984 and since then there have been many changes in the transportation procedure

  14. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 4, August 2014

    International Nuclear Information System (INIS)

    2014-08-01

    IAEA’s Division of Radiation, Transport and Waste Safety is assisting Member States to develop national strategies for education and training in radiation, transport and waste safety via the regional projects on “Strengthening Education and Training Infrastructure, and Building Competence in Radiation Safety” (RAF/9/04, RAS/9/066, RER/9/109 and RLA/9/070). The regional workshops conducted in 2012 in this area and the results achieved were presented in the previous issues of this newsletter focussing specifically on each region of the Technical Cooperation Programme (Africa, Asia and the Pacific, Europe and Latin America). In the course of 2013, a new cycle of Regional Workshops was conducted. The workshops held in the regions of Africa, Asia and the Pacific, and Europe mainly focussed on Sharing Experience and Progress made in establishing a National Strategy for Education and Training in Radiation, Transport and Waste Safety (pages 2-5). The workshop held in the region of Latin America mainly focussed on Developing and Implementing Education and Training programmes. An overview on the results achieved by participating Member States for the period 2012-2013 is provided

  15. Radiation shielding and criticality safety assessment for KN-12 spent nuclear fuel transport cask

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kyung; Shin, Chang Ho; Kim, Gi Hwan [Hanyang Univ., Seoul (Korea, Republic of)

    2001-08-15

    Because SNFs involve TRU (Transuranium), fission products, and fissile materials, they are highly radioactive and also have a possibility to be critical. Therefore, radiation shielding and criticality safety for transport casks containing the SNFs should be guaranteed through reliable valuation procedure. IAEA safety standard series No ST-1 recommends regulation for safe transportation of the SNFs by transport casks, and United States is carrying out it according to the regulation guide, 10 CFR parts 71 and 72. Present research objective is to evaluate the KN-12 spent nuclear fuel transport cask that is designed for transportation of up to 12 assemblies and is standby status for being licensed in accordance with Korea Atomic Energy Act. Both radiation shielding and criticality analysis using the accurate Monte Carlo transport code, MCNP-4B are carried out for the KN-12 SNF cask as a benchmark calculation. Source terms for radiation shielding calculation are obtained using ORIGEN-S computer code. In this work, for normal transport conditions, the results from MCNP-4B shows the maximum dose rate of 0.557 mSv/hr at the side surface. And the maximum dose rate of 0.0871 mSv/hr was resulted at the 2 m distance from the cask. The level of calculated dose rate is 27.9% of the limit at the cask surface, 87.1% at 2 m from the cask surface for normal transport condition. For hypothetical accident conditions, the maximum rate of 2.5144 mSv/hr was resulted at the 1 m distance from the cask and this level is 25.1% of the limit for hypothetical accident conditions. In criticality calculations using MCNP-4B, the k{sub eff} values yielded for 5.0 w/o U-235 enriched fresh fuel are 0.92098 {+-} 0.00065. This result confirms subcritical condition of the KN-12 SNF cask and gives 96.95% of recommendations for criticality safety evaluation by US NRC these results will be useful as a basis for approval for the KN-12 SNF cask.

  16. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 1, August 2012

    International Nuclear Information System (INIS)

    2012-08-01

    The IAEA has a statutory function to establish standards for the protection of health, life and property against ionizing radiation and to provide for the application of these standards to peaceful nuclear activities. Education and training (E and T) is one of the main mechanisms to provide support to Member States in the application of the standards. In 2000, an internal evaluation of the overall education and training programme was undertaken. The conclusions were that the provision of and support for E and T in Member States tended to be on a reactive rather than proactive basis, contributing to a culture of dependency rather than sustainability. On the basis of this evaluation, a strategic approach to education and training in radiation and waste safety was developed that outlined the objectives and outcomes to be achieved over a ten year period (2001-2010). General Conference Resolutions have underlined or emphasized the importance of sustainable programmes for education and training in radiation, transport and waste safety, and have also welcomed the ongoing commitment of the Secretariat and Member States to the implementation of the strategy. A Steering Committee for Education and Training in Radiation Protection and Waste Safety was established in 2002, with the mission of advising the IAEA on the implementation of the strategy and making recommendations as appropriate. In 2010, the Steering Committee analysed the overall achievement of the strategic approach 2011-2010, refined the vision of the original strategy and redefined the related objectives. The Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) was submitted to the IAEA's policy-making organs and was noted by its Board of Governors in September 2010.

  17. Regulatory control of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  18. The transport safety programme

    International Nuclear Information System (INIS)

    Selling, H.A.

    1994-01-01

    The transport safety programme is one of the smaller technical sub-programmes in the Radiation Safety Section of the Division of Nuclear Safety, in terms of both regular budget and professional staff allocations. The overall aim of the programme is to promote the safe movement of radioactive material worldwide. The specific objectives are the development, review and maintenance of the Regulations for the Safe Transport of Radioactive Material, Safety Series No 6, and its supporting documents Safety Series Nos 7, 37 and 80 and the assistance to Member States and International Organizations in the proper implementation of the Regulations. One of the important issues that emerged during an ongoing Review/Revision process is the transport of Low-Specific Activity (LSA) material and Surface Contaminated Objects (SCO). Many of the radioactive waste materials fall in one of these categories. The subject has gained substance because it is expected that in the next decade radioactive waste could become available in so far unprecedented quantities and volumes due to decontamination and decommissioning of nuclear facilities. (author)

  19. Radiation Safety in Industrial Radiography. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  20. Radiation safety - an IAEA perspective

    International Nuclear Information System (INIS)

    Persson, L.

    1993-01-01

    The activities of the IAEA relating to radiation safety cover: The preparation of International Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - it is expected that the new Basic Safety Standards will be adopted by the sponsoring organizations in 1994. The radiological consequences of the Chernobyl accident: the thyroid cancer controversy - the hypothesis that must be tested is whether the reported increased incidence of thyroid cancer due to exposure to radioactive iodine released in the Chernobyl accident, and there are several questions that must be answered before a firm conclusion can be reached. Emergency Response Services (ERS): In March 1993, at the request of Viet Nam, which invoked the Energency Assistance Convention, a medical team organized by the IAEA went to Hanoi and assisted in arranging for an overexposed person to be transferred from Viet Nam to Paris for specialized medical treatment. In April 1993, the ERS was used to inform Member States of the consequences of an explosion at the Tomsk 7 fuel reprocessing plant in Siberia, Russia, which caused a radiation leak. Reassessing the long range transport of radioactive material through the environment: Data from the Chernobyl accident have been used for model validation in the Atmospheric Transport Model Evaluation Study (ATMES). A follow-up programme, the European Tracer Experiment (ETEX) with experimental studies of long range atmospheric movements over Europe has been established in order to increase knowledge and prediction capability. As part of the programme, a non-toxic atmospheric tracer will be released under suitable conditions in 1994. The Radiation Protection Advisory Teams Service (RAPAT): In many of the developing countries visited, the lack of an adequate infrastructure for radiation protection is the main obstacle to improved radiation protection. Strengthening radiation and nuclear safety infrastructures in successor states of the USSR: The

  1. Communications on nuclear, radiation, transport and waste safety: a practical handbook

    International Nuclear Information System (INIS)

    1999-04-01

    Basic requirements to be met by national infrastructures for radiation protection and safety are stated in the International basic safety Standards for Protection against Ionizing radiation and for safety of radiation Sources. These include a requirement 'to set up appropriate means of informing the public, its representatives and the information media about the health and safety aspects of activities involving exposure to radiation and about regulatory processes.' This publication is intended for national regulatory authorities, to provide them with guidance on the principles and methods that can be applied in communicating nuclear safety to different audiences under different circumstances. This report presumes the existence of adequate national infrastructure including an independent regulatory authority with sufficient powers and resources to meet its responsibilities

  2. Study on transport safety of refresh MOX fuel. Radiation dose from package hypothetically submerged into sea

    International Nuclear Information System (INIS)

    Tsumune, Daisuke; Suzuki; Hiroshi; Saegusa, Toshiari; Maruyama, Koki; Ito, Chihiro; Watabe, Naoto

    1999-01-01

    The sea transport of fresh MOX fuel from Europe to Japan is under planning. For the structure and equipment of transport ships for fresh MOX fuels, there is a special safety standard called the INF Code of IMO (International Maritime Organization). For transport of radioactive materials, there is a safety standard stipulated in Regulations for the Safe Transport of Radioactive Material issued by IAEA (International Atomic Energy Agency). Under those code and standard, fresh MOX fuel will be transported safely on the sea. However, a dose assessment has been made by assuming that a fresh MOX fuel package might be sunk into the sea by unexpected reasons. In the both cases for a package sunk at the coastal region and for that sunk at the ocean, the evaluated result of the dose equivalent by radiation exposure to the public are far below the dose equivalent limit of the ICRP recommendation (1 mSv/year). (author)

  3. IAEA safety glossary. Terminology used in nuclear, radiation, radioactive waste and transport safety. Version 1.0. Working material

    International Nuclear Information System (INIS)

    2000-04-01

    The IAEA safety standards for nuclear installations, radiation protection, radioactive waste management and the transport of radioactive materials have been historically developed in four separate programmes, each of them developing its own terminology. The purpose was to explain the meaning of technical terms that might be unfamiliar to a reader; to explain any special meanings assigned to common words or terms and to define precisely how terms are used in particular publications to avoid ambiguity concerning some important aspects of their meaning. It is intended primarily to provide guidance to the drafters and reviewers of Agency safety related publications, including IAEA Technical officers, consultants and members of Technical Committees, Advisory Groups and safety standards advisory bodies. It is also likely to be a useful source of information for other Agency staff, notably editors and translators, and for external users of IAEA safety related publications

  4. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  5. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in … shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  6. Radiation Safety in Industrial Radiography. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  7. The safety of radioactive materials transport

    International Nuclear Information System (INIS)

    Niel, J.Ch.

    1997-01-01

    Five accidents in radioactive materials transport have been studied; One transport accident by road, one by ship, one by rail, and the two last in handling materials from ships in Cherbourg port and Le Havre port. All these accidents were without any important consequences in term of radiation protection, but they were sources of lessons to improve the safety. (N.C.)

  8. Radiation safety

    International Nuclear Information System (INIS)

    Jain, Priyanka

    2014-01-01

    The use of radiation sources is a privilege; in order to retain the privilege, all persons who use sources of radiation must follow policies and procedures for their safe and legal use. The purpose of this poster is to describe the policies and procedures of the Radiation Protection Program. Specific conditions of radiation safety require the establishment of peer committees to evaluate proposals for the use of radionuclides, the appointment of a radiation safety officer, and the implementation of a radiation safety program. In addition, the University and Medical Centre administrations have determined that the use of radiation producing machines and non-ionizing radiation sources shall be included in the radiation safety program. These Radiation Safety policies are intended to ensure that such use is in accordance with applicable State and Federal regulations and accepted standards as directed towards the protection of health and the minimization of hazard to life or property. It is the policy that all activities involving ionizing radiation or radiation emitting devices be conducted so as to keep hazards from radiation to a minimum. Persons involved in these activities are expected to comply fully with the Canadian Nuclear Safety Act and all it. The risk of prosecution by the Department of Health and Community Services exists if compliance with all applicable legislation is not fulfilled. (author)

  9. Safety of transport of radioactive material. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Radioactive material has been transported for decades within and between countries as the use of radioactive material to benefit mankind has expanded. The transport can involve many types of materials (radionuclides and radiation sources for applications in agriculture, energy production, industry, and medicine) and all modes of transport (road, rail, sea and waterways, and air). Among the organizations in the United Nations system, the International Atomic Energy Agency (IAEA) has the statutory function to establish or adopt standards of safety for protection of health against exposure to ionizing radiation. Within its statutory mandate and pursuant to this request, in 1961, the IAEA issued Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations). The Transport Regulations were periodically reviewed and, as appropriate, have been amended or revised. The latest version of the Transport Regulations was issued in 2000 by the IAEA as Publication TS-R-1 (ST-1, Revised). In addition, the IAEA is entrusted by its Statute to provide for the application of its standards at the request of States. The objective of the Conference is to foster the exchange of information on issues related to the safety of transport of radioactive material by providing an opportunity for representatives from sponsoring international organizations and their Member States and from other co-operating and participating organizations to discuss critical issues relating to the safety of transport of radioactive material by all modes and to formulate recommendations, as appropriate, regarding further international co-operation in this area. The following topics have been identified by the Technical Programme Committee as the subjects to be covered in the background briefing sessions: History and Status of the IAEA Transport Regulation Development; Experience in adoption of the IAEA Transport Regulations at the international level; Implementation of the IAEA Transport

  10. Measures to strengthen international co-operation in nuclear, radiation and transport safety and waste management. Nuclear safety review for the year 2003

    International Nuclear Information System (INIS)

    2004-01-01

    The Nuclear Safety Review for the Year 2003 presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety during 2003. As in 2002 the overview is supported by more detailed Notes by the Secretariat: Safety Related Events and Issues Worldwide during 2003 (document 2004/Note 6), The Agency's Safety Standards: Activities during 2003 (document 2004/Note 7) and Providing for the Application of the Safety Standards (document 2004/Note 8). In January 2003, the Agency implemented an organization change and developed an integrated approach to reflect a broader assignment of nuclear safety and nuclear security and to better exploit synergy between them. The Office of Physical Protection and Material Security renamed to Office of Nuclear Security was transferred from the Department of Safeguards to the Department of Nuclear Safety, which became the Department of Nuclear Safety and Security to reflect the change. This Review provides information primarily on nuclear safety, and nuclear security will be addressed in a separate report

  11. Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide provides guidance on various aspects of emergency planning and preparedness for dealing effectively and safely with transport accidents involving radioactive material, including the assignment of responsibilities. It reflects the requirements specified in Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, and those of Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Framework for planning and preparing for response to accidents in the transport of radioactive material; 3. Responsibilities for planning and preparing for response to accidents in the transport of radioactive material; 4. Planning for response to accidents in the transport of radioactive material; 5. Preparing for response to accidents in the transport of radioactive material; Appendix I: Features of the transport regulations influencing emergency response to transport accidents; Appendix II: Preliminary emergency response reference matrix; Appendix III: Guide to suitable instrumentation; Appendix IV: Overview of emergency management for a transport accident involving radioactive material; Appendix V: Examples of response to transport accidents; Appendix VI: Example equipment kit for a radiation protection team; Annex I: Example of guidance on emergency response to carriers; Annex II: Emergency response guide.

  12. Radiation safety audit

    International Nuclear Information System (INIS)

    Kadadunna, K.P.I.K.; Mod Ali, Noriah

    2008-01-01

    Audit has been seen as one of the effective methods to ensure harmonization in radiation protection. A radiation safety audit is a formal safety performance examination of existing or future work activities by an independent team. Regular audit will assist the management in its mission to maintain the facilities environment that is inherently safe for its employees. The audits review the adequacy of facilities for the type of use, training, and competency of workers, supervision by authorized users, availability of survey instruments, security of radioactive materials, minimization of personnel exposure to radiation, safety equipment, and the required record keeping. All approved areas of use are included in these periodic audits. Any deficiency found in the audit shall be corrected as soon as possible after they are reported. Radiation safety audit is a proactive approach to improve radiation safety practices and identify and prevent any potential radiation accident. It is an excellent tool to identify potential problem to radiation users and to assure that safety measures to eliminate or reduce the problems are fully considered. Radiation safety audit will help to develop safety culture of the facility. It is intended to be the cornerstone of a safety program designed to aid the facility, staff and management in maintaining a safe environment in which activities are carried out. The initiative of this work is to evaluate the need of having a proper audit as one of the mechanism to manage the safety using ionizing radiation. This study is focused on the need of having a proper radiation safety audit to identify deviations and deficiencies of radiation protection programmes. It will be based on studies conducted on several institutes/radiation facilities in Malaysia in 2006. Steps will then be formulated towards strengthening radiation safety through proper audit. This will result in a better working situation and confidence in the radiation protection community

  13. Nuclear safety and radiation protection in France in 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The first part of this voluminous report describe the different ASN (Nuclear Safety Authority) actions: nuclear activities (ionising radiation and health and environmental risks), principles and stakeholders in nuclear safety regulation, radiation protection and protection of the environment, regulation, regulation of nuclear activities and exposure to ionizing radiation, radiological emergencies, public information and transparency, international relations. It also gives an overview of nuclear safety and radiation protection activities in the different French regions. The second part addresses activities regulated by the ASN: medical uses of ionizing radiation, non-medical uses of ionizing radiation, transport of radioactive materials, nuclear power plants, nuclear fuel cycle installations, nuclear research facilities and various nuclear installations, safe decommissioning of basic nuclear installations, radioactive waste and contaminated sites and soils

  14. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    Paci, Rustem; Ylli, Fatos

    2008-01-01

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  15. IAEA education and training in radiation protection, transport and waste safety-status and new developments for sustainability

    International Nuclear Information System (INIS)

    Sadagopan, G.; Mrabit, K.; Wheatley, J.

    2008-01-01

    IAEA 's education and training activities in radiation, transport and waste safety follow the IAEA vision, strategy and resolutions of its annual General Conferences and reflect the latest IAEA standards and guidance. IAEA prepared a Strategic Approach to Education and Training in Radiation and Waste Safety (Strategy on Education and Training) aiming at establishing, by 2010, sustainable education and training programmes in Member States, which was endorsed by the GC(45)/RES/10C in 2001. In implementing the strategy, IAEA is organising training events at the regional level and assisting the Member States at the national level by providing them the exemplary quality of training material developed at the IAEA. This work will continue ensuring its completeness in all areas of radiation safety. An Inter Centre Network between the Agency and regional, collaborating national training centres is established to facilitate information exchange, improve communication and dissemination of training material. There is a challenge to enhance the technical capability of the Member States to reach sustainability. This is intended through organising number of Train the Trainers events to develop a pool of qualified trainers. The new developments include establishing E-learning, developing a syllabus for training of Radiation Protection Officers and training materials, information materials for radiation workers. These are aimed at assisting Member States attain self sustainability. (author)

  16. Establishing Sustainable Infrastructures for Education and Training in Radiation, Transport and Waste Safety: IAEA’s Approach to Support Member States

    International Nuclear Information System (INIS)

    Wheatley, John

    2014-01-01

    Summary: • IAEA General Conference has called upon MS to develop national strategies for education &training radiation, transport & waste safety; • IAEA has developed guidance, and is providing support to MSs; • IAEA Regional Training Centres are key partners with IAEA

  17. Radiation safety

    International Nuclear Information System (INIS)

    Van Riessen, A.

    2002-01-01

    Full text: Experience has shown that modem, fully enclosed, XRF and XRD units are generally safe. This experience may lead to complacency and ultimately a lowering of standards which may lead to accidents. Maintaining awareness of radiation safety issues is thus an important role for all radiation safety officers. With the ongoing progress in technology, a greater number of radiation workers are more likely to use a range of instruments/techniques - eg portable XRF, neutron beam analysis, and synchrotron radiation analysis. The source for each of these types of analyses is different and necessitates an understanding of the associated dangers as well as use of specific radiation badges. The trend of 'suitcase science' is resulting in scientists receiving doses from a range of instruments and facilities with no coordinated approach to obtain an integrated dose reading for an individual. This aspect of radiation safety needs urgent attention. Within Australia a divide is springing up between those who work on Commonwealth property and those who work on State property. For example a university staff member may operate irradiating equipment on a University campus and then go to a CSIRO laboratory to operate similar equipment. While at the University State regulations apply and while at CSIRO Commonwealth regulations apply. Does this individual require two badges? Is there a need to obtain two licences? The application of two sets of regulations causes unnecessary confusion and increases the workload of radiation safety officers. Radiation safety officers need to introduce risk management strategies to ensure that both existing and new procedures result in risk minimisation. A component of this strategy includes ongoing education and revising of regulations. AXAA may choose to contribute to both of these activities as a service to its members as well as raising the level of radiation safety for all radiation workers. Copyright (2002) Australian X-ray Analytical

  18. Radiation safety

    International Nuclear Information System (INIS)

    1996-04-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. The health effects of radiation - both natural and artificial - are relatively well understood and can be effectively minimized through careful safety measures and practices. The IAEA, together with other international and expert organizations, is helping to promote and institute Basic Safety Standards on an international basis to ensure that radiation sources and radioactive materials are managed for both maximum safety and human benefit

  19. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  20. Radiological safety assessment of transporting radioactive waste to the Gyeongju disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Baik, Min Hoon; Kang, Mun Ja; Ahn, Hong Joo; Hwang, Doo Seong; Hong, Dae Seok; Jeong, Yong Hwan; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea. We considered two kinds of wastes: (1) operation wastes generated from the routine operation of facilities; and (2) decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal) transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  1. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

    Directory of Open Access Journals (Sweden)

    Jongtae Jeong

    2016-12-01

    Full Text Available A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI, Daejeon, Korea. We considered two kinds of wastes: (1 operation wastes generated from the routine operation of facilities; and (2 decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  2. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.; Oldfather, D.; Lindner, A.

    1993-05-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 GeV synchrotron light source facility consisting of a 120 keV electron gun, 50 MeV linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  3. A Strategic Approach to Establishing and Strengthening National Infrastructure for Radiation, Transport and Waste Safety

    International Nuclear Information System (INIS)

    Mastauskas, A.

    2016-01-01

    In Lithuania, as in the other countries of the world, in various areas, such as medicine, industry, education and training, agriculture the different technologies with the radioactive substances or devices, which generate ionizing radiation, are used. The responsibilities of each party and concern is to ensure the safe use ensure the radiation protection of the population and the environment. For every IAEA Member State in order to ensure the radiation safety, it is necessary to create the States radiation safety infrastructure: legislation, Regulatory Authority, technical support organizations. The International Atomic Energy Agency (IAEA) develops safety standards and assists Member States to create radiation safety infrastructure according the IAEA safety standards requirements. Noting that many Member States would benefit from bringing their radiation safety infrastructure more in line with IAEA Safety Standards, the Secretariat organized a meeting in May of 2014 of senior radiation safety experts from Africa, Asia & the Pacific, Europe, Latin America and North America, with the aim of developing a model strategic approach to establishing and strengthening national radiation safety infrastructure, with a special focus on Member States receiving assistance from the Agency. This model approach was presented to a wider audience on the margins of the IAEA General Conference in September 2014, where it was well received. This paper describes how the key elements of the model strategic approach were applied in Lithuania. The outcome of which showed that there is an adequate radiation safety infrastructure in place covering more than 50 legal acts, the establishment and empowerment of a Regulatory Authority – Radiation Protection Centre, technical support organizations – metrology and dosimetry services, and training centres. In Lithuania there exists a State registry of sources of ionizing radiation and occupational doses of exposure, a strong system of the

  4. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  5. Trade and transport of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The guide specifies the obligations pertaining to the trade in and transport of radiation sources and other matters to be taken into account in safety supervision. It also specifies obligations and procedures relating to transfrontier movements of radioactive waste contained in the EU Council Directive 92/3/Euratom. (7 refs.)

  6. Transport of radioactive wastes to the planned final waste repository Konrad: Radiation exposure resulting from normal transport and radiological risks from transport accidents

    International Nuclear Information System (INIS)

    Lange, F.; Fett, H.J.; Gruendler, D.; Schwarz, G.

    1993-01-01

    Radiation exposures of members of critical groups of the general population and of transport personnel resulting from normal transport of radioactive wastes to the planned final waste repository Konrad have been evaluated in detail. By applying probabilistic safety assessment techniques radiological risks from transport accidents have been analysed by quantifying potential radiation exposures and contaminations of the biosphere in connection with their expected frequencies of occurrence. The Konrad transport study concentrates on the local region of the waste repository, where all transports converge. (orig.) [de

  7. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  8. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  9. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  10. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  11. Safety evaluation on MOX new fuel at marine transport

    International Nuclear Information System (INIS)

    Tsumune, Daisuke; Ito, Chihiro; Saegusa, Toshiari; Maruyama, Koki

    2000-01-01

    In the Central Research Institute of Electric Power Industry, in order to confirm effects of MOX new fuel on the public are as small as possible even when its marine transport goes down, some exposed radiation dose has previously conducted on imaginary shipwreck of marine transport on used nuclear fuel, plutonium dioxide, and high level return glass solid. Under a base of such informations, some investigations on safety on marine transport of the MOX new fuel was conducted. On September, 1999, five transport vessels of the MOX new fuel was at first transported on marine. The value of five times of estimated exposed radiation dose (max. 8.1 x 10 -8 mSv/y) corresponds to an evaluation result assumed by shipwreck in marine transport this time. As a result, it was found that the exposed radiation dose estimated on this case would be sufficiently less than an effective dose equivalent limit (1 mSv/y) of public exposure according to the recommendation of ICRP in both coastal and oceanic areas. (G.K.)

  12. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition); Surete radiologique en radiographie industrielle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in Horizontal-Ellipsis shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  13. Regulatory Control of Radiation Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  14. Radiation sources safety and radioactive materials security regulation in Ukraine

    International Nuclear Information System (INIS)

    Smyshliaiev, A.; Holubiev, V.; Makarovska, O.

    2001-01-01

    Radiation sources are widely used in Ukraine. There are about 2500 users in industry, science, education and about 2800 in medicine. About 80,000 sealed radiation sources with total kerma-equivalent of 450 Gy*M 2 /sec are used in Ukraine. The exact information about the radiation sources and their users will be provided in 2001 after the expected completion of the State inventory of radiation sources in Ukraine. In order to ensure radiation source safety in Ukraine, a State System for regulation of activities dealing with radiation sources has been established. The system includes the following elements: establishment of norms, rules and standards of radiation safety; authorization activity, i.e. issuance of permits (including those in the form of licences) for activities dealing with radiation sources; supervisory activity, i.e. control over observance of norms, rules and standards of radiation safety and fulfilment of conditions of licences for activities dealing with radiation sources, and also enforcement. Comprehensive nuclear legislation was developed and implemented from 1991 to 2000. Radiation source safety is regulated by three main nuclear laws in Ukraine: On the use of nuclear energy and radiation safety (passed on 8 February 1995); On Human Protection from Impact of Ionizing Radiation (passed on 14 January 1998); On permissive activity in the area of nuclear energy utilization (passed on 11 January 2000). The regulatory authorities in Ukraine are the Ministry for Ecology and Natural Resources (Nuclear Regulatory Department) and the Ministry of Health (State sanitary-epidemiology supervision). According to the legislation, activities dealing with radiation sources are forbidden without an officially issued permit in Ukraine. Permitted activities with radiation sources are envisaged: licensing of production, storage and maintenance of radiation sources; licensing of the use of radiation sources; obligatory certification of radiation sources and transport

  15. 78 FR 53790 - Public Forum-Safety Culture: Enhancing Transportation Safety

    Science.gov (United States)

    2013-08-30

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Forum--Safety Culture: Enhancing Transportation Safety On Tuesday and Wednesday, September 10-11, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Safety Culture: Enhancing Transportation Safety.'' The forum will begin at 9:00...

  16. Health (Radiation Safety) Act 1983 (Victoria) No. 9889 of 17 May 1983

    International Nuclear Information System (INIS)

    1983-01-01

    This Act amends the Health Act 1958 by adding a new Section entitled ''Radiation Safety''. In addition to establishing guidelines for the registration and licensing of certain radiation apparatus and sealed radioactive sources, this new Section authorises the Governor in Council to make regulations concerning, inter alia, transport and disposal of radioactive substances and public health and safety. The Act also sets up a Radiation Advisory Committee and a Radiographers and Radiation Technologists Registration Board of Victoria and amends the Nuclear Activities (Prohibitions) Act 1983 in respect of certain licensing provisions. (NEA) [fr

  17. 78 FR 61251 - The National Public Transportation Safety Plan, the Public Transportation Agency Safety Plan, and...

    Science.gov (United States)

    2013-10-03

    ...-0030] RIN 2132-AB20; 2132-AB07 The National Public Transportation Safety Plan, the Public Transportation Agency Safety Plan, and the Public Transportation Safety Certification Training Program; Transit... Public Transportation Safety Program (National Safety Program) and the requirements of the new transit...

  18. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  19. Safety instruction for execution tasks involving ionizing radiations

    International Nuclear Information System (INIS)

    Fonseca, G.

    1985-01-01

    Basic directives are presented allow operations with ionizing radiations in industrial areas with high levels of safety. Contractual, technical, operational and administrative criteria are established for the safe performance of x-rays and gamographies and the use of fixed radiation based equipment (indicators of level, density, flow, etc) as well as precautions to be taken during project, procurement, transportation, assembly and maintenance of such equipment. Finally procedures are suggested for emergencies involving radioactive sources. (author)

  20. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition); Seguridad radiologica en la radiografia industrial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  1. SAFETY PLATFORM OF POLISH TRANSPORT

    Directory of Open Access Journals (Sweden)

    Katarzyna CHRUZIK

    2016-03-01

    Full Text Available Analyzing the level of Polish transport safety culture can be seen that it is now dependent on the culture of safety management within the organization and the requirements and recommendations of law in this field for different modes of transport (air, rail, road, water. Of the four basic types of transport requirements are widely developed in the aviation, rail, and water – the sea. In order to harmonize the requirements for transport safety so it appears advisable to develop a platform for exchange of safety information for different modes of transport, and the development of good practices multimodal offering the possibility of improving Polish transport safety. Described in the publication of the proposal in addition to the alignment platform experience and knowledge in the field of transport safety in all its kinds, it can also be a tool for perfecting new operators of public transport.

  2. Promoting safety culture in radiation industry through radiation audit

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2007-01-01

    This paper illustrates the Malaysian experience in implementing and promoting effective radiation safety program. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. This program is known as radiation safety audit and is able to reveal where and when action is needed to make improvements to the systems of controls. A structured and proper radiation self-auditing system is seen as the sole requirement to meet the current and future needs in sustainability of radiation safety. As a result safety culture, which has been a vital element on safety in many industries can be improved and promote changes, leading to good safety performance and excellence. (author)

  3. Computer codes in nuclear safety, radiation transport and dosimetry

    International Nuclear Information System (INIS)

    Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M.

    2006-01-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations

  4. The nuclear safety authority (ASN) presents its report on the status of nuclear safety and radiation protection in France in 2010

    International Nuclear Information System (INIS)

    2011-01-01

    After a presentation of the French nuclear safety authority (ASN) and of some events which occurred in 2010, this report present the actions performed by the ASN in different fields: nuclear activities (ionizing radiations and risks for health and for the environment), principles and actors of control of nuclear safety, radiation protection and environment protection, regulation, control of nuclear activities and of exposures to ionizing radiations, emergency situations, public information and transparency, international relationship. It proposes a regional overview of nuclear safety and radiation protection in France. It addresses the activities controlled by the ASN: medical and non medical usages of ionizing radiations, transportation of radioactive materials, electronuclear power stations, installations involved in the nuclear fuel cycle, research nuclear installations and other nuclear installations, safety in basic nuclear installation dismantling, radioactive wastes and polluted sites

  5. Proceedings of the 6. Argentine congress on radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    1998-01-01

    The 6th Argentine Congress on Radiation Protection and Nuclear Safety was organized by the Radioprotection Argentine Society, in Buenos Aires, between the 22 and 24 of september of 1998. In this event, were presented almost 66 papers in the following sessions, about these subjects: 1.- Safety in nuclear installations. 2.- Control of nuclear material and physical protection of nuclear installations. 3.- Programs of quality assurance. 4.- Training, technical information and public information. 5.- Physical dosimetry. 6.- Physical dosimetry and occupational radiation protection. 7.- Exposure of the natural radiation. 8.- Environmental radiological safety. 9.- Biological effects of the ionizing radiations and biological dosimetry. 10.- Radiological protection of the medical practice and the radiological emergencies. 11.- Radioactive wastes management. 12.- Transport of radioactive materials

  6. Radiation Protection and Safety infrastructure in Albania

    International Nuclear Information System (INIS)

    Ylli, F.; Dollani, K.; Paci, R.

    2005-01-01

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  7. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  8. RADHEAT-V4: a code system to generate multigroup constants and analyze radiation transport for shielding safety evaluation

    International Nuclear Information System (INIS)

    Yamano, Naoki; Minami, Kazuyoshi; Koyama, Kinji; Naito, Yoshitaka.

    1989-03-01

    A modular code system RADHEAT-V4 has been developed for performing precisely neutron and photon transport analyses, and shielding safety evaluations. The system consists of the functional modules for producing coupled multi-group neutron and photon cross section sets, for analyzing the neutron and photon transport, and for calculating the atom displacement and the energy deposition due to radiations in nuclear reactor or shielding material. A precise method named Direct Angular Representation (DAR) has been developed for eliminating an error associated with the method of the finite Legendre expansion in evaluating angular distributions of cross sections and radiation fluxes. The DAR method implemented in the code system has been described in detail. To evaluate the accuracy and applicability of the code system, some test calculations on strong anisotropy problems have been performed. From the results, it has been concluded that RADHEAT-V4 is successfully applicable to evaluating shielding problems accurately for fission and fusion reactors and radiation sources. The method employed in the code system is very effective in eliminating negative values and oscillations of angular fluxes in a medium having an anisotropic source or strong streaming. Definitions of the input data required in various options of the code system and the sample problems are also presented. (author)

  9. The first symposium of Research Center for Radiation Safety, NIRS. Perspective of future studies of radiation safety

    International Nuclear Information System (INIS)

    Shimo, Michikuni

    2002-03-01

    This paper summarizes presentations given in the title symposium, held at the Conference Room of National Institute of Radiological Sciences (NIRS) on November 29 and 30, 2001. Contained are Introductory remarks: Basic presentations concerning exposure dose in man; Environmental levels of radiation and radioactivity, environmental radon level and exposure dose, and radiation levels in the specific environment (like in the aircraft): Special lecture (biological effects given by space environment) concerning various needs for studies of radiation safety; Requirement for open investigations, from the view of utilization, research and development of atomic energy, from the clinical aspect, and from the epidemiological aspect: Special lecture (safety in utilization of atomic energy and radiation-Activities of Nuclear Safety Commission of Japan) concerning present state and perspective of studies of radiation safety; Safety of radiation and studies of biological effects of radiation-perspective, and radiation protection and radiation safety studies: Studies in the Research Center for Radiation Safety; Summary of studies in the center, studies of the biological effects of neutron beam, carcinogenesis by radiation and living environmental factors-complicated effects, and studies of hereditary effects: Panel discussion (future direction of studies of radiation safety for the purpose of the center's direction): and concluding remarks. (N.I.)

  10. Radiation safety among cardiology fellows.

    Science.gov (United States)

    Kim, Candice; Vasaiwala, Samip; Haque, Faizul; Pratap, Kiran; Vidovich, Mladen I

    2010-07-01

    Cardiology fellows can be exposed to high radiation levels during procedures. Proper radiation training and implementation of safety procedures is of critical importance in lowering physician health risks associated with radiation exposure. Participants were cardiology fellows in the United States (n = 2,545) who were contacted by e-mail to complete an anonymous survey regarding the knowledge and practice of radiation protection during catheterization laboratory procedures. An on-line survey engine, SurveyMonkey, was used to distribute and collect the results of the 10-question survey. The response rate was 10.5%. Of the 267 respondents, 82% had undergone formal radiation safety training. Only 58% of the fellows were aware of their hospital's pregnancy radiation policy and 60% knew how to contact the hospital's radiation safety officer. Although 52% of the fellows always wore a dosimeter, 81% did not know their level of radiation exposure in the previous year and only 74% of fellows knew the safe levels of radiation exposure. The fellows who had received formal training were more likely to be aware of their pregnancy policy, to know the contact information of their radiation safety officer, to be aware of the safe levels of radiation exposure, to use dosimeters and RadPad consistently, and to know their own level of radiation exposure in the previous year. In conclusion, cardiology fellows have not been adequately educated about radiation safety. A concerted effort directed at physician safety in the workplace from the regulatory committees overseeing cardiology fellowships should be encouraged. Published by Elsevier Inc.

  11. Radiation safety

    International Nuclear Information System (INIS)

    Woods, D.A.

    1982-01-01

    Sections include: dose units, dose limits, dose rate, potential hazards of ionizing radiations, control of internal and external radiation exposure, personal dosemeters, monitoring programs and transport of radioactive material (packaging and shielding)

  12. Assessment by peer review of the effectiveness of a regulatory programme for radiation safety. Interim report for comment

    International Nuclear Information System (INIS)

    2002-06-01

    This document covers assessment of those aspects of a radiation protection and safety infrastructure that are implemented by the Regulatory Authority for radiation sources and practices using such sources and necessarily includes those ancillary technical services, such as dosimetry services, which directly affect the ability of the Regulatory Authority to discharge its responsibilities. The focus of the guidance in this TECDOC is on assessment of a regulatory programme intended to implement the BSS. The BSS address transportation and waste safety mainly by reference to other IAEA documents. When conducting an assessment, the Review Team members should be aware of the latest IAEA documents (or similar national documents) concerning transportation and waste safety and, if appropriate, nuclear safety, and take them into account to the extent applicable when assessing the effectiveness of the regulatory programme governing radiation protection and safety of radiation source practices in a particular State

  13. Assessment by peer review of the effectiveness of a regulatory programme for radiation safety. Interim report for comment

    International Nuclear Information System (INIS)

    2001-05-01

    This document covers assessment of those aspects of a radiation protection and safety infrastructure that are implemented by the Regulatory Authority for radiation sources and practices using such sources and necessarily includes those ancillary technical services, such as dosimetry services, which directly affect the ability of the Regulatory Authority to discharge its responsibilities. The focus of the guidance in this TECDOC is on assessment of a regulatory programme intended to implement the BSS. The BSS address transportation and waste safety mainly by reference to other IAEA documents. When conducting an assessment, the Review Team members should be aware of the latest IAEA documents (or similar national documents) concerning transportation and waste safety and, if appropriate, nuclear safety, and take them into account to the extent applicable when assessing the effectiveness of the regulatory programme governing radiation protection and safety of radiation source practices in a particular State

  14. Regulatory Control of Radiation Sources. Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  15. Radiation Safety for Sustainable Development

    International Nuclear Information System (INIS)

    2015-10-01

    The objective of radiation safety is Assessments of Natural Radioactivity and its Radiological. The following topics were discussed during the conference: AFROSAFE Championing Radiation Safety in Africa, Radiation Calibration, and Development and Validation of a Laser Induced Breakdown Spectrometry Method for Cancer Detection and Characterization. Young Generation in NUCLEAR Initiative to Promote Nuclear Science and Technology, Radiation Protection Safety Culture and Application of Nuclear Techniques in Industry and the Environment were discuss. Rapid Chemometric X-Ray Fluorescence approaches for spectral Diagnostics of Cancer utilizing Tissue Trace Metals and Speciation profiles. Fundamental role of medical physics in Radiation Therapy

  16. Radiation and waste safety

    International Nuclear Information System (INIS)

    1997-01-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. Nuclear radiation is a powerful source of benefit to mankind, whether applied in the field of medicine, agriculture, environmental management or elsewhere. The health effects of radiation - both natural and artificial - are relatively well understood and can be minimized through careful safety measures and practices. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Safety Department aiming at establishing Basic Safety Standard requirements in all Member States. (IAEA)

  17. Australian Experience in Implementing Transport Safety Regulations and Transport Security Recommendations

    International Nuclear Information System (INIS)

    Sarkar, S.

    2016-01-01

    Australian transport safety and security regulatory framework is governed by Commonwealth, State and Territory legislations. There are eleven competent authorities in Australia that includes three Commonwealth authorities, six states and two territory authorities. IAEA Regulations for Safe Transport of Radioactive Material (TS-R-1, 2005 edition) is applied through Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) Code of Practice for Transport of Radioactive Material 2008 by road, rail and waterways not covered by marine legislations. All states and territories apply this Transport Code through their regulatory system. For air transport, the Civil Aviation Act 1988 adopts the requirements of the ICAO Technical Instructions for the Safe Transport of Dangerous Goods by Air DOC 9284, which also adopts TS-R-1. The security of radioactive material in air transport is achieved via the Aviation Transport Security Act 2004. For sea transport Australian Marine Order 41 applies the requirements of IMDG (International Maritime Dangerous Goods) Code which also adopts TS-R-1. The security of radioactive material (nuclear material) is governed by two Commonwealth Agencies namely, ARPANSA and ASNO (Australian Safeguards and Non-proliferation Office) . ARPANSA regulates the security of radioactive sources through ARPANSA Code of Practice for the Security of Radioactive Sources 2007 which is based on the IAEA Draft Security Series. ASNO regulates security of nuclear material including U, Th and Pu through the Nuclear Non-Proliferation (Safeguards) Act, and the object of which is to give effect to certain obligations that Australia has as a party to the NPT, Australia’s safeguards agreement with the IAEA, and other bilateral safeguards agreements and certain obligations that Australia has as a party to the Convention for the Physical Protection of Nuclear Materials (CPPNM). This paper presents the effectiveness of regulatory approaches for safe and secure

  18. Transportation Safety Excellence in Operations Through Improved Transportation Safety Document

    International Nuclear Information System (INIS)

    Dr. Michael A. Lehto; MAL

    2007-01-01

    A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFC's effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. (1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety

  19. Occupational safety meets radiation protection

    International Nuclear Information System (INIS)

    Severitt, S.; Oehm, J.; Sobetzko, T.; Kloth, M.

    2012-01-01

    The cooperation circle ''Synergies in operational Security'' is a joint working group of the Association of German Safety Engineers (VDSI) and the German-Swiss Professional Association for Radiation Protection (FS). The tasks of the KKSyS are arising from the written agreement of the two associations. This includes work on technical issues. In this regard, the KKSyS currently is dealing with the description of the interface Occupational Safety / Radiation Protection. ''Ignorance is no defense'' - the KKSyS creates a brochure with the working title ''Occupational Safety meets radiation protection - practical guides for assessing the hazards of ionizing radiation.'' The target groups are entrepreneurs and by them instructed persons to carry out the hazard assessment. Our aim is to create practical guides, simple to understand. The practical guides should assist those, who have to decide, whether an existing hazard potential through ionizing radiation requires special radiation protection measures or whether the usual measures of occupational safety are sufficient. (orig.)

  20. Introduction to radiation transport

    International Nuclear Information System (INIS)

    Olson, G.L.

    1998-01-01

    This lecture will present time-dependent radiation transport where the radiation is coupled to a static medium, i.e., the material is not in motion. In reality, radiation exerts a pressure on the materials it propagates through and will accelerate the material in the direction of the radiation flow. This fully coupled problem with radiation transport and materials in motion is referred to as radiation-hydrodynamics (or in a shorthand notation: rad-hydro) and is beyond the scope of this lecture

  1. International Atomic Energy Agency Activities on Education and Training in Radiation, Transport and Waste Safety: Strategic Approach for a Sustainable System

    International Nuclear Information System (INIS)

    Marbit, K.; Sadagopan, G.

    2005-01-01

    The statutory safety functions of the international Atomic Energy Agency (IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place enabling the government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. The IAEA education and training activities follows the the resolutions of its general conferences and reflects the latest IAEA standards and guidance. several general conference resolutions have emphasized the importance of education and training (e.g. GC (XXXV)/RES/552 in 1991,GC (XXXVI)/ RES/584 in 1992, GC (43)/RES/13 in 1999 and more recently GC (44)/RES/13 in 2000). In response to GC (44) /RES/13, the IAEA prepared a strategic approach to education and training in radiation and waste safety (strategy on education and training) aiming at establishing, by 2010 sustainable education and training programmes in member states. This strategy was endorsed by the general conference resolution GC(45)/RES/10C that, inter alia, urged the secretariat to implement the strategy on education and training, and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member States national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. The General Conference resolutions GC(46)RES/9C in 2002 and GC(47)RES/7 in 2003 urged the Agency to continue its efforts to implement the Strategy. The purpose of this paper is to present the newly established Strategic Approach to Education and Training in Radiation, Transport and Waste Safety and its implementation

  2. International Atomic Energy Agency Activities on Education and Training in Radiation Transport and Waste Safety: Strategic Approach for a Sustainable System

    International Nuclear Information System (INIS)

    Mrabit, K.; Sadagopan, G.

    2004-01-01

    The statutory safety functions of the International Atomic Energy Agency (IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place enabling the Government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. The IAEA education and training activities follows the resolutions of its General Conferences and reflects the latest IAEA standards and guidance. Several General Conference resolutions have emphasized the importance of education and training [e.g. GC(XXXV)/RES/552 in 1991; GC(XXXVI)/RES/584 in 1992; GC(43)/RES/13 in 1999 and more recently GC(44)/RES/13 in 2000]. In response to GC(44)/RES/13, the IAEA prepared a S trategic Approach to Education and Training in Radiation and Waste Safety ( Strategy on Education and Training) aiming at establishing, by 2010, sustainable education and training programmes in Member States. This Strategy was endorsed by the General Conference resolution GC(45)/RES/10C that, inter alia, urged the Secretariat to implement the Strategy on Education and Training, and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member State' national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. The General Conference resolutions GC(46)RES/9C in 2002 and GC(47)RES/7 in 2003 urged the Agency to continue its efforts to implement the Strategy. The purpose of this paper is to present the newly established Strategic Approach to Education and Training in Radiation, Transport and Waste Safety and its implementation. (Author)

  3. Safety and security considerations for the transport of spent teletherapy units

    International Nuclear Information System (INIS)

    Mallaupoma, Mario; Paez, Jose; Huatay, Luis; Cruz, Walter

    2008-01-01

    Among the applications of nuclear technology, a practice widely used and generates many benefits to society are teletherapy applications. Many of the teletherapy units used contain a source of cobalt-60 and after their useful life they have to be dismantled and transported to a safe place. In this case were transported two units with an activity of more than 75 TBq . This paper presents safety and security considerations for the transport of the teletherapy units according to the recommendations of actual state of art. It is described all facets of safe transport by means of a set of technical and administrative safety requirements and controls, including the actions required by the consignor and carrier. The main emphasis was put on the stages of transport operations that give rise to exposure to radiation like packing, preparation, loading, handling, storage in transit and movement of packages of radioactive material. On the other side some security actions were considered in order to prevent theft, sabotage or other malicious acts during the transport of the packages. As a conclusion it must be mentioned that both safety and security considerations are very important aspects that must be taking in account for the transport of high activity radioactive material. (author)

  4. Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety

    Science.gov (United States)

    Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.

    2007-01-01

    There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked

  5. ASN report on the status of nuclear safety and radiation protection in France in 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The first part of this huge report proposes a detailed overview of ASN activities in different fields: ionizing radiations related to nuclear activities and risks for health and the environment, principles and actors of nuclear safety control, of radiation protection and of protection of the environment, regulation, control of nuclear activities and exposures to ionizing radiations, emergency situations, public information and transparency, international relationships, regional overview of nuclear safety and radiation protection. The second part addresses the activities controlled by the ASN: medical use of ionizing radiations, non medical use of ionizing radiations, transport of radioactive materials, electronuclear power stations, facilities involved in the nuclear fuel cycle, research facilities and other nuclear installations, the safety of dismantling of nuclear base installations, radioactive wastes and polluted sites and soils

  6. Manpower analysis in transportation safety. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.S.; Bowden, H.M.; Colford, C.A.; DeFilipps, P.J.; Dennis, J.D.; Ehlert, A.K.; Popkin, H.A.; Schrader, G.F.; Smith, Q.N.

    1977-05-01

    The project described provides a manpower review of national, state and local needs for safety skills, and projects future manning levels for transportation safety personnel in both the public and private sectors. Survey information revealed that there are currently approximately 121,000 persons employed directly in transportation safety occupations within the air carrier, highway and traffic safety, motor carrier, pipeline, rail carrier, and marine carrier transportation industry groups. The projected need for 1980 is over 145,000 of which over 80 percent will be in highway safety. An analysis of transportation tasks is included, and shows ten general categories about which the majority of safety activities are focused. A skills analysis shows a generally high level of educational background and several years of experience are required for most transportation safety jobs. An overall review of safety programs in the transportation industry is included, together with chapters on the individual transportation modes.

  7. Radiation safety aspects of new X-ray free electron laser facility, SACLA

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2013-01-01

    In the safety point of view, X-ray free electron laser facilities have some characteristics in comparison with 3 rd generation synchrotron radiation facilities. One is that the high energy electrons are always injected into the beam dump and the beamlines must be constructed in the direction of the movements of electrons, and another is that the total number of accelerated electrons of X-ray free electron laser facilities is much larger than that of synchrotron radiation facilities. In addition to the importance of safety interlock systems, therefore, it is important that high energy electrons never invade into X-ray free electron laser beamlines and the amount of accelerated electron beam losses must be reduced as much as possible. At SACLA, a safety permanent magnet was installed into the X-ray light beam axis, and a beam halo monitor and beam loss monitors were installed within and around the electron transport pipes, respectively. In comparison with the SPring-8 synchrotron radiation facility, shielding design of SACLA, outline of the radiation safety systems including the monitors will be presented

  8. Investigation on regulatory requirements for radiation safety management

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  9. Radiation Safety (Qualifications) Regulations 1980

    International Nuclear Information System (INIS)

    1980-01-01

    These Regulations, promulgated pursuant to the provisions of the Radiation Safety Act, 1975-1979, require persons engaged in activities involving radiation to pass a radiation safety examination or to possess an approved qualification in radiation. The National Health and Medical Research Council is authorised to exempt persons from compliance with these requirements or, conversely, to impose such requirements on persons other than those designated. (NEA) [fr

  10. Safety in the Transport Sector

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2012-01-01

    In EU the transport sector has an incident rate of accidents at work at 40 pr 1000 employees. The Danish insurance company CODAN has insured a big part of this sector concerning transport of gods on shore. The purpose of the project is to document the safety problems in the sector and to develop...... a strategy for a preventive intervention in transport enterprises. The results will in the end be included in a new strategy for the insurance company and the transport sectores organization towards a better safety performance. The safety problems for the employees are the activities carried out by loading......, unloading or work with transport equipment carried out at many different work places. The main safety problems are falls, heavy lifting, poor ergonomic working conditions, hits or collisions with gods, equipments or falling objects, the traffic risk situations, work with animals and finally the risk...

  11. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  12. Radiation protection aspects of design for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  13. Appraisal for France of the safety of the transport of radioactive material. Provision for the application of the IAEA safety standards

    International Nuclear Information System (INIS)

    2004-01-01

    The IAEA has the specific statutory function within the United Nations system of establishing standards of safety for the protection of health against exposure to ionizing radiation. As part of this mandate, the IAEA has issued Regulations for the Safe Transport of Radioactive Material, and has also established the Transport Safety Appraisal Service (TranSAS) to carry out, at the request of States, appraisals of the implementation of these regulations. The IAEA carried out such an appraisal in France from 27 March to 8 April 2004. The appraisal addressed all relevant transport activities in France, both national and international, for all modes of transport, with special emphasis on the maritime transport and air transport of radioactive material. This report summarizes the findings of the 13 independent experts who participated in the appraisal

  14. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  15. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  16. Occupational radiation safety in mining

    International Nuclear Information System (INIS)

    Stocker, H.

    1985-01-01

    The first International Conference on Occupational Radiation Safety in Mining was held three years ago in Golden, Colorado, U.S.A., and it provided an excellent forum for an exchange of information on the many scientific, technical and operational aspects of radiation safety in mining. I am aware of the broad spectrum of epidemiological, engineering and related studies which have been pursued during the past three years with a view to achieving further improvements in radiation protection and I expect that the information on these studies will contribute significantly to a wider understanding of subject, and in particular, the means by which radiation safety measures in mining can be optimized

  17. A prediction model for the radiation safety management behavior of medical cyclotrons

    International Nuclear Information System (INIS)

    Jung, Ji Hye; Han, Eun Ok; Kim, Ssang Tae

    2008-01-01

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 ± 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in radiation safety managements, general

  18. AFROSAFE Championing Radiation Safety in Africa

    International Nuclear Information System (INIS)

    Nyabanda, R.

    2015-01-01

    AFRASAFE is a campaign that was formed by Pan African congress of Radiology and imaging (PACOR) and other radiation health workers in Africa in Feb 2015. Its main objective is to unite with a common goal to identify and address issues arising from radiation protection in medicine in Africa. Through this campaign, we state that we shall promote adherence to policies, strategies and activities for the promotion of radiation safety and for maximization of benefits from radiological medical procedures. The campaign strengthens the overall radiation protection of patients, health workers and public. It promotes safe and appropriate use of ionizing radiation in medicine and enhances global information to help improve the benefit/risk dialogue with patients and the public. It enhances the safety and quality of radiological procedures in medicine, and encourages safety in diagnostic and therapeutic equipment and facilities. The issue of research in radiation protection and safety needs to be promoted. This presentation will outline the six strategic objectives and the implementation tools for radiation safety in medicine in Kenya, the challenges and way forward to achieve our goal. (Author)

  19. Post-graduate course on radiation protection and nuclear safety. Vol. 1,2

    International Nuclear Information System (INIS)

    1998-01-01

    The course handbook on radiation protection and nuclear safety containing two parts some was prepared mainly by scientists of the Nuclear Regulatory Authority (ARN) of the Argentine Republic, under the auspices of the International Atomic Energy Agency. The contents o this handbook have the principals aspects: radiation detection, radio dosimetry, biological effects of the ionizing radiation, occupational exposure, environmental effects, contamination and decontamination, radioactive waste management, transport of radioactive materials, medical and industrial applications and the Argentine regulatory system

  20. Radioactive materials transport: worldwide excellence in safety, past, present and future

    International Nuclear Information System (INIS)

    Heywood, J.D.; Blenkin, J.J.; Wilkinson, H.L.; Murray, M.

    1997-01-01

    The safety record of the transport of radioactive material (RAM) is excellent. This level of safety has been achieved on a global scale principally through the adoption into national legislation of the International Atomic Energy Agency (IAEA) Transport Regulations by all countries which participate in the movement of RAM. The engineered and operational controls address containment of the RAM, radiation emitted from the package, dissipation of heat and prevention of criticality. The nuclear industry and its regulators have constantly sought to improve the safety of RAM transport operations, and also to measure the degree of safety compared with other industries and with generic safety criteria. Because of the extremely low incident rate and the consequent absence of direct historical data, probabilistic methods have been applied to provide a conservative assessment of the risks associated with specific transport operations. This paper illustrates the effectiveness of the IAEA Regulations in ensuring safety by reference to UK and worldwide experience, the results of quantified risk assessments and the mechanisms in place for continued review and improvement of the Regulations. The following topics are explored: (1) The controls controls embodied in the IAEA Regulations and how they minimise the consequences of accidents. (2) A review of quantified risk assessments carried out in this country and abroad. (3) A summary of the RAM transport incident record and a brief review of the results of surveys of RAM transport operations in the UK and worldwide. (4) Discussion of the risks associated with RAM transport compared with other industries. The paper concludes that the IAEA Regulations provide a robust and effective framework for the safe transport of RAM, ensuring that risks are kept at very low levels compared to relevant accepted criteria and other dangerous goods transport operations. The provisions for review and revision of the IAEA Regulations ensure that they

  1. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  2. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  3. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  4. Estimated routine radiation doses to transportation workers in alternative spent-fuel transportation systems

    International Nuclear Information System (INIS)

    Schneider, K.J.; Smith, R.I.; Daling, P.M.; Ross, W.A.; McNair, G.W.

    1988-01-01

    The federal system for the management of spent fuel and high-level radioactive waste includes the acceptance by the US Department of Energy (DOE) of the spent fuel or waste loaded in casks at the reactor or other waste generators, its transportation to a repository, and its handling and final emplacement in the repository. The DOE plans to implement a transportation system that is safe, secure, efficient, and cost-effective and will meet applicable regulatory safety and security requirements. The DOE commissioned the Pacific Northwest Laboratory (PNL) to develop estimates of the routine radiation doses that would result from the operation of a system postulated using current designs and practices. From that evaluation, PNL identified activities/operations that result in the higher fraction of doses, proposed conceptual alternatives that would effectively reduce such exposures, and evaluated the cost-effectiveness of such alternatives. The study is one of a series used in making overall system design and operational decisions in the development of the DOE's spent-fuel/high-level waste transportation system. This paper contains the highlights from the PNL study of the estimated radiation doses to the transportation workers in a postulated reference transportation system and potential alternatives to that system

  5. ASN report of the status of nuclear safety and radiation protection in France in 2012

    International Nuclear Information System (INIS)

    Chevet, Pierre-Franck; Delmestre, Alain; Bardet, Marie-Christine; Covard, Fabienne; Landrin, Sophie

    2013-01-01

    After a presentation of the French Nuclear Safety Authority (ASN), its missions, some key figures illustrating its activities and its organisation, this report proposes an overview of marking events and of actions undertaken by the ASN after the Fukushima accident. Then, the report proposes a detailed and commented overview of actions undertaken by the ASN in different fields and domains: nuclear activities, principles and actors of nuclear safety and radiation protection control, regulation, control of nuclear activities and of exposures to ionizing radiations, radiological and post-accidental emergency situations, public information and transparency, international relationships, regional overview of nuclear safety and radiation protection. The last part addresses activities controlled by the ASN: medical use of ionizing radiations, industrial, research and veterinary uses and source safety, transport of radioactive materials, electronuclear plants, installations related to nuclear fuel cycle, nuclear research and other nuclear installations, safety of dismantling of base nuclear installations, radioactive wastes and polluted sites

  6. Proceeding of Radiation Safety and Environment

    International Nuclear Information System (INIS)

    1996-01-01

    Scientific Presentation of Radiation Safety and Environment was held on 20-21 august 1996 at Center of Research Atomic Energy Pasar Jum'at, Jakarta, Indonesia. Have presented 50 papers about Radiation Safety, dosimetry and standardization, environment protection and radiation effect

  7. 41 CFR 50-204.75 - Transportation safety.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Transportation safety. 50... Transportation Safety § 50-204.75 Transportation safety. Any requirements of the U.S. Department of Transportation under 49 CFR Parts 171-179 and Parts 390-397 and 14 CFR Part 103 shall be applied to...

  8. Nuclear and radiation safety policy

    International Nuclear Information System (INIS)

    Mikus, T; Strycek, E.

    1998-01-01

    Slovenske elektrarne (SE) is a producer of electricity and heat, including from nuclear fuel source. The board of SE is ultimately responsible for nuclear and radiation safety matters. In this leaflet main principles of maintaining nuclear and radiation safety of the Company SE are explained

  9. Radiation safety: New international standards

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    This article highlights an important result of this work for the international harmonization of radiation safety: specifically, it present an overview of the forthcoming International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources - the so-called BSS. They have been jointly developed by six organizations - the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (NEA/OECD), the Pan American Health Organization (PAHO), and the World Health Organization (WHO)

  10. Radiation safety of Takasaki ion accelerators for advanced radiation in JAERI

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Tanaka, Susumu; Anazawa, Yutaka

    1991-01-01

    Building layout of Takasaki ion accelerator facility has been started since 1987, with the propulsion of research development of (1) cosmetic environment materials, (2) nuclear fusion reactors, (3) biotechnology, and (4) new functional materials. This paper deals with an AVF cyclotron and a tandem type accelerator, focusing on safety design, radiation safety management, and radioactive waste management. Safety design is discussed in view of radiation shielding and activation countermeasures. Radiation safety management covers radiation monitoring in the workplace, exhaust radioactivity, environment outside the facility, and the other equipments; personal monitoring; and protective management of exposure. For radiation waste management, basic concept and management methods are commented on. (N.K.)

  11. The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

  12. Design analysis of various transportation package options for BN-350 SNF in terms of nuclear radiation safety in planning for long-terms dry storage

    International Nuclear Information System (INIS)

    Aisabekov, A.Z.; Mukenova, S.A.; Tur, E.S.; Tsyngaev, V.M.

    2004-01-01

    Full text: This effort is performed under the BN-350 reactor facility decommissioning project. One of the project tasks - spent nuclear fuel handling - includes the following: fuel packaging into sealed canisters, transportation of the canisters in multi-seat metallo-concrete containers and placement of the containers for a long-term dry storage. The goal of this effort is to computationally validate nuclear and radiation safety of the SNF containers placed for storage both under normal storage conditions and probable accident situations. The basic unit structure and design configurations are presented: assemblies, canisters, transportation containers. The major factors influencing nuclear and radiation safety are presented: fuel burn-up, enrichment, fabrication tolerance, types of fuel assemblies, configuration of assemblies in the canister and canisters in the container, background of assemblies placed in the reactor and cooling pool. Conditions under which the SNF containers will be stored are described and probable accident situations are listed. Proceeding from the conservatism principle, selection of the assemblies posing the greatest nuclear hazard is validated. A neutron effective multiplication factor is calculated for the SNF containers under the normal storage conditions and for the case of emergency. The effective multiplication factor is shown to be within a standard value of 0.95 in any situation. Based on the experimental data on assembly and canister dose rates, canisters posing the highest radiation threat are selected. Activities of sources and gamma-radiation spectral composition are calculated. Distribution of the dose rate outside the containers both under the normal storage conditions and accident situations are calculated. The results obtained are analyzed

  13. Radiation protection aspects in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  14. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2007-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  15. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2006-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  16. A prediction model for the radiation safety management behavior of medical cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ji Hye; Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of); Kim, Ssang Tae [CareCamp Inc., Seoul (Korea, Republic of)

    2008-06-15

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 {+-} 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in

  17. Radiation safety without borders initiative

    International Nuclear Information System (INIS)

    Dibblee, Martha; Dickson, Howard; Krieger, Ken; Lopez, Jose; Waite, David; Weaver, Ken

    2008-01-01

    The Radiation Safety Without Borders (RSWB) initiative provides peer support to radiation safety professionals in developing countries, which bolsters the country's infrastructure and may lead the way for IRPA Associate membership. The Health Physics Society (HPS) recognizes that many nations do not possess the infrastructure to adequately control and beneficially use ionizing radiation. In a substantial number of countries, organized radiation protection programs are minimal. The RSWB initiative relies on HPS volunteers to assist their counterparts in developing countries with emerging health physics and radiation safety programs, but whose resources are limited, to provide tools that promote and support infrastructure and help these professionals help themselves. RSWB experience to date has shown that by providing refurbished instruments, promoting visits to a HPS venue, or visiting a country just to look provide valuable technical and social infrastructure experiences often missing in the developing nation's cadre of radiation safety professionals. HPS/RSWB with the assistance of the International Atomic Energy Agency (IAEA) pairs chapters with a country, with the expectation that the country's professional radiation safety personnel will form a foreign HPS chapter, and the country eventually will become an IRPA Associate. Although still in its formative stage, RSWB nonetheless has gotten valuable information in spite of the small number of missions. The RSWB initiative continues to have significant beneficial impacts, including: Improving the radiation safety infrastructure of the countries that participate; Assisting those countries without professional radiation safety societies to form one; Strengthening the humanitarian efforts of the United States; Enhancing Homeland Security efforts through improved control of radioactive material internationally. Developing countries, including those in Latin America, underwritten by IAEA, may take advantage of resources

  18. Radiation risk assessment for the transport of radioisotopes using KRI-BGM B(U) type container

    International Nuclear Information System (INIS)

    Cho, Woon-Kap

    2008-01-01

    The radiation risks were estimated for the transportation of radioisotopes using KRI-BGM transport container. KRI-BGM container was specially designed for transportation of large amount of radioisotopes for industrial or medical applications. The container can carry maximum 370 TBq of solid Ir-192, 29.6 TBq of liquid Mo-99 and 37 TBq of liquid I-131 respectively. For the radiation risk assessment, it was assumed that maximum design activity of those radioisotopes was transported. Transportation route is from Daejeon where radioisotopes are produced to Seoul where radioisotopes are consumed. Transport distance is 200 km including highway and downtown area from Daejeon to Seoul. As the transportation conveyance, an ordinary cargo truck is used exclusively. Radiation risks were estimated for incident free and accident condition of transportation and RADTRAN 5.6 was used as the risk assessment tool. For the risk assessment of radioisotopes transportation, various parameters such as population density around transport route, weather condition, probability of specific accidents such as impact, fire, etc. were considered. From the results of this study, the exclusive transportation of radioisotopes using KRI-BGM transport container by truck showed low radiological risks with manageable safety and health consequences. This paper discusses the methods and results of the radiation risks assessment for the radioisotopes transportation by an ordinary truck and presents the expected radiation risks in person-Sv and latent cancer fatalities. (author)

  19. Implementation of radiation safety program in a medical institution

    International Nuclear Information System (INIS)

    Palanca, Elena D.

    1999-01-01

    A medical institution that utilizes radiation for the diagnosis and treatment of diseases of malignancies develops and implements a radiation safety program to keep occupational exposures of radiation workers and exposures of non-radiation workers and the public to the achievable and a more achievable minimum, to optimize the use of radiation, and to prevent misadministration. The hospital radiation safety program is established by a core medical radiation committee composed of trained radiation safety officers and head of authorized users of radioactive materials and radiation machines from the different departments. The radiation safety program sets up procedural guidelines of the safe use of radioactive material and of radiation equipment. It offers regular training to radiation workers and radiation safety awareness courses to hospital staff. The program has a comprehensive radiation safety information system or radsis that circularizes the radiation safety program in the hospital. The radsis keeps the drafted and updated records of safety guides and policies, radioactive material and equipment inventory, personnel dosimetry reports, administrative, regulatory and licensing activity document, laboratory procedures, emergency procedures, quality assurance and quality control program process, physics and dosimetry procedures and reports, personnel and hospital staff training program. The medical radiation protection committee is tasked to oversee the actual implementation of the radiation safety guidelines in the different radiation facilities in the hospital, to review personnel exposures, incident reports and ALARA actions, operating procedures, facility inspections and audit reports, to evaluate the existing radiation safety procedures, to make necessary changes to these procedures, and make modifications of course content of the training program. The effective implementation of the radiation safety program provides increased confidence that the physician and

  20. Provisional standards of radiation safety of flight personnel and passengers in air transport of the civil aviation

    Science.gov (United States)

    1977-01-01

    Provisional standards for radiation affecting passenger aircraft are considered. Agencies responsible for seeing that the regulations are enforced are designated while radiation sources and types of radiation are defined. Standard levels of permissible radiation are given and conditions for radiation safety are discussed. Dosimetric equipment on board aircraft is delineated and regulation effective dates are given.

  1. Provisional standards of radiation safety of flight personnel and passengers in air transport of the civil aviation

    International Nuclear Information System (INIS)

    Provisional standards for radiation affecting passenger aircraft are considered. Agencies responsible for seeing that the regulations are enforced are designated while radiation sources and types of radiation are defined. Standard levels of permissible radiation are given and conditions for radiation safety are discussed. Dosimetric equipment on board aircraft is delineated and regulation effective dates are given

  2. ASN report on the status of nuclear safety and radiation protection in France in 2015. Extracts

    International Nuclear Information System (INIS)

    2016-01-01

    After a recall of ASN missions, key figures and organisation, an overview of main events for 2015, and a presentation of the French law related to energy transition for a green growth, a first part of this huge document presents actions undertaken by the ASN in 2015 in different fields: ionizing radiations and risks for health and the environment, principles and actors of control of nuclear safety and radiation protection, regulation, control of nuclear activities and of exposures to ionizing radiations, emergency radiological and post-accidental situations, public information transparency and participation, international relationships, regional overview of nuclear safety and radiation protection. The second part addresses activities controlled by the ASN: medical uses of ionizing radiations, industrial, research and veterinary uses and source safety, transportation of radioactive materials, EDF nuclear power plants, installations related to nuclear fuel cycle, various industrial and research installations, safety of basic nuclear installation dismantling, radioactive wastes and polluted sites and soils

  3. Radiation Safety Aspects of Nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, David; Cash, Leigh Jackson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guilmette, Raymond [Ray Guilmette & Associates, LLC, Perry, ME (United States); Kreyling, Wolfgang [Helmholtz-Zentrum Munchen, (Germany); Oberdorster, Gunter [Univ. of Rochester, NY (United States); Smith, Rachel [Public Health England, Oxfordshire (United Kingdom). Centre for Radiation, Chemical and Environmental Hazards

    2017-03-27

    This Report is intended primarily for operational health physicists, radiation safety officers, and internal dosimetrists who are responsible for establishing and implementing radiation safety programs involving radioactive nanomaterials. It should also provide useful information for workers, managers and regulators who are either working directly with or have other responsibilities related to work with radioactive nanomaterials.

  4. Compliance assurance for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2009-01-01

    The objectives of this Safety Guide are to assist competent authorities in the development and maintenance of compliance assurance programmes in connection with the transport of radioactive material, and to assist applicants, licensees and organizations in their interactions with competent authorities. In order to increase cooperation between competent authorities and to promote the uniform application of international regulations and recommendations, it is desirable to adopt a common approach to regulatory activities. This Safety Guide is intended to assist in accomplishing such a uniform application by recommending most of the actions for which competent authorities need to provide in their programmes for ensuring compliance with the Transport Regulations. This Safety Guide addresses radiation safety aspects of the transport of radioactive material; that is, the subjects that are covered by the Transport Regulations. Radioactive material may have other dangerous properties, however, such as explosiveness, flammability, pyrophoricity, chemical toxicity and corrosiveness; these properties are required to be taken into account in the regulatory control of the design and transport of packages. Physical protection and systems for accounting for and control of nuclear material are also discussed in this Safety Guide. These subjects are not within the scope of the Transport Regulations, but information on them is included here because they must be taken into account in the overall regulatory control of transport, especially when the regulatory framework is being established. Section 1 informs about the background, the objective, the scope and the structure of this publication. Section 2 provides recommendations on the responsibilities and functions of the competent authority. Section 3 provides information on the various national and international regulations and guides for the transport of radioactive material. Section 4 provides recommendations on carrying out

  5. Effective education in radiation safety for nurses

    International Nuclear Information System (INIS)

    Ohno, K.; Kaori, T.

    2011-01-01

    In order to establish an efficient training program of radiation safety for nurses, studies have been carried out on the basis of questionnaires. Collaboration of nurses, who are usually standing closest to the patient, is necessary in order to offer safe radiological diagnostics/treatment. The authors distributed the questionnaire to 134 nurses in five polyclinic hospitals in Japan. Important questions were: fear of radiation exposure, knowledge on the radiation treatment, understanding the impact on pregnancy, and so on. Most of the nurses feel themselves uneasy against exposure to radiation. They do not have enough knowledge of radiological treatment. They do not know exactly what is the impact of the radiation on pregnant women. Such tendency is more pronounced, when nurses spend less time working in the radiological department. Nurses play important roles in radiological diagnostics/treatment. Therefore, a well-developed education system for radiation safety is essential. The training for the radiation safety in medicine should be done in the context of general safety in medicine. Education programs in undergraduate school and at the working place should be coordinated efficiently in order to ensure that both nurses and patients are informed about the meaning of radiation safety. (authors)

  6. The increased use of radiation requires enhanced activities regarding radiation safety control

    International Nuclear Information System (INIS)

    Lee, Yun Jong; Lee, Jin Woo; Jeong, Gyo Seong

    2015-01-01

    More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience

  7. The increased use of radiation requires enhanced activities regarding radiation safety control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Jong; Lee, Jin Woo; Jeong, Gyo Seong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-05-15

    More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience.

  8. Report of the State Office for Nuclear Safety on state supervision of nuclear safety of nuclear facilities and radiation protection in 1998

    International Nuclear Information System (INIS)

    1999-05-01

    The legislative basis of the authority of the State Office for Nuclear Safety as the Czech national regulatory body is outlined, its organizational scheme is presented, and the responsibilities of the various departments are highlighted. The operation of major Czech nuclear facilities, including the Dukovany NPP which is in operation and the Temelin NPP which is under construction, is described with respect to nuclear safety. Since the Office's responsibilities also cover radiation protection in the Czech Republic, a survey of ionizing radiation sources and their supervision is given. Other topics include, among other things, nuclear material transport, the state system for nuclear materials accountancy and control, central registries for radiation protection, nuclear waste management, the National Radiation Monitoring Network, personnel qualification and training, emergency planning, legislative activities, international cooperation, and public information. (P.A.)

  9. Coupled electron-photon radiation transport

    International Nuclear Information System (INIS)

    Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.

    2000-01-01

    Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport

  10. Radiation safety in X-ray facilities

    International Nuclear Information System (INIS)

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2

  11. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  12. Improving patient safety in radiation oncology

    International Nuclear Information System (INIS)

    Hendee, William R.; Herman, Michael G.

    2011-01-01

    Beginning in the 1990s, and emphasized in 2000 with the release of an Institute of Medicine report, healthcare providers and institutions have dedicated time and resources to reducing errors that impact the safety and well-being of patients. But in January 2010 the first of a series of articles appeared in the New York Times that described errors in radiation oncology that grievously impacted patients. In response, the American Association of Physicists in Medicine and the American Society of Radiation Oncology sponsored a working meeting entitled ''Safety in Radiation Therapy: A Call to Action''. The meeting attracted 400 attendees, including medical physicists, radiation oncologists, medical dosimetrists, radiation therapists, hospital administrators, regulators, and representatives of equipment manufacturers. The meeting was cohosted by 14 organizations in the United States and Canada. The meeting yielded 20 recommendations that provide a pathway to reducing errors and improving patient safety in radiation therapy facilities everywhere.

  13. Establishment of radiation protection and safety programme in Nuclear Medicine

    International Nuclear Information System (INIS)

    Chene, E.

    2014-04-01

    Radiation is useful because of its ability to penetrate tissue, allowing imaging of internal structures. However radiation may produce harmful biological effects. Observations of exposed human populations and animal experimentation indicate that exposure to low levels of radiation over a period of time may lead to stochastic radiation effects. Exposures to high levels of radiation above threshold also leads to deterministic effects. Establishment of radiation protection and safety programme and implement it without fail may help prevent deterministic effect and limit chances of stochastic effects. This is achieved by assigning responsibilities to the proposed organizational structure, management commitment to safety culture by providing continuous education and training to employees, regular reviewing and auditing of radiation safety policies. Occupational, public and environmental radiation exposure is further achieved by implementation of set local rules and operational procedures, proper management of radioactive waste and safe transport of radioactive material. Medical radiation exposure is achieved by justified procedures, optimization of doses, guidance levels, quality assurance and quality control programme through image quality, radiopharmaceutical quality and records keeping of radiation doses, calibration certificates of equipment used, equipment service and test certificates. Diagnostic radiopharmaceuticals must deliver the minimum possible radiation dose to the patient while therapeutic radiopharmaceuticals must deliver the maximum dose to the target organ or tissue, while minimizing the dose to non-target tissues such as the bone marrow. Special considerations shall be given to pregnant and breast-feeding patients. The proper facility design and shielding of a nuclear medicine facility shall further provide for the radiation protection to the worker, the patient, public and the environment. Precautions should be given to radioactive patients as there

  14. Radiation safety in aviation

    International Nuclear Information System (INIS)

    2005-06-01

    The guide presents the requirements governing radiation safety of aircrews exposed to cosmic radiation and monitoring of such exposure. It applies to enterprises engaged in aviation under a Finnish operating licence and to Finnish military aviation at altitudes exceeding 8,000 metres. The radiation exposure of aircrews at altitudes of less than 8,000 metres is so minimal that no special measures are generally required to investigate or limit exposure to radiation

  15. Radiation and waste safety: Strengthening national capabilities

    International Nuclear Information System (INIS)

    Barretto, P.; Webb, G.; Mrabit, K.

    1997-01-01

    For many years, the IAEA has been collecting information on national infrastructures for assuring safety in applications of nuclear and radiation technologies. For more than a decade, from 1984-95, information relevant to radiation safety particularly was obtained through more than 60 expert missions undertaken by Radiation Protection Advisory Teams (RAPATs) and follow-up technical visits and expert missions. The RAPAT programme documented major weaknesses and the reports provided useful background for preparation of national requests for IAEA technical assistance. Building on this experience and subsequent policy reviews, the IAEA took steps to more systematically evaluate the needs for technical assistance in areas of nuclear and radiation safety. The outcome was the development of an integrated system designed to more closely assess national priorities and needs for upgrading their infrastructures for radiation and waste safety

  16. Inspection of radiation sources and regulatory enforcement (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2010-08-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depends on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for carrying out regulatory inspections, and taking necessary enforcement actions. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the processes for carrying out regulatory inspections and taking enforcement actions. It includes information on the development and use of procedures and standard review plans (i.e. checklists) for inspection. Specific procedures for inspection of radiation practices and sources are provided in the Appendices

  17. Inspection of radiation sources and regulatory enforcement (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2007-04-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depends on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for carrying out regulatory inspections, and taking necessary enforcement actions. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the processes for carrying out regulatory inspections and taking enforcement actions. It includes information on the development and use of procedures and standard review plans (i.e. checklists) for inspection. Specific procedures for inspection of radiation practices and sources are provided in the Appendices

  18. Report by the ASN on the situation of nuclear safety and radiation protection in France in 2013

    International Nuclear Information System (INIS)

    Chevet, Pierre-Franck; Delmestre, Alain; Bardet, Marie-Christine; Covard, Fabienne; Javay, Olivier

    2014-01-01

    In its first chapters, this huge report presents the various actions undertaken by the ASN. It proposes a detailed overview of the issue of ionizing radiations and risks for health and for the environment in the field of nuclear activities, presents and comments the principles and actors of the control of nuclear safety and of radiation protection, presents the different elements of the legal framework, describes and comments the control of nuclear activities and of exposures to ionizing radiations. The next chapters address the actions controlled by the ASN: radiological and post-accidental radiological situations, present measures related to public information and transparency, overview of international relationships, regional overview of nuclear safety and radiation protection, medical use of ionizing radiations, industrial, research and veterinary uses and the issue of source safety, the issue of radioactive material transportation. Issues of nuclear safety and radiation protection are then discussed for electronuclear plants, for installations dedicated to the nuclear fuel cycle, for various research and industrial nuclear installations, for the dismantling of base nuclear installations, and for radioactive wastes and polluted sites and soils

  19. Radiation safety at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [CERN, Geneva (Switzerland)

    1995-09-01

    CERN, the European Laboratory for Particle Physics, operates proton accelerators up to an energy of 450 GeV and an electron-positron storage ring in the 50 GeV energy range for fundamental high-energy particle physics. A strong radiation protection group assures the radiation safety of these machines both during their operation and in periods of maintenance and repair. Particular radiation problems in an accelerator laboratory are presented and recent developments in radiation protection at CERN discussed. (author)

  20. Innovation research on the safety supervision system of nuclear and radiation safety in Jiangsu province

    International Nuclear Information System (INIS)

    Zhang Qihong; Lu Jigen; Zhang Ping; Wang Wanping; Dai Xia

    2012-01-01

    As the rapid development of nuclear technology, the safety supervision of nuclear and radiation becomes very important. The safety radiation frame system should be constructed, the safety super- vision ability for nuclear and radiation should be improved. How to implement effectively above mission should be a new subject of Provincial environmental protection department. Through investigating the innovation of nuclear and radiation supervision system, innovation of mechanism, innovation of capacity, innovation of informatization and so on, the provincial nuclear and radiation safety supervision model is proposed, and the safety framework of nuclear and radiation in Jiangsu is elementally established in the paper. (authors)

  1. The IRSN experience feedback for the transport package design safety appraisals

    International Nuclear Information System (INIS)

    Sert, G.

    2007-01-01

    The activity of transportation of radioactive materials is in constant evolution; air transport of radio elements for medical use is growing rapidly as well as transport of instruments equipped with radioactive sources for inspections of buildings (controls of presence of lead in paintings) and in industry (non destructive examination of welding by gammagraphy, controls of density on building sites). Transports associated with the recycling of plutonium for the production of electricity by nuclear energy are now accomplished in routine. Globally, 900.000 packages are shipped each year in France; among them, approximately 100.000 packages belong to the category for which design approval is required. To maintain a high level of safety for this activity by limiting the probability of occurrence, the severity and consequences of the incidents and accidents, strict rules are implemented by users under the control of the Safety Authority According to the systematic approach of defence in depth, which is defined by the three principles of safety in design, of operational reliability and of effectiveness of emergency response, the robustness of the design of the package is of primary importance. It is based on regulatory requirements relating to the functions of safety (containment of radioactivity, protection against radiation and prevention of the risks of criticality) that must be ensured by the package in conditions of transport as well as in accident conditions. These rules and the way of applying them evolve with time. Indeed, on the one hand the regulation is reexamined periodically; on the other hand, the technical knowledge on the behaviour of the packages subject to the above mentioned conditions and the means of evaluation of this behaviour progress permanently

  2. Safety first. Status reports on the IAEA's safety standards

    International Nuclear Information System (INIS)

    Webb, G.; Karbassioun, A.; Linsley, G.; Rawl, R.

    1998-01-01

    Documents in the IAEA's Safety Standards Series known as RASS (Radiation Safety Standards) are produced to develop an internally consistent set of regulatory-style publications that reflects an international consensus on the principles of radiation protection and safety and their application through regulation. In this article are briefly presented the Agency's programmes on Nuclear Safety Standards (NUSS), Radioactive Waste Safety Standards (RADWASS), and Safe Transport of Radioactive Materials

  3. Health effects of radiation and the implications for radiation safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1991-01-01

    In this Paper two elements of a multiphase analysis of radiation exposures in the living environment - the human health effects of ionizing radiation and the implications for radiation safety policy and practices - are presented. Part 1 draws together the current state of scientific knowledge and insight about the human health effects of radiation, describing these in terms of known cause-related deterministic effects and of the estimated incidence of stochastic effects as defined by biostatistics and biological models. The 1988 UNSCEAR report provides an authoritative basis for such an examination. Part 2 explores some of the major implications that the state-of-the-art of radiation biology has - or should have - for radiation safety policy and practices. (author)

  4. Challenges in promoting radiation safety culture

    International Nuclear Information System (INIS)

    Mod Ali, Noriah

    2008-01-01

    Safety has quickly become an industry performance measure, and the emphasis on its reliability has always been part of a strategic commitment. This paper presents an approach taken by Malaysian Nuclear Agency (Nuclear Malaysia) and authority to develop and implement safety culture for industries that uses radioactive material and radiation sources. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. Proper safety audit will help to identify the non-compliance of safety culture as well as the deviation of management, individual and policy level commitment; review of radiation protection program and activities should be preceded. (author)

  5. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  6. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  7. Radiation Safety of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Hussein, A.Z.

    2009-01-01

    The wide spread of Electromagnetic Waves (EMW) through the power lines, multimedia, communications, devices, appliances, etc., are well known. The probable health hazards associated with EMW and the radiation safety criteria are to be reviewed. However, the principles of the regulatory safety are based on radiation protection procedure, intervention to combat the relevant risk and to mitigate consequences. The oscillating electric magnetic fields (EMF) of the electromagnetic radiation (EMR) induce electrical hazards. The extremely high power EMR can cause fire hazards and explosions of pyrotechnic (Rad Haz). Biological hazards of EMF result as dielectric heat, severe burn, as well as the hazards of eyes. Shielding is among the technical protective measures against EMR hazards. Others are limitation of time of exposure and separation distance apart of the EMR source. Understanding and safe handling of the EMR sources are required to feel safety.

  8. Radiation exposures of workers and the public associated with the transport of radioactive material in Germany

    International Nuclear Information System (INIS)

    Schwarz, G.; Fett, H.J.; Lange, F.

    2004-01-01

    Most radioactive material packages transported emit penetrating ionising radiation and radiation exposures of transport workers and the public may occur during their transport. The radiation exposures incurred by transport workers and members of the public can vary significantly depending on a number of factors: most important is the type of radiation emitted (primarily gamma and neutron radiation), the radiation field intensity in the surrounding of a package and conveyance and the duration of exposure to ionising radiation. The information and guidance material on occupational exposures has primarily been derived from a survey and analysis of personal monitoring data provided by a number of commercial transport operators in Germany known as major carrier and handler organisations of fuel cycle and non-fuel cycle material (in terms of the number of pack-ages and the activity carriaged). To some extent advantage was taken of compilations of statistical transport and exposure data collated within other transport safety analysis studies including research projects funded by the European Commission. The exposure data collected cover the time period of the last 4 - 8 years and are most representative for routine transport operations closely related to the movement phase of packaged radioactive material, i.e. receipt, vehicle loading, carriage, in-transit storage, intra-/intermodal transfer, vehicle unloading and delivery at the final destination of loads of radioactive material and packages and the related supervisory and health physics functions. Radiation dose monitoring of members of the public, however, is generally impracticable and, consequently, the information available relies on employing dose assessment models and reflects radiation exposures incurred by hypothetical or critical group individuals of members of the public under normal conditions of transport

  9. Regulations for the safe transport of radioactive material, 2005 edition. Safety requirements

    International Nuclear Information System (INIS)

    2005-01-01

    This publication includes amendments to the 1996 Edition (As Amended 2003) arising from the second cycle of the biennial review and revision process, as agreed by the Transport Safety Standards Committee (TRANSSC) at its ninth meeting in March 2004, as endorsed by the Commission on Safety Standards at its meeting in June 2004 and as approved by the IAEA Board of Governors in November 2004. Although this publication is identified as a new edition, there are no changes that affect the administrative and approval requirements in Section VIII. The fields covered are General Provisions (radiation protection; emergency response; quality assurance; compliance assurance; non-compliance; special arrangement and training); Activity Limits and Materials Restrictions, Requirement and Controls for Transport , Requirements for Radioactive Materials and for Packagings and Packages, Test Procedures, Approval and Administrative Requirements

  10. Radiation safety in welding and testing

    International Nuclear Information System (INIS)

    King, B.E.; Malaxos, M.; Hartley, B.M.

    1985-01-01

    There are a number of ways of achieving radiation safety in the workplace. The first is by engineering radiation safety into the equipment, providing shielded rooms and safety interlocks. The second is by following safe working procedures. The National Health and Medical Research Council's Code of practice for the control and safe handling of sealed radioactive sources used in industrial radiography (1968) sets out the standards which must be met by equipment to be used in industrial radiography

  11. Deterministic methods in radiation transport

    International Nuclear Information System (INIS)

    Rice, A.F.; Roussin, R.W.

    1992-06-01

    The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community

  12. Transportation safety training

    International Nuclear Information System (INIS)

    Jones, E.

    1990-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Section at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, have developed and implemented a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 3 tabs

  13. Radiation safety aspects in the use of radiation sources in industrial and heath-care applications

    International Nuclear Information System (INIS)

    Venkat Raj, V.

    2001-01-01

    The principle underlying the philosophy of radiation protection and safety is to ensure that there exists an appropriate standard of protection and safety for humans, without unduly limiting the benefits of the practices giving rise to exposure or incurring disproportionate costs in interventions. To realise these objectives, the International Commission on Radiation Protection (ICRP-60) and IAEA's Safety Series (IAEA Safety Series 120, 1996) have enunciated the following criteria for the application and use of radiation: (1) justification of practices; (2) optimisation of protection; (3) dose limitation and (4) safety of sources. Though these criteria are the basic tenets of radiation protection, the radiation hazard potentials of individual applications vary and the methods to achieve the above mentioned objectives principles are different. This paper gives a brief overview of the various applications of radiation and radioactive sources in India, their radiation hazard perspective and the radiation safety measures provided to achieve the basic radiation protection philosophy. (author)

  14. Law 19.056. It dictate rules to ensure the protection and radiation safety of people, goods and environment

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of this law is to ensure the protection and radiation safety of personnel occupationally exposed, the public in general and the environment from the effects of ionizing radiation as well as avoid risks of contamination in radiactive sources, physical facilities and means of transport

  15. Safety and radiation protection in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Ghadge, S.G.

    2008-01-01

    Full text: Nuclear energy, an important option for electricity generation is environment friendly, technologically proven, economically competitive and associated with the advantages of energy security and diversity. At present, India has an installed nuclear power generation capacity of 4120 M We with 6 more reactors are under construction/ commissioning at 4 sites. Nuclear power program, in India, as of now is primarily based on pressurized heavy water technology and these reactors are designed with safety features, such as, independent and diverse shut down systems, emergency core cooling system, double containment; pressure suppression pool etc. The principles of redundancy, diversity, fail-safe and passive systems are used in the design. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. In this regard the prime responsibility for safety rests with the organization responsible for facilities and activities that give rise to radiation risks and is achieved by establishing and maintaining the necessary competence, providing adequate training and information, establishing procedures and arrangements to maintain safety under all conditions; verifying appropriate design and the adequate quality of facilities and activities and of their associated equipment; ensuring the safe control of all radioactive material that is used, produced, stored or transported, ensuring the safe control of all radioactive waste that is generated. 'Radiation Protection for Nuclear Facilities', issued by Atomic Energy Regulatory Board (the regulatory authority for NPPs in India) is the basic document for following radiation protection procedures in NPPs. Approved work procedures for all radiation jobs exist. Pre job briefing and post job analysis are carried out. Radiation protection is integrated with plant operation. Radiation levels indicate the performance of several systems. Several measures are adopted in design and

  16. Radiation protection and safety culture for cyclotron workers

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    1998-01-01

    The main aim of the present study is to review radiation protection and safety culture measures to be applied to cyclotron workers. The radiation protection (measures are based on Basic Safety standards for the protection) of the health of workers and the general public against the dangers arising from ionizing radiation, while the safety culture are based on IAEA publications

  17. Radiation safety requirements for radionuclide laboratories

    International Nuclear Information System (INIS)

    1993-01-01

    In accordance with the section 26 of the Finnish Radiation Act (592/91) the safety requirements to be taken into account in planning laboratories and other premises, which affect safety in the use of radioactive materials, are confirmed by the Finnish Centre for Radiation and Nuclear Safety. The guide specifies the requirements for laboratories and storage rooms in which radioactive materials are used or stored as unsealed sources. There are also some general instructions concerning work procedures in a radionuclide laboratory

  18. Transport of radioactive materials: the need for radiation protection programmes

    International Nuclear Information System (INIS)

    Masinza, S.A.

    2004-01-01

    The increase in the use of radioactive materials worldwide requires that these materials be moved from production sites to the end user or in the case of radioactive waste, from the waste generator to the repository. Tens of millions of packages containing radioactive material are consigned for transport each year throughout the world. The amount of radioactive material in these packages varies from negligible quantities in shipments of consumer products to very large quantities of shipments of irradiated nuclear fuel. Transport is the main way in which the radioactive materials being moved get into the public domain. The public is generally unaware of the lurking danger when transporting these hazardous goods. Thus radiation protection programmes are important to assure the public of the certainty of their safety during conveyance of these materials. Radioactive material is transported by land (road and rail), inland waterways, sea/ocean and air. These modes of transport are regulated by international 'modal' regulations. The international community has formulated controls to reduce the number of accidents and mitigate their consequences should they happen. When accidents involving the transport of radioactive material occur, it could result in injury, loss of life and pollution of the environment. In order to ensure the safety of people, property and the environment, national and international transport regulations have been developed. The appropriate authorities in each state utilise them to control the transport of radioactive material. Stringent measures are required in these regulations to ensure adequate containment, shielding and the prevention of criticality in all spheres of transport, i.e. routine, minor incidents and accident conditions. Despite the extensive application of these stringent safety controls, transport accidents involving packages containing radioactive material have occurred and will continue to occur. When a transport accident occurs, it

  19. Radiation safety for the emergency situation of the power plant accident. Radiation safety in society and its education

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    2012-01-01

    Great East Japan Earthquake and Tsunamis, and following Fukushima Daiichi Nuclear Power Accident brought about great impact on society in Japan. Accident analysis of inside reactor was studied by reactor physics or reactor engineering knowledge, while dissipation of a large amount of radioactive materials outside reactor facilities, and radiation and radioactivity effects on people by way of atmosphere, water and soil were dealt with radiation safety or radiation protection. Due to extremely low frequency and experience of an emergency, there occurred a great confusion in the response of electric power company concerned, relevant regulating competent authorities, local government and media, and related scholars and researchers, which caused great anxieties amount affected residents and people. This article described radiation safety in the society and its education. Referring to actual examples, how radiation safety or radiation protection knowledge should be dealt with emergency risk management in the society was discussed as well as problem of education related with nuclear power, radiation and prevention of disaster and fostering of personnel for relevant people. (T. Tanaka)

  20. Radiation safety management system in a radioactive facility

    International Nuclear Information System (INIS)

    Amador, Zayda H.

    2008-01-01

    Full text: This paper illustrates the Cuban experience in implementing and promoting an effective radiation safety system for the Centre of Isotopes, the biggest radioactive facility of our country. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. All those areas of the radiation protection program are considered (e.g. licensing and training of the staff, occupational exposure, authorization of the practices, control of the radioactive material, radiological occurrences, monitoring equipment, radioactive waste management, public exposure due to airborne effluents, audits and safety costs). A set of indicators designed to monitor key aspects of operational safety performance are used. Their trends over a period of time are analyzed with the modern information technologies, because this can provide an early warning to plant management for searching causes behind the observed changes. In addition to analyze the changes and trends, these indicators are compared against identified targets and goals to evaluate performance strengths and weaknesses. A structured and proper radiation self-auditing system is seen as a basic requirement to meet the current and future needs in sustainability of radiation safety. The integrated safety management system establishment has been identified as a goal and way for the continuous improvement. (author)

  1. Integration of radiation and physical safety in large radiator facilities

    International Nuclear Information System (INIS)

    Lima, P.P.M.; Benedito, A.M.; Lima, C.M.A.; Silva, F.C.A. da

    2017-01-01

    Growing international concern about radioactive sources after the Sept. 11, 2001 event has led to a strengthening of physical safety. There is evidence that the illicit use of radioactive sources is a real possibility and may result in harmful radiological consequences for the population and the environment. In Brazil there are about 2000 medical, industrial and research facilities with radioactive sources, of which 400 are Category 1 and 2 classified by the - International Atomic Energy Agency - AIEA, where large irradiators occupy a prominent position due to the very high cobalt-60 activities. The radiological safety is well established in these facilities, due to the intense work of the authorities in the Country. In the paper the main aspects on radiological and physical safety applied in the large radiators are presented, in order to integrate both concepts for the benefit of the safety as a whole. The research showed that the items related to radiation safety are well defined, for example, the tests on the access control devices to the irradiation room. On the other hand, items related to physical security, such as effective control of access to the company, use of safety cameras throughout the company, are not yet fully incorporated. Integration of radiation and physical safety is fundamental for total safety. The elaboration of a Brazilian regulation on the subject is of extreme importance

  2. Strengthening global norms for protecting nuclear materials - feedback on little countries radiation safety

    International Nuclear Information System (INIS)

    Chelidze, L.; Kakushadze, S.

    2002-01-01

    Full text: Georgia is the part of New Great Silk Road, connecting Europe and Asia. Along this rout will be laid oil and gas pipelines, transport and telecommunication lines. Unfortunately, besides economical communication, the rout can be used for illegal transit of nuclear materials. There is special concern regarding uncontrolled territories of conflict zones. Taking into consideration recent terrible terrorist acts we feel great responsibility for ensuring safety of this rout, which is a precondition of economical development and political stability of the whole Caucasian region A potentially hazardous radiological situation developed in Georgia with orphan radiation sources in the late 1990s and 2001: discovery of high-activity strong Radiation sources of (Strontium-90 from thermo-generators) in Tsalenjikha district. Eight such generators were brought to Georgia in 1984, and four of them have been found in Svanety mountainous region in addition to the two found in the Tsalenjikha, but remaining two are not yet found. During the last years several incidents of illicit trafficking were reported. The radiation problems greatly relate to the withdrawal of the Russian military bases. The radiological accident took place in Lilo, Georgia, when sealed radiation sources had been abandoned by a previous owner at a site. Taking into account the geopolitical location of Georgia it is quite important to strengthen the physical protection infrastructure in country with has serious territorial problems. The first step was to provide an appropriate legal framework for the safety management in the country and clearly identify regulatory body. The ministry implements state control in the nuclear and radiation safety field for protection of environment and natural resources of Georgia (hereinafter referred to as the Ministry). The Ministry is obliged to supervise the physical protection systems. The Ministry shall co-ordinate the state system of physical protection of the use

  3. WE-F-209-02: Radiation Safety Surveys of Linear Accelerators

    International Nuclear Information System (INIS)

    Martin, M.

    2016-01-01

    Over the past few years, numerous Accreditation Bodies, Regulatory Agencies, and State Regulations have implemented requirements for Radiation Safety Surveys following installation or modification to x-ray rooms. The objective of this session is to review best practices in performing radiation safety surveys for both Therapy and Diagnostic installations, as well as a review of appropriate survey instruments. This session will be appropriate for both therapy and imaging physicists who are looking to increase their working knowledge of radiation safety surveys. Learning Objectives: Identify Appropriate Survey Meters for Radiation Safety Surveys Develop best practices for Radiation Safety Surveys for Therapy units that include common areas of concern. Develop best practices for Radiation Safety Surveys of Diagnostic and Nuclear Medicine rooms. Identify acceptable dose levels and the factors that affect the calculations associated with performing Radiation Safety Surveys.

  4. Nuclear Malaysia. Towards being a certification body for radiation safety auditors

    International Nuclear Information System (INIS)

    Nik Ali, Nik Arlina; Mudri, Nurul Huda; Mod Ali, Noriah

    2012-01-01

    Current management practice demands that an organisation inculcate safety culture in preventing radiation hazard. Radiation safety audit is known as a step in ensuring radiation safety compliance at all times. The purpose of Radiation Safety Auditing is to ensure that the radiation safety protection system is implemented in accordance to Malaysia Atomic Energy Licensing Act 1984, or Act 304, and International Standards. Competent radiation safety auditors are the main element that contributes to the effectiveness of the audit. To realise this need, Innovation Management Centre (IMC) is now in progress to be a certification body for safety auditor in collaboration with Nuclear Malaysia Training Centre (NMTC). NMTC will offer Radiation Safety Management Auditor (RSMA) course, which provide in depth knowledge and understanding on requirement on radiation safety audit that comply with the ISO/IEC 17024 General Requirements for Bodies Operating Certification Systems of Persons. Candidates who pass the exam will be certified as Radiation Safety Management Auditor, whose competency will be evaluated every three years. (author)

  5. Investigation of radiation safety and safety culture of medical sanitation vocation in Suzhou

    International Nuclear Information System (INIS)

    Tang Bo; Tu Yu; Zhang Yin

    2009-01-01

    Objective: To investigate the construction of radiation safety and safety culture of medical sanitation vocation in Suzhou. Methods: All medical units registered in administration center of Suzhou were included. The above selected medical units were completely investigated, district and county under the same condition of quality control. Results: The radiation safety and safety culture are existing differences among different property and grade hospitals of medicai sanitation vocation in Suzhou. Conclusion: The construction of radiation safety and safety culture is generally occupying in good level in suhzou, but there are obvious differences among different property and grade hospitals. The main reason for the differences in the importance attached to by the hospital decision-making and department management officials as well as the staff personal. (authors)

  6. Radiation shielding and safety design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ouk; Gil, C. S.; Cho, Y. S.; Kim, D. H.; Kim, H. I.; Kim, J. W.; Lee, C. W.; Kim, K. Y.; Kim, B. H. [KAERI, Daejeon (Korea, Republic of)

    2011-07-15

    A benchmarking for the test facility, evaluations of the prompt radiation fields, evaluation of the induced activities in the facility, and estimation of the radiological impact on the environment were performed in this study. and the radiation safety analysis report for nuclear licensing was written based on this study. In the benchmark calculation, the neutron spectra was measured in the 20 Mev test facility and the measurements were compared with the computational results to verify the calculation system. In the evaluation of the prompt radiation fields, the shielding design for 100 MeV target rooms, evaluations of the leakage doses from the accidents and skyshine analysis were performed. The evaluation of the induced activities were performed for the coolant, inside air, structural materials, soil and ground-water. At last, the radiation safety analysis report was written based on results from these studies

  7. Research on crisis communication of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cao Yali; Zhang Ying

    2013-01-01

    Insufficient public cognition of nuclear and radiation safety and absence of effective method to handle crisis lead to common crisis events of nuclear and radiation safety, which brings about unfavorable impact on the sound development of nuclear energy exploring and application of nuclear technology. This paper, based on crisis communication theory, analyzed the effect of current situation on nuclear and radiation safety crisis, discussed how to handle crisis, and tried to explore the effective strategies for nuclear and radiation safety crisis handling. (authors)

  8. Regulation on the organizatjon of radiation safety control bodies

    International Nuclear Information System (INIS)

    1975-01-01

    This is a basic document on matters of structure, organization, objectives, rights, and responsibilities of agencies enforcing compliance with radiation safety standards set up in Bulgaria. Under Public Health Law and Ministerial Council Decree No. 117, the organization and management of radiation safety in Bulgaria is entrusted to the Ministry of Public Health (MPH). Within its agency, the State Sanitary Control, authorities specialized in the area of radiation safety are as follows: the Radiation Hygiene Division (RHD) of the MPH Hygiene-and Epidemiology Bureau (HEB); the Specialized Radiation Safety Inspectorate of the Research Institute of Radiobiology and Radiation Hygiene (RIRRH); the Radiation Hygiene Sections of country HEBs; and State sanitary Inspectors assigned to large establishments in the country. (G.G.)

  9. The Australian radiation protection and Nuclear Safety Agency

    International Nuclear Information System (INIS)

    Macnab, D.; Burn, P.; Rubendra, R.

    1998-01-01

    The author talks about the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), the new regulatory authority which will combine the existing resources of the Australian Radiation Laboratory and the Nuclear Safety Bureau. Most uses of radiation in Australia are regulated by State or Territory authorities, but there is presently no regulatory authority for Commonwealth uses of radiation. To provide for regulation of the radiation practices of the Commonwealth, the Australian Government has decided to establish the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and a Bill has passed through the House of Representatives and will go to the Spring sitting of the Senate. The new agency will subsume the resources and functions of the Nuclear Safety Bureau and the Australian Radiation Laboratory, with additional functions including the regulation of radiation protection and nuclear safety of Commonwealth practices. Another function of ARPANSA will be the promotion of uniform regulatory requirements for radiation protection across Australia. This will be done by developing, in consultation with the States and Territories, radiation health policies and practices for adoption by the Commonwealth, States and Territories. ARPANSA will also provide research and services for radiation health, and in support of the regulatory and uniformity functions. The establishment of ARPANSA will ensure that the proposed replacement research reactor, the future low level radioactive waste repository and other Commonwealth nuclear facilities and radiation practices are subject to a regulatory regime which reflects the accumulated experience of the States and Territories and best international practice, and meets public expectations

  10. Radiation safety aspects at Indus accelerator complex

    International Nuclear Information System (INIS)

    Marathe, R.G.

    2011-01-01

    Indus Accelerator Complex at Raja Ramanna Center for Advanced Technology houses two synchrotron radiation sources Indus-1 and Indus-2 that are being operated round-the-clock to cater to the needs of the research community. Indus-1 is a 450 MeV electron storage ring and Indus-2 is presently being operated with electrons stored at 2 GeV. Bremsstrahlung radiation and photo-neutrons form the major radiation environment in Indus Accelerator Complex. They are produced due to loss of electron-beam occurring at different stages of operation of various accelerators located in the complex. The synchrotron radiation (SR) also contributes as a potential hazard. In order to ensure safety of synchrotron radiation users and operation and maintenance staff working in the complex from this radiation, an elaborate radiation safety system is in place. The system comprises a Personnel Protection System (PPS) and a Radiation Monitoring System (RMS). The PPS includes zoning, radiation shielding, door interlocks, a search and scram system and machine operation trip-interlocks. The RMS consists of area radiation monitors and beam loss monitors, whose data is available online in the Indus control room. Historical data of radiation levels is also available for data analysis. Synchrotron radiation beamlines at Indus-2 are handled in a special manner owing to the possibility of exposure to synchrotron radiation. Shielding hutches with SR monitors are installed at each beamline of Indus-2. Health Physics Unit also carries out regular radiological surveillance for photons and neutrons during various modes of operation and data is logged shift wise. The operation staff is appropriately trained and qualified as per the recommendations of Atomic Energy Regulatory Board (AERB). Safety training is also imparted to the beamline users. Safe operation procedures and operation checklists are being followed strictly. A radiation instrument calibration facility is also being set-up at RRCAT. The radiation

  11. Radiation safety standards and regulations

    International Nuclear Information System (INIS)

    Ermolina, E.P.; Ivanov, S.I.

    1993-01-01

    Radiation protection laws of Russia concerning medical application of ionizing radiation are considered. Main concepts of the documents and recommendations are presented. Attention was paid to the ALARA principle, safety standrds for paietients, personnel and population, radiation protection. Specific feature of the standardization of radiation factors is the establishment of two classes of norms: main dose limits and permissible levels. Maximum dose commitment is the main standard. Three groups of critical organs and three categories of the persons exposed to radiation are stated. Main requirements for radiation protection are shown

  12. Guide to the declaration procedure and coding system for criteria concerning significant events related to safety, radiation protection or the environment, applicable to basic nuclear installations and the transport of radioactive materials

    International Nuclear Information System (INIS)

    Lacoste, Andre-Claude

    2005-01-01

    This guide notably contains various forms associated with the declaration of significant events, and explanations to fill them in: significant event declaration form for a basic nuclear installation, significant event declaration form for radioactive material transport, significant event report for a basic nuclear installation, significant event report for radioactive material transport, declaration criteria for significant events related to the safety of non-PWR basic nuclear installations, declaration criteria for significant events related to PWR safety, significant events declared further to events resulting in group 1 unavailability and non-compliance with technical operating specifications, declaration criteria for significant events concerning radiation protection for basic nuclear installations, declaration criteria for significant events concerning environmental protection, applicable to basic nuclear installations, and declaration criteria for significant events concerning radioactive material transport

  13. 10 CFR 34.42 - Radiation Safety Officer for industrial radiography.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation Safety Officer for industrial radiography. 34.42 Section 34.42 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION... Radiation Safety Officer for industrial radiography. The RSO shall ensure that radiation safety activities...

  14. Safety culture in transport

    International Nuclear Information System (INIS)

    Decobert, V.

    1998-01-01

    'Safety culture' is a wording that appeared first in 1986, during the evaluation of what happened during the Tchernobyl accident. Safety culture is defined in the IAEA 75-INSAG-4 document as the characteristics and attitude which, in organizations and in men behaviours, make that questions related to safety of nuclear power plants benefits, in priority, of the attention that they need in function of their importance. The INSAG-4 document identifies three different elements necessary to the development of the safety culture: commitment of the policy makers, commitment of the managers of the industry, and commitment of individuals. This paper gives examples to show how safety culture is existing in the way Transnucleaire performs the activities in the field of transport of nuclear materials. (author)

  15. Interface between radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    Bengtsson, G.; Hoegberg, L.

    1991-01-01

    Interface issues concern the character and management of overlaps between radiation protection and nuclear safety in nuclear power plants. Typical examples include the selection of inspection and maintenance volumes in order to balance occupational radiation doses versus the safety status of the plant, and the intentional release to the environment in the course of an accident in order to secure better plant control. The paper discusses whether it is desirable and possible to employ a consistent management of interface issues with trade-offs between nuclear safety and radiation protection. Illustrative examples are quoted from a major Nordic research programme on risk analysis and safety rationale. These concern for instance in-service inspections, modifications of plant systems and constructions after the plant has been taken into operation, and studies on the limitations of probabilistic safety assessment. They indicate that in general there are no simple rules for such trade-offs

  16. Radiation Safety Culture in Medicine AFROSAFE_R_A_D

    International Nuclear Information System (INIS)

    Nyabanda, R.

    2017-01-01

    Ionizing radiation that include X-rays and Gamma rays Radio waves, infrared and visible light carries sufficient energy to free electrons from atoms or molecules. Becquerel first person to discover evidence of radioactivity, who shared a Nobel Prize for physics in 1903 with Marie and Pierre Curie. Prof Sievert and Louis Harold Gray are the Medical physicists who had major contribution in the study of the biological effects of radiation. Ionizing radiation causes displacement of an electron which can inflict damage on DNA either directly or indirectly. A radiation-safety campaign developed by the radiation health workers in Africa. Radiosensitive organs is highest in cells which are highly mitotic or undifferentiated. E.g basal epidermis, bone marrow, thymus, gonads, and lens cells. Relatively low radiosensitivity in muscle, bones, and nervous system tissues. A radiation-safety campaign developed by the radiation health workers in Africa. AFROSAFE Strategies Strengthen radiation protection of patients, health workers and public, Promote safe and appropriate use of ionizing radiation in medicine. Foster improvement of the benefit-risk dialogue with patients and the public. Enhance the safety and quality of radiological procedures in medicine, Promote safety in radiological equipment and facilities and Promote research in radiation protection and safety

  17. The radiation safety self-assessment program of Ontario Hydro

    International Nuclear Information System (INIS)

    Armitage, G.; Chase, W.J.

    1987-01-01

    Ontario Hydro has developed a self-assessment program to ensure that high quality in its radiation safety program is maintained. The self-assessment program has three major components: routine ongoing assessment, accident/incident investigation, and detailed assessments of particular radiation safety subsystems or of the total radiation safety program. The operation of each of these components is described

  18. Example of a single national regulator responsible for both transport safety and security

    International Nuclear Information System (INIS)

    Karhu, P.; Lahkola, A.; Markkanen, M.; Hellstén, S.

    2016-01-01

    Safety and security in the use of nuclear energy and in the use of radiation, including the transport of nuclear and other radioactive material, share a common objective: to protect people, society, environment, and future generations from the harmful effects of ionizing radiation. Some measures for safety contribute to those for security, and vice versa, while some requirements of one conflict with those of the other. The differences in the requirements arise from the difference in the threat against which the measures are designed: accident vs. intent. A coordinated approach endeavours to take advantage of the similarities and to avoid the problems caused by the differences. One way to implement it is to have one competent authority responsible for the regulatory control of safety and security. It is the experience in Finland that this enables an efficient regulatory system. From the operators’ point of view, a one-stop shop regulatory authority ensures that requirements for safety and security are consistent. Both safety and security require the involvement of and cooperation between several authorities—regulatory, rescue, law enforcement—and operators. The approach in Finland is built on cooperation and a clear division of competences and responsibilities. One regulatory authority provides a fixed point of contact within the professional cooperation network as well as for the public. The one regulatory authority is also easily identifiable, as appropriate, as a point of contact in international cooperation in implementing nuclear and radiation safety and security. Whatever the national regulatory framework and the assignment of responsibilities between authorities, cooperation is essential in house, nationally, and internationally. (author)

  19. Proceedings of the 3. Regional Meeting on Radiological and Nuclear Safety, Regional Meeting on International Radiation Protection Association (IRPA)and 3. Peruvian Meeting on Radiological Protection

    International Nuclear Information System (INIS)

    1995-10-01

    There we show works of the Third Regional Meeting on Radiological and Nuclear Safety held on 23-27 October, 1995 in Cusco-Peru. Latin americans specialists talk about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. Also we deal with subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation. More than 225 works were presented on the meeting

  20. The radiation safety standards programme

    International Nuclear Information System (INIS)

    Bilbao, A.A.

    2000-01-01

    In this lecture the development of radiation safety standards by the IAEA which is a statutory function of the IAEA is presented. The latest editions of the basic safety standards published by the IAEA in cooperation with ICRP, FAO, ILO, NEA/OECD, PAHO and WHO are reviewed

  1. radiation safety culture for developing country: Basis for s minimum operational radiation protection programme

    International Nuclear Information System (INIS)

    Rozental, J. J.

    1997-01-01

    The purpose of this document is to present a methodology for an integrated strategy aiming at establishing an adequate radiation Safety infrastructure for developing countries, non major power reactor programme. Its implementation will allow these countries, about 50% of the IAEA's Member States, to improve marginal radiation safety, specially to those recipients of technical assistance and do not meet the Minimum radiation Safety Requirements of the IAEA's Basic Safety Standards for radiation protection Progress in the implementation of safety regulations depends on the priority of the government and its understanding and conviction about the basic requirements for protection against the risks associated with exposure to ionizing radiation. There is no doubt to conclude that the reasons for the deficiency of sources control and dose limitation are related to the lack of an appropriate legal and regulatory framework, specially considering the establishment of an adequate legislation; A minimum legal infrastructure; A minimum operational radiation safety programme; Alternatives for a Point of Optimum Contact, to avoid overlap and conflict, that is: A 'Memorandum of Understanding' among Regulatory Authorities in the Country, dealing with similar type of licensing and inspection

  2. Notification and authorization for the use of radiation sources (Supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2011-10-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depend on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for notification and authorization for control over radiation sources, including a system for review and assessment of applications for authorization. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the process for dealing with applications for authorization and accepting notifications to regulatory bodies. Examples of guidelines that may be used by persons required to notify or apply for authorization and of the regulatory body's review and assessment procedures are provided in the Appendices. The TECDOC is oriented towards national regulatory infrastructures concerned with protection and safety for radiation sources used in medicine, industry, agriculture, research and education. The IAEA

  3. Notification and authorization for the use of radiation sources (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2007-04-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depend on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for notification and authorization for control over radiation sources, including a system for review and assessment of applications for authorization. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the process for dealing with applications for authorization and accepting notifications to regulatory bodies. Examples of guidelines that may be used by persons required to notify or apply for authorization and of the regulatory body's review and assessment procedures are provided in the Appendices. The TECDOC is oriented towards national regulatory infrastructures concerned with protection and safety for radiation sources used in medicine, industry, agriculture, research and education

  4. Notification and authorization for the use of radiation sources (supplement to IAEA Safety Standards Series No. GS-G-1.5)

    International Nuclear Information System (INIS)

    2010-10-01

    The achievement and maintenance of a high level of safety in the use of radiation sources depend on there being a sound legal and governmental infrastructure, including a national regulatory body with well-defined responsibilities and functions. These responsibilities and functions include establishing and implementing a system for notification and authorization for control over radiation sources, including a system for review and assessment of applications for authorization. The Safety Requirements publication entitled Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety establishes the requirements for legal and governmental infrastructure. The term 'infrastructure' refers to the underlying structure of systems and organizations. This includes requirements concerning the establishment of a regulatory body for radiation sources and the responsibilities and functions assigned to it. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards or the BSS) establish basic requirements for protection against risks associated with exposure to ionizing radiation and for the safety of radiation sources. The application of the BSS is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities to for radiation protection and safety. This TECDOC provides practical guidance on the process for dealing with applications for authorization and accepting notifications to regulatory bodies. Examples of guidelines that may be used by persons required to notify or apply for authorization and of the regulatory body's review and assessment procedures are provided in the Appendices. The TECDOC is oriented towards national regulatory infrastructures concerned with protection and safety for radiation sources used in medicine, industry, agriculture, research and education

  5. Forms of Approximate Radiation Transport

    CERN Document Server

    Brunner, G

    2002-01-01

    Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.

  6. Recent trends in particle accelerator radiation safety

    International Nuclear Information System (INIS)

    Ohnesorge, W.F.; Butler, H.M.

    1974-01-01

    The use of particle accelerators in applied and research activities continues to expand, bringing new machines with higher energy and current capabilities which create radiation safety problems not commonly encountered before. An overview is given of these increased ionizing radiation hazards, along with a discussion of some of the new techniques required in evaluating and controlling them. A computer search of the literature provided a relatively comprehensive list of publications describing accelerator radiation safety problems and related subjects

  7. Measuring safety culture: Application of the Hospital Survey on Patient Safety Culture to radiation therapy departments worldwide.

    Science.gov (United States)

    Leonard, Sarah; O'Donovan, Anita

    Minimizing errors and improving patient safety has gained prominence worldwide in high-risk disciplines such as radiation therapy. Patient safety culture has been identified as an important factor in reducing the incidence of adverse events and improving patient safety in the health care setting. The aim of distributing the Hospital Survey on Patient Safety Culture (HSPSC) to radiation therapy departments worldwide was to assess the current status of safety culture, identify areas for improvement and areas that excel, examine factors that influence safety culture, and raise staff awareness. The safety culture in radiation therapy departments worldwide was evaluated by distributing the HSPSC. A total of 266 participants were recruited from radiation therapy departments and included radiation oncologists, radiation therapists, physicists, and dosimetrists. The positive percent scores for the 12 dimensions of the HSPSC varied from 50% to 79%. The highest composite score among the 12 dimensions was teamwork within units; the lowest composite score was handoffs and transitions. The results indicated that health care professionals in radiation therapy departments felt positively toward patient safety. The HSPSC was successfully applied to radiation therapy departments and provided valuable insight into areas of potential improvement such as teamwork across units, staffing, and handoffs and transitions. Managers and policy makers in radiation therapy may use this assessment tool for focused improvement efforts toward patient safety culture. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  8. A proposal for an international convention on radiation safety

    International Nuclear Information System (INIS)

    Ahmed, J.U.

    1998-01-01

    One century has passed since harmful effects of radiation on living tissues were recognized. Organized efforts to reduce radiation hazards began in early 1920s. Major efforts by the ICRP since 1928, aided by ICRU, greatly helped in formulating principles, policies and guidance for radiation protection. The WHO formally recognized ICRP in 1956 and began implementing ICRP recommendations and guidance throughout the world. The IAEA, after it took office in 1957, began to establish or adopt standards of safety based on ICRP recommendations and provide for application of these standards in the field of atomic energy. Later on, other pertinent international organizations joined IAEA in establishing the Basic Safety Standards on radiation safety. The IAEA has issued, until now, nearly couple of hundred safety related documents on radiation safety and waste management. However, in spite of all such international efforts for three quarter of a century, there has been no effective universal control in radiation safety. Problems exist at the user, national, international and manufacturers and suppliers levels. Other problems are management of spent sources and smuggling of sources across international borders. Although, radiation and radionuclides are used by all countries of the world, regulatory and technical control measures in many countries are either lacking or inadequate. The recommendations and technical guidance provided by the international organizations are only advisory and carry no mandatory force to oblige countries to apply them. Member States approve IAEA safety standards and guides at the technical meetings and General Conference, but many of them do not apply these. An International Convention is, therefore, essential to establish international instrument to ensure universal application of radiation safety. (author)

  9. A Study on Enhancement of Understanding of Radiation and Safety Management

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Dong Han; Park, Ji Young; Lee, Jae Uk; Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations.

  10. A Study on Enhancement of Understanding of Radiation and Safety Management

    International Nuclear Information System (INIS)

    Yoo, Dong Han; Park, Ji Young; Lee, Jae Uk; Bae, Jun Woo; Kim, Hee Reyoung

    2014-01-01

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations

  11. A survey of radiation safety training among South African interventionalists

    Directory of Open Access Journals (Sweden)

    A Rose

    2018-04-01

    Full Text Available Background. Ionising radiation is increasingly being used in modern medicine for diagnostic, interventional and therapeutic purposes. There has been an improvement in technology, resulting in lower doses being emitted. However, an increase in the number of procedures has led to a greater cumulative dose for patients and operators, which places them at increased risk of the effects of ionising radiation. Radiation safety training is key to optimising medical practice.Objective. To present the perceptions of South African interventionalists on the radiation safety training they received and to offer insights into the importance of developing and promoting such training programmes for all interventionalists.Methods. In this cross-sectional study, we collected data from interventionalists (N=108 using a structured questionnaire.Results. All groups indicated that radiation exposure in the workplace is important (97.2%. Of the participants, the radiologists received the most training (65.7%. Some participants (44.1% thought that their radiation safety training was adequate. Most participants (95.4% indicated that radiation safety should be part of their training curriculum. Few (34.3% had received instruction on radiation safety when they commenced work. Only 62% had been trained on how to protect patients from ionising radiation exposure.Conclusion. Radiation safety training should be formalised in the curriculum of interventionalists’ training programmes, as this will assist in stimulating a culture of radiation protection, which in turn will improve patient safety and improve quality of care.

  12. Compendium of Material Composition Data for Radiation Transport Modeling

    International Nuclear Information System (INIS)

    Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.

    2006-01-01

    Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: (1) to provide a quick reference of material compositions for analysts and (2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

  13. Radiation transport in numerical astrophysics

    International Nuclear Information System (INIS)

    Lund, C.M.

    1983-02-01

    In this article, we discuss some of the numerical techniques developed by Jim Wilson and co-workers for the calculation of time-dependent radiation flow. Difference equations for multifrequency transport are given for both a discrete-angle representation of radiation transport and a Fick's law-like representation. These methods have the important property that they correctly describe both the streaming and diffusion limits of transport theory in problems where the mean free path divided by characteristic distances varies from much less than one to much greater than one. They are also stable for timesteps comparable to the changes in physical variables, rather than being limited by stability requirements

  14. Radiation Safety Professional Certification Process in a Multi-Disciplinary Association

    International Nuclear Information System (INIS)

    Wilson, G.; Jones, P.; Ilson, R.

    2004-01-01

    There is no one set of criteria that defines the radiation safety professional in Canada. The many varied positions, from university and medical to industry and mining, define different qualifications to manage radiation safety programs. The national regulatory body has to assess many different qualifications when determining if an individual is acceptable to be approved for the role of radiation safety officer under any given licence. Some professional organizations specify education requirements and work experience as a prerequisite to certification. The education component specifies a degree of some type but does not identify specific courses or competencies within that degree. This could result in individuals with varying levels of radiation safety experience and training. The Canadian Radiation Protection Association (CRPA), responding to a need identified by the membership of the association, has initiated a process where the varying levels of knowledge of radiation safety can be addressed for radiation safety professionals. By identifying a core level set of radiation safety competencies, the basic level of radiation safety officer for smaller organizations can be met. By adding specialty areas, education can be pursued to define the more complex needs of larger organizations. This competency based process meets the needs of licensees who do not require highly trained health physicists in order to meet the licensing requirements and at the same time provides a stepping stone for those who wish to pursue a more specialized health physics option. (Author) 8 refs

  15. Konrad transport study: safety analysis of the transport of radioactive waste to the Konrad waste disposal site

    International Nuclear Information System (INIS)

    Lange, F.; Gruendler, D.; Schwarz, G.

    1992-01-01

    A safety analysis has been conducted for the transport of non-heat-generating (low- to medium level) radioactive waste to the planned Konrad final repository in Germany. The results of the risk analysis show that it is unlikely that transport accidents with a release of radioactive substances will occur in the region of the final repository during the operating period of approximately 40 years. Because of the lower accident risk of transport by rail as compared with road, the envisaged high fraction of rail transport of the entire transport volume has a beneficial effect. In the case of an accident with a release of radioactive substances, the potential radiological consequences, in general, decrease rapidly with distance; starting from around 250 m by a factor of 10 up to about 1200 m and a further factor of 10 at a distance of about 6200 m. The releases associated with accidents are frequently so small that the potential radiation exposure, even without countermeasures, is below the natural radiation exposure for one year, at a distance of about 250 m from the accident location: this is true for 9 out of 10 accidents with goods trains and 19 out of 20 accidents with trucks. With the hypothetical assumption of continuous operation of the repository, a potential effective dose of 50 mSv without countermeasures would result, on average, once every 500,000 years at a distance of 250 m in the direction of atmospheric dispersion for the scenario 100% rail transport and once every 400,000 years for the scenario 80% rail/20% road. 50 mSv corresponds to the design guideline exposure of 28 Para. 3 of the German Radiological Protection Ordinance and the annual dose limit for persons occupationally exposed to radiation. The expected frequencies of corresponding accident consequences are considerably lower for the Braunschweig marshalling yard. It can thus be concluded that waste transport does not pose any major additional risk to the region of the repository. (author)

  16. Generic radiation safety design for SSRL synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C. [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)]. E-mail: james@slac.stanford.edu; Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)

    2006-12-15

    To allow for a conservative, simple, uniform, consistent, efficient radiation safety design for all SSRL beamlines, a generic approach has been developed, considering both synchrotron radiation (SR) and gas bremsstrahlung (GB) hazards. To develop the methodology and rules needed for generic beamline design, analytic models, the STAC8 code, and the FLUKA Monte Carlo code were used to pre-calculate sets of curves and tables that can be looked up for each beamline safety design. Conservative beam parameters and standard targets and geometries were used in the calculations. This paper presents the SPEAR3 beamline parameters that were considered in the design, the safety design considerations, and the main pre-calculated results that are needed for generic shielding design. In the end, the rules and practices for generic SSRL beamline design are summarized.

  17. RISK MANAGEMENT AS TRANSPORTATION SAFETY PROVISION INSTRUMENT IN RUSSIA

    OpenAIRE

    V. A. Nikolayev

    2012-01-01

    Safety of transportation in Russia is subject to a variety of threats. Discussed in the article are characteristics of major threats to transportation security. State transportation policy directions that make it possible to ensure the security of cargo and passenger transportation are shown. A listof activities and innovative risk management tools that provide for improved safety of railway transportation is proposed.

  18. Radiation safety systems at the NSLS

    International Nuclear Information System (INIS)

    Dickinson, T.

    1987-04-01

    This report describes design principles that were used to establish the radiation safety systems at the National Synchrotron Light Source. The author described existing safety systems and the history of partial system failures. 1 fig

  19. Safety guide data on radiation shielding in a reprocessing facility

    International Nuclear Information System (INIS)

    Sekiguchi, Noboru; Naito, Yoshitaka

    1986-04-01

    In a reprocessing facility, various radiation sources are handled and have many geometrical conditions. To aim drawing up a safety guidebook on radiation shielding in order to evaluate shielding safety in a reprocessing facility with high reliability and reasonableness, JAERI trusted investigation on safety evaluation techniques of radiation shielding in a reprocessing facility to Nuclear Safety Research Association. This report is the collection of investigation results, and describes concept of shielding safety design principle, radiation sources in reprocessing facility and estimation of its strength, techniques of shielding calculations, and definite examples of shielding calculation in reprocessing facility. (author)

  20. Towards an international regime on radiation and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2000-01-01

    The 1990s have seen the de facto emergence of what might be called an 'international regime on nuclear and radiation safety'. It may be construed to encompass three key elements: legally binding international undertakings among States; globally agreed international safety standards; and provisions for facilitating the application of those standards. While nuclear and radiation safety are national responsibilities, governments have long been interested in formulating harmonised approaches to radiation and nuclear safety. A principal mechanism for achieving harmonisation has been the establishment of internationally agreed safety standards and the promotion of their global application. The development of nuclear and radiation safety standards is a statutory function of the IAEA, which is unique in the United Nations system. The IAEA Statute expressly authorises the Agency 'to establish standards of safety' and 'to provide for the application of these standards'. As the following articles and supplement in this edition of the IAEA Bulletin point out, facilitating international conventions; developing safety standards; and providing mechanisms for their application are high priorities for the IAEA. (author)

  1. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  2. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2002-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  3. Report for spreading culture of medical radiation safety in Korea: Mainly the activities of the Korean alliance for radiation safety and culture in medicine (KARSM)

    International Nuclear Information System (INIS)

    Yoon, Yong Su; Kim, Jung Min; Kim, Ji Hyun; Choi, In Seok; Sung, Dong Wook; Do, Kyung Hyun; Jung, Seung Eun; Kim, Hyung Soo

    2013-01-01

    There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people’s fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012

  4. Report for spreading culture of medical radiation safety in Korea: Mainly the activities of the Korean alliance for radiation safety and culture in medicine (KARSM)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yong Su; Kim, Jung Min; Kim, Ji Hyun; Choi, In Seok [Dept. of Radiologic Science, Korea University, Seoul (Korea, Republic of); Sung, Dong Wook [Dept. of Radiology, Kyunghee University Hospital, Seoul (Korea, Republic of); Do, Kyung Hyun [Dept. of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Jung, Seung Eun [Dept. of Radiology, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, Hyung Soo [Dept. of Radiation Safety, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2013-09-15

    There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people’s fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012.

  5. Safety assessment of ammonia as a transport fuel

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N.J.; Markert, F.; Lundtang paulsen, Jette

    2005-02-01

    This report describes the safety study performed as part of the EU supported project 'Ammonia Cracking for Clean Electric Power Technology' The study addresses the following activities: safety of operation of the ammonia-powered vehicle under normal and accident (collision) conditions, safety of transport of ammonia to the refuelling stations and safety of the activities at the refuelling station (unloading and refuelling). Comparisons are made between the safety of using ammonia and the safety of other existing or alternative fuels. The conclusion is that the hazards in relation to ammonia need to be controlled by a combination of technical and regulatory measures. The most important requirements are: - Advanced safety systems in the vehicle - Additional technical measures and regulations are required to avoid releases in maintenance workshops and unauthorised maintenance on the fuel system - Road transport of ammonia to refuelling stations in refrigerated form - Sufficient safety zones between refuelling stations and residential or otherwise public areas. When these measures are applied, the use of ammonia as a transport fuel wouldnt cause more risks than currently used fuels (using current practice). (au)

  6. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  7. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt... standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  8. Towards confidence in transport safety

    International Nuclear Information System (INIS)

    Robison, R.W.

    1992-01-01

    The U.S. Department of Energy (US DOE) plans to demonstrate to the public that high-level waste can be transported safely to the proposed repository. The author argues US DOE should begin now to demonstrate its commitment to safety by developing an extraordinary safety program for nuclear cargo it is now shipping. The program for current shipments should be developed with State, Tribal, and local officials. Social scientists should be involved in evaluating the effect of the safety program on public confidence. The safety program developed in cooperation with western states for shipments to the Waste Isolation Pilot plant is a good basis for designing that extraordinary safety program

  9. New Radiation Safety Standards of the Russian Federation

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    2001-01-01

    Full text: The new Radiation Safety Standards of the Russian Federation are a first step in an implementation of the 1990 Recommendations of the ICRP into the existing national system of providing a radiation safety of the public. In new System the radiation source is examined as a source of harm and danger for the public. So the System shall include not only the measures for limitation of actual exposures, but also an assessment of efficiency of radiation protection in the practical activity, based on the analysis of a distribution of doses received and on the assessment of actions initiated to restrict the probability of potential exposures. The occupational and public exposure doses are only the indices of the quality of management of the source. In this System a radiation monitoring is a feedback for assessing the stability of the source and how it is controllable. It is a tool for predicting the levels of potential exposure and the relevant danger associated with the source. It is important to underline that the System of Providing a Radiation Safety is an interrelated system. None of its parts may be individually used. In particular, the mere conformity with dose limits is not yet a sufficient evidence of the successful operation of the safety system, because the normal exposure doses reflect only a source-related harm. The problems of implementation of this System of radiation protection and safety into the contemporary practice in the Russia is discussed. (author)

  10. Radiation safety and regulatory aspects in Medical Facilities

    International Nuclear Information System (INIS)

    Banerjee, Sharmila

    2017-01-01

    Radiation safety and regulatory aspect of medical facilities are relevant in the context where radiation is used in providing healthcare to human patients. These include facilities, which carry out radiological procedures in diagnostic radiology, including dentistry, image-guided interventional procedures, nuclear medicine, and radiation therapy. The safety regulations provide recommendations and guidance on meeting the requirements for the safe use of radiation in medicine. The different safety aspects which come under its purview are the personnel involved in medical facilities where radiological procedures are performed which include the medical practitioners, radiation technologists, medical physicists, radiopharmacists, radiation protection and over and above all the patients. Regulatory aspects cover the guidelines provided by ethics committees, which regulate the administration of radioactive formulation in human patients. Nuclear medicine is a modality that utilizes radiopharmaceuticals either for diagnosis of physiological disorders related to anatomy, physiology and patho-physiology and for diagnosis and treatment of cancer

  11. A National Institute of Radiation Protection and Nuclear Safety?

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    The practice of radiation protection within Australia is fragmented on a number of different levels. Each state has its own radiation protection organisation. Within the Commonwealth there is also a large number of bodies which deal with different aspects of radiation protection or nuclear safety. There is also an interest in occupational radiation protection by Departments responsible for Occupational Health and Safety. It is estimated that this fragmentation affects the practice of radiation protection at a State level and also the role which Australia can play internationally. The establishment of a National Institute of Radiation Protection and Nuclear Safety is therefore proposed. Possible structures and organizational arrangements for such an institute are discussed. 4 refs., 4 tabs., 3 figs

  12. Challenges in strengthening radiation safety and security programme in Malaysia

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2010-01-01

    This paper illustrates the Malaysian experience in implementing steps in strengthening radiation safety and security through certification of radiation safety personnel, which is dedicated to meet the current and future needs in sustainability of radiation safety and security systems. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important in implementing the radiation safety policy efficiently. Through this effort, we are able to create a basis for adequate protection of workers, the public and the environment and encourage licensees to manage radiation safety and security based on performance, and not on compliance culture, with the final objective of professing a safety culture through self regulation. This will certainly benefit an organisation with ultimate goals are to continuously strive for a healthy, accident free and environmentally sound workplace and community, while providing the technical support needed to meet the national mission. This will strengthen the radiation safety and security programme and could be used to assist in manpower development once Malaysia makes the decision to embark on a nuclear power programme. (author)

  13. INSAG's ongoing work on nuclear, radiation and waste safety

    International Nuclear Information System (INIS)

    Baer, A.J.

    1999-01-01

    The International Nuclear Safety Advisory Group (INSAG) is an advisory group to the Director General of the IAEA. It identifies current nuclear safety issues, draws conclusions from its analyses and gives advice on those issues. INSAG is currently working on four documents: a complete revision of INSAG-3, the classical paper on safety principles for nuclear plants, published in 1988; 'Safety Management', the effective system for the management of operational strategy; 'Safe Management of the Life Cycle of Nuclear Power Plants'; and the fourth document in preparation entitled 'The Safe Management of Sources of Radiation: Principles and Strategies'. The fourth document is aimed primarily at political decision makers who have no knowledge of radiation safety or of nuclear matters generally but are called upon to make important decisions in this field. INSAG has attempted to present them with a 'unified doctrine' of the management of all radiation sources, even though, for historical reasons radiation protection and nuclear safety have evolved largely independently of each other. The major conclusion to be drawn from the paper is that a systematic application of protection and safety principles, and of appropriate strategies, goes a long way towards ensuring the safe management of technologies involving radiation. Furthermore, the management of sources of radiation could benefit from the experience accumulated in other industries facing comparable challenges

  14. The practice of safety culture construction in radiation processing enterprise

    International Nuclear Information System (INIS)

    Kong Xiangshan; Zhang Yue; Yang Bin; Xu Tao; Liu Wei; Hao Jiangang

    2014-01-01

    Security is an integral part of the process of business operations. The radiation processing enterprises due to their own particularity, more need to focus on the operation of the safety factors, the construction of corporate safety culture is of great significance in guiding carry out the work of the Radiation Protection. Radiation processing enterprises should proceed from their own characteristics, the common attitude of security systems and security construction, and constantly improved to ensure the personal safety of radiation workers in the area of safety performance. (authors)

  15. RISK MANAGEMENT AS TRANSPORTATION SAFETY PROVISION INSTRUMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    V. A. Nikolayev

    2012-01-01

    Full Text Available Safety of transportation in Russia is subject to a variety of threats. Discussed in the article are characteristics of major threats to transportation security. State transportation policy directions that make it possible to ensure the security of cargo and passenger transportation are shown. A listof activities and innovative risk management tools that provide for improved safety of railway transportation is proposed.

  16. Radiation protection and safety in industrial radiography

    International Nuclear Information System (INIS)

    1999-01-01

    The use of ionizing radiation, particularly in medicine and industry, is growing throughout the world, with further expansion likely as technical developments result from research. One of the longest established applications of ionizing radiation is industrial radiography, which uses both X radiation and gamma radiation to investigate the integrity of equipment and structures. Industrial radiography is widespread in almost all Member States. It is indispensable to the quality assurance required in modern engineering practice and features in the work of multinational companies and small businesses alike. Industrial radiography is extremely versatile. The equipment required is relatively inexpensive and simple to operate. It may be highly portable and capable of being operated by a single worker in a wide range of different conditions, such as at remote construction sites, offshore locations and cross-country pipelines as well as in complex fabrication facilities. The associated hazards demand that safe working practices be developed in order to minimize the potential exposure of radiographers and other persons who may be in the vicinity of the work. The use of shielded enclosures (fixed facilities), with effective safety devices, significantly reduces any radiation exposures arising from the work. This Safety Report summarizes good and current state of the art practices in industrial radiography and provides technical advice on radiation protection and safety. It contains information for Regulatory Authorities, operating organizations, workers, equipment manufacturers and client organizations, with the intention of explaining their responsibilities and means to enhance radiation protection and safety in industrial radiography

  17. Safety Analysis Report for the KRI-ALM Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, D. H.; Park, H. Y.; Kim, J. B.; Kim, H. J.; Seo, K. S

    2005-11-15

    Safety evaluation for the KRI-ALM transport package to transport safely I-123, which is produced at Cyclotron in KIRAMS, was carried out. In the safety analyses results for the KRI-ALM transport package, all the maximum stresses as well as the maximum temperature of the surface are lower than their allowable limits. The safety tests were performed by using the test model of the KRI-ALM transport package. Leak Test was performed after drop test, the measured leakage rate was lower than allowable leakage rate. It is revealed that the containment integrity of the KRI-ALM transport package is maintained. Therefore, it shows that the integrity of the KRI-ALM transport package is well maintained.

  18. Survey and analysis of radiation safety management systems at medical institutions. Initial report. Radiation protection supervisor, radiation safety organization, and education and training

    International Nuclear Information System (INIS)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2005-01-01

    In this study, a questionnaire survey was carried out to determine the actual situation of radiation safety management systems in Japanese medical institutions with nuclear medicine facilities. The questionnaire consisted of questions concerning the Radiation Protection Supervisor license, safety management organizations, and problems related to education and training in safety management. Analysis was conducted according to region, type of establishment, and number of beds. The overall response rate was 60%, and no significant difference in response rate was found among regions. Medical institutions that performed nuclear medicine practices without a radiologist participating accounted for 10% of the total. Medical institutions where nurses gave patients intravenous injections of radiopharmaceuticals as part of the nuclear medicine practices accounted for 28% of the total. Of these medical institutions, 59% provided education and training in safety management for nurses. The rate of acquisition of Radiation Protection Supervisor licenses was approximately 70% for radiological technologists and approximately 20% for physicians (regional difference, p=0.02). The rate of medical institutions with safety management organizations was 71% of the total. Among the medical institutions (n=208) without safety management organizations, approximately 56% had 300 beds or fewer. In addition, it became clear that 35% of quasi-public organizations and 44% of private organizations did not provide education and training in safety management (p<0.001, according to establishment). (author)

  19. The international standard for protection from ionizing radiation and safety of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1995-06-01

    This document is a review in hebrew of the new 1994 international standard of the IAEA. The new standard title is `Basic safety standards for radiation protection and for the safety of radiation sources`, which were published in the ICRP Pub. 9.

  20. Radiation safety and radiation protection problems on the TESLA Accelerator Installation

    International Nuclear Information System (INIS)

    Pavlovic, R.; Pavlovic, S.; Orlic, M.

    1997-01-01

    As we can see from the examples of many accelerator facilities installed throughout the world with ion beam energy, mass and charge characteristics and design similar to the TESLA Accelerator Installation, there is a great diversity among them, and each radiation protection and safety programme must be designed to facilitate the safe and effective operation of the accelerator according to the needs of the operating installation. Although there is no standard radiation protection and safety organization suitable for all institutions, experience suggests some general principles that should be integrated with all the disciplines involved in a comprehensive safety programme. (author)

  1. 6. Regional Congress on Radiation Protection and Safety; 3. Iberian and Latin American Congress on Radiological Protection Societies; Regional IRPA Congress. Book of abstracts

    International Nuclear Information System (INIS)

    2003-11-01

    The 6th Regional Congress on Radiation Protection and Safety was organized by the Peruvian Radiation Protection Society and the Peruvian Institute of Nuclear Energy, held in Lima, Peru, between 9 and 13 of november of 2003. In this event, were presented 227 papers that were articulated in the following sessions: radiation natural exposure, biological effects of ionizing radiation, instruments and dosimetry, radiological emergency and accidents, occupational radiation protection, radiological protection in medical exposure, radiological environmental protection, legal aspects, standards and regulations, training, education and communication, radioactive waste management, radioactive material transport, nuclear safety and biological effects of non-ionizing radiation. (APC)

  2. Radiation safety and protection on the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Bogorad, V.I.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Litvinskaya, T.V.; Slepchenko, A.Yu.

    2008-01-01

    The main issues of the radiation safety and protection provision on the nuclear power plants are considered in this monograph. The description of the basic sources of the radiation danger on NPPs, the principles, the methods and the means of the safety and radiation monitoring provision are shown. The special attention is paid to the issues of the ionizing radiation regulation

  3. Education of radiation safety specialists at Faculty of Medicine of Vilnius University

    International Nuclear Information System (INIS)

    Urbelis, A.; Surkiene, G.

    2004-01-01

    Vilnius University is the first institution of higher education in Lithuania that began to teach students on radiation safety. The special course of radiation hygiene was delivered to students in 1962-1992. In 1992 it was introduced residency of radiation hygiene and graduated students qualified for title of radiation hygiene specialist. The residency lasted one year and included six cycles: fundamentals of nuclear physics, statistics and noninfectious epidemiology, radiobiology, radiological research methods, controls of radiation safety and hygienic analysis of radiation safety. From 1994 Vilnius University has been educating and training professionals of public health. The specialists of radiation safety aren't been training as isolated branch. All courses is divided into two parts. The first one is included into bachelor, the second part - into master study. The bachelor study consists of 2 credits (16 hours for lectures and 32 hours for practical studies). The future bachelors study introduction of radiation safety, elements of nuclear physics, dose limit values, fundamentals of radiological protection, natural radiation. The master study consists of 2 credits (8 hours for lectures and 48 hours for practical studies). The future masters study specific problems of radiation safety in medicine and industry, the safety problems of nuclear power - stations, the problems of radioactive wastes, radiation biology, radiation risk. Radiation safety study model in Faculty of medicine of Vilnius University differs from study model in most European countries as it makes great play of radiation safety while usual model includes radiation safety as insignificant part of environmental health. (author)

  4. Radiation protection training of radiation safety officers in Finland in 2008

    International Nuclear Information System (INIS)

    Havukainen, R.; Bly, R.; Markkanen, M.

    2009-11-01

    The Radiation and Nuclear Safety Authority (STUK) carried out a survey on the radiation protection training of radiation safety officers (RSO) in Finland in 2008. The aim of the survey was to obtain information on the conformity and uniformity of the training provided in different training organisations. A previous survey concerning radiation protection training was carried out in 2003. That survey determined the training needs of radiation users and radiation safety officers as well the radiation protection training included in vocational training and supplementary training. This report presents the execution and results of the survey in 2008. According to the responses, the total amount of RSO training fulfilled the requirements presented in Guide ST 1.8 in the most fields of competence. The emphasis of the RSO training differed between organisations, even for training in the same field of competence. Certain issues in Guide ST 1.8 were dealt quite superficially or even not at all in some training programmes. In some fields of competence, certain matters were entirely left to individual study. No practical training with radiation equipment or sources was included in the RSO training programme of some organisations. Practical training also varied considerably between organisations, even within the same field of competence. The duties in the use of radiation were often considered as practical training with radiation equipment and sources. Practical training from the point of view of a radiation safety officer was brought up in the responses of only one organisation. The number of questions and criteria for passing RSO exams also varied between organisations. Trainers who provided RSO training for the use of radiation in health care sectors had reached a higher vocational training level and received more supplementary training in radiation protection in the previous 5 years than trainers who provided RSO training for the use of radiation in industry, research, and

  5. Progress report: 1996 Radiation Safety Systems Division

    International Nuclear Information System (INIS)

    Bhagwat, A.M.; Sharma, D.N.; Abani, M.C.; Mehta, S.K.

    1997-01-01

    The activities of Radiation Safety Systems Division include (i) development of specialised monitoring systems and radiation safety information network, (ii) radiation hazards control at the nuclear fuel cycle facilities, the radioisotope programmes at Bhabha Atomic Research Centre (BARC) and for the accelerators programme at BARC and Centre for Advanced Technology (CAT), Indore. The systems on which development and upgradation work was carried out during the year included aerial gamma spectrometer, automated environment monitor using railway network, radioisotope package monitor and air monitors for tritium and alpha active aerosols. Other R and D efforts at the division included assessment of risk for radiation exposures and evaluation of ICRP 60 recommendations in the Indian context, shielding evaluation and dosimetry for the new upcoming accelerator facilities and solid state nuclear track detector techniques for neutron measurements. The expertise of the divisional members was provided for 36 safety committees of BARC and Atomic Energy Regulatory Board (AERB). Twenty three publications were brought out during the year 1996. (author)

  6. Safety Analysis Report for the KRI-ASM Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, D. H.; Park, H. Y.; Kim, J. B.; Kim, H. J.; Seo, K. S

    2005-11-15

    Safety evaluation for the KRI-ASM transport package to transport safely I-131, which is produced at HANARO research reactor in KAERI, was carried out. In the safety analyses results for the KRI-ASM transport package, all the maximum stresses as well as the maximum temperature of the surface are lower than their allowable limits. The safety tests were performed by using the test model of the KRI-ASM transport package. Leak Test was performed after drop test and penetration test, the measured leakage rate was lower than allowable leakage rate. It is revealed that the containment integrity of the KRI-ASM transport package is maintained. Therefore, it shows that the integrity of the KRI-ASM transport package is well maintained.

  7. Radiation safety in nuclear industry in retrospect and perspective

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1993-01-01

    More than 30 years have passed since the starting up of nuclear industry in China from the early 1950's. Over the past 30-odd years, nuclear industry has always kept a good record in China thanks to the policy of 'quality first, safety first' clearly put forward for nuclear industry from the outset and a lot of suitable effective measures taken over that period. Internationally, there is rapid progress in radiation protection and nuclear safety (hereafter refereed to as radiation safety) and a number of new concepts in the field of radiation protection have been advanced. Nuclear industry is developing based on the international standardization. To ensure the further development of nuclear utility, radiation safety needs to be further strengthened

  8. A comparative study between transport and criticality safety indexes for fissile uranium nuclearly pure

    Energy Technology Data Exchange (ETDEWEB)

    Moraes da Silva, T. de; Sordi, G.M.A.A. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN (Brazil)]. e-mail: tmsilva@ipen.br

    2006-07-01

    The international and national standards determine that during the transport of radioactive materials the package to be sent should be identified by labels of risks specifying content, activity and the transport index. The result of the monitoring of the package to 1 meter identifies the transport index, TI, which represents the dose rate to 1 meter of this. The transport index is, by definition, a number that represents a gamma radiation that crosses the superficial layer the radioactive material of the package to 1 meter of distance. For the fissile radioactive material that is the one in which a neutron causes the division of the atom, the international standards specify criticality safety index CSI, which is related with the safe mass of the fissile element. In this work it was determined the respective safe mass for each considered enrichment for the compounds of uranium oxides UO{sub 2}, U{sub 3}O{sub 8} and U{sub 3}Si{sub 2}. In the study of CSI it was observed that the value 50 of the expression 50/N being N the number of packages be transported in subcriticality conditions it represents a fifth part of the safe mass of the element uranium or 9% of the smallest mass critical for a transport not under exclusive use. As conclusion of the accomplished study was observed that the transport index starting from 7% of enrichment doesn't present contribution and that criticality safety index is always greater than the transport index. Therefore what the standards demand to specify, the largest value between both indexes, was clearly identified in this study as being the criticality safety index. (Author)

  9. Towards a radiation safety culture at Universidad Nacional de Colombia

    International Nuclear Information System (INIS)

    Poveda, Jairo F.; Munera, Hector A.

    2008-01-01

    Full text: During the 20th century, nuclear and radiation techniques for research, teaching, and medical and engineering practice slowly appeared at the National University of Colombia, mainly at the Bogota, Medellin and Manizales branches. Each individual laboratory or researcher obtained the license for the use of the radioactive source, or radiation emitting apparatus. However, the University as a whole does not have as yet a Radiation Safety Manual, nor an inventory of laboratories using radiation. From the viewpoint of radiation safety and culture, this situation is undesirable, and may easily lead to inappropriate waste management practices, including the possibility of orphan sources (one such source has been already found). As part of the program of environmental management of dangerous wastes promoted by the National Division of Laboratories of our University, an office of radiation safety was created in the year 2006. This paper describes the situation that was found, the activities that have been carried out, some of the difficulties that we have met, and the plans that we have to help shape a safety culture at our institution. Currently we are pursuing an inventory of laboratories using radioactive sources and radiation emitting apparatuses, starting with the branches in Bogota and Manizales which are perceived as the most urgent to deal with. Fortunately, the branch in Medellin has been for about a decade under the care of a former radiation safety officer of our national Institute of Nuclear Affairs, who presently teaches there. During 2006 and 2007, 13 laboratories using radioactive sources were visited in the Bogota branch. Safety procedures and waste handling protocols were checked, safety manuals prepared and/or revised, and recommendations for safety culture provided. During 2008 we will visit Manizales, and will continue visiting a number of X-ray machines used in the Bogota branch for engineering, veterinary, and diagnostic, and surgery medical

  10. Path Toward a Unified Geometry for Radiation Transport

    Science.gov (United States)

    Lee, Kerry

    The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex CAD models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN (high charge and energy transport code developed by NASA LaRC), are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading

  11. Emergency Response to Radioactive Material Transport Accidents

    International Nuclear Information System (INIS)

    EL-shinawy, R.M.K.

    2009-01-01

    Although transport regulations issued by IAEA is providing a high degree of safety during transport opertions,transport accidents involving packages containing radioactive material have occurred and will occur at any time. Whenever a transport accident involving radioactive material accurs, and many will pose no radiation safety problems, emergency respnose actioms are meeded to ensure that radiation safety is maintained. In case of transport accident that result in a significant relesae of radioactive material , loss of shielding or loss of criticality control , that consequences should be controlled or mitigated by proper emergency response actions safety guide, Emergency Response Plamming and Prepardness for transport accidents involving radioactive material, was published by IAEA. This guide reflected all requirememts of IAEA, regulations for safe transport of radioactive material this guide provide guidance to the publicauthorites and other interested organziation who are responsible for establishing such emergency arrangements

  12. Auditors of safety in hazardous materials transportation

    International Nuclear Information System (INIS)

    Manas Lahoz, J.L.

    1993-01-01

    The author describes the methodology for safety auditory and control, prevention, risks of hazardous materials transport through ship, airplane, rail, etc. In this way, The author presents the classification of damage materials transport, characteristic damage and different transport methods

  13. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1994-01-01

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  14. Proceedings of the 5. Regional congress on radiation protection and safety; 2. Iberian and Latin American Congress on Radiological Protection Societies; Regional IRPA Congress

    International Nuclear Information System (INIS)

    2001-01-01

    The Fifth Regional Congress on Radiation Protection and Nuclear Safety has been held in Recife (Brazil), from 29th April to 4th May 2001. The congress was hosted by the Brazilian Radiation Protection Society, under the joint sponsorship of FRALC and UFPE-DEN Department of Nuclear Energy. Its designation as a Regional IRPA Congress has been requested. The main purpose of the meeting was to bring together professionals from the industry, universities and research laboratories to present and discuss the latest research results, and to review the state of the art on applied and fundamental aspects of the radiation protection. These specialists have talked about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. In their discussions, also were included subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation

  15. Radiation safety and inventory of sealed radiation sources in Pakistan

    International Nuclear Information System (INIS)

    Ali, M.; Mannan, A.

    2001-01-01

    Sealed radiation sources (SRS) of various types and activities are widely used in industry, medicine, agriculture, research and teaching in Pakistan. The proper maintenance of records of SRS is mandatory for users/licensees. Since 1956, more than 2000 radiation sources of different isotopes having activities of Bq to TBq have been imported. Of these, several hundred sources have been disposed of and some have been exported/returned to the suppliers. To ensure the safety and security of the sources and to control and regulate the safe use of radiation sources in various disciplines, the Directorate of Nuclear Safety and Radiation Protection (DNSRP), the implementing arm of the regulatory authority in the country, has introduced a system for notifying, registering and licensing the use of all types of SRS. In order to update the inventory of SRS used throughout the country, the DNSRP has developed a database. (author)

  16. Radiation safety and control

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Kim, Gi Sub.

    1996-12-01

    The principal objective of radiological safety control is intended for achievement and maintenance of appropriately safe condition in environmental control for activities involving exposure from the use of radiation. In order to establish these objective, we should be to prevent deterministic effects and to limit the occurrence stochastic effects to level deemed to be acceptable by the application of general principles of radiation protection and systems of dose limitation based on ICRP recommendations. (author). 22 tabs., 13 figs., 11 refs

  17. Ordinance on the Implementation of Atomic Safety and Radiation Protection

    International Nuclear Information System (INIS)

    1984-01-01

    In execution of the new Atomic Energy Act the Ordinance on the Implementation of Atomic Safety and Radiation Protection was put into force on 1 February 1985. It takes into account all forms of peaceful nuclear energy and ionizing radiation uses in nuclear installations, irradiation facilities and devices in research, industries, and health services, and in radioactive isotope production and laboratories. It covers all aspects of safety and protection and defines atomic safety as nuclear safety and nuclear safeguards and physical protection of nuclear materials and facilities, whereas radiation protection includes the total of requirements, measures, means and methods necessary to protect man and the environment from the detrimental effects of ionizing radiation. It has been based on ICRP Recommendation No. 26 and the IAEA's Basic Safety Standards and supersedes the Radiation Protection Ordinance of 1969

  18. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite

    International Nuclear Information System (INIS)

    Sheyn, David D.; Racadio, John M.; Patel, Manish N.; Racadio, Judy M.; Johnson, Neil D.; Ying, Jun

    2008-01-01

    The use of ionizing radiation is essential for diagnostic and therapeutic imaging in the interventional radiology (IR) suite. As the complexity of procedures increases, radiation exposure risk increases. We believed that reinforcing staff education and awareness would help optimize radiation safety. To evaluate the effect of a radiation safety education initiative on IR staff radiation safety practices and patient radiation exposure. After each fluoroscopic procedure performed in the IR suite during a 4-month period, dose-area product (DAP), fluoroscopy time, and use of shielding equipment (leaded eyeglasses and hanging lead shield) by IR physicians were recorded. A lecture and article were then given to IR physicians and technologists that reviewed ALARA principles for optimizing radiation dose. During the following 4 months, those same parameters were recorded after each procedure. Before education 432 procedures were performed and after education 616 procedures were performed. Physician use of leaded eyeglasses and hanging shield increased significantly after education. DAP and fluoroscopy time decreased significantly for uncomplicated peripherally inserted central catheters (PICC) procedures and non-PICC procedures after education, but did not change for complicated PICC procedures. Staff radiation safety education can improve IR radiation safety practices and thus decrease exposure to radiation of both staff and patients. (orig.)

  19. A management system integrating radiation protection and safety supporting safety culture in the hospital

    International Nuclear Information System (INIS)

    Almen, A.; Lundh, C.

    2015-01-01

    Quality assurance has been identified as an important part of radiation protection and safety for a considerable time period. A rational expansion and improvement of quality assurance is to integrate radiation protection and safety in a management system. The aim of this study was to explore factors influencing the implementing strategy when introducing a management system including radiation protection and safety in hospitals and to outline benefits of such a system. The main experience from developing a management system is that it is possible to create a vast number of common policies and routines for the whole hospital, resulting in a cost-efficient system. One of the key benefits is the involvement of management at all levels, including the hospital director. Furthermore, a transparent system will involve staff throughout the organisation as well. A management system supports a common view on what should be done, who should do it and how the activities are reviewed. An integrated management system for radiation protection and safety includes key elements supporting a safety culture. (authors)

  20. Nonrelativistic grey Sn-transport radiative-shock solutions

    International Nuclear Information System (INIS)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-01-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.

  1. The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications

    International Nuclear Information System (INIS)

    Kirk, Bernadette Lugue

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries. An important activity of RSICC is its participation in international efforts on computational and experimental benchmarks. An example is the Shielding Integral Benchmarks Archival Database (SINBAD), which includes shielding benchmarks for fission, fusion and accelerators. RSICC is funded by the United States Department of Energy, Department of Homeland Security and Nuclear Regulatory Commission.

  2. The safety of radiation sources and radioactive materials in China

    International Nuclear Information System (INIS)

    Liu, H.

    2001-01-01

    The report describes the present infrastructure for the safety of radiation sources in China, where applications of radiation sources have become more and more widespread in the past years. In particular, it refers to the main functions of the National Nuclear Safety Administration of the State Environmental Protection Administration (SEPA), which is acting as the regulatory body for nuclear and radiation safety at nuclear installations, the Ministry of Public Health which issues licences for the use of radiation sources, and the Ministry of Public Security, which deals with the security of radiation sources. The report also refers to the main requirements of the existing regulatory system for radiation safety, i.e. the basic dose limits for radiation workers and the public, the licensing system for nuclear installations and for radioisotope-based and other irradiation devices, and the environmental impact assessment system. Information on the nationwide survey of radiation sources carried out by SEPA in 1991 is provided, and on some accidents that occurred in China due to loss of control of radiation sources and errors in the operation of irradiation facilities. (author)

  3. Safety of natural radiation exposure. A meta-analysis of epidemiological studies on natural radiation

    International Nuclear Information System (INIS)

    Osaki, S.

    2000-01-01

    People have been exposed every time and everywhere to natural radiation and ''intuitively'' know the safety of this radiation exposure. On the other hand the theory of no threshold value on radiological carcinogenesis is known widely, and many people feel danger with even a smallest dose of radiation exposure. The safety of natural radiation exposure can be used for the risk communication with the public. For this communication, the safety of natural radiation exposure should be proved ''scientifically''. Safety is often discussed scientifically as the risks of the mortality from many practices, and the absolute risks of safe practices on the public are 1E-5 to 1E-6. The risks based on the difference of natural radiation exposure on carcinogenesis have been analyzed by epidemiological studies. Much of the epidemiological studies have been focused on the relationship between radiation doses and cancer mortalities, and their results have been described as relative risks or correlation factors. In respect to the safety, however, absolute risks are necessary for the discussion. Cancer mortalities depend not only on radiation exposure, but also on ethnic groups, sexes, ages, social classes, foods, smoking, environmental chemicals, medical radiation, etc. In order to control these confounding factors, the data are collected from restricted groups or/and localities, but any these ecological studies can not perfectly compensate the confounding factors. So positive or negative values of relative risks or the meaningful correlation factors can not be confirmed that their values are derived originally from the difference of their exposure doses. The absolute risks on these epidemiological studies are also affected by many factors containing radiation exposure. The absolute risk or the upper value of the confidence limit obtained from the epidemiological study which is well regulated confounding factors is possible to be a maximum risk on the difference of the exposure doses

  4. Radiation transport phenomena and modeling - part A: Codes

    International Nuclear Information System (INIS)

    Lorence, L.J.

    1997-01-01

    The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped

  5. Radiation protection forum

    International Nuclear Information System (INIS)

    Cabral, W.

    2010-01-01

    The National Director of the Nuclear Regulatory Authority and Radiation Protection of Uruguay in the first forum for radiation protection set out the following themes: activity of regulatory body, radiation safety, physical security, safeguards, legal framework, committed substantive program, use of radiation, risks and benefits, major sources of radiation, the national regulatory framework, national inventory of sources, inspections, licensing, import and export of sources control , radioactive transport, materials safety, agreements, information and teaching, radiological emergencies and prompt response.

  6. Australian Radiation Protection and Nuclear Safety Act 1998. Act No 133

    International Nuclear Information System (INIS)

    1999-01-01

    A set of legislation consisting of three Acts in the field of radiation protection and nuclear safety was passed by both Houses of Parliament on 10 December 1998 and was proclaimed on 5 February 1999. Act No. 133 - Australian Radiation Protection and Nuclear Safety Act, which is a framework Law, established the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) as the regulatory body for radiation protection and nuclear safety, in place of the Nuclear Safety Bureau. The Chief Executive Officer of ARPANSA, who is appointed by the Governor-General for a term of up to 5 years, is obliged to submit annual and quarterly reports to the Minister on the operations of the Chief Executive Officer, ARPANSA, the Council, the Radiation Health Committee and the Nuclear Safety Committee. The Council is a consultative body which examines issues relating to radiation protection and nuclear safety and advises the Chief Executive Officer on these issues as well as on the adoption of recommendations, policies and codes. The Radiation Health Committee and the Nuclear Safety Committee are to be established as advisory committees to the Chief Executive Officer or the Council. Both committees should draft national policies, codes and standards in their respective fields and review their effectiveness periodically. The second in this series of legislation, Act No. 134, Australian Radiation Protection and Nuclear Safety (License Charges) Act requires holders of both facility and source licenses to pay an annual charge, to be prescribed by the regulations. The third, Act No. 135 , Australian Radiation Protection and Nuclear Safety (Consequential Amendments) Act repeals those provisions of the 1987 Australian Nuclear Science and Technology Organisation Act which concern the Nuclear Safety Bureau, and the 1978 Environment Protection Act as a whole

  7. Australian Radiation Protection and Nuclear Safety Act 1998. Act No 133

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A set of legislation consisting of three Acts in the field of radiation protection and nuclear safety was passed by both Houses of Parliament on 10 December 1998 and was proclaimed on 5 February 1999. Act No. 133 - Australian Radiation Protection and Nuclear Safety Act, which is a framework Law, established the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) as the regulatory body for radiation protection and nuclear safety, in place of the Nuclear Safety Bureau. The Chief Executive Officer of ARPANSA, who is appointed by the Governor-General for a term of up to 5 years, is obliged to submit annual and quarterly reports to the Minister on the operations of the Chief Executive Officer, ARPANSA, the Council, the Radiation Health Committee and the Nuclear Safety Committee. The Council is a consultative body which examines issues relating to radiation protection and nuclear safety and advises the Chief Executive Officer on these issues as well as on the adoption of recommendations, policies and codes. The Radiation Health Committee and the Nuclear Safety Committee are to be established as advisory committees to the Chief Executive Officer or the Council. Both committees should draft national policies, codes and standards in their respective fields and review their effectiveness periodically. The second in this series of legislation, Act No. 134, Australian Radiation Protection and Nuclear Safety (License Charges) Act requires holders of both facility and source licenses to pay an annual charge, to be prescribed by the regulations. The third, Act No. 135 , Australian Radiation Protection and Nuclear Safety (Consequential Amendments) Act repeals those provisions of the 1987 Australian Nuclear Science and Technology Organisation Act which concern the Nuclear Safety Bureau, and the 1978 Environment Protection Act as a whole

  8. Ionising radiation safety training in the Australian Defence Organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1998-01-01

    Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation. However, most are designated as radiation protection officers as a secondary duty. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A Training Course, responding to these requirements, has been developed to emphasize, basic radiation theory and protection, operation of radiation monitors available in the ADO, an understanding of the Ionising Radiation Safety Manual, day-to-day radiation safety in units and establishments, and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved successful, both for the students and the ADO generally. To seek national accreditation of the course through the Australian National Training Authority, as a first step, competency standards have been proposed. (authors)

  9. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  10. Survey of radiation protection programmes for transport

    International Nuclear Information System (INIS)

    Lizot, M.T.; Perrin, M.L.; Sert, G.; Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R.; Shaw, K.B.; Hughes, J.S.; Gelder, R.

    2001-07-01

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  11. Proceedings of the 6. Argentine congress on radiation protection and nuclear safety; Actas del 6. congreso argentino de proteccion radiologica y seguridad nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    The 6th Argentine Congress on Radiation Protection and Nuclear Safety was organized by the Radioprotection Argentine Society, in Buenos Aires, between the 22 and 24 of september of 1998. In this event, were presented almost 66 papers in the following sessions, about these subjects: 1.- Safety in nuclear installations. 2.- Control of nuclear material and physical protection of nuclear installations. 3.- Programs of quality assurance. 4.- Training, technical information and public information. 5.- Physical dosimetry. 6.- Physical dosimetry and occupational radiation protection. 7.- Exposure of the natural radiation. 8.- Environmental radiological safety. 9.- Biological effects of the ionizing radiations and biological dosimetry. 10.- Radiological protection of the medical practice and the radiological emergencies. 11.- Radioactive wastes management. 12.- Transport of radioactive materials

  12. Radiation Protection and Radioactive Waste Management in the Operation of Nuclear Power Plants. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this Safety Guide is to provide recommendations to the regulatory body, focused on the operational aspects of radiation protection and radioactive waste management in nuclear power plants, and on how to ensure the fulfilment of the requirements established in the relevant Safety Requirements publications. It will also be useful for senior managers in licensee or contractor organizations who are responsible for establishing and managing programmes for radiation protection and for the management of radioactive waste. This Safety Guide gives general recommendations for the development of radiation protection programmes at nuclear power plants. The issues are then elaborated by defining the main elements of a radiation protection programme. Particular attention is paid to area classification, workplace monitoring and supervision, application of the principle of optimization of protection (also termed the 'as low as reasonably achievable' (ALARA) principle), and facilities and equipment. This Safety Guide covers all the safety related aspects of a programme for the management of radioactive waste at a nuclear power plant. Emphasis is placed on the minimization of waste in terms of both activity and volume. The various steps in predisposal waste management are covered, namely processing (pretreatment, treatment and conditioning), storage and transport. Releases of effluents, the application of authorized limits and reference levels are discussed, together with the main elements of an environmental monitoring programme

  13. Radiation Protection, Safety and Security Issues in Ghana.

    Science.gov (United States)

    Boadu, Mary; Emi-Reynolds, Geoffrey; Amoako, Joseph Kwabena; Akrobortu, Emmanuel; Hasford, Francis

    2016-11-01

    Although the use of radioisotopes in Ghana began in 1952, the Radiation Protection Board of Ghana was established in 1993 and served as the national competent authority for authorization and inspection of practices and activities involving radiation sources until 2015. The law has been superseded by an Act of Parliament, Act 895 of 2015, mandating the Nuclear Regulatory Authority of Ghana to take charge of the regulation of radiation sources and their applications. The Radiation Protection Institute in Ghana provided technical support to the regulatory authority. Regulatory and service activities that were undertaken by the Institute include issuance of permits for handling of a radiation sources, authorization and inspection of radiation sources, radiation safety assessment, safety assessment of cellular signal towers, and calibration of radiation-emitting equipment. Practices and activities involving application of radiation are brought under regulatory control in the country through supervision by the national competent authority.

  14. Radiation protection and safety aspects in the use of radiation in medicine, industry and research

    International Nuclear Information System (INIS)

    Bhatt, B.C.

    1998-01-01

    While ionizing radiations have significant and indispensable uses in several fields, it must be borne in mind that it may be harmful to the radiation workers and public if used indiscriminately and without due caution. Radiation doses received by these individuals should be kept well within the recommended limits through good work practices. It is therefore necessary to ensure safety of radiation workers, patients undergoing radiation diagnosis and treatment, public and environment so that maximum benefit is derived from the use of radiation with minimum and acceptable risk. General principles of radiation protection and safety in various applications of radiations are discussed

  15. Radiation safety requirements for radioactive waste management in the framework of a quality management system

    International Nuclear Information System (INIS)

    Salgado, M.M.; Benitez, J.C.; Pernas, R.; Gonzalez, N.

    2007-01-01

    The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in the Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)

  16. Building competence in radiation and nuclear safety through education and training - the approach of a national regulatory authority

    International Nuclear Information System (INIS)

    Karfopoulos, K.L.; Carinou, E.; Kamenopoulou, V.; Dimitriou, P.; Housiadas, Ch.

    2015-01-01

    The Greek Atomic Energy Commission (EEAE) is the national competent authority for radiation and nuclear safety and security as well as for the radiation protection of ionizing and artificially produced non-ionizing radiation. The legal framework determines, inter alia, the responsibilities in education and training issues. The EEAE has a range of activities, in providing postgraduate and continuous education and training on radiation protection, and nuclear safety and security, at the national and international levels. At the national level, and particularly in the medical field, the EEAE is a participant in and a major contributor to the Inter-University Postgraduate Program on Medical Radiation Physics. Since 2003, the EEAE has been the Regional Training Center (RTC) for radiation, transport and waste safety of the International Atomic Energy Agency (IAEA) for the European Region in the English language. Moreover, the EEAE has also been recognized as the IAEA's Regional Training Center (RTC) in nuclear security in the English language since 2013. The EEAE recently proceeded to two significant initiatives: the design of a national program for education and training, and the certification of the Department of Education according to ISO 29990:2010. In this paper, the initiatives taken to enhance the radiation protection system in the country through education and training are presented. (authors)

  17. Radiation safety research information database

    International Nuclear Information System (INIS)

    Yukawa, Masae; Miyamoto, Kiriko; Takeda, Hiroshi; Kuroda, Noriko; Yamamoto, Kazuhiko

    2004-01-01

    National Institute of Radiological Sciences in Japan began to construct Radiation Safety Research Information Database' in 2001. The research information database is of great service to evaluate the effects of radiation on people by estimating exposure dose by determining radiation and radioactive matters in the environment. The above database (DB) consists of seven DB such as Nirs Air Borne Dust Survey DB, Nirs Environmental Tritium Survey DB, Nirs Environmental Carbon Survey DB, Environmental Radiation Levels, Abe, Metabolic Database for Assessment of Internal Dose, Graphs of Predicted Monitoring Data, and Nirs nuclear installation environment water tritium survey DB. Outline of DB and each DB are explained. (S.Y.)

  18. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  19. Sweden's Cooperation with Eastern Europe in Radiation Safety 2010

    International Nuclear Information System (INIS)

    Van Dassen, Lars; Andersson, Sarmite; Bejarano, Gabriela

    2011-09-01

    The Swedish Radiation Safety Authority implemented in 2010 cooperation projects in Russia, Ukraine, Georgia, Armenia, Lithuania and Moldova based on instructions from the Swedish Government and agreements with the European Union and the Swedish International Development Cooperation Agency, SIDA. The projects aim at achieving a net contribution to radiation safety (including nuclear safety, nuclear security and non-proliferation as well as radiation protection and emergency preparedness) for the benefit of the host country as well as Sweden. This report gives an overview of all the projects implemented in 2010

  20. The main goals and principles of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Huseynov, V.

    2015-01-01

    The use of modern radiation technology expands in various fields of human activity. The most advanced approach, methods and technologies and also radiation technologies are of great importance in industrial, medical, agricultural, construction, science, education, and etc. areas of the fastest growing Azerbaijan Republic. Ensuring of nuclear and radiation safety, safety standards, main principles and conception of safety play a crucial role. The following ten principles are taken as a basis to ensure safety measures. 1. Responsible for ensuring safety; 2. The role of government; 3. Leadership and management of security interests; 4. Devices and justification of activity; 5. Optimization of preservation; 6. Limiting of risks for physical persons; 7. The protection of present and future generations; 8. The prevention of accidents; 9. Emergency preparedness and response; 10. Reducing of risks of existing and unregulated radiation protection measures. The safety principles are applied together

  1. Radiation safety standards

    International Nuclear Information System (INIS)

    1975-01-01

    This is a basic document with which all rules and regulations, etc., concerning protection from ionizing radiations of workers and the general population have to conform. Basic concepts, dimensions, units, and terms used in the area of radiation safety are defined. Radiation exposures are sorted out into three categories: A, to personnel; B, to individual members of the popul;tion; and C, to the general population. Critical organs, furthermore, comprise four groups, the first of them being applicable to the whole-body gonads and bone marrow. Category A maximum permissible dose (MPD) to first group critical organs is 5 rem/year; to second group, 15 rem/year; to thrid group, 3O rem/year; and to fourth group, 75 rem/year. These rate figures include doses from both external and internal radiation exposure. Quality factors needed in computing doses from various types of radiation are provided. Permissible planned exposure levels are specified and guidelines given for accidental exposures. A radiation accident is considered to have occurred if the relevant critical organ dose is 5 times the annual MPD for that organ. For individual members of the population (category B), annual somatic doses to first group critical organs shall not exceed 0,5 rem. Population exposure is controlled in terms of genetically significant dose, which shall not exceed 5 rem/30 years. (G.G.)

  2. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Spanish ed.)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  3. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Arabic ed.)

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  4. Generalized railway tank car safety design optimization for hazardous materials transport: Addressing the trade-off between transportation efficiency and safety

    International Nuclear Information System (INIS)

    Saat, Mohd Rapik; Barkan, Christopher P.L.

    2011-01-01

    North America railways offer safe and generally the most economical means of long distance transport of hazardous materials. Nevertheless, in the event of a train accident releases of these materials can pose substantial risk to human health, property or the environment. The majority of railway shipments of hazardous materials are in tank cars. Improving the safety design of these cars to make them more robust in accidents generally increases their weight thereby reducing their capacity and consequent transportation efficiency. This paper presents a generalized tank car safety design optimization model that addresses this tradeoff. The optimization model enables evaluation of each element of tank car safety design, independently and in combination with one another. We present the optimization model by identifying a set of Pareto-optimal solutions for a baseline tank car design in a bicriteria decision problem. This model provides a quantitative framework for a rational decision-making process involving tank car safety design enhancements to reduce the risk of transporting hazardous materials.

  5. Safety practices, perceptions, and behaviors in radiation oncology: A national survey of radiation therapists.

    Science.gov (United States)

    Woodhouse, Kristina Demas; Hashemi, David; Betcher, Kathryn; Doucette, Abigail; Weaver, Allison; Monzon, Brian; Rosenthal, Seth A; Vapiwala, Neha

    Radiation therapy is complex and demands high vigilance and precise coordination. Radiation therapists (RTTs) directly deliver radiation and are often the first to discover an error. Yet, few studies have examined the practices of RTTs regarding patient safety. We conducted a national survey to explore the perspectives of RTTs related to quality and safety. In 2016, an electronic survey was sent to a random sample of 1500 RTTs in the United States. The survey assessed department safety, error reporting, safety knowledge, and culture. Questions were multiple choice or recorded on a Likert scale. Results were summarized using descriptive statistics and analyzed using multivariate logistic regression. A total of 702 RTTs from 49 states (47% response rate) completed the survey. Respondents represented a broad distribution across practice settings. Most RTTs rated department patient safety as excellent (61%) or very good (32%), especially if they had an incident learning system (ILS) (odds ratio, 2.0). Only 21% reported using an ILS despite 58% reporting an accessible ILS in their department. RTTs felt errors were most likely to occur with longer shifts and poor multidisciplinary communication; 40% reported that burnout and anxiety negatively affected their ability to deliver care. Workplace bullying was also reported among 17%. Overall, there was interest (62%) in improving knowledge in patient safety. Although most RTTs reported excellent safety cultures within their facilities, overall, there was limited access to and utilization of ILSs by RTTs. Workplace issues identified may also represent barriers to delivering quality care. RTTs were also interested in additional resources regarding quality and safety. These results will further enhance safety initiatives and inform future innovative educational efforts in radiation oncology. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  6. Implementation and testing of a multivariate inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John; Mitchell, Dean J.

    2012-01-01

    Detection, identification, and characterization of special nuclear materials (SNM) all face the same basic challenge: to varying degrees, each must infer the presence, composition, and configuration of the SNM by analyzing a set of measured radiation signatures. Solutions to this problem implement inverse radiation transport methods. Given a set of measured radiation signatures, inverse radiation transport estimates properties of the source terms and transport media that are consistent with those signatures. This paper describes one implementation of a multivariate inverse radiation transport solver. The solver simultaneously analyzes gamma spectrometry and neutron multiplicity measurements to fit a one-dimensional radiation transport model with variable layer thicknesses using nonlinear regression. The solver's essential components are described, and its performance is illustrated by application to benchmark experiments conducted with plutonium metal. - Highlights: ► Inverse problems, specifically applied to identifying and characterizing radiation sources . ► Radiation transport. ► Analysis of gamma spectroscopy and neutron multiplicity counting measurements. ► Experimental testing of the inverse solver against measurements of plutonium.

  7. Review of radiation safety in the cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Johnson, L.W.; Moore, R.J.; Balter, S.

    1992-01-01

    With the increasing use of coronary arteriography and interventional procedures, radiation exposure to patients and personnel working in cardiac catheterization laboratories has increased. Proper technique to minimize both patient and operator exposure is necessary. A practical approach to radiation safety in the cardiac catheterization laboratory is presented. This discussion should be useful to facilities with well-established radiation safety programs as well as facilities that require restructuring to cope with the radiation environment in a modern cardiac catheterization laboratory

  8. Ukraine International cooperation in nuclear and radiation safety: public-administrative aspect

    Directory of Open Access Journals (Sweden)

    I. P. Krynychnay

    2017-03-01

    Full Text Available The article examines international cooperation of Ukraine with other States in the sphere of ensuring nuclear and radiation safety and highlights the main directions of development and improvement of nuclear and radiation safety in Ukraine based on international experience, with the aim of preventing the risks of accidents and contamination areas radiological substances. Illuminated that for more than half a century of experience in the use of nuclear energy by the international community under the auspices of the UN, IAEA and other international organizations initiated and monitored the implementation of key national and international programs on nuclear and radiation safety. Of the Convention in the field of nuclear safety and the related independent peer review, effective national regulatory infrastructures, current nuclear safety standards and policy documents, as well as mechanisms of evaluation in the framework of the IAEA constitute important prerequisites for the creation of a world community, the global regime of nuclear and radiation safety. For analysis of the state of international cooperation of Ukraine with other States in the sphere of nuclear and radiation safety, highlighted the legal substance of nuclear and radiation safety of Ukraine, which is enshrined in the domestic Law of Ukraine «On nuclear energy use and radiation safety». Considered the most relevant legal relations. It is established that, despite the current complex international instruments, existing domestic legislation on nuclear and radiation safety, partly there is a threat of emergency nuclear radiation nature, in connection with the failure of fixed rules and programs, lack of funding from the state is not always on time and in full allows you to perform fixed strategy for overcoming the consequences of radiation accidents, the prevention of the threat of environmental pollution. Found that to improve and further ensuring nuclear and radiation safety of

  9. Germany: Exposure of Transport Workers During the Transport of Most Frequently Transported NORM in Germany

    International Nuclear Information System (INIS)

    2013-01-01

    The German national report to this CRP was focused on the following services according to the research agreement: (1) Status review, analysis and evaluation of the radiation exposure imposed by shipment and expected exposure of the shipment staff of the most relevant NORM in Germany; (2) Development of evaluation criteria and safety requirements to provide adequate safety standards for the transportation of NORM; (3) Development and application of procedures to determine the limits for exempt materials/consignments for transportation according to German Transport Regulations for all NORM. For the analysis and evaluation of the radiation exposure imposed by shipment of NORM for the following materials, a couple of transport scenarios were defined and the dose to transport workers was calculated. - Tantalum raw materials; - Raw phosphate; - Pipe scales and sludge from oil and gas exploitation; - Coal ash; - Waste rock material from uranium mining; - Zircon raw materials; - Titanium dioxide raw materials; - Filter gravel from waterworks

  10. Safety Analysis Report for Primary Capsule of Ir-192 Radiation Source

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Choi, W. S.; Seo, K. S.; Son, K. J.; Park, W. J.

    2008-12-01

    All of the source capsules to transport a special form radioactive material should be designed and fabricated in accordance with the design criteria prescribed in IAEA standards and domestic regulations. The objective of this project is to prove the safety of a primary capsule for Ir-192 radiation source which produced in the HANARO. The safety tests of primary capsules were carried out for the impact, percussion and heat conditions. And leakage tests were carried out before and after the each tests. The capsule showed slight scratches and their deformations were not found after each tests. It also met the allowable limits of leakage rate after each test. Therefore, it has been verified that the capsule was designed and fabricated to meet all requirements for the special form radioactive materials

  11. Regulatory aspects of the transport of high radiation level and alpha waste in France

    International Nuclear Information System (INIS)

    Devillers, C.; Grenier, M.; Lombard, J.; Mathieu, F.

    1993-01-01

    The introduction of the 10 mSv.h -1 at 3 m limit for LSA unshielded material makes it impossible to transport, as LSA material, the highest radiation level wastes from EdF PWR's operations. At present, the EdF's waste blocks can be transported as LSA III material by special arrangement. A new package design, equivalent to a Type B package, will be available for their transport before the end of the year 1995. It consists of a re-usable steel cylinder over-packing each block. Compliance of this package model with transport safety requirements will be demonstrated by taking into account the non-dispersability, as LSA III material, of the irradiating waste. A two-step approach has been accepted by the French Competent Authority for the transport of these wastes: (1) a specific ISO 20 container, thermally insulated, can be used by special arrangement for the transport of LSA combustible material having a total activity per conveyance higher than 100 A2. Furthermore, additional safety measures have to be implemented for these consignments. (2) After the end of 1995, a Type B package must be used for activity contents per conveyance higher than 100 A2. A specific 20' ISO container, complying with Type B requirements, is being developed for that purpose. (author)

  12. The transport safety of radioactive matters

    International Nuclear Information System (INIS)

    Landier, D.; Louet, Ch.A.; Robert, Ch.; Binet, J.; Malesys, P.; Pourade, C.; Le Meur, A.; Robert, M.; Turquet de Beauregard, G.Y.; Hello, E.; Laumond, A.; Regnault, Ph.; Gourlay, M.; Bruhl, G.; Malvache, P.; Dumesnil, J.; Cohen, B.; Sert, G.; Pain, M.; Green, L.; Hartenstein, M.; Stewart, J.; Cottens, E.; Liebens, M.; Marignac, Y.

    2007-01-01

    Since the control of transport of radioactive materials was given to A.S.N. 10 years ago, A.S.N. has strengthened the radioactive material transport inspections, in particular of the designers, manufacturers, carriers and consignors. A.S.N. has implemented INES scale for incidents during transport. It has participated as much as possible to IAEA working groups in order to improve the international regulatory framework. And, supported by I.R.S.N., A.S.N. has performed a periodic safety review of existing package models and has approved new models incorporating innovative design features. Finally, A.S.N. has tested its emergency responses to procedures to an accident involving the transport of radioactive materials. All these actions taken together have led to improvement in and reinforcement of the safety culture among the transport operators; this has been acknowledged by a recent audit T.R.A.N.S.A.S. performed by IAEA. In spite of all these actions, there are not approved by the competent authority. As A.S.N. is in charge of every field in radioprotection, this should help to intensify the control. In addition, the different kinds of transport are also tackled as rail transport with S.N.C.F. radiological risk training, air transport through nuclear medicine. Some experience feedback are given such radioactive waste transport to the storage facilities in the Aube or how to protect the population after a nuclear transport incident with the O.R.S.E.C.-T.M.S. plans. (N.C.)

  13. Radiation protection databases of nuclear safety regulatory authority

    International Nuclear Information System (INIS)

    Janzekovic, H.; Vokal, B.; Krizman, M.

    2003-01-01

    Radiation protection and nuclear safety of nuclear installations have a common objective, protection against ionising radiation. The operational safety of a nuclear power plant is evaluated using performance indicators as for instance collective radiation exposure, unit capability factor, unplanned capability loss factor, etc. As stated by WANO (World Association of Nuclear Operators) the performance indicators are 'a management tool so each operator can monitor its own performance and progress, set challenging goals for improvement and consistently compare performance with that of other plants or industry'. In order to make the analysis of the performance indicators feasible to an operator as well as to regulatory authorities a suitable database should be created based on the data related to a facility or facilities. Moreover, the international bodies found out that the comparison of radiation protection in nuclear facilities in different countries could be feasible only if the databases with well defined parameters are established. The article will briefly describe the development of international databases regarding radiation protection related to nuclear facilities. The issues related to the possible development of the efficient radiation protection control of a nuclear facility based on experience of the Slovenian Nuclear Safety Administration will be presented. (author)

  14. MO-AB-201-00: Radiation Safety Officer Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatory Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35

  15. MO-AB-201-00: Radiation Safety Officer Update

    International Nuclear Information System (INIS)

    2015-01-01

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatory Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35

  16. Evaluation of intelligent transport systems impact on school transport safety

    Directory of Open Access Journals (Sweden)

    Jankowska-Karpa Dagmara

    2017-01-01

    Full Text Available The integrated system of safe transport of children to school using Intelligent Transport Systems was developed and implemented in four locations across Europe under the Safeway2School (SW2S project, funded by the EU. The SW2S system evaluation included speed measurements and an eye-tracking experiment carried out among drivers who used the school bus route, where selected elements of the system were tested. The subject of the evaluation were the following system elements: pedestrian safety system at the bus stop (Intelligent Bus Stop and tags for children, Driver Support System, applications for parents’ and students’ mobile phones, bus stop inventory tool and data server. A new sign designed for buses and bus stops to inform about child transportation/children waiting at the bus stop was added to the system. Training schemes for system users were also provided. The article presents evaluation results of the impact of selected elements of the SW2S system on school transport safety in Poland.

  17. The IAEA Transport Safety Appraisal Service (TranSAS)

    International Nuclear Information System (INIS)

    Dicke, G.J.

    2004-01-01

    Representatives of all Member States of the IAEA meet once a year in September at the General Conference in Vienna, Austria, to consider and approve the Agency's programme and budget and to address matters brought before it by the Board of Governors, the Director General, or Member States. In September 1998 the General Conference adopted resolution GC(42)/RES/13 on the Safety of Transport of Radioactive Materials. In adopting that resolution the General Conference recognized that compliance with regulations that take account of the IAEA Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations) is providing a high level of safety during the transport of radioactive material. Good compliance requires that the regulations are implemented effectively. The General Conference therefore requested the IAEA Secretariat to provide a service for carrying out, at the request of any State, an appraisal of the implementation of the Transport Regulations by that State. In response to this request the Director General of the IAEA offered such an appraisal service to all States in letter J1.01.Circ, dated 10 December 1998. The first Transport Safety Appraisal Service (TranSAS) was undertaken and completed at the request of Slovenia in 1999. A report on the results of that appraisal was published and released for general distribution in the early fall of 1999. In each of the General Conferences since 1998, resolutions focused on transport safety have commended the Secretariat for establishing the TranSAS, commended those States that have requested the appraisal service and encouraged other States to avail themselves of this service see GC(43)/RES/11, GC(44)/RES/17, GC(45)/RES/10, GC(46)/RES/9 and GC(47)/RES/7. Six appraisals have been carried out to date as follows: Slovenia, Brazil, United Kingdom, Turkey, Panama and France. This presentation provides an overview of the Transport Safety Appraisal Service and summarizes the major findings from the

  18. The IAEA Transport Safety Appraisal Service (TranSAS)

    Energy Technology Data Exchange (ETDEWEB)

    Dicke, G.J. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Representatives of all Member States of the IAEA meet once a year in September at the General Conference in Vienna, Austria, to consider and approve the Agency's programme and budget and to address matters brought before it by the Board of Governors, the Director General, or Member States. In September 1998 the General Conference adopted resolution GC(42)/RES/13 on the Safety of Transport of Radioactive Materials. In adopting that resolution the General Conference recognized that compliance with regulations that take account of the IAEA Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations) is providing a high level of safety during the transport of radioactive material. Good compliance requires that the regulations are implemented effectively. The General Conference therefore requested the IAEA Secretariat to provide a service for carrying out, at the request of any State, an appraisal of the implementation of the Transport Regulations by that State. In response to this request the Director General of the IAEA offered such an appraisal service to all States in letter J1.01.Circ, dated 10 December 1998. The first Transport Safety Appraisal Service (TranSAS) was undertaken and completed at the request of Slovenia in 1999. A report on the results of that appraisal was published and released for general distribution in the early fall of 1999. In each of the General Conferences since 1998, resolutions focused on transport safety have commended the Secretariat for establishing the TranSAS, commended those States that have requested the appraisal service and encouraged other States to avail themselves of this service see GC(43)/RES/11, GC(44)/RES/17, GC(45)/RES/10, GC(46)/RES/9 and GC(47)/RES/7. Six appraisals have been carried out to date as follows: Slovenia, Brazil, United Kingdom, Turkey, Panama and France. This presentation provides an overview of the Transport Safety Appraisal Service and summarizes the major findings from

  19. Radiation doses from the transport of radioactive waste to a future repository in Denmark. A model study

    International Nuclear Information System (INIS)

    2011-05-01

    The radiation doses modelled for transport of radioactive waste to a future repository in Denmark, demonstrates that the risk associated with road and sea transport should not limit the future selection of a location of the repository. From a safety perspective both road and sea transport seem to be feasible modes of transport. Although the modelling in most cases is performed conservatively, the modelled doses suggest that both transport methods can be carried out well within the national dose limits. Additionally, the dose levels associated with the modelled accident scenarios are low and the scenarios are thus found to be acceptable taken the related probabilities into account. (LN)

  20. Radiation doses from the transport of radioactive waste to a future repository in Denmark. A model study

    Energy Technology Data Exchange (ETDEWEB)

    2011-05-15

    The radiation doses modelled for transport of radioactive waste to a future repository in Denmark, demonstrates that the risk associated with road and sea transport should not limit the future selection of a location of the repository. From a safety perspective both road and sea transport seem to be feasible modes of transport. Although the modelling in most cases is performed conservatively, the modelled doses suggest that both transport methods can be carried out well within the national dose limits. Additionally, the dose levels associated with the modelled accident scenarios are low and the scenarios are thus found to be acceptable taken the related probabilities into account. (LN)

  1. Ionising radiation safety training in the Australian defence organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1996-01-01

    Full text: Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation, while others may be designated as radiation protection officers in remote units with few duties to perform in this role. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A training course, responding to these requirements, has been developed to emphasise: basic radiation theory and protection; operation of radiation monitors available in the ADO; an understanding of the Safety Manual; day-to-day radiation safety in units and establishments; and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved sufficiently successful, both for the students and the ADO generally, to seek national accreditation through the Australian National Training Authority and, as a first step, competency standards have been identified

  2. Radiation safety of soil moisture neutron probes

    International Nuclear Information System (INIS)

    Oresegun, M.O.

    2000-01-01

    The neutron probe measures sub-surface moisture in soil and other materials by means of high energy neutrons and a slow (thermal) neutron detector. Exposure to radiation, including neutrons, especially at high doses, can cause detrimental health effects. In order to achieve operational radiation safety, there must be compliance with protection and safety standards. The design and manufacture of commercially available neutron moisture gauges are such that risks to the health of the user have been greatly reduced. The major concern is radiation escape from the soil during measurement, especially under dry conditions and when the radius of influence is large. With appropriate work practices as well as good design and manufacture of gauges, recorded occupational doses have been well below recommended annual limits. It can be concluded that the use of neutron gauges poses not only acceptable health and safety risks but, in fact, the risks are negligible. Neutron gauges should not be classified as posing high potential health hazards. (author)

  3. Radiation safety and vascular access: attitudes among cardiologists worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Khan, Asrar A. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Xie, Hui [Division of Epidemiology and Biostatistics and Cancer Center, University of Illinois at Chicago, Chicago, Illinois (United States); Shroff, Adhir R. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States)

    2015-03-15

    Objectives: To determine opinions and perceptions of interventional cardiologists on the topic of radiation and vascular access choice. Background: Transradial approach for cardiac catheterization has been increasing in popularity worldwide. There is evidence that transradial access (TRA) may be associated with increasing radiation doses compared to transfemoral access (TFA). Methods: We distributed a questionnaire to collect opinions of interventional cardiologists around the world. Results: Interventional cardiologists (n = 5332) were contacted by email to complete an on-line survey from September to October 2013. The response rate was 20% (n = 1084). TRA was used in 54% of percutaneous coronary interventions (PCIs). Most TRAs (80%) were performed with right radial access (RRA). Interventionalists perceived that TRA was associated with higher radiation exposure compared to TFA and that RRA was associated with higher radiation exposure that left radial access (LRA). Older interventionalists were more likely to use radiation protection equipment and those who underwent radiation safety training gave more importance to ALARA (as low as reasonably achievable). Nearly half the respondents stated they would perform more TRA if the radiation exposure was similar to TFA. While interventionalists in the United States placed less importance to certain radiation protective equipment, European operators were more concerned with physician and patient radiation. Conclusions: Interventionalists worldwide reported higher perceived radiation doses with TRA compared to TFA and RRA compared to LRA. Efforts should be directed toward encouraging consistent radiation safety training. Major investment and application of novel radiation protection tools and radiation dose reduction strategies should be pursued. - Highlights: • We examined radiation safety and arterial access practices among 1000 cardiologists. • Radial access is perceived as having higher radiation dose compared to

  4. Radiation transport: Progress report, July 1, 1987-September 30, 1987

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Nagy, A.

    1988-05-01

    Research and development progress in radiation transport for the Los Alamos National Laboratory's Group S-6 for the fourth quarter of FY 87 is reported. Included are unclassified tasks in the areas of Deterministic Radiation Transport, Monte Carlo Radiation Transport, and Cross Sections and Physics. 23 refs., 9 figs

  5. Application of radiation protection programmes to transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The principles for implementing radiation protection programmes (RPP) are detailed in the draft IAEA safety guide TS-G-1.5 'Radiation protection programmes for transport of radioactive material'. The document is described in this paper and analysis is made for typical applications to current operations carried out by consignors, carriers and consignees. Systematic establishment and application of RPPs is a way to control radiological protection during different steps of transport activity. The most widely transported packages in the world are radiopharmaceuticals by road. It is described an application of RPP for an organization involved in road transport of Type A packages containing radiopharmaceuticals. Considerations based on the radionuclides, quantities and activities transported are the basis to design and establish the scope of the RPP for the organizations involved in transport. Next stage is the determination of roles and responsibilities for each activity related to transport of radioactive materials. An approach to the dose received by workers is evaluated considering the type, category and quantity of packages, the radionuclides, the frequency of consignments and how long are the storages. The average of transports made in the last years must be taken into account and special measures intended to optimize the protection are evaluated. Tasks like monitoring, control of surface contamination and segregation measures, are designed based on the dose evaluation and optimization. The RPP also indicates main measures to follow in case of emergency during transport taking account of radionuclides, activities and category of packages for different accident scenarios. Basis for training personnel involved in handling of radioactive materials to insure they have appropriate knowledge about preparing packages, measuring dose rates, calculating transport index, labelling, marking and placarding, transport documents, etc, are considered. The RPP is a part

  6. Conception and activity directions of journal ''Nuclear and radiation safety''

    International Nuclear Information System (INIS)

    Olena, M.; Volodymyr, S.

    2000-01-01

    In connection with the State Scientific and Technical Centre onr Nuclear and Radiation Safety (SSTC NRA) and Odessa State Polytechnic University the journal 'Nuclear and Radiation Safety' was established in 1998. In Ukraine many people are interested in nuclear energy problems. The accident in Chernobyl NPP unit 4 touches all Ukrainians and brings about strong and regular attention to nuclear and radiation safety of nuclear installations and nuclear technology, on the other side more than 50 per cent of electric power is produced in 5 NPPs and as following national power supply depends on stability of NPPs work. Main goals of the journal are: Support to Nuclear Regulatory Administration (NRA) of MEPNS of Ukraine, creation of information space for effective exchange of results of scientific, scientific and technical, scientific and analytical work in the field of Nuclear and Radiation Safety, assistance in integrated development of research for Nuclear and Radiation Safety by publication in a single issue of scientific articles, involvement of state scientific potential in resolving actual problems, participation in international collaboration in the framework of agreements, programs and plans. (orig.)

  7. Available computer codes and data for radiation transport analysis

    International Nuclear Information System (INIS)

    Trubey, D.K.; Maskewitz, B.F.; Roussin, R.W.

    1975-01-01

    The Radiation Shielding Information Center (RSIC), sponsored and supported by the Energy Research and Development Administration (ERDA) and the Defense Nuclear Agency (DNA), is a technical institute serving the radiation transport and shielding community. It acquires, selects, stores, retrieves, evaluates, analyzes, synthesizes, and disseminates information on shielding and ionizing radiation transport. The major activities include: (1) operating a computer-based information system and answering inquiries on radiation analysis, (2) collecting, checking out, packaging, and distributing large computer codes, and evaluated and processed data libraries. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results

  8. Radiative transport-based frequency-domain fluorescence tomography

    International Nuclear Information System (INIS)

    Joshi, Amit; Rasmussen, John C; Sevick-Muraca, Eva M; Wareing, Todd A; McGhee, John

    2008-01-01

    We report the development of radiative transport model-based fluorescence optical tomography from frequency-domain boundary measurements. The coupled radiative transport model for describing NIR fluorescence propagation in tissue is solved by a novel software based on the established Attila(TM) particle transport simulation platform. The proposed scheme enables the prediction of fluorescence measurements with non-contact sources and detectors at a minimal computational cost. An adjoint transport solution-based fluorescence tomography algorithm is implemented on dual grids to efficiently assemble the measurement sensitivity Jacobian matrix. Finally, we demonstrate fluorescence tomography on a realistic computational mouse model to locate nM to μM fluorophore concentration distributions in simulated mouse organs

  9. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  10. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Chinese Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  11. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA's Statute authorizes the Agency to ''establish or adopt standards of safety for protection of health and minimization of danger to life and property'' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  12. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  13. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  14. Photonuclear Physics in Radiation Transport - II: Implementation

    International Nuclear Information System (INIS)

    White, M.C.; Little, R.C.; Chadwick, M.B.; Young, P.G.; MacFarlane, R.E.

    2003-01-01

    This is the second of two companion papers. The first paper describes model calculations and nuclear data evaluations of photonuclear reactions on isotopes of C, O, Al, Si, Ca, Fe, Cu, Ta, W, and Pb for incident photon energies up to 150 MeV. This paper describes the steps taken to process these files into transport libraries and to update the Monte Carlo N-Particle (MCNP) and MCNPX radiation transport codes to use tabular photonuclear reaction data. The evaluated photonuclear data files are created in the standard evaluated nuclear data file (ENDF) format. These files must be processed by the NJOY data processing system into A Compact ENDF (ACE) files suitable for radiation transport calculations. MCNP and MCNPX have been modified to use these new data in a self-consistent and fully integrated manner. Verification problems were used at each step along the path to check the integrity of the methodology. The resulting methodology and tools provide a comprehensive system for using photonuclear data in radiation transport calculations. Also described are initial validation simulations used to benchmark several of the photonuclear transport tables

  15. Renormalization-group approach to nonlinear radiation-transport problems

    International Nuclear Information System (INIS)

    Chapline, G.F.

    1980-01-01

    A Monte Carlo method is derived for solving nonlinear radiation-transport problems that allows one to average over the effects of many photon absorptions and emissions at frequencies where the opacity is large. This method should allow one to treat radiation-transport problems with large optical depths, e.g., line-transport problems, with little increase in computational effort over that which is required for optically thin problems

  16. Radiation Protection, Nuclear Safety and Security

    International Nuclear Information System (INIS)

    Faye, Ndeye Arame Boye; Ndao, Ababacar Sadikhe; Tall, Moustapha Sadibou

    2014-01-01

    Senegal has put in place a regulatory framework which allows to frame legally the use of radioactive sources. A regulatory authority has been established to ensure its application. It is in the process of carrying out its regulatory functions. It cooperates with appropriate national or international institutions operating in fields related to radiation protection, safety and nuclear safety.

  17. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework. 1. ed.

    International Nuclear Information System (INIS)

    1999-03-01

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  18. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework; 1. ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  19. Expanding the scope of practice for radiology managers: radiation safety duties.

    Science.gov (United States)

    Orders, Amy B; Wright, Donna

    2003-01-01

    In addition to financial responsibilities and patient care duties, many medical facilities also expect radiology department managers to wear "safety" hats and complete fundamental quality control/quality assurance, conduct routine safety surveillance in the department, and to meet regulatory demands in the workplace. All managers influence continuous quality improvement initiatives, from effective utilization of resource and staffing allocations, to efficacy of patient scheduling tactics. It is critically important to understand continuous quality improvement (CQI) and its relationship with the radiology manager, specifically quality assurance/quality control in routine work, as these are the fundamentals of institutional safety, including radiation safety. When an institution applies for a registration for radiation-producing devices or a license for the use of radioactive materials, the permit granting body has specific requirements, policies and procedures that must be satisfied in order to be granted a permit and to maintain it continuously. In the 32 U.S. Agreement states, which are states that have radiation safety programs equivalent to the Nuclear Regulatory Commission programs, individual facilities apply for permits through the local governing body of radiation protection. Other states are directly licensed by the Nuclear Regulatory Commission and associated regulatory entities. These regulatory agencies grant permits, set conditions for use in accordance with state and federal laws, monitor and enforce radiation safety activities, and audit facilities for compliance with their regulations. Every radiology department and associated areas of radiation use are subject to inspection and enforcement policies in order to ensure safety of equipment and personnel. In today's business practice, department managers or chief technologists may actively participate in the duties associated with institutional radiation safety, especially in smaller institutions, while

  20. [RADIATION SAFETY DURING REMEDIATION OF THE "SEVRAO" FACILITIES].

    Science.gov (United States)

    Shandala, N K; Kiselev, S M; Titov, A V; Simakov, A V; Seregin, V A; Kryuchkov, V P; Bogdanova, L S; Grachev, M I

    2015-01-01

    Within a framework of national program on elimination of nuclear legacy, State Corporation "Rosatom" is working on rehabilitation at the temporary waste storage facility at Andreeva Bay (Northwest Center for radioactive waste "SEVRAO"--the branch of "RosRAO"), located in the North-West of Russia. In the article there is presented an analysis of the current state of supervision for radiation safety of personnel and population in the context of readiness of the regulator to the implementation of an effective oversight of radiation safety in the process of radiation-hazardous work. Presented in the article results of radiation-hygienic monitoring are an informative indicator of the effectiveness of realized rehabilitation measures and characterize the radiation environment in the surveillance zone as a normal, without the tendency to its deterioration.

  1. Investigation of status of safety management in radiation handle works

    International Nuclear Information System (INIS)

    Amauchi, Hiroshi; Nishimura, Kenji; Izumi, Kokichi

    2007-01-01

    This report describes the investigation in the title concerning the system for safety management and for accident prevention, which was done by a questionnaire in a period of 1.5 months in 2005. The questionnaire including 55 questions for safety management system, 33 for instruments and safety utilization of radiation and 57 for present status of safety management in high-risk radiation works, was performed in 780 hospitals, of which 313 answered. The first 55 questions concerned with the facility, patient identification, information exchange, management of private information, safety management activities, measures to prevent accident, manual preparation, personnel education and safety awareness; the second, with management of instruments, package insert, system for reporting the safety information, management of implants, re-imaging and radiation protection; and the third, with the systems for patients' emergency, in departments of CT/MR, of IVR, of nuclear diagnosis and of radiation therapy. Based on the results obtained, many problems, tasks and advices are presented to various items and further continuation of efforts to improve the present status is mentioned to be necessary. Details are given in the homepage of the Japanese Society of Radiological Technology. (T.I.)

  2. The Argentine Approach to Radiation Safety: Its Ethical Basis

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    The ethical bases of Argentina's radiation safety approach are reviewed. The applied principles are those recommended and established internationally, namely: the principle of justification of decisions that alters the radiation exposure situation; the principle of optimization of protection and safety; the principle of individual protection for restricting possible inequitable outcomes of optimized safety; and the implicit principle of inter generational prudence for protection future generations and the habitat. The principles are compared vis-a-vis the prevalent ethical doctrines: justification vis-a-vis teleology; optimization vis-a-vis utilitarianism; individual protection vis-a-vis de ontology; and, inter generational prudence vis-a-vis aretaicism (or virtuosity). The application of the principles and their ethics in Argentina is analysed. These principles are applied to All exposure to radiation harm; namely, to exposures to actual doses and to exposures to actual risk and potential doses, including those related to the safety of nuclear installations, and they are harmonized and applied in conjunction. It is concluded that building a bridge among all available ethical doctrines and applying it to radiation safety against actual doses and actual risk and potential doses is at the roots of the successful nuclear regulatory experience in Argentina.

  3. Supervisor's experiments on radiation safety trainings in school of engineering

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    2005-01-01

    Radiation safety training courses in School of Engineering, The University of Tokyo, were introduced. The number of radiation workers and the usage of radiation and radioisotopes have been surveyed for past 14 years. The number of radiation workers in School of Engineering has increased due to the treatment of X-ray analysis of materials, recently. It is important for workers to understand the present situation of School of Engineering before the treatment of radiation and radioisotopes. What the supervisor should tell to radiation workers were presented herewith. The basic questionnaires after the lecture are effective for radiation safety trainings. (author)

  4. Neuro-oncology update: radiation safety and nursing care during interstitial brachytherapy

    International Nuclear Information System (INIS)

    Randall, T.M.; Drake, D.K.; Sewchand, W.

    1987-01-01

    Radiation control and safety are major considerations for nursing personnel during the care of patients receiving brachytherapy. Since the theory and practice of radiation applications are not part of the routine curriculum of nursing programs, the education of nurses and other health care professionals in radiation safety procedures is important. Regulatory agencies recommend that an annual safety course be given to all persons frequenting, using, or associated with patients containing radioactive materials. This article presents pertinent aspects of the principles and procedures of radiation safety, the role of personnel dose-monitoring devices, and the value of additional radiation control features, such as a lead cubicle, during interstitial brain implants. One institution's protocol and procedures for the care of high-intensity iridium-192 brain implants are discussed. Preoperative teaching guidelines and nursing interventions included in the protocol focus on radiation control principles

  5. Statistics of Monte Carlo methods used in radiation transport calculation

    International Nuclear Information System (INIS)

    Datta, D.

    2009-01-01

    Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport

  6. The safety of radioactive materials transport; La surete des transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The rule of the radioactive materials transport contains two different objectives: the safety, or physical protection, consists in preventing the losses, the disappearances, the thefts and the diversions of the nuclear materials (useful materials for weapons); the high civil servant of defence near the Minister of Economy, Finance and Industry is the responsible authority; the safety consists in mastering the risks of irradiation, contamination and criticality presented by the radioactive and fissile materials transport, in order that man and environment do not undergo the nuisances. The control of the safety is within the competence of the Asn. (N.C.)

  7. Radiation transport. Progress report, April 1-December 31, 1983

    International Nuclear Information System (INIS)

    O'Dell, R.D.

    1984-10-01

    Research and development progress in radiation transport by the Los Alamos National Laboratory's Group X-6 for the last nine months of CY 83 is reported. Included are unclassified tasks in the areas of Fission Reactor Neutronics, Deterministic Transport Methods, Monte Carlo Radiation Transport, and Cross Sections and Physics

  8. Radiation protection safety in Uganda -- Experience and prospects of the National Radiation Protection Service

    International Nuclear Information System (INIS)

    Kisolo, A.

    2001-01-01

    The Uganda National Radiation Protection Service (NRPS) is a technical body under the Atomic Energy Control Board, established by Law - the Atomic Energy Decree of 1972, Decree No. 12, to oversee and enforce safety of radiation sources, practices and workers; and to protect the patients, members of the public and the environment from the dangers of ionizing radiation and radioactive wastes. The Ionizing Radiation Regulations (Standards) - Statutory Instruments Supplement No. 21 of 1996 -- back up the Law. The Law requires all users, importers and operators of radiation sources and radioactive materials to notify the NRPS for registration and licensing. The NRPS is responsible for licensing and for the regulatory enforcement of compliance to the requirements for the safety of radiation sources and practices. There are about 200 diagnostic X-ray units, two radiotherapy centres, one nuclear medicine unit, several neutron probes, about three level gauges and two non-destructive testing sources and a number of small sealed sources in teaching and research institutions. About 50% of these sources have been entered in our inventory using the RAIS software provided by the IAEA. There are about 500 radiation workers and 250 underground miners. The NRPS covers about 50% of the radiation workers. It is planned that by June 2001, all occupational workers will be monitored, bringing coverage to 100%. The Government of Uganda is making the necessary legal, administrative and technical arrangements aimed at establishing the National Radiation Protection Commission as an autonomous regulatory authority. The Atomic Energy Decree of 1972 and Regulations of 1996 are being revised to provide for the National Radiation Protection Commission and to make it comply with the requirements of the International Basic Safety Standards Safety Series No. 115. (author)

  9. Health and safety annual report 1992

    International Nuclear Information System (INIS)

    1993-01-01

    BNFL operates 6 sites in the United Kingdom concerned with the nuclear fuel cycle. The annual report on occupational health and safety gives information on all aspects of health and safety within BNFL with special reference to radiation doses received by the workforce and radiation protection measures taken by the company. BNFL's safety policy is set out. Radiation doses to all workers have remained low. Other industrial accidents are also listed and its safety measures for transport, radioactive effluents and in the event of an incident, are mentioned briefly. (UK)

  10. Safety in transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Mezrahi, A.; Xavier, A.M.

    1987-01-01

    The increasing utilization of radioisotopes in Industrial, Medical and Research Facilities as well as the processing of Nuclear Materials involve transport activities in a routine basis. The present work has the following main objectives: I) the identification of the safety aspects related to handling, transport and storage of radioactive materials; II) the orientation of the personnel responsible for the radiological safety of Radioactive Installations viewing the elaboration and implementation of procedures to minimize accidents; III) the report of case-examples of accidents that have occured in Brazil due to non-compliance with Transport Regulations. (author) [pt

  11. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  12. New radiation protection concept as important safety factor of industrial radiography

    International Nuclear Information System (INIS)

    Pavlovic, R.; Pavlovic, S.

    1998-01-01

    Industrial radiography is a method for non destructive testing of homogeneity of various materials based on different absorption of radiation in different material. X and γ radiation are the most often used. Detrimental effects of radiation are observed since its discovery. In order to prevent harmful effects of radiation without unduly limitations of its use, International Commission on Radiological Protection in collaboration with International Atomic Energy Agency have developed International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, Safety Series No 115, adopted in 1996. based on ICRP recommendations from 1991. Besides a lot of changes in radiation protection concept and philosophy, decrement of annual dose limits for occupational exposure from 50 to 20 mSv. (author)

  13. Regulations for the Safe Transport of Radioactive Material. 2012 Edition. Specific Safety Requirements (French Edition); Reglement de transport des matieres radioactives. Edition de 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The IAEA's Statute authorizes the Agency to ''establish or adopt standards of safety for protection of health and minimization of danger to life and property'' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the

  14. A multigroup treatment of radiation transport

    International Nuclear Information System (INIS)

    Tahir, N.A.; Laing, E.W.; Nicholas, D.J.

    1980-12-01

    A multi-group radiation package is outlined which will accurately handle radiation transfer problems in laser-produced plasmas. Bremsstrahlung, recombination and line radiation are included as well as fast electron Bremsstrahlung radiation. The entire radiation field is divided into a large number of groups (typically 20), which diffuse radiation energy in real space as well as in energy space, the latter occurring via electron-radiation interaction. Using this model a radiation transport code will be developed to be incorporated into MEDUSA. This modified version of MEDUSA will be used to study radiative preheat effects in laser-compression experiments at the Central Laser Facility, Rutherford Laboratory. The model is also relevant to heavy ion fusion studies. (author)

  15. Report on administrative work for radiation safety from April 2006 to March 2007

    Energy Technology Data Exchange (ETDEWEB)

    Komori, Akio; Kaneko, Osamu; Nishimura, Kiyohiko; Uda, Tatsuhiko; Asakura, Yamato; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi

    2007-10-15

    The National Institute for Fusion Science (NIFS) is proceeding with the research on magnetic confining nuclear fusion both experimentally and theoretically. During the experiment with deals with very hot plasma, X ray is generated. Therefore the experimental devices with their surroundings are administrated in conformity with the Industrial Safety and Health Law to keep workplace safety. The Radiation Control Safety Office of Safety Hygiene Protection Bureau carries out measuring the radiation dose level regularly, registering the employees who are engaged in plasma experiments, and training them. Non-regulated small sealed sources are used in some detectors. The treating of these sources is controlled by the Safety and Environmental Research Center. This report is on administrative works for radiation safety in the last fiscal year 2006. It includes (1) report on the establishment of radiation safety management system, (2) report on the establishment of training and registration system for radiation workers, and (3) results of radiation dose measurement and monitoring in the radiation controlled area and on the site by using Radiation Monitoring System Applicable to Fusion Experiment (RMSAFE). The report has been published annually. We hope that these reports would be helpful for future safety management in NIFS. (author)

  16. Report on administrative work for radiation safety from April 2006 to March 2007

    International Nuclear Information System (INIS)

    Komori, Akio; Kaneko, Osamu; Nishimura, Kiyohiko; Uda, Tatsuhiko; Asakura, Yamato; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi

    2007-10-01

    The National Institute for Fusion Science (NIFS) is proceeding with the research on magnetic confining nuclear fusion both experimentally and theoretically. During the experiment with deals with very hot plasma, X ray is generated. Therefore the experimental devices with their surroundings are administrated in conformity with the Industrial Safety and Health Law to keep workplace safety. The Radiation Control Safety Office of Safety Hygiene Protection Bureau carries out measuring the radiation dose level regularly, registering the employees who are engaged in plasma experiments, and training them. Non-regulated small sealed sources are used in some detectors. The treating of these sources is controlled by the Safety and Environmental Research Center. This report is on administrative works for radiation safety in the last fiscal year 2006. It includes (1) report on the establishment of radiation safety management system, (2) report on the establishment of training and registration system for radiation workers, and (3) results of radiation dose measurement and monitoring in the radiation controlled area and on the site by using Radiation Monitoring System Applicable to Fusion Experiment (RMSAFE). The report has been published annually. We hope that these reports would be helpful for future safety management in NIFS. (author)

  17. Potential impacts of ICRP 60 and 61 on transportation

    International Nuclear Information System (INIS)

    Rawl, R.R.

    1992-01-01

    The International Commission on Radiological Protection (ICRP) has issued its ''1990 Recommendations of the International Commission on Radiation Protection'' that provide guidance on controlling exposure to ionizing radiation (1). The ICRP recommendations and their incorporation into the International Atomic Energy Agency's (IAEA) ''Basic Safety Standards,'' Safety Series No. 9, provide the basis on which the IAEA ''Regulation for the Safe Transport of Radioactive Materials,'' Safety Series No. 6, are built. The transportation regulations are developed to ensure safety during the movement of radioactive materials and to provide reasonable assurance the transportation activities comply with the basic radiation protection principles of Safety Series No. 9. During the 1985 revision of the IAEA transport regulations, a comprehensive model was developed to derive Type A (non-accident resistant) package contents limits that were consistent with Safety Series No.9 and, consequently, the earlier ICRP recommendations (2). Now that ICRP 60 has been published, the IAEA and Member States are faced with the task of evaluating how the transport regulations need to be revised to conform with the new recommendations. Several potentially significant issues need to be addressed to determine whether the old linkages between the recommendations and the transport regulations require modification. This paper addresses the issues that arise from the revisions to the ICRP recommendations and how the transportation regulations may be affected

  18. Potential impacts of ICRP 60 and 61 on transportation

    International Nuclear Information System (INIS)

    Rawl, Richard R.

    1992-01-01

    The International Commission on Radiological Protection (IGRP) has issued its '1990 Recommendations of the International Commission on Radiation Protection' that provide guidance on controlling exposure to ionizing radiation. The ICRP recommendations and their incorporation into the International Atomic Energy Agency's (IAEA) 'Basic Safety Standards', Safety Series No. 9, provide the basis on which the IAEA 'Regulations for the Safe Transport of Radioactive Materials', Safety Series No. 6, are built. The transportation regulations are developed to ensure safety during the movement of radioactive materials and to provide reasonable assurance the transportation activities comply with the basic radiation protection principles of Safety Series No. 9. During the 1985 revision of the IAEA transport regulations, a comprehensive model was developed to derive Type A (non-accident resistant) package contents limits that were consistent with Safety Series No. 9 and, consequently, the earlier ICRP recommendations. Now that ICRP 60 has been published, the IAEA and Member States are faced with the task of evaluating how the transport regulations need to be revised to conform with the new recommendations. Several potentially significant issues need to be addressed to determine whether the old linkages between the recommendations and the transport regulations require modification. This paper addresses the issues that arise from the revisions to the ICRP recommendations and how the transportation regulations may be affected. (author)

  19. Legislation for radiation protection and nuclear safety in the Republic of Croatia

    International Nuclear Information System (INIS)

    Novosel, N.

    1994-01-01

    The main prerequisite of radiation protection and nuclear safety development and improvement in the Republic of Croatia are: national legislation for radiation protection and nuclear safety in accordance with international recommendations; and development of state infrastructure for organization and management of radiation protection and nuclear safety measures. In this paper I the following topics are present: inherited legislation for radiation protection and nuclear safety; modern trends in world nowadays; and what is done and has to be done in the Republic of Croatia to improve this situation

  20. Radiation transport calculation methods in BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Seppaelae, T.; Savolainen, S.

    2000-01-01

    Boron neutron capture therapy (BNCT) is used as a radiotherapy for malignant brain tumours. Radiation dose distribution is necessary to determine individually for each patient. Radiation transport and dose distribution calculations in BNCT are more complicated than in conventional radiotherapy. Total dose in BNCT consists of several different dose components. The most important dose component for tumour control is therapeutic boron dose D B . The other dose components are gamma dose D g , incident fast neutron dose D f ast n and nitrogen dose D N . Total dose is a weighted sum of the dose components. Calculation of neutron and photon flux is a complex problem and requires numerical methods, i.e. deterministic or stochastic simulation methods. Deterministic methods are based on the numerical solution of Boltzmann transport equation. Such are discrete ordinates (SN) and spherical harmonics (PN) methods. The stochastic simulation method for calculation of radiation transport is known as Monte Carlo method. In the deterministic methods the spatial geometry is partitioned into mesh elements. In SN method angular integrals of the transport equation are replaced with weighted sums over a set of discrete angular directions. Flux is calculated iteratively for all these mesh elements and for each discrete direction. Discrete ordinates transport codes used in the dosimetric calculations are ANISN, DORT and TORT. In PN method a Legendre expansion for angular flux is used instead of discrete direction fluxes, land the angular dependency comes a property of vector function space itself. Thus, only spatial iterations are required for resulting equations. A novel radiation transport code based on PN method and tree-multigrid technique (TMG) has been developed at VTT (Technical Research Centre of Finland). Monte Carlo method solves the radiation transport by randomly selecting neutrons and photons from a prespecified boundary source and following the histories of selected particles

  1. Systematic approach to training for competence building in radiation safety

    International Nuclear Information System (INIS)

    Asiamah, S.D.; Schandorf, C.; Darko, E.O.

    2003-01-01

    Competence building involves four main attributes, namely, knowledge, skills, operating experience and attitude to radiation safety. These multi-attribute requirements demand a systematic approach to education and training of regulatory staff, licensees/registrants and service providers to ensure commensurate competence in performance of responsibilities and duties to specified standards. In order to address issues of competencies required in radiation safety a national programme for qualification and certification has been initiated for regulatory staff, operators, radiation safety officers and qualified experts. Since the inception of this programme in 1993, 40 training events have been organized involving 423 individuals. This programme is at various levels of implementation due to financial and human resource constraints. A department for Human Resource Development and Research was established in 2000 to enhance and ensure the sustainability of the effectiveness of capacity building in radiation safety. (author)

  2. Transport and attenuation of radiations

    CERN Document Server

    Nimal, J C

    2003-01-01

    This article treats of the calculation methods used for the dimensioning of the protections against radiations. The method consists in determining for a given point the flux of particles coming from a source at a given time. A strong attenuation (of about some few mu Sv.h sup - sup 1) is in general expected between the source and the areas accessible to the personnel or the public. The calculation has to take into account a huge number of radiation-matter interactions and to solve the integral-differential transport equation which links the particles flux to the source. Several methods exist from the simplified physical model with numerical developments to the more or less precise resolution of the transport equation. These methods allows also the calculation of the uncertainties of equivalent dose rates, heat sources, structure damages using the data covariances (efficient cross-sections, modeling, etc..): 1 - transport equation; 2 - Monte-Carlo method; 3 - semi-numerical methods S sub N; 4 - methods based o...

  3. National conference on radiation safety of nuclear power plants and their environmental impacts

    International Nuclear Information System (INIS)

    Moravek, J.

    1989-01-01

    The first national conference on radiation safety of nuclear power plants and their environmental impacts was held in Tale (CS), 12 to 15 October, 1987 with the participation of 201 Czechoslovak specialists representing central authorities, research institutes, institutions of higher education, power plants in operation and under construction, water management and hygiene inspection and some production sectors, specialists from Hungary, Poland and the GDR. The participants heard 110 papers. The conference agenda comprised keynote papers presented in plenary session and five specialist sessions: 1. Radiation control of discharges and their surroundings. 2. Monitoring and evaluation of the radiation situation in nuclear power plants. 3. Equipment for monitoring the nuclear power plant and its environs. 4. Mathematical modelling and assessment of the nuclear power plant radiation environmental impact. 5. Evaluation of sources and of the transport of radioactive materials inside the power plant and the minimization of the nuclear power plant's environmental impact. (Z.M.)

  4. A comparison of radiation doses and risks between spent fuel transport/storage and selected non-nuclear activities

    International Nuclear Information System (INIS)

    Pennington, C.W.

    2003-01-01

    Spent fuel transport and storage have achieved an exemplary safety record over four decades within both the United States (US) and the global community at large. This paper offers an assessment demonstrating the safety of spent fuel transport and storage packagings relative to currently accepted but unregulated non-nuclear activities and practices within society. Over the last quarter of a century, several spent fuel transport and storage packaging test programmes have produced data that allow calculation of potential releases and population doses resulting from a terrorist attack. The US Department of Energy (DOE) has used this information to develop projected worst-case, low probability population exposures as part of the Final Environmental Impact Statement (FEIS) for the Yucca Mountain repository. The paper discusses potential population exposures from these packagings based on analysis and testing under beyond-design-basis (BDB) events, including missile attacks, and then defines and defends an acceptance criterion for the bounding outcomes of these events, based upon current accepted activities within society that produce high radiation doses to the general public. These activities involve unregulated technologies and practices within society that yield population doses significantly exceeding those that would result from such hypothetical and highly improbable events as a terrorist missile attack on a spent fuel transport or storage packaging. In particular, technologically enhanced natural radiation (TENR) exposures from building materials, farming, and masonry construction are highlighted. Recent landmark work by the US National Academy of Sciences (NAS) and by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) are cited in support of this assessment, along with work from the US Environmental Protection Agency (EPA). From this compelling evidence, it is concluded that spent fuel transport and storage represent a low

  5. Radiological emergency: road map for radiation accident victim transport

    International Nuclear Information System (INIS)

    Costa, V.S.G.; Alcantara, Y.P.; Lima, C.M.A.; Silva, F. C. A. da

    2017-01-01

    During a radiological or nuclear emergency, a number of necessary actions are taken, both within the radiation protection of individuals and the environment, involving many institutions and highly specialized personnel. Among them it is possible to emphasize the air transportation of radiation accident victims.The procedures and measures for the safe transport of these radiation accident victims are generally the responsibility of the armed forces, specifically the Aeronautics, with the action denominated 'Aeromedical Military Evacuation of Radiation Accident Victims'. The experience with the Radiological Accident of Goiânia demonstrated the importance of adequate preparation and response during a radiological emergency and the need for procedures and measures with regard to the transport of radiation victims are clearly defined and clearly presented for the effectiveness of the actions. This work presents the necessary actions for the transport of radiation accident victim during a radiological emergency, through the road map technique, which has been widely used in scientific technical area to facilitate understanding and show the way to be followed to reach the proposed objectives

  6. Statement to the International Conference on the Safety of Transport of Radioactive Material. Vienna, 7 July 2003

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    The transport of radioactive material has been subject to regulation for many decades, and the International Atomic Energy Agency, working with its Member States and all relevant international governmental organizations, has played a key role in fostering the establishment of those regulations and providing for their application. First published in 1961, the IAEA's Regulations for the Safe Transport of Radioactive Material are periodically revised to incorporate technical advances, operational experience and the latest radiation protection principles. These Transport Regulations address all categories of radioactive material. Although recommendatory in nature, they constitute the basis for national regulations in many Member States, and generally become mandatory through the legally binding instruments of the relevant modal bodies, such as the International Maritime Organization or the International Civil Aviation Organization. In some cases, these instruments take the form of universal conventions, such as the Convention on International Civil Aviation or the International Convention for the Safety of Life at Sea; in other cases, they take the form of regional agreements, such as the European Agreement Concerning the International Carriage of Dangerous Goods by Road. Overall, there are 21 universal instruments and 22 regional instruments in force that apply, directly or indirectly, to the safe transport of radioactive material. This current worldwide system of regulatory control, while not without shortcomings, has achieved an excellent safety record. Over several decades of transporting radioactive material, there has not been an in-transit accident with serious human health, economic or environmental consequences attributable to the radioactive nature of the transported goods. In recognition of this fact, the United Nations Committee on the Effects of Atomic Radiation has noted these transport activities as having no radiological impact. This excellent record

  7. Radiation protection and safety guide no. GRPB-G-4: inspection

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    The use of ionizing radiation and radiation sources in Ghana is on the increase due to national developmental efforts in Health Care, Food and Agriculture, Industry, Science and Technology. This regulatory Guide has been developed to assist both the Regulatory Body (Radiation Protection Board) and operating organizations to perform systematic inspections commensurate with the level of hazard associated with the application of radiation sources and radioactive materials. The present Guide applies to the Radiation Protection and Safety inspection and/or audit conducted by the Radiation Protection Board or Radiation Safety Officer. The present Guide is applicable in Ghana and to foreign suppliers of radiation sources. The present Guide applies to notifying person, licensee, or registrant and unauthorized practice

  8. Building competence in radiation protection and the safe use of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    An essential element of a national infrastructure for radiation protection and safety is the maintenance of an adequate number of competent personnel. This Safety Guide makes recommendations concerning the building of competence in protection and safety, which relate to the training and assessment of qualification of new personnel and retraining of existing personnel in order to develop and maintain appropriate levels of competence. This Safety Guide addresses training in protection and safety aspects in relation to all practices and intervention situations in nuclear and radiation related technologies. This document covers the following aspects: the categories of persons to be trained. The requirements for education, training and experience for each category. The processes of qualification and authorization of persons. A national strategy for building competence

  9. Promoting radiation protection and safety for X-ray inspection systems

    International Nuclear Information System (INIS)

    Maharaj, Harri P.

    2008-01-01

    This paper aims to present a regulatory perspective on radiation protection and safety relevant to facilities utilizing baggage X-ray inspection systems. Over the past several years there has been rapid growth in the acquisition and utilization of X-ray tube based inspection systems for security screening purposes worldwide. In addition to ensuring compliance with prescribed standards applicable to such X-ray systems, facilities subject to federal jurisdiction in Canada are required to comply with established codes of practice, which, not only are in accordance with occupational health and safety legislation but also are consistent with international guidance. Overall, these measures are aimed at reducing radiation risks and adverse health effects. Data, acquired in the past several years in a number of facilities through various instruments, namely, monitoring and surveillance, radiation safety audits, onsite evaluations, device registration processes and information developed, were considered in conjunction with detrimental traits. Changes are necessary to reduce radiation and safety risks from both an ALARA point of view and an accountability perspective. Establishing, developing, implementing and following a radiation protection program is warranted and advocated. Minimally, such a program shall be managed by a radiation safety officer. It shall promote and sustain a radiation safety culture in the workplace; shall ensure properly qualified individuals operate and service the X-ray systems in accordance with established and authorized procedures; and shall incorporate data recording and life cycle management principles. Such a program should be the norm for a facility that utilizes baggage X-ray inspection systems for security purposes, and it shall be subject to continuous regulatory oversight. (author)

  10. The Design of Transportation Equipment in Terms of Human Capabilities. The Role of Engineering Psychology in Transport Safety.

    Science.gov (United States)

    McFarland, Ross A.

    Human factors engineering is considered with regard to the design of safety factors for aviation and highway transportation equipment. Current trends and problem areas are identified for jet air transportation and for highway transportation. Suggested solutions to transportation safety problems are developed by applying the techniques of human…

  11. Intermodal safety research needs report of the sixth workshop on national transportation problems

    Energy Technology Data Exchange (ETDEWEB)

    Warshawer, A.J. (ed.)

    1976-04-01

    This conference brought together DOT policymakers, university principal investigators and other professionals to consider the intermodal safety research requirements of the Department of Transportation. The objectives of the conference were: (1) to highlight safety problems and needed transportation safety research identified by DOT modal safety managers and to stimulate university or university/industry teams to respond with research proposals which emphasize multi-modal applicability and a system view; and (2) to provide a forum for university research groups to inform DOT safety managers of promising new directions in transportation safety research and new tools with which to address safety related problems. The conference addressed the research requirements for safety as identified by the Statement of National Transportation Policy and by the modal safety managers in three principal contexts, each a workshop panel: I, Inter-Institutional Problems of Transportation Safety. Problems were described as: Federal-State, local; Federal-Industry; Federal-Public, Consumer groups. II, Goal Setting and Planning for Transportation Safety Programs. Issues were: modifying risk behavior, safety as a social value, and involving citizens in development of standards as a way of increasing probability of achieving program objectives. III, DOT Information, Management, and Evaluation Systems Requirements. Needs were: data requirements and analytic tools for management of safety programs.

  12. Overview and applications of the Monte Carlo radiation transport kit at LLNL

    International Nuclear Information System (INIS)

    Sale, K. E.

    1999-01-01

    Modern Monte Carlo radiation transport codes can be applied to model most applications of radiation, from optical to TeV photons, from thermal neutrons to heavy ions. Simulations can include any desired level of detail in three-dimensional geometries using the right level of detail in the reaction physics. The technology areas to which we have applied these codes include medical applications, defense, safety and security programs, nuclear safeguards and industrial and research system design and control. The main reason such applications are interesting is that by using these tools substantial savings of time and effort (i.e. money) can be realized. In addition it is possible to separate out and investigate computationally effects which can not be isolated and studied in experiments. In model calculations, just as in real life, one must take care in order to get the correct answer to the right question. Advancing computing technology allows extensions of Monte Carlo applications in two directions. First, as computers become more powerful more problems can be accurately modeled. Second, as computing power becomes cheaper Monte Carlo methods become accessible more widely. An overview of the set of Monte Carlo radiation transport tools in use a LLNL will be presented along with a few examples of applications and future directions

  13. New ICRP recommendations and radiation safety of an NPP

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2007-01-01

    In March 2007 the fundamental radiation protection recommendations used world-widely in nuclear facilities were approved by the ICRP. Implementation of radiation safety standards in an NPP is a challenging issue related to all NPP phases from planning a site and its design to its decommissioning also because if neglected it could be very difficult if not impossible to implement improvement of radiation safety later during operation or decommissioning without a substantial cost. The standards are changing with a period of 15 years which is small regarding a prolonged lifetime of many NPPs and also foreseen lifetime of new NPPs, i.e. 60 years. The new recommendations are actually an upgrading of the ICRP 60. Among other changes new sets of wR and wT are given, as well as an update of around 50 different values related to doses. Two new concepts are also tackled i.e. terrorist attacks and protection of the environment. The influence of the new recommendations on the radiation safety of NPPs can be analysed by a selection of four renewed or new concepts: types of exposure situation, dose constraints, source-related approach and safety and security. Their implementation could lead to upgrading the radiation safety of future or existing NPPs as well as of decommissioning processes. Some of the concepts were already extensively and successfully used by designers of modifications or of new NPPs, as well as by operators. (author)

  14. Standards for radiation protection instrumentation: design of safety standards and testing procedures

    International Nuclear Information System (INIS)

    Meissner, Frank

    2008-01-01

    This paper describes by means of examples the role of safety standards for radiation protection and the testing and qualification procedures. The development and qualification of radiation protection instrumentation is a significant part of the work of TUV NORD SysTec, an independent expert organisation in Germany. The German Nuclear Safety Standards Commission (KTA) establishes regulations in the field of nuclear safety. The examples presented may be of importance for governments and nuclear safety authorities, for nuclear operators and for manufacturers worldwide. They demonstrate the advantage of standards in the design of radiation protection instrumentation for new power plants, in the upgrade of existing instrumentation to nuclear safety standards or in the application of safety standards to newly developed equipment. Furthermore, they show how authorities may proceed when safety standards for radiation protection instrumentation are not yet established or require actualization. (author)

  15. Exemption of the use of radiation from the safety licence and reporting obligation

    International Nuclear Information System (INIS)

    1999-07-01

    The primary means of controlling the use of radiation is the safety licence procedure. The safety licence, and the granting of the licence, are regulated in the section 16 of the Finnish Radiation Act (592/1991). In section 17 of the act, certain practices are exempted from the safety licence. In addition to these practices, the Radiation and Nuclear Safety (STUK) may (on the basis of the same legal clause) exempt other types of radiation use from the safety licence, if it is possible to ascertain with sufficient reliability that the use of the radiation will not cause damage or danger to health. This guide presents the conditions applying to exemption from the safety licence for the use of radiation and reporting obligation, and also the exemption values for radioactive substances which, if exceeded, will entail the application of the safety licence and notification procedure for the use of radiation in question. The guide also presents exemptions in the use of exemption values, and requirements associated with the exemption of radiation appliances. However, the guide does not apply to the use of nuclear energy

  16. Exemption of the use of radiation from the safety licence and reporting obligation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The primary means of controlling the use of radiation is the safety licence procedure. The safety licence, and the granting of the licence, are regulated in the section 16 of the Finnish Radiation Act (592/1991). In section 17 of the act, certain practices are exempted from the safety licence. In addition to these practices, the Radiation and Nuclear Safety (STUK) may (on the basis of the same legal clause) exempt other types of radiation use from the safety licence, if it is possible to ascertain with sufficient reliability that the use of the radiation will not cause damage or danger to health. This guide presents the conditions applying to exemption from the safety licence for the use of radiation and reporting obligation, and also the exemption values for radioactive substances which, if exceeded, will entail the application of the safety licence and notification procedure for the use of radiation in question. The guide also presents exemptions in the use of exemption values, and requirements associated with the exemption of radiation appliances. However, the guide does not apply to the use of nuclear energy.

  17. Nuclear critical safety analysis for UX-30 transport of freight package

    International Nuclear Information System (INIS)

    Quan Yanhui; Zhou Qi; Yin Shenggui

    2014-01-01

    The nuclear critical safety analysis and evaluation for UX-30 transport freight package in the natural condition and accident condition were carried out with MONK-9A code and MCNP code. Firstly, the critical benchmark experiment data of public in international were selected, and the deflection and subcritical limiting value with MONK-9A code and MCNP code in calculating same material form were validated and confirmed. Secondly, the neutron efficiency multiplication factors in the natural condition and accident condition were calculated and analyzed, and the safety in transport process was evaluated by taking conservative suppose of nuclear critical safety. The calculation results show that the max value of k eff for UX-30 transport freight package is less than the subcritical limiting value, and the UX-30 transport freight package is in the state of subcritical safety. Moreover, the critical safety index (CSI) for UX-30 package can define zero based on the definition of critical safety index. (authors)

  18. Radiation safety handbook for ionizing and nonionizing radiation

    International Nuclear Information System (INIS)

    Kincaid, C.B.

    1976-10-01

    The Handbook is directed primarily to users of radiation sources throughout the Food and Drug Administration. Specific precautions regarding the possession and use of radiation sources in meeting the Agency's objectives are an inherent responsibility of all employees. In addition, the increased emphasis on occupational safety and health and the responsibilities placed on the Department by Public Law and Executive Order make it mandatory that all organizational levels and activities conform to the intent of this Handbook. The policies and procedures described in this document apply to all Agency operators and activities and are intended to protect employees and the general public

  19. Radiation safety during remediation of the SevRAO facilities: 10 years of regulatory experience.

    Science.gov (United States)

    Sneve, M K; Shandala, N; Kiselev, S; Simakov, A; Titov, A; Seregin, V; Kryuchkov, V; Shcheblanov, V; Bogdanova, L; Grachev, M; Smith, G M

    2015-09-01

    In compliance with the fundamentals of the government's policy in the field of nuclear and radiation safety approved by the President of the Russian Federation, Russia has developed a national program for decommissioning of its nuclear legacy. Under this program, the State Atomic Energy Corporation 'Rosatom' is carrying out remediation of a Site for Temporary Storage of spent nuclear fuel (SNF) and radioactive waste (RW) at Andreeva Bay located in Northwest Russia. The short term plan includes implementation of the most critical stage of remediation, which involves the recovery of SNF from what have historically been poorly maintained storage facilities. SNF and RW are stored in non-standard conditions in tanks designed in some cases for other purposes. It is planned to transport recovered SNF to PA 'Mayak' in the southern Urals. This article analyses the current state of the radiation safety supervision of workers and the public in terms of the regulatory preparedness to implement effective supervision of radiation safety during radiation-hazardous operations. It presents the results of long-term radiation monitoring, which serve as informative indicators of the effectiveness of the site remediation and describes the evolving radiation situation. The state of radiation protection and health care service support for emergency preparedness is characterized by the need to further study the issues of the regulator-operator interactions to prevent and mitigate consequences of a radiological accident at the facility. Having in mind the continuing intensification of practical management activities related to SNF and RW in the whole of northwest Russia, it is reasonable to coordinate the activities of the supervision bodies within a strategic master plan. Arrangements for this master plan are discussed, including a proposed programme of actions to enhance the regulatory supervision in order to support accelerated mitigation of threats related to the nuclear legacy in the

  20. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    International Nuclear Information System (INIS)

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-01-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely

  1. Radiation safety. Handbook for laboratory workers in the USA

    International Nuclear Information System (INIS)

    Hotte, E.D.; Krueger, D.J.; Connor, K.

    2000-01-01

    The aim of the Handbook is to provide a source of information on radiation safety for those who are involved in the use of ionizing radiation in the laboratory. The potential reader may be a laboratory worker in the university or biomedical setting or the safety professional who desires a basic understanding of radiation protection within the research environment. The Handbook may be used as a reference by the radiation protection specialist or Radiation Safety Officer. To this end, liberal use is made of Appendices to make the Handbook a source of reference for a wide spectrum of readership while avoiding complicating the main body of the text. Each chapter or appendix is designed to stand alone. A complete reading of the Handbook will show that topics may be covered more than once. For example, one may read about the hazards and protective measures on handling radioiodine in Chapter 5 on Practical Radiation Protection as well as in Appendix 19 on Safe Handling of 125 I. Extensive use of figures, rather than tables has been made to present data, in the belief that these produce a good visual representation to a level of precision which is sufficient for most purposes of radiation protection in laboratories. The reader must remember that this Handbook should be taken as a guide only to the applicable regulations. You must consult the appropriate state or federal regulation directly or receive advice of a qualified radiation safety professional. Also, some information in the Appendices, such as commercially available training institutions or radioactive waste brokers, may change with time. Telephone numbers are given for the reader to call directly and check the services provided

  2. Toward a federal/state/local partnership in hazardous materials transportation safety

    International Nuclear Information System (INIS)

    1982-09-01

    In recognition of the federal government's responsibility for initiating a national strategy for hazardous materials transportation safety, the Materials Transportation Bureau (MTB) prepared an internal strategy paper for creating a federal/state/local partnership in hazardous materials transportation safety in August 1981. The paper outlined the scope of the hazardous materials transportation problem and established MTB's approach for creating an intergovernmental partnership for its resolution. This paper represents an update and refinement of the original plan, and is designed to chart the direction of the emerging federal/state/local relationship. The cornerstone of the plan remains the establishment of a single national set of safety regulations. It is on achievement of this objective that MTB's plan for development of enforcement, training, and emergency response capabilities at all levels of government is based. Chapter I introduces the problem with a desription of the economic importance of hazardous materials and discusses its implications for public safety. Chapter II defines the appropriate role for each level of government in the areas of rulemaking, enforcement, emergency response, and education. Chapter III demonstrates the need for uniform national safety standards and describes the economic and safety benefits of this approach. Chapter IV contains a detailed description of MTB's program for developing a successful intergovernmental partnership in hazardous materials transportation safety

  3. Influence of Malfunctions of Selected Bus Subsystems on Bus Transportation Safety

    Directory of Open Access Journals (Sweden)

    Bojar Piotr

    2016-10-01

    Full Text Available This article introduces division of transport systems into land transport systems (road and rail as well as land and water transport systems (inland and sea, depending on the type of environment in which these systems carry out their tasks. Such systems comprise the class of social engineering systems of the Man – Technological Object – Environment (M – TO – E type. Such systems are influenced by forcing factors, leading to changes in their condition. Such factors may be divided into operational, external and anthropotechnical and they cause the degradation of the system on various levels, including a decrease of the degree of its safety. The article attempts to evaluate the safety of the operation of transport systems on the basis of the evaluation of the safety of the transport process carried out over a defined time interval Δt. The evaluation of the safety of the implemented transport process was prepared on the basis of a set of calculated index values determined depending on the type of transport.

  4. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

    2011-03-04

    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library

  5. On the derivation of vector radiative transfer equation for polarized radiative transport in graded index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2012-01-01

    Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.

  6. The French nuclear safety authority's experience with radioactive transport inspection

    International Nuclear Information System (INIS)

    Jacob, E.; Aguilar, J.

    2004-01-01

    About 300,000 radioactive material packages are transported annually in France. Most consist of radioisotopes for medical, pharmaceutical or industrial use. On the other hand, the nuclear industry deals with the transport of fuel cycle materials (uranium, fuel assemblies, etc.) and waste from power plants, reprocessing plants and research centers. France is also a transit country for shipments such as spent fuel packages from Switzerland or Germany, which are bound for Sellafield in Great Britain. The French nuclear safety authority (DGSNR: Directorate General for Nuclear Safety and Radioprotection) has been responsible since 1997 for the safety of radioactive material transport. This paper presents DGNSR's experience with transport inspection: a feedback of key points based on 300 inspections achieved during the past five years is given

  7. Delivering a radiation protection dividend: systemic capacity-building for the radiation safety profession in Africa

    Directory of Open Access Journals (Sweden)

    Julian Hilton

    2014-12-01

    Full Text Available Many African countries planning to enter the nuclear energy “family” have little or no experience of meeting associated radiation safety demands, whether operational or regulatory. Uses of radiation in medicine in the continent, whether for diagnostic or clinical purposes, are rapidly growing while the costs of equipment, and hence of access to services, are falling fast. In consequence, many patients and healthcare workers are facing a wide array of unfamiliar challenges, both operational and ethical, without any formal regulatory or professional framework for managing them safely. This, combined with heighted awareness of safety issues post Fukushima, means the already intense pressure on radiation safety professionals in such domains as NORM industries and security threatens to reach breaking point. A systematic competency-based capacity-building programme for RP professionals in Africa is required (Resolution of the Third AFRIRPA13 Regional Conference, Nairobi, September 2010. The goal is to meet recruitment and HR needs in the rapidly emerging radiation safety sector, while also addressing stakeholder concerns in respect of promoting and meeting professional and ethical standards. The desired outcome is an RP “dividend” to society as a whole. A curriculum model is presented, aligned to safety procedures and best practices such as Safety Integrity Level and Layer of Protection analysis; it emphasizes proactive risk communication both with direct and indirect stakeholders; and it outlines disciplinary options and procedures for managers and responsible persons for dealing with unsafe or dangerous behavior at work. This paper reports on progress to date. It presents a five-tier development pathway starting from a generic foundation course, suitable for all RP professionals, accompanied by specialist courses by domain, activity or industry. Delivery options are discussed. Part of the content has already been developed and delivered as

  8. ipole: Semianalytic scheme for relativistic polarized radiative transport

    Science.gov (United States)

    Moscibrodzka, Monika; Gammie, Charles F.

    2018-04-01

    ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.

  9. Growth of the Female Professional in the Radiation Safety Department

    International Nuclear Information System (INIS)

    Yoon, J.

    2015-01-01

    Currently in Korea’s Nuclear Power Plants (KHNP), the number of the female staffs has been increased as planned construction of new NPPs. However the role of the female staffs in NPPs is still limited as before. Because there is the prejudice which the operating and the maintenance work is unsuitable for female owing to the risk of the radiation exposure and the physical weakness. So female staffs mostly belong to the supporting departments. In particular, the proportion of the female staffs is significantly higher in the radiation safety department among those. The ratio is 15% and is twice higher, whereas the total percentage of the female workers in KHNP is 8%. In the past, the women staffs in the radiation safety department were usually charge of the non-technical duties like the radiation exposure dose management and the education for radiation workers. Although the ratio of the women about that is still higher, nowadays, the role of the female workers tends to diversify to technical supports like the radiation protection and the radioactive waste management while increased the proportion of female employees. This trend is expected to continue for many years to come. Thus, in Korea’s NPPs, it is expected that many women will demonstrate their professionalism especially in the radiation safety department than any other departments. This presentation contains the detailed duty and trend about female staffs in the radiation safety department in Korea’s NPPs. (author)

  10. 77 FR 69899 - Public Conference on Geographic Information Systems (GIS) in Transportation Safety

    Science.gov (United States)

    2012-11-21

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Conference on Geographic Information Systems (GIS) in... Geographic Information Systems (GIS) in transportation safety on December 4-5, 2012. GIS is a rapidly... visualization of data. The meeting will bring researchers and practitioners in transportation safety and GIS...

  11. Radiation safety and care of patients

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    The objective of this chapter is to acquaint the reader with radiation safety measures which can be pursued to minimize radiation load to the patient and staff. The basic principle is that all unnecessary administration should be avoided and a number of simple techniques be used to reduce radiation dose. For example, the kidney excretes many radionuclides. Drinking plenty of fluid and frequent bladder emptying can minimize absorbed dose to the bladder. Thyroid blocking agents must be used if radioactive iodine is being administered to avoid unnecessary radiation exposure to the thyroid gland. When it is necessary to administer radioactive substances to a female of childbearing age, the radiation exposure should be minimum and information whether the patient is pregnant or not must be obtained. Alternatives techniques, which do not involve ionizing radiation, should also be considered. (author)

  12. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    Dedi Sunaryadi; Gloria Doloresa

    2003-01-01

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  13. Monitoring System For Improving Radiation Safety Management

    International Nuclear Information System (INIS)

    Osovizky, A.; Paran, J.; Tal, N.; Ankry, N.; Ashkenazi, B.; Tirosh, D.; Marziano, R.; Chisin, R.

    1999-01-01

    Medi SMARTS (Medical Survey Mapping Automatic Radiation Tracing System), a gamma radiation monitoring system, was installed in a nuclear medicine department. In this paper the evaluation of the system's ability to improve radiation safety management is presented. The system is based on a state of the art software that continuously collects on line radiation measurements for display, analysis and logging. Radiation is measured by GM tubes; the signal is transferred to a data processing unit and then via an RS-485 communication line to a computer. The system automatically identifies the detector type and its calibration factor, thus providing compatibility, maintainability and versatility when changing detectors. Radiation levels are displayed on the nuclear medicine department map at six locations. The system has been operating continuously for more than one year, documenting abnormal events caused by routine operation or failure incidents. In cases where abnormal working conditions were encountered, an alarm message was sent automatically to the supervisor via his tele-pager. An interesting issue observed during the system evaluation, was the inability to distinguish between high radiation levels caused by proper routine operation and those caused by safety failure incidents. The solution included examination of two parameters, radiation levels as well as their duration period. A careful analysis of the historical data, applying the appropriated combined parameters determined for each location, verified that such a system can identify abnormal events, provide alarms to warn in case of incidents and improve standard operating procedures

  14. Nuclear and radiation safety in Mongolia

    International Nuclear Information System (INIS)

    Batjargala, Erdev

    2010-01-01

    The main purpose of the paper is to assess legal environment of Mongolia for development of nuclear and radiation safety and security. The Nuclear Energy Agency, regulatory agency of the Government of Mongolia, was founded in the beginning of 2009. Since then, it has formulated the State Policy for Utilization of Radioactive Minerals and Nuclear Energy and the Nuclear Energy Law, regulatory law of the field. The State Great Khural of Mongolia has enacted these acts. By adopting the State Policy and Nuclear Energy Law, which together imported the international standards for nuclear and radiation safety and security, it is possible to conclude that legal environment has formed in Mongolia to explore and process radioactive minerals and utilize nuclear energy and introduce technologies friendly to human health and environment. (author)

  15. Law on protection against ionising radiation and nuclear safety in Slovenia

    International Nuclear Information System (INIS)

    Breznik, B.; Krizman, M.; Skrk, D.; Tavzes, R.

    2003-01-01

    The existing legislation related to nuclear and radiation safety in Slovenia was introduced in 80's. The necessity for the new law is based on the new radiation safety standards (ICRP 60) and the intention of Slovenia to harmonize the legislation with the European Union. The harmonization means adoption of the basic safety standards and other relevant directives and regulations of Euratom. The nuclear safety section of this law is based on the legally binding international conventions ratified by Slovenia. The general approach is similar to that of some members of Nuclear Energy Agency (OECD). The guidelines of the law were set by the Ministry of the Environment and Spatial Planning, Nuclear Safety Administration, and Ministry of Health. The expert group of the Ministry of Environment and Spatial Planning and the Ministry of Health together with the representatives of the users of the ionising sources and representatives of the nuclear sector, prepared the draft of the subject law. The emphasis in this paper is given to main topics and solutions related to the control of the occupationally exposed workers, radiation safety, licensing, nuclear and waste safety, and radiation protection of people and patients. (authors)

  16. The personnel protection system for a Synchrotron Radiation Accelerator Facility: Radiation safety perspective

    International Nuclear Information System (INIS)

    Liu, J.C.

    1993-05-01

    The Personnel Protection System (PPS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed from the radiation safety point of view. The PPS, which is designed to protect people from radiation exposure to beam operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS), The ACS prevents people from being exposed to the very high radiation level inside the shielding housing (also called a PPS area). The ACS for a PPS area consists of the shielding housing and a standard entry module at every entrance. The BCS prevents people from being exposed to the radiation outside a PPS area due to normal and abnormal beam losses. The BCS consists of the shielding (shielding housing and metal shielding in local areas), beam stoppers, active current limiting devices, and an active radiation monitor system. The system elements for the ACS and BCS and the associated interlock network are described. The policies and practices in setting up the PPS are compared with some requirements in the US Department of Energy draft Order of Safety of Accelerator Facilities

  17. ENSURING THE SAFETY OF ROAD TRANSPORTATION OF GOODS

    Directory of Open Access Journals (Sweden)

    Liudmila Nikolaevna Andronikova

    2017-05-01

    Full Text Available The article investigates Russian and foreign regulatory documents, governing the issues of cargo securing in road transport, and sets out recommendations to ensure the safety of road transportation of goods by means of their attachment.

  18. Evolution of Radiation Safety Culture in Africa: Impact of the Chernobyl Accident

    International Nuclear Information System (INIS)

    Elegba, S.

    2016-01-01

    The use of ionizing radiation in Africa is more than a century old but the awareness for radiation safety regulation is still a work in progress. The nuclear weapon tests carried out in the Sahara Desert during the early 1960’s and the resultant radiation fallout that drifted into West Africa with the northeasterly winds provided the first organized response to the hazards of ionizing radiation in Nigeria. The Nigerian Government in 1964 established the Federal Radiation Protection Service (FRPS) at the Physics Department of the University of Ibadan but without the force of law. In 1971, draft legislation on Nuclear Safety and Radiation Protection was submitted to Government for consideration and promulgation. It never went beyond a draft until June 1995 only after IAEA intervention! The April 1986 Chernobyl nuclear accident unfortunately did not provoke as much reaction from African countries, probably because of geography and climate: Africa is far from Ukraine and in April the winds blow from SW-NE, unlike if it had happened in December when the wind direction would have been NE-SW and Africa would have been greatly impacted with little or no radiation safety infrastructure to detect the radiation fallout or to respond to it; and weak economic infrastructure to mitigate the economic impact of such radioactive deposits on agriculture and human health. Africa was shielded by both geography and climate; but not for long. By 1988, some unscrupulous businessmen exported to Nigeria and to several African countries radiation contaminated beef and dairy products which were meant for destruction in Europe. This led to the establishment of laboratories in several African countries for the monitoring of radiation contamination of imported foods. Fortunately, the international response to the Chernobyl accident was swift and beneficial to Africa and largely spurred the establishment of radiation safety infrastructure in most if not all African Member States. Notably

  19. Evaluation of safety, an unavoidable requirement in the applications of ionizing radiations

    International Nuclear Information System (INIS)

    Jova Sed, Luis Andres

    2013-01-01

    The safety assessments should be conducted as a means to evaluate compliance with safety requirements (and thus the application of fundamental safety principles) for all facilities and activities in order to determine the measures to be taken to ensure safety. It is an essential tool in decision making. For long time we have linked the safety assessment to nuclear facilities and not to all practices involving the use of ionizing radiation in daily life. However, the main purpose of the safety assessment is to determine if it has reached an appropriate level of safety for an installation or activity and if it has fulfilled the objectives of safety and basic safety criteria set by the designer, operating organization and the regulatory body under the protection and safety requirements set out in the International Basic safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. This paper presents some criteria and personal experiences with the new international recommendations on this subject and its practical application in the region and demonstrates the importance of this requirement. Reflects the need to train personnel of the operator and the regulatory body in the proportional application of this requirement in practice with ionizing radiation

  20. Space transportation main engine reliability and safety

    Science.gov (United States)

    Monk, Jan C.

    1991-01-01

    Viewgraphs are used to illustrate the reliability engineering and aerospace safety of the Space Transportation Main Engine (STME). A technology developed is called Total Quality Management (TQM). The goal is to develop a robust design. Reducing process variability produces a product with improved reliability and safety. Some engine system design characteristics are identified which improves reliability.

  1. Radiation safety aspects of high energy particle accelerators

    International Nuclear Information System (INIS)

    Subbaiah, K.V.

    2007-01-01

    High-energy accelerators are widely used for various applications in industry, medicine and research. These accelerators are capable of accelerating both ions and electrons over a wide range of energy and subsequently are made to impinge on the target materials. Apart from generating intended reactions in the target, these projectiles can also generate highly penetrating radiations such as gamma rays and neutrons. Over exposure to these radiations will cause deleterious effects on the living beings. Various steps taken to protect workers and general public from these harmful radiations is called radiation safety. The primary objective in establishing permissible values for occupational workers is to keep the radiation worker well below a level at which adverse effects are likely to be observed during one's life time. Another objective is to minimize the incidence of genetic effects for the population as a whole. Today's presentation on radiation safety of accelerators will touch up on the following sub-topics: Types of particle accelerators and their applications; AERB directives on dose limits; Radiation Source term of accelerators; Shielding Design-Use of Transmission curves and Tenth Value layers; Challenges for accelerator health physicists

  2. Transport of radioactivity and radiation

    International Nuclear Information System (INIS)

    De Beer, G.P.

    1988-01-01

    The movement of radioactivity and radiation is of prime importance in a wide variety of fields and the present advanced degree of knowledge of transport mechanisms is due largely to the application of sophisticated computer techniques

  3. Radiation (Safety Control) Ordinance 1978

    International Nuclear Information System (INIS)

    1978-01-01

    This Ordinance provides for the control, regulation, possession, use and transport of radioactive substance and irradiating apparatus. The Director of Health is responsible for administration of the Ordinance, which contains detailed provisions concerning the terms and conditions of licences, duties of licensees, medical examinations, maximum radiation doses, precautions to be taken to avoid exceeding such doses. The Ordinance also lays down a system of record-keeping and registration as well as packaging specifications for the transport of radioactive substances. (NEA) [fr

  4. Nuclear safety review for the year 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. The final version of the Nuclear Safety Review for the Year 2002 was prepared in the light of the discussion by the Board of Governors in March 2002. This report presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety at the end of 2002. This overview is supported by a more detailed factual account of safety-related events and issues worldwide during 2002. National authorities and the international community continued to reflect and act upon the implications of the events of II September 2001 for nuclear, radiation, transport and waste safety. In the light of this, the Agency has decided to transfer the organizational unit on nuclear security from the Department of Safeguards to the Department of Nuclear Safety (which thereby becomes the Department of Nuclear Safety and Security). By better exploiting the synergies between safety and security and promoting further cross-fertilization of approaches, the Agency is trying to help build up mutually reinforcing global regimes of safety and security. However, the Nuclear Safety Review for the Year 2002 addresses only those areas already in the safety programme. This short analytical overview is supported by a second part (corresponding to Part I of the Nuclear Safety Reviews of previous years), which describes significant safety-related events and issues worldwide during 2002. A Draft Nuclear Safety Review for the Year 2002 was submitted to the March 2003 session of the Board of Governors in document GOV/2003/6.

  5. Nuclear safety review for the year 2002

    International Nuclear Information System (INIS)

    2003-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. The final version of the Nuclear Safety Review for the Year 2002 was prepared in the light of the discussion by the Board of Governors in March 2002. This report presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety at the end of 2002. This overview is supported by a more detailed factual account of safety-related events and issues worldwide during 2002. National authorities and the international community continued to reflect and act upon the implications of the events of II September 2001 for nuclear, radiation, transport and waste safety. In the light of this, the Agency has decided to transfer the organizational unit on nuclear security from the Department of Safeguards to the Department of Nuclear Safety (which thereby becomes the Department of Nuclear Safety and Security). By better exploiting the synergies between safety and security and promoting further cross-fertilization of approaches, the Agency is trying to help build up mutually reinforcing global regimes of safety and security. However, the Nuclear Safety Review for the Year 2002 addresses only those areas already in the safety programme. This short analytical overview is supported by a second part (corresponding to Part I of the Nuclear Safety Reviews of previous years), which describes significant safety-related events and issues worldwide during 2002. A Draft Nuclear Safety Review for the Year 2002 was submitted to the March 2003 session of the Board of Governors in document GOV/2003/6

  6. Radiation safety standards : an environmentalist's approach

    International Nuclear Information System (INIS)

    Murthy, M.S.S.S.

    1977-01-01

    An integrated approach to the problem of environmental mutagenic hazards leads to the recommendation of a single dose-limit to the exposure of human beings to all man-made mutagenic agents including chemicals and radiation. However, because of lack of : (1) adequate information on chemical mutagens, (2) sufficient data on their risk estimates and (3) universally accepted dose-limites, control of chemical mutagens in the environment has not reached that advanced stage as that of radiation. In this situation, the radiation safety standards currently in use should be retained at their present levels. (M.G.B.)

  7. Basic Safety Standards for Radiation Protection

    International Nuclear Information System (INIS)

    1962-01-01

    Pursuant to the provisions of its Statute relevant to the adoption and application of safety standards for protection against radiation, the Agency convened a panel of experts which formulated the Basic Safety Standards set forth in this publication. The panel met under the chairmanship of Professor L. Bugnard, Director of the French Institut National d'Hygiene, and representatives of the United Nations and of several of its specialized agencies participated in its work. The Basic Safety Standards thus represent the result of a most careful assessment of the variety of complex scientific and administrative problems involved. Nevertheless, of course, they will need to be revised from time to time in the light of advances in scientific knowledge, of comments received from Member States and of the work of other competent international organizations. The Agency's Board of Governors in June 1962 approved the Standards as a first edition, subject to later revision as mentioned above, and authorized Director General Sigvard Eklund to apply the Standards in Agency and Agency-assisted operations and to invite Governments of Member States to take them as a basis in formulating national regulations or recommendations on protection against the dangers arising from ionizing radiations. It is mainly for this last purpose that the Basic Safety Standards are now being published in the Safety Series; but it is hoped that this publication will also interest a much wider circle of readers.

  8. The safe transport of radioactive materials

    CERN Document Server

    Gibson, R

    1966-01-01

    The Safe Transport of Radioactive Materials is a handbook that details the safety guidelines in transporting radioactive materials. The title covers the various regulations and policies, along with the safety measures and procedures of radioactive material transport. The text first details the 1963 version of the IAEA regulation for the safe transport of radioactive materials; the regulation covers the classification of radionuclides for transport purposes and the control of external radiation hazards during the transport of radioactive materials. The next chapter deals with concerns in the im

  9. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  10. Radiation safety program in high dose rate brachytherapy facility at INHS Asvini

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Brachytherapy concerns primarily the use of radioactive sealed sources which are inserted into catheters or applicators and placed directly into tissue either inside or very close to the target volume. The use of radiation in treatment of patients involves both benefits and risks. It has been reported that early radiation workers had developed radiation induced cancers. These incidents lead to continuous work for the improvement of radiation safety of patients and personnel The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. The widespread adoption of high dose rate brachytherapy needs appropriate quality assurance measures to minimize the risks to both patients and medical staff. The radiation safety program covers five major aspects: quality control, quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. This paper will discuss the radiation safety program developedfor a high dose rate brachytherapy facility at our centre which may serve as a guideline for other centres intending to install a similar facility.

  11. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  12. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  13. Basic safety standards for radiation protection. 1982 ed

    International Nuclear Information System (INIS)

    1982-01-01

    The International Atomic Energy Agency, the World Health Organization, the International Labour Organisation and the Nuclear Energy Agency of the OECD have undertaken to provide jointly a world-wide basis for harmonized and up-to-date radiation protection standards. The new Basic Safety Standards for Radiation Protection are based upon the latest recommendations by the International Commission on Radiological Protection (ICRP) which are essentially contained in its Publication No.26. These new Basic Safety Standards have been elaborated by an Advisory Group of Experts which met in Vienna from 10-14 October 1977, from 23-27 October 1978 and from 1-12 December 1980 under the joint auspices of the IAEA, ILO, WHO and the Nuclear Energy Agency of the OECD. Comments on the draft Basic Safety Standards received from Member States and relevant organizations were taken into account by the Advisory Group in the process of preparation of the revised Basic Safety Standards for Radiation Protection, which are published by the IAEA on behalf of the four sponsoring organizations. One of the main features of this revision is an increased emphasis on the recommendation to keep all exposures to ionizing radiation as low as reasonably achievable, economic and social factors being taken into account; consequently, radiation protection should not only apply the basic dose limits but also comply with this recommendation. Detailed guidance is given to assist those who have to decide on the implementation of this recommendation in particular cases. Another important feature is the recommendation of a more coherent method for achieving consistency in limiting risks to health, irrespective of whether the risk is of uniform or non-uniform exposure of the body.

  14. DIAPHANE: A portable radiation transport library for astrophysical applications

    Science.gov (United States)

    Reed, Darren S.; Dykes, Tim; Cabezón, Rubén; Gheller, Claudio; Mayer, Lucio

    2018-05-01

    One of the most computationally demanding aspects of the hydrodynamical modelingof Astrophysical phenomena is the transport of energy by radiation or relativistic particles. Physical processes involving energy transport are ubiquitous and of capital importance in many scenarios ranging from planet formation to cosmic structure evolution, including explosive events like core collapse supernova or gamma-ray bursts. Moreover, the ability to model and hence understand these processes has often been limited by the approximations and incompleteness in the treatment of radiation and relativistic particles. The DIAPHANE project has focused on developing a portable and scalable library that handles the transport of radiation and particles (in particular neutrinos) independently of the underlying hydrodynamic code. In this work, we present the computational framework and the functionalities of the first version of the DIAPHANE library, which has been successfully ported to three different smoothed-particle hydrodynamic codes, GADGET2, GASOLINE and SPHYNX. We also present validation of different modules solving the equations of radiation and neutrino transport using different numerical schemes.

  15. Assessment by peer review of the effectiveness of a regulatory programme for radiation safety. Interim report for comment; Evaluacion mediante examen por pares de la efectividad de un programa regulador para la seguridad radiologica. Informe provisional para formular comentarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    This document covers assessment of those aspects of a radiation protection and safety infrastructure that are implemented by the Regulatory Authority for radiation sources and practices using such sources and necessarily includes those ancillary technical services, such as dosimetry services, which directly affect the ability of the Regulatory Authority to discharge its responsibilities. The focus of the guidance in this TECDOC is on assessment of a regulatory programme intended to implement the BSS. The BSS address transportation and waste safety mainly by reference to other IAEA documents. When conducting an assessment, the Review Team members should be aware of the latest IAEA documents (or similar national documents) concerning transportation and waste safety and, if appropriate, nuclear safety, and take them into account to the extent applicable when assessing the effectiveness of the regulatory programme governing radiation protection and safety of radiation source practices in a particular State.

  16. Radiation in the human environment: health effects, safety and acceptability

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1990-01-01

    This paper reports selectively on three other aspects of radiation (used throughout to mean ionizing radiation) in the human environment: the human health effects of radiation, radiation safety policy and practices, and the acceptability of scientifically justified practices involving radiation exposures. Our argument is that the science of radiation biology, the judgemental techniques of radiation safety, and the social domain of radiation acceptability express different types of expertise that should complement - and not conflict with or substitute for - one another. Unfortunately, communication problems have arisen among these three communities and even between the various disciplines represented within a community. These problems have contributed greatly to the misperceptions many people have about radiation and which are frustrating a constructive dialogue on how radiation can be harnessed to benefit mankind. Our analysis seeks to assist those looking for a strategic perspective from which to reflect on their interaction with practices involving radiation exposures. (author)

  17. Radiation Safety (General) Regulations 1983 (Western Australia)

    International Nuclear Information System (INIS)

    1983-01-01

    The provisions of the Regulations cover, inter alia, the general precautions and requirements relating to radiation safety of the public and radiation workers and registration of irradiating apparatus or premises on which such apparatus is operated. In addition, the Regulations set forth requirements for the operation of such apparatus and for the premises involved. (NEA) [fr

  18. Los Alamos radiation transport code system on desktop computing platforms

    International Nuclear Information System (INIS)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines

  19. The USERDA transport R and D program for environment and safety

    International Nuclear Information System (INIS)

    Sisler, J.A.

    1976-01-01

    This paper describes the U.S. Energy Research and Development Administration's (ERDA) transportation environment and safety research and development program for energy fuels and wastes, including background, current activities, and future plans. It will serve as an overview and integrating factor for the several related technical papers to be presented at this meeting which will enlarge on the detail of specific projects. The transportation R and D program provides for the environmental and safety review of transport systems and procedures; standards development; and package, vehicle, and systems testing for nuclear materials transport. A primary output of the program is the collection, processing, and dissemination of transport environment and safety data, shipment statistics, and technical information. Special transport projects which do not easily fit elsewhere in ERDA are usually done as a part of this program. (author)

  20. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin T [ORNL; Hamilton, Steven P [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Pugmire, Dave [ORNL; Dilts, Gary [Los Alamos National Laboratory (LANL); Banfield, James E [ORNL

    2012-02-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  1. Radiation protection and radiation safety: CERN and its host states to sign a tripartite agreement.

    CERN Multimedia

    2010-01-01

    On 15 November CERN and its Host States will sign a tripartite agreement that replaces the existing bilateral agreements in matters of radiation protection and radiation safety at CERN. It will provide, for the first time, a single forum where the three parties will discuss how maximum overall safety can best be achieved in the specific CERN context.   CERN has always maintained close collaboration with its Host States in matters of safety. “The aim of this collaboration is especially to ensure best practice in the field of radiation protection and the safe operation of CERN’s facilities”, explains Ralf Trant, Head of the Occupational Health & Safety and Environmental Protection (HSE) Unit. Until today, CERN’s collaboration with its Host States was carried out under two sets of bilateral agreements: depending on which side of the French-Swiss border they were being carried out on, a different framework applied to the same activities. This approach has b...

  2. Construction of data base for radiation safety assessment of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Saigusa, Shin

    2001-01-01

    Data base with an electronic text on the safety assessment of low dose ionizing radiation have been constructed. The contents and the data base system were designed to provide useful information to Japanese citizens, radiation specialists, and decision makers for a scientific and reasonable understanding of radiation health effects, radiation risk assessment, and radiation protection. The data base consists of the following four essential parts, namely, ORIGINAL DESCRIPTION, DETAILED INFORMATION, TOPIC INFORMATION, and RELATED INFORMATION. The first two parts of the data base are further classified into following subbranches: Radiobiological effects, radiation risk assessment, and radiation exposure and protection. (author)

  3. 49 CFR 209.501 - Review of rail transportation safety and security route analysis.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Review of rail transportation safety and security....820 § 209.501 Review of rail transportation safety and security route analysis. (a) Review of route... establish that the route chosen by the carrier poses the least overall safety and security risk, the...

  4. X-ray and nuclear radiation facilities: personnel safety features

    International Nuclear Information System (INIS)

    Mason, W.J.; Pipes, E.W.; Rucker, T.R.; Smith, D.N.; West, C.M.

    1976-10-01

    The Oak Ridge Y-12 Plant is a research and production installation. The nature and versatility of this work require the use of a large number and variety of x-ray and radiographic sources for nondestructive testing and material analyses. Presently, there are over 80 x-ray generators in the plant, which range in size from small, portable units which operate at a less than 50 kilovolts potential and 0.1 milliampere current to an electron linear accelerator which operates at 12-million electron volts and produces a radiation beam of such intensity that it could deliver a lethal dose to man in a fraction of a minute. There are also almost 50 gamma and neutron sources in use in the plant. These units range in size from a few millicuries to several hundred curies. Although the radiation safety at each of these facilities was considered adequate, the administrative and maintenance procedures became unduly complicated. Accordingly, engineering standards and uniform operating procedures were considered necessary to alleviate these complications and, in so doing, provide an improved measure of radiation safety. Development and implementation of these standards are described and the general philosophy and approach to these standards are outlined. Use of a matrix (type of installation versus radiation safety feature) to facilitate equipment classification and personnel safety feature requirements is presented. Included is a set of the standards showing formats, matrices, etc., and the detailed standards for each safety feature

  5. The Radiation Safety Interlock System for Top-Up Mode Operation at NSRRC

    CERN Document Server

    Chen Chien Rong; Kao, Sheau-Ping; Liu, Joseph; Sheu, Rong-Jiun; Wang, Jau-Ping

    2005-01-01

    The radiation safety interlock systems of NSRRC have been operated for more than a decade. Some modification actions have been implemented in the past to perfect the safe operation. The machine and its interlock system were originally designed to operate at the decay mode. Recently some improvement programs to make the machine injection from original decay mode to top-up mode at NSRRC has initiated. For users at experimental area the radiation dose resulted from top-up re-fill injections where safety shutters of beam-lines are opened will dominate. In addition to radiation safety action plans such as upgrading the shielding, enlarging the exclusion zones and improving the injection efficiency, the interlock system for top-up operation is the most important to make sure that injection efficiency is acceptable. To ensure the personnel radiation safety during the top-up mode, the safety interlock upgrade and action plans will be implemented. This paper will summarize the original design logic of the safety inter...

  6. Parallel thermal radiation transport in two dimensions

    International Nuclear Information System (INIS)

    Smedley-Stevenson, R.P.; Ball, S.R.

    2003-01-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  7. Parallel thermal radiation transport in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, R.P.; Ball, S.R. [AWE Aldermaston (United Kingdom)

    2003-07-01

    This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)

  8. Winning public confidence in radiation safety standards

    International Nuclear Information System (INIS)

    Skelcher, B.W.

    1982-01-01

    Evaluations using cost/benefit analysis and the ALARA principle should take account of psychological as well as material considerations. Safety is a basic human need which has to be met. It is also subjective and therefore has to be understood by the individual. The professional health physicist has a duty to see that radiation safety is understood by the general public. (author)

  9. Radiation safety considerations and compliance within equine veterinary clinics: Results of an Australian survey

    International Nuclear Information System (INIS)

    Surjan, Y.; Ostwald, P.; Milross, C.; Warren-Forward, H.

    2015-01-01

    Objective: To examine current knowledge and the level of compliance of radiation safety principles in equine veterinary clinics within Australia. Method: Surveys were sent to equine veterinary surgeons working in Australia. The survey was delivered both online and in hardcopy format; it comprised 49 questions, 15 of these directly related to radiation safety. The participants were asked about their current and previous use of radiation-producing equipment. Information regarding their level of knowledge and application of radiation safety principles and practice standards was collected and analysed. Results: The use of radiation-producing equipment was evident in 94% of responding clinics (a combination of X-ray, CT and/or Nuclear Medicine Cameras). Of those with radiation-producing equipment, 94% indicated that they hold a radiation licence, 78% had never completed a certified radiation safety course and 19% of participants did not use a personal radiation monitor. In 14% of cases, radiation safety manuals or protocols were not available within clinics. Conclusions: The study has shown that knowledge and application of guidelines as provided by the Code of Practice for Radiation Protection in Veterinary Medicine (2009) is poorly adhered to. The importance of compliance with regulatory requirements is pivotal in minimising occupational exposure to ionising radiation in veterinary medicine, thus there is a need for increased education and training in the area. - Highlights: • Application of the Code of Practice for Veterinary Medicine is poorly adhered to. • Majority of veterinary clinics had not completed certified radiation safety course. • One-fifth of participants did not use personal radiation monitoring. • Increased education and training in area of radiation safety and protection required to generate compliance in clinics

  10. Topical issues in nuclear, radiation and radioactive waste safety. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The IAEA International Conference on Topical Issues in Nuclear, Radiation and Radioactive Waste Safety was held in Vienna, Austria, 30 August - 4 September 1998 with the objective to foster the exchange of information on topical issues in nuclear, radiation and radioactive waste safety, with the aim of consolidating an international consensus on: the present status of these issues; priorities for future work; and needs for strengthening international co-operation, including recommendations for the IAEA`s future activities. The document includes 43 papers presented at the Conference dealing with the following topical issues: Safety Management; Backfitting, Upgrading and Modernization of NPPs; Regulatory Strategies; Occupational Radiation Protection: Trends and Developments; Situations of Chronic Exposure to Residual Radioactive Materials: Decommissioning and Rehabilitation and Reclamation of Land; Radiation Safety in the Far Future: The Issue of Long Term Waste Disposal. A separate abstract and indexing were provided for each paper. Refs, figs, tabs

  11. Topical issues in nuclear, radiation and radioactive waste safety. Contributed papers

    International Nuclear Information System (INIS)

    1998-08-01

    The IAEA International Conference on Topical Issues in Nuclear, Radiation and Radioactive Waste Safety was held in Vienna, Austria, 30 August - 4 September 1998 with the objective to foster the exchange of information on topical issues in nuclear, radiation and radioactive waste safety, with the aim of consolidating an international consensus on: the present status of these issues; priorities for future work; and needs for strengthening international co-operation, including recommendations for the IAEA's future activities. The document includes 43 papers presented at the Conference dealing with the following topical issues: Safety Management; Backfitting, Upgrading and Modernization of NPPs; Regulatory Strategies; Occupational Radiation Protection: Trends and Developments; Situations of Chronic Exposure to Residual Radioactive Materials: Decommissioning and Rehabilitation and Reclamation of Land; Radiation Safety in the Far Future: The Issue of Long Term Waste Disposal. A separate abstract and indexing were provided for each paper

  12. Radiation protection and safety in the Australian Defence Organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.

    1995-01-01

    Very few organisations have to address such a diverse and complex range of radiation safety matters as the Australian Defence Organisation. The Australian Defence Force and the Department of Defence (its military and civilian branches) have to comply with strict regulations in normal peace time activities. The Surgeon-General, to whom responsibility for policy in radiation protection and safety falls, has established a Defence Radiation Safety Committee, which in turn oversees four specialist subcommittees. Their tasks include recommending policy and doctrine in relation to radiation safety, overseeing the implementation of appropriate regulations, monitoring their compliance. generating the relevant documentation (particularly on procedures to be followed), developing and improving any necessary training courses, and providing sound technical advice whenever and to whomever required. The internal Defence regulations do not permit radiation doses to exceed those limits recommended by the Australian National Health and Medical Research Council and precautions are taken to ensure during normal peace time duties that these levels are not exceeded. At times of national emergency, the Surgeon-General provides guidance and advice to military commanders on the consequences of receiving dose levels that would not be permitted during normal peace time activities. The paper describes the methods adopted to implement such arrangements

  13. Health and safety manual

    International Nuclear Information System (INIS)

    1980-02-01

    The manual consists of the following chapters: general policies and administration; the Environmental Health and Safety Department; the Medical Services Department: biological hazards; chemical safety; confined space entry; cryogenic safety; electrical safety; emergency plans; engineering and construction; evacuations, trenching, and shoring; fire safety; gases, flammable and compressed; guarding, mechanical; ladders and scaffolds, work surfaces; laser safety; materials handling and storage; noise; personal protective equipment; pressure safety; radiation safety, ionizing and non-ionizing; sanitation; seismic safety; training, environmental health and safety; tools, power and hand-operated; traffic and transportation; and warning signs and devices

  14. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    International Nuclear Information System (INIS)

    Yunus, N A; Abdullah, M H R O; Said, M A; Ch'ng, P E

    2014-01-01

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia

  15. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    Science.gov (United States)

    Yunus, N. A.; Abdullah, M. H. R. O.; Said, M. A.; Ch'ng, P. E.

    2014-11-01

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia.

  16. Radiation safety training for industrial irradiators: What are we trying to accomplish?

    International Nuclear Information System (INIS)

    Smith, M.A.

    1998-01-01

    Radiation safety training at an industrial irradiator facility takes a different approach than the traditional methods and topics used at other facilities. Where the more routine industrial radiation users focus on standard training topics of contamination control, area surveys, and the traditional dogma of time, distance, and shielding, radiation safety in an industrial irradiation facility must be centered on preventing accidents. Because the primary methods for accomplishing that goal are engineering approaches such as safety system interlocks, training provided to facility personnel should address system operation and emergency actions. This presents challenges in delivering radiation safety training to an audience of varied educational and technical background where little to no commercially available training material specific to this type of operation exists

  17. Radiation inactivation studies of renal brush border water and urea transport

    International Nuclear Information System (INIS)

    Verkman, A.S.; Dix, J.A.; Seifter, J.L.; Skorecki, K.L.; Jung, C.Y.; Ausiello, D.A.

    1985-01-01

    Radiation inactivation was used to determine the nature and molecular weight of water and urea transport pathways in brush border membrane vesicles (BBMV) isolated from rabbit renal cortex. BBMV were frozen to -50 degrees C, irradiated with 1.5 MeV electrons, thawed, and assayed for transport or enzyme activity. The freezing process had no effect on enzyme or transport kinetics. BBMV alkaline phosphatase activity gave linear ln(activity) vs. radiation dose plots with a target size of 68 +/- 3 kDa, similar to previously reported values. Water and solute transport were measured using the stopped-flow light-scattering technique. The rates of acetamide and osmotic water transport did not depend on radiation dose (0-7 Mrad), suggesting that transport of these substances does not require a protein carrier. In contrast, urea and thiourea transport gave linear ln(activity) vs. dose curves with a target size of 125-150 kDa; 400 mM urea inhibited thiourea flux by -50% at 0 and 4.7 Mrad, showing that radiation does not affect inhibitor binding to surviving transporters. These studies suggest that BBMV urea transport requires a membrane protein, whereas osmotic water transport does not

  18. Internet applications in radiation safety

    International Nuclear Information System (INIS)

    Hill, P.; Geisse, C.; Wuest, E.

    1998-01-01

    As a means of effective communication the Internet is presently becoming more and more important in German speaking countries, too. Its possibilities to exchange and to obtain information efficiently and rapidly are excellent. Internet and email access are available now in most institutions for professional use. Internet services of importance to radiation safety professionals are described. (orig.) [de

  19. Nuclear safety and radiation protection report of the nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  20. Nuclear and radiation safety in Kazakhstan

    International Nuclear Information System (INIS)

    Kim, A.A.

    2001-01-01

    Major factors by which the radiation situation in Kazakhstan is formed are: enterprises of nuclear fuel cycle, including uranium mining and milling activity and geological exploration of uranium; nuclear power plant and research reactors; residues of atmospheric and underground nuclear explosions, which were conducted for military and peaceful purposes at different test sites; mining and milling of commercial minerals accompanied by radioactive substances; use of radioactive sources in industry, medicine, agriculture and scientific research. Since 1991, after getting sovereignty, creation was started of an own legislative basis of the country for the field of atomic energy use. It includes laws, regulations and standards for nuclear and radiation safety of nuclear installations, personnel, involved in the activity with using of atomic energy, population and environment. An applicable system of state regulation in this area (including a central regulatory body in the field of atomic energy use) and various ministries, agencies and committees, was created. As a result of these reforms, regulatory activities were improved in the country. This paper presents the current matters of nuclear and radiation safety in Kazakhstan and some difficulties which Kazakhstan encountered during the transition to an independent state. (author)

  1. Radioactive wastes transport. A safety logic

    International Nuclear Information System (INIS)

    2005-01-01

    The safety principle which applies to transport operations of radioactive wastes obeys to a very strict regulation. For the conditioning of wastes in package, the organisation of shipments and the qualification of carriers, the ANDRA, the French national agency of radioactive wastes, has implemented a rigorous policy based on the respect of a quality procedure and on the mastery of delivery fluxes. This brochure presents in a simple, illustrated and detailed manner the different steps of these transports. (J.S.)

  2. Transport safety research abstracts. No. 1

    International Nuclear Information System (INIS)

    1991-07-01

    The Transport Safety Research Abstracts is a collection of reports from Member States of the International Atomic Energy Agency, and other international organizations on research in progress or just completed in the area of safe transport of radioactive material. The main aim of TSRA is to draw attention to work that is about to be published, thus enabling interested parties to obtain further information through direct correspondence with the investigators. Information contained in this issue covers work being undertaken in 6 Member States and contracted by 1 international organization; it is hoped with succeeding issues that TSRA will be able to widen this base. TSRA is modelled after other IAEA publications describing work in progress in other programme areas, namely Health Physics Research Abstracts (No. 14 was published in 1989), Waste Management Research Abstracts (No. 20 was published in 1990), and Nuclear Safety Research Abstracts (No. 2 was published in 1990)

  3. A concept of radiation safety in radiodiagnosis and radiotherapy

    International Nuclear Information System (INIS)

    Stavitskij, R.V.; Vasil'ev, V.N.; Lebedev, L.A.; Blinov, N.N.

    1991-01-01

    Conceptual problems of up to date radiation safety dosimetric ensurance in radiation diagnostics and radiotherapy of nontumor diseases are as follows: selection of dosimetric criteria of nonequilibrium radiation influence with an account of probable remote radiation aftereffects; determination of dose-response dependence character by low radiation doses; development of optimal technological principles for radiation diagnostics and therapy; development of organizational and methodical approaches to decreasing dose loads by radiation diagnostics and therapy of nontumor diseases; optimization of studies by ALARA principle

  4. Operations report 1985 of the Department of Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Hille, R.; Frenkler, K.L.

    1986-04-01

    Under the heading 'Licensing' the report deals with licensing procedures and the handling of nuclear-fuels and radioactive materials. Operational radiation protection is concerned with operational and personnel monitoring, mathematical methods and safety analyses. Environmental protection deals with emission control, immission monitoring and meteorological measurements, and safety technology with α/β-analysis, dosimetry, equipment servicing and mechanics, nuclear material safeguards. Other subdepartments take care of industrial safety, physical protection, emergency protection and training. Subjects dealt with, too, are dispersion pollutants in atmosphere and environment, further development of radiation protection methods, and the bibliography of radiation protection in KFA. (HK) [de

  5. Safety and health annual report 1996

    International Nuclear Information System (INIS)

    1997-01-01

    The 1996 report on the Health and Safety performance of the nuclear fuel cycle company BNFL at its sites in the United Kingdom demonstrates a continuing improvement. The site locations and developments are briefly described and international developments in subsidiary organisations noted. Other sections of the report cover health and safety policy, radiological and industrial safety, emergency planning, incidents, occupational health services, compensation scheme developments, transport, putting radiation in perspective, and safety and health research. Data are provided on: radioactive discharges; industrial safety of BNFL and contractors' employees; radiation dose summaries for BNFL and contractors' employees. There is evidence of the expected plateauing out of doses to BNFL employees at a level less than or similar to background radiation. (UK)

  6. Computer-based and web-based radiation safety training

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C., LLNL

    1998-03-01

    The traditional approach to delivering radiation safety training has been to provide a stand-up lecture of the topic, with the possible aid of video, and to repeat the same material periodically. New approaches to meeting training requirements are needed to address the advent of flexible work hours and telecommuting, and to better accommodate individuals learning at their own pace. Computer- based and web-based radiation safety training can provide this alternative. Computer-based and web- based training is an interactive form of learning that the student controls, resulting in enhanced and focused learning at a time most often chosen by the student.

  7. Geosphere transport of radionuclides in safety assessment of spent fuel disposal

    Energy Technology Data Exchange (ETDEWEB)

    Jussila, P

    2000-07-01

    The study is associated with a research project of Radiation and Nuclear Safety Authority (STUK) to utilise analytical models in safety assessment for disposal of spent nuclear fuel. Geosphere constitutes a natural barrier for the possible escape of radionuclides from a geological repository of spent nuclear fuel. However, rock contains fractures in which flowing groundwater can transport material. Radionuclide transport in rock is complicated - the flow paths in the geosphere are difficult to characterise and there are various phenomena involved. In mathematical models, critical paths along which radionuclides can reach the biosphere are considered. The worst predictable cases and the effect of the essential parameters can be assessed with the help of such models although they simplify the reality considerably. Some of the main differences between the transport model used and the reality are the mathematical characterisation of the flow route in rock as a smooth and straight fracture and the modelling of the complicated chemical processes causing retardation with the help of a distribution coefficient that does not explain those phenomena. Radionuclide transport models via a heat transfer analogy and analytical solutions of them are derived in the study. The calculations are performed with a created Matlab program for a single nuclide model taking into account 1D advective transport along a fracture, 1D diffusion from the fracture into and within the porous rock matrices surrounding the fracture, retardation within the matrices, and radioactive decay. The results are compared to the results of the same calculation cases obtained by Technical Research Centre of Finland (VTT) and presented in TILA-99 safety assessment report. The model used by VTT is the same but the results have been calculated numerically in different geometry. The differences between the results of the present study and TILA-99 can to a large extent be explained by the different approaches to

  8. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  9. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-06-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  10. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  11. Code of practice for safety in laboratory - non ionising radiation

    International Nuclear Information System (INIS)

    Ramli Jaya; Mohd Yusof Mohd Ali; Khoo Boo Huat; Khatijah Hashim

    1995-01-01

    The code identifies the non-ionizing radiation encountered in laboratories and the associated hazards. The code is intended as a laboratory standard reference document for general information on safety requirements relating to the usage of non-ionizing radiations in laboratories. The nonionizing radiations cover in this code, namely, are ultraviolet radiation, visible light, radio-frequency radiation, lasers, sound waves and ultrasonic radiation. (author)

  12. Radiation safety infrastructure in developing countries: a proactive approach for integrated and continuous improvement

    International Nuclear Information System (INIS)

    Mrabit, Khammar

    2008-01-01

    The International Atomic Energy Agency (the Agency) is authorized, by its statute, to establish or adopt safety standards for the protection of health and minimization of danger to life and property, and to provide for their application to its own operations as well as to operations under its control or supervision. The Agency has been assisting, since the mid 1960 's, its Member States through mainly its Technical Cooperation Programme (TCP) to improve their national radiation safety infrastructures. However up to the early nineties, assistance was specific and mostly ad hoc and did not systematically utilize an integrated and harmonized approach to achieving effective and sustainable national radiation safety infrastructures in Member States. An unprecedented and integrated international cooperative effort was launched by the Agency in 1994 to establish and/or upgrade the national radiation safety infrastructure in more than 90 countries within the framework of its TCP through the so-called Model project on upgrading radiation protection infrastructure. In this project proactive co-operation with Member States was used in striving towards achieving an effective and sustainable radiation safety infrastructure, compatible with the International basic safety standards for protection against ionizing radiation and for the safety of radiation sources (the BSS) and related standards. Extension to include compatibility with the guidance of the Code of Conduct on the Safety and Security of Radioactive Sources occurred towards the end of the Model Project in December 2004, and with the more recent ensuing follow up projects that started in 2005. The Model Project started with 5 countries in 1994 and finished with 91 countries in 2004. Up to the end of 2007 more than one hundred Member States had been participating in follow up projects covering six themes - namely: legislative and regulatory infrastructure; occupational radiation protection; radiation protection in

  13. Two-dimensional radiation shielding optimization analysis of spent fuel transport container

    International Nuclear Information System (INIS)

    Tian Yingnan; Chen Yixue; Yang Shouhai

    2013-01-01

    The intelligent radiation shielding optimization design software platform is a one-dimensional multi-target radiation shielding optimization program which is developed on the basis of the genetic algorithm program and one-dimensional discrete ordinate program-ANISN. This program was applied in the optimization design analysis of the spent fuel transport container radiation shielding. The multi-objective optimization calculation model of the spent fuel transport container radiation shielding was established, and the optimization calculation of the spent fuel transport container weight and radiation dose rate was carried by this program. The calculation results were checked by Monte-Carlo program-MCNP/4C. The results show that the weight of the optimized spent fuel transport container decreases to 81.1% of the origin and the radiation dose rate decreases to below 65.4% of the origin. The maximum deviation between the calculated values from the program and the MCNP is below 5%. The results show that the optimization design scheme is feasible and the calculation result is correct. (authors)

  14. Behavior and awareness of thyroid cancer patients in Korea having non-hospitalized low-dose radioiodine treatment with regard to radiation safety

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seog Gyun; Paeng, Jin Chul; Eo, Jae Seon; Shim, Hye Kyung; Kang, Keon Wook; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2010-12-15

    With the recent increase in incidence of thyroid cancer, non-hospitalized low-dose (NH-LD) radioiodine treatment (RIT) has also increased rapidly. The radioactivity limit that is allowed to be administered without hospitalization depends on individual calculation, based partly on patients' behavior. In this study, Korean patients' behavior in relation to radiation safety in NHLD RIT was surveyed. A total of 218 patients who underwent NH-LD RIT of 1.1 GBq {sup 131}I in a single center were surveyed. The patients underwent RIT with a standard protocol and the survey was performed by interview when they visited subsequently for a whole-body scan. The survey questionnaire included three parts of questions: general information, behavior relating to isolation during RIT, and awareness of radiation safety. After administration of radioiodine, 40% of patients who returned home used mass transportation, and another 47% went home by taxi or in car driven by another person. Isolation at home was generally sufficient. However, 7% of patients did not stay in a separate room. Among the 218 patients, 34% did not go home and chose self-isolation away from home, mostly due to concerns about radiation safety of family members. However, the places were mostly public places, including hotels, resorts, and hospitals. About half of the patients replied that access to radiation safety information was not easy and their awareness of radiation safety was not satisfactory. As a result, 45% of patients wanted hospitalized RIT. In many countries, including Korea, RIT is continuously increasing. Considering the radiation safety of patients' family members or the public and the convenience of patients, the pretreatment education of patients should be enhanced. In addition, the hospitalization of patients having low-dose therapy is recommended to be seriously considered and expanded, with the expansion of dedicated treatment facilities

  15. Behavior and awareness of thyroid cancer patients in Korea having non-hospitalized low-dose radioiodine treatment with regard to radiation safety

    International Nuclear Information System (INIS)

    Kim, Seog Gyun; Paeng, Jin Chul; Eo, Jae Seon; Shim, Hye Kyung; Kang, Keon Wook; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo

    2010-01-01

    With the recent increase in incidence of thyroid cancer, non-hospitalized low-dose (NH-LD) radioiodine treatment (RIT) has also increased rapidly. The radioactivity limit that is allowed to be administered without hospitalization depends on individual calculation, based partly on patients' behavior. In this study, Korean patients' behavior in relation to radiation safety in NHLD RIT was surveyed. A total of 218 patients who underwent NH-LD RIT of 1.1 GBq 131 I in a single center were surveyed. The patients underwent RIT with a standard protocol and the survey was performed by interview when they visited subsequently for a whole-body scan. The survey questionnaire included three parts of questions: general information, behavior relating to isolation during RIT, and awareness of radiation safety. After administration of radioiodine, 40% of patients who returned home used mass transportation, and another 47% went home by taxi or in car driven by another person. Isolation at home was generally sufficient. However, 7% of patients did not stay in a separate room. Among the 218 patients, 34% did not go home and chose self-isolation away from home, mostly due to concerns about radiation safety of family members. However, the places were mostly public places, including hotels, resorts, and hospitals. About half of the patients replied that access to radiation safety information was not easy and their awareness of radiation safety was not satisfactory. As a result, 45% of patients wanted hospitalized RIT. In many countries, including Korea, RIT is continuously increasing. Considering the radiation safety of patients' family members or the public and the convenience of patients, the pretreatment education of patients should be enhanced. In addition, the hospitalization of patients having low-dose therapy is recommended to be seriously considered and expanded, with the expansion of dedicated treatment facilities

  16. Providing current radiation safety according to new version of 'Ukrytie' object regulation

    International Nuclear Information System (INIS)

    Borovoj, A.A.; Vysotskij, E.D.; Krinitsyn, A.P.; Bogatov, S.A.

    1999-01-01

    Main provisions are given of the 'Ukryttia' object's Regulation related to provision of radiation safety during the object's operation. The safety is provided due to the realization by the object's personnel of functions of global monitoring of current radiation conditions, as well as of the measures of operative or preventive suppression of radiation abnormalities sources

  17. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    International Nuclear Information System (INIS)

    1994-01-01

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs

  18. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs.

  19. Proceeding of Radiation Safety and Environment; Prosiding Presentasi Ilmiah Keselamatan Radiasi dan Lingkungan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Scientific Presentation of Radiation Safety and Environment was held on 20-21 august 1996 at Center of Research Atomic Energy Pasar Jum'at, Jakarta, Indonesia. Have presented 50 papers about Radiation Safety, dosimetry and standardization, environment protection and radiation effect.

  20. Transport fire safety engineering in the European Union - project TRANSFEU

    Directory of Open Access Journals (Sweden)

    Jolanta Maria RADZISZEWSKA-WOLIŃSKA

    2011-01-01

    Full Text Available Article presents European Research project (of FP7-SST-2008-RTD-1 for Surface transportation TRANSFEU. Projects undertakes to deliver both a reliable toxicity measurement methodology and a holistic fire safety approach for all kind of surface transport. It bases on a harmonized Fire Safety Engineering methodology which link passive fire security with active fire security mode. This all embracing system is the key to attain optimum design solutions in respect to fire safety objectives as an alternative to the prescriptive approach. It will help in the development of innovative solutions (design and products used for the building of the surface transport which will better respect the environment.In order to reach these objectives new toxicity measurement methodology and related classification of materials, new numerical fire simulation tools, fire test methodology (laboratory and full scale and a decisive tool to optimize or explore new design in accordance to the fire safety requirements will be developed.

  1. Modernization of safety system for the radiation facility for industrial sterilization

    International Nuclear Information System (INIS)

    Drndarevic, V.; Djuric, D.; Koturovic, A.; Arandjelovic, M.; Mikic, R.

    1995-01-01

    Modernization of the existing safety system of the radiation facility for industrial sterilization at the Vinca Institute of nuclear science is done. In order to improve radiation safety of the facility, the latest recommendations and requirements of IAEA have been implemented. Concept and design of the modernized system are presented. The new elements of the safety system are described and the improvements achieved by means of this modernization are pointed out. (author)

  2. The transport safety of radioactive matters; La surete des transports des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Landier, D.; Louet, Ch.A.; Robert, Ch. [Autorite de Surete Nucleaire, 75 - Paris (France); Binet, J. [Commission europeenne, DG Energie et transports, Bruxelles (Belgium); Malesys, P. [TN International, 75 - Paris (France); Pourade, C. [Societe Dangexpress, 78 - St Remy l' Honore (France); Le Meur, A.; Robert, M. [Societe Nationale des Chemins de fer Francais, 75 - Paris (France); Turquet de Beauregard, G.Y.; Hello, E. [CIS bio, 91 - Gif sur Yvette (France); Laumond, A. [Electricite de France (EDF), 75 - Paris (France); Regnault, Ph.; Gourlay, M. [AREVA NC, 78 - Velizy Villacoublay (France); Bruhl, G. [CEA Fontenay-aux-Roses, Dir. de la Protection et de la Surete Nucleaire, 92 (France); Malvache, P.; Dumesnil, J. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France); Cohen, B. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Sert, G. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Pain, M. [Ministere de l' Interieur, et de l' Amenagement du Territoire, Dir. de la Defense et la Securite Civiles, 75 - Paris (France); Green, L.; Hartenstein, M. [World Nuclear Transport Institute, London (United Kingdom); Stewart, J. [Ministere des Transport, Royaume Uni (United Kingdom); Cottens, E.; Liebens, M. [Agence Federale de Controle Nucleaire (Belgium); Marignac, Y. [Wise, 75 - Paris (France)

    2007-02-15

    Since the control of transport of radioactive materials was given to A.S.N. 10 years ago, A.S.N. has strengthened the radioactive material transport inspections, in particular of the designers, manufacturers, carriers and consignors. A.S.N. has implemented INES scale for incidents during transport. It has participated as much as possible to IAEA working groups in order to improve the international regulatory framework. And, supported by I.R.S.N., A.S.N. has performed a periodic safety review of existing package models and has approved new models incorporating innovative design features. Finally, A.S.N. has tested its emergency responses to procedures to an accident involving the transport of radioactive materials. All these actions taken together have led to improvement in and reinforcement of the safety culture among the transport operators; this has been acknowledged by a recent audit T.R.A.N.S.A.S. performed by IAEA. In spite of all these actions, there are not approved by the competent authority. As A.S.N. is in charge of every field in radioprotection, this should help to intensify the control. In addition, the different kinds of transport are also tackled as rail transport with S.N.C.F. radiological risk training, air transport through nuclear medicine. Some experience feedback are given such radioactive waste transport to the storage facilities in the Aube or how to protect the population after a nuclear transport incident with the O.R.S.E.C.-T.M.S. plans. (N.C.)

  3. Study of Radiation Shielding Analysis for Low-Intermediate Level Waste Transport Ship

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohyung; Lee, Unjang; Song, Yangsoo; Kim, Sukhoon; Ko, Jaehoon [Korea Nuclear Engineering and Service Corporation, Seoul (Korea, Republic of)

    2007-07-01

    In Korea, it is planed to transport Low-Intermediate Level Radioactive Waste (LILW) from each nuclear power plant site to Kyongju LILW repository after 2009. Transport through the sea using ship is one of the most prospective ways of LILW transport for current situation in Korea. There are domestic and international regulations for radiation dose limit for radioactive material transport. In this article, radiation shielding analysis for LILW transport ship is performed using 3-D computer simulation code, MCNP. As a result, the thickness and materials for radiation shielding walls next to cargo in the LILW transport ship are determined.

  4. Transport safety of irradiated fuel; Seguridad en el transporte de combustible irradiado.

    Energy Technology Data Exchange (ETDEWEB)

    Rosa Giménez, R. de la

    2016-07-01

    The complication of the transport of spent fuel is significant not only because of the danger of the transported good itself but also for the size of the package. The number of this kind of expeditions are supposed to increase considerably in the coming years, for that reason is necessary for specialized companies such as ETSA be prepared. To this end, ETSA has already implemented most of the measures necessary to ensure safety - security of transport, not only during its execution but throughout the preparation.

  5. The IAEA safety standards for radiation, waste and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.

    1997-01-01

    This paper presents a brief description of the standards for radiation, waste and nuclear safety established by the International Atomic Energy Agency (IAEA). It provides a historical overview of their development and also summarizes the standards' current preparation and review process. The final paragraphs offer an outlook on future developments. (author)

  6. Anticipated development of radiation safety corresponding to utilization of nuclear technology in Vietnam

    International Nuclear Information System (INIS)

    Tran, Toan Ngoc; Le, Thiem Ngoc

    2010-01-01

    In the past, due to the limited application of radiation and radioisotope in the national economic branches, radiation safety was not paid much attention to in Vietnam. However, according to the Strategy for Peaceful Utilization of Atomic Energy up to 2020 approved by the Prime Minister on January 3, 2006 the application of radiation and radioisotopes as well as nuclear power in Vietnam is expected increasing strongly and widely, then radiation safety should be developed correspondingly. This paper presents the history of radiation protection, the current status and prospect of utilization of atomic energy and the anticipated development of the national radiation safety system to meet the demand of utilization of nuclear technology in Vietnam. (author)

  7. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    International Nuclear Information System (INIS)

    Han, Eun Ok

    2007-01-01

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76±11.20, 90.55±8.59, 80.58±11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55±9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in married

  8. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of)

    2007-06-15

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76{+-}11.20, 90.55{+-}8.59, 80.58{+-}11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55{+-}9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in

  9. Use of implicit Monte Carlo radiation transport with hydrodynamics and compton scattering

    International Nuclear Information System (INIS)

    Fleck, J.A. Jr.

    1971-03-01

    It is shown that the combination of implicit radiation transport and hydrodynamics, Compton scattering, and any other energy transport can be simply carried out by a ''splitting'' procedure. Contributions to material energy exchange can be reckoned separately for hydrodynamics, radiation transport without scattering, Compton scattering, plus any other possible energy exchange mechanism. The radiation transport phase of the calculation would be implicit, but the hydrodynamics and Compton portions would not, leading to possible time step controls. The time step restrictions which occur on radiation transfer due to large Planck mean absorption cross-sections would not occur

  10. Safety and Health Perceptions in Work-related Transport Activities in Ghanaian Industries

    Directory of Open Access Journals (Sweden)

    Charles Atombo

    2017-06-01

    Conclusion: OSH culture is not fully complied in industries transport activities. This study, therefore, supports the use of safety seminars and training sessions for industry workers responsible for transport operations for better integration of safety standards.

  11. Worker safety for occupations affected by the use, transportation and storage of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    1994-07-01

    A study group under the auspices of the National Conference of State Legislatures (NCSL) Labor Committee and the High-level Radioactive Waste/Hazardous Materials Transportation Task Force examined worker protection and safety programs for occupations affected by the use, transportation and storage of radioactive and hazardous materials. Concern about the risks posed to people who live along spent nuclear fuel transportation routes has led to demands for redundant inspections of the transported spent fuel. It would also be prudent to examine the radiological risk to the inspectors themselves before state of federal regulations are promulgated which require redundant inspections. Other workers may also come close to a spent fuel cask during normal operations. The dose rate to which these inspectors and handlers are exposed is higher than the dose rate to which any other group is exposed during incident-free truck transportation and higher than the dose rate to the drivers when they are in the truck cab. This report consists of miscellaneous papers covering topics related to determining radiation doses to workers involved in the transport of radioactive materials

  12. Calculating the cost of research and Development in nuclear and radiation safety

    International Nuclear Information System (INIS)

    Matsulevich, N.Je.; Nosovs'ka, A.A.

    2010-01-01

    Methodological support assessing the cost of research and development in the area of nuclear and radiation safety regulation is considered. Basic methodological recommendations for determining labor expenditures for research and development in nuclear and radiation safety are provided.

  13. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  14. Nuclear safety and radiation protection report of Civaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  15. Nuclear safety and radiation protection report of Golfech nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  16. Nuclear safety and radiation protection report of Tricastin nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the Tricastin NPPs (INBs no. 87 and 88). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  17. Nuclear safety and radiation protection report of Penly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  18. Nuclear safety and radiation protection report of Cattenom nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  19. Nuclear safety and radiation protection report of Chooz nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  20. Nuclear safety and radiation protection report of Flamanville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  1. Nuclear safety and radiation protection report of Fessenheim nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  2. Report on the Uranium Mine Radiation Safety Course

    International Nuclear Information System (INIS)

    1987-06-01

    Since 1981 the Canadian Institute for Radiation Safety (CAIRS) has administered a semi-annual course on radiation safety in uranium mines under contract to and in consultation with the Atomic Energy Control Board (AECB). The course is intended primarily for representatives from mining companies, regulatory agencies, unions, and mine and mill workers. By the terms of its contract with the AECB, CAIRS is required to submit a report on each course it conducts. This is the report on the June 1987 course. It lists the course objectives and the timetable, outlines for each lecture, the lecturers' resumes, and the participants. The students' evaluations of the course are included

  3. Setting the standard: The IAEA safety standards set the global reference

    International Nuclear Information System (INIS)

    Williams, L.

    2003-01-01

    For the IAEA, setting and promoting standards for nuclear radiation, waste, and transport safety have been priorities from the start, rooted in the Agency's 1957 Statute. Today, a corpus of international standards are in place that national regulators and industries in many countries are applying, and more are being encouraged and assisted to follow them. Considerable work is done to keep safety standards updated and authoritative. They cover five main areas: the safety of nuclear facilities; radiation protection and safety of radiation sources; safe management of radioactive waste; safe transport of radioactive material; and thematic safety areas, such as emergency preparedness or legal infrastructures. Overall, the safety standards reflect an international consensus on what constitutes a high level of safety for protecting people and the environment. All IAEA Member States can nominate experts for the Agency standards committees and provide comments on draft standards. Through this ongoing cycle of review and feedback, the standards are refined, updated, and extended where needed

  4. Development of radiation safety monitoring system at gamma greenhouse gamma facility

    International Nuclear Information System (INIS)

    Hairul Nizam Idris; Azimawati Ahmad, Ahmad Zaki Hussain; Ahmad Fairuz Mohd Nasir

    2009-01-01

    This paper is discussing about installation of radiation safety monitoring system at Gamma Greenhouse Gamma facility, Agrotechnology and Bioscience Division (BAB). This facility actually is an outdoor type irradiation facility, which first in Nuclear Malaysia and the only one in Malaysia. Source Cs-137 (801 Curie) was use as radiation source and it located at the centre of 30 metres diameter size of open irradiation area. The radiation measurement and monitoring system to be equipped in this facility were required the proper equipment and devices, specially purpose for application at outside of building. Research review, literature study and discussion with the equipment manufacturers was being carried out, in effort to identify the best system should be developed. Factors such as tropical climate, environment surrounding and security were considered during selecting the proper system. Since this facility involving with panoramic radiation type, several critical and strategic locations have been fixed with radiation detectors, up to the distance at 200 meter from the radiation source. Apart from that, this developed system also was built for capable to provide the online real-time reading (using internet). In general, it can be summarized that the radiation safety monitoring system for outdoor type irradiation facility was found much different and complex compared to the system for indoor type facility. Keyword: radiation monitoring, radiation safety, Gamma Greenhouse, outdoor irradiation facility, panoramic radiation. (Author)

  5. The nuclear safety and the radiation protection in France in 2003

    International Nuclear Information System (INIS)

    2004-03-01

    Nine points are reviewed: the law project relative to the safety and openness in nuclear field, the safety of the European PWR type Reactor, the priorities in radiation protection, inspection of radiation protection, the surveillance of patients exposure to ionizing radiations, the hot days and dryness of summer 2003 and the functioning of nuclear power plant, the national planning of radioactive waste management, the becoming of high level and years living radioactive waste, the European nuclear policy. (N.C.)

  6. Safety of radiation sources in Slovenia

    International Nuclear Information System (INIS)

    Belicic-Kolsek, A.; Sutej, T.

    2001-01-01

    The Republic of Slovenia, a central European country which has been independent since 1991, has about 2 million inhabitants and an area of 20,256 km 2 . The Constitutional Law on Enforcement of the Basic Constitutional Charter on the Autonomy and Independence of the Republic of Slovenia, adopted on 23 June 1991 (Off. Gaz. of the R of Slovenia No. 1/91), provided that all the laws adopted by the Socialist Federal Republic (SFR) of Yugoslavia should remain in force in the Republic of Slovenia pending the adoption of appropriate legislation by the Slovene Parliament. Under the Slovene Constitution, all international treaties ratified by Slovenia constitute an integral part of Slovenia's legislation and can be applied directly. In Slovenia, all regular types of ionizing radiation source are being used for peaceful purposes and are covered by a system for their safe use and control. All radiation sources and radioactive materials are registered and under regulatory control. Inspections are carried out periodically by the Health Inspectorate of the Republic of Slovenia (HIRS) and, in the case of nuclear installations, the Slovene Nuclear Safety Administration (SNSA). Technical checks on radiation sources are carried out periodically by technical support organizations: the Jozef Stefan Institute and the Institute for Occupational Safety (IOS). (author)

  7. A collaborative effort of medical and educational facilities for radiation safety training of nurses

    International Nuclear Information System (INIS)

    Matsuda, Naoki; Yoshida, Masahiro; Takao, Hideaki

    2005-01-01

    The proper understanding of radiation safety by nursing staffs in hospitals are essential not only for radiation protection of themselves against occupational radiation exposure but for quality nursing for patients who receive medical radiation exposure. The education program on radiation in nursing schools in Japan is, however, rather limited, and is insufficient for nurses to acquire basic knowledge of radiation safety and protection. Therefore, the radiation safety training of working nurses is quite important. A hospital-based training needs assignment of radiation technologists and radiologists as instructors, which may result in temporary shortage of these staffs for patients' services. Additionally, the equipments and facilities for radiation training in a hospital might not be satisfactory. In order to provide an effective education regarding radiation for working nurses, the radiation safety training course has been conducted for nurse of the university hospital by the collaboration of medical and educational staffs in Nagasaki University. This course was given for 6 hours in Radioisotope Research Center, a research and education facility for radiation workers using radioisotopes. The curriculum of this course included basics of radiation, effects of radiation on human health, procedures in clinical settings for radiation protection and practical training by using survey meters, which were mainly based on the radiation safety training for beginners according to the Japanese law concerning radiation safety with a modification to focus on medical radiation exposure. This course has been given to approximately 25 nurses in a time, and held 13 times in May 2000 through October 2003 for 317 nurse overall. The pre-instruction questionnaire revealed that 60% of nurses felt fears about radiation diagnosis or therapy, which reduced to less than 15% in the post-instruction surveillance. The course also motivated nurses to give an answer to patients' questions about

  8. Training in nuclear and radiation safety in Latin American and Caribbean

    International Nuclear Information System (INIS)

    Papadopulos, S.; Diaz, O.; Larcher, A.; Echenique, L.; Nicolas, R.; Lombardi, R.; Quintana, G.

    2013-01-01

    From thirty-three years, Argentina has taken the commitment to train professionals in the field of nuclear and radiation safety for the care and protection of workers and public in general. Sponsored by the IAEA and supported by the Faculty of Engineering of the University of Buenos Aires (FIUBA), an undertaking was made to encourage the training of scientists and experts in the countries of the region in order to establish a strong safety culture in radiation in individuals and maintaining high standards of safety practices using ionizing radiation. In 2012, the Graduate Course in Radiation Protection and Safety of Radiation Sources has acquired the status of 'Specialization' of the FIUBA, a category that further hierarchies skills training in the subject. This is a highly anticipated achievement by the implications for academic institutions, national and regional level, contributing to the strengthening of the Regional Training Center for Latin America and the Caribbean, acknowledged in a long-term agreement between the IAEA and Argentina in September 2008. Due to increased demand for nuclear activity, it is important to continue and deepen further training in radiological and nuclear areas. In order to satisfy both national and regional needs a process of increase on training offer training is being carried out, under the jurisdiction frame of the Nuclear Regulatory Authority. This paper presents the achievements of the country so far as regards training of human resource in radiation protection and nuclear safety in the region and highlights the challenges ahead for the extension of the offer in education and training. (author)

  9. Ordinance on the Finnish Centre of Radiation and Nuclear Safety

    International Nuclear Information System (INIS)

    1990-01-01

    This Ordinance was adopted in implementation of the 1983 Act setting up the Finnish Centre for Radiation and Nuclear Safety and the 1987 Nuclear Energy Act and entered into force on 1 November 1990. The Ordinance specifies the tasks of the Centre, as provided under both Acts, and gives it several supplementary responsibilities. In addition to its overall competence in respect of radiation safety, the Centre will carry out research into and supervise the health effects of radiation and maintain a laboratory for national measurements in that field. The Ordinance also sets out the Centre's organisation chart and the staff duties [fr

  10. Radiation Protection, Safety and Security Issues in Ghana

    International Nuclear Information System (INIS)

    Boadu, M. B.; Emi-Reynolds, G.; Amoako, J. K.; Hasford, F.; Akrobortu, E.

    2015-01-01

    The Radiation Protection Board was established in 1993 by PNDC Law 308 as the National Competent Authority for the regulation of radiation sources and radioactive materials in Ghana. The mandate and responsibilities of RPB are prescribed in the legislative instrument, LI 1559 issued in 1993. The operational functions of the Board are carried out by the Radiation Protection Institute, which was established to provide technical support for the enforcement of the legislative instrument. The regulatory activities include among others: – Issuance permits for the import/export of any radiation producing device and radioactive materials into/out of the country. It therefore certifies the radioactivity levels in food and the environmental samples. – Authorization and Inspection of practices using radiation sources and radioactive materials in Ghana. – Undertakes safety assessment services and enforcement actions on practices using radiation sources and radioactive materials in line with regulations. – Provides guidance and technical support in fulfilling regulatory requirement to users of radiation producing devices and radioactive materials nationwide by monitoring of monthly radiation absorbed doses for personnel working at radiation facilities. – Provides support to the management of practices in respect of nuclear and radioactive waste programme. – Calibrates radiation emitting equipment and nuclear instrumentation to ensure the safety of patients, workers and the general public. – Establish guidelines for the mounting (non-ionizing) communication masts. – Environmental monitoring (non-ionizing) programmes for communication masts. With the establishment of the national competent authority, facilities using radioactive sources and radiation emitting devices have been brought under regulatory control. Effective regulatory control of radiation emitting devices are achieved through established legal framework, independent Regulatory Authority supported by

  11. Study on development of education model and its evaluation system for radiation safety

    CERN Document Server

    Seo, K W; Nam, Y M

    2002-01-01

    As one of the detailed action strategy of multi object preparedness for strengthening of radiation safety management by MOST, this project was performed, in order to promote the safety culture for user and radiation worker through effective education program. For the prevention of radiological accident and effective implementation of radiation safety education and training, this project has been carried out the development of education model and its evaluation system on radiation safety. In the development of new education model, education course was classified; new and old radiation worker, temporary worker, lecturer and manager. The education model includes the contents of expanding the education opportunity and workplace training. In the development of evaluation system, the recognition criteria for commission-education institute and inside-education institute which should establish by law were suggested for evaluation program. The recognition criteria contains classification, student, method, facilities, ...

  12. The European nuclear safety and radiation protection area: steps and prospects

    International Nuclear Information System (INIS)

    Gillet, G.

    2010-01-01

    Launched with enthusiasm and determination in 1957, The European Atomic Energy Community (EAEC - EURATOM), which aimed to promote the development of a 'powerful nuclear industry' in Europe, has not ultimately fulfilled the wishes of its founding fathers. Rapidly, and on a topic as strategic as the peaceful use of the atom, national reflexes prevailed. The Chernobyl disaster, in 1986, also substantially slowed down the use of nuclear energy in Europe. Nuclear safety and radiation protection have followed two different paths. Backed by Chapter III of the EURATOM treaty, over time the EAEC has developed a substantial legislative corpus on radiation protection. Meanwhile, and strange as it may seem, nuclear safety has remained the poor relation, on the grounds that the treaty does not grant EURATOM competence in the area. It is true that legislation was adopted in reaction to Chernobyl, but for a long time there was no specific regulation of nuclear safety in the EU. The European nuclear safety and radiation protection area owes its construction to Community mechanisms as well as to informal initiatives by safety authorities. Today, more than ever, this centre provides consistency, an overall balance which should both strengthen it and impose it as an international reference. Progress can now be expected on waste management, radiation protection and the safety objectives of new reactors. (author)

  13. Sensor technology for hazardous cargo transportation safety.

    Science.gov (United States)

    2013-08-01

    The overall goal of this research project was to develop oxidant vapor detection devices that can be : used to ensure the safety of hazardous freight transportation systems. Two nanotechnology-based : systems originally developed for improvised explo...

  14. Report on administrative work for radiation safety from April 2010 to March 2011

    International Nuclear Information System (INIS)

    Nishimura, Kiyohiko; Uda, Tatsuhiko; Asakura, Yamato; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi; Tanaka, Masahiro

    2011-12-01

    The National Institute for Fusion Science (NIFS) is proceeding with basic research on magnetic nuclear fusion which is expected to be a perpetual energy source for the future. Because the object of research is a hot plasma, high energy particles which are elements of the plasma generate X-rays. Therefore we administrate the devices and their surroundings in conformity with the Industrial Safety and Health Law to maintain workplace safety. We measure the radiation dose levels regularly, register the employees who are engaged in plasma experiments, and educate them. We also control the handling of non-regulated small sealed sources that are used in the detectors in some cases. This report is on administrative work for radiation safety in the last fiscal year 2010. It includes (1) a report on the establishment of a radiation safety management system, (2) results of radiation dose measurement and monitoring in the radiation controlled area and on the site by using Radiation Monitoring System Applicable to Fusion Experiment (RMSAFE), (3) a report on the establishment of an education and registration system for radiation workers. (author)

  15. Academic Training - The use of Monte Carlo radiation transport codes in radiation physics and dosimetry

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 27, 28, 29 June 11:00-12:00 - TH Conference Room, bldg. 4 The use of Monte Carlo radiation transport codes in radiation physics and dosimetry F. Salvat Gavalda,Univ. de Barcelona, A. FERRARI, CERN-AB, M. SILARI, CERN-SC Lecture 1. Transport and interaction of electromagnetic radiation F. Salvat Gavalda,Univ. de Barcelona Interaction models and simulation schemes implemented in modern Monte Carlo codes for the simulation of coupled electron-photon transport will be briefly reviewed. Different schemes for simulating electron transport will be discussed. Condensed algorithms, which rely on multiple-scattering theories, are comparatively fast, but less accurate than mixed algorithms, in which hard interactions (with energy loss or angular deflection larger than certain cut-off values) are simulated individually. The reliability, and limitations, of electron-interaction models and multiple-scattering theories will be analyzed. Benchmark comparisons of simu...

  16. The knowledge, attitude and behavior on the radiation safety management for dental hygiene major students

    International Nuclear Information System (INIS)

    Jeon, Yeo Reong; Cho, Pyong Kon; Kim, Yong Min; Han, Eun Ok; Jang, Hyon Chul; Ko, Jong Kyung

    2015-01-01

    This study tries to find the educational basis based on the radiation safety knowledge, attitudes and behaviors to check the level of radiation safety behavior in domestic students who study dental hygiene. The students of 3rd and 4th grades in 83 universities which have registered on the Korean University Education Council were involved, and they were given a questionnaire for this study. The questionnaire was provided via visit with 20 copies to each university (total 1660 copies), mail by post and e-mail. Among them, we analyzed only 723 copies that we can trust. The data were analyzed with frequency, percentage, mean, standard deviation and Pearson’s correlation using the SPSS/WIN 15.0. As a result, there are correlations in the students’ knowledge, attitudes and behaviors regarding the radiation safety management. It means that the education which can improve the knowledge and attitudes should be applied to increase the action level of the radiation safety. In addition, the physical environment is the most closely correlated with the individual behavior, so it will be limited to improve the behavioral levels of the radiation safety if the physical environment is not prepared. Therefore, the physical environment should be supported to enhance the level of the radiation safety activity, and to increase the individual attitude level of radiation safety. The knowledge level of the radiation safety management is relatively lower than the attitudes level, and the behavior level is the lowest. Therefore, the education policy of the safety behavior must be enhanced. For domestic students, the educational intervention is necessary to improve their behavioral level of radiation safety management because they will be able to reduce the amount of radiation exposure of their patients in dental care after getting a job

  17. The knowledge, attitude and behavior on the radiation safety management for dental hygiene major students

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yeo Reong; Cho, Pyong Kon; Kim, Yong Min [Dept. of Radiological Science, Daegu Catholic University, Daegu (Korea, Republic of); Han, Eun Ok [Korea Academy of Nuclear Safety, Seoul (Korea, Republic of); Jang, Hyon Chul [Dept. of Radiological Technology, Suseong College, Daegu (Korea, Republic of); Ko, Jong Kyung [Radiation Safety Management Commission, Daegu Health College, (Korea, Republic of)

    2015-12-15

    This study tries to find the educational basis based on the radiation safety knowledge, attitudes and behaviors to check the level of radiation safety behavior in domestic students who study dental hygiene. The students of 3rd and 4th grades in 83 universities which have registered on the Korean University Education Council were involved, and they were given a questionnaire for this study. The questionnaire was provided via visit with 20 copies to each university (total 1660 copies), mail by post and e-mail. Among them, we analyzed only 723 copies that we can trust. The data were analyzed with frequency, percentage, mean, standard deviation and Pearson’s correlation using the SPSS/WIN 15.0. As a result, there are correlations in the students’ knowledge, attitudes and behaviors regarding the radiation safety management. It means that the education which can improve the knowledge and attitudes should be applied to increase the action level of the radiation safety. In addition, the physical environment is the most closely correlated with the individual behavior, so it will be limited to improve the behavioral levels of the radiation safety if the physical environment is not prepared. Therefore, the physical environment should be supported to enhance the level of the radiation safety activity, and to increase the individual attitude level of radiation safety. The knowledge level of the radiation safety management is relatively lower than the attitudes level, and the behavior level is the lowest. Therefore, the education policy of the safety behavior must be enhanced. For domestic students, the educational intervention is necessary to improve their behavioral level of radiation safety management because they will be able to reduce the amount of radiation exposure of their patients in dental care after getting a job.

  18. Report on administrative work for radiation safety from April 2004 to March 2006

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Asakura, Yamato; Nishimura, Kiyohiko; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi

    2006-11-01

    The National Institute for Fusion Science (NIFS) constructed the Large Helical Device (LHD) which is the largest magnetic confinement plasma experimental device using a super conducting magnet coils system. The first plasma shot was carried out in March 1998 after eight years of construction. Since then high temperature plasmas and improved plasma confinement experiments have been achieved. On 1st April 2004, NIFS became one of the research institutes which constitute National Institute of Natural Sciences. Since then the regulation system of safety, health and environmental management has been minorly changed. This is a report on administrative work for radiation safety at the LHD and the Compact Helical System (CHS), and radiation measurement and monitoring on the site from 1st April 2004 to 31st March 2006. Major topics are as follows. (1) Establishment of a radiation safety management system based on the law of occupational safety, health and environment. (2) Radiation dose measurement and monitoring in the radiation controlled area and on the site using a particularly developed monitoring system named Radiation Monitoring System Applicable to Fusion Experiments (RMSAFE). (3) Establishment of an education and registration system for radiation workers, and accessing control system for the LHD controlled area. This report has been annually published from fiscal year 1999. We expect that these reports could be helpful for future radiation safety management in NIFS. (author)

  19. ASN report abstracts on the state of Nuclear Safety and Radiation Protection in France in 2008. ASN annual report 2008

    International Nuclear Information System (INIS)

    2009-01-01

    ASN is an independent administrative authority tasked, on behalf of the state, with regulating nuclear safety and radiation protection in order to protect workers, patients and the environment from the hazards involved in nuclear activities. It also contributes to informing the public. ASN, run by a five-member commission, regulates the whole of the sector, acting in a completely impartial manner. The ASN Commission presents its report on the state of nuclear safety and radiation protection in France in 2008. Contents: A - Introduction: The year 2008. B - Key topics: 1. ASN actions to promote greater transparency; 2. EDF nuclear power plant ageing and operating life: the conditions for continued operation; 3. The prevention of malicious acts; 4. ASN regulation of the radiotherapy sector; 5. Regulating and monitoring the construction of the Flamanville 3 EPR reactor; 6. ASN's international nuclear safety responsibilities; 7. The new nuclear countries; 8. Decommissioning of basic nuclear installations and the low-level, long-lived waste disposal project. C - Overview: 1 - Nuclear activities: ionising radiations and health risks; 2 - Principles and stakeholders in the regulation of nuclear safety and radiation protection; 3 - Regulation; 4 - Regulation of nuclear activities and exposure to ionising radiations; 5 - Environmental protection; 6 - Public information and transparency; 7 - International relations; 8 - Radiological emergencies; 9 - Medical uses of ionising radiations; 10 - Industrial and research activities; 11 - Transport of radioactive materials; 12 - EDF nuclear power plants; 13 - Nuclear fuel cycle installations; 14 - Nuclear research facilities and various nuclear installations; 15 - Safe decommissioning of basic nuclear installations; 16 - Radioactive waste and polluted sites. D - Appendices: List of basic nuclear installations; ASN decisions and opinions published in 2008 in its Official Bulletin; Acronyms, abbreviations and names

  20. Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of radiation sources. Interim report for comment

    International Nuclear Information System (INIS)

    1999-02-01

    A number of IAEA Member States are undertaking to strengthen their radiation protection and safety infrastructures in order to facilitate the adoption of the requirements established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Standards). In this connection, the IAEA has developed a technical co-operation programme (Model Project on Upgrading Radiation Protection Infrastructure) to improve radiation protection and safety infrastructures in 51 Member States, taking into account national profiles and needs of the individual participating, countries. The present report deals with the elements of a regulatory infrastructure for radiation protection and safety and intends to facilitate the, implementation of the Basic Safety Standards in practice. It takes into account the proposals in an earlier report, IAEA-TECDOC-663, but it has been expanded to include enabling legislation and modified to be more attuned to infrastructure issues related to implementation of the Standards. The orientation is toward infrastructures concerned with protection and safety for radiation sources used in medicine, agriculture, research, industry and education rather than infrastructures for protection and safety for complex nuclear facilities. It also discusses options for enhancing the effectiveness and efficiency of the infrastructure in accordance with the size and scope of radiation practices and available regulatory resources within a country

  1. Radiation and ecological safety of nuclear fuel cycle installations

    International Nuclear Information System (INIS)

    Barbasheva, S.V.

    1995-01-01

    Nuclear power plants (NPP) and radioactive waste facilities safety issues are discussed; Chernobyl NPP personnel radiation doses for 1986 are indicated; radiation contamination of environment by Am-241 is investigated; data on radioactive contamination in southern part of Kiev Poles'e are considered

  2. Overview of a radiation safety program in a district style medical environment

    International Nuclear Information System (INIS)

    Wilson, G.

    2006-01-01

    This paper provides an overview of the eight components of a radiation safety program in a large health care facility spread out over several campuses in a large geographic area in Nova Scotia. The main focus is based on those areas that are regulated by the Canadian Nuclear Safety Commission and generally encompass nuclear medicine and radiation therapy operations. X-ray operations are regulated provincially, but the general operational principles of an effective radiation safety program can be applied in all these areas. The main components covered include the set up of an organizational structure that operates separately from individual departments, general items expected from reports to corporate management or regulators, and some examples of the front-line expectations for those in individual departments. The review is not all encompassing, but should give organizations some insight of the magnitude of a radiation safety program in a district style environment. (author)

  3. Radiation safety and quality control assurance in X-ray diagnostics 1998

    International Nuclear Information System (INIS)

    Servomaa, A.

    1998-03-01

    The report is based on a seminar course of lectures 'Radiation safety and quality assurance in X-ray diagnostics 1998' organized by the Radiation and Nuclear Safety Authority (STUK) in Finland. The lectures included actual information on X-ray examinations: methods of quality assurance, methods of measuring and calculating patient doses, examination frequencies, patient doses, occupational doses, and radiation risks. Paediatric X-ray examinations and interventional procedures were the most specific topics. The new Council Directive 97/43/Euratom on medical exposure, and the European Guidelines on quality criteria for diagnostic radiographic images, were discussed in several lectures. Lectures on general radiation threats and preparedness, examples of radiation accidents, and emergency preparedness in hospitals were also included. (editor)

  4. Organization of nuclear safety and radiation protection in Switzerland

    International Nuclear Information System (INIS)

    Pretre, S.

    1995-01-01

    In Switzerland an important distinction is made between radiation protection (in charge of the use of ionizing radiations for medical uses or non nuclear industry), and nuclear safety (in charge of nuclear industry, including prevention or limitation of any risk of nuclear accident). In the eighties, it has been decided to make two laws for these two topics. The law for radioprotection, voted in 1991 is enforced since 1994 by OFSP (Office Federal de la Sante Publique). It performs any radiation monitoring outside nuclear industry plants. The law for nuclear safety, that should be enforced by OFEN (Office Federal de l'ENergie), is still not voted. The only existing legislation is the 1959 atomic law. (D.L.). 1 fig., 1 map

  5. Post-graduate course on radiation protection and nuclear safety. Vol. 1,2; Curso de post-grado en proteccion radiologica y seguridad nuclear. Tomo 1,2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The course handbook on radiation protection and nuclear safety containing two parts some was prepared mainly by scientists of the Nuclear Regulatory Authority (ARN) of the Argentine Republic, under the auspices of the International Atomic Energy Agency. The contents o this handbook have the principals aspects: radiation detection, radio dosimetry, biological effects of the ionizing radiation, occupational exposure, environmental effects, contamination and decontamination, radioactive waste management, transport of radioactive materials, medical and industrial applications and the Argentine regulatory system.

  6. 1988 annual work report of the Department for Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Hille, R.

    1989-03-01

    The Department for Safety and Radiation Protection continues to be responsible for coordinating radiation protection, safety and protection at the KFA. It supports the other institutes and departments in performing the safety tasks allotted to them. The principal tasks of the Department are in administrative and technical assistance to these organization units and in safeguards. Administrative assistance involves, for example, regulation of the radiation protection organization in the institutes, including the appointment of radiation protection officers (Strahlenschutzbeauftragte). Furthermore, this includes the central handling of the registration system with the authorities and dealing with outside firms thus considerably relieving the institutes of their administrative tasks. Handling licensing procedures and the central accountancy of radioactive materials is also to be mentioned in this context. Technical assistance largely consists of developing, maintaining and repairing radiation measuring instruments and in the monitoring of personnel by evaluating personnel dosimeters and incorporation controls for radioactive sources. The safeguards tasks of the Department concern the very staff-intensive physical protection, as well as environmental protection and industrial safety. (orig.) [de

  7. Handbook on radiation safety. Spravochnik po radiatsionnoj bezopasnosti

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V R

    1977-01-01

    The handbook reflects changes, in quotas, providing radiation safety in the Soviet Union, and in state standards. It includes the data, published in the soviet and foreign press up to 1975 on problems of ionizing radiation interaction with a substance, on terminology and units for measuring ionizing radiations and radioactivity, doses of background and admissible personnel irradiation in space, resulting from natural and artificial sources,from medical procedures. Given are the norms and sanitary rules of radiation protection when operating ionizing radiations sources at nuclear power plants, nuclear reactors, critical assemblies, placing and operating charged particle accelerators. Included is ample information on dosimetry of X-ray, gamma-, and neutron radiation, on dosimetry of charged particles, aerosols and gases, on radiometry and spectrometry of internal irradiation and radiation sources. Devices for ionizina radiation registration, model radiation sources, radionuclide solutions and their calibration are described.

  8. Intense radiative heat transport across a nano-scale gap

    International Nuclear Information System (INIS)

    Budaev, Bair V.; Ghafari, Amin; Bogy, David B.

    2016-01-01

    In this paper, we analyze the radiative heat transport in layered structures. The analysis is based on our prior description of the spectrum of thermally excited waves in systems with a heat flux. The developed method correctly predicts results for all known special cases for both large and closing gaps. Numerical examples demonstrate the applicability of our approach to the calculation of the radiative heat transport coefficient across various layered structures.

  9. Regulatory control and safety of radiation and radioactive sources in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2001-01-01

    The application of ionizing radiation and radioactive sources in different fields such as, medicine, industry, agriculture, research and teaching is constantly increasing in Bangladesh. Any system enacted to control exposure to ionizing radiation has as primary objective the protection of health of people against the deleterious effects of radiation. Establishing the appropriate level of radiological protection and safety of radiation sources used in practice or intervention attains this objective. The regulatory program governing the safe use of radioactive and radiation sources in Bangladesh is based on the legislation enacted as Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97 and its implementation by the competent authority. The radiation control infrastructures and procedure are described as well as their functioning for the implementation of relevant activities such as licensing, regular inspection, personal dose monitoring, emergency preparedness, etc. The issue of security of radiation source is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country

  10. Macro-Level Modeling of Urban Transportation Safety: Case-Study of Mashhad (Iran

    Directory of Open Access Journals (Sweden)

    Mohammadi Mehdi

    2017-12-01

    Full Text Available Transportation safety can be aimed at the planning stage in order to adopt safety management and evaluate the long-time policies. The main objective of this research was to make use of crash prediction models in urban transportation planning process. As such, it was attempted to gather data on the results of transportation master plan as well as Mashhad urban crash database. Two modelling method, generalized linear model with negative binomial distribution and geographically weighted regression, were considered as the methods used in this research. Trip variables, including trip by car, trip by bus, trip by bus services and trip by school services, were significant at 95%. The results indicated that both finalized models were competent in predicting urban crashes in Mashhad. Regarding to results urban transportation safety will be improved by changing the modal share for example from private car to bus. The application of the process presented in this study can improve the urban transportation safety management processes and lead to more accurate prediction in terms of crashes across urban traffic areas.

  11. Safety verification of radiation shielding and heat transfer for a model for dry

    International Nuclear Information System (INIS)

    Yu, Haiyan; Tang, Xiaobin; Wang, Peng; Chen, Feida; Chai, Hao; Chen, Da

    2015-01-01

    Highlights: • New type of dry spent fuel storage was designed. • MC method and FEM were used to verify the reliability of new storage. • Radiation shield and heat transfer both meet IAEA standards: 2 mSv/h, 0.1 mSv/h and 190 °C, 85 °C. • Provided possibilities for future implementation of this type of dry storage. - Abstract: The goal of this research is to develop a type of dry spent fuel storage called CHN-24 container, which could contain an equivalent load of 45 GWD/MTU of spent fuel after 10 years cooling. Basically, radiation shielding performance and safe removal of decay heat, which play important roles in the safety performance, were checked and validated using the Monte Carlo method and finite element analysis to establish the radiation dose rate calculation model and three-dimensional heat transfer model for the CHN-24 container. The dose rates at the surface of the container and at a distance of 1 m from the surface were 0.42 mSv/h and 0.06 mSv/h, respectively. These conform to the International Atomic Energy Agency (IAEA) radioactive material transportation safety standards 2 mSv/h and 0.1 mSv/h. The results shows that the CHN-24 container maintains its structural and material integrity under the condition of normal thermal steady-state heat transfer as well as in case of extreme fire as evinced by transient-state analysis. The temperature inside and on the surface of the container were 150.91 °C and 80 °C under normal storage conditions, which indicated that the design also conform to IAEA heat transfer safety standards of 190 °C and 85 °C

  12. Radiation safety in X-ray diagnostic installations

    International Nuclear Information System (INIS)

    Das, K.R.; Ambiger, T.Y.; Viswanathan, P.S.

    1977-01-01

    Safety measures to be strictly adhered to in handling X-ray equipment and exposing patients to X-radiation are described in detail. Hazards resulting from ignorance and careless handling are mentioned. Methods of shielding are indicated. (A.K.)

  13. Establishment of database for radiation exposure and safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, G. S.; Kim, J. H. [Science Culture Research Institute, Seoul (Korea, Republic of)

    2005-12-15

    The nuclear electric energy in our country plays a major role for the national industrial development as well as for the secure living of the peoples. It is, however, considered as a socially dreadful elements because of the radiation materials exposed into the environment. In effect, the DB is intended to serve for the reference to the epidemical study upon the low-level radiation exposure involving the nuclear facilities, radio-isotope business enterprises, and the related workers at the radiation sites. In connection with the development of nuclear energy, the low-level radiation, associated with the radioisotope materials exposed into our environment out of nuclear facilities, is believed to possibly raise significant hazardous effects toward human persons. Therefor, it is necessary to take a positive counter measures by means of comprehensive quantitative estimates on its possibilities. In consequence, the low-level radiation effects do not bring about the immediate hazard cases, however, appear to possibly pose the lately caused diseases such as cancer cause, life reduction, and creation of mutation, etc. Therefore, it is intended to set up the social security with the secure safety, by conducting an advanced safety study on the low-level radiation.

  14. Establishment of database for radiation exposure and safety assessment

    International Nuclear Information System (INIS)

    Choi, G. S.; Kim, J. H.

    2005-12-01

    The nuclear electric energy in our country plays a major role for the national industrial development as well as for the secure living of the peoples. It is, however, considered as a socially dreadful elements because of the radiation materials exposed into the environment. In effect, the DB is intended to serve for the reference to the epidemical study upon the low-level radiation exposure involving the nuclear facilities, radio-isotope business enterprises, and the related workers at the radiation sites. In connection with the development of nuclear energy, the low-level radiation, associated with the radioisotope materials exposed into our environment out of nuclear facilities, is believed to possibly raise significant hazardous effects toward human persons. Therefor, it is necessary to take a positive counter measures by means of comprehensive quantitative estimates on its possibilities. In consequence, the low-level radiation effects do not bring about the immediate hazard cases, however, appear to possibly pose the lately caused diseases such as cancer cause, life reduction, and creation of mutation, etc. Therefore, it is intended to set up the social security with the secure safety, by conducting an advanced safety study on the low-level radiation

  15. Computer codes in nuclear safety, radiation transport and dosimetry; Les codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Bordy, J M; Kodeli, I; Menard, St; Bouchet, J L; Renard, F; Martin, E; Blazy, L; Voros, S; Bochud, F; Laedermann, J P; Beaugelin, K; Makovicka, L; Quiot, A; Vermeersch, F; Roche, H; Perrin, M C; Laye, F; Bardies, M; Struelens, L; Vanhavere, F; Gschwind, R; Fernandez, F; Quesne, B; Fritsch, P; Lamart, St; Crovisier, Ph; Leservot, A; Antoni, R; Huet, Ch; Thiam, Ch; Donadille, L; Monfort, M; Diop, Ch; Ricard, M

    2006-07-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations.

  16. The Radiation Safety Culture: Image Gently

    International Nuclear Information System (INIS)

    Applegate, E.K.

    2015-01-01

    Barriers to Implementing Safety include Silos of Knowledge, Time, training and Resources. Creating a Safety Culture in Healthcare include Decreased authority gradients, Checklists and audits (QA), Use of structured language (SBAR), Situation, Background, Assessment, Recommendation Team briefings and debriefings (immediate learning, team building tools), Lifelong learning (PQI). Use of Collective Learning Opportunities - QA and PQI that include Web sites: IG, WFPI, IAEA, ISR and Data Registries: ACR . The Key Principles of Radiation Protection: When do we learn them? For Occupational Workers:Time, Distance and Shielding while those of For Patients: Justification, Optimization and Dose Limits (dose reference levels)

  17. Nuclear safety and radiation protection in the German Democratic Republic

    International Nuclear Information System (INIS)

    Sitzlack, G.; Scheel, H.

    1976-01-01

    The radiation protection organization in the GDR is outlined laying emphasis on the tasks of the National Board of Nuclear Safety and Radiation Protection. In addition to the basic tasks, the various forms of radiation protection monitoring, the management of radioactive wastes, and international responsibilities are briefly explained. (author)

  18. A preliminary study on the design in architecture of nuclear and radiation safety standard system

    International Nuclear Information System (INIS)

    Song Dahu; Zhang Chi; Yang Lili; Li Bin; Liu Yingwei; An Hongzhen; Gao Siyi; Liu Ting; Meng De

    2014-01-01

    The connotation and function of nuclear and radiation safety standards are analyzed, and their relationships with the relevant laws and regulations are discussed in the paper. Some suggestions and blue print of overall architecture to build nuclear and radiation safety standard system are proposed, on the basis of researching the application status quo, existing problems and needs for nuclear and radiation safety standards in China. This work is a beneficial exploration and attempt to establish China's nuclear and radiation safety standards. (authors)

  19. Nuclear safety and radiation protection report of Chinon nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  20. Personnel radiation safety. A case of hand lesion in a radiologist

    International Nuclear Information System (INIS)

    Pilipenko, M.Yi.; Kulyinyich, G.V.; Stadnik, L.L.

    2012-01-01

    The work featured the questions of norma and rules of radiation safety at work with ionizing radiation. The history of the question about the permissible doses is dabbler's. The changes in the skin when exceeding the tolerant dose are described. A case of severe local lesions of the hand caused by chronic occupational over irradiation, when the safety rules were neglected, is described

  1. Reliability on the move: safety and reliability in transportation

    International Nuclear Information System (INIS)

    Guy, G.B.

    1989-01-01

    The development of transportation has been a significant factor in the development of civilisation as a whole. Our technical ability to move people and goods now seems virtually limitless when one considers for example the achievements of the various space programmes. Yet our current achievements rely heavily on high standards of safety and reliability from equipment and the human component of transportation systems. Recent failures have highlighted our dependence on equipment and human reliability. This book represents the proceedings of the 1989 Safety and Reliability Society symposium held at Bath on 11-12 October 1989. The structure of the book follows the structure of the symposium itself and the papers selected represent current thinking the the wide field of transportation, and the areas of rail (6 papers, three on railway signalling), air including space (two papers), road (one paper), road and rail (two papers) and sea (three papers) are covered. There are four papers concerned with general transport issues. Three papers concerned with the transport of radioactive materials are indexed separately. (author)

  2. The WIPP transportation system: Dedicated to safety

    International Nuclear Information System (INIS)

    Ward, T.; McFadden, M.

    1993-01-01

    When developing a transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites, the Department of Energy (DOE) recognized and addressed many challenges. Shipments of waste to the Waste Isolation Pilot Plant (WIPP) were to cover a twenty-five year period and utilize routes covering over twelve thousand miles in twenty-three states. Enhancing public safety by maximizing the payload, thus reducing the number of shipments, was the primary objective. To preclude the requirement for overweight permits, the DOE started with a total shipment weight limit of 80,000 pounds and developed an integrated transportation system consisting of a Type ''B'' package to transport the material, a lightweight tractor and trailer, stringent driver requirements, and a shipment tracking system referred to as ''TRANSCOM''

  3. Figures and information on nuclear safety and radiation protection on the Tricastin AREVA site

    International Nuclear Information System (INIS)

    2010-01-01

    This report presents and briefly comments figures concerning the environment (water consumption, greenhouse gas emissions, liquid releases in a canal, radioactive and hazardous industrial wastes), radiological impact and radiation protection (computed dose for a reference group, computed maximum dose for the reference group, radiological exposures of workers), nuclear safety (number of events, controls and audits), production (quantities of various materials) and transport (flows of radioactive products) for the whole Tricastin site for which only some general data are indicated, and more precisely the various installations and establishments it comprises: AREVA NC Pierrelatte, COMURHEX Pierrelatte, EURODIF Production, FBFC Pierrelatte, SET, SOCATRI

  4. Radiation safety aspects pertaining to female patients and staff

    International Nuclear Information System (INIS)

    Patni, Nidhi

    2017-01-01

    Many organizations in the world are committed to gender parity. Increasing number of women is working in the fields of radiation medicine and in industries dealing with radiation. Women patients may be exposed to radiation in radiology, radiation oncology, nuclear medicine, interventional cardiology, dentistry etc. Radiation safety of women staff and women patients is different from their male counterparts because of conception and pregnancy. So, fetal health is a matter of concern in the above. Also, the excess relative risk of radiation induced cancers in females relates to higher risk of thyroid cancer and high radiosensitivity as compared to males

  5. Attitude and awareness of general dental practitioners toward radiation hazards and safety.

    Science.gov (United States)

    Aravind, B S; Joy, E Tatu; Kiran, M Shashi; Sherubin, J Eugenia; Sajesh, S; Manchil, P Redwin Dhas

    2016-10-01

    The aim and objective is to evaluate the level of awareness and attitude about radiation hazards and safety practices among general dental practitioners in Trivandrum District, Kerala, India. A questionnaire-based cross-sectional study was conducted among 300 general dental practitioners in Trivandrum District, Kerala, India. Postanswering the questions, a handout regarding radiation safety and related preventive measures was distributed to encourage radiation understanding and protection. Statistical analysis were done by assessing the results using Chi-square statistical test, t -test, and other software (Microsoft excel + SPSS 20.0 trail version). Among 300 general practitioners (247 females and 53 males), 80.3% of the practitioners were found to have a separate section for radiographic examination in their clinics. Intraoral radiographic machines were found to be the most commonly (63.3%) used radiographic equipment while osteoprotegerin was the least (2%). Regarding the practitioner's safety measures, only 11.7% of them were following all the necessary steps while 6.7% clinicians were not using any safety measure in their clinic, and with respect to patient safety, only 9.7% of practitioners were following the protocol. The level of awareness of practitioners regarding radiation hazards and safety was found to be acceptable. However, implementation of their knowledge with respect to patient and personnel safety was found wanting. Insisting that they follow the protocols and take necessary safety measures by means of continuing medical education programs, pamphlets, articles, and workshops is strongly recommended.

  6. Safety analysis of sea transportation of solidified reactor wastes

    International Nuclear Information System (INIS)

    Devell, L.; Edlund, O.; Kjellbert, N.; Grundfelt, B.; Milchert, T.

    1980-06-01

    A central handling and storage facility (ALMA) for low- and medium-level reactor waste from Swedish nuclear power plants is being planned and the transportation to it will be by sea. A safety assessment devoted to the potential environmental impacts from the transportation is presented. (Auth.)

  7. Study on the safety during transport of radioactive materials. Pt. 4. Events during transport. Final report work package 6; Untersuchungen zur Sicherheit bei der Befoerderung radioaktiver Stoffe. T. 4. Ereignisse bei der Befoerderung. Abschlussbericht zum Arbeitspaket 6

    Energy Technology Data Exchange (ETDEWEB)

    Sentuc, Florence-Nathalie

    2014-09-15

    This report presents the results from a data collection and an evaluation of the safety significance of events in the transportation of radioactive material by all modes on public routes in Germany. Systems for reporting and evaluation of the safety significance of events encountered in the transport of radioactive material are a central element in monitoring and judging the adequacy and effectiveness of the transport regulations and their underlying safety philosophy, this allows for revision by experience feedback (lessons learned). The nationwide survey performed covering the period from the mid 1990s through 2013 identified and analysed a total of 670 transport events varying in type and severity. The vast majority of recorded transport events relate to minor deviations from the provisions of the transport regulations (e.g. improper markings and error in transport documents) or inappropriate practices and operational procedures resulting in material damage of packages and equipment such as handling incidents. Severe traffic accidents and fires represented only a small fraction (ca. 3 percent) of the recorded transport events. Four transport events were identified in the reporting period to have given rise to environmental radioactive releases. Three transport events have reportedly resulted in minor radiation exposures to the transport personnel; in one case an exposure in excess of the statutory annual dose limit for the public seems possible. Based on the EVTRAM scale, with seven significance levels, the broad majority of transport events has been classified as ''non-incidents'' (Level 0) and ''events without affecting the safety functions of the package'' (Level 1). On the INES scale most transport events would be classified as events with ''no safety significance'' (Below Scale/Level 0). The survey results show no serious deficiencies in the transport of radioactive material, supporting the

  8. Practice specific model regulations: Radiation safety of non-medical irradiation facilities. Interim report for comment

    International Nuclear Information System (INIS)

    2003-08-01

    The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (Standards or BSS) were published as IAEA Safety Series No. 115 in 1996. This publication is the culmination of efforts over the past decades towards harmonization of radiation protection and safety standards internationally, and is jointly sponsored by the Food and Agriculture Organisation of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organisation (PAHO) and the World Health Organisation (WHO). The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation and for the safety of radiation sources that may deliver such exposure (hereinafter called 'radiation safety'). The requirements are based on the principles set out in the Safety Fundamentals, published as IAEA Safety Series Nos 110 and 120. The Standards can be implemented only through an effective radiation safety infrastructure that includes adequate laws and regulations, an efficient regulatory system, supporting experts and services, and a 'safety culture' shared by all those with responsibilities for protection, including both management and workers. IAEA-TECDOC-1067, Organization and Implementation of a National Regulatory Infrastructure Governing Protection against Ionizing Radiation and the Safety of Radiation Sources, provides detailed guidance on how to establish or improve national radiation safety infrastructure in order to implement the requirements of the Standards. The TECDOC covers the elements of a radiation safety infrastructure at the national level needed to apply the Standards to radiation sources such as those used in medicine, agriculture, research, industry and education. It also provides advice on approaches to the organization and operation of

  9. The present condition of the radiation safety control education in training schools for radiological technologists

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Saito, Kyoko; Hirai, Shoko; Igarashi, Hiroshi; Negishi, Tooru; Hirano, Kunihiro; Kawaharada, Yasuhiro

    2010-01-01

    We made a detailed study on the course of study in radiation safety control prescribed on March 28, 2003. Questionnaires were sent to 39 training schools for radiological technology, to which 66.7% replied (26/39). Subjects on radiation safety control must include knowledge and technology in both radiation control and medical safety. The contents for instruction of radiation control were in accordance with those given in the traditional program; however, some discrepancies were found in the contents of medical safety. As medical safety, emphasized by the revised Medical Service Law, is regarded as very important by many hospitals, safety control education that include medical ethics should be required as part of the curriculum in the training schools for radiological technologists. (author)

  10. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1988-07-01

    The norm which establishes the requirements of radiation protection and safety related to the transport of radioactive materials, aiming to keep a suitable control level of eventual exposure of personnels, materials and environment of ionizing radiation, including: specifications on radioactive materials for transport, selection of package type; specification of requirements of the design and assays of acceptance of packages; disposal related to the transport; and liability and administrative requirements, are presented. This norm is applied to: truckage, water carriage and air service; design, fabrication, assays and mantenaince of packages; preparation, despatching, handling, loading storage in transition and reception in the ultimate storage of packages; and transport of void packages which have been contained radioactive materials. (M.C.K.) [pt

  11. Integrated risk management of safety and development on transportation corridors

    International Nuclear Information System (INIS)

    Thekdi, Shital A.; Lambert, James H.

    2015-01-01

    Prioritization of investments to protect safety and performance of multi-regional transportation networks from adjacent land development is a key concern for infrastructure agencies, land developers, and other stakeholders. Despite ample literature describing relationships between transportation and land use, no evidence-based methods exist for monitoring corridor needs on a large scale. Risk analysis is essential to the preservation of system safety and capacity, including avoidance of costly retrofits, regret, and belated action. This paper introduces the Corridor Trace Analysis (CTA) for prioritizing corridor segments that are vulnerable to adjacent land development. The method integrates several components: (i) estimation of likelihood of adjacent land development, using influence diagram and rule-based modeling, (ii) characterization of access point density using geospatial methods, and (iii) plural-model evaluation of corridors, monitoring indices of land development likelihood, access point densities, and traffic volumes. The results inform deployment of options that include closing access points, restricting development, and negotiation of agencies and developers. The CTA method is demonstrated on a region encompassing 6000 centerline miles (about 10,000 km) of transportation corridors. The method will be of interest to managers investing in safety and performance of infrastructure systems, balancing safety, financial, and other criteria of concern for diverse stakeholders. - Highlights: • The Corridor Trace Analysis (CTA) method for prioritizing transportation corridors. • The CTA method studies corridors vulnerable to adjacent land development. • The CTA method quantifies the influence of risk scenarios on agency priorities. • The CTA method is demonstrated on 6000 miles of critical transportation corridor

  12. Schedules of Provisions of the IAEA Regulations for the Safe Transport of Radioactive Material (2005 Ed.). Safety Guide (Spanish Edition); Listas de disposiciones del reglamento del OIEA para el transporte seguro de materiales radiactivos (Edicion de 2005 corregida)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  13. An architecture model for communication of safety in public transportation

    NARCIS (Netherlands)

    Rajabalinejad, Mohammad; Horváth, Imre; Pernot, Jean-Paul; Rusák, Zoltan

    2016-01-01

    Safety in transportation is under the influence of the rising complexity, increasing demands for capacity and decreasing cost. Furthermore, the interdisciplinary environment of operation and altered safety regulations invite for a centralized (integrated) modelling/ communication approach. This

  14. 10. Latin American Regional Congress IRPA Protection and Radiation Safety

    International Nuclear Information System (INIS)

    2015-01-01

    The 10.Latin American Regional Congress IRPA Protection and Radiation Safety was organized by the Radioprotection Argentine Society, in Buenos Aires, between the april 12 and 17, 2015. In this event, were presented almost 400 papers about these subjects: radiation protection in medicine and industry; radiological and nuclear emergencies; NORM (Natural Occurring Radioactive Materials); reactors; radiation dosimetry; radiotherapy; non-ionizing radiations; policies and communications; etc.

  15. LDRD Final Review: Radiation Transport Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goorley, John Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, George Lake [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-22

    Both high-fidelity & toy simulations are being used to understand measured signals and improve the Area 11 NDSE diagnostic. We continue to gain more and more confidence in the ability for MCNP to simulate neutron and photon transport from source to radiation detector.

  16. Radiation doses from the transport of radioactive materials

    International Nuclear Information System (INIS)

    Shaw, K.B.; Holyoak, B.

    1983-01-01

    A summary is given of a study on radiation exposure resulting from the transport of radioactive materials within the United Kingdom. It was concluded that the transport of technetium generators for hospital use accounts for about 49% of the occupational exposure for the normal transport of radioactive materials. Other isotopes for medical and industrial use contribute about 38% of the occupational exposure and the remainder can be attributed to transportation as a result of the nuclear fuel cycle including the transport of irradiated nuclear fuel. The occupational collective dose for all modes of transport is estimated at 1 man Sv y -1 . (UK)

  17. Progress report: nuclear safety and radiation protection in France in 2005

    International Nuclear Information System (INIS)

    2007-01-01

    The Asn (Nuclear safety authority) considers that 2005 was a satisfactory year in terms of nuclear safety and radiation protection. However, further progress can and must be made. 2005 was a year of great progress for the Asn as it consolidated its organisation and working methods, in accordance with the 2005-2007 strategic plan it set for itself. The Asn continued progress in the field of radiation protection has given rise to various new regulations to improve the legislative and regulatory framework in this area. 2005 was marked by significant progress in the process of harmonizing national nuclear safety policies Against a backdrop of the preparation of a bill on management of radioactive materials and waste, to be presented to Parliament in March 2006, 2005 was a year of important milestones. The Asn control activities encompass the following seven areas: development of general regulations for nuclear safety and radiation protection; management of individual authorization requests and receipt of declarations; inspection of nuclear activities; organisation of radiological surveillance of individuals and of the environment; preparation for management of emergency situations and implementation if necessary; contribution to public information on nuclear safety and radiation protection; determination of the French position within international community. Main topics in 2005: government bill on transparency and security in the nuclear field; the challenges and ambitions of the Asn; controlling exposure to radon; EPR Reactor Project Safety; working towards a law on radioactive waste in 2006; I.R.R.T.: an international audit of Asn in 2006; harmonization of nuclear safety in Europe; Chernobyl: what has been achieved over the past 20 years; informing the Public; internal authorizations. (N.C.)

  18. IPOLE - semi-analytic scheme for relativistic polarized radiative transport

    Science.gov (United States)

    Mościbrodzka, M.; Gammie, C. F.

    2018-03-01

    We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport. The code extends the IBOTHROS scheme for covariant, unpolarized transport using two representations of the polarized radiation field: In the coordinate frame, it parallel transports the coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and coordinate- independent as possible. The emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth. We show that the code matches analytic results in flat space, and that it produces results that converge to those produced by Dexter's GRTRANS polarized transport code on a complicated model problem. We expect IPOLE will mainly find applications in modelling Event Horizon Telescope sources, but it may also be useful in other relativistic transport problems such as modelling for the IXPE mission.

  19. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions