WorldWideScience

Sample records for safety project kbs

  1. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Complementary evaluations of safety

    International Nuclear Information System (INIS)

    Neall, Fiona; Pastina, Barbara; Snellman, Margit; Smith, Paul; Gribi, P.; Johnson, Lawrence

    2008-12-01

    The KBS-3H design is a variant of the more general KBS-3 method for the geological disposal of spent nuclear fuel in Finland and Sweden. In the KBS-3H design, multiple assemblies containing spent fuel are emplaced horizontally in parallel, approximately 300 m long, slightly inclined deposition drifts. The copper canisters, each with a surrounding layer of bentonite clay, are placed in perforated steel shells prior to deposition in the drifts; the assembly is called the 'supercontainer'. The other KBS-3 variant is the KBS-3V design, in which the copper canisters are emplaced vertically in individual deposition holes surrounded by bentonite clay but without steel supercontainer shells. SKB and Posiva have conducted a Research, Development and Demonstration programme over the period 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to KBS-3V. As part of this programme, the long-term safety of a KBS-3H repository has been assessed in the KBS-3H safety studies. In order to focus the safety studies, the Olkiluoto site in the municipality of Eurajoki, which is the proposed site for a spent fuel repository in Finland, was used as a hypothetical site for a KBS-3H repository. The present report is part of a portfolio of reports discussing the long-term safety of the KBS-3H repository. The overall outcome of the KBS-3H safety studies is documented in the summary report, 'Safety assessment for a KBS-3H repository for spent nuclear fuel at Olkiluoto'. The purpose and scope of the KBS-3H complementary evaluations of safety report is provided in Posiva's Safety Case Plan, which is based on Regulatory Guide YVL 8.4 and on international guidelines on complementary lines of argument to long-term safety that are considered an important element of a post-closure safety case for geological repositories. Complementary evaluations of safety require the use of evaluations, evidence and qualitative supporting arguments that lie outside the

  2. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Complementary evaluations of safety

    Energy Technology Data Exchange (ETDEWEB)

    Neall, Fiona; Pastina, Barbara; Snellman, Margit; Smith, Paul; Gribi, P.; Johnson, Lawrence

    2008-12-15

    The KBS-3H design is a variant of the more general KBS-3 method for the geological disposal of spent nuclear fuel in Finland and Sweden. In the KBS-3H design, multiple assemblies containing spent fuel are emplaced horizontally in parallel, approximately 300 m long, slightly inclined deposition drifts. The copper canisters, each with a surrounding layer of bentonite clay, are placed in perforated steel shells prior to deposition in the drifts; the assembly is called the 'supercontainer'. The other KBS-3 variant is the KBS-3V design, in which the copper canisters are emplaced vertically in individual deposition holes surrounded by bentonite clay but without steel supercontainer shells. SKB and Posiva have conducted a Research, Development and Demonstration programme over the period 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to KBS-3V. As part of this programme, the long-term safety of a KBS-3H repository has been assessed in the KBS-3H safety studies. In order to focus the safety studies, the Olkiluoto site in the municipality of Eurajoki, which is the proposed site for a spent fuel repository in Finland, was used as a hypothetical site for a KBS-3H repository. The present report is part of a portfolio of reports discussing the long-term safety of the KBS-3H repository. The overall outcome of the KBS-3H safety studies is documented in the summary report, 'Safety assessment for a KBS-3H repository for spent nuclear fuel at Olkiluoto'. The purpose and scope of the KBS-3H complementary evaluations of safety report is provided in Posiva's Safety Case Plan, which is based on Regulatory Guide YVL 8.4 and on international guidelines on complementary lines of argument to long-term safety that are considered an important element of a post-closure safety case for geological repositories. Complementary evaluations of safety require the use of evaluations, evidence and qualitative supporting arguments

  3. KBS-3H Complementary studies, 2008-2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    KBS-3H is a joint project between Svensk Kaernbraenslehantering AB (SKB) in Sweden and Posiva Oy in Finland. The main goal during the project phase Complementary studies of horizontal emplacement KBS-3H 2008-2010 was to develop KBS-3H to such a state that a decision to go ahead with full-scale testing and demonstration could be made. The KBS-3H design is a variant of the KBS-3 method and an alternative to the KBS-3V design. In KBS-3H multiple canisters containing spent nuclear fuel are emplaced in parallel, 100-300 m long, horizontal deposition drifts at a depth of about 400-500 m in the bedrock whereas the KBS-3V design calls for vertical emplacement of the canisters in individual deposition holes. Further development and evaluation of the main KBS-3H design alternatives developed in earlier work, DAWE (Drainage, Artificial Watering and air Evacuation) and STC (Semi Tight Compartments) (Autio el al. 2007) has now enabled a well-founded KBS-3H reference design selection, DAWE has been selected. Regarding long-term safety; bentonite-metal interactions have been in focus and studies have given a good basis for material selection for the Supercontainer, plugs and other supporting structures and titanium is selected. The selections and evaluations made during this project phase will be used in the safety evaluations planned for Forsmark and Olkiluoto in the upcoming project phase. KBS-3H specific production lines have been outlined and layout adaptations for both Forsmark and Olkiluoto have been developed. Full-scale tests of system components have also been carried out with good results; the full-scale compartment plug test shows the ability to install a plug that separates drift compartments hydraulically.

  4. KBS-3H complementary studies, 2008-2010

    International Nuclear Information System (INIS)

    2013-07-01

    KBS-3H is a joint project between Svensk Kaernbraenslehantering AB (SKB) in Sweden and Posiva Oy in Finland. The main goal during the project phase Complementary studies of horizontal emplacement KBS-3H 2008-2010 was to develop KBS-3H to such a state that a decision to go ahead with full-scale testing and demonstration could be made. The KBS-3H design is a variant of the KBS-3 method and an alternative to the KBS-3V design. In KBS-3H multiple canisters containing spent nuclear fuel are emplaced in parallel, 100-300 m long, horizontal deposition drifts at a depth of about 400-500 m in the bedrock whereas the KBS- 3V design calls for vertical emplacement of the canisters in individual deposition holes. Further development and evaluation of the main KBS-3H design alternatives developed in earlier work, DAWE (Drainage, Artificial Watering and air Evacuation) and STC (Semi Tight Compartments) (Autio el al. 2007) has now enabled a well-founded KBS-3H reference design selection, DAWE has been selected. Regarding long-term safety; bentonite-metal interactions have been in focus and studies have given a good basis for material selection for the Supercontainer, plugs and other supporting structures and titanium is selected. The selections and evaluations made during this project phase will be used in the safety evaluations planned for Forsmark and Olkiluoto in the upcoming project phase. KBS-3H specific production lines have been outlined and layout adaptations for both Forsmark and Olkiluoto have been developed. Full-scale tests of system components have also been carried out with good results; the full-scale compartment plug test shows the ability to install a plug that separates drift compartments hydraulically. (orig.)

  5. KBS-3H Complementary studies, 2008-2010

    International Nuclear Information System (INIS)

    2012-10-01

    KBS-3H is a joint project between Svensk Kaernbraenslehantering AB (SKB) in Sweden and Posiva Oy in Finland. The main goal during the project phase Complementary studies of horizontal emplacement KBS-3H 2008-2010 was to develop KBS-3H to such a state that a decision to go ahead with full-scale testing and demonstration could be made. The KBS-3H design is a variant of the KBS-3 method and an alternative to the KBS-3V design. In KBS-3H multiple canisters containing spent nuclear fuel are emplaced in parallel, 100-300 m long, horizontal deposition drifts at a depth of about 400-500 m in the bedrock whereas the KBS-3V design calls for vertical emplacement of the canisters in individual deposition holes. Further development and evaluation of the main KBS-3H design alternatives developed in earlier work, DAWE (Drainage, Artificial Watering and air Evacuation) and STC (Semi Tight Compartments) (Autio el al. 2007) has now enabled a well-founded KBS-3H reference design selection, DAWE has been selected. Regarding long-term safety; bentonite-metal interactions have been in focus and studies have given a good basis for material selection for the Supercontainer, plugs and other supporting structures and titanium is selected. The selections and evaluations made during this project phase will be used in the safety evaluations planned for Forsmark and Olkiluoto in the upcoming project phase. KBS-3H specific production lines have been outlined and layout adaptations for both Forsmark and Olkiluoto have been developed. Full-scale tests of system components have also been carried out with good results; the full-scale compartment plug test shows the ability to install a plug that separates drift compartments hydraulically

  6. Safety Assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto

    International Nuclear Information System (INIS)

    Smith, P.; Neall, F.; Snellman, M.; Pastina, B.; Hjerpe, T.; Nordman, H.; Johnson, L.

    2007-12-01

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. KBS-3H and KBS-3V are the two design alternatives of the KBS-3 spent fuel disposal method. Posiva and SKB have conducted a joint research, demonstration and development (RD and D) programme in 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The overall objectives of the present phase covering the period 2004-2007 have been to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as KBS-3V. The safety studies conducted as part of this programme include a safety assessment of a preliminary design of a KBS-3H repository for spent nuclear fuel located about 400 m underground at the Olkiluoto site, which is the proposed site for a spent fuel repository in Finland. This safety assessment is summarised in the present report. The scientific basis of the safety assessment includes around 30 years of scientific R and D and technical development in the Swedish and Finnish KBS-3V programmes. Much of this scientific basis is directly applicable to KBS-3H. This has allowed the KBS-3H safety studies to focus on those issues that are unique to this design alternative, identified in a systematic difference analysis of KBS-3H and KBS-3V. This difference analysis has shown that the key differences in the evolution and performance of KBS-3H and KBS-3V relate mainly to the engineered barrier system and to the impact of local variations in the rate of groundwater inflow on buffer saturation along the KBS-3H deposition drifts. No features or processes specific to KBS-3H have been identified that could lead to a loss or substantial degradation of the safety functions of the engineered barriers over a million year time frame. Radionuclide release from the repository near field in the event of

  7. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Summary report

    International Nuclear Information System (INIS)

    Smith, Paul; Neall, Fiona; Snellman, Margit; Pastina, Barbara; Nordman, Henrik; Johnson, Lawrence; Hjerpe, Thomas

    2008-03-01

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. KBS-3H and KBS-3V are the two design alternatives of the KBS-3 spent fuel disposal method. Posiva and SKB have conducted a joint research, demonstration and development (RDandD) programme in 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The overall objectives of the present phase covering the period 2004-2007 have been to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as KBS-3V. The safety studies conducted as part of this programme include a safety assessment of a preliminary design of a KBS-3H repository for spent nuclear fuel located about 400 m underground at the Olkiluoto site, which is the proposed site for a spent fuel repository in Finland. This safety assessment is summarised in the present report. The scientific basis of the safety assessment includes around 30 years of scientific RandD and technical development in the Swedish and Finnish KBS-3V programmes. Much of this scientific basis is directly applicable to KBS-3H. This has allowed the KBS-3H safety studies to focus on those issues that are unique to this design alternative, identified in a systematic 'difference analysis' of KBS-3H and KBS-3V. This difference analysis has shown that the key differences in the evolution and performance of KBS-3H and KBS-3V relate mainly to the engineered barrier system and to the impact of local variations in the rate of groundwater inflow on buffer saturation along the KBS-3H deposition drifts. No features or processes specific to KBS-3H have been identified that could lead to a loss or substantial degradation of the safety functions of the engineered barriers over a million year time frame. Radionuclide release from the repository near field in the event of

  8. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Paul; Neall, Fiona; Snellman, Margit; Pastina, Barbara; Nordman, Henrik; Johnson, Lawrence; Hjerpe, Thomas

    2008-03-15

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. KBS-3H and KBS-3V are the two design alternatives of the KBS-3 spent fuel disposal method. Posiva and SKB have conducted a joint research, demonstration and development (RDandD) programme in 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The overall objectives of the present phase covering the period 2004-2007 have been to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as KBS-3V. The safety studies conducted as part of this programme include a safety assessment of a preliminary design of a KBS-3H repository for spent nuclear fuel located about 400 m underground at the Olkiluoto site, which is the proposed site for a spent fuel repository in Finland. This safety assessment is summarised in the present report. The scientific basis of the safety assessment includes around 30 years of scientific RandD and technical development in the Swedish and Finnish KBS-3V programmes. Much of this scientific basis is directly applicable to KBS-3H. This has allowed the KBS-3H safety studies to focus on those issues that are unique to this design alternative, identified in a systematic 'difference analysis' of KBS-3H and KBS-3V. This difference analysis has shown that the key differences in the evolution and performance of KBS-3H and KBS-3V relate mainly to the engineered barrier system and to the impact of local variations in the rate of groundwater inflow on buffer saturation along the KBS-3H deposition drifts. No features or processes specific to KBS-3H have been identified that could lead to a loss or substantial degradation of the safety functions of the engineered barriers over a million year time frame. Radionuclide release from the repository near field in the

  9. KBS annual report 1980

    International Nuclear Information System (INIS)

    1981-03-01

    The KBS project was organized in late 1976 by the Swedish nuclear power utilities within the framework of the jointly owned Swedish Nuclear Fuel Supply Co, SKBF. The original purpose of KBS was to perform the studies and investigations necessary to fulfill the requirements of the Swedish 'Stipulations Act' of 1977, which says that the owner of a new nuclear reactor has to demonstrate how and where spent nuclear foel or high-level radioactive waste from reprocessing can be stored in an absolute safe manner before the Government can grant him permission to charge the reactor with fuel. Subsequently, KBS has been assigned to carry out R and D work concerning the treatment and final disposal of all kinds of radioactive wastes from nuclear power production as well as the decommissioning of nuclear facilities. KBS has therefore been transformed from a temporary project into a permanent division of SKBF. The main efforts in different fields during 1980 have been the following. Materials: studies of waste glasses and canister materials. Engineered barriers, technology: continued studies of properties and behavior of bentonite clays. Geology and hydrology: improvement of hydrological models, further development of hydrological instruments and methods, gathering of field data. Safety analysis: improved modelling of nuclide migration. Low- and medium-level wastes: design studies and field investigations for a final repository for reactor wastes, characterization of wastes from operation of reactors and from reprocessing. Stripa project: an autonomous OECD/NEA international project managed by SKBF/KBS. Foreign contacts: formal agreements on information exchange have been signed with US DOE, AECL Canada and NAGRA, Switzerland. As in 1979, the work on radioactive waste management has been divided and coordinated between the utility-owned KBS and the government organization PRAV (Programraadet foer Radioaktivt Avfall: The National Council for Radioactive Waste). Short summaries

  10. KBS-3H design description 2007

    International Nuclear Information System (INIS)

    Autio, J.; Hagros, A.; Johansson, E.

    2008-12-01

    The presented KBS-3H design work was carried out in KBS-3H project in 2004 - 2007, which was a joint project between Svensk Kaernbraenslehantering AB (SKB) in Sweden and Posiva Oy in Finland. The overall objectives of the project phase were to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as the reference design KBS-3V. The KBS-3H design is a variant of the KBS-3 method and an alternative to the KBS-3V design. In the KBS-3H design alternative, multiple canisters containing spent fuel are emplaced at about 420 m depth in bedrock in parallel, 100 - 300 m long, approximately horizontal deposition drifts whereas the KBS-3V design calls for vertical emplacement of the canisters in individual deposition holes. As a result of design work, the two previous KBS-3H repository candidate designs called Basic Design (BD) and design based on Drainage, Artificial Watering and air Evacuation (DAWE) were developed on two different functional principles. At later phase of the project the BD alternative was found not to be robust in drifts with several large inflows and therefore a third less mature alternative called Semi Tight Compartments design (STC) was introduced to function in these conditions. Significant effort was made in the project to resolve studies and testing the functional uncertainties related to buffer behaviour which could e.g. cause piping, erosion, displacement and rupture of distance blocks. Major work was also carried for the design of supercontainer, development of large-scale post-grouting device, Mega-Packer, for grouting of rock, excavation of deposition drifts, layout design and evaluation of residual materials. This report also summarizes and highlights differences between different design alternatives and gives reasoning why DAWE design alternative is seen as the most interesting for future development together with novel less mature STC

  11. Safety functions and safety function indicators - key elements in SKB'S methodology for assessing long-term safety of a KBS-3 repository

    International Nuclear Information System (INIS)

    Hedin, A.

    2008-01-01

    The application of so called safety function indicators in SKB safety assessment of a KBS-3 repository for spent nuclear fuel is presented. Isolation and retardation are the two main safety functions of the KBS-3 concept. In order to quantitatively evaluate safety on a sub-system level, these functions need to be differentiated, associated with quantitative measures and, where possible, with quantitative criteria relating to the fulfillment of the safety functions. A safety function is defined as a role through which a repository component contributes to safety. A safety function indicator is a measurable or calculable property of a repository component that allows quantitative evaluation of a safety function. A safety function indicator criterion is a quantitative limit such that if the criterion is fulfilled, the corresponding safety function is upheld. The safety functions and their associated indicators and criteria developed for the KBS-3 repository are primarily related to the isolating potential and to physical states of the canister and the clay buffer surrounding the canister. They are thus not directly related to release rates of radionuclides. The paper also describes how the concepts introduced i) aid in focussing the assessment on critical, safety related issues, ii) provide a framework for the accounting of safety throughout the different time frames of the assessment and iii) provide key information in the selection of scenarios for the safety assessment. (author)

  12. Biosphere analysis for selected cases in TILA-99 and in KBS-3H safety evaluation 2007

    International Nuclear Information System (INIS)

    Broed, R.; Avila, R.; Bergstroem, U.; Hjerpe, T.; Ikonen, A.

    2008-12-01

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. KBS-3H and KBS-3V are the two design alternatives of the KBS-3 spent fuel disposal method. Posiva and SKB have conducted a joint research, demonstration and development (RD and D) programme in 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The overall objectives of the present phase covering the period 2004-2007 have been to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as KBS-3V. The safety studies conducted as part of this programme include a safety assessment of a preliminary design of a KBS-3H repository for spent nuclear fuel located about 400 m underground at the Olkiluoto site, which is the proposed site for a spent fuel repository in Finland. This report summarises the biosphere analysis conducted in the KBS-3H safety studies. The most important components of the analysis are presented in this report: i) predictions of the physical terrain and the ecosystems possibly receiving contaminant releases from the repository, ii) modelling of the transport of radionuclides in the entire landscape, taking into account that the ecosystems currently present at the site will evolve over time, and, iii) the estimation of potential doses to humans. The main outcome from the present analysis, dealing with radiological safety and compliance with regulatory requirements, is the annual landscape dose, which is related to individuals fully utilising the maximum production of food and water from the potentially contaminated area. In order to facilitate comparisons with earlier assessments, resulting release rates into the biosphere, from both KBS-3H and TILA-99 calculation cases, were used as inputs for the biosphere analysis. The present study shows that none of the

  13. Buffer development in KBS-3H repository design variant

    International Nuclear Information System (INIS)

    Sanden, T.; Boergesson, L.; Autio, J.; Oehberg, A.; Anttila, P.

    2010-01-01

    Document available in extended abstract form only. KBS-3H project is a joint project between Svensk Kaernbraenslehantering AB (SKB) in Sweden and Posiva Oy in Finland. The overall objectives of the project phase are to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as the reference design KBS-3V, which calls for vertical emplacement of the canisters in individual deposition holes. KBS-3H and KBS-3V are the two variants of the KBS-3 method. In KBS-3H each spent fuel canister, with a surrounding layer of bentonite clay, is placed in a perforated steel cylinder prior to disposal; the entire assembly is called the supercontainer. Several super-containers are positioned along up to 300 m long approximately horizontal deposition drifts. The drifts will be excavated at the depth of about 420 m in bedrock. Bentonite distance blocks separate the super-containers, one from another, along the drift. The bentonite inside the super-containers and the bentonite distance blocks are jointly termed the buffer. There are two KBS-3H design alternatives; a design based on Drainage, Artificial Watering and air Evacuation (DAWE) and a less mature alternative called Semi Tight Compartments design (STC). Significant effort has been made in the KBS-3H project to solve the functional uncertainties related to buffer behaviour, which could e.g. cause piping, erosion, displacement and rupture of distance blocks. Some of the issues were prioritised as being important if there was clear uncertainty regarding the ability of the buffer to fulfil the specified requirements with respect to this issue. The design components in KBS-3H design alternatives include currently significant amounts of iron and titanium as possible alternative material to iron. Therefore the buffer development work has also included studies on the Fe-bentonite and Ti-bentonite interaction. The work has included testing in

  14. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Process report

    Energy Technology Data Exchange (ETDEWEB)

    Gribi, Peter; Johnson, Lawrence; Suter, Daniel; Smith, Paul; Pastina, Barbara; Snellman, Margit

    2008-01-15

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. KBS-3H and KBS-3V are the two design alternatives of the KBS-3 spent fuel disposal method. Posiva and SKB have conducted a joint research, demonstration and development (RDandD) programme in 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The overall objectives of the present phase covering the period 2004-2007 have been to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as KBS-3V. The safety studies conducted as part of this programme include a safety assessment of a preliminary design of a KBS-3H repository for spent nuclear fuel located about 400 m underground at the Olkiluoto site, which is the proposed site for a spent fuel repository in Finland. In the KBS-3H design alternative, each canister, with a surrounding layer of bentonite clay, is placed in a perforated steel cylinder prior to emplacement; the entire assembly is called the supercontainer. Several supercontainers are positioned along parallel, 100-300 m long deposition drifts, which are sealed following waste emplacement using drift end plugs. Bentonite distance blocks separate the supercontainers, one from another, along the drift. Steel compartment plugs can be used to seal off drift sections with higher inflow, thus isolating the different compartments within the drift. The present report describes the main processes potentially affecting the long-term safety of the system, covering radiation-related, thermal, hydraulic, mechanical, chemical (including microbiological) and radionuclide transport-related processes. The process descriptions deal sequentially with the main sub-systems: fuel/cavity in canister, cast iron insert and copper canister, buffer and other bentonite components, supercontainer

  15. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Process report

    International Nuclear Information System (INIS)

    Gribi, Peter; Johnson, Lawrence; Suter, Daniel; Smith, Paul; Pastina, Barbara; Snellman, Margit

    2008-01-01

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. KBS-3H and KBS-3V are the two design alternatives of the KBS-3 spent fuel disposal method. Posiva and SKB have conducted a joint research, demonstration and development (RDandD) programme in 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The overall objectives of the present phase covering the period 2004-2007 have been to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as KBS-3V. The safety studies conducted as part of this programme include a safety assessment of a preliminary design of a KBS-3H repository for spent nuclear fuel located about 400 m underground at the Olkiluoto site, which is the proposed site for a spent fuel repository in Finland. In the KBS-3H design alternative, each canister, with a surrounding layer of bentonite clay, is placed in a perforated steel cylinder prior to emplacement; the entire assembly is called the supercontainer. Several supercontainers are positioned along parallel, 100-300 m long deposition drifts, which are sealed following waste emplacement using drift end plugs. Bentonite distance blocks separate the supercontainers, one from another, along the drift. Steel compartment plugs can be used to seal off drift sections with higher inflow, thus isolating the different compartments within the drift. The present report describes the main processes potentially affecting the long-term safety of the system, covering radiation-related, thermal, hydraulic, mechanical, chemical (including microbiological) and radionuclide transport-related processes. The process descriptions deal sequentially with the main sub-systems: fuel/cavity in canister, cast iron insert and copper canister, buffer and other bentonite components, supercontainer

  16. Vitrified radwaste from reprocessing. Supplementary geological investigations of the KBS-project, Sweden

    International Nuclear Information System (INIS)

    1979-01-01

    The Swedish nuclear power utilities' application to load two new reactors, according to the so called Stipulation Act was denied by the Swedish Government i Novermber 1978. According to the Government the utilities' KBS-project had not demonstrated the existence of a large, light rockformation suited for disposal of the radioactive wastes or the spent fuels. In this report an account is given of the futher investigations that were undertaken by the KBS-project to prove that such a rockformation exists at Sternoe in Southern Sweden. (L.E.)

  17. Long-term safety for KBS-3 repositories at Forsmark and Laxemar - a first evaluation. Main Report of the SR-Can project

    International Nuclear Information System (INIS)

    Hedin, Allan

    2006-10-01

    This document is the main report from the safety assessment project SR-Can. The SR-Can project is a preparatory stage for the SR-Site assessment, the report that will be used in support of SKB's application for a final repository. The purposes of the safety assessment SR-Can are the following: 1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant. 2. To provide feedback to design development, to SKB's RandD programme, to further site investigations and to future safety assessment projects. 3. To foster a dialogue with the authorities that oversee SKB's activities, i.e. the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI, regarding interpretation of applicable regulations, as a preparation for the SR-Site project. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. Preliminary data from the Forsmark and Laxemar sites, presently being investigated by SKB as candidates for a KBS-3 repository are used in the assessment. An important aim of this report is to demonstrate the proper handling of requirements placed on the safety assessment in applicable regulations. Therefore, regulations issued by the Swedish Nuclear Power Inspectorate and the Swedish Radiation Protection Institute are reproduced in an Appendix where references are given to sections in the main text where the handling of the different requirements is discussed. The principal acceptance criterion requires that 'the annual risk of harmful effects after closure does not exceed 10 -6 for a representative individual in the group exposed to the greatest risk'. 'Harmful effects' refer to cancer and hereditary effects. The risk limit corresponds to an

  18. Long-term safety for KBS-3 repositories at Forsmark and Laxemar - a first evaluation. Main Report of the SR-Can project

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, Allan (ed.)

    2006-10-15

    This document is the main report from the safety assessment project SR-Can. The SR-Can project is a preparatory stage for the SR-Site assessment, the report that will be used in support of SKB's application for a final repository. The purposes of the safety assessment SR-Can are the following: 1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant. 2. To provide feedback to design development, to SKB's RandD programme, to further site investigations and to future safety assessment projects. 3. To foster a dialogue with the authorities that oversee SKB's activities, i.e. the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI, regarding interpretation of applicable regulations, as a preparation for the SR-Site project. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. Preliminary data from the Forsmark and Laxemar sites, presently being investigated by SKB as candidates for a KBS-3 repository are used in the assessment. An important aim of this report is to demonstrate the proper handling of requirements placed on the safety assessment in applicable regulations. Therefore, regulations issued by the Swedish Nuclear Power Inspectorate and the Swedish Radiation Protection Institute are reproduced in an Appendix where references are given to sections in the main text where the handling of the different requirements is discussed. The principal acceptance criterion requires that 'the annual risk of harmful effects after closure does not exceed 10{sup -6} for a representative individual in the group exposed to the greatest risk'. 'Harmful effects' refer to cancer and hereditary effects

  19. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Evolution report

    International Nuclear Information System (INIS)

    Smith, P.; Johnson, L.; Snellman, M.; Pastina, B.; Gribi, P.

    2007-12-01

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. KBS-3H and KBS-3V are the two design alternatives of the KBS-3 method. Posiva and SKB have conducted a joint research, demonstration and development (RD and D) programme in 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The overall objectives of the present phase covering the period 2004-2007, have been to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as KBS-3V. The safety studies conducted as part of this programme include a safety assessment of a preliminary design of a KBS-3H repository for spent nuclear fuel located about 400 m underground at the Olkiluoto site, which is the proposed site for a spent fuel repository in Finland. In the KBS-3H design alternative, each canister, with a surrounding layer of bentonite clay, is pre-packaged in a perforated steel cylinder prior to emplacement in the deposition drift; the entire assembly is called the supercontainer. Several supercontainers are positioned along parallel, 100 - 300 m long deposition drifts, which are sealed following waste emplacement using drift end plugs. Bentonite distance blocks separate the supercontainers, one from another, along the drift. Steel compartment plugs can be used to seal off drift sections with higher inflow, thus isolating the different compartments within the drift. The present report describes the repository evolution in successive time frames, including key uncertainties. The description of evolution starts with the initial conditions at the time of emplacement of the first canisters. The repository evolves through an early, transient phase to a state where evolution is far slower. Particular attention is given to describing the transient phase, since this is where most of the

  20. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Evolution report

    International Nuclear Information System (INIS)

    Smith, Paul; Johnson, Lawrence; Snellman, Margit; Pastina, Barbara; Gribi, Peter

    2008-01-01

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. KBS-3H and KBS-3V are the two design alternatives of the KBS-3 method. Posiva and SKB have conducted a joint research, demonstration and development (RDandD) programme in 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The overall objectives of the present phase covering the period 2004-2007, have been to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as KBS-3V. The safety studies conducted as part of this programme include a safety assessment of a preliminary design of a KBS-3H repository for spent nuclear fuel located about 400 m underground at the Olkiluoto site, which is the proposed site for a spent fuel repository in Finland. In the KBS-3H design alternative, each canister, with a surrounding layer of bentonite clay, is pre-packaged in a perforated steel cylinder prior to emplacement in the deposition drift; the entire assembly is called the supercontainer. Several supercontainers are positioned along parallel, 100-300 m long deposition drifts, which are sealed following waste emplacement using drift end plugs. Bentonite distance blocks separate the supercontainers, one from another, along the drift. Steel compartment plugs can be used to seal off drift sections with higher inflow, thus isolating the different compartments within the drift. The present report describes the repository evolution in successive time frames, including key uncertainties. The description of evolution starts with the initial conditions at the time of emplacement of the first canisters. The repository evolves through an early, transient phase to a state where evolution is far slower. Particular attention is given to describing the transient phase, since this is where most of the

  1. Safety assessment for a KBS-3H spent nuclear fuel repository at Olkiluoto. Evolution report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Paul; Johnson, Lawrence; Snellman, Margit; Pastina, Barbara; Gribi, Peter

    2008-01-15

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. KBS-3H and KBS-3V are the two design alternatives of the KBS-3 method. Posiva and SKB have conducted a joint research, demonstration and development (RDandD) programme in 2002-2007 with the overall aim of establishing whether KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The overall objectives of the present phase covering the period 2004-2007, have been to demonstrate that the horizontal deposition alternative is technically feasible and to demonstrate that it fulfils the same long-term safety requirements as KBS-3V. The safety studies conducted as part of this programme include a safety assessment of a preliminary design of a KBS-3H repository for spent nuclear fuel located about 400 m underground at the Olkiluoto site, which is the proposed site for a spent fuel repository in Finland. In the KBS-3H design alternative, each canister, with a surrounding layer of bentonite clay, is pre-packaged in a perforated steel cylinder prior to emplacement in the deposition drift; the entire assembly is called the supercontainer. Several supercontainers are positioned along parallel, 100-300 m long deposition drifts, which are sealed following waste emplacement using drift end plugs. Bentonite distance blocks separate the supercontainers, one from another, along the drift. Steel compartment plugs can be used to seal off drift sections with higher inflow, thus isolating the different compartments within the drift. The present report describes the repository evolution in successive time frames, including key uncertainties. The description of evolution starts with the initial conditions at the time of emplacement of the first canisters. The repository evolves through an early, transient phase to a state where evolution is far slower. Particular attention is given to describing the transient phase, since this is where most of the

  2. Design and production of the KBS-3 repository

    International Nuclear Information System (INIS)

    Moren, Lena

    2010-12-01

    The report contains the common basis for a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report presents the role of the Production reports within the safety report and their common purposes and objectives. An important part of the report is to present the background and sources to the principles to be applied in the design, the functions of the KBS-3 repository and the barrier functions the engineered barriers and rock. Further, the methodology to substantiate detailed design premises for the engineered barriers, underground openings and other parts of the KBS-3 repository is presented. The report also gives an overview of the KBS-3 system and its facilities and the production lines for the spent fuel, the engineered barriers and underground openings. Finally, an introduction to quality management, safety classification and their application is given

  3. Design and production of the KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Moren, Lena

    2010-12-15

    The report contains the common basis for a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report presents the role of the Production reports within the safety report and their common purposes and objectives. An important part of the report is to present the background and sources to the principles to be applied in the design, the functions of the KBS-3 repository and the barrier functions the engineered barriers and rock. Further, the methodology to substantiate detailed design premises for the engineered barriers, underground openings and other parts of the KBS-3 repository is presented. The report also gives an overview of the KBS-3 system and its facilities and the production lines for the spent fuel, the engineered barriers and underground openings. Finally, an introduction to quality management, safety classification and their application is given

  4. SAFE-KBS, Substantiating the safety of systems containing knowledge-based components

    International Nuclear Information System (INIS)

    Mesa, E.; Jimenez, A.

    1998-01-01

    The overall objective of the Safe-KBS project is to develop generic development and certification methodologies that allow the introduction of knowledge-based components in safety-related applications. The expert system technology presents a set of features, such as the capability to provide the rationale for its conclusions, that may significantly contribute to the new operation support systems. Nevertheless, the use of this technology in safety-related applications is limited by the lack of recognised methodologies and standards that allow a formal demonstration of the quality and reliability of these systems, as required for obtaining the approval for their use at nuclear power plants. The development methodology is structured in three hierarchical levels: life cycle model, i.e., processes and activities constituting the life cycle, life cycle plans, i.e., tasks, and support packages, i.e., set of techniques and methods to perform certain activities or tasks. The certification methodology consists of a set of certification requirements and a certification scheme for demonstrating the compliance with these requirements. This project was developed within the European framework ESPRIT, with the collaboration of Sextant, Cise, Qualience, Ilog, Computes, DNV and Uninfo. (Author)

  5. Disposal of high active nuclear fuel waste. A critical review of the Nuclear Fuel Safety (KBS) project on final disposal of vitrified high active nuclear fuel waste

    International Nuclear Information System (INIS)

    1978-01-01

    This report has been prepared by the Swedish Energy Commission's working group for Safety and Environment. The main contributions are by profs. Jan Rydberg of Chalmers University of Technology, Sweden and John W Winchester of Florida State University, USA. The aim of the report is to discuss weather the KBS-project fullfills the Swedish ''Stipulations Act'', that a absolutely safe way of disposing of the nuclear waste must have been demonstrated before any new reactors are allowed to be taken inot use. Rydberg and Winchester do not arrive at similar conclusions. (L.E.)

  6. KBS-3H - Development of the horizontal disposal concept

    International Nuclear Information System (INIS)

    Thurner, Eric; Pettersson, Stig; Snellman, Margit; Autio, Jorma

    2006-01-01

    SKB and Posiva are performing an R and D programme over the period of 2002-2007 with the overall aim to find out whether the KBS-3H concept can be regarded as an alternative to the KBS-3V concept for disposal of spent nuclear fuel. A feasibility study of the KBS-3H concept was carried out in 2002, followed by the setting up of basic design in 2003, and since 2004 the demonstration phase is ongoing, ending with the evaluation of the potencial of the concept in 2007. In order to find out whether the concept can be regarded as a viable alternative to the KBS-3V concept demonstration and design work involve development of excavation technology of the drift, detailed studies on the function of the buffer bentonite, deposition equipment and methods for construction of low-pH shotcrete plugs. The investigations related to long-term safety are based on difference analyses between KBS-3V and KBS-3H and focus on KBS-3H specific processes. By the end of 2007 the KBS-3H concept will be reported including a preliminary safety case of the concept with Olkiluoto in Finland as a reference site. (author)

  7. KBS Technical report 1-120 (1977-1978). Summaries

    International Nuclear Information System (INIS)

    1979-05-01

    The Swedish nuclear utilities started early in 1977 the KBS (nuclear fuel safety) project to study the high level waste problem and report on how and where a safe final storage could be arranged in Sweden. The docummentation produced by the project during 1977 and 1978 has been collected in a series of technical reports numbered from 1 to 120. The English summaries of the technical reports have been collected in this separate volume, No. 121. (G.B.)

  8. Project on Alternative Systems Study - PASS. Comparison of technology of KBS-3, MLH, VLH and VDH concepts by using an expert group

    International Nuclear Information System (INIS)

    Olsson, Lars; Sandstedt, H.

    1992-09-01

    This report constitutes a technical comparison and ranking of four repository concepts for final disposal of spent nuclear fuel, that have been studied by SKB: KBS-3, Medium Long Holes (MLH), Very Long Holes (VLH) and Very Deep Holes (VDH). The technical comparison is part of the project 'Project on Alternative Systems Study, PASS', which was initiated by SKB. With the objective of presenting a ranking of the four concepts. Besides this comparison of Technology the ranking is separately made for Long-term Performance and Safety, and Costs before the merging into one verdict. The ranking regarding Technology was carried out in accordance with the method Analytical Hierarchy Process, AHP, and by the aid of expert judgement in the form of a group consisting of six experts. The AHP method implies that the criteria for comparison are ordered in a hierarchy and that the ranking is carried out by pairwise comparison of the criteria. In the evaluation process a measure of the relative importance of each criterion is obtained. The result of the expert judgement exercise was that each expert individually ranked the four concepts in the following order with the top ranked alternative first: KBS-3, MLH, VLH and VDH. The common opinion among the experts was that the top ranking of KBS-3 is significant and the the major criteria used in the study could change substantially without changing the top ranking of KBS-3

  9. Spent nuclear fuel for disposal in the KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, Per; Moren, Lena; Wiborgh, Maria

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input to the assessment of the long-term safety, SR-Site as well as to the operational safety report, SR-Operation. The report presents the spent fuel to be deposited, and the requirements on the handling and selection of fuel assemblies for encapsulation that follows from that it shall be deposited in the KBS-3 repository. An overview of the handling and a simulation of the encapsulation and the resulting canisters to be deposited are presented. Finally, the initial state of the encapsulated spent nuclear fuel is given. The initial state comprises the radionuclide inventory and other data required for the assessment of the long-term safety

  10. Spent nuclear fuel for disposal in the KBS-3 repository

    International Nuclear Information System (INIS)

    Grahn, Per; Moren, Lena; Wiborgh, Maria

    2010-12-01

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input to the assessment of the long-term safety, SR-Site as well as to the operational safety report, SR-Operation. The report presents the spent fuel to be deposited, and the requirements on the handling and selection of fuel assemblies for encapsulation that follows from that it shall be deposited in the KBS-3 repository. An overview of the handling and a simulation of the encapsulation and the resulting canisters to be deposited are presented. Finally, the initial state of the encapsulated spent nuclear fuel is given. The initial state comprises the radionuclide inventory and other data required for the assessment of the long-term safety

  11. Project JADE. Long-term function and safety. Comparison of repository systems

    International Nuclear Information System (INIS)

    Birgersson, Lars; Pers, K.; Wiborgh, M.

    2001-12-01

    A comparison of the KBS-3 V(ertical deposition), KBS-3 H(orizontal deposition) and MLH repository systems with regard to the long-term repository performance and the radionuclide migration is presented in the report. Several differences between the repository systems have been identified. The differences are mainly related to the: distance between canister and backfilled tunnels, excavated rock volumes, deposition hole direction. The overall conclusion is that the differences are in general quite small with regard to the repository function and safety. None of the differences are of such importance for the long-term repository performance and radionuclide migration that they discriminate any of the repository systems. The differences between the two KBS-3 systems are small. Based on this study, there is no reason to change from the reference system KBS-3 V to KBS-3 H. MLH has the potential to be a very robust system, especially in a long-term perspective. However, the MLH system will require extensive research, development, and analysis before it will be as confident as the reference repository system, KBS-3 V. Although the MLH and KBS-3 H systems are in some ways favourable compared to the reference system KBS-3 V, the overall conclusion is that the KBS-3 V system is still a very attractive system. A major advantage with KBS-3 V is that it is by far the most investigated and developed system. The JADE-project was initiated in 1996, and the main part of the study was carried out during 1997 and 1998. The JADE study is consequently based on presumptions that were valid a few years ago. Some of these presumptions have been modified since then. The new presumptions are however not judged to change the overall conclusions

  12. Evaluation of SKB/Posiva's report on the horizontal alternative of the KBS-3 method

    International Nuclear Information System (INIS)

    Apted, Michael J.; Bennet, David G.; Saario, Timtetr; Savage, David

    2009-10-01

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. The method has two design alternatives: the vertical (KBS-3V) and the horizontal (KBS-3H). In the KBS-3H concept, copper canisters loaded with spen nuclear fuel are encased in a compacted bentonite buffer with an outer supporting supercontainer composed of a mild steel basket, and the entire supercontainer is emplaced horizontally in long emplacement drifts. SKB and Posiva have conducted a joint research, development and demonstration (RDandD) programme in 2002-2007 with the overall aim of establishing whether the KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The objectives have been to demonstrate that the horizontal deposition alternative is technically feasible and that it fulfils the same long-term safety requirement as the KBS-3V. Swedish Radiation Safety Authority (SSM) considers that it is a proper time to evaluate the work carried by SKB and Posiva when this period of joint research is ended and a relatively complete set of reporting is available. SSM therefore required its external expert group BRITE (the Barrier Review, Integration, Tracking and Evaluation) to evaluate the reporting. The aims of the evaluation are to investigate the differences between the horizontal and vertical design alternatives with respect to: Completeness: has SKB/Posiva identified the full set of key topics, and if not, what additional specific key topics should be evaluated; Depth-of-treatment: has SKB/Posiva analysed the key topics in sufficient depth, and if not, on what specific aspects in more detailed consideration required; Status of information: has SKB/ Posiva provided enough information on the current status of knowledge and uncertainties that impact the understanding of each key topic, and if not, what further information should be cited; Feasibility and practicality: for key issues related to the fabrication and

  13. Evaluation of SKB/Posiva's report on the horizontal alternative of the KBS-3 method

    Energy Technology Data Exchange (ETDEWEB)

    Apted, Michael J.; Bennet, David G.; Saario, Timtetr; Savage, David

    2009-10-15

    The KBS-3 method, based on multiple barriers, is the proposed spent fuel disposal method both in Sweden and Finland. The method has two design alternatives: the vertical (KBS-3V) and the horizontal (KBS-3H). In the KBS-3H concept, copper canisters loaded with spen nuclear fuel are encased in a compacted bentonite buffer with an outer supporting supercontainer composed of a mild steel basket, and the entire supercontainer is emplaced horizontally in long emplacement drifts. SKB and Posiva have conducted a joint research, development and demonstration (RDandD) programme in 2002-2007 with the overall aim of establishing whether the KBS-3H represents a feasible alternative to the reference alternative KBS-3V. The objectives have been to demonstrate that the horizontal deposition alternative is technically feasible and that it fulfils the same long-term safety requirement as the KBS-3V. Swedish Radiation Safety Authority (SSM) considers that it is a proper time to evaluate the work carried by SKB and Posiva when this period of joint research is ended and a relatively complete set of reporting is available. SSM therefore required its external expert group BRITE (the Barrier Review, Integration, Tracking and Evaluation) to evaluate the reporting. The aims of the evaluation are to investigate the differences between the horizontal and vertical design alternatives with respect to: Completeness: has SKB/Posiva identified the full set of key topics, and if not, what additional specific key topics should be evaluated; Depth-of-treatment: has SKB/Posiva analysed the key topics in sufficient depth, and if not, on what specific aspects in more detailed consideration required; Status of information: has SKB/ Posiva provided enough information on the current status of knowledge and uncertainties that impact the understanding of each key topic, and if not, what further information should be cited; Feasibility and practicality: for key issues related to the fabrication and

  14. Project Alternative Systems Study - PASS. Analysis of performance and long-term safety of repository concepts

    International Nuclear Information System (INIS)

    Birgersson, L.; Skagius, K.; Wiborgh, M.; Widen, H.

    1992-09-01

    This study is part of the Project on Alternative Systems Study, PASS, with the overall aim to perform a technical/economical ranking of alternative repository concepts and canisters for the final storage of spent nuclear fuel. The comparison should in the first stage separately assess technology in construction and operation, long-term performance and safety, and costs. Three of the repository concepts are assumed to be located at a depth of approximately 500 m in the host rock, KBS-3, Very Long Holes (VLH) and Medium Long Holes (MLH). In the KBS-3 concept the canisters are deposited in vertical deposition holes in a system of parallel storage tunnels. In the VLH concept larger canisters are deposited in long horizontal tunnels. The MLH concept, is an evolution of the two other concepts, with KBS-3 type canisters deposited in horizontal tunnels. Smaller canisters are to be deposited in deep bore holes at a depth between 2000 to 4000 m in the Very Deep Holes (VDH) concept. In all concepts the canisters will be surrounded by a bentonite buffer. The aim of the present study is to analyze and compare the performance and long-term safety of the repository concepts. Only a qualitative comparison of the concepts is made as no calculations of radionuclide releases or dose to man have been performed. The ranking of the repository concepts was carried out by comparing the VDH, VLH and MLH concept with the KBS-3 concept. The performance and long-term safety of the repositories located at 500 m level will be based on a multiple barrier system and the predictions for the concepts will involve similar uncertainties. (54 refs.)

  15. Development of the KBS-3 method. Survey of SKB's research programs and safety assessments, reviews by Government authorities and SKB's international research cooperation

    International Nuclear Information System (INIS)

    2010-11-01

    The purpose of this report is to outline the origin and development over the past 30 years (up to 2009) of the KBS-3 method proposed by the Swedish Nuclear Fuel and Waste Management Co (SKB) for final disposal of spent nuclear fuel. The KBS-3 method is based on three protective barriers. The spent nuclear fuel is encapsulated in impermeable copper canisters. The canisters are placed in crystalline basement rock at a depth of 400-700 metres, embedded in bentonite clay. After disposal the tunnels and rock caverns are sealed. The account does not claim to cover all parts of the extensive technical and scientific research and development work conducted by SKB in form of collecting data, refining methods and increasing process understanding. The report forms part of the background material which SKB has gathered as a basis for future applications regarding permits under the Environmental Code and the Nuclear Activities Act to build and operate facilities for encapsulation and final disposal of spent nuclear fuel. A prominent feature of the industrial development work on the final disposal of spent nuclear fuel has been an openness for a constant input of ideas and opinions from society and public bodies (the Government, national authorities, universities and other institutes of higher education, municipalities and various non-governmental organizations). The presentation sheds light on developments in a number of areas that are of central importance for safety in a KBS-3 repository. In SKB's RDandD Programme 2007, these areas go under the headings rock line, buffer line, canister line, backfilling line and closure line. Furthermore, attention has been given to issues related to the possible retrieval of deposited canisters, variants of KBS-3, deposition technology and safety assessment, as well as a number of interdisciplinary issues. The development of methods for the safety assessment has been an important part of the development of the KBS-3 method. The work with

  16. Development of the KBS-3 method. Survey of SKB's research programs and safety assessments, reviews by Government authorities and SKB's international research cooperation; Utvecklingen av KBS-3-metoden. Genomgaang av forskningsprogram, saekerhetsanalyser, myndighetsgranskningar samt SKB:s internationella forskningssamarbete

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-15

    The purpose of this report is to outline the origin and development over the past 30 years (up to 2009) of the KBS-3 method proposed by the Swedish Nuclear Fuel and Waste Management Co (SKB) for final disposal of spent nuclear fuel. The KBS-3 method is based on three protective barriers. The spent nuclear fuel is encapsulated in impermeable copper canisters. The canisters are placed in crystalline basement rock at a depth of 400-700 metres, embedded in bentonite clay. After disposal the tunnels and rock caverns are sealed. The account does not claim to cover all parts of the extensive technical and scientific research and development work conducted by SKB in form of collecting data, refining methods and increasing process understanding. The report forms part of the background material which SKB has gathered as a basis for future applications regarding permits under the Environmental Code and the Nuclear Activities Act to build and operate facilities for encapsulation and final disposal of spent nuclear fuel. A prominent feature of the industrial development work on the final disposal of spent nuclear fuel has been an openness for a constant input of ideas and opinions from society and public bodies (the Government, national authorities, universities and other institutes of higher education, municipalities and various non-governmental organizations). The presentation sheds light on developments in a number of areas that are of central importance for safety in a KBS-3 repository. In SKB's RDandD Programme 2007, these areas go under the headings rock line, buffer line, canister line, backfilling line and closure line. Furthermore, attention has been given to issues related to the possible retrieval of deposited canisters, variants of KBS-3, deposition technology and safety assessment, as well as a number of interdisciplinary issues. The development of methods for the safety assessment has been an important part of the development of the KBS-3 method. The work

  17. Leveraging on Information Technology to Teach Construction Law to Built Environment Students: A Knowledge-Based System (KBS Approach

    Directory of Open Access Journals (Sweden)

    Faisal Manzoor Arain

    2009-11-01

    Full Text Available Construction law is a vital component of the body of knowledge that is needed by construction professionals in order to successfully operate in the commercial world of construction. Construction law plays an important role in shaping building projects. Construction projects are complex because they involve many human and non-human factors and variables. Teaching construction law is therefore a complex issue with several dimensions. In recent years, Information Technology (IT has become strongly established as a supporting tool for many professions, including teachers. If faculty members have a knowledge base established on similar past projects, it would assist the faculty members to present case studies and contractually based scenarios to students. This paper proposes potential utilisation of a Knowledge-based System (KBS for teaching construction law to built environment students. The KBS is primarily designed for building professionals to learn from similar past projects. The KBS is able to assist professionals by providing accurate and timelyinformation for decision making and a user-friendly tool for analysing and selecting the suggested controls for variations in educational buildings. It is recommended that the wealth of knowledge available in the KBS can be very helpful in teaching construction law to built environment students. The system presents real case studies and scenarios to students to allow them to analyse and learn construction law. The KBS could be useful to students as a general research tool because the students could populate it with their own data and use it with the reported educational projects. With further generic modifications, the KBS will also be useful for built environment students to learn about project management of building projects; thus, it will raise the overall level of professional understanding, and eventually productivity, in the construction industry.

  18. Meddling in the KBS Programme and Swedish Success in Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark (Univ. of Goeteborg, Goeteborg (Sweden)), e-mail: mark.elam@sts.gu.se; Sundqvist, Goeran (Univ. of Oslo, Oslo (Norway))

    2010-09-15

    In this paper the intention is to analyse and re/describe the qualities that underlie the current fame and good standing of Swedish nuclear waste management (the so-called KBS Programme). Inspired by work in the actor-network theory tradition, we want to argue that the success of the KBS Programme can be best accounted for with reference to qualities which are the reverse of those you might otherwise expect. While you might imagine its good name to be ascribable to the constancy, solidity and singularity of the solution being advanced, we want to argue that it is rather the infidelity, fluidity and heterogeneity of this solution that can best account for the leading position of Swedish nuclear waste management today. In fact, we wish to assert that it is through the effacement of the inherent importance of the latter set of qualities, that the KBS Programme has been able to promote a vision of itself as successfully imbued with the former set. The enduring template for Swedish nuclear waste management was established in 1977 through the Nuclear Stipulation Act. This gave rise to the cultivation of a new expertise within the Swedish nuclear industry of demonstrating indubitable solutions to nuclear waste problems close at hand. Thus, while it may appear that the KBS Programme has always been about the conception, and step by step implementation of a completely coherent and largely unvarying approach to the geological disposal of nuclear waste, this can be seen as effacing another reality. Bringing this other reality back into view, we see that for the KBS Programme, attaining the goal of the geological disposal of nuclear waste has never been as important as maintaining the ability to demonstrate its attainability. The KBS Programme is firstly a long-running programme in the material semiotics of nuclear fuel safety and the production of palpable signs of the accomplishment of geological disposal close at hand. This production of palpable signs has extended to the

  19. Meddling in the KBS Programme and Swedish Success in Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2010-09-01

    In this paper the intention is to analyse and re/describe the qualities that underlie the current fame and good standing of Swedish nuclear waste management (the so-called KBS Programme). Inspired by work in the actor-network theory tradition, we want to argue that the success of the KBS Programme can be best accounted for with reference to qualities which are the reverse of those you might otherwise expect. While you might imagine its good name to be ascribable to the constancy, solidity and singularity of the solution being advanced, we want to argue that it is rather the infidelity, fluidity and heterogeneity of this solution that can best account for the leading position of Swedish nuclear waste management today. In fact, we wish to assert that it is through the effacement of the inherent importance of the latter set of qualities, that the KBS Programme has been able to promote a vision of itself as successfully imbued with the former set. The enduring template for Swedish nuclear waste management was established in 1977 through the Nuclear Stipulation Act. This gave rise to the cultivation of a new expertise within the Swedish nuclear industry of demonstrating indubitable solutions to nuclear waste problems close at hand. Thus, while it may appear that the KBS Programme has always been about the conception, and step by step implementation of a completely coherent and largely unvarying approach to the geological disposal of nuclear waste, this can be seen as effacing another reality. Bringing this other reality back into view, we see that for the KBS Programme, attaining the goal of the geological disposal of nuclear waste has never been as important as maintaining the ability to demonstrate its attainability. The KBS Programme is firstly a long-running programme in the material semiotics of nuclear fuel safety and the production of palpable signs of the accomplishment of geological disposal close at hand. This production of palpable signs has extended to the

  20. Discrete fracture network modelling of a KBS-3H repository at Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Lanyon, G.W. (Fracture Systems Ltd, St Ives (United Kingdom)); Marschall, P. (Nagra, Wettingen (Switzerland))

    2008-06-15

    This report presents Discrete Fracture Network (DFN) models of groundwater flow around a KBS-3H repository situated at Olkiluoto. The study was performed in support of the Safety Case for the KBS-3H Concept, being jointly studied by SKB and Posiva. As part of the preliminary assessment of long term safety of a KBS-3H repository, a Process Report and an Evolution Report (evolution of the disposal system from the emplacement of the first canister to the long term) are being produced. In the course of the task definition the project team identified the need for complementary modelling studies aimed at increasing insight into the hydrodynamic evolution of the disposal system after waste emplacement. In particular, the following issues were identified as requiring input from hydrodynamic models: Probability of high inflow points which may cause buffer erosion. Time transients of inflows after construction of deposition drifts. Interference between deposition drifts and transport tunnels. The DFN models represent the fault and fracture system in the planned repository volume at Olkiluoto. In particular, they represent the hydro geologically significant features. The types of hydrogeological features included in the models are: Major Fracture Zones (MFZs). Local Fracture Zones (LFZs) and associated water conducting features (LFZ-WCFs). Water Conducting Features in the background rock (BR-WCFs). These feature types are derived from the current geological and hydrogeological interpretations developed by Posiva. Several model variants were developed during the study and these variants were used for geometric simulations of the WCF network around the deposition drifts. A simple layout adaptation scheme has been applied to the network models to derive statistics for performance measures relating to the deposition drifts, compartments, plugs and super-containers. A single fracture transient flow model was developed to provide insight to transient flow behaviour around

  1. Discrete fracture network modelling of a KBS-3H repository at Olkiluoto

    International Nuclear Information System (INIS)

    Lanyon, G.W.; Marschall, P.

    2008-06-01

    This report presents Discrete Fracture Network (DFN) models of groundwater flow around a KBS-3H repository situated at Olkiluoto. The study was performed in support of the Safety Case for the KBS-3H Concept, being jointly studied by SKB and Posiva. As part of the preliminary assessment of long term safety of a KBS-3H repository, a Process Report and an Evolution Report (evolution of the disposal system from the emplacement of the first canister to the long term) are being produced. In the course of the task definition the project team identified the need for complementary modelling studies aimed at increasing insight into the hydrodynamic evolution of the disposal system after waste emplacement. In particular, the following issues were identified as requiring input from hydrodynamic models: Probability of high inflow points which may cause buffer erosion. Time transients of inflows after construction of deposition drifts. Interference between deposition drifts and transport tunnels. The DFN models represent the fault and fracture system in the planned repository volume at Olkiluoto. In particular, they represent the hydro geologically significant features. The types of hydrogeological features included in the models are: Major Fracture Zones (MFZs). Local Fracture Zones (LFZs) and associated water conducting features (LFZ-WCFs). Water Conducting Features in the background rock (BR-WCFs). These feature types are derived from the current geological and hydrogeological interpretations developed by Posiva. Several model variants were developed during the study and these variants were used for geometric simulations of the WCF network around the deposition drifts. A simple layout adaptation scheme has been applied to the network models to derive statistics for performance measures relating to the deposition drifts, compartments, plugs and super-containers. A single fracture transient flow model was developed to provide insight to transient flow behaviour around

  2. Developing design premises for a KBS-3V repository based on results from the safety assessment - 16027

    International Nuclear Information System (INIS)

    Andersson, Johan; Hedin, Allan

    2009-01-01

    As a part of the planned license application for a final repository for spent nuclear fuel the Swedish Nuclear Fuel and Waste Management Co. (SKB), has developed design premises from a long term safety aspect of a KBS-3V repository for spent nuclear fuel. The purpose is to provide requirements from a long term safety aspect, to form the basis for the development of the reference design of the repository and to justify that design. Design premises typically concern specification on what mechanical loads the barriers must withstand, restrictions on the composition of barrier materials or acceptance criteria for the various underground excavations. These design constraints, if all fulfilled by the actual design, should form a good basis for demonstrating repository safety. The justification for these design premises is derived from SKB's most recent safety assessment SR-Can complemented by a few additional analyses. Some of the design premises may be modified in future stages of SKB's program, as a result of analyses based on more detailed site data and a more developed understanding of processes of importance for long-term safety. (authors)

  3. KBS-3H. Summary report of work done during Basic Design

    International Nuclear Information System (INIS)

    Thorsager, Peder; Lindgren, Erik

    2004-09-01

    The aim of this report is to give a brief specification of achieved knowledge from Basic Design. The report will also constitute the basis for decision to continue the project or not with detail design and manufacturing of deposition equipment and other equipment necessary for realization of full scale demonstrations of horizontal deposition in long horizontal drifts at Aespoe during the period 2004-2007. The work with the project has continued during 2004 with mainly preparation of Request for Proposal (RFP) documents for the detailed design and manufacturing of the deposition equipment. Further, SKB has signed a contract with a drilling company for drilling of the horizontal deposition drifts late 2004 at Aespoe HRL. The work with the buffer issues and the safety case for the KBS-3H concept has also continued during 2004. During the work with the RFP documents for the deposition equipment and excavation of deposition drifts, some modifications or changes have been done that is not documented in this report. The main changes in the KBS-3H projects are the following: 1. The excavation of the deposition drift at Aespoe HRL will not be done with the Wassara water hammer technology as described in the report but with blind raiseboring technology instead. 2. The shell of the super container has been redesigned and also the top and bottom plate of the container are perforated and the thickness has been reduced to 8 mm, the same thickness as the container shell, and the designs of the container feet are modified. The use of an electromagnet for holding the super container during the deposition process is therefore no longer feasible with these thin end plates. The electromagnet is now replaced with a mechanical gripper on the deposition machine. These grippes are holding the front feet of the super container during the deposition process. The reader should therefore be aware that some of the description and conclusion from the Basic Design may have changed somewhat after

  4. KBS-3H. Summary report of work done during Basic Design

    Energy Technology Data Exchange (ETDEWEB)

    Thorsager, Peder [Ramboell Sverige AB, Stockholm (Sweden); Lindgren, Erik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-09-01

    The aim of this report is to give a brief specification of achieved knowledge from Basic Design. The report will also constitute the basis for decision to continue the project or not with detail design and manufacturing of deposition equipment and other equipment necessary for realization of full scale demonstrations of horizontal deposition in long horizontal drifts at Aespoe during the period 2004-2007. The work with the project has continued during 2004 with mainly preparation of Request for Proposal (RFP) documents for the detailed design and manufacturing of the deposition equipment. Further, SKB has signed a contract with a drilling company for drilling of the horizontal deposition drifts late 2004 at Aespoe HRL. The work with the buffer issues and the safety case for the KBS-3H concept has also continued during 2004. During the work with the RFP documents for the deposition equipment and excavation of deposition drifts, some modifications or changes have been done that is not documented in this report. The main changes in the KBS-3H projects are the following: 1. The excavation of the deposition drift at Aespoe HRL will not be done with the Wassara water hammer technology as described in the report but with blind raiseboring technology instead. 2. The shell of the super container has been redesigned and also the top and bottom plate of the container are perforated and the thickness has been reduced to 8 mm, the same thickness as the container shell, and the designs of the container feet are modified. The use of an electromagnet for holding the super container during the deposition process is therefore no longer feasible with these thin end plates. The electromagnet is now replaced with a mechanical gripper on the deposition machine. These grippes are holding the front feet of the super container during the deposition process. The reader should therefore be aware that some of the description and conclusion from the Basic Design may have changed somewhat after

  5. PASS - Project on Alternative Systems Study. Performance assessment of bentonite clay barrier in three repository concepts: VDH, KBS-3 and VLH

    International Nuclear Information System (INIS)

    Pusch, R.; Boergesson, L.

    1992-12-01

    The three repository concepts VDH, KBS3 and VLH have been investigated with respect to their functions in short- and long-term perspectives. The study shows that while KBS3 does not require development of new techniques for excavation and application of buffers and canisters, such development is needed for VLH and VDH. The various physical processes in the deployment part of VDH are more critical and less understood than those in KBS3 and VLH, but the sealing effect of the plugged 'low-temperature' part is sufficiently good to make the concept qualify as a candidate. VLH has the highest and KBS3 the lowest temperature and the latter has the highest potential for good long-term function. (59 refs.)

  6. KBS-3H layout adaptation 2007 for the Olkiluoto site

    International Nuclear Information System (INIS)

    Johansson, Erik; Hagros, Annika; Autio, Jorma; Kirkkomaeki, Timo

    2008-05-01

    As part of the KBS-3H design an Olkiluoto-specific layout of a KBS-3H repository has been produced based on the latest Olkiluoto data and the bedrock model. One of the main goals of this work was to support the evaluation of the feasibility of the one layer KBS-3H concept and to compare the layouts based on the KBS-3H and KBS-3V disposal concepts. The layout presented in this work can be considered only preliminary and involves a number of uncertainties. The percentage of unusable host rock was assumed to be 25% in this work but can change due to the further design of the different components of the KBS-3H disposal system and further development of the host rock criteria. The layout is also significantly affected by the layout-determining fracture zones. In this work 11 major (highly transmissive) fracture zones interpreted to intersect the -420 m level were considered deterministically. The KBS-3H layout requires a larger area than the KBS-3V repository and takes up most of the available area between the major fracture zones HZ20 and HZ21. This is mainly due to the long drift sections occupied by the compartment plugs (30 m) and the bentonite blocks in the blank zones (10 m), which reduces the usability of the host rock and results in larger canister spacings than in the KBS-3V concept, where the positioning of the deposition holes is very flexible and narrow zones with a moderate transmissivity usually have only a minor effect on the locations of the canisters. According to the results, there is enough bedrock in the current investigation area at central Olkiluoto for KBS-3H layout in one layer. However the layout takes up nearly all of the potential bedrock resource and therefore the result is quite sensitive to possible changes in the design bases

  7. Project JADE. Comparison of repository systems. Executive summary of results

    International Nuclear Information System (INIS)

    Sandstedt, H.; Pers, K.; Birgersson, Lars; Ageskog, L.; Munier, R.

    2001-12-01

    KBS-3 has since 1984 been the reference method for disposal of spent fuel in Sweden. Several other methods like WP-Cave, Very Deep Holes and Very Long Holes have been evaluated and compared with KBS-3. Though the methods have been judged to have a high safety potential, KBS-3 has been shown to provide advantages in the combined judgement of 'long-term performance and safety', 'technology' and 'costs'. In the present study, different variants of the KBS-3 method have been analysed and compared with the reference concept KBS-3 V (V for vertical). The variants are: KBS-3 H (H for horizontal) and MLH (medium long holes) - with canisters in a horizontal position, single or in a row respectively. The comparison has been carried out separately for the interim items 'technology', 'long-term performance and safety' and 'costs' respectively. The outcome in each of these comparisons have finally been combined in a ranking. This ranking placed KBS-3 V in the top followed by MLH and KBS-3 H. Vertical deposition of a single canister in one deposition hole, KBS-3 V, is robust as gravity is used for lowering the canister and the bentonite into the deposition hole and since each canister has its own barrier in the near field, which reduces the risk for interference between canisters. The drawback for MLH is the uncertainty about the emplacement technique as well as the impact of weak rock and water leakage into a long deposition hole for several canisters. The advantage is that a smaller volume of rock has to be excavated. This is positive regarding the long-term performance and safety, environmental impact and costs. KBS-3 H does not have the same positive potential. The conclusion of the JADE study is that KBS-3 V should remain as reference concept, and that MLH should be studied further with the aim of clarifying the technical feasibility of emplacement and the means of handling water inflow. It is recommended that KBS-3 H with deposition of a single canister in each hole should

  8. Dealing with uncertainties in the safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2002-01-01

    Confidence in the safety assessment of a possible project of radioactive waste geological repository will only be obtained if the development of the project is closely guided by transparent safety strategies, acknowledging uncertainties and striving for limiting their effects. This paper highlights some sources of uncertainties, external or internal to the project, which are of particular importance for safety. It suggests safety strategies adapted to the uncertainties considered. The case of a possible repository project in the Callovo-Oxfordian clay layer of the French Bure site is examined from that point of view. The German project at Gorleben and the Swedish KBS-3 project are also briefly examined. (author)

  9. Vitrified radwaste from reprocessing. Material concerning the examination by the Swedish Nuclear Power Inspectorate of the supplementary geology report from the KBS-project

    International Nuclear Information System (INIS)

    1979-01-01

    The Swedish Nuclear Power Inspectorate was designated by the Swedish Government to examine the supplementary geologic investigations performed by the utilities' KBS-project and to judge wheather the area investigated, Sternoe in southern Sweden, could be used for constructing a safe repository for radioactive wastes or not. This report contains material that was ordered by or sent to the Nuclear Power Inspectorate as well as the report by the Inspectorate to the Government. (L.E.)

  10. KBS-3H design description 2005

    Energy Technology Data Exchange (ETDEWEB)

    Autio, Jorma (Saanio and Riekkola Oy, Helsinki (Finland))

    2008-05-15

    SKB and Posiva are performing an RandD program over the period of 2002-2007 with the overall aim to develop the KBS-3H to an alternative to the KBS-3V concept for disposal of spent nuclear fuel. A feasibility study of the KBS-3H concept was carried out in 2002, followed by the setting up of basic design in 2003. Several problems related to the behavior of the design and scope of future research and development work were addressed. Therefore the design basis was developed further and two candidate designs were developed: 1) previous Basic Design (BD) was developed more robust and tolerable to inflows. Parallel to that a novel modified 2) DAWE design with Drainage, Air evacuation and Watering and was developed to function robustly at various inflow situations. The candidate designs presented in this report include several novel components, such as fixing rings and steel plugs which have been designed without support of applicable design guidelines, regulations or standards available. The design basis and performance of these components include uncertainties, which should be studied and verified. It is possible that a feasible site specific design can be based on using both alternatives

  11. KBS-3H design description 2005

    International Nuclear Information System (INIS)

    Autio, Jorma

    2008-05-01

    SKB and Posiva are performing an RandD program over the period of 2002-2007 with the overall aim to develop the KBS-3H to an alternative to the KBS-3V concept for disposal of spent nuclear fuel. A feasibility study of the KBS-3H concept was carried out in 2002, followed by the setting up of basic design in 2003. Several problems related to the behavior of the design and scope of future research and development work were addressed. Therefore the design basis was developed further and two candidate designs were developed: 1) previous Basic Design (BD) was developed more robust and tolerable to inflows. Parallel to that a novel modified 2) DAWE design with Drainage, Air evacuation and Watering and was developed to function robustly at various inflow situations. The candidate designs presented in this report include several novel components, such as fixing rings and steel plugs which have been designed without support of applicable design guidelines, regulations or standards available. The design basis and performance of these components include uncertainties, which should be studied and verified. It is possible that a feasible site specific design can be based on using both alternatives

  12. Safety case approach for a KBS-3 type repository in crystalline rock

    International Nuclear Information System (INIS)

    Pastina, Barbara; Lehikoinen, Jarmo; Puigdomenech, Ignasi

    2012-01-01

    Barbara Pastina of Saanio and Riekkola described the approach to considering cementitious materials in a safety case for a KBS-3 repository in Finland. In this concept, cements will be used predominantly as tunnel plugs and seals. Part of the Finnish approach has involved identifying the cement-related FEPs. For example, FEPs representing the effects of cement on spent fuel, on the canister and on radionuclide transport include: - Fuel matrix dissolution at high pH. - Copper corrosion at high pH. - Radionuclide speciation and solubility at high pH. - Radionuclide sorption and diffusion at high pH. - Radionuclide transport due to organic materials (e.g. super-plasticisers). - Colloid formation at a high pH plume front. FEPs representing the effects of cement on bentonite in the buffer and backfill include: - Potential changes in swelling pressure due to mass loss, decrease in clay density, and precipitation of secondary minerals. - Potential cracking and increase of hydraulic conductivity due to cementation. - Increase of the cation exchange capacity due to the loss of silica from the montmorillonite structure. Amongst the cement-related FEPs, the main concerns are related to effects on the performance of the bentonite buffer. Cement-bentonite interactions are complex, there are few experimental data, and there are significant modelling uncertainties (e.g. limited knowledge about the reactions that may occur and their rates, and the effects of temperature). Accepting the existence of various uncertainties, preliminary modelling studies performed using the TOUGHREACT code illustrate the potential for porosity reduction and clogging of porosity in bentonite affected by cementitious pore waters. The modelling also suggests that that the high pH of the pore waters moving from the cementitious materials into the bentonite may be rapidly lowered as a result of reactions with the bentonite close to the cement-bentonite interface. Taking account of the various research and

  13. Modelling of Fracture Initiation, Propagation and Creep of a KBS-3V and KBS-3H Repository in Sparsely Fractured Rock with Application to the Design at Forsmark Candidate Site

    International Nuclear Information System (INIS)

    Backers, Tobias; Stephansson, Ove

    2008-01-01

    The stability issues of deposition holes of a repository layout according to the KBS-3 concept in the sparsely fractured Forsmark granites are analysed with the emphasis on fracture mechanics. At the start of the project the rock mass is viewed as a continuum. In a second step explicit fracture networks are introduced and included in the numerical rock fracture models. The software Fracod2D was used for the rock fracture mechanics analysis. Assuming deposition holes located in a continuous, homogeneous elastic rock mass and The presented stress state of the rock mass the following results were obtained: For single KBS-3H deposition holes oriented in the direction of the minimum horizontal stress, Sh, bore hole breakouts are introduced for all depth levels. For KBS-3H holes which are oriented in direction of SH, no significant fracturing can be expected. In case of vertical deposition holes according to KBS-3V an increased risk of fracturing at greater depth levels (> 500m) is evident. At shallow depth levels ( 5MPa gives a favourable situation about spalling for the KBS-3H and KBS-3V layouts. To prevent spalling, it is important to build up a swelling pressure soon after excavation, so that the enhanced stresses in the surrounding of the deposition ii holes are reduced. This has a positive impact on other excavation activities and also on time-dependent fracturing. After excavation and filling of the deposition holes with subsequent increase of swelling pressure, the temperature will increase in the vicinity of the excavation. For the range of swelling pressures predicted for the KBS-3 concept, i.e. 5.5MPa to 7.2MPa, no significant fracturing for the KBS-3H concept with the axis parallel SH at depths below about 600m was discovered. The results from other layouts bare the risk of partly significant fracturing. About 60ka from closing the repository an ice cover of approximately 3km is expected over Forsmark. This dead load increases the in-situ stresses and

  14. KBS-3H design description 2005

    International Nuclear Information System (INIS)

    Autio, J.

    2007-03-01

    SKB and Posiva are performing an R and D program over the period of 2002-2007 with the overall aim to develop the KBS-3H to an alternative to the KBS-3V concept for disposal of spent nuclear fuel. A feasibility study of the KBS-3H concept was carried out in 2002, followed by the setting up of basic design in 2003. Several problems related to the behavior of the design and scope of future research and development work were addressed. Therefore the design basis was developed further and two candidate designs were developed: (1) previous Basic Design (BD) was developed more robust and tolerable to inflows. Parallel to that a novel modified (2) DAWE design with Drainage, Air evacuation and Watering and was developed to function robustly at various inflow situations. The candidate designs presented in this report include several novel components, such as fixing rings and steel plugs which have been designed without support of applicable design guidelines, regulations or standards available. The design basis and performance of these components include uncertainties, which should be studied and verified. It is possible that a feasible site specific design can be based on using both alternatives. (orig.)

  15. KBS annual report 1981

    International Nuclear Information System (INIS)

    1982-05-01

    The nuclear power utilities have commissioned the jointly owned Swedish Nuclear Fuel Supply Company (SKBF) to assume responsibility for a safe handling of the waste and a safe final storage. KBS is the department within SKBF that is responsible for research and development within the area of radioactive waste management. The government agency of PRAV (the National Council for Radioactive Waste) was dissolved as of mid-year 1981 and its research activities were transferred to SKBF/KBS. Simultaneosly, the National Board for Spent Nuclear Fuel, NAK, was created and charged with the duties of overseeing the work being conducted by SKBF within the nuclear waste field and administering the funds that are to be set up for the financing of future waste management activities. The present annual report describes activities within KBS during 1981. The work conducted during the year has been concentrated on three areas: 1) A systematic review has begun of geologically interesting areas in Sweden that might be suitable as sites for a final repository for highlevel waste or spent fuel. 10-20 areas are scheduled for study during the 1980s. 2) The chemical research has been broadened in order to future understanding of the chemical interplay that exists in the repository between the canister material, the buffer, the waste matrix and the groundwater. The retardation effects associated with the transport of radioactive elements with the groundwater in the bedrock also constitute an important subject of these studies. 3) The preliminary planning and engineering of a final repository for low- and medium-level operating waste from the Swedish reactors is in progress. The aim is to submit an application during the spring of 1982 for permission to build the facility at the Forsmark Nuclear Power Station. (Author)

  16. Fission-track dating of pumice from the KBS Tuff, East Rudolf, Kenya

    Science.gov (United States)

    Hurford, A.J.; Gleadow, A.J.W.; Naeser, C.W.

    1976-01-01

    Fission-track dating of zircon separated from two pumice samples from the KBS Tuff in the Koobi Fora Formation, in Area 131, East Rudolf, Kenya, gives an age of 2.44??0.08 Myr for the eruption of the pumice. This result is compatible with the previously published K-Ar and 40Ar/ 39Ar age spectrum estimate of 2.61??0.26 Myr for the KBS Tuff in Area 105, but differs from the more recently published K-Ar date of 1.82??0.04 Myr for the KBS Tuff in Area 131. This study does not support the suggestion that pumice cobbles of different ages occur in the KBS Tuff. ?? 1976 Nature Publishing Group.

  17. SR 97: Post-closure safety for a KBS 3 type deep repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Hedin, A.; Kautsky, U.

    2000-03-01

    Prior to coming site investigations for siting of a deep repository for spent nuclear fuel, SKB has carried out the long-term safety assessment SR 97, requested by the Swedish Government. The repository is of the KBS-3 type, where the fuel is placed in isolating copper canisters with a high-strength cast iron insert. The canisters are surrounded by bentonite clay in individual deposition holes at a depth of 500 m in granitic bedrock. The future evolution of the repository system is analysed in the form of five scenarios. The first is a base scenario where the repository is postulated to be built entirely according to specifications and where present-day conditions in the surroundings, including climate, persist. The four other scenarios show the evolution if the repository contains a few initially defective canisters, in the event of climate change, in the event of earthquakes, and in the event of future inadvertent human intrusion. The principal conclusion of the assessment is that the prospects of building a safe deep repository for spent nuclear fuel in Swedish granitic bedrock are very good. (author)

  18. Montmorillonite stability. With special respect to KBS-3 conditions

    International Nuclear Information System (INIS)

    Karnland, Ola; Birgersson, Martin

    2006-08-01

    The basic advantageous properties, e.g. low hydraulic conductivity and high swelling pressure, of the bentonite buffer in a KBS- repository stem from a strong interaction between water and the montmorillonite mineral in the bentonite. Minerals similar in structure but with substantially lower mineral-water interaction exist in nature. Transformations from montmorillonite to such minerals are observed e.g. in burial diagenesis and in contact metamorphism. A thermodynamic consideration confirms that medium and low charged montmorillonite is not in chemical equilibrium with quartz. From a safety assessment perspective it is therefore of vital importance to quantify the montmorillonite transformation under KBS- conditions. Silica release from the montmorillonite tetrahedral layers is the initial process for several possible transformations. Replacement of silica by aluminum increases the layer charge but maintains the basic atomic structure. A sufficiently high layer charge results in an irreversible collapse of the clay-water structure, i.e. a non-swelling mineral is formed. Compared to other cations, potassium as counter ion leads to a collapse at lower layer charge and the produced phase is generally termed illite. Montmorillonite-to-illite transformation is the most frequently found alteration process in nature. Three different kinetic illitization models are reviewed and the model proposed by Huang et al. is considered the most suitable for quantification in a KBS- repository, since the kinetic rate expression and its associated parameters are systematically determined by laboratory work. The model takes into account temperature, montmorillonite fraction and potassium concentration, but do not include relevant parameters such as pH, temperature gradients and water content. Calculations by use of the Huang illitization model applied for repository conditions yield insignificant montmorillonite transformation also under very pessimistic assumptions. Other non

  19. Montmorillonite stability. With special respect to KBS-3 conditions

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Birgersson, Martin [Clay Technology AB, Lund (Sweden)

    2006-08-15

    The basic advantageous properties, e.g. low hydraulic conductivity and high swelling pressure, of the bentonite buffer in a KBS- repository stem from a strong interaction between water and the montmorillonite mineral in the bentonite. Minerals similar in structure but with substantially lower mineral-water interaction exist in nature. Transformations from montmorillonite to such minerals are observed e.g. in burial diagenesis and in contact metamorphism. A thermodynamic consideration confirms that medium and low charged montmorillonite is not in chemical equilibrium with quartz. From a safety assessment perspective it is therefore of vital importance to quantify the montmorillonite transformation under KBS- conditions. Silica release from the montmorillonite tetrahedral layers is the initial process for several possible transformations. Replacement of silica by aluminum increases the layer charge but maintains the basic atomic structure. A sufficiently high layer charge results in an irreversible collapse of the clay-water structure, i.e. a non-swelling mineral is formed. Compared to other cations, potassium as counter ion leads to a collapse at lower layer charge and the produced phase is generally termed illite. Montmorillonite-to-illite transformation is the most frequently found alteration process in nature. Three different kinetic illitization models are reviewed and the model proposed by Huang et al. is considered the most suitable for quantification in a KBS- repository, since the kinetic rate expression and its associated parameters are systematically determined by laboratory work. The model takes into account temperature, montmorillonite fraction and potassium concentration, but do not include relevant parameters such as pH, temperature gradients and water content. Calculations by use of the Huang illitization model applied for repository conditions yield insignificant montmorillonite transformation also under very pessimistic assumptions. Other non

  20. Estimated quantities of residual materials in a KBS-3H repository at Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Hagros, Annika (Sannio and Riekkola OY (Finland))

    2008-12-15

    The quantities of residual materials in a KBS-3H type repository have been estimated in this report. The repository is assumed to be constructed at Olkiluoto in Eurajoki, Western Finland. Both the total quantities of the materials introduced into the repository and the quantities of materials that remain in the repository after closure have been calculated. The calculations are largely based on a similar work regarding the material quantities in the Finnish KBS-3V repository and the main goal has been to identify the differences between the KBS-3H and KBS-3V repositories with respect to the type and quantities of residual materials. As the design of the KBS-3H repository is not final yet, the results are only preliminary. Several alternative designs were assumed in the calculations, resulting in different total quantities of materials. The design alternatives that had the greatest effect on the total material quantities were the two different tunnel backfill options, bentonite-crushed rock and Friedland clay. If Friedland clay is used instead of a bentonite-crushed rock mixture, the total quantity of pyrite remaining in the repository is 20 times larger and the quantities of organic materials and gypsum are also increased significantly. The other design alternatives did not have a substantial effect on the total material quantities. The remaining quantity of cement can be reduced by some 20% by selecting the silica grouting alternative in the sealing of the rock mass and low-pH cement in the shotcreting of the repository, instead of using the ordinary cement alternatives. If the total quantity of steel should be minimised, the use of the DAWE design alternative would be better than the Basic Design, although the total reduction would be less than 10%. The main difference between the different drift end plug alternatives is related to the total remaining quantity of silica, which is some 80% smaller if the rock plug is used instead of the LHHP (Low Heat High

  1. Estimated quantities of residual materials in a KBS-3H repository at Olkiluoto

    International Nuclear Information System (INIS)

    Hagros, Annika

    2008-12-01

    The quantities of residual materials in a KBS-3H type repository have been estimated in this report. The repository is assumed to be constructed at Olkiluoto in Eurajoki, Western Finland. Both the total quantities of the materials introduced into the repository and the quantities of materials that remain in the repository after closure have been calculated. The calculations are largely based on a similar work regarding the material quantities in the Finnish KBS-3V repository and the main goal has been to identify the differences between the KBS-3H and KBS-3V repositories with respect to the type and quantities of residual materials. As the design of the KBS-3H repository is not final yet, the results are only preliminary. Several alternative designs were assumed in the calculations, resulting in different total quantities of materials. The design alternatives that had the greatest effect on the total material quantities were the two different tunnel backfill options, bentonite-crushed rock and Friedland clay. If Friedland clay is used instead of a bentonite-crushed rock mixture, the total quantity of pyrite remaining in the repository is 20 times larger and the quantities of organic materials and gypsum are also increased significantly. The other design alternatives did not have a substantial effect on the total material quantities. The remaining quantity of cement can be reduced by some 20% by selecting the silica grouting alternative in the sealing of the rock mass and low-pH cement in the shotcreting of the repository, instead of using the ordinary cement alternatives. If the total quantity of steel should be minimised, the use of the DAWE design alternative would be better than the Basic Design, although the total reduction would be less than 10%. The main difference between the different drift end plug alternatives is related to the total remaining quantity of silica, which is some 80% smaller if the rock plug is used instead of the LHHP (Low Heat High

  2. The disposal alternative deep boreholes. Content and scope of R and D programme necessary for comparison with the KBS-3 method

    International Nuclear Information System (INIS)

    Wikberg, P.

    2000-08-01

    Deposition of spent fuel elements in ≥ 2000 m deep boreholes is an alternative to the KBS-3 method that has been developed in Sweden for more than 20 years. This report gives an account of the research and development needed in order to bring the deep borehole method to the same level of development as the KBS-3 method. Five majors areas are discussed: Geoscience, Technical issues, Technical barriers, Safety assessment and Time-plans and costs. It is estimated that a full R,D and D programme would need about 30 years to be completed, and the costs would amount to around 4 billion SEK (over 400 million USD)

  3. 40Ar/39Ar age spectra from the KBS Tuff, Koobi Fora Formation

    International Nuclear Information System (INIS)

    McDougall, I.

    1981-01-01

    40 Ar/ 39 Ar age spectra on anorthoclase phenocrysts from three pumice clasts in the KBS Tuff yield nearly ideal flat patterns, providing good evidence that the samples have remained undisturbed since crystallization. The ages are concordant at 1.88 = 0.02 Myr, and confirm that the KBS Tuff, a key marker bed in the Koobi Fora Formation, northern Kenya, is now very well dated. These results resolve the conflict between earlier 40 Ar/ 39 Ar and conventional K-Ar dating measurements on the KBS Tuff. (author)

  4. 40Ar/39Ar age spectra from the KBS Tuff, Koobi Fora Formation.

    Science.gov (United States)

    McDougall, Ian

    1981-11-12

    40 Ar/ 39 Ar age spectra on anorthoclase phenocrysts from three pumice clasts in the KBS Tuff yield nearly ideal flat patterns, providing good evidence that the samples have remained undisturbed since crystallization. The ages are concordant at 1.88±0.02 Myr, and confirm that the KBS Tuff, a key marker bed in the Koobi Fora Formation, northern Kenya, is now very well dated. These results resolve the conflict between earlier 40 Ar/ 39 Ar and conventional K-Ar dating measurements on the KBS Tuff.

  5. Project JADE. Description of the MLH-method

    International Nuclear Information System (INIS)

    Sandstedt, H.; Munier, R.; Wichmann, C.; Isaksson, Therese

    2001-08-01

    This report constitutes a part of a series of reports within project JADE, comparison of deposition methods. A comparison of the deposition methods MLH (Medium Long Holes with approximately 25 copper canisters emplaced in a horizontal deposition hole about 200 metres in length bored between central and side tunnels) and KBS-3 (copper canisters are emplaced in vertical deposition holes bored in the floors of horizontal tunnels) has earlier been performed and KBS-3 was judged to be more advantageous than MLH. However, the prerequisites for the comparison have changed with time and an updated evaluation of MLH was therefore required. In this report, the current knowledge of MLH is summarized with focus on geological prerequisites, methods for boring long, horizontal deposition holes, reinforcement and sealing, deposition and cost. Comparisons with KBS-3 are performed sequentially. An MLH-repository is judged to be more sensitive to ingress of water to the deposition holes during the deposition process. This implies that a MLH repository based on today's knowledge is basically recommended for bedrock with fairly low water baring capacity. It has been demonstrated that MLH has considerable economic potential compared to KBS-3. However, the method is judged to be more technically immature than KBS-3. Particularly, methods and equipment for deposition of canisters need to be developed further. Methods and equipment for deposition can be developed, which fulfill the demands on function and safety, in the near future. MLH cannot therefore be rejected as deposition method

  6. KBS4FIA: Leveraging advanced knowledge-based systems for financial information analysis

    OpenAIRE

    García-Sánchez, Francisco; Paredes-Valverde, Mario Andrés; Valencia García, Rafael; Alcaraz Mármol, Gema; Almela Sánchez-Lafuente, Ángela

    2017-01-01

    Decision making takes place in an environment of uncertainty. Therefore, it is necessary to have information which is as accurate and complete as possible in order to minimize the risk that is inherent to the decision-making process. In the financial domain, the situation becomes even more critical due to the intrinsic complexity of the analytical tasks within this field. The main aim of the KBS4FIA project is to automate the processes associated with financial analysis by leveraging the tech...

  7. Project on Alternative Systems Study - PASS. Final report

    International Nuclear Information System (INIS)

    1992-10-01

    Alternative repository systems for deep disposal of spent fuel and different types of canisters are studied regarding technical aspects in Project on Alternative System Study (PASS). The objective is to present a ranking of repository systems as well as of canister types for each system. The studies and compared systems are: KBS-3, Medium Long Tunnels (MLH), Long tunnels (VLH) and Deep Boreholes (VDH). For KBS-3 and MLH five canister types are compared (copper/steel, copper/lead, copper (HIP), steel/lead and steel), for VLH two types (copper/steel and steel), and for VDH three types (titanium/concrete with non-consolidated fuel assemblies, titanium/concrete with consolidated assemblies and copper (HIP) with non-consolidated assemblies). The comparison is separated into three sub-comparisons (Technology, Long-term performance and safety, and Costs), which eventually are merged into one ranking. With respect to canister alternatives the result is that the copper/steel canister is ranked first for KBS-3, MLH and VLH, while the titanium/concrete canister is ranked first for VDH (non-consolidated as well as consolidated assemblies. With these canister alternatives the merged ranking of repository systems results in placing KBS-3 slightly in front of MLH. VLH comes thereafter and VDH last. (32 refs.)

  8. KBS Annual Report 1982. Summaries of technical reports issued during 1982

    International Nuclear Information System (INIS)

    1983-07-01

    The purpose of the KBS Annual Report is to inform interested organizations and individuals of the research and development work perfomed by the division KBS within the Swedish Nuclear Fuel Supply Co. (SKBF) on the handling, treatment and final storage of nuclear wastes in Sweden. In the Annual Report for 1982 the summaries of 27 technical reports and other publications issued during the year are listed. (K.A.E.)

  9. Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project

    Energy Technology Data Exchange (ETDEWEB)

    2011-03-15

    The central conclusion of the safety assessment SR-Site is that a KBS-3 repository that fulfils long-term safety requirements can be built at the Forsmark site. This conclusion is reached because the favourable properties of the Forsmark site ensure the required long-term durability of the barriers of the KBS-3 repository. In particular, the copper canisters with their cast iron inserts have been demonstrated to provide a sufficient resistance to the mechanical and chemical loads to which they may be subjected in the repository environment. The conclusion is underpinned by: - The reliance of the KBS-3 repository on i) a geological environment that exhibits long-term stability with respect to properties of importance for long-term safety, i.e. mechanical stability, low groundwater flow rates at repository depth and the absence of high concentrations of detrimental components in the groundwater, and ii) the choice of naturally occurring materials (copper and bentonite clay) for the engineered barriers that are sufficiently durable in the repository environment to provide the barrier longevity required for safety. - The understanding, through decades of research at SKB and in international collaboration, of the phenomena that affect long-term safety, resulting in a mature knowledge base for the safety assessment. - The understanding of the characteristics of the site through several years of surface-based investigations of the conditions at depth and of scientific interpretation of the data emerging from the investigations, resulting in a mature model of the site, adequate for use in the safety assessment. - The detailed specifications of the engineered parts of the repository and the demonstration of how components fulfilling the specifications are to be produced in a quality assured manner, thereby providing a quality assured initial state for the safety assessment. The detailed analyses demonstrate that canister failures in a one million year perspective are rare

  10. Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project

    International Nuclear Information System (INIS)

    2011-03-01

    The central conclusion of the safety assessment SR-Site is that a KBS-3 repository that fulfils long-term safety requirements can be built at the Forsmark site. This conclusion is reached because the favourable properties of the Forsmark site ensure the required long-term durability of the barriers of the KBS-3 repository. In particular, the copper canisters with their cast iron inserts have been demonstrated to provide a sufficient resistance to the mechanical and chemical loads to which they may be subjected in the repository environment. The conclusion is underpinned by: - The reliance of the KBS-3 repository on i) a geological environment that exhibits long-term stability with respect to properties of importance for long-term safety, i.e. mechanical stability, low groundwater flow rates at repository depth and the absence of high concentrations of detrimental components in the groundwater, and ii) the choice of naturally occurring materials (copper and bentonite clay) for the engineered barriers that are sufficiently durable in the repository environment to provide the barrier longevity required for safety. - The understanding, through decades of research at SKB and in international collaboration, of the phenomena that affect long-term safety, resulting in a mature knowledge base for the safety assessment. - The understanding of the characteristics of the site through several years of surface-based investigations of the conditions at depth and of scientific interpretation of the data emerging from the investigations, resulting in a mature model of the site, adequate for use in the safety assessment. - The detailed specifications of the engineered parts of the repository and the demonstration of how components fulfilling the specifications are to be produced in a quality assured manner, thereby providing a quality assured initial state for the safety assessment. The detailed analyses demonstrate that canister failures in a one million year perspective are rare

  11. A low-delay 8 Kb/s backward-adaptive CELP coder

    Science.gov (United States)

    Neumeyer, L. G.; Leblanc, W. P.; Mahmoud, S. A.

    1990-01-01

    Code excited linear prediction coding is an efficient technique for compressing speech sequences. Communications quality of speech can be obtained at bit rates below 8 Kb/s. However, relatively large coding delays are necessary to buffer the input speech in order to perform the LPC analysis. A low delay 8 Kb/s CELP coder is introduced in which the short term predictor is based on past synthesized speech. A new distortion measure that improves the tracking of the formant filter is discussed. Formal listening tests showed that the performance of the backward adaptive coder is almost as good as the conventional CELP coder.

  12. K-Ar age estimate for the KBS Tuff, East Turkana, Kenya

    International Nuclear Information System (INIS)

    McDougall, I.; Maier, R.; Sutherland-Hawkes, P.; Gleadow, A.J.W.

    1980-01-01

    Stone tools and numerous vertebrate fossils including hominids, have been found in close stratigraphic proximity to the KBS Tuff, whose age has been the subject of much debate. Concordant K-Ar ages, averaging 1.89 +- 0.01 Myr, are reported on anorthoclase phenocrysts from 13 pumice clasts collected from within the KBS Tuff or its correlatives. It is believed that this age is the best estimate currently available for the time of formation of this important marker horizon within the East Turkana Basin. (author)

  13. Data report for the safety assessment SR-Site

    International Nuclear Information System (INIS)

    2010-12-01

    This report compiles, documents, and qualifies input data identified as essential for the long-term safety assessment of a KBS-3 repository, and forms an important part of the reporting of the safety assessment project SR-Site. The input data concern the repository system, broadly defined as the deposited spent nuclear fuel, the engineered barriers surrounding it, the host rock, and the biosphere in the proximity of the repository. The input data also concern external influences acting on the system, in terms of climate related data. Data are provided for a selection of relevant conditions and are qualified through traceable standardised procedures

  14. Data report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This report compiles, documents, and qualifies input data identified as essential for the long-term safety assessment of a KBS-3 repository, and forms an important part of the reporting of the safety assessment project SR-Site. The input data concern the repository system, broadly defined as the deposited spent nuclear fuel, the engineered barriers surrounding it, the host rock, and the biosphere in the proximity of the repository. The input data also concern external influences acting on the system, in terms of climate related data. Data are provided for a selection of relevant conditions and are qualified through traceable standardised procedures

  15. The KBS concepts - General outline, present study

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-01-01

    The Swedish KBS 2 concept, which concerns spent, unreprocessed reactor fuel, implies the use of an 'engineered' barrier of highly compacted Na bentonite for isolating metal canisters with the wastes from the surrounding rock. The isolating power of a barrier of this kind will be so great that it will probably be suggested for other radioactive wastes as well

  16. Final repository for spent nuclear fuel in granite - the KBS-3V concept in Sweden and Finland

    International Nuclear Information System (INIS)

    Pettersson, Stig; Loennerberg, Bengt

    2008-01-01

    Both Sweden and Finland has advanced plans for design, construction and operation of the final repositories for direct disposal of spent nuclear fuel. Both countries have the same type of host rock - granite. They are also investigating alternative concept for disposal, vertical or horizontal disposal of the canisters with encapsulated spent nuclear fuel, normally called KBS-3V or the KBS-3H disposal concept. The development of the KBS-3V concept started around 1980 and is the reference method for both SKB in Sweden and Posiva in Finland. However, extensive development work is ongoing since 2001 with KBS-3H in order to bring that concept to the same maturity as KBS-3V. This presentation deals with the design and operation of the KBS-3V based on the work done within Sweden and SKB but the development is Finland is identical and it is a close cooperation between SKB in Sweden and Posiva in Finland. In Sweden, the site investigation for location of the repository has been concentrated on two sites, in the Oskarshamn area, about 350 km south of Stockholm, and the Forsmark area, about 180 km north of Stockholm. For information it can be mentioned that Finland plans to locate their repository in the vicinity of the Olkiluoto nuclear power plant site, about 300 km north of Helsinki. The site investigation is completed and the selection of site is scheduled to mid 2009 and sending in the application for location and construction of the repository is scheduled to end 2009. After receiving all necessary permits, construction time and commissioning will take about 7 to 8 years and operation is expected to start about 2020. The KBS-3 system is based on a multi barrier concept and the work with compiling the design requirements for the underground part of the deep repository has been ongoing for some time within the SKB organisation. Today the design requirements for the underground part are documented in a big number of reports that has been produced by specialists and working

  17. KBS Annual Report 1983. Including summaries of technical reports issued during 1983

    International Nuclear Information System (INIS)

    1984-06-01

    The purpose of the KBS Annual Report is to inform interested organizations and individuals of the research and development work performed by the division KBS within the Swedish Nuclear Fuel Supply Co (SKBF) on the handling, treatment and final storage of nuclear wastes in Sweden. The Annual Report normally contains a presentation of the legal and organizational situation followed by an account of the progress within different areas of the R and D-work. This account also includes indications of the activities planned for the future. At the end of the report the summaries of 76 technical reports and other publications issued during the year are listed in special appendices. (K.A.E.)

  18. General construction requirements for the deep repository in the KBS-3 system

    International Nuclear Information System (INIS)

    2002-10-01

    The KBS-3 systems includes equipment and plants for transport of spent nuclear fuels and encapsulated spent fuels, central intermediate storage, encapsulation and deep geologic disposal. The requirements in this document concern the repository and have been put together in view of the tasks of designing, constructing and building the repository. The report presents: A general review of existing design plans; Laws and regulations relevant for the design of the repository; How the regulations have been broken down to functional demands and dimensioning requirements for the repository; How the site conditions influence the design, and how the layout of the different parts of the repository interact; Relations between the functions of the repository, the safety and the design; A foundation for developing construction plans for the repository. The requirements will be collected in a database that will develop as new knowledge is collected

  19. HMCBG processes related to the steel components in the KBS-3H disposal concept

    International Nuclear Information System (INIS)

    Johnson, Lawrence; Marschall, Paul; Wersin, Paul; Gribi, Peter

    2008-05-01

    expected differential swelling pressure in the early stages of resaturation between inside and outside the supercontainer may lead to considerable forces acting on the perforated steel shell, causing elasto-plastic deformations and possibly rupturing of the shell. Based on current understanding, a simplified model of gas pressure evolution and gas migration in the disposal system is developed. This model suggests that gas is predominantly transported by two-phase flow through the fracture network in the host rock. For the major part of the drift sections, there is sufficient transport capacity for gas to escape though the host rock and the calculated gas pressure increases are found to be moderate. In extremely tight drift sections, however, the maximal gas pressures may rise to values near or above the minimal principal stress. Under such conditions, reactivation of low-permeability fractures in the near-field rock and axial gas pathway formation through or around the distance blocks cannot be excluded. Although no analyses of radiological consequences are performed in the framework of this report, it is concluded that the presented information can be used to perform an assessment of the safety-relevant impacts of the steel components in the KBS-3H disposal system. It is noted that gas generation will be finished after several thousand years, well before radionuclide migration is likely to occur from a container having an initial defect. Various mechanisms are capable of transporting the gas gradually through the host rock or through the tunnel system without significantly disturbing the isolation characteristics of the repository system

  20. HMCBG processes related to the steel components in the KBS-3H disposal concept

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Lawrence; Marschall, Paul; Wersin, Paul (National Cooperative for the Disposal of Radioactive Waste, Nagra, Wettingen (Switzerland)); Gribi, Peter (SandR Consult GmbH, Baden (Switzerland))

    2008-05-15

    differential swelling pressure in the early stages of resaturation between inside and outside the supercontainer may lead to considerable forces acting on the perforated steel shell, causing elasto-plastic deformations and possibly rupturing of the shell. Based on current understanding, a simplified model of gas pressure evolution and gas migration in the disposal system is developed. This model suggests that gas is predominantly transported by two-phase flow through the fracture network in the host rock. For the major part of the drift sections, there is sufficient transport capacity for gas to escape though the host rock and the calculated gas pressure increases are found to be moderate. In extremely tight drift sections, however, the maximal gas pressures may rise to values near or above the minimal principal stress. Under such conditions, reactivation of low-permeability fractures in the near-field rock and axial gas pathway formation through or around the distance blocks cannot be excluded. Although no analyses of radiological consequences are performed in the framework of this report, it is concluded that the presented information can be used to perform an assessment of the safety-relevant impacts of the steel components in the KBS-3H disposal system. It is noted that gas generation will be finished after several thousand years, well before radionuclide migration is likely to occur from a container having an initial defect. Various mechanisms are capable of transporting the gas gradually through the host rock or through the tunnel system without significantly disturbing the isolation characteristics of the repository system

  1. The effect of the FPI-rule on the suitability of the KBS-3H concept

    International Nuclear Information System (INIS)

    Pekkarinen, M.

    2014-12-01

    In the KBS-3H design the spent nuclear fuel canisters are placed in horizontal depositions drifts. In this work the degree of utilization, the number of placed canisters, the number of canisters in critical positions, and other related figures are estimated with Monte Carlo simulations. For comparison, the results are also computed for the KBS-3V design, where the canisters are placed in vertical deposition holes below tunnels. Different FPI criteria are evaluated for their performance in detecting the critical positions, i.e. positions where the super-container of the canister intersects a fracture with diameter over 150 m. Two different canister placement algorithms are considered, and the simulations are run with and without considering modeled site scale fault zones. The simple FPI criterion, where all full perimeter intersections are considered critical, was found overly conservative, leading to low degree of utilization (46-73 %). FPI criteria that require that a fracture is an FPI in multiple drifts are better, although the degree of utilization is still poor at the outskirts of the repository. The number of canisters in critical position is also 2-20 times as large as with the simple criterion. In KBS-3V design the criteria reject a much smaller number of canister positions, because the number of FPIs is smaller. A larger number of canisters are placed in critical position in KBS-3V design, because the FPC cannot detect the large fractures below the tunnels. (orig.)

  2. Nuclear safety project

    International Nuclear Information System (INIS)

    1982-06-01

    The Annual Report 1981 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1981 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on - work completed - results obtained - plans for future work. This report was compiled by the project management. (orig.) [de

  3. Nuclear safety project

    International Nuclear Information System (INIS)

    1984-11-01

    The semiannual progress report 1984/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1984 in the nuclear safety field by KfK institutes and departements and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./RW) [de

  4. Project Nuclear Safety

    International Nuclear Information System (INIS)

    1981-11-01

    The semiannual progress report 1981/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1981 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics, work performed, results obtained, plans for future work. This report was compiled by the project management. (orig.) [de

  5. Radionuclide transport report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This document compiles radionuclide transport calculations of a KBS-3 repository for the safety assessment SR-Site. The SR-Site assessment supports the licence application for a final repository at Forsmark, Sweden

  6. Whole-Genome Sequence of the Soil Bacterium Micrococcus sp. KBS0714.

    Science.gov (United States)

    Kuo, V; Shoemaker, W R; Muscarella, M E; Lennon, J T

    2017-08-10

    We present here a draft genome assembly of Micrococcus sp. KBS0714, which was isolated from agricultural soil. The genome provides insight into the strategies that Micrococcus spp. use to contend with environmental stressors such as desiccation and starvation in environmental and host-associated ecosystems. Copyright © 2017 Kuo et al.

  7. The international STRIPA project. Experimental research on the underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    1983-03-01

    The International Stripa Project is a joint undertaking by a number of countries, carried out under the sponsorship of the OECD Nuclear Energy Agency. It concerns research into the feasibility and safety of disposal of highly radioactive wastes from nuclear power generation, deep underground in crystalline rock. The Project is managed by the Division KBS of the Swedish Nuclear Fuel Supply Company (SKBF), under the direction of representatives from each participating country. This report summarizes the objectives and preliminary results of experimental work performed within the framework of the Stripa Project and that undertaken prior to the establishment of the Project at the Stripa Mine in Sweden. It also describes the part played by the Project in the development of national policies for the safe disposal of radioactive wastes

  8. Freefem++ in THM analyses of KBS-3 deposition hole

    International Nuclear Information System (INIS)

    Lempinen, A.

    2006-12-01

    The applicability of Freefem++ as a software for thermo-hydro-mechanical analysis of KBS-3V deposition hole was evaluated. Freefem++ is software for multiphysical simulations with finite element method. A set of previously performed analyses were successfully repeated with Freefem++. The only significant problem was to impose unique values for variables at the canister surface. This problem can be circumvented with an iterative method, and it can possibly be solved later, since Freefem++ is opensource software. (orig.)

  9. Geosphere process report for the safety assessment SR-Site

    International Nuclear Information System (INIS)

    Skagius, Kristina

    2010-11-01

    This report documents geosphere processes identified as relevant to the long-term safety of a KBS-3 repository, and forms an important part of the reporting of the safety assessment SR-Site. The detailed assessment methodology, including the role of the process reports in the assessment, is described in the SR-Site Main report /SKB 2011/

  10. Geosphere process report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Skagius, Kristina (ed.) (Kemakta Konsult AB, Stockholm (Sweden))

    2010-11-15

    This report documents geosphere processes identified as relevant to the long-term safety of a KBS-3 repository, and forms an important part of the reporting of the safety assessment SR-Site. The detailed assessment methodology, including the role of the process reports in the assessment, is described in the SR-Site Main report /SKB 2011/

  11. Effective Safety Management in Construction Project

    Science.gov (United States)

    Othman, I.; Shafiq, Nasir; Nuruddin, M. F.

    2017-12-01

    Effective safety management is one of the serious problems in the construction industry worldwide, especially in large-scale construction projects. There have been significant reductions in the number and the rate of injury over the last 20 years. Nevertheless, construction remains as one of the high risk industry. The purpose of this study is to examine safety management in the Malaysian construction industry, as well as to highlight the importance of construction safety management. The industry has contributed significantly to the economic growth of the country. However, when construction safety management is not implemented systematically, accidents will happen and this can affect the economic growth of the country. This study put the safety management in construction project as one of the important elements to project performance and success. The study emphasize on awareness and the factors that lead to the safety cases in construction project.

  12. The Role of Knowledge Brokers: Lessons from a Community Based Research Study of Cultural Safety in Relation to People Who Use Drugs

    Science.gov (United States)

    McCall, Jane; Mollison, Ashley; Browne, Annette; Parker, Joanne; Pauly, Bernie

    2017-01-01

    The study explored cultural safety as a strategy to address the stigma of substance use in acute care settings. Two research team members took on the role of knowledge brokers (KBs) in order to liaise between the research team and two distinct research advisory groups: one with people who use drugs and the other nurses. The KBs were instrumental…

  13. Study of system safety evaluation on LTO of national project. NISA safety research project on system safety of nuclear power plants

    International Nuclear Information System (INIS)

    Takizawa, Masayuki; Sekimura, Naoto; Miyano, Hiroshi; Aoyama, Katsunobu

    2012-01-01

    Japanese safety regulatory body, that is, Nuclear and Industrial Safety Agency (NISA) started a 5-year national safety research project as 'the first stage' from 2006 FY to 2010 FY whose objective is 'Improve the technical information basis in order to utilize knowledge as well as information related to ageing management and maintenance of NPPs. Fukushima disaster happened in March 2011, and the priority of research needs for ageing management dramatically changed in Japan. The second-stage national project started in October 2011 with the concept of 'system safety' of NNPs where not only ageing management on degradation phenomena of important components but also safety management on total plant systems are paid attention to. The second-stage project is so called 'Japanese Ageing Management Program for System Safety (JAMPSS)'. (author)

  14. Studies of buffers behaviour in KBS-3H concept. Work during 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart; Sanden, Torbjoern; Faelth, Billy; Aakesson, Mattias [Clay Technology AB, Lund (Sweden); Lindgren, Erik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-08-01

    In the KBS-3H concept, the deposition tunnels are replace by horizontal 300-m long circular deposition drifts which are excavated from a niche in the transport tunnel. About 40 disposal containers will be deposited in each drift. In order to make the deposition process easier the buffer material and one copper canister are assembled in a steel disposal container, which then is pushed into the deposition drift. The disposal container consists of a perforated steel cylinder in which the buffer material and one copper canister are assembled. Distance blocks of bentonite are placed between each disposal container. The purpose of the distance blocks is to seal off each canister position from the other and to prevent transport of water and bentonite along the drift. The distance blocks also separate one canister from the other in order to get the right temperature of the canister. The total thickness of the distance blocks between the disposal containers is mainly determined by the thermal conductivity of the rock and is expected to be in the range of 3-6 m. The main objective for the KBS-3H concept is that the method provides a more efficient way of depositing the canisters in the rock. The reason is that the deposition tunnels of the KBS-3V concept are not needed and the reduction of rock excavation is therefore about 50 percent. This leads to a lower environmental impact during the construction of the repository but also to a reduced disturbance on the hydro-geological situation in the rock mass. Furthermore, the reduction in rock excavation leads to a significant cost saving for the excavation phase and backfilling of the repository. KBS-3H and KBS-3V are very similar with respect to the behaviour of the bentonite buffer. However, there are some differences that require special attention. An early survey of the differences yielded that there are a number of processes and functions that needed to be investigated for evaluating the feasibility of the concept: 1. The

  15. Applications for fueling of Forsmark-3 and Oskarshamn III

    International Nuclear Information System (INIS)

    1984-01-01

    The method for handling and final disposal of spent nuclear fuel outlined in the report KBS-3 has been found acceptable in relation to conventional and radiation safety. The main institutions agree on this, IAEA and other international institutions deem the method over-safe. The KBS-3 study has left some problems unsolved. Further research projects have been identified. (Aa)

  16. National Ignition Facility Project Site Safety Program

    International Nuclear Information System (INIS)

    Dun, C

    2003-01-01

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES and H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES and H requirements are consistent with the ''LLNL ES and H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B

  17. Enhancing Safety Culture in Complex Nuclear Industry Projects

    International Nuclear Information System (INIS)

    Gotcheva, N.

    2016-01-01

    This paper presents an on-going research project “Management principles and safety culture in complex projects” (MAPS), supported by the Finnish Research Programme on Nuclear Power Plant Safety 2015-2018. The project aims at enhancing safety culture and nuclear safety by supporting high quality execution of complex projects in the nuclear industry. Safety-critical industries are facing new challenges, related to increased outsourcing and complexity in technology, work tasks and organizational structures (Milch and Laumann, 2016). In the nuclear industry, new build projects, as well as modernisation projects are temporary undertakings often carried out by networks of companies. Some companies may have little experience in the nuclear industry practices or consideration of specific national regulatory requirements. In large multinational subcontractor networks, the challenge for assuring nuclear safety arises partly from the need to ensure that safety and quality requirements are adequately understood and fulfilled by each partner. Deficient project management practices and unsatisfactory nuclear safety culture in project networks have been recognised as contributing factors to these challenges (INPO, 2010). Prior evidence indicated that many recent major projects have experienced schedule, quality and financial challenges both in the nuclear industry (STUK, 2011) and in the non-nuclear domain (Ahola et al., 2014; Brady and Davies, 2010). Since project delays and quality issues have been perceived mainly as economic problems, project management issues remain largely understudied in safety research. However, safety cannot be separated from other performance aspects if a systemic view is applied. Schedule and quality challenges may reflect deficiencies in coordination, knowledge and competence, distribution of roles and responsibilities or attitudes among the project participants. It is increasingly understood that the performance of the project network in all

  18. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1978-11-01

    The 13th semi-annual report 1/78 is a description of work within the Nuclear Safety Project performed in the first six months of 1978 in the nuclear safety field by KFK institutes and departments and by external institutions on behalf of KfK. It includes for each individual research activity short summaries on - work completed, - essential results, - plans for the near future. (orig./RW) [de

  19. Fuel and canister process report for the safety assessment SR-Site

    International Nuclear Information System (INIS)

    Werme, Lars; Lilja, Christina

    2010-12-01

    This report documents fuel and canister processes identified as relevant to the long-term safety of a KBS-3 repository. It forms an important part of the reporting of the safety assessment SR-Site. The detailed assessment methodology, including the role of the process reports in the assessment, is described in the SR-Site Main report /SKB 2011/

  20. Fuel and canister process report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Werme, Lars; Lilja, Christina (eds.)

    2010-12-15

    This report documents fuel and canister processes identified as relevant to the long-term safety of a KBS-3 repository. It forms an important part of the reporting of the safety assessment SR-Site. The detailed assessment methodology, including the role of the process reports in the assessment, is described in the SR-Site Main report /SKB 2011/

  1. Modelling of long term geochemical evolution and study of mechanical perturbation of bentonite buffer of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Marsal, Francois; Pellegrini, Delphine; Deleruyelle, Frederic; Serres, Christophe (French Inst. for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (FR)); Windt, Laurent de (Ecole des Mines de Paris, Paris (FR))

    2008-03-15

    PART I: The Swedish Nuclear Fuel and Waste Management Co. (SKB) has recently completed a safety assessment project named SR-Can, related to the KBS-3 disposal concept. In this concept, the waste packages are surrounded by a buffer made of either MX-80 or Deponit CA-N bentonite. Interactions between the buffer and groundwater may modify the buffer composition and thus its containment properties. The Swedish Radiation Protection Authorities (SSI) requested the French Institute for Radiological Protection and Nuclear Safety (IRSN) to perform the present study in support of SSI review of the SR-Can report. The purpose is to assess the geochemical evolution of both potential buffer materials due to the intrusion of different types of groundwater, with a similar modelling layout to that reported in SR-Can and detailed in Arcos et al. Three main categories of water inflows via a fracture intersecting a deposition hole are considered: the Forsmark reference groundwater, a high-salinity groundwater to account for up-rise of deep-seated brines and a diluted water representing ice-melting derived-groundwater. In addition to this, the redox buffering capacity of Deponit CA-N bentonite and the thermal effect on MX-80 bentonite geochemistry have been assessed. This modelling work has been performed using the reactive transport modelling code HYTEC. The main outcome of the present study is that the intrusion of the considered groundwaters should not affect drastically the geochemistry of neither the Deponit CA-N nor the MX-80 bentonite on the longterm (100,000 y). Bentonite pH may reach high values (up to 10.5) in some cases but does not reach SKB criterion value related to bentonite chemical stability. Dissolution-precipitation of accessory minerals is not significant enough to induce important porosity changes (rise by maximum 2 %). Globally, the montmorillonite exchanger undergoes Na by Ca partial replacement, which may decrease the swelling pressure of the bentonite. The

  2. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1983-12-01

    The semiannual progress report 1983/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1983 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. (orig./RW) [de

  3. Nuclear safety project

    International Nuclear Information System (INIS)

    Anon.

    1980-11-01

    The 17th semi-annual report 1980/1 is a description of work within the Nuclear Safety Project performed in the first six months of 1980 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics - work performed, results obtained, plans for future work. (orig.) [de

  4. Interim summary report of the safety case 2009

    International Nuclear Information System (INIS)

    2010-03-01

    Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy), Posiva is preparing to submit a construction license application for the final disposal spent nuclear fuel at the Olkiluoto site, Finland, by the end of the year 2012. Disposal will take place in a geological repository implemented according to the KBS-3 method. The long-term safety section supporting the license application will be based on a safety case that, according to the internationally adopted definition, will be a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository. The present Interim Summary Report represents a major contribution to the development of this safety case. The report has been compiled in accordance with Posiva's current plan for preparing this safety case. A full safety case for the KBS-3V variant will be developed to support the Preliminary Safety Assessment Report (PSAR) in 2012. The report outlines the current design and safety concept for the planned repository. It summarises the approach used to formulate scenarios for the evolution of the disposal system over time, describes these scenarios and presents the main models and computer codes used to analyse them. It also discusses compliance with Finnish regulatory requirements for long-term safety of a geological repository and gives the main evidence, arguments and analyses that lead to confidence, on the part of Posiva, in the long-term safety of the planned repository. Current understanding of the evolution of the disposal system indicates that, except a few unlikely circumstances affecting a small number of canisters, spent fuel will remain isolated, and the radionuclides contained within the canisters, for hundreds of thousands of years or more, in accordance with the base scenario. Confidence in this base scenario derives, in the first place, from the

  5. Review of the KBS II plan for handling and final storage of unreprocessed spent nuclear fuel

    International Nuclear Information System (INIS)

    1980-01-01

    The Swedish utilities programme for disposal of spent nuclear fuel elements (KBS II) is summarized. Comments and criticism to the programme are given by experts from several foreign or international institutions. (L.E.)

  6. Buffer, backfill and closure process report for the safety assessment SR-Site

    International Nuclear Information System (INIS)

    Sellin, Patrik

    2010-11-01

    This report gives an account of how processes in buffer, deposition tunnel backfill and the closure important for the long-term evolution of a KBS-3 repository for spent nuclear fuel, will be documented in the safety assessment SR-Site

  7. Buffer, backfill and closure process report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Sellin, Patrik (ed.)

    2010-11-15

    This report gives an account of how processes in buffer, deposition tunnel backfill and the closure important for the long-term evolution of a KBS-3 repository for spent nuclear fuel, will be documented in the safety assessment SR-Site

  8. Project safety studies - nuclear waste management (PSE)

    International Nuclear Information System (INIS)

    1981-10-01

    The project 'Safety Studies-Nuclear Waste Management' (PSE) is a research project performed by order of the Federal Minister for Research and Technology, the general purpose of which is to deepen and ensure the understanding of the safety aspects of the nuclear waste management and to prepare a risk analysis which will have to be established in the future. Owing to this the project is part of a series of projects which serve the further development of the concept of nuclear waste management and its safety, and which are set up in such a way as to accompany the realization of that concept. This report contains the results of the first stage of the project from 1978 to mid-1981. (orig./RW) [de

  9. Investigations of possibilities to dispose of spent nuclear fuel in Lithuania: a model case. Volume 3, Generic Safety Assessment of Repository in Crystalline Rocks

    International Nuclear Information System (INIS)

    Motiejunas, S.; Poskas, P.

    2005-01-01

    In this Volume a generic safety assessment of the repository for spent nuclear fuel in crystalline rock in Lithuania is presented. Modeling of safety relevant radionuclide release from the defected canister and their transport through the near field and far field was performed. Doses to humans due to released radionuclides in the well water were calculated and compared with the dose restrictions existing in Lithuania. For this stage of generic safety assessment only two scenarios were chosen: base scenario and canister defect scenario. KBS-3 concept developed by SKB for disposal of spent nuclear fuel in Sweden was chosen as prototype for repository in crystalline basement in Lithuania. The KBS-3H design with horizontal canister emplacement is proposed as a reference design for Lithuania

  10. Thermal analyses of KBS-3H type repository

    International Nuclear Information System (INIS)

    Ikonen, K.

    2003-12-01

    This report contains the temperature dimensioning of the KBS-3H type nuclear fuel repository, where the fuel canisters are disposed at horizontal position in the horizontal tunnels according to the preliminary SKB (Swedish Nuclear Fuel and Waste Management Co) and Posiva plan. The maximum temperature on the canister surface is limited to the design temperature of +100 deg C. However, due to uncertainties in thermal analysis parameters (like scattering in rock conductivity) the allowable calculated maximum canister temperature is set to 90 deg C causing a safety margin of 10 deg C. The allowable temperature is controlled by adjusting the space between adjacent canisters, adjacent tunnels and the distance between separate panels of the repository and the pre-cooling time affecting power of the canisters. With reasonable canister and tunnel spacing the maximum temperature 90 deg C is achieved with an initial canister power of 1700 W. It became apparent that the temperature of canister surfaces can be determined by superposing analytic line heat source models much more efficiently than by numerical analysis, if the analytic model is first verified and calibrated by numerical analysis. This was done by comparing the surface temperatures of the central canister in a single infinite canister queue calculated numerically and analytically. In addition, the results from SKB analysis were used for comparison and for confirming the calculation procedure. For the Olkiluoto repository a reference case of one panel having 1500 canisters was analysed. The canisters are disposed in a rectangular geometry in a certain order. The calculation was performed separately for both Olkiluoto BWR canisters and Loviisa PWR canisters. The result was the minimum allowable spacing between canisters. (orig.)

  11. ELECTRICAL SAFETY IMPROVEMENT PROJECT A COMPLEX WIDE TEAMING INITIATIVE

    Energy Technology Data Exchange (ETDEWEB)

    GRAY BJ

    2007-11-26

    This paper describes the results of a year-long project, sponsored by the Energy Facility Contractors Group (EFCOG) and designed to improve overall electrical safety performance throughout Department of Energy (DOE)-owned sites and laboratories. As evidenced by focused metrics, the Project was successful primarily due to the joint commitment of contractor and DOE electrical safety experts, as well as significant support from DOE and contractor senior management. The effort was managed by an assigned project manager, using classical project-management principles that included execution of key deliverables and regular status reports to the Project sponsor. At the conclusion of the Project, the DOE not only realized measurable improvement in the safety of their workers, but also had access to valuable resources that will enable them to do the following: evaluate and improve electrical safety programs; analyze and trend electrical safety events; increase electrical safety awareness for both electrical and non-electrical workers; and participate in ongoing processes dedicated to continued improvement.

  12. A critical Review of the sections in The Main Report of the SR Can project (SKB TR-06-09) relating to the containment performance of the KBS3 canister

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    2007-05-01

    The sections of the Main Report of the SR-Can project related to containment performance of the KBS3 canister have been studied in conjunction with the background reports which it cites. The study has taken the form of a critical review of the safety case related to containment by the canister. The report acknowledges that further work is required and is in progress. The cases of acceptance criteria for defects in the insert, creep relaxation following rock shear and NDE procedures for the insert and the copper shell are cited. Useful tools have been developed for deterministic analysis of the response of the canister to isostatic pressure and to rock shear. A probabilistic tool has been developed in order to assess the sensitivity of the canister to failure as a result of material property and manufacturing quality variations or variations in the expected environmental conditions. Much has been learned by the application of these tools to date. Unfortunately the mean mechanical properties for copper and cast iron which were used were inappropriate. They were too fast for the isostatic load case and too slow for the rock shear case. In addition the statistics related to the properties of the cast iron were inadequate. The sensitivities of the predictions to the standard deviations in the mechanical properties indicate that care must be taken to provide reliable data for variations in mechanical properties both within and between casts for the insert. Both analyses need to be repeated using better data. Some refinement of the models may be appropriate, such allowance for separation of the copper and the bentonite for the isostatic pressure case and application of rate sensitivity to the material models for both cases. It is also necessary to extend the rock shear case to test for sensitivity to manufacturing and material property variations

  13. Impact of Construction Health & Safety Regulations on Project ...

    African Journals Online (AJOL)

    Impact of Construction Health & Safety Regulations on Project Parameters in Nigeria: Consultants and Contractors View. ... The study recommends that better attention is given to health and safety should as a project parameter and that related practice notes and guidelines should be evolved for all project stakeholders.

  14. Landscape model configuration for biosphere analysis of selected cases in TILA-99 and in KBS-3H safety evaluation, 2007

    International Nuclear Information System (INIS)

    Broed, R.

    2008-08-01

    In this report, the configuration of a landscape model based on the Terrain and ecosystems development model of the Olkiluoto site, 2006, is presented in details. The landscape model is created especially for use in the simulations of release cases in the KBS-3H safety evaluation and for recalculating some older cases originally presented in the TILA-99 safety assessment. The report presents results for constant unit release rate on the landscape doses, and activity concentrations and radionuclide inventories in the various environmental media. Results on the specific release cases are left for subsequent reports. In this report, the discussion and presentation of the results is focused on a limited set of radionuclides (Cl-36, Tc-99, I-129, Ra-226, Th-230) of different behaviour in the environment. However, same results have been calculated also for a large variety of nuclides present in the release terms to the biosphere. In the sensitivity analysis the parameters most affecting to the results are identified. They are further evaluated using data quality index, reflecting to the confidence on the underlying data and knowledge base. These are then combined in the multi-dimensional uncertainty analysis, revealing water balance, the fraction of precipitation intercepted by the foliage, concentration ratios in forests, Kds in sediments, river width and wetland parameters in general as the most important factors, in respect of the unit release rate, calling for further research at the moment, together with some structural improvements to the biosphere object modules. Uncertainties related to the release locations are studied with a number of cases assuming various patterns of release distribution to several objects as well as the release term received by single objects. The maximum landscape doses per unit release rate vary between one and less than four orders of magnitude across the cases depending on the nuclide, or from more than two less to slightly more than one

  15. Nuclear Safety Project. Annual report 1983

    International Nuclear Information System (INIS)

    1984-06-01

    The annual report 1983 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1983 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig.) [de

  16. Nuclear safety project. Annual report 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The annual report 1985 is a detailed description (in German language) of work within the nuclear safety project performed in 1985 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./HP) [de

  17. Cesium legacy safety project management work plan

    International Nuclear Information System (INIS)

    Durham, J.S.

    1998-01-01

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell)

  18. NASA's Aviation Safety and Modeling Project

    Science.gov (United States)

    Chidester, Thomas R.; Statler, Irving C.

    2006-01-01

    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data.

  19. Use of safety management practices for improving project performance.

    Science.gov (United States)

    Cheng, Eddie W L; Kelly, Stephen; Ryan, Neal

    2015-01-01

    Although site safety has long been a key research topic in the construction field, there is a lack of literature studying safety management practices (SMPs). The current research, therefore, aims to test the effect of SMPs on project performance. An empirical study was conducted in Hong Kong and the data collected were analysed with multiple regression analysis. Results suggest that 3 of the 15 SMPs, which were 'safety committee at project/site level', 'written safety policy', and 'safety training scheme' explained the variance in project performance significantly. Discussion about the impact of these three SMPs on construction was provided. Assuring safe construction should be an integral part of a construction project plan.

  20. Stripa Project - Summary of defined programs

    International Nuclear Information System (INIS)

    Carlsson, L.; Olsson, T.; Pusch, R.

    1980-11-01

    An international cooperation project, the Stripa Project, in the field of nuclear waste management has been established as an autonomous OECH/NEA project. The management of the project has been entrusted to the Divsion Nuclear Fuel Safety (KBS) of the Swedish Nuclear Fuel Supply Company (SKBF). Technical input and contribution of funds are given by the following countries: Canada, Finland, Japan, Sweden, Switzerland and the United States. The report summarizes the programs for investigations funded at this stage. A number of investigations of a geophysical, geochemical and hydraulic nature will be carried out in the boreholes and the drill cores will be mapped and analysed. Another experiment is with various tracers which represent all important types of radionuclides and will be introduced in the naturally flowing water in a single fissure in granite. The experiment will show how well sorption data from the laboratory can be used to predict radionuclide migration in the field with real surfaces and waters. The third project aims at the verification of the suitability of the buffer materials at real conditions on site. Highly compacted bentonite and mixtures of bentonite and quartz sand are proposed as buffer materials in final repositories for high-level radioactive wastes. (GB)

  1. Climate and climate-related issues for the safety assessment SR-Can

    International Nuclear Information System (INIS)

    Naeslund, Jens-Ove

    2006-11-01

    The purpose of this report is to document current scientific knowledge of the climate-related conditions and processes relevant to the long-term safety of a KBS-3 repository to a level required for an adequate treatment in the safety assessment SR-Can. The report also includes a concise background description of the climate system. The report includes three main chapters: A description of the climate system (Chapter 2); Identification and discussion of climate-related issues (Chapter 3); and, A description of the evolution of climate-related conditions for the safety assessment (Chapter 4). Chapter 2 includes an overview of present knowledge of the Earth climate system and the climate conditions that can be expected to occur in Sweden on a 100,000 year time perspective. Based on this, climate-related issues relevant for the long-term safety of a KBS-3 repository are identified. These are documented in Chapter 3 'Climate-related issues' to a level required for an adequate treatment in the safety assessment. Finally, in Chapter 4, 'Evolution of climate-related conditions for the safety assessment' an evolution for a 120,000 year period is presented, including discussions of identified climate-related issues of importance for repository safety. The documentation is from a scientific point of view not exhaustive, since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of a safety assessment. As further described in the SR-Can Main Report and in the Features Events and Processes report, the content of the present report has been audited by comparison with FEP databases compiled in other assessment projects. This report follows as far as possible the template for documentation of processes regarded as internal to the repository system. However, the term processes is not used in this report, instead the term issue has been used. Each issue includes a set of processes together resulting in the behaviour of a

  2. Climate and climate-related issues for the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, Jens-Ove (comp.)

    2006-11-15

    The purpose of this report is to document current scientific knowledge of the climate-related conditions and processes relevant to the long-term safety of a KBS-3 repository to a level required for an adequate treatment in the safety assessment SR-Can. The report also includes a concise background description of the climate system. The report includes three main chapters: A description of the climate system (Chapter 2); Identification and discussion of climate-related issues (Chapter 3); and, A description of the evolution of climate-related conditions for the safety assessment (Chapter 4). Chapter 2 includes an overview of present knowledge of the Earth climate system and the climate conditions that can be expected to occur in Sweden on a 100,000 year time perspective. Based on this, climate-related issues relevant for the long-term safety of a KBS-3 repository are identified. These are documented in Chapter 3 'Climate-related issues' to a level required for an adequate treatment in the safety assessment. Finally, in Chapter 4, 'Evolution of climate-related conditions for the safety assessment' an evolution for a 120,000 year period is presented, including discussions of identified climate-related issues of importance for repository safety. The documentation is from a scientific point of view not exhaustive, since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of a safety assessment. As further described in the SR-Can Main Report and in the Features Events and Processes report, the content of the present report has been audited by comparison with FEP databases compiled in other assessment projects. This report follows as far as possible the template for documentation of processes regarded as internal to the repository system. However, the term processes is not used in this report, instead the term issue has been used. Each issue includes a set of processes together resulting in the

  3. Performance and safety analysis of WP-cave concept

    International Nuclear Information System (INIS)

    Skagius, K.; Svemar, C.

    1989-08-01

    The report presents a performance safety, and cost analysis of the WP-cave, WPC, concept. In the performance analysis, questions specific to the WPC have been addressed which have been identified to require more detailed studies. Based on the outcome of this analysis, a safety analysis has been made which comprises of the modeling and calculation of radionuclide transport from the repository to the biosphere and the resulting dose exposure to man. The result of the safety analysis indicates that the present design of a WPC repository may give unacceptably high doses. By improving the properties of the bentonite/sand barrier such that the hydraulic conductivity is reduced, or by changing the short-lived steel canisters to more long-lived canisters, e.g. copper canisters, it is judged possible to achieve a sufficiently low level of dose exposure rates to man. The cost for a WPC repository of the studied design is significantly higher than for a KBS-3 repository considering the Swedish conditions and the Swedish amount of spent fuel. The major costs are connected to the excavation and backfilling of the bentonite/sand barrier. The potential for cost savings is high but it is not judged possible to account for savings in such a way that the WPC concept shows lower cost than the KBS-3 concept. (34 figs., 33 tabs., 29 refs.)

  4. Outline of criticality safety research project

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Suzaki, Takenori; Takeshita, Isao; Miyoshi, Yoshinori; Nakajima, Ken; Sakurai, Satoshi; Yanagisawa, Hiroshi

    1987-01-01

    As the power generation capacity of LWRs in Japan increased, the establishment and development of nuclear fuel cycle have become the important subject. Conforming to the safety research project of the nation, the Japan Atomic Energy Research Institute has advanced the project of constructing a new research facility, that is, Nuclear Fuel Cycle Engineering Research Facility (NUCEF). In this facility, it is planned to carry out the research on criticality safety, upgraded reprocessing techniques, and the treatment and disposal of transuranium element wastes. In this paper, the subjects of criticality safety research and the research carried out with a criticality safety experiment facility which is expected to be installed in the NUCEF are briefly reported. The experimental data obtained from the criticality safety handbooks and published literatures in foreign countries are short of the data on the mixture of low enriched uranium and plutonium which is treated in the reprocessing of spent fuel from LWRs. The acquisition of the criticality data for various forms of fuel, the elucidation of the scenario of criticality accidents, and the soundness of the confinement system for gaseous fission products and plutonium are the main subjects. The Static Criticality Safety Facility, Transient Criticality Safety Facility and pulse column system are the main facilities. (Kako, I.)

  5. Design premises for a KBS-3V repository based on results from the safety assessment SR-Can and some subsequent analyses

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-15

    The objective with this report is to: - provide design premises from a long term safety aspect of a KBS-3V repository for spent nuclear fuel, to form the basis for the development of the reference design of the repository. The design premises are used as input to the documents, called production reports, that present the reference design to be analysed in the long term safety assessment SR-Site. It is the aim that the production reports should verify that the chosen design complies with the design premises given in this report, whereas this report takes the burden of justifying why these design premises are relevant. The more specific aims and objectives with the production reports are provided in these reports. The following approach is used: - The reference design analysed in SR-Can is a starting point for setting safety related design premises for the next design step. - A few design basis cases, in accordance with the definition used in the regulation SSMFS 2008:211 and mainly related to the canister, can be derived from the results of the SR-Can assessment. From these it is possible to formulate some specific design premises for the canister. - The design basis cases involve several assumptions on the state of other barriers. These implied conditions are thus set as design premises for these barriers. - Even if there are few load cases on individual barriers that can be directly derived from the analyses, SR-Can provides substantial feedback on most aspects of the analysed reference design. This feedback is also formulated as design premises. - An important part of SR-Can Main report is the formulation and assessment of safety function indicator criteria. These criteria are a basis for formulating design premises, but they are not the same as the design premises discussed in the present report. Whereas the former should be upheld throughout the assessment period, the latter refer to the initial state and must be defined such that they give a margin for

  6. Design premises for a KBS-3V repository based on results from the safety assessment SR-Can and some subsequent analyses

    International Nuclear Information System (INIS)

    2009-11-01

    The objective with this report is to: - provide design premises from a long term safety aspect of a KBS-3V repository for spent nuclear fuel, to form the basis for the development of the reference design of the repository. The design premises are used as input to the documents, called production reports, that present the reference design to be analysed in the long term safety assessment SR-Site. It is the aim that the production reports should verify that the chosen design complies with the design premises given in this report, whereas this report takes the burden of justifying why these design premises are relevant. The more specific aims and objectives with the production reports are provided in these reports. The following approach is used: - The reference design analysed in SR-Can is a starting point for setting safety related design premises for the next design step. - A few design basis cases, in accordance with the definition used in the regulation SSMFS 2008:211 and mainly related to the canister, can be derived from the results of the SR-Can assessment. From these it is possible to formulate some specific design premises for the canister. - The design basis cases involve several assumptions on the state of other barriers. These implied conditions are thus set as design premises for these barriers. - Even if there are few load cases on individual barriers that can be directly derived from the analyses, SR-Can provides substantial feedback on most aspects of the analysed reference design. This feedback is also formulated as design premises. - An important part of SR-Can Main report is the formulation and assessment of safety function indicator criteria. These criteria are a basis for formulating design premises, but they are not the same as the design premises discussed in the present report. Whereas the former should be upheld throughout the assessment period, the latter refer to the initial state and must be defined such that they give a margin for

  7. UMTRA Project environmental, health, and safety plan

    International Nuclear Information System (INIS)

    1989-02-01

    The basic health and safety requirements established in this plan are designed to provide guidelines to be applied at all Uranium Mill Tailings Remedial Action (UMTRA) Project sites. Specific restrictions are given where necessary. However, an attempt has been made to provide guidelines which are generic in nature, and will allow for evaluation of site-specific conditions. Health and safety personnel are expected to exercise professional judgment when interpreting these guidelines to ensure the health and safety of project personnel and the general population. This UMTRA Project Environmental, Health, and Safety (EH ampersand S) Plan specifies the basic Federal health and safety standards and special DOE requirements applicable to this program. In addition, responsibilities in carrying out this plan are delineated. Some guidance on program requirements and radiation control and monitoring is also included. An Environmental, Health, and Safety Plan shall be developed as part of the remedial action plan for each mill site and associated disposal site. Special conditions at the site which may present potential health hazards will be described, and special areas that should should be addressed by the Remedial Action Contractor (RAC) will be indicated. Site-specific EH ampersand S concerns will be addressed by special contract conditions in RAC subcontracts. 2 tabs

  8. Understanding lean & safety projects: analysis of case studies

    Directory of Open Access Journals (Sweden)

    Maria Crema

    2017-12-01

    Full Text Available Facing the current socio-economic contingency while guaranteeing a high level of care quality is particularly challenging in the field of healthcare. Through an integrated adoption of emerging managerial solutions, projects that allow organizations to achieve both efficiency and patient safety improvements could be implemented, thereby transposing policy directives towards a safer and more sustainable healthcare system. Therefore, the purpose of this paper is to investigate the features of Lean & Safety (L&S projects. Three Health Lean Management (HLM projects that had unexpected patient safety results were selected from the same region. Differences and similarities among the cases have been highlighted and interesting points of evidence have been noted. Despite the fact that the projects were pursuing similar objectives and benefiting from comparable support, the obtained changes had direct impact on patient safety enhancement in the cases that involved the front-office processes, and an indirect impact on patient safely for the L&S project that focused on back-office activities. The implementation processes and the Information and Communication Technologies (ICT adoption of the cases are also different.

  9. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  10. MATHEMATICAL APPARATUS FOR KNOWLEDGE BASE PROJECT MANAGEMENT OF OCCUPATIONAL SAFETY

    Directory of Open Access Journals (Sweden)

    Валентина Николаевна ПУРИЧ

    2015-05-01

    Full Text Available The occupational safety project (OSP management is aimed onto a rational choice implementation. With respect to the subjectivity of management goals the project selection is considered as a minimum formalization level information process, The proposed project selection model relies upon the enterprise’s occupational and industrial safety assessment using fuzzy logic and linguistic variables based on occupational safety knowledge base.

  11. Criticality safety benchmark evaluation project: Recovering the past

    Energy Technology Data Exchange (ETDEWEB)

    Trumble, E.F.

    1997-06-01

    A very brief summary of the Criticality Safety Benchmark Evaluation Project of the Westinghouse Savannah River Company is provided in this paper. The purpose of the project is to provide a source of evaluated criticality safety experiments in an easily usable format. Another project goal is to search for any experiments that may have been lost or contain discrepancies, and to determine if they can be used. Results of evaluated experiments are being published as US DOE handbooks.

  12. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  13. Relational approach in managing construction project safety: a social capital perspective.

    Science.gov (United States)

    Koh, Tas Yong; Rowlinson, Steve

    2012-09-01

    Existing initiatives in the management of construction project safety are largely based on normative compliance and error prevention, a risk management approach. Although advantageous, these approaches are not wholly successful in further lowering accident rates. A major limitation lies with the approaches' lack of emphasis on the social and team processes inherent in construction project settings. We advance the enquiry by invoking the concept of social capital and project organisational processes, and their impacts on project safety performance. Because social capital is a primordial concept and affects project participants' interactions, its impact on project safety performance is hypothesised to be indirect, i.e. the impact of social capital on safety performance is mediated by organisational processes in adaptation and cooperation. A questionnaire survey was conducted within Hong Kong construction industry to test the hypotheses. 376 usable responses were received and used for analyses. The results reveal that, while the structural dimension is not significant, the mediational thesis is generally supported with the cognitive and relational dimensions affecting project participants' adaptation and cooperation, and the latter two processes affect safety performance. However, the cognitive dimension also directly affects safety performance. The implications of these results for project safety management are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Swedish nuclear waste efforts

    International Nuclear Information System (INIS)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981

  15. Design process for a repository - KBS-3 case

    International Nuclear Information System (INIS)

    Svemar, C.

    1995-01-01

    This paper deals with the design process for the Swedish (generic) repository design KBS-3. The repository may have a spiral access ramp, access shafts, or straight access ramps. Galleries lead from a central service area to a small spent fuel storage area, a larger main spent fuel storage area, and a disposal area for other nuclear waste. This, or any, design has to be planned through three stages of layout and design, viz. feasibility study, preliminary planning, and architectural design, followed by detailed planning, and then planning of excavation and construction. Decisions on final design have to wait until construction is imminent, and all the rock data are available. This means that different sections of the repository may be at different planning stages at any one time. In the last stage, the plan of the disposal holes depends on detailed coring results, because a hole will not be bored where there is a fracture. 3 refs., 1 tab., 3 figs

  16. Assessment of Contributions to Patient Safety Knowledge by the Agency for Healthcare Research and Quality-Funded Patient Safety Projects

    Science.gov (United States)

    Sorbero, Melony E S; Ricci, Karen A; Lovejoy, Susan; Haviland, Amelia M; Smith, Linda; Bradley, Lily A; Hiatt, Liisa; Farley, Donna O

    2009-01-01

    Objective To characterize the activities of projects funded in Agency for Healthcare Research and Quality (AHRQ)' patient safety portfolio and assess their aggregate potential to contribute to knowledge development. Data Sources Information abstracted from proposals for projects funded in AHRQ' patient safety portfolio, information on safety practices from the AHRQ Evidence Report on Patient Safety Practices, and products produced by the projects. Study Design This represented one part of the process evaluation conducted as part of a longitudinal evaluation based on the Context–Input–Process–Product model. Principal Findings The 234 projects funded through AHRQ' patient safety portfolio examined a wide variety of patient safety issues and extended their work beyond the hospital setting to less studied parts of the health care system. Many of the projects implemented and tested practices for which the patient safety evidence report identified a need for additional evidence. The funded projects also generated a substantial body of new patient safety knowledge through a growing number of journal articles and other products. Conclusions The projects funded in AHRQ' patient safety portfolio have the potential to make substantial contributions to the knowledge base on patient safety. The full value of this new knowledge remains to be confirmed through the synthesis of results. PMID:21456108

  17. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part III

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  18. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part I

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  19. Comparison between the KBS-3 method and the deep borehole for final disposal of spent nuclear fuel; Jaemfoerelse mellan KBS-3-metoden och deponering i djupa borrhaal foer slutligt omhaendertagande av anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Grundfelt, Bertil (Kemakta Konsult AB (Sweden))

    2010-09-15

    In this report a comparison is made between disposal of spent nuclear fuel according to the KBS-3 method with disposal in very deep boreholes. The objective has been to make a broad comparison between the two methods, and by doing so to pinpoint factors that distinguish them from each other. The ambition has been to make an as fair comparison as possible despite that the quality of the data of relevance is very different between the methods

  20. The International Criticality Safety Benchmark Evaluation Project

    International Nuclear Information System (INIS)

    Briggs, B. J.; Dean, V. F.; Pesic, M. P.

    2001-01-01

    In order to properly manage the risk of a nuclear criticality accident, it is important to establish the conditions for which such an accident becomes possible for any activity involving fissile material. Only when this information is known is it possible to establish the likelihood of actually achieving such conditions. It is therefore important that criticality safety analysts have confidence in the accuracy of their calculations. Confidence in analytical results can only be gained through comparison of those results with experimental data. The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the US Department of Energy. The project was managed through the Idaho National Engineering and Environmental Laboratory (INEEL), but involved nationally known criticality safety experts from Los Alamos National Laboratory, Lawrence Livermore National Laboratory, Savannah River Technology Center, Oak Ridge National Laboratory and the Y-12 Plant, Hanford, Argonne National Laboratory, and the Rocky Flats Plant. An International Criticality Safety Data Exchange component was added to the project during 1994 and the project became what is currently known as the International Criticality Safety Benchmark Evaluation Project (ICSBEP). Representatives from the United Kingdom, France, Japan, the Russian Federation, Hungary, Kazakhstan, Korea, Slovenia, Yugoslavia, Spain, and Israel are now participating on the project In December of 1994, the ICSBEP became an official activity of the Organization for Economic Cooperation and Development - Nuclear Energy Agency's (OECD-NEA) Nuclear Science Committee. The United States currently remains the lead country, providing most of the administrative support. The purpose of the ICSBEP is to: (1) identify and evaluate a comprehensive set of critical benchmark data; (2) verify the data, to the extent possible, by reviewing original and subsequently revised documentation, and by talking with the

  1. Safety culture and subcontractor network governance in a complex safety critical project

    International Nuclear Information System (INIS)

    Oedewald, Pia; Gotcheva, Nadezhda

    2015-01-01

    In safety critical industries many activities are currently carried out by subcontractor networks. Nevertheless, there are few studies where the core dimensions of resilience would have been studied in safety critical network activities. This paper claims that engineering resilience into a system is largely about steering the development of culture of the system towards better ability to anticipate, monitor, respond and learn. Thus, safety culture literature has relevance in resilience engineering field. This paper analyzes practical and theoretical challenges in applying the concept of safety culture in a complex, dynamic network of subcontractors involved in the construction of a new nuclear power plant in Finland, Olkiluoto 3. The concept of safety culture is in focus since it is widely used in nuclear industry and bridges the scientific and practical interests. This paper approaches subcontractor networks as complex systems. However, the management model of the Olkiluoto 3 project is to a large degree a traditional top-down hierarchy, which creates a mismatch between the management approach and the characteristics of the system to be managed. New insights were drawn from network governance studies. - Highlights: • We studied a relevant topical subject safety culture in nuclear new build project. • We integrated safety science challenges and network governance studies. • We produced practicable insights in managing safety of subcontractor networks

  2. Handling of future human actions in the safety assessment SR-Can

    International Nuclear Information System (INIS)

    Moren, Lena

    2006-10-01

    This report documents the future human actions (FHA) considered in the long-term safety analysis of a KBS-3 repository. The report is one of the supporting documents to the safety assessment SR-Can. The purpose of this report is to provide an account of: General considerations concerning FHA; The methodology applied in SR-Can to assess FHA; The aspects of FHA that need to be considered in the evaluation of their impact on a deep geological repository; and The selection of representative scenarios for illustrative consequence analysis

  3. Handling of future human actions in the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Moren, Lena

    2006-10-15

    This report documents the future human actions (FHA) considered in the long-term safety analysis of a KBS-3 repository. The report is one of the supporting documents to the safety assessment SR-Can. The purpose of this report is to provide an account of: General considerations concerning FHA; The methodology applied in SR-Can to assess FHA; The aspects of FHA that need to be considered in the evaluation of their impact on a deep geological repository; and The selection of representative scenarios for illustrative consequence analysis.

  4. Nuclear Safety Project - annual report 1980

    International Nuclear Information System (INIS)

    1981-08-01

    The Annual Report 1980 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1980 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on work completed, essential results, plans for the near future. (orig./RW) [de

  5. Krsko periodic safety review project prioritization process

    International Nuclear Information System (INIS)

    Basic, I.; Vrbanic, I.; Spiler, J.; Lambright, J.

    2004-01-01

    Definition of a Krsko Periodic Safety Review (PSR) project is a comprehensive safety review of a plant after last ten years of operation. The objective is a verification by means of a comprehensive review using current methods that Krsko NPP remains safety when judged against current safety objectives and practices and that adequate arrangements are in place to maintain plant safety. This objective encompasses the three main criteria or goals: confirmation that the plant is as safe as originally intended, determination if there are any structures, systems or components that could limit the life of the plant in the foreseeable future, and comparison the plant against modern safety standards and to identify where improvements would be beneficial at justifiable cost. Krsko PSR project is structured in the three phases: Phase 1: Preparation of Detailed 10-years PSR Program, Phase 2: Performing of 10-years PSR Program and preparing of associated documents (2001-2003), and Phase 3: Implementation of the prioritized compensatory measures and modifications (development of associated EEAR, DMP, etc.) after agreement with the SNSA on the design, procedures and time-scales (2004-2008). This paper presents the NEK PSR results of work performed under Phase 2 focused on the ranking of safety issues and prioritization of corrective measures needed for establishing an efficient action plan. Safety issues were identified in Phase 2 during the following review processes: Periodic Safety Review (PSR) task; Krsko NPP Regulatory Compliance Program (RCP) review; Westinghouse Owner Group (WOG) catalog items screening/review; SNSA recommendations (including IAEA RAMP mission suggestions/recommendations).(author)

  6. Project safety as a sustainable competitive advantage.

    Science.gov (United States)

    Rechenthin, David

    2004-01-01

    To be consistently profitable, a construction company must complete projects in scope, on schedule, and on budget. At the same time, the nature of the often high-risk work performed by construction companies can result in high accident rates. Clients and other stakeholders are placing increasing pressure on companies to decrease those accident rates. Clients routinely demand copies of safety plans and evidence of past results at the "pre-qualification" or "request for proposal" stages of the procurement process. Are high accident rates and the associated costs just a part of business? Companies that deliver on scope, schedule, and budget have a competitive advantage. Is it possible for projects with low accident rates to use it as a competitive advantage? Is the value added by safety just a temporary or parity issue, or does a successful safety program offer significant advantage to the company and the client? This article concludes that in the case of a high-risk industry, such as the construction industry, an organization with a successful safety program can promote safety performance as a sustainable competitive advantage. It is a choice the company can make.

  7. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    International Nuclear Information System (INIS)

    GERBER MS

    2007-01-01

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site

  8. Quantitative Assessment of the Potential Significance of Colloids to the KBS-3 Disposal Concept

    International Nuclear Information System (INIS)

    Klos, R.A.; White, M.J.; Wickham, S.M.; Bennett, D.G.; Hicks, T.W.

    2002-06-01

    Colloids are minute particles in the size range 1 nm to 1 μm that can remain suspended in water, and may influence radionuclide transport in radioactive waste disposal systems. Galson Sciences Ltd (GSL) has undertaken a quantitative assessment of the impact that colloid-facilitated radionuclide transport may have on the performance of the Swedish KBS-3 concept for disposal of high-level radioactive waste and spent fuel. This assessment has involved the evaluation and application of SKI's colloid transport model, COLLAGE II, modelling of km-scale Pu transport at the Nevada Test Site (NTS), USA, and identification of circumstances under which colloid-facilitated transport could be important for a KBS-3-type environment. Colloids bearing traces of plutonium from the BENHAM underground nuclear test have been detected in samples obtained from Nevada Test Site (NTS) groundwater wells 1.3 km from the detonation point. Plutonium is generally fairly immobile in groundwater systems, and it has been suggested that colloids may have caused the plutonium from the BENHAM test to be transported 1.3 km in only 30 years. This hypothesis has been tested by modelling plutonium transport in a fracture with similar characteristics to those present in the vicinity of the BENHAM test. SKI's colloid transport code, COLLAGE II, considers radionuclide transport in a one-dimensional planar fracture and represents radionuclide-colloid sorption and desorption assuming first-order, linear kinetics. Recently published data from both the ongoing NTS site investigation and from the associated Yucca Mountain Project have been used to define a COLLAGE II dataset. The kinetics of radionuclide-colloid sorption and desorption have been found to be crucial in explaining the transport of plutonium associated with colloids, as inferred at the NTS. Specifically, it has been found that for plutonium to have been transported by colloids over the full 1.3 km transport path, it is likely that the plutonium

  9. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  10. Major accident prevention through applying safety knowledge management approach.

    Science.gov (United States)

    Kalatpour, Omid

    2016-01-01

    Many scattered resources of knowledge are available to use for chemical accident prevention purposes. The common approach to management process safety, including using databases and referring to the available knowledge has some drawbacks. The main goal of this article was to devise a new emerged knowledge base (KB) for the chemical accident prevention domain. The scattered sources of safety knowledge were identified and scanned. Then, the collected knowledge was formalized through a computerized program. The Protégé software was used to formalize and represent the stored safety knowledge. The domain knowledge retrieved as well as data and information. This optimized approach improved safety and health knowledge management (KM) process and resolved some typical problems in the KM process. Upgrading the traditional resources of safety databases into the KBs can improve the interaction between the users and knowledge repository.

  11. Practice and innovation on safety management of Haiyang Nuclear Power Project

    International Nuclear Information System (INIS)

    Wei Guohu

    2011-01-01

    From the perspective of owner, this article has introduced the safety management model and practice of Haiyang Nuclear Power Project, one of AP1000 Self-reliance Program supporting projects of China. And the article has summarized characteristics of the safety management of Haiyang Project for reference and communication with nuclear or other projects. (author)

  12. Overview of DOE/ONS criticality safety projects

    International Nuclear Information System (INIS)

    Barber, R.W.; Brown, B.P.; Hopper, C.M.

    1985-01-01

    The evolution of Federal involvement with nuclear criticality safety has traversed through the 1940's and early 1950's with the Manhattan Engineering District, the 1950's and 1960's with the Atomic Energy Commission, the early 1970's with the Energy Research and Development Administration, and the late 1970's to date with the US Department of Energy. The importance of nuclear criticality safety has been maintained throughout these periods; however, criticality safety has received shifting emphases in research/applications, promulgations of regulations/standards, origins of fiscal support and organization. In June 1981 the Office of Nuclear Safety was established in response to a Department of Energy study of the impact of the March 1979 Three Mile Island accident. The organizational structure of the ONS, its program for establishing and maintaining a progressive nuclear criticality safety program, and associated projects, and current history of ONS's fiscal support of program projects is presented. With the establishment of the ONS came concomitant missions to develop and maintain nuclear safety policy and requirements, to provide independent assurance that nuclear operations are performed safely, to provide resources and management for DOE responses to nuclear accidents, and to provide technical support. In the past four years, ONS has developed and initiated a continuing Department Nuclear Criticality Safety Program in such areas as communications and information, physics of criticality, knowledge of factors affecting criticality, and computational capability

  13. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2007-12-05

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site.

  14. Safety Culture Enhancement Project. Final Report. A Field Study on Approaches to Enhancement of Safety Culture

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Andrew; Hayward, Brent (Dedale Asia Pacific, Albert Park VIC 3206 (Australia))

    2006-08-15

    This report documents a study with the objective of enhancing safety culture in the Swedish nuclear power industry. A primary objective of this study was to ensure that the latest thinking on human factors principles was being recognised and applied by nuclear power operators as a means of ensuring optimal safety performance. The initial phase of the project was conducted as a pilot study, involving the senior management group at one Swedish nuclear power-producing site. The pilot study enabled the project methodology to be validated after which it was repeated at other Swedish nuclear power industry sites, providing a broad-ranging analysis of opportunities across the industry to enhance safety culture. The introduction to this report contains an overview of safety culture, explains the background to the project and sets out the project rationale and objectives. The methodology used for understanding and analysing the important safety culture issues at each nuclear power site is then described. This section begins with a summary of the processes used in the information gathering and data analysis stage. The six components of the Management Workshops conducted at each site are then described. These workshops used a series of presentations, interactive events and group exercises to: (a) provide feedback to site managers on the safety culture and safety leadership issues identified at their site, and (b) stimulate further safety thinking and provide 'take-away' information and leadership strategies that could be applied to promote safety culture improvements. Section 3, project Findings, contains the main observations and output from the project. These include: - a brief overview of aspects of the local industry operating context that impinge on safety culture; - a summary of strengths or positive attributes observed within the safety culture of the Swedish nuclear industry; - a set of identified opportunities for further improvement; - the aggregated

  15. Follow-up of foreign safety studies of final storage of nuclear fuel waste

    International Nuclear Information System (INIS)

    Gelin, R.

    1985-04-01

    The development of mathematical models and calculation programs for estimating radionuclide migration from radioactive waste storage is continuing. Detailed site studies are in progress in the United States. The Swiss investigation which has been recently published, recommends waste storage in granite at the depth of 1200 m. The safety analysis is similar to the one of the Swedish KBS-3 study. 68 references. (G.B.)

  16. Safety Culture in New Build Projects

    International Nuclear Information System (INIS)

    Reiman, T.

    2016-01-01

    The concept of culture emphasises the social factors that have an effect on the way hazards are perceived, risks are evaluated, risk management is conducted, the current safety level is interpreted, and what is considered normal and what abnormal. It also contributes to defining the correct ways to behave in situations and correct ways to talk about safety, risks or uncertainty. Culture is something the company has created for itself that then has an effect on the company. This effect is not necessarily perceived by the company itself, since the members of the organization consider all things that happen according to their cultural taken-for-granted assumptions (“business as usual”). Thus, safety culture can either hinder or advance nuclear safety. This depends on what the shared values and assumptions are, and how they are in line with, and influence, the organizational structures, practices, personnel and technology. Safety culture requires constant and systematic development, monitoring and review during the entire life-cycle of a nuclear facility. The pre-operational phase sets many unique requirements for nuclear safety culture. For example, some of the organizations and individuals involved in the project may have no insight on how safety culture relates to nuclear power plants. Companies that work in the conventional industry typically associate safety with occupational safety issues, not with nuclear safety. Further, it may be unclear how the construction phase affects nuclear safety of an operating plant. When workers are asked to perform their work differently than previously (e.g., in conventional construction sites), explanation has to be given. For example, structures, systems and components may have different functions during emergency that exceed or differ from their quality requirements during normal operation. The strict quality requirements and use of certain methods and procedures, documentation requirements, etc., may seem unimportant if

  17. Thermal condition of open KBS.3H tunnel

    International Nuclear Information System (INIS)

    Ikonen, Kari

    2008-12-01

    This report contains the temperature calculations of open KBS-3H type spent nuclear fuel repository, where the fuel canisters are disposed at horizontal position in horizontal tunnels according to the preliminary SKB (Swedish Nuclear Fuel and Waste Management Co) and Posiva plan. The objective of the study is to simulate the operation phase atmospheric conditions in open horizontal tunnels, where the KBS-3H type canister containers and distance blocks are installed. The analyses concern BWR type canisters. The analyses were made as heat conduction problem by taking into account radiation over gaps. A perforated steel plate surrounds a canister and bentonite. Heat transfer through a perforated plate and surrounding air gaps is a complicated three-dimensional heat transfer problem. To simplify the analysis, the gaps around a container and a distance block were taken into account by describing them by a homogenous layer having effective thermal properties. Convection due to natural circulation of humid air in horizontal gaps between the container and rock was not considered. Convection could reduce the temperature variation in the gap. On the other hand, the perforated steel plate has good conductivity and transfers quite well heat in horizontal gaps. Since the actual temperatures of disposal canisters depend in a complicated way on considered time and position, two extreme cases were studied to make the analyses easier. In the first extreme case an infinite queue of canisters are disposed simultaneously. This case overestimates temperatures, since the actual number of canisters is finite and they are not disposed simultaneously. In other extreme case only the first single canister and the first distance block are disposed. This case underestimates temperatures, since the actual number of canisters is greater than one and the canisters heat each other in later phase. The analysis showed that temperatures differ only a little from each other in the two extreme cases

  18. Thermal condition of open KBS.3H tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, Kari (VTT Processes (Finland))

    2008-12-15

    This report contains the temperature calculations of open KBS-3H type spent nuclear fuel repository, where the fuel canisters are disposed at horizontal position in horizontal tunnels according to the preliminary SKB (Swedish Nuclear Fuel and Waste Management Co) and Posiva plan. The objective of the study is to simulate the operation phase atmospheric conditions in open horizontal tunnels, where the KBS-3H type canister containers and distance blocks are installed. The analyses concern BWR type canisters. The analyses were made as heat conduction problem by taking into account radiation over gaps. A perforated steel plate surrounds a canister and bentonite. Heat transfer through a perforated plate and surrounding air gaps is a complicated three-dimensional heat transfer problem. To simplify the analysis, the gaps around a container and a distance block were taken into account by describing them by a homogenous layer having effective thermal properties. Convection due to natural circulation of humid air in horizontal gaps between the container and rock was not considered. Convection could reduce the temperature variation in the gap. On the other hand, the perforated steel plate has good conductivity and transfers quite well heat in horizontal gaps. Since the actual temperatures of disposal canisters depend in a complicated way on considered time and position, two extreme cases were studied to make the analyses easier. In the first extreme case an infinite queue of canisters are disposed simultaneously. This case overestimates temperatures, since the actual number of canisters is finite and they are not disposed simultaneously. In other extreme case only the first single canister and the first distance block are disposed. This case underestimates temperatures, since the actual number of canisters is greater than one and the canisters heat each other in later phase. The analysis showed that temperatures differ only a little from each other in the two extreme cases

  19. SNF fuel retrieval sub project safety analysis document

    International Nuclear Information System (INIS)

    BERGMANN, D.W.

    1999-01-01

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed

  20. SNF fuel retrieval sub project safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  1. Safety equipment list for the 241-SY-101 RAPID mitigation project

    Energy Technology Data Exchange (ETDEWEB)

    MORRIS, K.L.

    1999-06-29

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein.

  2. Safety equipment list for the 241-SY-101 RAPID mitigation project

    International Nuclear Information System (INIS)

    Morris, K.L.

    1999-01-01

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein

  3. Fuel and canister process report for the safety assessment SR-Can

    International Nuclear Information System (INIS)

    Werme, Lars

    2006-10-01

    This report documents fuel and canister processes identified as relevant to the long-term safety of a KBS-3 repository. It forms an important part of the reporting of the safety assessment SR-Can. The detailed assessment methodology, including the role of the process report in the assessment, is described in the SR-Can Main report. The report is written by, and for, experts in the relevant scientific fields. It should though be possible for a generalist in the area of long-term safety assessments of geologic nuclear waste repositories to comprehend the contents of the report. The report is an important part of the documentation of the SR-Can project and an essential reference within the project, providing a scientifically motivated plan for the handling of geosphere processes. It is, furthermore, foreseen that the report will be essential for reviewers scrutinising the handling of geosphere issues in the SR-Can assessment. Several types of fuel will be emplaced in the repository. For the reference case with 40 years of reactor operation, the fuel quantity from boiling water reactors, BWR fuel, is estimated at 7,000 tonnes, while the quantity from pressurized water reactors, PWR fuel, is estimated at about 2,300 tonnes. In addition, 23 tonnes of mixed-oxide fuel (MOX) fuel of German origin from BWR and PWR reactors and 20 tonnes of fuel from the decommissioned heavy water reactor in Aagesta will be disposed of. To allow for future changes in the Swedish nuclear programme, the safety assessment assumes a total of 6,000 canister corresponding to 12,000 tonnes of fuel

  4. Fuel and canister process report for the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Werme, Lars (ed.)

    2006-10-15

    This report documents fuel and canister processes identified as relevant to the long-term safety of a KBS-3 repository. It forms an important part of the reporting of the safety assessment SR-Can. The detailed assessment methodology, including the role of the process report in the assessment, is described in the SR-Can Main report. The report is written by, and for, experts in the relevant scientific fields. It should though be possible for a generalist in the area of long-term safety assessments of geologic nuclear waste repositories to comprehend the contents of the report. The report is an important part of the documentation of the SR-Can project and an essential reference within the project, providing a scientifically motivated plan for the handling of geosphere processes. It is, furthermore, foreseen that the report will be essential for reviewers scrutinising the handling of geosphere issues in the SR-Can assessment. Several types of fuel will be emplaced in the repository. For the reference case with 40 years of reactor operation, the fuel quantity from boiling water reactors, BWR fuel, is estimated at 7,000 tonnes, while the quantity from pressurized water reactors, PWR fuel, is estimated at about 2,300 tonnes. In addition, 23 tonnes of mixed-oxide fuel (MOX) fuel of German origin from BWR and PWR reactors and 20 tonnes of fuel from the decommissioned heavy water reactor in Aagesta will be disposed of. To allow for future changes in the Swedish nuclear programme, the safety assessment assumes a total of 6,000 canister corresponding to 12,000 tonnes of fuel.

  5. Safety Culture Enhancement Project. Final Report. A Field Study on Approaches to Enhancement of Safety Culture

    International Nuclear Information System (INIS)

    Lowe, Andrew; Hayward, Brent

    2006-08-01

    This report documents a study with the objective of enhancing safety culture in the Swedish nuclear power industry. A primary objective of this study was to ensure that the latest thinking on human factors principles was being recognised and applied by nuclear power operators as a means of ensuring optimal safety performance. The initial phase of the project was conducted as a pilot study, involving the senior management group at one Swedish nuclear power-producing site. The pilot study enabled the project methodology to be validated after which it was repeated at other Swedish nuclear power industry sites, providing a broad-ranging analysis of opportunities across the industry to enhance safety culture. The introduction to this report contains an overview of safety culture, explains the background to the project and sets out the project rationale and objectives. The methodology used for understanding and analysing the important safety culture issues at each nuclear power site is then described. This section begins with a summary of the processes used in the information gathering and data analysis stage. The six components of the Management Workshops conducted at each site are then described. These workshops used a series of presentations, interactive events and group exercises to: (a) provide feedback to site managers on the safety culture and safety leadership issues identified at their site, and (b) stimulate further safety thinking and provide 'take-away' information and leadership strategies that could be applied to promote safety culture improvements. Section 3, project Findings, contains the main observations and output from the project. These include: - a brief overview of aspects of the local industry operating context that impinge on safety culture; - a summary of strengths or positive attributes observed within the safety culture of the Swedish nuclear industry; - a set of identified opportunities for further improvement; - the aggregated results of the

  6. Nuclear Safety Project. Annual report 1986

    International Nuclear Information System (INIS)

    1987-09-01

    The annual report 1986 is a detailed description of work within the Nuclear Safety Project performed in 1986 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes individual research activities on dynamic loads and strains of reactor components under accident conditions, fuel behaviour under accident conditions, investigation and control of LWR core-meltdown accidents, improvement of fission product retention and reduction of radiation exposure, and on behaviour, impact and removal of released pollutants. (DG)

  7. 25 CFR 170.144 - What are eligible highway safety projects?

    Science.gov (United States)

    2010-04-01

    ... RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions... management system; (g) Education and outreach highway safety programs, such as use of child safety seats... 25 Indians 1 2010-04-01 2010-04-01 false What are eligible highway safety projects? 170.144...

  8. Annual colloquium 1976 of the project nuclear safety

    International Nuclear Information System (INIS)

    1976-11-01

    The present report gives the full text of the nine papers read during the annual colloquium 1976 of the Project Nuclear Safety at Karlsruhe Nuclear Research Centre, in which the main activities and findings of the project in 1976 are contained. (RW) [de

  9. Case study: the Argentina Road Safety Project: lessons learned for the decade of action for road safety, 2011-2020.

    Science.gov (United States)

    Raffo, Veronica; Bliss, Tony; Shotten, Marc; Sleet, David; Blanchard, Claire

    2013-12-01

    This case study of the Argentina Road Safety Project demonstrates how the application of World Bank road safety project guidelines focused on institution building can accelerate knowledge transfer, scale up investment and improve the focus on results. The case study highlights road safety as a development priority and outlines World Bank initiatives addressing the implementation of the World Report on Road Traffic Injury's recommendations and the subsequent launch of the Decade of Action for Road Safety, from 2011-2020. The case study emphasizes the vital role played by the lead agency in ensuring sustainable road safety improvements and promoting the shift to a 'Safe System' approach, which necessitated the strengthening of all elements of the road safety management system. It summarizes road safety performance and institutional initiatives in Argentina leading up to the preparation and implementation of the project. We describe the project's development objectives, financing arrangements, specific components and investment staging. Finally, we discuss its innovative features and lessons learned, and present a set of supplementary guidelines, both to assist multilateral development banks and their clients with future road safety initiatives, and to encourage better linkages between the health and transportation sectors supporting them.

  10. Expediting Clinician Adoption of Safety Practices: The UCSF Venous Access Patient Safety Interdisciplinary Education Project

    National Research Council Canada - National Science Library

    Donaldson, Nancy E; Plank, Rosemary K; Williamson, Ann; Pearl, Jeffrey; Kellogg, Jerry; Ryder, Marcia

    2005-01-01

    ...) Venous Access Device (VAD) Patient Safety Interdisciplinary Education Project was to develop a 30-hour/one clinical academic unit VAD patient safety course with the aim of expediting clinician adoption of critical concepts...

  11. Software qualification for digital safety system in KNICS project

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Lee, Dong-Young; Choi, Jong-Gyun

    2012-01-01

    In order to achieve technical self-reliance in the area of nuclear instrumentation and control, the Korea Nuclear Instrumentation and Control System (KNICS) project had been running for seven years from 2001. The safety-grade Programmable Logic Controller (PLC) and the digital safety system were developed by KNICS project. All the software of the PLC and digital safety system were developed and verified following the software development life cycle Verification and Validation (V and V) procedure. The main activities of the V and V process are preparation of software planning documentations, verification of the Software Requirement Specification (SRS), Software Design Specification (SDS) and codes, and a testing of the software components, the integrated software, and the integrated system. In addition, a software safety analysis and a software configuration management are included in the activities. For the software safety analysis at the SRS and SDS phases, the software Hazard Operability (HAZOP) was performed and then the software fault tree analysis was applied. The software fault tree analysis was applied to a part of software module with some critical defects identified by the software HAZOP in SDS phase. The software configuration management was performed using the in-house tool developed in the KNICS project. (author)

  12. A series of student design projects for improving and modernizing safety helmets

    NARCIS (Netherlands)

    Beurden, van K.M.M. (Karin); Boer, de J. (Johannes); Stilma, M. (Margot); Teeuw, W.B. (Wouter)

    2014-01-01

    The Saxion Research Centre for Design and Technology employs many students during research projects. This paper discusses a series of student design projects on safety helmets in the Safety@Work project. At construction sites workers are required to wear personal protective equipment during their

  13. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  14. Swelling of the buffer of KBS-3V deposition hole

    International Nuclear Information System (INIS)

    Lempinen, A.

    2006-12-01

    At the time of the installation of spent nuclear fuel canister in the KBS-3V deposition hole, empty space is left around bentonite buffer for technical reasons. The gap between the buffer and the canister is about 10 mm, and the gap between the buffer and the rock is 30 to 35 mm. In this study, the swelling of the buffer to fill the gaps was simulated, when the gaps are initially filled with water and no external water is available. The model used here is a thermodynamical model for swelling clay, with parameters determined for bentonite. The simulations presented here were performed with Freefem++ software, which is a finite element application for partial differential equations. These equations come from the material model. The simulation results show that the swelling fills the outer gaps in few years, but no significant swelling pressure is generated. For swelling pressure, external water supply is required. (orig.)

  15. Nuclear safety research project. Annual report 1995

    International Nuclear Information System (INIS)

    Hueper, R.

    1996-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1995 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1996. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  16. Comparison between the KBS-3 method and the deep borehole for final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Grundfelt, Bertil

    2010-09-01

    In this report a comparison is made between disposal of spent nuclear fuel according to the KBS-3 method with disposal in very deep boreholes. The objective has been to make a broad comparison between the two methods, and by doing so to pinpoint factors that distinguish them from each other. The ambition has been to make an as fair comparison as possible despite that the quality of the data of relevance is very different between the methods

  17. Radiation safety at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    1997-01-01

    This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable

  18. System Safety Program Plan for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boos, K.A.

    1996-01-01

    This System Safety Program Plan (SSPP) outlines the safety analysis strategy for project W-314, ''Tank Farm Restoration and Safe Operations.'' Project W-314 will provide capital improvements to Hanford's existing Tank Farm facilities, with particular emphasis on infrastructure systems supporting safe operation of the double-shell activities related to the project's conceptual Design Phase, but is planned to be updated and maintained as a ''living document'' throughout the life of the project to reflect the current safety analysis planning for the Tank Farm Restoration and Safe Operations upgrades. This approved W-314 SSPP provides the basis for preparation/approval of all safety analysis documentation needed to support the project

  19. Main benefits from 30 years of joint projects in nuclear safety

    International Nuclear Information System (INIS)

    Thadani, Ashok; Teschendorff, Victor; Vitanza, Carlo; Hrehor, Miroslav

    2012-01-01

    One of the major achievements of the OECD Nuclear Energy Agency (NEA) is the knowledge it has helped to generate through the organisation of joint international research projects. Such projects, primarily in the areas of nuclear safety and radioactive waste management, enable interested countries, on a cost-sharing basis, to pursue research or the sharing of data with respect to particular areas or issues. Over the years, more than 30 joint projects have been conducted with wide participation of member countries. The purpose of this report is to describe the achievements of the OECD/NEA joint projects on nuclear safety research that have been carried out over the past three decades, with a particular focus on thermal-hydraulics, fuel behaviour and severe accidents. It shows that the resolution of specific safety issues in these areas has greatly benefited from the joint projects' activities and results. It also highlights the added value of international co-operation for maintaining unique experimental infrastructure, preserving skills and generating new knowledge

  20. Radiation safety for decommissioning projects

    International Nuclear Information System (INIS)

    Ross, A.C.

    1999-01-01

    Decommissioning of redundant nuclear facilities is a growth area in the UK at the present time. NUKEM Nuclear Limited is a leading-edge nuclear decommissioning and waste management contractor (with its own in-house health physics and safety department), working for a variety of clients throughout the UK nuclear industry. NUKEM Nuclear is part of the prestigious, international NUKEM group, a world-class organization specializing in nuclear engineering and utilities technologies. NUKEM Nuclear is involved in a number of large, complex decommissioning projects, both in its own right and as part of consortia. This paper explores the challenges presented by such projects and the interfaces of contractor, client and subcontractors from the point of view of a radiation protection adviser. (author)

  1. A root cause analysis project in a medication safety course.

    Science.gov (United States)

    Schafer, Jason J

    2012-08-10

    To develop, implement, and evaluate team-based root cause analysis projects as part of a required medication safety course for second-year pharmacy students. Lectures, in-class activities, and out-of-class reading assignments were used to develop students' medication safety skills and introduce them to the culture of medication safety. Students applied these skills within teams by evaluating cases of medication errors using root cause analyses. Teams also developed error prevention strategies and formally presented their findings. Student performance was assessed using a medication errors evaluation rubric. Of the 211 students who completed the course, the majority performed well on root cause analysis assignments and rated them favorably on course evaluations. Medication error evaluation and prevention was successfully introduced in a medication safety course using team-based root cause analysis projects.

  2. International Expert Review of Sr-Can: Safety Assessment Methodology - External review contribution in support of SSI's and SKI's review of SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Budhi (Center for Nuclear Waste Regulatory Analyses, Southwest Research Inst., San Antonio, TX (US)); Egan, Michael (Quintessa Limited, Henley-on-Thames (GB)); Roehlig, Klaus-Juergen (Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (DE)); Chapman, Neil (Independent Consultant (XX)); Wilmot, Roger (Galson Sciences Limited, Oakham (GB))

    2008-03-15

    In 2006, SKB published a safety assessment (SR-Can) as part of its work to support a licence application for the construction of a final repository for spent nuclear fuel. The purposes of the SR-Can project were stated in the main project report to be: 1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant. 2. To provide feedback to design development, to SKB's research and development (R and D) programme, to further site investigations and to future safety assessments. 3. To foster a dialogue with the authorities that oversee SKB's activities, i.e. the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI, regarding interpretation of applicable regulations, as a preparation for the SR-Site project. To help inform their review of SKB's proposed approach to development of the longterm safety case, the authorities appointed three international expert review teams to carry out a review of SKB's SR-Can safety assessment report. Comments from one of these teams - the Safety Assessment Methodology (SAM) review team - are presented in this document. The SAM review team's scope of work included an examination of SKB's documentation of the assessment ('Long-term safety for KBS-3 Repositories at Forsmark and Laxemar - a first evaluation' and several supporting reports) and hearings with SKB staff and contractors, held in March 2007. As directed by SKI and SSI, the SAM review team focused on methodological aspects and sought to determine whether SKB's proposed safety assessment methodology is likely to be suitable for use in the future SR-Site and to assess its consistency with the Swedish regulatory framework. No specific evaluation of long-term safety or site acceptability was undertaken by any of the review teams. SKI and SSI's Terms of Reference for the SAM

  3. Substantiation of the safety in the technical project of Belene NPP

    International Nuclear Information System (INIS)

    Boyadzhiev, A.

    1990-01-01

    The chapter contains an evaluation of the safety of Belene NPP project, based on an experts study of the corresponding volume of the Technical Project documentation of the main contractor and also on other related documents. The authors state that most of the remarks are constitutive, part of them requiring additional information or research. The general explicit conclusion is that the materials on the safety substantiation provided in the project are insufficient for making final statements on the safety of the NPP and there is a need for a detailed analysis and expertise. There are 12 topical conclusion paragraphs and each of them comprises a number of remarks. Among the remarks there are some related to the reactivity coefficient values in certain modes of operation, the problem of the mechanical safety and control system efficiency, the unacceptable operation at nominal power in case of stringent safety rules enforcement, the insufficiency of the PSA, the automatic control systems and the software codes not standing up to the contemporary requirements. (R.Ts.)

  4. Developing an action-based health and safety training project in southern China.

    Science.gov (United States)

    Szudy, Betty; O'Rourke, Dara; Brown, Garrett D

    2003-01-01

    A project brought together international footwear manufacturers, labor rights groups, local contract factories, and occupational health professionals to strengthen factory health and safety programs in southern China. Steps involved in the two-year project, including needs assessment, interviews and focus groups with workers and supervisors; design and development of a participatory workshop; development of plant-wide health and safety committees in three footwear factories; and evaluation project impact, are discussed. The project significantly increased occupational safety and health knowledge, and hazards in the factories were identified and corrected. Successes and challenges faced by three functioning worker-management health and safety committees are discussed. Key elements to create effective programs with meaningful participation by workers include: 1) developing clear guidelines that enable multi-stakeholder groups to collaborate; 2) obtaining top-level management support; 3) building workers' knowledge and capacity to fully participate; 4) involving local labor rights groups and occupational professionals in support and technical assistance; and 5) connecting project goals to larger issues within a country and the global economy.

  5. Interim process report for the safety assessment SR-Can

    International Nuclear Information System (INIS)

    Sellin, Patrick

    2004-08-01

    This report is a documentation of buffer processes identified as relevant to the long-term safety of a KBS-3 repository. The report is part of the interim reporting of the safety assessment SR-Can, see further the Interim main report. The final SR-Can reporting will support SKB's application to build an Encapsulation plant for spent nuclear fuel and is to be produced in 2006. The purpose of this report is to document the scientific knowledge of the processes to a level required for an adequate treatment in the safety assessment. The documentation is thus from a scientific point of not exhaustive since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of an assessment. The purpose is further to determine the handling of each process in the safety assessment and to demonstrate how uncertainties are taken care of, given the suggested handling. The process documentation in the SR 97 version of the Process report is a starting point for this SR-Can interim version. As further described in the Interim main report, the list of relevant processes has been reviewed and slightly extended by comparison to other databases. Furthermore, the backfill has been included as a system part of its own, rather than being described together with the buffer as in SR 97. Apart from giving an interim account of the documentation and handling of buffer processes in SR-Can, this report is meant to serve as a template for the forthcoming documentation of processes occurring in other parts of the repository system. A complete list of processes can be found in the Interim FEP report for the safety assessment SR-Can. All material presented in this document is preliminary in nature and will possibly be updated as the SR-Can project progresses

  6. Interim process report for the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Sellin, Patrick (ed.)

    2004-08-01

    This report is a documentation of buffer processes identified as relevant to the long-term safety of a KBS-3 repository. The report is part of the interim reporting of the safety assessment SR-Can, see further the Interim main report. The final SR-Can reporting will support SKB's application to build an Encapsulation plant for spent nuclear fuel and is to be produced in 2006. The purpose of this report is to document the scientific knowledge of the processes to a level required for an adequate treatment in the safety assessment. The documentation is thus from a scientific point of not exhaustive since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of an assessment. The purpose is further to determine the handling of each process in the safety assessment and to demonstrate how uncertainties are taken care of, given the suggested handling. The process documentation in the SR 97 version of the Process report is a starting point for this SR-Can interim version. As further described in the Interim main report, the list of relevant processes has been reviewed and slightly extended by comparison to other databases. Furthermore, the backfill has been included as a system part of its own, rather than being described together with the buffer as in SR 97. Apart from giving an interim account of the documentation and handling of buffer processes in SR-Can, this report is meant to serve as a template for the forthcoming documentation of processes occurring in other parts of the repository system. A complete list of processes can be found in the Interim FEP report for the safety assessment SR-Can. All material presented in this document is preliminary in nature and will possibly be updated as the SR-Can project progresses.

  7. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  8. Gas reactor in-pile safety test project (GRIST-2)

    International Nuclear Information System (INIS)

    Kelley, A.P. Jr.; Arbtin, E.; St Pierre, R.

    1979-01-01

    Although out-of-pile tests may be expected to confirm individual phenomena models in core disruptive accident analysis codes, only in-pile tests are capable of verifying the extremely complex integrated model effects within the appropriate time phase for these accidents. For this reason, the GRIST-2 project, the purpose of which is to design and construct an in-pile helium loop capable of transient safety testing in the TREAT facility in Idaho, forms a cornerstone of the US GCFR safety program. The project organization, experiment program, facility, helium system design, and schedule which have been selected to meet the objectives are described

  9. Safety cases for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Kozak, M.W.; Torres-Vidal, C.; Kelly, E.; Guskov, A.; Blerk, J. van

    2002-01-01

    A Co-ordinated Research Project (CRP) has recently been completed on the Improvement of Safety Assessment Methodologies for Near-Surface Radioactive Waste Disposal Facilities (ISAM). A major aspect of the project was the use of safety cases for the practical application of safety assessment. An overview of the ISAM safety cases is given in this paper. (author)

  10. Implementing national nuclear safety plan at the preliminary stage of nuclear power project development

    International Nuclear Information System (INIS)

    Xue Yabin; Cui Shaozhang; Pan Fengguo; Zhang Lizhen; Shi Yonggang

    2014-01-01

    This study discusses the importance of nuclear power project design and engineering methods at the preliminary stage of its development on nuclear power plant's operational safety from the professional view. Specifically, we share our understanding of national nuclear safety plan's requirement on new reactor accident probability, technology, site selection, as well as building and improving nuclear safety culture and strengthening public participation, with a focus on plan's implications on preliminary stage of nuclear power project development. Last, we introduce China Huaneng Group's work on nuclear power project preliminary development and the experience accumulated during the process. By analyzing the siting philosophy of nuclear power plant and the necessity of building nuclear safety culture at the preliminary stage of nuclear power project development, this study explicates how to fully implement the nuclear safety plan's requirements at the preliminary stage of nuclear power project development. (authors)

  11. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    International Nuclear Information System (INIS)

    Duckwitz, Noel

    2011-01-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets,' safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, 'Facility Safety,' and the expectations of DOE-STD-1189-2008, 'Integration of Safety into the Design Process,' provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  12. Models used in the SFR1 SAR-08 and KBS-3H safety assessments for calculation of C-14 doses

    International Nuclear Information System (INIS)

    Avila, R.; Proehl, G.

    2008-03-01

    This report presents a set of simplified models for assessment of human exposures resulting from potential underground releases of C-14. These models were used in the SFR1 SAR08 and KBS-3H safety assessments. The proposed models can be used to assess continuous, as well as pulse-like C-14 releases, to various types of biosphere objects: forest ecosystems, agricultural lands, sea basins and lakes. It is also possible to make assessments of exposures resulting from the use of contaminated fresh waters, for example from an impacted well, for irrigation of vegetables. Models are also proposed for scenarios where lakes and sea basins are transformed into terrestrial objects due to land rise, filling of lakes and other natural or human induced processes. The exposure pathways considered in dose calculations with the models are: ingestion of contaminated food and water for both terrestrial and aquatic ecosystems, inhalation of contaminated air for terrestrial ecosystems. The exposure by external irradiation is not considered, as C-14 is a pure low energy beta emitter. The report provides an overview of the behaviour of C-14 in the environment, including an outline of the conceptual assumptions implicit in the proposed models. The proposed models are based on the so-called specific activity approach, which has been recommended by the UNSCEAR and the IAEA for assessment of doses resulting from C-14 releases to the environment from nuclear installations. The equations for estimation of the C-14 specific activities in environmental compartments have been derived from a combination of several realistic and conservative assumptions, which are documented and justified in the report. The models can be used in safety assessments of geological repositories of radioactive waste, to carry out cautious, but still not over conservative dose estimations, which can be compared with regulatory dose constrains. Comparative studies with the models indicate that the worse case situations

  13. Cloud/Fog Computing System Architecture and Key Technologies for South-North Water Transfer Project Safety

    Directory of Open Access Journals (Sweden)

    Yaoling Fan

    2018-01-01

    Full Text Available In view of the real-time and distributed features of Internet of Things (IoT safety system in water conservancy engineering, this study proposed a new safety system architecture for water conservancy engineering based on cloud/fog computing and put forward a method of data reliability detection for the false alarm caused by false abnormal data from the bottom sensors. Designed for the South-North Water Transfer Project (SNWTP, the architecture integrated project safety, water quality safety, and human safety. Using IoT devices, fog computing layer was constructed between cloud server and safety detection devices in water conservancy projects. Technologies such as real-time sensing, intelligent processing, and information interconnection were developed. Therefore, accurate forecasting, accurate positioning, and efficient management were implemented as required by safety prevention of the SNWTP, and safety protection of water conservancy projects was effectively improved, and intelligential water conservancy engineering was developed.

  14. Climate and climate-related issues for the safety assessment SR-Site

    International Nuclear Information System (INIS)

    2010-12-01

    The purpose of this report is to document current scientific knowledge on climate and climate-related conditions, relevant to the long-term safety of a KBS-3 repository, to a level required for an adequate treatment in the safety assessment SR-Site. The report also presents a number of dedicated studies on climate and selected climate-related processes of relevance for the assessment of long term repository safety. Based on this information, the report presents a number of possible future climate developments for Forsmark, the site selected for building a repository for spent nuclear fuel in Sweden (Figure 1-1). The presented climate developments are used as basis for the selection and analysis of SR-Site safety assessment scenarios in the SR-Site main report /SKB 2011/. The present report is based on research conducted and published by SKB as well as on research reported in the general scientific literature

  15. Climate and climate-related issues for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The purpose of this report is to document current scientific knowledge on climate and climate-related conditions, relevant to the long-term safety of a KBS-3 repository, to a level required for an adequate treatment in the safety assessment SR-Site. The report also presents a number of dedicated studies on climate and selected climate-related processes of relevance for the assessment of long term repository safety. Based on this information, the report presents a number of possible future climate developments for Forsmark, the site selected for building a repository for spent nuclear fuel in Sweden (Figure 1-1). The presented climate developments are used as basis for the selection and analysis of SR-Site safety assessment scenarios in the SR-Site main report /SKB 2011/. The present report is based on research conducted and published by SKB as well as on research reported in the general scientific literature

  16. Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.L.

    2000-01-10

    The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels.

  17. Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan

    International Nuclear Information System (INIS)

    MITCHELL, R.L.

    2000-01-01

    The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels

  18. Safety assessment and regulatory strategy for NPP I and C modernization projects

    International Nuclear Information System (INIS)

    Manners, S.; Blocquel, Ch.

    1999-10-01

    IPSN is the technical support for the French nuclear safety authority (DSIN), but also acts independently. Through our participation at this IAEA meeting we wish to further our appreciation of the industry position for I and C modernization projects. We will present some of the concerns of the safety assessor and safety authority for such projects. We hope to share our experiences and views concerning current strategies for I and C modernization and licensing from. In our experience with NPP I and C programmes, the need for modification is most often not directly linked to safety. For our safety assessment we have to identify clearly and, as far as possible, categorize the safety relevance of the specified modifications and all safety impact in its implementation. Modernization can be simply for reasons of replacement of obsolete existing equipment or it can be linked to functional evolutions; safety functions may be directly or indirectly affected. The state of the art I and C solutions proposed by today's modernization programs have many benefits, but also pose a certain number of difficulties for the safety demonstration. On the implementation side, the safety assessment for a modernization project has to take into consideration specific issues compared with that for new plant. These include interface and compatibility with the existing installation, issues relating to 'on line' installation and commissioning, as well as operational issues concerning the changeover and trail periods. A further subject for discussion concerns how our regulatory requirements apply to modernization. We must as a minima comply with the requirements of the period. To what measure must we apply current or future (under development or for future reactor designs) standards? How can we tie in with requirements and legislation for new projects? Do we make a special case for back-fits? (authors)

  19. Safety assessment and regulatory strategy for NPP I and C modernization projects

    Energy Technology Data Exchange (ETDEWEB)

    Manners, S.; Blocquel, Ch

    1999-10-01

    IPSN is the technical support for the French nuclear safety authority (DSIN), but also acts independently. Through our participation at this IAEA meeting we wish to further our appreciation of the industry position for I and C modernization projects. We will present some of the concerns of the safety assessor and safety authority for such projects. We hope to share our experiences and views concerning current strategies for I and C modernization and licensing from. In our experience with NPP I and C programmes, the need for modification is most often not directly linked to safety. For our safety assessment we have to identify clearly and, as far as possible, categorize the safety relevance of the specified modifications and all safety impact in its implementation. Modernization can be simply for reasons of replacement of obsolete existing equipment or it can be linked to functional evolutions; safety functions may be directly or indirectly affected. The state of the art I and C solutions proposed by today's modernization programs have many benefits, but also pose a certain number of difficulties for the safety demonstration. On the implementation side, the safety assessment for a modernization project has to take into consideration specific issues compared with that for new plant. These include interface and compatibility with the existing installation, issues relating to 'on line' installation and commissioning, as well as operational issues concerning the changeover and trail periods. A further subject for discussion concerns how our regulatory requirements apply to modernization. We must as a minima comply with the requirements of the period. To what measure must we apply current or future (under development or for future reactor designs) standards? How can we tie in with requirements and legislation for new projects? Do we make a special case for back-fits? (authors)

  20. Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects.

    Science.gov (United States)

    Aminbakhsh, Saman; Gunduz, Murat; Sonmez, Rifat

    2013-09-01

    The inherent and unique risks on construction projects quite often present key challenges to contractors. Health and safety risks are among the most significant risks in construction projects since the construction industry is characterized by a relatively high injury and death rate compared to other industries. In construction project management, safety risk assessment is an important step toward identifying potential hazards and evaluating the risks associated with the hazards. Adequate prioritization of safety risks during risk assessment is crucial for planning, budgeting, and management of safety related risks. In this paper, a safety risk assessment framework is presented based on the theory of cost of safety (COS) model and the analytic hierarchy process (AHP). The main contribution of the proposed framework is that it presents a robust method for prioritization of safety risks in construction projects to create a rational budget and to set realistic goals without compromising safety. The framework provides a decision tool for the decision makers to determine the adequate accident/injury prevention investments while considering the funding limits. The proposed safety risk framework is illustrated using a real-life construction project and the advantages and limitations of the framework are discussed. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  1. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    International Nuclear Information System (INIS)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment

  2. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  3. SANDERLING Final Report: Parts A and B, A Research Study into KBS for Command and Control in Naval and TMD Applications

    Science.gov (United States)

    1990-04-01

    fashion (from both the aspects of finance and effort). Huge amounts of effort have been invested in developing formal and rigorous verification and...validation methods for C2 systems employing conventional software techniques. However, little investment has been made for KBS techniques as most of...panning and scheduling) • Bath University ( fundemental research on novel methods of optimisation) - Prof. Silverman. Cambridge University (recovery

  4. Nordic projects in the field of nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1989-07-01

    This report describes the work in 1988 within the Nordic program concerning nuclear safety 1985-1989. The report has the form of a handbook meant for those in Scandinavia who are involeved in nuclear safety, and it is based on statements from the constituent subject fields of the program. The first chapter is a short summary of the work and results over the year. In the next chapter an account is given of the ongoing projects within each of the subject fields. An economic survey of the entire program and a list of the reports and articles published in 1988 is included in the publicaltion as well. Chapter 5 is a complete list of adresses comprising participants, project managers, program coordinators and members of the advirosy group. (SH)

  5. Nordic projects in the field of nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1988-05-01

    This report deseribes the work in 1987 within the Nordic program concerning nuclear safety 1985-1989. The report has the form of a handbook meant for those in Scandinavia who are involved in nuclear safety, and it is based on statements from the constituent subject fields of the program. The first chapter is a short summary of the work and results over the year. In the next chapter an account is given of the ongoing projects within each of the subject fields. An economic survey of the entire program and a list of the reports and articles published in 1987 is included in the publication as well. Chapter 5 is a complete list of adresses comprising participants, project managers, program coordinators and members of the advisory group. (SH) 74 refs

  6. Buffer and backfill process report for the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Sellin, Patrik (comp.)

    2006-09-15

    This document compiles information on processes in the buffer and deposition tunnel backfill relevant for long-term safety of a KBS-repository. It supports the safety assessment SR-Can, which is a preparatory step for a safety assessment that will support the licence application for a final repository in Sweden. The purpose of the process reports is to document the scientific knowledge of the processes to a level required for an adequate treatment of the processes in the safety assessment. The documentation is not exhaustive from a scientific point of view, since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of an assessment. However, it must be sufficiently detailed to motivate, by arguments founded on scientific understanding, the treatment of each process in the safety assessment. The purpose is further to determine how to handle each process in the safety assessment at an appropriate degree of detail, and to demonstrate how uncertainties are taken care of, given the suggested handling.

  7. Buffer and backfill process report for the safety assessment SR-Can

    International Nuclear Information System (INIS)

    Sellin, Patrik

    2006-09-01

    This document compiles information on processes in the buffer and deposition tunnel backfill relevant for long-term safety of a KBS-repository. It supports the safety assessment SR-Can, which is a preparatory step for a safety assessment that will support the licence application for a final repository in Sweden. The purpose of the process reports is to document the scientific knowledge of the processes to a level required for an adequate treatment of the processes in the safety assessment. The documentation is not exhaustive from a scientific point of view, since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of an assessment. However, it must be sufficiently detailed to motivate, by arguments founded on scientific understanding, the treatment of each process in the safety assessment. The purpose is further to determine how to handle each process in the safety assessment at an appropriate degree of detail, and to demonstrate how uncertainties are taken care of, given the suggested handling

  8. Aviation Safety Program: Weather Accident Prevention (WxAP) Project Overview and Status

    Science.gov (United States)

    Nadell, Shari-Beth

    2003-01-01

    This paper presents a project overview and status for the Weather Accident Prevention (WxAP) aviation safety program. The topics include: 1) Weather Accident Prevention Project Background/History; 2) Project Modifications; 3) Project Accomplishments; and 4) Project's Next Steps.

  9. Description of data-sources used in SafetyCube, Deliverable 3.1 of the H2020 project SafetyCube (Safety CaUsation, Benefits and Efficiency).

    NARCIS (Netherlands)

    Hagström, L. Thomson, R. Hermitte, T. Weijermars, W. Bos, N. Talbot, R. Thomas, P. Dupont, E. Martensen, H. Bauer, R. Hours, M. Høye, E. Jänsch, M. Murkovic, A. Niewöhner, W. Papadimitriou, E. Pérez, C. Phan, V. Usami, D. & Vázquez-de-Prada, J.

    2017-01-01

    Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project with the objective of developing an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select and implement the most appropriate

  10. Nuclear safety research project (PSF). 1999 annual report

    International Nuclear Information System (INIS)

    Muehl, B.

    2000-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report summarizes the R and D results of PSF during 1999. The research tasks cover three main topics: Light Water Reactor safety, innovative systems, and studies related to the transmutation of actinides. The importance of the Light Water Reactor safety, however, has decreased during the last year in favour of the transmutation of actinides. Numerous institutes of the research centre contribute to the PSF programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2000. (orig.) [de

  11. Transport fire safety engineering in the European Union - project TRANSFEU

    Directory of Open Access Journals (Sweden)

    Jolanta Maria RADZISZEWSKA-WOLIŃSKA

    2011-01-01

    Full Text Available Article presents European Research project (of FP7-SST-2008-RTD-1 for Surface transportation TRANSFEU. Projects undertakes to deliver both a reliable toxicity measurement methodology and a holistic fire safety approach for all kind of surface transport. It bases on a harmonized Fire Safety Engineering methodology which link passive fire security with active fire security mode. This all embracing system is the key to attain optimum design solutions in respect to fire safety objectives as an alternative to the prescriptive approach. It will help in the development of innovative solutions (design and products used for the building of the surface transport which will better respect the environment.In order to reach these objectives new toxicity measurement methodology and related classification of materials, new numerical fire simulation tools, fire test methodology (laboratory and full scale and a decisive tool to optimize or explore new design in accordance to the fire safety requirements will be developed.

  12. UMTRA project office federal employee occupational safety and health program plan

    International Nuclear Information System (INIS)

    1994-06-01

    This document establishes the Federal Employee Occupational Safety and Health (FEOSH) Program for the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office. This program will ensure compliance with applicable requirements of DOE Order 3790.1B and DOE Albuquerque Operations Office (AL) Order 3790.lA. FEOSH Program responsibilities delegated by the DOE-AL to the UMTRA Project Office by AL Order 3790.1A also are assigned. The UMTRA Project Office has developed the UMTRA Project Environmental, Safety, and Health (ES ampersand H) Plan (DOE, 1992), which establishes the basic programmatic ES ampersand H requirements for all participants on the UMTRA Project. The ES ampersand H plan is designed primarily to cover remedial action activities at UMTRA sites and defines the ES ampersand H responsibilities of both the UMTRA Project Office and its contractors. The UMTRA FEOSH Program described herein is a subset of the overall UMTRA ES ampersand H program and covers only federal employees working on the UMTRA Project

  13. The action of the project coordinator with respect to reactor safety

    International Nuclear Information System (INIS)

    Leclercq, Jacques

    1981-01-01

    Before describing the various actions of the project coordinator (EDF) entrusted with the building of nuclear power stations, with respect to reactor safety in France, the definition of reactor safety and the various participants are mentioned first. These participants are: the Government Departments and the Experts involved (the Department of Nuclear Safety of the 'Institut de Protection et de Surete Nucleaire' forming the first technical support) and the applicant, namely the EDF. The reactor safety actions of the project coordinator are defined as from the following components: 1 - The targets laid down with respect to safety, the final objective being the protection of workers and the public against the potential dangers of the installations, principally against radiation. 2 - The safety methodology at the design stage of the power station: 'barrier' method, defence method in depth at three levels, lines of assurance method, and probabilistic method. 3 - Safety actions at the construction stage within the context of an assurance of quality programe. 4 - Safety at the trials, commissioning and operating stage, with the backing of the 'Groupe Operationnel de Demarrage (G.O.D.)' and the 'Commission d'Essais sur Site (C.E.S.)'. An initial balance sheet of the reactor safety actions for the PWR units built by the EDF is presented [fr

  14. Project JADE. Geo scientific studies

    International Nuclear Information System (INIS)

    Munier, R.; Follin, S.; Rhen, I.; Gustafson, Gunnar; Pusch, R.

    2001-08-01

    In the present report an evaluation of the geological impact on various deposition methods is presented. The studied methods are KBS-3 V (vertical deposition), KBS-3 H (horizontal deposition) and MLH (medium long holes).The investigation has been subdivided into three separate studies concerning rock mechanics, hydrogeology and structural geology. These are included as appendices. Various methods have been used for the analyses for example DFN-models (Discrete Fracture Networks), DFN, FEM (Finite Element Method), BEM (Boundary Element Method), DEM (Discrete Element Method) and BayMar (Bayesian-Markov). The prerequisites used for these investigations are based on earlier investigations of the TBM tunnel at the Aespoe Hard Rock Laboratory. As a consequence thereof, the results presented here are specific to the locale but some conclusions of general character still can be made. In short the results of the investigations can be concluded as follows: If the rock mass exhibits a hydraulic anisotropy, the level of acceptance is strongly correlated to the direction of the deposition tunnels (applies to MLH and KBS-3 H). Differences between the methods concerning mechanical stability have been identified. The final choice of method will depend on the possibility to place the deposition tunnels in a favorable orientation. However, engineering can solve the problems associated to instability in the tunnels. KBS-3 (bored deposition tunnels) is recommended for rock masses in which the stress field has a moderate variation in magnitude and orientation. KBS-3 V (drilled and blasted deposition tunnels) and MLH are considered more robust and therefore recommended for rock masses in which the stress field has a large variation in magnitude or orientation. The impact of the fracture array differs for the studied methods. The level of acceptance differs but the differences are considered to be of no practical importance. For the studied rock mass (Aespoe), KBS-3 is recommended. MLH

  15. Annual report on reactor safety research projects. Reporting period 2011. Progress report

    International Nuclear Information System (INIS)

    2011-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  16. Annual report on reactor safety research projects. Reporting period 2014. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. lt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  17. Annual report on reactor safety research projects. Reporting period 2013. Progress report

    International Nuclear Information System (INIS)

    2013-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  18. Annual report on reactor safety research projects. Reporting period 2015. Progress report

    International Nuclear Information System (INIS)

    2015-01-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft tor Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are ·' prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. it has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  19. UMTRA Project: Environment, Safety, and Health Plan

    International Nuclear Information System (INIS)

    1995-02-01

    The US Department of Energy has prepared this UMTRA Project Environment, Safety, and Health (ES and H) Plan to establish the policy, implementing requirements, and guidance for the UMTRA Project. The requirements and guidance identified in this plan are designed to provide technical direction to UMTRA Project contractors to assist in the development and implementation of their ES and H plans and programs for UMTRA Project work activities. Specific requirements set forth in this UMTRA Project ES and H Plan are intended to provide uniformity to the UMTRA Project's ES and H programs for processing sites, disposal sites, and vicinity properties. In all cases, this UMTRA Project ES and H Plan is intended to be consistent with applicable standards and regulations and to provide guidance that is generic in nature and will allow for contractors' evaluation of site or contract-specific ES and H conditions. This plan specifies the basic ES and H requirements applicable to UMTRA Project ES and H programs and delineates responsibilities for carrying out this plan. DOE and contractor ES and H personnel are expected to exercise professional judgment and apply a graded approach when interpreting these guidelines, based on the risk of operations

  20. Spent Nuclear Fuel (SNF) Project Safety Basis Implementation Strategy

    International Nuclear Information System (INIS)

    TRAWINSKI, B.J.

    2000-01-01

    The objective of the Safety Basis Implementation is to ensure that implementation of activities is accomplished in order to support readiness to move spent fuel from K West Basin. Activities may be performed directly by the Safety Basis Implementation Team or they may be performed by other organizations and tracked by the Team. This strategy will focus on five key elements, (1) Administration of Safety Basis Implementation (general items), (2) Implementing documents, (3) Implementing equipment (including verification of operability), (4) Training, (5) SNF Project Technical Requirements (STRS) database system

  1. The use of living PSA in safety management, a procedure developed in the nordic project ''safety evaluation, NKS/SIK-1''

    International Nuclear Information System (INIS)

    Johanson, G.; Holmberg, J.

    1994-01-01

    The essential objective with the development of a living PSA concept is to bring the use of the plant specific PSA model out to the daily safety work to allow operational risk experience feedback and to increase the risk awareness of the intended users. This paper will present results of the Nordic project ''Safety Evaluation, NKS/SIK-1''. The SIK-1 project has defined and demonstrated the practical use of living PSA for safety evaluation and for identification of possible improvements in operational safety. Subjects discussed in this paper are dealing with the practical implementation and use of PSA to make proper safety related decisions and evaluation. (author). 24 refs, 1 fig., 1 tab

  2. Dissemination material template, Deliverable 2.2 of the H2020 project SafetyCube (Safety CaUsation, Benefits and Efficiency).

    NARCIS (Netherlands)

    Tros, M. & Houtenbos, M.

    2016-01-01

    Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project with the objective of developing an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select and implement the most appropriate

  3. Project W-030 safety class upgrade summary report

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    This document presents a summary of safety class criteria for the 241-AY/AZ Tank Farm primary ventilation system upgrade under Project W-030, and recommends acceptance of the system as constructed, based on a review of supporting documentation

  4. The spin project: safety and performance indicators in different time frames

    International Nuclear Information System (INIS)

    Storck, R.; Becker, D.A.

    2002-01-01

    Safety and performance indicators have been under discussion for many years in several countries and international organisations. If those indicators refer to the long term safety of the total disposal system, they are often called safety indicators. If they refer to the performance of subsystems or the total system from a more technical point of view, they are sometimes called performance indicators. The need for indicators other than dose rates derives e.g. from the long time frames involved in safety assessments of waste disposal systems and the increasing uncertainty in dose rate calculations over time due to uncertainty in evolution of the surface environment and of behaviour of man. Before introducing additional indicators into a safety case of a potential repository site, the applicability and usefulness of different indicators have to be investigated and evaluated. The systematic analysis and testing of safety and performance indicators for use in different time horizons after closure of the disposal facility is the task of the SPIN project. This is done by re-calculating four recent studies concerning repository projects in granite formations. (authors)

  5. Proceedings of the nuclear criticality technology safety project

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  6. Proceedings of the nuclear criticality technology safety project

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings

  7. The modification of main steam safety valves in Qinshan phase Ⅱ expansion project

    International Nuclear Information System (INIS)

    Chen Haiqiao

    2012-01-01

    The main steam safety valves of NPP steam system are second- class nuclear safety component. It used to limit the pressure of SG secondary side and main steam system via emitting steam into the environment. At present, the main steam safety valves have mechanical valves and assisted power valves. According to the experience of power plants at home and abroad, including Qinshan Phase Ⅱ unit 1/2 experience feedback, Qinshan Phase Ⅱ expansion project made modification on valve type, setting value and valve body. This paper introduce the characteristics of different safety valve types, the modification of main steam safety valves and the modification analysis on safety issues.security and impact on the other systems in Qinshan Phase Ⅱ expansion project. (author)

  8. KfK Nuclear Safety Project. First semiannual report 1985

    International Nuclear Information System (INIS)

    1985-11-01

    The semiannual progress report 1985/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1985 in the nuclear safety field by KfK institutes and departements and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics: work performed, results obtained and plans for future work. (orig./HP) [de

  9. Incorporation of occupational health and safety in cleaner production projects in South Africa

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2002-01-01

    The purpose of this research is to reveal ways in which occupational health and safety can be integrated in environmental cleaner production projects. Of particular interest are those cleaner production projects that are run by the Danish government's environmental assistance agency, Danced......, in South Africa.The study explores two main avenues of integration. First, integrating through better planning, focussing at the tools and procedures in use by Danced for project management -- integrating occupational health and safety into the project specification, so to speak.Second, integrating...... occupational health and safety into the environmental activities that take place at company level. Two ways of doing so are explored, the main distinction being company size. For large companies, integration of management systems may be attractive. For small companies, integration into a less formal network...

  10. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    A summary of the planning of transportation and plant design in the Swedish KBS project on management and disposal reprocessed radioactive waste. It describes a transportation system, a central storage facility for used fuel elements, a plant for intermediate storage and encapsulation and a final repository for the vitrified waste. Accounts are given for the reprocessing and vitrification. The safety of the entire system is discussed

  11. JRC/IE support activities to PHARE nuclear safety programmes. Dissemination of PHARE project results

    International Nuclear Information System (INIS)

    Ranguelova, V.; Pla, P.; Rieg, C.; Bieth, M.

    2005-01-01

    Nuclear safety in Europe is one of European Union's primary concerns, therefore the European Union decided to take a prominent role to help the New Independent States and countries of Central and Eastern Europe to ensure the safety of their nuclear reactors. The European Union TACIS and PHARE programmes in nuclear safety have been undertaken since 1990. The European Commission's Directorate General External Relations (EC DG RELEX) and, Directorate General Europe Aid Co-operation Office (EC DG AIDCO), are responsible for programming and management of implementation of TACIS projects. Directorate General Enlargement (EC DG ELARG) is responsible for programming PHARE programmes, but implementation of most projects has been decentralised since 1999 budget year to the Beneficiary countries. DG ELARG acts as backstopping for the relevant EC Delegations. In these activities, the TSSTP Unit at the JRC/IE in Petten, The Netherlands, is a technical and scientific adviser of DG RELEX and DG AIDCO and provides support to DG ELARG for very specific technical issues. Several PHARE projects aiming at improving nuclear safety have been successfully implemented for a number of plants from Central and Eastern Europe. In some cases major safety issues have been addressed by means of multi-country projects and results have been disseminated to the rest of the nuclear community. Although a lot of information has been exchanged at a bilateral level, further effort is needed to collect the project results in a systematic way and make them available by means of the internet. At present the TSSTP Unit is implementing two projects for dissemination of PHARE project results. This activity will take a better advantage of today's communication technologies and ensure the management of the acquired knowledge through preservation and user-friendly access and retrieval of the project results. The paper provides an outline of the TSSTP Unit relevant knowledge preservation initiative, a description

  12. MODELS AND METHODS OF SAFETY-ORIENTED PROJECT MANAGEMENT OF DEVELOPMENT OF COMPLEX SYSTEMS: METHODOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Олег Богданович ЗАЧКО

    2016-03-01

    Full Text Available The methods and models of safety-oriented project management of the development of complex systems are proposed resulting from the convergence of existing approaches in project management in contrast to the mechanism of value-oriented management. A cognitive model of safety oriented project management of the development of complex systems is developed, which provides a synergistic effect that is to move the system from the original (pre condition in an optimal one from the viewpoint of life safety - post-project state. The approach of assessment the project complexity is proposed, which consists in taking into account the seasonal component of a time characteristic of life cycles of complex organizational and technical systems with occupancy. This enabled to take into account the seasonal component in simulation models of life cycle of the product operation in complex organizational and technical system, modeling the critical points of operation of systems with occupancy, which forms a new methodology for safety-oriented management of projects, programs and portfolios of projects with the formalization of the elements of complexity.

  13. Implementing an interprofessional patient safety learning initiative: insights from participants, project leads and steering committee members.

    Science.gov (United States)

    Jeffs, Lianne; Abramovich, Ilona Alex; Hayes, Chris; Smith, Orla; Tregunno, Deborah; Chan, Wai-Hin; Reeves, Scott

    2013-11-01

    Effective teamwork and interprofessional collaboration are vital for healthcare quality and safety; however, challenges persist in creating interprofessional teamwork and resilient professional teams. A study was undertaken to delineate perceptions of individuals involved with the implementation of an interprofessional patient safety competency-based intervention and intervention participants. The study employed a qualitative study design that triangulated data from interviews with six steering committee members and five members of the project team who developed and monitored the intervention and six focus groups with clinical team members who participated in the intervention and implemented local patient safety projects within a large teaching hospital in Canada. Our study findings reveal that healthcare professionals and support staff acquired patient safety competencies in an interprofessional context that can result in improved patient and work flow processes. However, key challenges exist including managing projects amidst competing priorities, lacking physician engagement and sustaining projects. Our findings point to leaders to provide opportunities for healthcare teams to engage in interprofessional teamwork and patient safety projects to improve quality of patient care. Further research efforts should examine the sustainability of interprofessional safety projects and how leaders can more fully engage the participation of all professions, specifically physicians.

  14. International Expert Review of Sr-Can: Safety Assessment Methodology - External review contribution in support of SSI's and SKI's review of SR-Can

    International Nuclear Information System (INIS)

    Sagar, Budhi; Egan, Michael; Roehlig, Klaus-Juergen; Chapman, Neil; Wilmot, Roger

    2008-03-01

    In 2006, SKB published a safety assessment (SR-Can) as part of its work to support a licence application for the construction of a final repository for spent nuclear fuel. The purposes of the SR-Can project were stated in the main project report to be: 1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant. 2. To provide feedback to design development, to SKB's research and development (R and D) programme, to further site investigations and to future safety assessments. 3. To foster a dialogue with the authorities that oversee SKB's activities, i.e. the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI, regarding interpretation of applicable regulations, as a preparation for the SR-Site project. To help inform their review of SKB's proposed approach to development of the longterm safety case, the authorities appointed three international expert review teams to carry out a review of SKB's SR-Can safety assessment report. Comments from one of these teams - the Safety Assessment Methodology (SAM) review team - are presented in this document. The SAM review team's scope of work included an examination of SKB's documentation of the assessment ('Long-term safety for KBS-3 Repositories at Forsmark and Laxemar - a first evaluation' and several supporting reports) and hearings with SKB staff and contractors, held in March 2007. As directed by SKI and SSI, the SAM review team focused on methodological aspects and sought to determine whether SKB's proposed safety assessment methodology is likely to be suitable for use in the future SR-Site and to assess its consistency with the Swedish regulatory framework. No specific evaluation of long-term safety or site acceptability was undertaken by any of the review teams. SKI and SSI's Terms of Reference for the SAM review team requested that consideration be given

  15. How to communicate safety? Some reflections from European project studies

    International Nuclear Information System (INIS)

    Richardson, Philip; Galson, Daniel

    2009-12-01

    Attempts to site geological disposal facilities for radioactive waste - and associated public reactions - indicate that communicating safety and demonstrating safety are very different things. The three different approaches to stakeholder engagement undertaken in the context of the PAMINA, ARGONA and CIP projects have provided valuable insights into how risk communication processes and tools can be improved. The approaches used in these projects all involve the participation of interested stakeholders in identifying concerns and issues, which are then examined in a co-operative fashion between stakeholders and developers acting in partnership. Such approaches offer avenues for dialogue and confidence building where such channels were previously not well developed, Full results from the projects will be available in late 2009 for PAMINA and ARGONA and in early 2010 for CIP. The comments and interim insights outlined here will be developed further and incorporated in the overall project outputs, and help inform developing European policy in this area. It is already clear, however, that the approaches used in these projects offer great promise in helping to develop the trust in the institutions and organisations involved that is essential in gaining support and acceptance for the waste management activities now underway across Europe

  16. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    International Nuclear Information System (INIS)

    Duckwitz, Noel

    2011-01-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets,' safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, 'Facility Safety,' and the expectations of DOE-STD-1189-2008, 'Integration of Safety into the Design Process,' provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  17. Ferrocyanide safety project ferrocyanide aging studies. Final report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Hallen, R.T.; Alderson, E.V.

    1996-06-01

    This final report gives the results of the work conducted by Pacific Northwest National Laboratory (PNNL) from FY 1992 to FY 1996 on the Ferrocyanide Aging Studies, part of the Ferrocyanide Safety Project. The Ferrocyanide Safety Project was initiated as a result of concern raised about the safe storage of ferrocyanide waste intermixed with oxidants, such as nitrate and nitrite salts, in Hanford Site single-shell tanks (SSTs). In the laboratory, such mixtures can be made to undergo uncontrolled or explosive reactions by heating dry reagents to over 200 degrees C. In 1987, an Environmental Impact Statement (EIS), published by the U.S. Department of Energy (DOE), Final Environmental Impact Statement, Disposal of Hanford Defense High-Level Transuranic and Tank Waste, Hanford Site, Richland, Washington, included an environmental impact analysis of potential explosions involving ferrocyanide-nitrate mixtures. The EIS postulated that an explosion could occur during mechanical retrieval of saltcake or sludge from a ferrocyanide waste tank, and concluded that this worst-case accident could create enough energy to release radioactive material to the atmosphere through ventilation openings, exposing persons offsite to a short-term radiation dose of approximately 200 mrem. Later, in a separate study (1990), the General Accounting Office postulated a worst-case accident of one to two orders of magnitude greater than that postulated in the DOE EIS. The uncertainties regarding the safety envelope of the Hanford Site ferrocyanide waste tanks led to the declaration of the Ferrocyanide Unreviewed Safety Question (USQ) in October 1990

  18. Preliminary safety evaluation for 241-C-106 waste retrieval, project W-320

    International Nuclear Information System (INIS)

    Conner, J.C.

    1994-01-01

    This document presents the Preliminary Safety Evaluation for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). The US DOE has been mandated to develop plans for response to safety issues associated with the waste storage tanks at the Hanford Site, and to report the progress of implementing those plans to Congress. The objectives of Project W-230 are to design, fabricate, develop, test, and operate a new retrieval system capable of removing a minimum of about 75% of the high-heat waste contained in C-106. It is anticipated that sluicing operations can remove enough waste to reduce the remaining radiogenic heat load to levels low enough to resolve the high-heat safety issue as well as allow closure of the tank safety issue

  19. International Criticality Safety Benchmark Evaluation Project (ICSBEP) - ICSBEP 2015 Handbook

    International Nuclear Information System (INIS)

    Bess, John D.

    2015-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy (DOE). The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Nuclear Energy Agency (NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculation techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirements and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross-section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span approximately 69000 pages and contain 567 evaluations with benchmark specifications for 4874 critical, near-critical or subcritical configurations, 31 criticality alarm placement/shielding configurations with multiple dose points for each, and 207 configurations that have been categorised as fundamental physics measurements that are relevant to criticality safety applications. New to the handbook are benchmark specifications for neutron activation foil and thermoluminescent dosimeter measurements performed at the SILENE critical assembly in Valduc, France as part of a joint venture in 2010 between the US DOE and the French Alternative Energies and Atomic Energy Commission (CEA). A photograph of this experiment is shown on the front cover. Experiments that are found unacceptable for use as criticality safety benchmark experiments are discussed in these

  20. Overview of the NKS/RAK-1 project 'Strategies for reactor safety' and linkages to piping reliability studies

    International Nuclear Information System (INIS)

    Andersson, Kjell

    1997-01-01

    The NKS/RAK-1 project forms part of a four-year research program (1994-97) in the Nordic countries. The general objective of NKS/RAK-1 project is to explore strategies for reactor safety: to investigate and evaluate the safety work, to increase realism and reliability of safety analysis; and to increase the safety of nuclear installations in selected areas. The project has done extensive interview work at utilities and authorities, and analysed a number of case studies. Brief highlights and overviews of the sub-projects are presented in this paper

  1. No 2943. Project of law relative to nuclear transparency and safety

    International Nuclear Information System (INIS)

    2006-03-01

    This project of law comprises 5 titles dealing with: 1 - general dispositions: definition and scope of nuclear safety, security, radiation protection, operators liability, facilities in concern; 2 - the high nuclear safety authority: role and duties; 3 - public information in the domain of nuclear safety and radiation protection: information right of the public, local information commissions, high committee for nuclear safety transparency and information; 4 - basic nuclear facilities and transport of radioactive materials: applicable rules, police controls and measures, penal dispositions (investigations, sanctions); 5 - miscellaneous dispositions: changes made with respect to previous legislative texts. (J.S.)

  2. GETOUT - a one-dimensional model for groundwater transport of radionuclide decay chains

    International Nuclear Information System (INIS)

    Grundfelt, B.; Elert, M.

    1980-01-01

    The GETOUT-code, originally developed at Batelle Pacific Northwest Laboratories (PNL), was used in the KBS-project to calculate the radionuclide discharges from the repository. The version used in KBS was a translation of the PNL BASIC-language version as by December 1976. In this report a new version, mathematically compatible with the PNL FORTRAN version as by 1979-08-15, is documented. Details are given on the differences between this new version and the version used in the KBS project up to now. (author)

  3. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    International Nuclear Information System (INIS)

    Batandjieva, B.; Metcalf, P.

    2003-01-01

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years

  4. SKB's safety case for a final repository license application

    International Nuclear Information System (INIS)

    Hedin, Allan; Andersson, Johan

    2014-01-01

    The safety assessment SR-Site is a main component in SKB's license application, submitted in March 2011, to construct and operate a final repository for spent nuclear fuel at Forsmark in the municipality of Oesthammar, Sweden. Its role in the application is to demonstrate long-term safety for a repository at Forsmark. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. The principal regulatory acceptance criterion, issued by the Swedish Radiation Safety Authority (SSM), requires that the annual risk of harmful effects after closure not exceed 10 -6 for a representative individual in the group exposed to the greatest risk. SSM's regulations also imply that the assessment time for a repository of this type is one million years after closure. The licence applied for is one in a stepwise series of permits, each requiring a safety report. The next step concerns a permit to start excavation of the repository and requires a preliminary safety assessment report (PSAR) covering both operational and post-closure safety. Later steps include permission to commence trial operation, to commence regular operation and to close the final repository. (authors)

  5. Project SAFE. Update of the SFR-1 safety assessment. Phase 1

    International Nuclear Information System (INIS)

    Andersson, Johan; Riggare, P.; Skagius, K.

    1998-10-01

    SFR-1 is a facility for disposal of low-level radioactive operational waste from the nuclear power plants in Sweden. Low-level radioactive waste from industry, medicine, and research is also disposed in SFR-1. The facility is situated in bedrock beneath the Baltic Sea, 1 km off the coast near the Forsmark nuclear power plant. SFR-1 was built between the years 1983 and 1988. An assessment of the long-term performance of the facility was included in the vast documentation that was a part of the application for an operational license. The assessment was presented in the form of a final safety report. In the operational licence for SFR-1 it is stated that renewed safety assessments should be carried out at least each ten years. In order to meet this demand SKB has launched a special project, SAFE (Safety Assessment of Final Disposal of Operational Radioactive Waste). The aim of the project is to update the safety analysis and to prepare a safety report that will be presented to the Swedish authorities not later than year 2000. Project SAFE is divided into three phases. The first phase is a prestudy, and the results of the prestudy are given in this report. The aim of the prestudy is to identify issues where additional studies would improve the basis for the updated safety analysis as well as to suggest how these studies should be carried out. The work has been divided into six different topics, namely the inventory, the near field, the far field, the biosphere, radionuclide transport calculations and scenarios. For each topic the former safety reports and regulatory reviews are scrutinised and needs for additional work is identified. The evaluations are given in appendices covering the respective topics. The main report is a summary of the appendices with a more stringent description of the repository system and the processes that are of interest and therefore should be addressed in an updated safety assessment. However, it should be pointed out that one of the

  6. Use of OECD/NEA Data Project Products in Probabilistic Safety Assessment

    International Nuclear Information System (INIS)

    Cherkas, G.; Raducu, Gheorghe; Riznic, J.; Yalaoui, S.; Huang, Hui-Wen; Holy, Jaroslav; Holmberg, Jan-Erik; Sandberg, Jorma; Balmain, Michel; Bonnevialle, Anne-Marie; Curnier, Florence; Georgescu, Gabriel; Lanore, Jeanne-Marie; Lindner, Arndt; Fujimoto, Haruo; Ahn, Kwang-Il; Hwang, Taesuk; Jang, Seung-Cheol; Husarcek, Jan; Kovacs, Zoltan; Vazquez, Teresa; Johanson, Gunnar; Liwaang, Bo; Nyman, Ralph; Dang, Vinh; Schoen, Gerhard; Brook, Kevin; Hamblen, David; Siu, Nathan; Sturzebecher, Karl; Tobin, Margaret; Wood, Jeff; Amri, Abdallah; Breest, Axel

    2014-01-01

    The Nuclear Energy Agency (NEA)/Committee for the Safety of Nuclear Installations' (CSNI) Working Group on Risk Assessment (WGRISK) is tasked with supporting the improved use of Probabilistic Safety Assessment (PSA) in risk informed regulation and safety management through the analysis of results and the development of perspectives regarding potentially important risk contributors and associated risk reduction strategies. The task consists of the following major activities: Development, distribution, and completion of survey questionnaires; Analysis of survey questionnaire results at a task workshop; Preparation of the final task report. The main objectives of this task, as proposed by WGRISK and approved by CSNI, are the following: - Identification and characterization of the current uses of OECD data project products and data in support of PSA. In this context, the term 'products' refers to data analysis results, technical reports, and other project outputs. - Identification and characterization of technical and programmatic characteristics that either support or impede use of data project products in PSA. This includes an assessment of which PSA parameters could be potentially estimated from the various data project products and gaps between available product information and PSA data needs. - Identification of recommendations for enhancing the usefulness of data project products and the coordination between WGRISK and the data projects. This task report consists of the following sections: - Chapter 1 Provides a general overview of motivation and approach used for this task. - Chapter 2 Describes scope and objectives of the task. - Chapter 3 Provides an overview of the ICDE, FIRE, OPDE/CODAP, and COMPSIS data projects. For each project, the project objectives, project history, data collection methodology and quality assurance, project status, example PSA Applications, and information related to project participation is provided. - Chapter 4 Describes the

  7. Legacy data sharing to improve drug safety assessment: the eTOX project

    DEFF Research Database (Denmark)

    Sanz, Ferran; Pognan, François; Steger-Hartmann, Thomas

    2017-01-01

    The sharing of legacy preclinical safety data among pharmaceutical companies and its integration with other information sources offers unprecedented opportunities to improve the early assessment of drug safety. Here, we discuss the experience of the eTOX project, which was established through...

  8. Breckinridge Project, initial effort. Report VII, Volume 4. Safety and health plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The Safety and Health Plan recognizes the potential hazards associated with the Project and has been developed specifically to respond to these risks in a positive manner. Prevention, the primary objective of the Plan, starts with building safety controls into the process design and continues through engineering, construction, start-up, and operation of the Project facilities and equipment. Compliance with applicable federal, state, and local health and safety laws, regulations, and codes throughout all Project phases is required and assured. The Plan requires that each major Project phase be thoroughly reviewed and analyzed to determine that those provisions required to assure the safety and health of all employees and the public, and to prevent property and equipment losses, have been provided. The Plan requires followup on those items or situations where corrective action needs were identified to assure that the action was taken and is effective. Emphasis is placed on loss prevention. Exhibit 1 provides a breakdown of Ashland Synthetic Fuels, Inc.'s (ASFI's) Loss Prevention Program. The Plan recognizes that the varied nature of the work is such as to require the services of skilled, trained, and responsible personnel who are aware of the hazards and know that the work can be done safely, if done correctly. Good operating practice is likewise safe operating practice. Training is provided to familiarize personnel with good operational practice, the general sequence of activities, reporting requirements, and above all, the concept that each step in the operating procedures must be successfully concluded before the following step can be safely initiated. The Plan provides for periodic review and evaluation of all safety and loss prevention activities at the plant and departmental levels.

  9. The SISIFO project: Seismic Safety at High Schools

    Science.gov (United States)

    Peruzza, Laura; Barnaba, Carla; Bragato, Pier Luigi; Dusi, Alberto; Grimaz, Stefano; Malisan, Petra; Saraò, Angela; Mucciarelli, Marco

    2014-05-01

    For many years, the Italian scientific community has faced the problem of the reduction of earthquake risk using innovative educational techniques. Recent earthquakes in Italy and around the world have clearly demonstrated that seismic codes alone are not able to guarantee an effective mitigation of risk. After the tragic events of San Giuliano di Puglia (2002), where an earthquake killed 26 school children, special attention was paid in Italy to the seismic safety of schools, but mainly with respect to structural aspects. Little attention has been devoted to the possible and even significant damage to non-structural elements (collapse of ceilings, tipping of cabinets and shelving, obstruction of escape routes, etc..). Students and teachers trained on these aspects may lead to a very effective preventive vigilance. Since 2002, the project EDURISK (www.edurisk.it) proposed educational tools and training programs for schools, at primary and middle levels. More recently, a nationwide campaign aimed to adults (www.iononrischio.it) was launched with the extensive support of civil protection volounteers. There was a gap for high schools, and Project SISIFO was designed to fill this void and in particular for those schools with technical/scientific curricula. SISIFO (https://sites.google.com/site/ogssisifo/) is a multidisciplinary initiative, aimed at the diffusion of scientific culture for achieving seismic safety in schools, replicable and can be structured in training the next several years. The students, helped by their teachers and by experts from scientific institutions, followed a course on specialized training on earthquake safety. The trial began in North-East Italy, with a combination of hands-on activities for the measurement of earthquakes with low-cost instruments and lectures with experts in various disciplines, accompanied by specifically designed teaching materials, both on paper and digital format. We intend to raise teachers and students knowledge of the

  10. Patterns of patient safety culture: a complexity and arts-informed project of knowledge translation.

    Science.gov (United States)

    Mitchell, Gail J; Tregunno, Deborah; Gray, Julia; Ginsberg, Liane

    2011-01-01

    The purpose of this paper is to describe patterns of patient safety culture that emerged from an innovative collaboration among health services researchers and fine arts colleagues. The group engaged in an arts-informed knowledge translation project to produce a dramatic expression of patient safety culture research for inclusion in a symposium. Scholars have called for a deeper understanding of the complex interrelationships among structure, process and outcomes relating to patient safety. Four patterns of patient safety culture--blinding familiarity, unyielding determination, illusion of control and dismissive urgency--are described with respect to how they informed creation of an arts-informed project for knowledge translation.

  11. Specifications of the International Atomic Energy Agency's international project on safety assessment driven radioactive waste management solutions

    International Nuclear Information System (INIS)

    Ghannadi, M.; Asgharizadeh, F.; Assadi, M. R.

    2008-01-01

    Radioactive waste is produced in the generation of nuclear power and the production and use of radioactive materials in the industry, research, and medicine. The nuclear waste management facilities need to perform a safety assessment in order to ensure the safety of a facility. Nuclear safety assessment is a structured and systematic way of examining a proposed facility, process, operation and activity. In nuclear waste management point of view, safety assessment is a process which is used to evaluate the safety of radioactive waste management and disposal facilities. In this regard the International Atomic Energy Agency is planed to implement an international project with cooperation of some member states. The Safety Assessment Driving Radioactive Waste Management Solutions Project is an international programme of work to examine international approaches to safety assessment in aspects of p redisposal r adioactive waste management, including waste conditioning and storage. This study is described the rationale, common aspects, scope, objectives, work plan and anticipated outcomes of the project with refer to International Atomic Energy Agency's documents, such as International Atomic Energy Agency's Safety Standards, as well as the Safety Assessment Driving Radioactive Waste Management Solutions project reports

  12. The International Criticality Safety Benchmark Evaluation Project (ICSBEP)

    International Nuclear Information System (INIS)

    Briggs, J.B.

    2003-01-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organisation for Economic Cooperation and Development (OECD) - Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Israel, Spain, and Brazil are now participating. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled 'International Handbook of Evaluated Criticality Safety Benchmark Experiments.' The 2003 Edition of the Handbook contains benchmark model specifications for 3070 critical or subcritical configurations that are intended for validating computer codes that calculate effective neutron multiplication and for testing basic nuclear data. (author)

  13. The Nordic nuclear safety program 1994-1997. Project handbook

    International Nuclear Information System (INIS)

    1997-06-01

    This is a new revision of the handbook for administrators of the Nordic reactor safety program NKS. The most important administrative functions in project management are described, which should secure a uniform management approach in all the projects. The description of the organizational scheme of the NKS and distribution of responsibilities is followed by examples of various administrative routines and document forms. In the annex the names and addresses of the staff involved in administration of the NKS program are listed. (EG)

  14. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  15. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    International Nuclear Information System (INIS)

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE's overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program

  16. Project CHRISTA. Feasibility study on the development of a safety demonstration methodology for a final repository for heat generating radioactive wastes in crystalline rock formations in Germany; Projekt CHRISTA. Machbarkeitsuntersuchung zur Entwicklung einer Sicherheits- und Nachweismethodik fuer ein Endlager fuer Waerme entwickelnde radioaktive Abfaelle im Kristallingestein in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, Michael (ed.)

    2016-10-24

    In the frame of CHRISTA several options with different safety concepts for the final disposal of heat generating radioactive wastes were studied. The German safety requirements and the demonstration of the geological barrier integrity are based on an enclosure concept (ewG) that was developed primarily for salt and clay formations. The applicability of these requirements for crystalline host rocks had to be investigated. The enclosure functio0n is based on low hydraulic permeability of the host rock in combination with geotechnical barriers closing the access. With respect to the transferability of the Swedish/Finnish KBS-3 concept it has to be remarked, that the national standards in Sweden and Finland require the safety demonstration for 100.000 years (in Germany 1 million years). The Swedish/Finish container concept is based on a copper sheathed container with adjacent buffer; MOX fuel elements are not foreseen. The report concludes that the actual German safety concept based on geological barriers is to be preferred compared to technical barriers.

  17. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  18. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    International Nuclear Information System (INIS)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR-06 are highlighted, and the future of the two projects is discussed

  19. Temperature field due to time-dependent heat sources in a large rectangular grid. Application for the KBS-3 repository

    International Nuclear Information System (INIS)

    Probert, T.; Claesson, Johan

    1997-04-01

    In the KBS-3 concept canisters containing nuclear waste are deposited along parallel tunnels over a large rectangular area deep below the ground surface. The temperature field in rock due to such a rectangular grid of heat-releasing canisters is studied. An analytical solution for this problem for any heat source has been presented in a preceding paper. The complete solution is summarized in this paper. The solution is by superposition divided into two main parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. In this sequel to the first report, the local solution is discussed in detail. The local solution consists of three parts corresponding to line heat sources along tunnels, point heat sources along a tunnel and a line heat source along a canister. Each part depends on two special variables only. These parts are illustrated in dimensionless form. Inside the repository the local temperature field is periodic in the horizontal directions and has a short extent in the vertical direction. This allows us to look at the solution in a parallelepiped around a canister. The solution in the parallelepiped is valid for all canisters that are not too close to the repository edges. The total temperature field is calculated for the KBS-3 case. The temperature field is calculated using a heat release that is valid for the first 10 000 years after deposition. The temperature field is shown in 23 figures in order to illustrate different aspects of the complex thermal process

  20. KBS-3H - Excavation of two horizontal drifts at the Aespoe Hard Rock Laboratory during year 2004-2005. Work description, summary of results and experience

    International Nuclear Information System (INIS)

    Baeckblom, Goeran; Lindgren, Erik

    2005-10-01

    SKB and Posiva Oy in Finland jointly study the possibility to develop a variant of the KBS-3 method for final disposal of spent nuclear fuel. The idea is to make serial deposition of canisters in long horizontal drifts instead of vertical deposition of single canisters in the deposition hole. The studies concerning the horizontal deposition alternative are conducted within the framework of a KBS-3H project, where certain demonstration activities are implemented. A key issue of the running project is to test the ability to excavate the horizontal deposition drifts. The objectives for this work are as follows: To show the feasibility of meeting the geometrical and other requirements; To construct two deposition drifts needed for the later project stages. One drift is needed to demonstrate that heavy load can be transported into the drift. One drift is needed to demonstrate that a plug (bulkhead) can be constructed by low-pH shotcrete; To evaluate the applicability of selected excavation methodologies for realistic repository conditions, and based on the experience in the project define need for technical developments/improvements. To meet the objectives, two deposition drifts were excavated at the Aespoe Hard Rock Laboratory during the period October 2004 to February 2005. One horizontal drift was 15 m in length and one 95 m in length. Both drifts were excavated to the diameter 1.85 m using horizontal push-reaming technology by adapting conventional raise-drilling equipment. The drifts were excavated in good rock conditions where no rock support or grouting was needed for feasible excavation or are needed to operate the drifts. SKB and Posiva have stringent geometrical requirements for the excavated drifts and the conclusions concerning compliance with the requirements are: Length: The project met this target. Two drifts were excavated, 15 m and 95 m respectively in accordance with the initial plan. Diameter: Actually it was not easy to measure the diameters of the

  1. KBS-3H - Excavation of two horizontal drifts at the Aespoe Hard Rock Laboratory during year 2004-2005. Work description, summary of results and experience

    Energy Technology Data Exchange (ETDEWEB)

    Baeckblom, Goeran [Conrox AB, Stockholm (Sweden); Lindgren, Erik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-10-15

    SKB and Posiva Oy in Finland jointly study the possibility to develop a variant of the KBS-3 method for final disposal of spent nuclear fuel. The idea is to make serial deposition of canisters in long horizontal drifts instead of vertical deposition of single canisters in the deposition hole. The studies concerning the horizontal deposition alternative are conducted within the framework of a KBS-3H project, where certain demonstration activities are implemented. A key issue of the running project is to test the ability to excavate the horizontal deposition drifts. The objectives for this work are as follows: To show the feasibility of meeting the geometrical and other requirements; To construct two deposition drifts needed for the later project stages. One drift is needed to demonstrate that heavy load can be transported into the drift. One drift is needed to demonstrate that a plug (bulkhead) can be constructed by low-pH shotcrete; To evaluate the applicability of selected excavation methodologies for realistic repository conditions, and based on the experience in the project define need for technical developments/improvements. To meet the objectives, two deposition drifts were excavated at the Aespoe Hard Rock Laboratory during the period October 2004 to February 2005. One horizontal drift was 15 m in length and one 95 m in length. Both drifts were excavated to the diameter 1.85 m using horizontal push-reaming technology by adapting conventional raise-drilling equipment. The drifts were excavated in good rock conditions where no rock support or grouting was needed for feasible excavation or are needed to operate the drifts. SKB and Posiva have stringent geometrical requirements for the excavated drifts and the conclusions concerning compliance with the requirements are: Length: The project met this target. Two drifts were excavated, 15 m and 95 m respectively in accordance with the initial plan. Diameter: Actually it was not easy to measure the diameters of the

  2. Overview criteria for the environmental, safety and health evaluation of remedial action project planning

    International Nuclear Information System (INIS)

    Stenner, R.D.; Denham, D.H.

    1984-10-01

    Overview criteria (i.e., subject areas requiring review) for evaluating remedial action project plans with respect to environmental, safety and health issues were developed as part of a Department of Energy, Office of Operational Safety, technical support project. Nineteen elements were identified as criteria that should be addressed during the planning process of a remedial action (decontamination and decommissioning) project. The scope was interpreted broadly enough to include such environmental, safety and health issues as public image, legal obligation and quality assurance, as well as more obvious concerns such as those involving the direct protection of public and worker health. The nineteen elements are discussed along with suggested ways to use a data management software system to organize and report results

  3. Proceedings of the first annual Nuclear Criticality Safety Technology Project

    International Nuclear Information System (INIS)

    Rutherford, D.A.

    1994-09-01

    This document represents the published proceedings of the first annual Nuclear Criticality Safety Technology Project (NCSTP) Workshop, which took place May 12--14, 1992, in Gaithersburg, Md. The conference consisted of four sessions, each dealing with a specific aspect of nuclear criticality safety issues. The session titles were ''Criticality Code Development, Usage, and Validation,'' ''Experimental Needs, Facilities, and Measurements,'' ''Regulation, Compliance, and Their Effects on Nuclear Criticality Technology and Safety,'' and ''The Nuclear Criticality Community Response to the USDOE Regulations and Compliance Directives.'' The conference also sponsored a Working Group session, a report of the NCSTP Working Group is also presented. Individual papers have been cataloged separately

  4. International intercomparison and harmonization projects for demonstrating the safety of radioactive waste management, decommissioning and radioactive waste disposal

    International Nuclear Information System (INIS)

    Metcalf, Phil; O'Donnell, Patricio; Jova Sed, Luis; Batandjieva, Borislava; Rowat, John; Kinker, Monica

    2008-01-01

    Full text: The Joint Convention on the safety of spent fuel management and the safety of radioactive waste management and the international safety standards on radioactive waste management, decommissioning and radioactive waste disposal call for assessment and demonstration of the safety of facilities and activities; during siting, design and construction prior to operation, periodically during operation and at the end of lifetime or upon closure of a waste disposal facility. In addition, more recent revisions of the international safety standards require the development of a safety case for such facilities and activities, documentation presenting all the arguments supporting the safety of the facilities and activities covering site and engineering features, quantitative safety assessment and management systems. Guidance on meeting these safety requirements also indicates the need for a graded approach to safety assessment, with the extent and complexity of the assessment being proportional to the complexity of the activity or facility, and its propensity for radiation hazard. Safety assessment approaches and methodologies have evolved over several decades and international interest in these developments has been considerable as they can be complex and often subjective, which has led to international projects being established aimed at harmonization. The IAEA has sponsored a number of such initiatives, particularly in the area of disposal facility safety, but more recently in the areas of pre disposal waste management and decommissioning, including projects known as ISAM, ASAM, SADRWMS and DeSa. The projects have a number of common aspects including development of standardized methodological approaches, application on test cases and assessment review; they also have activity and facility specific elements. The paper presents an overview of the projects, the outcomes from the projects to date and their future direction aimed very much at practical application of

  5. RAAK PRO project: measuring safety in aviation : concept for the design of new metrics

    NARCIS (Netherlands)

    Karanikas, Nektarios; Kaspers, Steffen; Roelen, Alfred; Piric, Selma; van Aalst, Robbert; de Boer, Robert

    2017-01-01

    Following the completion of the 1st phase of the RAAK PRO project Aviation Safety Metrics, during which the researchers mapped the current practice in safety metrics and explored the validity of monotonic relationships of SMS, activity and demographic metrics with safety outcomes, this report

  6. Interim main report of the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, Allan [and others

    2004-08-01

    This document is an interim report on the safety assessment SR-Can (SR in the acronym stands for Safety Report and Can is short for canister). The final SR-Can report will support SKB's application to build an Encapsulation plant for spent nuclear fuel and is to be produced in 2006. The purpose of the present interim report is to demonstrate the methodology for safety assessment so that it can be reviewed before it is used in a license application. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. Preliminary data from the Forsmark site, presently being investigated by SKB as one of the candidate for a KBS-3 repository are used to some extent as examples. However, the collected data are yet too sparse to allow an evaluation of safety for this site. An important aim of this report is to demonstrate the proper handling of requirements on the safety assessment in applicable regulations. Therefore, regulations issued by the Swedish Nuclear Power Inspectorate and the Swedish Radiation Protection Authority are duplicated in an Appendix. The principal acceptance criterion requires that 'the annual risk of harmful effects after closure does not exceed 10{sup -6} for a representative individual in the group exposed to the greatest risk'. 'Harmful effects' refer to cancer and hereditary effects. Following the introductory chapter 1, this report outlines the methodology for the SR-Can assessment in chapter 2, and presents in chapters 3, 4 and 5 the initial state of the system and the plans and methods for handling external influences and internal processes, respectively. Function indicators are introduced in chapter 6 and a preliminary evaluation of these is given in chapter 7. The material presented in the first seven chapters is utilised in the scenario selection in chapter 8

  7. Interim main report of the safety assessment SR-Can

    International Nuclear Information System (INIS)

    Hedin, Allan

    2004-08-01

    This document is an interim report on the safety assessment SR-Can (SR in the acronym stands for Safety Report and Can is short for canister). The final SR-Can report will support SKB's application to build an Encapsulation plant for spent nuclear fuel and is to be produced in 2006. The purpose of the present interim report is to demonstrate the methodology for safety assessment so that it can be reviewed before it is used in a license application. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. Preliminary data from the Forsmark site, presently being investigated by SKB as one of the candidate for a KBS-3 repository are used to some extent as examples. However, the collected data are yet too sparse to allow an evaluation of safety for this site. An important aim of this report is to demonstrate the proper handling of requirements on the safety assessment in applicable regulations. Therefore, regulations issued by the Swedish Nuclear Power Inspectorate and the Swedish Radiation Protection Authority are duplicated in an Appendix. The principal acceptance criterion requires that 'the annual risk of harmful effects after closure does not exceed 10 -6 for a representative individual in the group exposed to the greatest risk'. 'Harmful effects' refer to cancer and hereditary effects. Following the introductory chapter 1, this report outlines the methodology for the SR-Can assessment in chapter 2, and presents in chapters 3, 4 and 5 the initial state of the system and the plans and methods for handling external influences and internal processes, respectively. Function indicators are introduced in chapter 6 and a preliminary evaluation of these is given in chapter 7. The material presented in the first seven chapters is utilised in the scenario selection in chapter 8. Hydrogeological

  8. Seismic safety margins research program. Project I SONGS 1 AFWS Project

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Cummings, G.E.; Wells, J.E.

    1981-01-01

    The seismic qualification requirements of auxiliary feedwater systems (AFWS) of Pressurized Water Reactors (PWR) were developed over a number of years. These are formalized in the publication General Design Criteria (Appendix A to 10CFR50). The full recognition of the system as an engineered safety feature did not occur until publication of the Standard Review Plan (1975). Efforts to determine how to backfit seismic requirements to earlier plants has been undertaken primarily in the Systematic Evaluation Program (SEP) for a limited number of operating reactors. Nuclear Reactor Research (RES) and NRR have requested LLNL to perform a probabilistic study on the AFWS of San Onofre Nuclear Generating Station (SONGS) Unit 1 utilizing the tools developed by the Seismic Safety Margins Research Program (SSMRP). The main objectives of this project are to: identify the weak links of AFWS; compare the failure probabilities of SONGS 1 and Zion 1 AFWS: and compare the seismic responses due to different input spectra and design values

  9. Radiological safety research for nuclear excavation projects - Interoceanic canal studies

    Energy Technology Data Exchange (ETDEWEB)

    Klement, Jr, A W [U.S. Atomic Energy Commission, Las Vegas, NV (United States)

    1969-07-01

    The general radiological problems encountered in nuclear cratering and nuclear excavation projects are discussed. Procedures for assessing radiological problems in such projects are outlined. Included in the discussions are source term, meteorology, fallout prediction and ecological factors. Continuing research requirements as well as pre- and post-excavation studies are important considerations. The procedures followed in the current interoceanic canal feasibility studies provide examples of radiological safety problems, current solutions and needed research. (author)

  10. Radiological safety research for nuclear excavation projects - Interoceanic canal studies

    International Nuclear Information System (INIS)

    Klement, A.W. Jr.

    1969-01-01

    The general radiological problems encountered in nuclear cratering and nuclear excavation projects are discussed. Procedures for assessing radiological problems in such projects are outlined. Included in the discussions are source term, meteorology, fallout prediction and ecological factors. Continuing research requirements as well as pre- and post-excavation studies are important considerations. The procedures followed in the current interoceanic canal feasibility studies provide examples of radiological safety problems, current solutions and needed research. (author)

  11. Plan for safety case of spent fuel repository at Olkiluoto

    International Nuclear Information System (INIS)

    Vieno, T.; Ikonen, A.T.K.

    2005-02-01

    Posiva aims to present the Safety Case supporting the construction license application of the spent fuel repository at Olkiluoto by 2012. An outline and preliminary assessments will be presented in 2009. Interim reporting and an update of the Safety Case plan will be presented in 2006, as required by the authorities. The KBS-3 disposal concept aims at long-term isolation and containment of spent fuel assemblies in durable copper-iron canisters emplaced in a repository to be constructed at a depth between 400 and 600 metres in crystalline bedrock. By 2012, studies on the KBS-3 disposal concept and site investigations at Olkiluoto will have been continued over about thirty years. The construction of an underground rock characterisation facility (called ONKALO) was started in June 2004. The investigations are carried out in close cooperation with the Swedish SKB developing and assessing the same disposal concept at candidate sites, resembling Olkiluoto, at the other side of the Baltic Sea. A safety case is the synthesis of evidence, analyses and arguments that quantify and substantiate the safety, and the level of expert confidence in the safety, of a planned repository. Posiva's Safety Case will be organised in a portfolio including ten main reports, which will be periodically updated according the overall schedule presented in the plan. The Site report describing the present state and past evolution of the Olkiluoto site, as well as the disturbances caused by the construction of ONKALO and the first stage of the repository, forms the geoscientific basis of the Safety Case. The engineering basis is provided by the reports on the Characteristics of spent fuel, Canister design, and Repository design. The Process report containing descriptions and analyses of features, events and processes potentially affecting the disposal system, and the report on the Evolution of site and repository form the scientific basis of the Safety Case. The latter report will describe and

  12. Quality and Safety Assurance - Priority Task at Nuclear Power Projects Implementation

    International Nuclear Information System (INIS)

    Nenkova, B.; Manchev, B.; Tomov, E.

    2010-01-01

    Quality and safety assurance at implementation of nuclear power engineering projects is important and difficult task for realization. Many problems arise during this process, when many companies from different countries participate, with various kinds of activities and services provided. The scope of activities necessary for quality and safety assurance is therefore quite expanded and diverse. In order to increase the safety and reliability of Kozloduy NPP Plc (KNPP) Units 5 and 6, as well as to bring the units in conformity with the newest international requirements for quality and safety in the field of nuclear energy, a program for their modernization on the basis of different technical studies and assessments was implemented. The Units 5 and 6 Modernization Program of Kozloduy Nuclear Power Plant was composed of 212 modifications aimed to improve the safety, operability, and reliability of the Units. The Program was realized by stages during yearly planned outages since year 2002 to 2007, without additional outages. A major Program Objective was to extend the Units Life Time in at least 15 Years, under a continuous, safe, and reliable operation. The Modernization Program of Units 5 and 6 of the Bulgarian Nuclear Power Plant in Kozloduy was the first and for the time being the only one in the world, program in the field of nuclear power engineering, by which the full scope of recommendations for improvement of the Kozloduy NPP units was applied. The main goal of the National Electric Company, which is the Employer for the construction of new nuclear facility in Bulgaria, is after completion of all activities regarding construction of Belene NPP the plant to meet or exceed the requirements of the respective national and international quality and safety codes and standards, as well as the IAEA guidelines, as they are established. The objective of this report is to describe different aspects of the quality assurance according to the requirements of quality and

  13. Technical safety appraisal of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1989-09-01

    This report presents the results of one in a series of Technical Safety Appraisals (TSAs) being conducted of DOE nuclear operations by the Assistant Secretary for Environment, Safety, and Health Office of Safety Appraisals TSAs are one of the ititiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE environment, safety and health program. This report presents the results of a TSA of the West Valley Demonstration Project (WVDP). The appraisal was conducted by a team of exerts assembled by the DOE Office of Safety Appraisal and was conducted during onsite visits of June 26-30 and July 10-21, 1989. West Valley, about 30 miles south of Buffalo, New York is the location of the only commercial nuclear fuel reprocessing facility operated in the United States. Nuclear Fuels Services, Inc. (NFS) operated the plant from 1966 to 1972 and processed about 640 metric tons of spent reactor fuel. The reprocessing operation generated about 560,000 gallons of high-level radioactive waste, which was transferred into underground tanks for storage. In 1972 NFS closed the plant and subsequently decided not to reopen it

  14. Project for the completion of a probabilistic safety analysis of an industrial irradiation

    International Nuclear Information System (INIS)

    Ferro, R.; Troncoso, M.

    1995-01-01

    The probabilistic safety analysis is a very valuable instrument in safety studies of facilities with potential risk for the personnel, population and environment. One of the possible field of use of PSA techniques in the safety studies for industrial irradiation where serious accidents have occurred. For this reason a project has been undertaken to carry out the PSA in the Irradiation Plant of Research Institute of the Food Industry, which complements the safety studies of this facility

  15. Bridging the Divide between Safety and Risk Management for your Project or Program

    Science.gov (United States)

    Lutomski, Mike

    2005-01-01

    This presentation will bridge the divide between these separate but overlapping disciplines and help explain how to use Risk Management as an effective management decision support tool that includes safety. Risk Management is an over arching communication tool used by management to prioritize and effectively mitigate potential problems before they concur. Risk Management encompasses every kind of potential problem that can occur on a program or project. Some of these are safety issues such as hazards that have a specific likelihood and consequence that need to be controlled and included to show an integrated picture of accepted) mitigated, and residual risk. Integrating safety and other assurance disciplines is paramount to accurately representing a program s or projects risk posture. Risk is made up of several components such as technical) cost, schedule, or supportability. Safety should also be a consideration for every risk. The safety component can also have an impact on the technical, cost, and schedule aspect of a given risk. The current formats used for communication of safety and risk issues are not consistent or integrated. The presentation will explore the history of these disciplines, current work to integrate them, and suggestions for integration for the future.

  16. Safety reassessment of the Paks NPP (the AGNES project)

    Energy Technology Data Exchange (ETDEWEB)

    Gado, J [Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics; Bajsz, J; Cserhati, A; Elter, J [Paksi Atomeroemue Vallalat, Paks (Hungary); Hollo, E [Energiagazdalkodasi Intezet, Budapest (Hungary); Kovacs, K [EROTERV Engineering and Contractor Co (Hungary); Maroti, L [Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics; Miko, S [Paksi Atomeroemue Vallalat, Paks (Hungary); Techy, Z [Energiagazdalkodasi Intezet, Budapest (Hungary); Vidovszky, I [Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics

    1996-12-31

    The reassessment of the Paks NPP safety according to internationally recognized criteria of the Advanced General and New Evaluation of Safety (AGNES) project is outlined. The Paks NPP consists of four WWER-440/V-213 units. The following groups of analysis have been performed: system analysis and description; analysis of design basis accidents; severe accidents analysis; level 1 probabilistic safety analysis. Postulated accidents (PA) and Anticipated Operational Occurrences (AOO) are estimated in detail for the following initiating events: increase/decrease in secondary heat removal; decrease in primary coolant inventory; increase/decrease of reactor coolant inventory; reactivity and power distribution anomalies; analysis of transients with the failure of reactor scram (ATWS); pressurized thermal shock analyses. Severe accident analysis was made for the accidents on in-vessel phase and containment phase, for radioactive release and for accident management.

  17. Safety reassessment of the Paks NPP (the AGNES project)

    International Nuclear Information System (INIS)

    Gado, J.; Hollo, E.; Kovacs, K.; Maroti, L.; Techy, Z.; Vidovszky, I.

    1995-01-01

    The reassessment of the Paks NPP safety according to internationally recognized criteria of the Advanced General and New Evaluation of Safety (AGNES) project is outlined. The Paks NPP consists of four WWER-440/V-213 units. The following groups of analysis have been performed: system analysis and description; analysis of design basis accidents; severe accidents analysis; level 1 probabilistic safety analysis. Postulated accidents (PA) and Anticipated Operational Occurrences (AOO) are estimated in detail for the following initiating events: increase/decrease in secondary heat removal; decrease in primary coolant inventory; increase/decrease of reactor coolant inventory; reactivity and power distribution anomalies; analysis of transients with the failure of reactor scram (ATWS); pressurized thermal shock analyses. Severe accident analysis was made for the accidents on in-vessel phase and containment phase, for radioactive release and for accident management

  18. Low-pH concrete plug for sealing the KBS-3V deposition tunnels

    International Nuclear Information System (INIS)

    Malm, Richard

    2012-01-01

    In SKB's main alternative for final repository of radioactive material, KBS-3V, the backfilled deposition tunnels will be separated from the remaining tunnel system with concrete plugs. These concrete plugs will be designed for a life span of 100 years and their function shall maintain until the transport tunnels outside the plug are backfilled and the natural geohydrological conditions have been restored. The purpose of this report is to document the results and the evaluation from this project and motivate the choice of the most appropriate design for closing the deposition tunnels in the spent fuel repository. The purpose has also been to investigate and present the loads acting on the plug system and determine the load capacity of the concrete plug. This report is the result of a project conducted between 2009-01-01 - 2010-12-31 and the project group has made its assessment based on the conditions and requirements that are present today. The entire design of the plug system is part of this project, where the plug system consists of a filter, a bentonite seal and a cast-in-place concrete plug. Two different conceptual design alternatives for the concrete plug have been studied in this report, one long tapered plug and one dome shaped plug. The results in this report focus on the choice of the conceptual design for the concrete plug and its possibility to assist the entire plug system to satisfy its requirements. It is a complicated task to dispose the radioactive waste and it sets high technical requirements on the design and the production of the backfill and the closing of the deposition tunnels. The aim of this project is to design and develop a plug system suitable for production. This is done by the means of numerical calculations and analyses. The primary function of the concrete plug is to act as a resistance to the external loads originated from the axial expansion of the backfill and the water pressure. However, the entire plug system has a requirement

  19. Low-pH concrete plug for sealing the KBS-3V deposition tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Malm, Richard (Vattenfall Power Consultant AB (Sweden))

    2012-01-15

    In SKB's main alternative for final repository of radioactive material, KBS-3V, the backfilled deposition tunnels will be separated from the remaining tunnel system with concrete plugs. These concrete plugs will be designed for a life span of 100 years and their function shall maintain until the transport tunnels outside the plug are backfilled and the natural geohydrological conditions have been restored. The purpose of this report is to document the results and the evaluation from this project and motivate the choice of the most appropriate design for closing the deposition tunnels in the spent fuel repository. The purpose has also been to investigate and present the loads acting on the plug system and determine the load capacity of the concrete plug. This report is the result of a project conducted between 2009-01-01 - 2010-12-31 and the project group has made its assessment based on the conditions and requirements that are present today. The entire design of the plug system is part of this project, where the plug system consists of a filter, a bentonite seal and a cast-in-place concrete plug. Two different conceptual design alternatives for the concrete plug have been studied in this report, one long tapered plug and one dome shaped plug. The results in this report focus on the choice of the conceptual design for the concrete plug and its possibility to assist the entire plug system to satisfy its requirements. It is a complicated task to dispose the radioactive waste and it sets high technical requirements on the design and the production of the backfill and the closing of the deposition tunnels. The aim of this project is to design and develop a plug system suitable for production. This is done by the means of numerical calculations and analyses. The primary function of the concrete plug is to act as a resistance to the external loads originated from the axial expansion of the backfill and the water pressure. However, the entire plug system has a

  20. Accident consequence calculations for project W-058 safety analysis

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1997-01-01

    This document describes the calculations performed to determine the accident consequences for the W-058 safety analysis. Project W-058 is the replacement cross site transfer system (RCSTS), which is designed to transort liquid waste between the 200 W and 200 E areas. Calculations for RCSTS safety analyses used the same methods as the calculations for the Tank Waste Remediation System (TWRS) Basis for Interim Operation (BIO) and its supporting calculation notes. Revised analyses were performed for the spray and pool leak accidents since the RCSTS flows and pressures differ from those assumed in the TWRS BIO. Revision 1 of the document incorporates review comments

  1. Nordic nuclear safety research 1994-1997. Project on disposal of radioactive waste

    International Nuclear Information System (INIS)

    Broden, Karin

    1999-01-01

    This presentation describes the Nordic Nuclear Safety Research (NKS) programme, which is a scientific co-operation programme in nuclear safety, radiation protection and emergence preparedness. The purpose of the programme is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, manuals, recommendations, and other types of background material. This material is to serve decision-makers and other concerned staff members at authorities, research establishments and enterprises in the nuclear field. Three waste disposal projects under NKS are briefly described: (1) Waste characterisation, (2) Performance analysis of the engineered barrier system of the repositories for low- and intermediate-level waste, (3) Environmental impact assessment

  2. Safety research in the field of energy production. Plan for continued Nordic projects

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstroem, P E [Statens Vattenfallsverk, Stockholm (Sweden); Berg, J [Institutt for Atomenergi, Kjeller (Norway); Eckered, T [Statens Kaernkraftinspektion, Stockholm (Sweden)

    1980-01-01

    NGS, an ad hoc group of the Nordic Co-ordination Committee for Atomic Energy, has prepared this survey of proposed cooperative projects as a continuation of previous projects. New areas to be given priority are:- reactor safety, environmental effects in energy production and human reliability. Continued projects are:- quality assurance, radioactive waste and radioecology. (JIW)

  3. Safety cases for radioactive waste disposal facilities: guidance on confidence building and regulatory review IAEA-ASAM co-ordinated research project

    International Nuclear Information System (INIS)

    Ben Belfadhel, M.; Bennett, D.G.; Metcalf, P.; Nys, V.; Goldammer, W.

    2008-01-01

    The IAEA has been conducting two co-ordinated research programmes (CRPs) projects to develop and apply improved safety assessment methodologies for near-surface radioactive waste disposal facilities. The more recent of these projects, ASAM (application of safety assessment methodologies), included a Regulatory Review Working Group (RRWG) which has been working to develop guidance on how to gain confidence in safety assessments and safety cases, and on how to conduct regulatory reviews of safety assessments. This paper provides an overview of the ASAM project, focusing on the safety case and regulatory review. (authors)

  4. Designing and Developing an Effective Safety Program for a Student Project Team

    Directory of Open Access Journals (Sweden)

    John Catton

    2018-05-01

    Full Text Available In the workplace, safety must be the first priority of all employers and employees alike. In order to maintain the safety and well-being of their employees, employers must demonstrate due diligence and provide the appropriate safety training to familiarize employees with the hazards within the workplace. Although, a student “project team” is not a business, the work done by students for their respective teams is synonymous with the work done in a place of business and thus requires that similar safety precautions and training be administered to students by their team leads and faculty advisors. They take on the role of supervisors within the team dynamic. Student teams often utilize the guidelines and policies that their universities or colleges have developed in order to build a set of standard operating procedures and safety training modules. These guidelines aid in providing a base for training for the team, however, they are no substitute for training specific to the safety risks associated with the work the team is doing. In order to comply with these requirements, a full analysis of the workplace is required to be completed. A variety of safety analysis techniques need to be applied to define the hazards within the workplace and institute appropriate measures to mitigate them. In this work, a process is developed for establishing a safety training program for a student project team, utilizing systems safety management techniques and the aspect of gamification to produce incentives for students to continue developing their skills. Although, systems safety management is typically applied to the design of active safety components or systems, the techniques for identifying and mitigating hazards can be applied in the same fashion to the workplace. They allow one to analyze their workplace and determine the hazards their employees might encounter, assign appropriate hazard ratings and segregate each respective hazard by their risks. In so

  5. Experience of Hungarian model project: 'Strengthening training for operational safety at Paks NPP'

    International Nuclear Information System (INIS)

    Kiss, I.

    1998-01-01

    Training of Operational Safety at Paks NPP is described including all the features of the project including namely: description of Paks NPP, its properties and performances; reasons for establishing Hungarian Model Project, its main goals, mentioning Hungarian and IAEA experts involved in the Project, its organization, operation, budget, current status together with its short term and long term impact

  6. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  7. IAEA TC Project 'Strengthening safety and reliability of fuel and materials in nuclear power plants'

    International Nuclear Information System (INIS)

    Makihara, Y.

    2008-01-01

    The Regional TC Project in Europe RER9076 'Strengthening Safety and Reliability of Fuel and Materials in Nuclear Power Plants' was launched in 2003 as a four-year project and was subsequently extended in 2006 to run through 2008. The purpose of the Project is to support the Central and Eastern European countries with the necessary tools to fulfill their own fuel and material licensing needs. The main objective will be to provide quality data on fuel and materials irradiated in power reactors and in dedicated experiments carried out in material test reactors (MTRs). Within the framework of the Project, ten tasks were implemented. These included experiments performed at the test facilities in the region, training courses and workshops related to fuel safety. While several tasks are expected to be completed by the end of RER9076, some remain. It would be desirable to initiate a new RER Project from the next TC cycle (2009-2011) in order to take over RER9076 and to implement new tasks required for enhancing fuel safety in the region. (author)

  8. The Environmental Health/Home Safety Education Project: a successful and practical U.S.-Mexico border initiative.

    Science.gov (United States)

    Forster-Cox, Susan C; Mangadu, Thenral; Jacquez, Benjamín; Fullerton, Lynne

    2010-05-01

    The Environmental Health/Home Safety Education Project (Proyecto de Salud Ambiental y Seguridad en el Hogar) has been developed in response to a wide array of severe and often preventable environmental health issues occurring in and around homes on the U.S.-Mexico border. Utilizing well-trained community members, called promotoras , homes are visited and assessed for potential environmental hazards, including home fire and food safety issues. Data analyzed from project years 2002 to 2005 shows a significant impact in knowledge levels and initial behavior change among targeted participants as it relates to fire and food safety issues. Since the initiation of the project in 1999, hundreds of participants have improved their quality of life by making their homes safer. The project has proven to be sustainable, replicable, flexible, and attractive to funders.

  9. Application of project management methodology in design management of nuclear safety related structure

    International Nuclear Information System (INIS)

    Chen Mao

    2004-01-01

    This paper focuses on the application of project management methodology in the design management of Nuclear Safety Related Structure (NSRS), considering the design management features of its civil construction. Based on the experiences from the management of several projects, the project management triangle is proposed to be used in the management, to well treat the position of design interface in the project management. Some other management methods are also proposed

  10. Road safety in Poland : a contribution to the improvement of road safety in Poland in the framework of the GAMBIT project.

    NARCIS (Netherlands)

    Brouwer, M. Koornstra, M.J. Mulder, J.A.G. & Wegman, F.C.M.

    1995-01-01

    This report describes a SWOV Institute for Road Safety Research study. The study was commissioned: (1) to give a general opinion on the "GAMBIT" project contents; and (2) to express an expectation about the future traffic safety development in Poland. The SWOV contribution has been realized within

  11. Developing tools for the safety specification in risk management plans: lessons learned from a pilot project.

    Science.gov (United States)

    Cooper, Andrew J P; Lettis, Sally; Chapman, Charlotte L; Evans, Stephen J W; Waller, Patrick C; Shakir, Saad; Payvandi, Nassrin; Murray, Alison B

    2008-05-01

    Following the adoption of the ICH E2E guideline, risk management plans (RMP) defining the cumulative safety experience and identifying limitations in safety information are now required for marketing authorisation applications (MAA). A collaborative research project was conducted to gain experience with tools for presenting and evaluating data in the safety specification. This paper presents those tools found to be useful and the lessons learned from their use. Archive data from a successful MAA were utilised. Methods were assessed for demonstrating the extent of clinical safety experience, evaluating the sensitivity of the clinical trial data to detect treatment differences and identifying safety signals from adverse event and laboratory data to define the extent of safety knowledge with the drug. The extent of clinical safety experience was demonstrated by plots of patient exposure over time. Adverse event data were presented using dot plots, which display the percentages of patients with the events of interest, the odds ratio, and 95% confidence interval. Power and confidence interval plots were utilised for evaluating the sensitivity of the clinical database to detect treatment differences. Box and whisker plots were used to display laboratory data. This project enabled us to identify new evidence-based methods for presenting and evaluating clinical safety data. These methods represent an advance in the way safety data from clinical trials can be analysed and presented. This project emphasises the importance of early and comprehensive planning of the safety package, including evaluation of the use of epidemiology data.

  12. Definition of user needs and “hot topics”, Deliverable 2.1 of the H2020 project SafetyCube (Safety CaUsation, Benefits and Efficiency).

    NARCIS (Netherlands)

    Hagström, L. Thomson, R. Skogsmo, I. Houtenbos, M. Durso, C. Thomas, P. Elvik, R. & Wismans, J.

    2016-01-01

    Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project with the objective of developing an innovative road safety Decision Support System (DSS) that will enable policymakers and stakeholders to select and implement the most appropriate

  13. I and C safety research at the OECD Halden reactor project

    International Nuclear Information System (INIS)

    Gran, B.A.

    2007-01-01

    The overall objective of the Halden Reactor Project research on software systems dependability is to contribute to the successful introduction of digital I and C systems into NPPs. When celebrating the 50 years of the Halden Project in 2008, about 100 written reports have been delivered within this research. This research covers a number of topics covering safety, reliability, validation and verification, quality assurance, risk assessment, requirement engineering, error propagation, qualitative and quantitative assessment. In the paper some activities are described, pinpointing the importance of good joint projects with organisations in the member countries

  14. The arrangement of deformation monitoring project and analysis of monitoring data of a hydropower engineering safety monitoring system

    Science.gov (United States)

    Wang, Wanshun; Chen, Zhuo; Li, Xiuwen

    2018-03-01

    The safety monitoring is very important in the operation and management of water resources and hydropower projects. It is the important means to understand the dam running status, to ensure the dam safety, to safeguard people’s life and property security, and to make full use of engineering benefits. This paper introduces the arrangement of engineering safety monitoring system based on the example of a water resource control project. The monitoring results of each monitoring project are analyzed intensively to show the operating status of the monitoring system and to provide useful reference for similar projects.

  15. Construction safety monitoring based on the project's characteristic with fuzzy logic approach

    Science.gov (United States)

    Winanda, Lila Ayu Ratna; Adi, Trijoko Wahyu; Anwar, Nadjadji; Wahyuni, Febriana Santi

    2017-11-01

    Construction workers accident is the highest number compared with other industries and falls are the main cause of fatal and serious injuries in high rise projects. Generally, construction workers accidents are caused by unsafe act and unsafe condition that can occur separately or together, thus a safety monitoring system based on influencing factors is needed to achieve zero accident in construction industry. The dynamic characteristic in construction causes high mobility for workers while doing the task, so it requires a continuously monitoring system to detect unsafe condition and to protect workers from potential hazards. In accordance with the unique nature of project, fuzzy logic approach is one of the appropriate methods for workers safety monitoring on site. In this study, the focus of discussion is based on the characteristic of construction projects in analyzing "potential hazard" and the "protection planning" to be used in accident prevention. The data have been collected from literature review, expert opinion and institution of safety and health. This data used to determine hazard identification. Then, an application model is created using Delphi programming. The process in fuzzy is divided into fuzzification, inference and defuzzification, according to the data collection. Then, the input and final output data are given back to the expert for assessment as a validation of application model. The result of the study showed that the potential hazard of construction workers accident could be analysed based on characteristic of project and protection system on site and fuzzy logic approach can be used for construction workers accident analysis. Based on case study and the feedback assessment from expert, it showed that the application model can be used as one of the safety monitoring tools.

  16. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part I; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del I

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  17. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part II; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del II

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  18. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part III; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del III

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  19. Procedures for initiation, cost-sharing and management of OECD projects in nuclear safety

    International Nuclear Information System (INIS)

    2002-01-01

    The OECD (CSNI) projects aim to produce results relevant for the safe operation of nuclear power plants through international collaborative projects. In general, the projects consist of advanced experimental programmes that are conducted at specialized facilities. At present, the following OECD (CSNI) projects are in operation: - The Halden Project, covering fuel/materials and I and C/Human Factors issues; - The Cabri Project, addressing reactivity transients on high burnup fuels; - The MASCA Project, which deals with in-vessel corium phenomena; - The OLHF Project, dealing with lower head failure mechanisms; - The SETH Project addressing thermal-hydraulics issues, started in 2001; - The MCCI Project on ex-vessel coolability and melt-concrete interaction. There are significant differences among these projects in terms of their motivation, size and scope. The Halden Project and the Cabri Water Loop Project are large undertakings where the host organisations assume full and direct responsibility for the project establishment and administration - as well as for the negotiation with relevant parties on the terms of participation. In the other cases, instead, the NEA secretariat has a more direct responsibility, conferred by the CSNI, in establishing the project technical and financial basis, as well as for its implementation and administration. The objective of this procedure is to provide a common basis for the establishment and management of the OECD projects in the area of nuclear safety. It is a follow-up of a recommendation expressed by the CSNI Bureau during its meeting in October 2001, where the procedures for the establishment and management of the OECD (CSNI) projects in nuclear safety were addressed. While this procedure attempts at defining general guidelines for project initiation, financing and management, one should bear in mind that each project has its own motivation, background and framework. Thus, some degree of flexibility in project structure

  20. The International Criticality Safety Benchmark Evaluation Project on the Internet

    International Nuclear Information System (INIS)

    Briggs, J.B.; Brennan, S.A.; Scott, L.

    2000-01-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in October 1992 by the US Department of Energy's (DOE's) defense programs and is documented in the Transactions of numerous American Nuclear Society and International Criticality Safety Conferences. The work of the ICSBEP is documented as an Organization for Economic Cooperation and Development (OECD) handbook, International Handbook of Evaluated Criticality Safety Benchmark Experiments. The ICSBEP Internet site was established in 1996 and its address is http://icsbep.inel.gov/icsbep. A copy of the ICSBEP home page is shown in Fig. 1. The ICSBEP Internet site contains the five primary links. Internal sublinks to other relevant sites are also provided within the ICSBEP Internet site. A brief description of each of the five primary ICSBEP Internet site links is given

  1. Natural Gas Vehicle Cylinder Safety, Training and Inspection Project

    Energy Technology Data Exchange (ETDEWEB)

    Hank Seiff

    2008-12-31

    Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

  2. West Virginia peer exchange : streamlining highway safety improvement program project delivery.

    Science.gov (United States)

    2015-01-01

    The West Virginia Division of Highways (WV DOH) hosted a Peer Exchange to share information and experiences : for streamlining Highway Safety Improvement Program (HSIP) project delivery. The event was held September : 22 to 23, 2014 in Charleston, We...

  3. Safety case for the disposal of spent nuclear fuel at Olkiluoto - Synthesis 2012

    International Nuclear Information System (INIS)

    2012-12-01

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR 2012) and application for a construction licence for a spent nuclear fuel repository. Consistent with the Government Decisions-in- Principle, this foresees a repository developed in bedrock at the Olkiluoto site according to the KBS-3 method, designed to accept spent nuclear fuel from the lifetime operations of the Olkiluoto and Loviisa reactors. Synthesis 2012 presents a synthesis of Posiva Oy's Safety Case 'TURVA-2012' portfolio. It summarises the design basis for the repository at the Olkiluoto site, the assessment methodology and key results of performance and safety assessments. It brings together all the lines of argument for safety, evaluation of compliance with the regulatory requirements, and statement of confidence in long-term safety and Posiva's safety analyses. The TURVA-2012 safety case demonstrates that the proposed repository design provides a safe solution for the disposal of spent nuclear fuel, and that the performance and safety assessments are fully consistent with all the legal and regulatory requirements related to long-term safety as set out in Government Decree 736/2008 and in guidance from the nuclear regulator - the STUK. Moreover, Posiva considers that the level of confidence in the demonstration of safety is appropriate and sufficient to submit the construction licence application to the authorities. The assessment of long-term safety includes uncertainties, but these do not affect the basic conclusions on the long-term safety of the repository. (orig.)

  4. Study of Evaluation OSH Management System Policy Based On Safety Culture Dimensions in Construction Project

    Science.gov (United States)

    Latief, Yusuf; Armyn Machfudiyanto, Rossy; Arifuddin, Rosmariani; Mahendra Fira Setiawan, R.; Yogiswara, Yoko

    2017-07-01

    Safety Culture in the construction industry is very influential on the socio economic conditions that resulted in the country’s competitiveness. Based on the data, the accident rate of construction projects in Indonesia is very high. In the era of the Asian Economic Community (AEC) Indonesian contractor is required to improve competitiveness, one of which is the implementation of the project without zero accident. Research using primary and secondary data validated the results of the literature experts and questionnaire respondents were analyzed using methods SmartPLS, obtained pattern of relationships between dimensions of safety culture to improve the performance of Safety. The results showed that the behaviors and Cost of Safety into dimensions that significantly affect the performance of safety. an increase in visible policy-based on Regulation of Public Work and Housing No 5/PRT/M/2014 to improve to lower the accident rate.

  5. EC-funded project (HTR-L) for the definition of a European safety approach for HTR's

    International Nuclear Information System (INIS)

    Ehster, S.; Dominguez, M.T.; Coe, I.; Brinkmann, G.; Lensa, W. von; Mheen, W. van der; Alessandroni, C.; Pirson, J.

    2002-01-01

    The inherent safety features of the HTRs make events leading to severe core damage highly unlikely and constitute the main differentiating aspects compared to LWRs. While a known and stable regulatory environment has long been established for Light Water Reactors, a different approach is necessary for the licensing of HTR based power plants. Among the R and D projects funded by the European Commission for HTR reactors, the HTR-L project is dedicated to the definition of a common and coherent European safety approach and the identification of the main licensing issues for the licensing framework of the Modular HTRs. Other specific objectives of this project are : To develop a methodology to classify the accidental conditions; To define the preliminary requirements for the confinement of radioactive products and to assess the need for a 'conventional' containment structure; To establish a SSC (2) classification and to define the rules for equipment qualification; To identify the key issues that need to be addressed in the licensing process of the HTRs; To organize a workshop with the concerned Safety Authorities at the end of the project. This paper will explain the project objectives and its final expected outcomes. (author)

  6. Severe accident assessment. Results of the reactor safety research project VAHTI

    International Nuclear Information System (INIS)

    Sairanen, R.

    1997-10-01

    The report provides a summary of the publicly funded nuclear reactor safety research project Severe Accident Management (VAHTI). The project has been conducted at the Technical Research Centre of Finland (VTT) during the years 1994-96. The main objective was to assist the severe accident management programmes of the Finnish nuclear power plants. The project was divided into five work packages: (1) thermal hydraulic validation of the APROS code, (2) core melt progression within a BWR pressure vessel, (3) failure mode of the BWR pressure vessel, (4) Aerosol behaviour experiments, and (5) development of a computerized severe accident training tool

  7. Extending Occupational Health and Safety to Urban Street Vendors: Reflections From a Project in Durban, South Africa.

    Science.gov (United States)

    Alfers, Laura; Xulu, Phumzile; Dobson, Richard; Hariparsad, Sujatha

    2016-08-01

    This article focuses on an action-research project which is attempting to extend occupational health and safety to a group of street traders in Durban, South Africa, using a variety of different (and sometimes unconventional) institutional actors. The article is written from the perspective of key people who have played a role in conceptualizing and administering the project and is intended to deepen the conversation about what it means to extend occupational health to the informal economy. It explores this question through a reflection on three key project activities: the setting up of a trader-led health and safety committee, an occupational health and safety training course, and a clinical health assessment. It concludes with a discussion of the issues that emerge from the reflections of project participants, which include the need to bring occupational health and urban health into closer conversation with one another, the need to be cognizant of local "informal" politics and the impact that has on occupational health and safety interventions, and the need to create greater opportunities for occupational health and safety professionals to interact with workers in the informal economy. © The Author(s) 2016.

  8. Interim main report of the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, Allan (ed.) [and others

    2004-08-01

    This document is an interim report on the safety assessment SR-Can (SR in the acronym stands for Safety Report and Can is short for canister). The final SR-Can report will support SKB's application to build an Encapsulation plant for spent nuclear fuel and is to be produced in 2006. The purpose of the present interim report is to demonstrate the methodology for safety assessment so that it can be reviewed before it is used in a license application. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. Preliminary data from the Forsmark site, presently being investigated by SKB as one of the candidate for a KBS-3 repository are used to some extent as examples. However, the collected data are yet too sparse to allow an evaluation of safety for this site. An important aim of this report is to demonstrate the proper handling of requirements on the safety assessment in applicable regulations. Therefore, regulations issued by the Swedish Nuclear Power Inspectorate and the Swedish Radiation Protection Authority are duplicated in an Appendix. The principal acceptance criterion requires that 'the annual risk of harmful effects after closure does not exceed 10{sup -6} for a representative individual in the group exposed to the greatest risk'. 'Harmful effects' refer to cancer and hereditary effects. Following the introductory chapter 1, this report outlines the methodology for the SR-Can assessment in chapter 2, and presents in chapters 3, 4 and 5 the initial state of the system and the plans and methods for handling external influences and internal processes, respectively. Function indicators are introduced in chapter 6 and a preliminary evaluation of these is given in chapter 7. The material presented in the first seven chapters is utilised in the scenario selection

  9. Synthesis of the IRSN report on its analysis of the safety guidance package (DOrS) of the ASTRID reactor project. Safety guidance document for the ASTRID prototype: Referral to the GPR. Opinion related to the safety guidance document of the ASTRID reactor project. ASTRID prototype: Safety guidance document for the ASTRID prototype

    International Nuclear Information System (INIS)

    Lachaume, Jean-Luc; Niel, Jean-Christophe

    2013-01-01

    A first document indicates the improvement guidelines for the ASTRID project based on the French experience in the field of sodium-cooled fast neutron reactors, addresses the safety objectives as they are presented for the ASTRID project, discusses how the project includes a regulation and design referential, and how it addresses various aspects of the design approach (ranking and analysis of operation situations, defence in depth, use of probabilistic studies, safety classification and qualification to accidental situations, taking internal and external aggressions into account and taking severe accidents into account at the design level). It comments the guidelines related to the first two barriers, to main safety functions (control of reactivity and of reactor cooling, containment of radioactive and toxic materials), to dismantling, to R and D for safety support. A second document is a letter sent by the ASN to the GPR (permanent group of experts in charge of nuclear reactors) about the safety guidance document for the ASTRID prototype. The third document is the answer and contains comments and recommendations by this group about the content of this document, and therefore addresses the same topics as the first document. The last document defines the framework of the approach to this document

  10. Nuclear Criticality Technology and Safety Project parameter study database

    International Nuclear Information System (INIS)

    Toffer, H.; Erickson, D.G.; Samuel, T.J.; Pearson, J.S.

    1993-03-01

    A computerized, knowledge-screened, comprehensive database of the nuclear criticality safety documentation has been assembled as part of the Nuclear Criticality Technology and Safety (NCTS) Project. The database is focused on nuclear criticality parameter studies. The database has been computerized using dBASE III Plus and can be used on a personal computer or a workstation. More than 1300 documents have been reviewed by nuclear criticality specialists over the last 5 years to produce over 800 database entries. Nuclear criticality specialists will be able to access the database and retrieve information about topical parameter studies, authors, and chronology. The database places the accumulated knowledge in the nuclear criticality area over the last 50 years at the fingertips of a criticality analyst

  11. The National Program for Occupational Safety and Health in Agriculture. 1992 Project Facts.

    Science.gov (United States)

    National Inst. for Occupational Safety and Health (DHHS/PHS), Cincinnati, OH.

    This book contains information about a project instituted in 1990 by the National Institute for Occupational Safety and Health (NIOSH) to prevent work-related diseases and injuries among agricultural workers. Included are facts about 25 projects within NIOSH and 42 cooperative agreements between NIOSH and institutions in 25 states. These…

  12. Analysis of Aviation Safety Reporting System Incident Data Associated With the Technical Challenges of the Vehicle Systems Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This analysis was conducted to support the Vehicle Systems Safety Technology (VSST) Project of the Aviation Safety Program (AVsP) milestone VSST4.2.1.01, "Identification of VSST-Related Trends." In particular, this is a review of incident data from the NASA Aviation Safety Reporting System (ASRS). The following three VSST-related technical challenges (TCs) were the focus of the incidents searched in the ASRS database: (1) Vechicle health assurance, (2) Effective crew-system interactions and decisions in all conditions; and (3) Aircraft loss of control prevention, mitigation, and recovery.

  13. Project Aquarius. Control of radioisotopes and safety

    Energy Technology Data Exchange (ETDEWEB)

    Post, Roy G [Department of Nuclear Engineering, University of Arizona (United States)

    1970-05-15

    The potential application of nuclear explosives to the development of water resources provides real hope for substantial increases in the availability of water from our natural water supplies. A wide range, exploratory project sponsored by the United States Atomic Energy Commission, the Bureau of Reclamation, the Arizona Atomic Energy Commission, and The University of Arizona was conducted by the Hydrology and Water Resources Office, the Department of Nuclear Engineering, and various state and federal governmental agencies in exploring the potential applications of nuclear explosives for developing water resources in the State of Arizona. The primary objective of the project was of a scouting nature, a reconnaissance effort to assess the potential for Arizona. This work, Project Aquarius, is at an early state and any significant conclusions are certainly premature. Since this is a survey, detailed analyses are not justified. Our purpose is to define limiting problems and estimate our ability to solve them. We do not seek to formulate a detailed solution until the project has been defined better. In all of the plowshare activities the primary responsibility of the Atomic Energy Commission for safety and control of not only radiological but all hazards has been well defined and documented. Thus, the work here does not reflect any opinion or voice of the Atomic Energy Commission but is based on my own views and conclusions. I have referred to the work of the various laboratories, offices, and contractors of the Atomic Energy Commission.

  14. Project Aquarius. Control of radioisotopes and safety

    International Nuclear Information System (INIS)

    Post, Roy G.

    1970-01-01

    The potential application of nuclear explosives to the development of water resources provides real hope for substantial increases in the availability of water from our natural water supplies. A wide range, exploratory project sponsored by the United States Atomic Energy Commission, the Bureau of Reclamation, the Arizona Atomic Energy Commission, and The University of Arizona was conducted by the Hydrology and Water Resources Office, the Department of Nuclear Engineering, and various state and federal governmental agencies in exploring the potential applications of nuclear explosives for developing water resources in the State of Arizona. The primary objective of the project was of a scouting nature, a reconnaissance effort to assess the potential for Arizona. This work, Project Aquarius, is at an early state and any significant conclusions are certainly premature. Since this is a survey, detailed analyses are not justified. Our purpose is to define limiting problems and estimate our ability to solve them. We do not seek to formulate a detailed solution until the project has been defined better. In all of the plowshare activities the primary responsibility of the Atomic Energy Commission for safety and control of not only radiological but all hazards has been well defined and documented. Thus, the work here does not reflect any opinion or voice of the Atomic Energy Commission but is based on my own views and conclusions. I have referred to the work of the various laboratories, offices, and contractors of the Atomic Energy Commission

  15. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  16. Design, production and initial state of the canister

    International Nuclear Information System (INIS)

    Cederqvist, Lars; Johansson, Magnus; Leskinen, Nina; Ronneteg, Ulf

    2010-12-01

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility.The report provides input on the initial state of the canisters to the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the canisters shall be handled and disposed. The report presents the design premises and reference design of the canister and verifies the conformity of the reference design to the design premises. The production methods and the ability to produce canisters according to the reference design are described. Finally, the initial state of the canisters and their conformity to the reference design and design premises are presented

  17. Design, production and initial state of the canister

    Energy Technology Data Exchange (ETDEWEB)

    Cederqvist, Lars; Johansson, Magnus; Leskinen, Nina; Ronneteg, Ulf

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility.The report provides input on the initial state of the canisters to the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the canisters shall be handled and disposed. The report presents the design premises and reference design of the canister and verifies the conformity of the reference design to the design premises. The production methods and the ability to produce canisters according to the reference design are described. Finally, the initial state of the canisters and their conformity to the reference design and design premises are presented

  18. Design, production and initial state of the closure

    International Nuclear Information System (INIS)

    2010-12-01

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The production reports are included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the closure and plugs in underground openings other than deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides some input to the operational safety report, SR-Operation, on how the closure and plugs shall be handled and installed. The report presents the design premises and reference designs of the closure and plugs and verifies their conformity to the design premises. It also briefly deals with the production of the closure and plugs. Finally, the initial state of the closure and plugs and their conformity to the reference designs and design premises are presented

  19. Design, production and initial state of the closure

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The production reports are included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the closure and plugs in underground openings other than deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides some input to the operational safety report, SR-Operation, on how the closure and plugs shall be handled and installed. The report presents the design premises and reference designs of the closure and plugs and verifies their conformity to the design premises. It also briefly deals with the production of the closure and plugs. Finally, the initial state of the closure and plugs and their conformity to the reference designs and design premises are presented

  20. Design, production and initial state of the buffer

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Lennart; Gunnarsson, David; Johannesson, Lars-Erik; Jonsson, Esther

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the buffer for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the buffer shall be handled and installed. The report presents the design premises and reference design of the buffer and verifies the conformity of the reference design to the design premises. It also describes the production of the buffer, from excavation and delivery of buffer material to installation in the deposition hole. Finally, the initial state of the buffer and its conformity to the reference design and design premises is presented

  1. Performance assessment and the safety case: Lessons from recent international projects and areas for further development

    International Nuclear Information System (INIS)

    Galson, Daniel A.; Bailey, Lucy

    2014-01-01

    The European Commission (EC) PAMINA project - Performance Assessment Methodologies in Application to Guide the Development of the Safety Case - was conducted over the period 2006-2009 and brought together 27 organisations from 10 countries. PAMINA had the aim of improving and developing a common understanding of performance assessment (PA) methodologies for disposal concepts for spent fuel and other long-lived radioactive wastes in a range of geological environments. This was followed by a Nuclear Energy Agency (NEA) sponsored project on Methods for Safety Assessment of Geological Disposal Facilities for Radioactive Waste (MeSA), which was completed in 2012. This paper presents a selection of conclusions from these projects, in the context of general understanding developed on what would constitute an acceptable safety case for a geological disposal facility, and outlines areas for further development. The paper also introduces a new project on PA that is under consideration within the context of the EC Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP). (authors)

  2. THESEUS - a research project to improve the safety standard of tank vehicles for dangerous goods

    International Nuclear Information System (INIS)

    Guenther, B.

    1992-01-01

    A research project reffered to as THESEUS was initiated by the Federal Ministry of Research and Technology of Germany. The intent of the investigation is to generate measures designed to enhance the safety standard of commercial transports of dangerous goods in tank vehicles. Hereby, the analysis of real accidents by teams within the project will provide the relevant parameters for the experimental and theoretical investigation of vehicles, tank components and safety devices. The project started in summer 1990. This paper will focus main features and the work done so far. Special consideration will be made to the failure behaviour of tank components as the authors field of activity. (orig.)

  3. 77 FR 70684 - Safety Zone; Bridge Demolition Project; Indiana Harbor Canal, East Chicago, IN

    Science.gov (United States)

    2012-11-27

    ... environmental risk to health or risk to safety that may disproportionately affect children. 10. Indian Tribal... the Cline Avenue bridge in East Chicago, IN. The Captain of the Port, Sector Lake Michigan, has determined that this demolition project will pose a significant risk to public safety and property. Such...

  4. Software pi/4 DQPSK Modem: A Student Project Using the TMS320-C6201 EVM Board

    OpenAIRE

    Weiss, S; Braithwaite, SJ; Stewart, RD

    2000-01-01

    This paper reports on a student project performed at the University of Southampton jointly by 4th year MEng students within the course "Advanced Radio Communications". The aim was to design a software modem capable of transmitting 16kb/s of data, whereby random number generation, advanced modulation, pulse shaping, synchronisation, and error counting techniques had to be applied. The ultimate aim was the implementation on a Texas Instruments TMS320-C6201 EVM board, which dictated some of the ...

  5. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  6. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda

  7. 77 FR 63732 - Safety Zone; Bridge Demolition Project; Indiana Harbor Canal, East Chicago, IN

    Science.gov (United States)

    2012-10-17

    ..., Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may.... The Captain of the Port, Sector Lake Michigan, has determined that this demolition project will pose a...

  8. Surveys of research projects concerning nuclear facility safety, financed by the Federal Ministry for the Environment, Nature Protection and Reactor Safety, 1989. (14. annual report on SR-projects)

    International Nuclear Information System (INIS)

    1990-11-01

    Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig.) [de

  9. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    Science.gov (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  10. Methodology for Safety Assessment Applied to Predisposal Waste Management. Report of the Results of the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) 2004–2010)

    International Nuclear Information System (INIS)

    2015-12-01

    Report of the Results of the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) (2004–2010) The IAEA’s progamme on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) focused on approaches and mechanisms for application of safety assessment methodologies for the predisposal management of radioactive waste. The initial outcome of the SADRWMS Project was achieved through the development of flowcharts, which have since been incorporated into IAEA Safety Standards Series No. GSG-3, Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste. In 2005, an initial specification was developed for the Safety Assessment Framework (SAFRAN) software tool to apply the SADRWMS flowcharts. In 2008, an in-depth application of the SAFRAN tool and the SADRWMS methodology was carried out on the predisposal management facilities of the Thailand Institute of Nuclear Technology Radioactive Waste Management Centre (TINT Facility). This publication summarizes the content and outcomes of the SADRWMS programme. The Chairman’s Report of the SADRWMS Project and the Report of the TINT test case are provided on the CD-ROM which accompanies this report

  11. Inventory of Federal energy-related environment and safety research for FY 1977. Volume II. Project listings

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This volume contains Biomedical and Environmental Research, Environmental Control Technology Research, and Operational and Environmental Safety Research project listings. The projects are ordered numerically by log number.

  12. Modelling of long term geochemical evolution and study of mechanical perturbation of bentonite buffer of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Marsal, Francois; Pellegrini, Delphine; Deleruyelle, Frederic; Serres, Christophe (French Institute for Radiological Protection and Nuclear Safety (IRSN) (FR)); Windt, Laurent de (Paris School of Mines (ENSMP) (FR))

    2008-03-15

    The Swedish Nuclear Fuel and Waste Management Co. (SKB) has recently completed a safety assessment project named SR-Can, related to the KBS-3 disposal concept. In this concept, the waste packages are surrounded by a buffer made of either MX-80 or Deponit CA-N bentonite. Interactions between the buffer and groundwater may modify the buffer composition and thus its containment properties. The Swedish Radiation Protection Authorities (SSI) requested the French Institute for Radiological Protection and Nuclear Safety (IRSN) to perform the present study in support of SSI review of the SR-Can report. The purpose is to assess the geochemical evolution of both potential buffer materials due to the intrusion of different types of groundwater, with a similar modelling layout to that reported in SR-Can. Three main categories of water inflows via a fracture intersecting a deposition hole are considered: the Forsmark reference groundwater, a high-salinity groundwater to account for up-rise of deep-seated brines and a diluted water representing ice-melting derived groundwater. In addition to this, the redox buffering capacity of Deponit CA-N bentonite and the thermal effect on MX-80 bentonite geochemistry have been assessed. This modelling work has been performed using the reactive transport modelling code HYTEC. The main outcome of the present study is that the intrusion of the considered groundwaters should not affect drastically the geochemistry of neither the Deponit CA-N nor the MX-80 bentonite on the long-term (100,000 y). Bentonite pH may reach high values (up to 10.5) in some cases but does not reach SKB criterion value related to bentonite chemical stability. Dissolution-precipitation of accessory minerals is not significant enough to induce important porosity changes (rise by maximum 2 %). Globally, the montmorillonite exchanger undergoes Na by Ca partial replacement, which may decrease the swelling pressure of the bentonite. The simulated intrusion of oxidizing waters

  13. Modelling of long term geochemical evolution and study of mechanical perturbation of bentonite buffer of a KBS-3 repository

    International Nuclear Information System (INIS)

    Marsal, Francois; Pellegrini, Delphine; Deleruyelle, Frederic; Serres, Chris tophe; Windt, Laurent de

    2008-03-01

    The Swedish Nuclear Fuel and Waste Management Co. (SKB) has recently completed a safety assessment project named SR-Can, related to the KBS-3 disposal concept. In this concept, the waste packages are surrounded by a buffer made of either MX-80 or Deponit CA-N bentonite. Interactions between the buffer and groundwater may modify the buffer composition and thus its containment properties. The Swedish Radiation Protection Authorities (SSI) requested the French Institute for Radiological Protection and Nuclear Safety (IRSN) to perform the present study in support of SSI review of the SR-Can report. The purpose is to assess the geochemical evolution of both potential buffer materials due to the intrusion of different types of groundwater, with a similar modelling layout to that reported in SR-Can. Three main categories of water inflows via a fracture intersecting a deposition hole are considered: the Forsmark reference groundwater, a high-salinity groundwater to account for up-rise of deep-seated brines and a diluted water representing ice-melting derived groundwater. In addition to this, the redox buffering capacity of Deponit CA-N bentonite and the thermal effect on MX-80 bentonite geochemistry have been assessed. This modelling work has been performed using the reactive transport modelling code HYTEC. The main outcome of the present study is that the intrusion of the considered groundwaters should not affect drastically the geochemistry of neither the Deponit CA-N nor the MX-80 bentonite on the long-term (100,000 y). Bentonite pH may reach high values (up to 10.5) in some cases but does not reach SKB criterion value related to bentonite chemical stability. Dissolution-precipitation of accessory minerals is not significant enough to induce important porosity changes (rise by maximum 2 %). Globally, the montmorillonite exchanger undergoes Na by Ca partial replacement, which may decrease the swelling pressure of the bentonite. The simulated intrusion of oxidizing waters

  14. Ferrocyanide Safety Project Task 3 Ferrocyanide Aging Studies FY 1993 annual report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Lumetta, M.R.; Schiefelbein, G.F.

    1993-10-01

    The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in single-shell waste storage tanks (SSTs), in particular the storage of waste in a safe manner. This Task Team, composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), and outside consultants, was formed in response to the need for an updated analysis of safety questions about the Hanford ferrocyanide tanks. The Ferrocyanides Safety Project at PNL is part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, sponsored by the US Department of Energy's Tank Farm Project Office, is to (1) maintain the ferrocyanide tanks with minimal risk of an accident, (2) select one or more strategies to assure safe storage, and (3) close out the unreviewed safety question (USQ). This annual report gives the results of the work conducted by PNL in FY 1993 on Task 3, Ferrocyanides Aging Studies, which deals with the aging behavior of simulated ferrocyanide wastes. Aging processes include the dissolution and hydrolysis of nickel ferrocyanides in high pH aqueous solutions. Investigated were the effects of pH variation; ionic strength and sodium ion concentration; the presence of anions such as phosphate, carbonate, and nitrate; temperature; and gamma radiation on solubility of ferrocyanide materials including In-Farm-lA, Rev. 4 flowsheet-prepared Na 2 NiFe(CN) 6

  15. Specific issues, exact locations: case study of a community mapping project to improve safety in a disadvantaged community.

    Science.gov (United States)

    Qummouh, Rana; Rose, Vanessa; Hall, Pat

    2012-12-01

    Safety is a health issue and a significant concern in disadvantaged communities. This paper describes an example of community-initiated action to address perceptions of fear and safety in a suburb in south-west Sydney which led to the development of a local, community-driven research project. As a first step in developing community capacity to take action on issues of safety, a joint resident-agency group implemented a community safety mapping project to identify the extent of safety issues in the community and their exact geographical location. Two aerial maps of the suburb, measuring one metre by two metres, were placed on display at different locations for four months. Residents used coloured stickers to identify specific issues and exact locations where crime and safety were a concern. Residents identified 294 specific safety issues in the suburb, 41.9% (n=123) associated with public infrastructure, such as poor lighting and pathways, and 31.9% (n=94) associated with drug-related issues such as drug activity and discarded syringes. Good health promotion practice reflects community need. In a very practical sense, this project responded to community calls for action by mapping resident knowledge on specific safety issues and exact locations and presenting these maps to local decision makers for further action.

  16. Safety case for the disposal of spent nuclear fuel at Olkiluoto - Synthesis 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR 2012) and application for a construction licence for a spent nuclear fuel repository. Consistent with the Government Decisions-in- Principle, this foresees a repository developed in bedrock at the Olkiluoto site according to the KBS-3 method, designed to accept spent nuclear fuel from the lifetime operations of the Olkiluoto and Loviisa reactors. Synthesis 2012 presents a synthesis of Posiva Oy's Safety Case 'TURVA-2012' portfolio. It summarises the design basis for the repository at the Olkiluoto site, the assessment methodology and key results of performance and safety assessments. It brings together all the lines of argument for safety, evaluation of compliance with the regulatory requirements, and statement of confidence in long-term safety and Posiva's safety analyses. The TURVA-2012 safety case demonstrates that the proposed repository design provides a safe solution for the disposal of spent nuclear fuel, and that the performance and safety assessments are fully consistent with all the legal and regulatory requirements related to long-term safety as set out in Government Decree 736/2008 and in guidance from the nuclear regulator - the STUK. Moreover, Posiva considers that the level of confidence in the demonstration of safety is appropriate and sufficient to submit the construction licence application to the authorities. The assessment of long-term safety includes uncertainties, but these do not affect the basic conclusions on the long-term safety of the repository. (orig.)

  17. The FORO Project on Safety Culture in Organizations, Facilities and Activities With Sources of Ionizing Radiation

    International Nuclear Information System (INIS)

    Bomben, A. M.; Ferro Fernández, R.; Arciniega Torres, J.; Ordoñez Gutiérrez, E.; Blanes Tabernero, A.; Cruz Suárez, R.; Da Silva Silveira, C.; Perera Meas, J.; Ramírez Quijada, R.; Videla Valdebenito, R.

    2016-01-01

    The aim of this paper is to present the Ibero-American Forum of Nuclear and Radiological Regulatory Authorities’ (FORO) Project on Safety Culture in organizations, facilities and activities with sources of ionizing radiation developed by experts from the Regulatory Authorities of Argentina, Brazil, Chile, Cuba, Spain, Mexico, Peru and Uruguay, under the scientific coordination of the International Atomic Energy Agency (IAEA). Taking into account that Safety Culture problems have been widely recognised as one of the major contributors to many radiological events, several international and regional initiatives are being carried out to foster and develop a strong Safety Culture. One of these initiatives is the two-year project sponsored by the FORO with the purpose to prepare a document to allow its member states understanding, promoting and achieving a higher level of Safety Culture.

  18. Surveys of research projects concerning nuclear facility safety, financed by the Bundesminister des Innern. 9th annual report on SR-projects 1984

    International Nuclear Information System (INIS)

    1985-06-01

    The FRG's Ministry of the Interior finances studies, expertises and investigations in the field of nuclear safety. The results of such work are meant to clarify questions left open concerning the execution of licensing procedures for nuclear facilities. The GRS (Reactor Safety Company) regularly provides information on the state of such studies, on the authority of the Ministry of the Interior. Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig./HP) [de

  19. Nuclear emergency preparedness. Final report of the Nordic Nuclear Safety Research Project BOK-1

    DEFF Research Database (Denmark)

    Lauritzen, B.

    2002-01-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, “Nuclear Emergency Preparedness”, was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects:Laboratory measurements and quality assurance (BOK-1.......1); Mobile measurements and measurement strategies (BOK-1.2); Field measurements and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in theNordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project...

  20. RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngblood, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In this report, a project plan is developed, focused on industry applications, using Risk-Informed Safety Margin Characterization (RISMC) tools and methods applied to realistic, relevant, and current interest issues to the operating nuclear fleet. RISMC focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. This set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. The proposed plan will focus on application of the RISMC toolkit, in particular, solving realistic problems of important current issues to the nuclear industry, in collaboration with plant owners and operators to demonstrate the usefulness of these tools in decision making.

  1. Review of the Norwegian-Russian Cooperation on Safety Projects at Kola and Leningrad Nuclear Power Plants 2005 - 2009

    International Nuclear Information System (INIS)

    Mattsson, H.; Tishakov, P.

    2010-11-01

    In this report, Norwegian Radiation Protection Authority (NRPA) has reviewed the Norwegian funded projects on nuclear safety performed in the period 2005-2009 under the Norwegian Action Plan. NRPA has evaluated the progress of eight projects implemented by the Institute for Energy Technology (IFE) at Kola Nuclear Power Plant (KNPP) and Leningrad Nuclear Power Plant (LNPP). NRPA has visited the plants, inspected delivered equipment and discussed the projects implementation with relevant personnel at the plants. One of NRPA findings is that the equipment has been delivered to KNPP and LNPP, it is in regular use by competent personnel, and the equipment contributes to safety of both plants. Furthermore, the cooperation between three main project partners - IFE, LNPP and KNPP, seems to be very productive. NRPA's main conclusion is therefore that the projects have been implemented as described in IFE's project reports and that the goals are met. Furthermore, this report reviews safety levels at the KNPP and LNPP. Safety parameters at the plants indicate that the safety level has been significantly improved since early 1990s when the cooperation between Norway and Russia was initiated. Probabilistic safety assessment (PSA) values and number of INES (International Nuclear Event Scale) events, two internationally acknowledged safety parameters, indicate that the safety level has been much improved since the early 1990s when the cooperation between Norway and Russia started. Although it is clear that the Norwegian-funded projects have contributed positively to this development it is difficult to quantify the contribution. Moreover, the report also reviews the planned life-time of and the decommissioning plans for the reactors at KNPP and LNPP. Construction of new LNPP reactors has started and it is estimated that they will be operational in 2013- 2015. The license of the oldest reactor at LNPP expires in 2018 and if the new reactors are in operation by that time, it is

  2. Using historical crash data as part of traffic work zone safety planning and project management strategies.

    Science.gov (United States)

    2014-07-01

    This funding enabled the project entitled, USING HISTORICAL CRASH DATA AS PART OF TRAFFIC WORK ZONE SAFETY : PLANNING AND PROJECT MANAGEMENT STRATEGIES to address the following: : Evaluate current organizational strategies with respect to w...

  3. Practical guidelines for the registration and monitoring of serious traffic injuries, Deliverable 7.1 of the H2020 project SafetyCube (Safety CaUsation, Benefits and Efficiency).

    NARCIS (Netherlands)

    Pérez, K. Weijermars, W.A.M. Amoros, E. Bauer, R. Bos, N. Dupont, E. Filtness, A. Houwing, S. Johannsen, H. Leskovsek, B. Machata, K. Martin, JL. Nuyttens, N. Olabarria, M. Pascal, L. & Van den Berghe, W.

    2017-01-01

    Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project. The project’s main objective is the development of an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select and implement the most

  4. Research projects into the safety of nuclear power plants. Period cover 01. January - 30. June 2017. Progress report

    International Nuclear Information System (INIS)

    2017-01-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to the topic areas of reactor safety research. The reports are arranged in sequence of their project numbers. Ilt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  5. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    International Nuclear Information System (INIS)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-01-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm/shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm/shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the ''International Handbook of Evaluated Criticality Safety Benchmark Experiments'' have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement/shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency

  6. Nuclear emergency preparedness. Final report of the Nordic nuclear safety research project BOK-1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, Bent [Risoe National Lab., Roskilde (Denmark)

    2002-02-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, 'Nuclear Emergency Preparedness', was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects: Laboratory measurements and quality assurance (BOK-1.1); Mobile measurements and measurement strategies (BOK-1.2); Field measurement and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in the Nordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project outline, objectives and organization are described and main results presented. (au)

  7. Nuclear emergency preparedness. Final report of the Nordic nuclear safety research project BOK-1

    International Nuclear Information System (INIS)

    Lauritzen, Bent

    2002-02-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, 'Nuclear Emergency Preparedness', was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects: Laboratory measurements and quality assurance (BOK-1.1); Mobile measurements and measurement strategies (BOK-1.2); Field measurement and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in the Nordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project outline, objectives and organization are described and main results presented. (au)

  8. Design, production and initial state of the backfill and plug in deposition tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Lennart; Gunnarsson, David; Johannesson, Lars-Erik; Jonsson, Esther

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the backfill and plug in deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the backfill and plug shall be handled and installed. The report presents the design premises and reference designs of the backfill and plug in deposition tunnels and verifies their conformity to the design premises. It also describes the production of the backfill from excavation and delivery of backfill material to installation in the deposition tunnel, and gives an outline of the installation of the plug. Finally, the initial states of the backfill and plug and their conformity to the reference designs and design premises are presented

  9. The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1

    Science.gov (United States)

    Lee, S. C.

    1989-01-01

    The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.

  10. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the

  11. Reports on BMBF-sponsored research projects in the field of reactor safety. Reporting period 1 July - 31 December 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit informs of the status of LWR tasks and projects on the safety of advanced reactors. Each progress report represents a compilation of individual reports about objectives, the work performed, the results, and the next steps of the works. The individual reports of quality assurance, safety of reactor component, emergency core cooling, lors of coolant, meltdown, fission product release, risk and reliability, are classified according to projects to the reactor safety research program. Another table uses the same classification system as applied in the nuclear safety index of the CEC. (DG)

  12. Radionuclide transport paths in the nearfield - a KBS-3 concept study

    International Nuclear Information System (INIS)

    Pusch, R.

    1990-07-01

    The general scope of the study has been to identify and define major paths for radionuclide transport from KBS3 canisters, focusing on the nearfield rock. A primary purpose was to document the hydraulic properties of the 'disturbed zones' around blasted tunnels and it is concluded from compilation of theoretical data and field experiment recording that stress relief and blasting effects combine to form a previous zone that extends to about 1 m from the tunnel periphery. It has an average, isotropic hydraulic conductivity of no less than 10 -8 m/s. A second major purpose of the study was to generalize the structure of granitic rock with respect to water-bearing fractures. Forsmark, Finnsjoen, and Stripa data have been considered and found to support the idea of rather regular 'orthogonal' fracture systems with relatively large spacings. The hydraulically active part of the fractures, which can be characterized by simple statistical distributions of persistence, spacing, and aperture, is formed by channels, which can be taken as plane, straight stripes with constant width and aperture. The width can be assumed on the basis of field observations while the aperture is estimated from the bulk conductivity and the geometry of the fracture network. The major transport paths of the rock have been concretized and combined to form a general simplified model intended for calculation of radionuclide transport through water flow and through diffusion through continuous water passages. This model comprises of a circumscribing pervious zone of 'wall disturbance' around the deposition holes in addition to the fracture channels. (author)

  13. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the System-Wide Safety and Assurance Technologies Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2015-01-01

    The Aviation Safety Program (AvSP) System-Wide Safety and Assurance Technologies (SSAT) Project asked the AvSP Systems and Portfolio Analysis Team to identify SSAT-related trends. SSAT had four technical challenges: advance safety assurance to enable deployment of NextGen systems; automated discovery of precursors to aviation safety incidents; increasing safety of human-automation interaction by incorporating human performance, and prognostic algorithm design for safety assurance. This report reviews incident data from the NASA Aviation Safety Reporting System (ASRS) for system-component-failure- or-malfunction- (SCFM-) related and human-factor-related incidents for commercial or cargo air carriers (Part 121), commuter airlines (Part 135), and general aviation (Part 91). The data was analyzed by Federal Aviation Regulations (FAR) part, phase of flight, SCFM category, human factor category, and a variety of anomalies and results. There were 38 894 SCFM-related incidents and 83 478 human-factorrelated incidents analyzed between January 1993 and April 2011.

  14. Safety assessment methodologies and their application in development of near surface waste disposal facilities - the ASAM project

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The scope of ASAM project covers near surface disposal facilities for all types of low and intermediate level wastes with emphasis of the post-closure safety assessment.The objectives are to explore practical application to a range of disposal facilities for a number of purposes e.g. development of design concepts, safety re-assessment, upgrading safety and to develop practical approaches to assist regulators, operators and other experts in review of safety assessment. The task of the Co-ordination Group are: reassessment of existing facilities - use of safety assessment in decision making on selection of options (volunteer site Hungary); disused sealed sources - evaluation of disposability of disused sealed sources in near surface facilities (volunteer site Saratov, Russia); mining and minerals processing waste - evaluation of long-term safety (volunteer site pmc S. Africa). An agreement on the scope and objectives of the project are reached and the further consideration, such as human intrusion/institutional control/security; waste from oil/gas industry; very low level waste; categorization of sealed sources coordinated with other IAEA activities are outlined

  15. The IAEA research project on improvement of safety assessment methodologies for near surface disposal facilities

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Graham, D.; Batandjieva, B.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Research Coordinated Project on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM) was launched in November 1997 and it has been underway for three years. The ISAM project was developed to provide a critical evaluation of the approaches and tools used in long-term safety assessment of near surface repositories. It resulted in the development of a harmonised approach and illustrated its application by way of three test cases - vault, borehole and Radon (a particular range of repository designs developed within the former Soviet Union) type repositories. As a consequence, the ISAM project had over 70 active participants and attracted considerable interest involving around 700 experts from 72 Member States. The methodology developed, the test cases, the main lessons learnt and the conclusions have been documented and will be published in the form of an IAEA TECDOC. This paper presents the work of the IAEA on improvement of safety assessment methodologies for near surface waste disposal facilities and the application of these methodologies for different purposes in the individual stages of the repository development. The paper introduces the main objectives, activities and outcome of the ISAM project and summarizes the work performed by the six working groups within the ISAM programme, i.e. Scenario Generation and Justification, Modelling, Confidence Building, Vault, Radon Type Facility and Borehole test cases. (author)

  16. Geo-scientific Information in the Radioactive Waste Management Safety Case Main Messages from the AMIGO Project

    International Nuclear Information System (INIS)

    2010-01-01

    Radioactive waste is associated with all phases of the nuclear fuel cycle as well as the use of radioactive materials in medicine, research and industry. For the most hazardous and long-lived waste, the solution being investigated worldwide is disposal in engineered repositories deep underground. The importance of geo-scientific information in selecting a site for geological disposal has long been recognised, but there has been growing acknowledgement of the broader role of this information in assessing and documenting the safety of disposal. The OECD/NEA Approaches and Methods for Integrating Geological Information in the Safety Case (AMIGO) project has demonstrated that geological data and understanding serve numerous roles in safety cases. The project, which ran from 2002 to 2008, underscored the importance of integrating geo-scientific information in the development of a disposal safety case and increasingly in the overall process of repository development, including, for example, siting decisions and ensuring the practical feasibility of repository layout and engineering. (authors)

  17. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    International Nuclear Information System (INIS)

    Tuunanen, J.; Tuomainen, M.

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  18. Modelling the redox front movement in a KBS-3 nuclear waste repository

    International Nuclear Information System (INIS)

    Romero, L.; Moreno, L.; Neretnieks, I.

    1993-05-01

    In a KBS-3 repository for spent nuclear fuel, radiolysis can occur if canisters are breached and water comes into contact with the fuel. The oxidants produced by radiolysis may migrate into the clay surrounding the canister and change the redox conditions from reducing to oxidizing. If much oxidants are produced, they can migrate to the water flowing in the fractures in the rock. Some of the oxidants also may oxidize the uranium and other nuclides in the fuel and make them more soluble. The nuclides will then migrate out in a higher oxidation state and may precipitate at the redox front. Calculations were done for a production of 144 moles of oxidants in one million years. A higher and a much lower production were also considered. It was assumed that the canister is either totally or locally corroded. The results show that, for the most probable production rate, a large fraction of oxidants would be consumed in the clay. If the corrosion is local and there is a fracture opposite the damage, the amount of oxidant transported into the fracture would be significant. Here the advance of the redox front in the fracture would be some tens of metres. For the lowest production rate, the oxidants never reach the fractures in the rock. Only with improbably high production rates could the tips of the redox front move very long distances, in isolated channels that are not part of a network

  19. State partnership in environmental health and safety phase of Plowshare projects

    Energy Technology Data Exchange (ETDEWEB)

    Kinsman, S [California State Department of Public Health, Berkeley, CA (United States)

    1969-07-01

    When experiments on projects involving Plowshare devices are conceived, the state chosen for the project should be invited to participate in planning the health and safety aspects and be prepared to actively participate in the D-Day phase as well as the post-detonation activity. In California nuclear science technology and competence have preceded the social acceptance and use of nuclear devices for large scale Plowshare projects. However, the environmental surveillance program of the Bureau of Radiological Health in the State Department of Public Health has established an operative program which will be ready and able to function as an active participant or in a support role in environmental health phases of nuclear projects scheduled in the State. A description of our present program will be included in this paper. This will enable the attendees and readers to realize capabilities which will be activated for participation and/or support roles during Plowshare activities in the State or in a neighboring state if the need arises. (author)

  20. State partnership in environmental health and safety phase of Plowshare projects

    International Nuclear Information System (INIS)

    Kinsman, S.

    1969-01-01

    When experiments on projects involving Plowshare devices are conceived, the state chosen for the project should be invited to participate in planning the health and safety aspects and be prepared to actively participate in the D-Day phase as well as the post-detonation activity. In California nuclear science technology and competence have preceded the social acceptance and use of nuclear devices for large scale Plowshare projects. However, the environmental surveillance program of the Bureau of Radiological Health in the State Department of Public Health has established an operative program which will be ready and able to function as an active participant or in a support role in environmental health phases of nuclear projects scheduled in the State. A description of our present program will be included in this paper. This will enable the attendees and readers to realize capabilities which will be activated for participation and/or support roles during Plowshare activities in the State or in a neighboring state if the need arises. (author)

  1. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-05-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm / shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm / shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the “International Handbook of Evaluated Criticality Safety Benchmark Experiments” have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement / shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy

  2. The NPPR Trnava participation in the NPP V-2 modernisation and safety improvement project

    International Nuclear Information System (INIS)

    Michal, V.; Losonsky, B.; Magdolen, J.

    1999-01-01

    The presented contribution deals with form, present state and results of Nuclear Power Plants Research Inst.e participation in the NPP V-2 Jaslovske Bohunice Modernization and Safety Improvement Project.(author)

  3. The application of integrated safety management principles to the Tritium Extraction Facility project

    International Nuclear Information System (INIS)

    Hickman, M.O.; Viviano, R.R.

    2000-01-01

    The DOE has developed a program that is accomplishing a heightened safety posture across the complex. The Integrated Safety Management (ISM) System (ISMS) program utilizes five core functions and seven guiding principles as the basis for implementation. The core functions define the work scope, analyze the hazards, develop and implement hazard controls, perform the work, and provide feedback for improvement. The guiding principles include line management responsibility, clear roles and responsibilities, competence per responsibilities, identification of safety standards/requirements, tailored hazard control, balanced priorities, and operations authorization. There exists an unspecified eighth principle, that is, worker involvement. A program requiring the direct involvement of the employees who are actually performing the work has been shown to be quite an effective method of communicating safety requirements, controlling work in a safe manner, and reducing safety violations and injuries. The Tritium Extraction Facility (TEF) projects, a component of the DOE's Commercial Light Water Reactor Tritium Production program, has taken the ISM principles and core functions and applied them to the project's design. The task of the design team is to design a facility and systems that will meet the production requirements of the DOE tritium mission as well as a design that minimizes the workers' exposure to adverse safety situations and hazards/hazardous materials. During the development of the preliminary design for the TEF, design teams consisted of not only designers but also personnel who had operational experience in the existing tritium and personnel who had operational experience in the existing tritium and personnel who had specialized experience from across the DOE complex. This design team reviewed multiple documents associated with the TEF operation in order to identify and document the hazards associated with the tritium process. These documents include hazards

  4. Occupational Safety and Health Program at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    L. M. Calderon

    1999-01-01

    The West Valley Nuclear Services Co. LLC (WVNS) is committed to provide a safe, clean, working environment for employees, and to implement U.S. Department of Energy (DOE) requirements affecting worker safety. The West Valley Demonstration Project (WVDP) Occupational Safety and Health Program is designed to protect the safety, health, and well-being of WVDP employees by identifying, evaluating, and controlling biological, chemical, and physical hazards in the work place. Hazards are controlled within the requirements set forth in the reference section at the end of this report. It is the intent of the WVDP Occupational Safety and Health Program to assure that each employee is provided with a safe and healthy work environment. This report shows the logical path toward ensuring employee safety in planning work at the WVDP. In general, planning work to be performed safely includes: combining requirements from specific programs such as occupational safety, industrial hygiene, radiological control, nuclear safety, fire safety, environmental protection, etc.; including WVDP employees in the safety decision-making processes; pre-planning using safety support re-sources; and integrating the safety processes into the work instructions. Safety management principles help to define the path forward for the WVDP Occupational Safety and Health Program. Roles, responsibilities, and authority of personnel stem from these ideals. WVNS and its subcontractors are guided by the following fundamental safety management principles: ''Protection of the environment, workers, and the public is the highest priority. The safety and well-being of our employees, the public, and the environment must never be compromised in the aggressive pursuit of results and accomplishment of work product. A graded approach to environment, safety, and health in design, construction, operation, maintenance, and deactivation is incorporated to ensure the protection of the workers, the public, and the environment

  5. RADON-type disposal facility safety case for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Guskov, A.; Batanjieva, B.; Kozak, M.W.; Torres-Vidal, C.

    2002-01-01

    The ISAM safety assessment methodology was applied to RADON-type facilities. The assessments conducted through the ISAM project were among the first conducted for these kinds of facilities. These assessments are anticipated to lead to significantly improved levels of safety in countries with such facilities. Experience gained though this RADON-type Safety Case was already used in Russia while developing national regulatory documents. (author)

  6. An integrated framework for cost- benefit analysis in road safety projects using AHP method

    Directory of Open Access Journals (Sweden)

    Mahsa Mohamadian

    2011-10-01

    Full Text Available Cost benefit analysis (CBA is a useful tool for investment decision-making from economic point of view. When the decision involves conflicting goals, the multi-attribute analysis approach is more capable; because there are some social and environmental criteria that cannot be valued or monetized by cost benefit analysis. The complex nature of decision-making in road safety normally makes it difficult to reach a single alternative solution that can satisfy all decision-making problems. Generally, the application of multi-attribute analysis in road sector is promising; however, the applications are in preliminary stage. Some multi-attribute analysis techniques, such as analytic hierarchy process (AHP have been widely used in practice. This paper presents an integrated framework with CBA and AHP methods to select proper alternative in road safety projects. The proposed model of this paper is implemented for a case study of improving a road to reduce the accidents in Iran. The framework is used as an aid to cost benefit tool in road safety projects.

  7. On integration and innovation of sino-foreign safety culture in Haiyang AP1000 Project

    International Nuclear Information System (INIS)

    Li Ruipu; Song Fengwei

    2010-01-01

    The undergoing Haiyang Nuclear Power Plant is not only introducing the top-advanced AP1000 nuclear technology, but also the mature HSE management system from U.S.A. It's very important for both sides to communicate, comprehend and acculturation of both different culture. After over 1 year discussion and practice, the experts of Westinghouse Consortium and Chinese HSE engineers have established an distinctive safety culture of AP1000 Project initially, demonstrating the followings: Exemplary actions of the expat experts and the SNPTC leaders, the high level standard HSE procedures, HSE audit, various training, HSE inspection all-around, the safety performance assessment for prospective index, JHA/JSA , emergency system, humanism rewards and punishment etc.. Haiyang SPMO has made Three-Step master plan for AP1000 project HSE Routine by analysis the site problems and the difference between Chinese and American, that is, from 2008 to 2020, when nuclear power achieve to independent, safety culture of Haiyang AP1000 will change from 'dependent' to 'independent', until the last 'interdependent'. (authors)

  8. The application of risk analysis methods for the evaluation of the KBS-II encapsulation plant

    International Nuclear Information System (INIS)

    Olshausen, K.D.

    1981-01-01

    Following a short description of the process of risk analysis and a definition of the objective, the encapsulation plant is described to the extent required. For certain systems, e.g. ventilation, the data was insufficient and some assumptions had to be made. A number of critical events were identified, and one of these, the release of radioactive substances through the ventilation system, was chosen for more detailed analysis. The plant was regarded as a system of barriers to which the substance had to be transported (TO), and through which the substance had to penetrate (THROUGH). The procedure is therefore called the TO/THROUGH method. Detailed fault trees with 'release via ventilation' as the critical event (top event) were drawn. As a numerical example two initiating events from the KBS-II report were treated; 1. degassing of previously damaged pins (2 per year); 2. fall of a fully loaded rack (1 per year). If either of these events coincides with failure of the ventilation system radioactive dust (aerosol) can be released to the atmosphere. The probability for this and the amount of radioactivity released are estimated. (JIW)

  9. Reports on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1977-06-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of these investigations within the series 'GRS-F-Forschrittsberichte' (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the different projects of the search program. The individual reports are prepared by the contractors themselves as a documentation of their progress in work and published by the GRS-FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. Each report describes the work performed, the results and the next steps of the work. The individual reports are attached to the classification system established by the CEC (Commission of the European Communities). The GRS-F-Progress Reports also include a list of the current investigations arranged according to the projects of the BMFT-Research Program Reactor Safety. This compilation, in addition to the LWR-investigations, also contains first contributions on the safety of advanced reactors. (orig.) [de

  10. Reports on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1977-11-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of BMFT, informs continuously of the status of these investigations within the series 'GRS-F-Fortschrittsberichte' (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the different projects of the search program. The individual reports are prepared by the contractors themselves as a documentation of their progress in work and published by the GRS-FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. Each report describes the work performed, the results and the next steps of the work. The individual reports are attached to the classification system established by the CEC (Commission of the European Communities). The GRS-F-Progress Reports also include a list of the current investigations arranged according to the projects of the BMFT-Research Program Reactor Safety. This compilation, in addition to the LWR-investigations, also contains first contributions on the safety of advanced reactors. (orig.) [de

  11. Reports on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1977-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of these investigations within the series 'GRS-F-Fortschrittsberichte' (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the different projects of the search program. The individual reports are prepared by the contractors themselves as a documentation of their progress in work and published by the GRS-FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. Each report describes the work performed, the results and the next steps of the work. The individual reports are attached to the classification system established by the CEC (Commission of the European Communities). The GRS-F-Progress Reports also include a list of the current investigations arranged according to the projects of the BMFT-Research Program Reactor Safety. This compilation, in addition to the LWR-investigations, also contains first contributions on the safety of advanced reactors. (orig.) [de

  12. Technical and administrative approach for the West Valley Demonstration Project Safety Program

    International Nuclear Information System (INIS)

    Newsom, P.C.; Roberts, C.J.; Yuchien Yuan; Marchetti, S.

    1987-06-01

    The principal objective of the West Valley Demonstration Project (WVDP) is to vitrify the 2.2 million liters of high-level radioactive waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC). This simple statement of purpose, however, does not convey a sense of the complexity of the undertaking. The vitrification task is not only complex in and of itself, but requires a myriad of other activities to be accomplished on an intricate and fast paced schedule in order to support it. The West Valley Demonstration Project Act (P.L 96-368), U.S. Department of Energy Order DOE-5481.1A, Idaho Operations Office Order ID-5481.1 and standard nuclear industry practice all require that proposed systems and operations involving hazards not routinely encountered by the general public be analyzed to identify potential hazards and consequences, and to assure that reasonable measures are taken to eliminate, control, or mitigate these potential consequences. Virtually every substantive aspect of the WVDP involves hazards beyond those routinely encountered and accepted by the general public. In order to assure the safety of the public and the workers at the WVDP, a system of hazard identification, categorization, analysis and review has been established. In parallel with this system, a procedure for developing the minimum design specifications and quality assurance requirements has been developed for Project systems, components, and structures which play a role in the safety of a specific major facility or the overall Project. 29 refs., 3 figs., 6 tabs

  13. The Citizenship Safety Project: a pilot study.

    Science.gov (United States)

    Frederick, K; Barlow, J

    2006-02-01

    The Government White Paper Saving Lives: Our Healthier Nation (1999) provides a clear indication that accidents are a serious public health problem and have been targeted by the Department of Health as a key area for prevention over the next 10 years. School-based injury prevention programmes have been identified as one of the key settings for the implementation of the White Paper's heath promotion strategies. The Citizen Safety Project (CSP) is a peer-delivered injury prevention programme for Year 10 students (14-15 years) and Year 2 pupils (6-7 years). This paper summarizes the findings of a pilot study that assessed the feasibility of implementing the CSP in schools and of conducting a larger study. Working as part of their Personal Social Health Education lessons, 11 pairs (n = 22) of Year 10 students developed a project to take one accident prevention theme of their choice into a primary school to teach small groups of five or six Year 2 pupils (n = 55). A formative evaluation was conducted, based on interviews with Year 2 and Year 10 teachers (n = 2), and the diaries of Year 10 students. Knowledge of accident prevention and risk awareness was measured in Year 2 pupils using the Draw and Write technique, and impact on Year 10 students was measured using self-esteem and locus of control inventories. Using both statistical and thematic analysis the study concludes that the CSP is well accepted, improves knowledge in Year 2 pupils and boosts confidence in Year 10 students, while concurrently achieving key stage attainment targets. Implications of the study are discussed in terms of future research, as are recommendations with regard to modifications to the project.

  14. The funding of dangerous nuclear projects. Nuclear trade and safety: the role of French private banks. What are we talking about?

    International Nuclear Information System (INIS)

    Philippe, Isabelle

    2011-01-01

    Countries which export nuclear technologies, notably France, have developed mechanisms of financial support to incite private banks to finance the sale of reactors to foreign countries, notably EPRs in the case of France. After having briefly introduced this issue, and dealing with the French case, this publication indicates the concerned banks, and outlines that some of them finance nuclear projects which have been assessed by NGOs as dangerous in terms of nuclear safety. It notably presents the Angra 3 project in Brazil: its cost, its planning, its main safety problems (obsolete technology, building authorization awarded without any actual safety analysis, situation of conflict of interest for the Brazilian regulator). It also presents the Jaitapur project in India in which Areva is as well involved: costs, funding, planning, main risks (seismic risk area, safety level much lower than the one required in France, controversy on the impact study). The document finally explains why banks must not fund nuclear projects

  15. 76 FR 63988 - Pilot Project on NAFTA Trucking Provisions; Pre-Authorization Safety Audits

    Science.gov (United States)

    2011-10-14

    ...-0097] Pilot Project on NAFTA Trucking Provisions; Pre-Authorization Safety Audits AGENCY: Federal Motor... motor carriers that applied to participate in the Agency's long-haul pilot program to test and... intent to proceed with the initiation of a United States- Mexico cross-border long-haul trucking pilot...

  16. Final Hazard Classification and Auditable Safety Analysis for the 105-F Building Interim Safe Storage Project

    International Nuclear Information System (INIS)

    Rodovsky, T.J.; Bond, S.L.

    1998-07-01

    The auditable safety analysis (ASA) documents the authorization basis for the partial decommissioning and facility modifications to place the 105-F Building into interim safe storage (ISS). Placement into the ISS is consistent with the preferred alternative identified in the Record of Decision (58 FR). Modifications will reduce the potential for release and worker exposure to hazardous and radioactive materials, as well as lower surveillance and maintenance (S ampersand M) costs. This analysis includes the following: A description of the activities to be performed in the course of the 105-F Building ISS Project. An assessment of the inventory of radioactive and other hazardous materials within the 105-F Building. Identification of the hazards associated with the activities of the 105-F Building ISS Project. Identification of internally and externally initiated accident scenarios with the potential to produce significant local or offsite consequences during the 105-F Building ISS Project. Bounding evaluation of the consequences of the potentially significant accident scenarios. Hazard classification based on the bounding consequence evaluation. Associated safety function and controls, including commitments. Radiological and other employee safety and health considerations

  17. Surveys of research projects concerning nuclear facility safety financed by the Federal Ministry for the Environment, Nature Protection and Reactor Safety, 1991

    International Nuclear Information System (INIS)

    1992-09-01

    Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig.) [de

  18. Surveys of research projects concerning nuclear facility safety, financed by the Federal Ministry for the Environment, Nature Protection and Reactor Safety, 1988

    International Nuclear Information System (INIS)

    1989-11-01

    Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig.) [de

  19. Surveys of research projects concerning nuclear facility safety, financed by the Federal Ministry for the Environment, Nature Protection and Reactor Safety, 1987

    International Nuclear Information System (INIS)

    1988-06-01

    Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig.) [de

  20. The safety of risk or the risk of safety?

    NARCIS (Netherlands)

    Suddle, S.I.; Waarts, P.H.

    2003-01-01

    Safety is nowadays one of the main items on the agenda during the planning, realisation and management of most large-scale projects, particularly in infrastructure and building projects in intensively used areas such as multiple use of land projects. It is vital that safety aspects are properly

  1. Progress report projects in the field of nuclear safety sponsered by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1980-03-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work at the GRS, within the framework of general information of the progress in reactor safety research. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC and the OECD. (orig./HP) [de

  2. 77 FR 59551 - Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor...

    Science.gov (United States)

    2012-09-28

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0767] RIN 1625-AA00 Safety Zone, Changes to Original Rule; Boston Harbor's Rock Removal Project, Boston Inner Harbor... original provisions of that temporary final rule, but adds two additional safety zones necessary for the...

  3. TSO Study Project on Development of a Common Safety Approach in the EU for Large Evolutionary Pressurised Water Reactors

    International Nuclear Information System (INIS)

    2001-10-01

    In pursuance of the objectives of the Council Resolutions of 1975 and 1992 on the technological issues of nuclear safety, the European Commission (EC) is seeking to promote a sustained joint in-depth study on possible significant future nuclear power reactor safety cases. To that end the EC decided to support financially a study by the grouping of the European Union Technical Safety Organisations (TSOG). The general objective of the study programme was to promote, through a collaboration of European Union Technical Safety Organisations (TSOs), common views on technical safety issues related to large evolutionary PWRs in Europe, which could be ready for operation during the next decade. AVN (Belgium) (Technical project leader), AEA Technology (United Kingdom), ANPA (Italy) CIEMAT (Spain), GRS (Germany), IPSN (France), were the TSOs participating in the study which was co-ordinated by RISKAUDIT. The study focused notably on the EPR project initiated by the French and German utilities and vendors. It also considered relevant projects, even of plants of different size, developed outside the European Union in order to provide elements important for the safety characterisation and which could contribute to the credibility and confidence of EPR. It is expected that this study will constitute a significant step towards the development of a common safety approach in EU countries. The study constitutes an important step forward in the development of a common approach of the TSOs to the safety of advanced evolutionary pressurised water reactors. This goal was mainly achieved by an in-depth analysis of the key safety issues, taking into account new developments in the national technical safety objectives and in the EPR design. For this reason the Commission has decided to publish at least the present summary report containing the main outcomes of the TSO study. Confidentiality considerations unfortunately prevent the open publication of the full series of reports. (author)

  4. Nuclear safety projects 1995

    International Nuclear Information System (INIS)

    Carl-Erik Christoffersen

    1996-01-01

    Action plans for the prevention of contamination in the Arctic regions is concretized in a number of international projects. The Norwegian Radiation Protection Authority is responsible for the follow-up of 13 projects. The report describes the development of these projects in 1995

  5. Safety assessment methodologies for near surface disposal facilities. Results of a co-ordinated research project (ISAM). Volume 1: Review and enhancement of safety assessment approaches and tools. Volume 2: Test cases

    International Nuclear Information System (INIS)

    2004-07-01

    For several decades, countries have made use of near surface facilities for the disposal of low and intermediate level radioactive waste. In line with the internationally agreed principles of radioactive waste management, the safety of these facilities needs to be ensured during all stages of their lifetimes, including the post-closure period. By the mid 1990s, formal methodologies for evaluating the long term safety of such facilities had been developed, but intercomparison of these methodologies had revealed a number of discrepancies between them. Consequently, in 1997, the International Atomic Energy Agency launched a Co-ordinated Research Project (CRP) on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM). The particular objectives of the CRP were to provide a critical evaluation of the approaches and tools used in post-closure safety assessment for proposed and existing near-surface radioactive waste disposal facilities, enhance the approaches and tools used and build confidence in the approaches and tools used. The CRP ran until 2000 and resulted in the development of a harmonized assessment methodology (the ISAM project methodology), which was applied to a number of test cases. Over seventy participants from twenty-two Member States played an active role in the project and it attracted interest from around seven hundred persons involved with safety assessment in seventy-two Member States. The results of the CRP have contributed to the Action Plan on the Safety of Radioactive Waste Management which was approved by the Board of Governors and endorsed by the General Conference in September 2001. Specifically, they contribute to Action 5, which requests the IAEA Secretariat to 'develop a structured and systematic programme to ensure adequate application of the Agency's waste safety standards', by elaborating on the Safety Requirements on 'Near Surface Disposal of Radioactive Waste' (Safety Standards Series No. WS-R-1) and

  6. Assessment of alternative disposal concepts

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Saanio, T.; Tolppanen, P. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Raiko, H.; Vieno, T. [VTT Energy, Espoo (Finland); Salo, J.P. [Posiva Oy, Helsinki (Finland)

    1996-12-01

    Four alternative repository designs for the disposal of spent nuclear in the Finnish crystalline bedrock were assessed in the study. The alternatives were: (1) the basic KBS-3 design in which copper canisters are emplaced in vertical deposition holes bored in the floors of horizontal tunnels, (2) the KBS-3-2C design with two canisters in a deposition hole, (3) Short Horizontal Holes (SHH) in the side walls of the tunnels, and (4) the Medium Long Holes (MLH) concept in which approximately 25 canisters are emplaced in a horizontal deposition hole about 200 metres in length bored between central and side tunnels. In all the alternatives considered, the thickness of the layer of compacted bentonite between copper canister and bedrock is 35 cm. Two different copper canister designs were also assessed. Technical feasibility and flexibility, post-closure safety and repository cost were assessed for each of the alternative canister and repository designs. On the basis of this assessment it is recommended that further development and studies should focus on the vacuum- or inert gas-filled cast insert type copper canister and the basic KBS-3 type repository design with a single canister in a vertical deposition hole. The KBS-3 design is robust and flexible and provides excellent post-closure safety. The transfer, emplacement and sealing operations are technically uncomplicated. The alternative options assessed do not offer any significant benefits in safety or cost over the basic design, but they are technically more complex and also in some respects more vulnerable to malfunction during the emplacement of canisters and buffer, as well as common mode failures. (60 refs.).

  7. Assessment of alternative disposal concepts

    International Nuclear Information System (INIS)

    Autio, J.; Saanio, T.; Tolppanen, P.; Raiko, H.; Vieno, T.; Salo, J.P.

    1996-12-01

    Four alternative repository designs for the disposal of spent nuclear in the Finnish crystalline bedrock were assessed in the study. The alternatives were: (1) the basic KBS-3 design in which copper canisters are emplaced in vertical deposition holes bored in the floors of horizontal tunnels, (2) the KBS-3-2C design with two canisters in a deposition hole, (3) Short Horizontal Holes (SHH) in the side walls of the tunnels, and (4) the Medium Long Holes (MLH) concept in which approximately 25 canisters are emplaced in a horizontal deposition hole about 200 metres in length bored between central and side tunnels. In all the alternatives considered, the thickness of the layer of compacted bentonite between copper canister and bedrock is 35 cm. Two different copper canister designs were also assessed. Technical feasibility and flexibility, post-closure safety and repository cost were assessed for each of the alternative canister and repository designs. On the basis of this assessment it is recommended that further development and studies should focus on the vacuum- or inert gas-filled cast insert type copper canister and the basic KBS-3 type repository design with a single canister in a vertical deposition hole. The KBS-3 design is robust and flexible and provides excellent post-closure safety. The transfer, emplacement and sealing operations are technically uncomplicated. The alternative options assessed do not offer any significant benefits in safety or cost over the basic design, but they are technically more complex and also in some respects more vulnerable to malfunction during the emplacement of canisters and buffer, as well as common mode failures. (60 refs.)

  8. Modelling of near-field radionuclide transport phenomena in a KBS-3V type of repository for nuclear waste with Goldsim Code - and verification against previous methods

    International Nuclear Information System (INIS)

    Pulkkanen, V.-M.; Nordman, H.

    2010-03-01

    Traditional radionuclide transport models overestimate significantly some phenomena, or completely ignore them. This motivates the development of new more precise models. As a result, this work is a description of commissioning of a new KBS-3V near-field radionuclide transport model, which has been done with a commercial software called GoldSim. According to earlier models, GoldSim model uses rz coordinates, but the solubilities of radionuclides have been treated more precisely. To begin with, the physical phenomena concerning near-field transport have been introduced according to GoldSim way of thinking. Also, the computational methods of GoldSim have been introduced and compared to methods used earlier. The actual verification of GoldSim model has been carried out by comparing the GoldSim results from simple cases to the corresponding results obtained with REPCOM, a software developed by VTT and used in several safety assessments. The results agree well. Finally, a few complicated cases were studied. In these cases, the REPCOM's limitations in handling of some phenomena become evident. The differences in the results are caused especially by the extension of the solubility limit to the whole computational domain, and the element-wise treatment of the solubilities which was used instead of nuclide-wise treatment. This work has been carried out as a special assignment to the former laboratory of Advanced Energy Systems in Helsinki University of Technology. The work was done at VTT. (orig.)

  9. 75 FR 47602 - Clinical Studies of Safety and Effectiveness of Orphan Products Research Project Grant (R01)

    Science.gov (United States)

    2010-08-06

    ...] Clinical Studies of Safety and Effectiveness of Orphan Products Research Project Grant (R01) AGENCY: Food... (OPD) grant program. The goal of FDA's OPD grant program is to support the clinical development of... product will be superior to the existing therapy. FDA provides grants for clinical studies on safety and...

  10. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  11. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  12. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    Science.gov (United States)

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  13. Criticality Safety Support to a Project Addressing SNM Legacy Items at LLNL

    International Nuclear Information System (INIS)

    Pearson, J S; Burch, J G; Dodson, K E; Huang, S T

    2005-01-01

    The programmatic, facility and criticality safety support staffs at the LLNL Plutonium Facility worked together to successfully develop and implement a project to process legacy (DNFSB Recommendation 94-1 and non-Environmental, Safety, and Health (ES and H) labeled) materials in storage. Over many years, material had accumulated in storage that lacked information to adequately characterize the material for current criticality safety controls used in the facility. Generally, the fissionable material mass information was well known, but other information such as form, impurities, internal packaging, and presence of internal moderating or reflecting materials were not well documented. In many cases, the material was excess to programmatic need, but such a determination was difficult with the little information given on MC and A labels and in the MC and A database. The material was not packaged as efficiently as possible, so it also occupied much more valuable storage space than was necessary. Although safe as stored, the inadequately characterized material posed a risk for criticality safety noncompliances if moved within the facility under current criticality safety controls. A Legacy Item Implementation Plan was developed and implemented to deal with this problem. Reasonable bounding conditions were determined for the material involved, and criticality safety evaluations were completed. Two appropriately designated glove boxes were identified and criticality safety controls were developed to safely inspect the material. Inspecting the material involved identifying containers of legacy material, followed by opening, evaluating, processing if necessary, characterizing and repackaging the material. Material from multiple containers was consolidated more efficiently thus decreasing the total number of stored items to about one half of the highest count. Current packaging requirements were implemented. Detailed characterization of the material was captured in databases

  14. Reports on research projects sponsored by the Federal Minister for Research and Technology in the field of reactor safety

    International Nuclear Information System (INIS)

    1979-03-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC European Communities and the OECD. (orig./HP) [de

  15. Waste Tank Organic Safety Project organic concentration mechanisms task. FY 1994 progress report

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1994-09-01

    The Pacific Northwest Laboratory (PNL), Waste Tank Organic Safety Project is conducting research to support Westinghouse Hanford Company's (WHC) Waste Tank Safety Program, sponsored by the U.S. Department of Energy's Tank Farm Project Office. The goal of PNL's program is to provide a scientific basis for analyzing organics in Hanford's underground storage tanks (USTs) and for determining whether they are at concentrations that pose a potentially unsafe condition. Part of this research is directed toward determining what organic concentrations are safe by conducting research on organic aging mechanisms and waste energetics to assess the conditions necessary to produce an uncontrolled energy release in tanks due to reactions between the organics and the nitrate and nitrate salts in the tank wastes. The objective of the Organic Concentration Mechanisms Task is to assess the degree of localized enrichment of organics to be expected in the USTs due to concentration mechanisms. This report describes the progress of research conducted in FY 1994 on two concentration mechanisms of interest to the tank safety project: (1) permeation of a separate organic liquid phase into the interstitial spaces of the tank solids during the draining of free liquid from the tanks; and (2) concentration of organics on the surfaces of the solids due to adsorption. Three experiments were conducted to investigate permeation of air and solvent into a sludge simulant that is representative of single-shell tank sludge. The permeation behavior of air and solvent into the sludge simulant can be explained by the properties of the fluid pairs (air/supernate and solvent supernate) and the sludge. One important fluid property is the interfacial tension between the supernate and either the solvent or air. In general, the greater the interfacial tension between two fluids, the more difficult it will be for the air or solvent to displace the supernate during dewatering of the sludge

  16. Safety research plan, JFY 2013 edition

    International Nuclear Information System (INIS)

    2013-09-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had updated every year 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. 'Safety research plan, JFY 2013 Edition' was compiled aiming at promotion of appropriate reflection and flexible application of research achievements for tacking the regulatory issues taking account of importance and urgency dependent on trend of nuclear safety regulations as well as collective management of safety research and safety survey. 5 new research projects were established with 4 unified research projects and 6 terminated research projects. Finally modified safety research areas, subjects and research projects, JFY 2013 Edition were as follows: design review of nuclear power plant (7 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (one subject having 4 research projects), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 5), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). Safety reviews consisted of 6 projects in 3 areas extracting the regulatory issues. As for urgent research projects on the basis of the disaster at Fukushima Daiichi NPP accident, 7 research projects in 4 urgent subjects were as follows: examination for new safety regulation (4 research projects generalized in the above research projects), development of newly necessary evaluation methods (one research project generalized in the above research project), evaluation of the validity for the work for convergence at Fukushima

  17. Nordic nuclear safety research program 1994-1997. Project coordination incl. SAM-4 general information issues. Report 1996. Plans for 1997

    International Nuclear Information System (INIS)

    1997-04-01

    NKS (Nordic Nuclear Safety Research) is a cooperative body in nuclear safety, radiation protection and emergency preparedness. Its purpose is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, recommendations, manuals etc., to be used by decision makers and other concerned staff members at authorities and within the nuclear industry. This is the annual report for 1996, the third year of the fifth four-year NKS program (1994-1997). The report also contains plans for the rest of the program period, including budget proposals. The following major fields of research have been identified: reactor safety; radioactive waste; radioecology; emergency preparedness; and information issues. A total of nine projects are now under way within that framework. One project (RAK-1) is dedicated to reactor safety strategies: how to avoid serious accidents. A parallel project (RAK-2) deals with minimizing releases in case of an accident. When can an overheated reactor core still be water-cooled? What might be the consequences of the cooling? All Nordic countries have long-lived low and medium level radioactive waste that requires final disposal. One project (AFA-1) addresses that issue. Environmental impact of radioactive releases is studied in two radioecology projects. The project on marine radioecology, including sediment research (EKO-1), encompasses sampling, analysis and modeling. These are also key issues in the project on long ecological half-lives in semi-natural systems (EKO-2). The transfer of radioactive cesium and strontium in the chains soil - vegetation - sheep and mushroom - roe deer is studied, along with freshwater systems. Long-term doses to main is the ultimate output from the obtained models. Another aspect of environmental impact is emergency preparedness. A recently started project, EKO-5, addresses the issue of early planning for cleanup operations following a fallout. 'Early' in this context means within the

  18. Feasibility of safe terminal disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nilsson, B.; Papp, T.

    1980-01-01

    The results of the KBS study indicate that safe terminal storage of spent nuclear fuel in crystalline rock is feasible with the technology available today and at a safety level that is well within the limitations recommended by the ICRP. This statement is not only based on the fact that the doses calculated in the KBS study were acceptably low, but even more on the freedom to choose the dimensions of the engineered barriers as well as depth of the repository and to some degree the quality of the host rock

  19. Blood alcohol test results of motor vehicle deaths as an evaluation method for the Fairfax Alcohol Safety Action Project.

    Science.gov (United States)

    1973-01-01

    The Fairfax Alcohol Safety Action Project (ASAP) was started following the June 1971 approval of the proposal and working plan submitted to the Department of Transportation by the Highway Safety Division of Virginia. A total of $2,123,000 was allocat...

  20. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  1. Global optimization of maintenance and surveillance testing based on reliability and probabilistic safety assessment. Research project

    International Nuclear Information System (INIS)

    Martorell, S.; Serradell, V.; Munoz, A.; Sanchez, A.

    1997-01-01

    Background, objective, scope, detailed working plan and follow-up and final product of the project ''Global optimization of maintenance and surveillance testing based on reliability and probabilistic safety assessment'' are described

  2. Identifying the Critical Factors Affecting Safety Program Performance for Construction Projects within Pakistan Construction Industry

    Directory of Open Access Journals (Sweden)

    Zubair Ahmed Memon

    2013-04-01

    Full Text Available Many studies have shown that the construction industry one of the most hazardous industries with its high rates of fatalities and injuries and high financial losses incurred through work related accident. To reduce or overcome the safety issues on construction sites, different safety programs are introduced by construction firms. A questionnaire survey study was conducted to highlight the influence of the Construction Safety Factors on safety program implementation. The input from the questionnaire survey was analyzed by using AIM (Average Index Method and rank correlation test was conducted between different groups of respondents to measure the association between different groups of respondent. The finding of this study highlighted that management support is the critical factor for implementing the safety program on projects. From statistical test, it is concluded that all respondent groups were strongly in the favor of management support factor as CSF (Critical Success Factor. The findings of this study were validated on selected case studies. Results of the case studies will help to know the effect of the factors on implementing safety programs during the execution stage.

  3. Report of the 52. meeting of the Superior Council of the Nuclear Safety and Information (project)

    International Nuclear Information System (INIS)

    2000-01-01

    Since june 2000, the CSSIN (Superior Council on Nuclear Safety and Information) decided to present the meeting of its sessions, on the Internet site of the Nuclear Safety Authority. This document is the meeting project concerning the session of the 27 june 2000. The following subjects have been treated: the Blayais accident and its consequences; the Euratom Directive transposition on the workers and people protection; methodology and organization of the CSSIN concerning the civil nuclear installations and the radiation protection; actualization of the CSSIN heading in the Internet site of the Nuclear Safety Authority. (A.L.B.)

  4. West Virginia Peer Exchange : Streamlining Highway Safety Improvement Program Project Delivery - An RSPCB Peer Exchange

    Science.gov (United States)

    2014-09-01

    The West Virginia Division of Highways (WV DOH) hosted a Peer Exchange to share information and experiences for streamlining Highway Safety Improvement Program (HSIP) project delivery. The event was held September 23 to 24, 2014 in Charleston, West V...

  5. Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk

    Science.gov (United States)

    Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.

  6. Project CHERISH (Children in Home Environments: Regulation To Improve Safety and Health). Final Report.

    Science.gov (United States)

    Grubb, Paul Dallas

    In 1990, Project CHERISH (Children in Home Environments: Regulation to Increase Safety and Health) enabled the Texas Department of Human Services to implement and evaluate several innovative strategies to strengthen regulation of family day care homes. This report contains descriptions of those strategies, an evaluation of their efficacy, and…

  7. Quality assurance program plan for 324 Building B-Cell safety cleanout project (BCCP)

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the 324 Building B-Cell Safety Cleanout Project (BCCP). This QAPP is responsive to the Westinghouse Hanford Company Quality Assurance Program and Implementation Plan, WHC-SP-1131, for 10 CFR 830.120, Nuclear Safety Management, Quality Assurance Requirements; and DOE Order 5700.6C, Quality Assurance. This QAPP supersedes PNNL PNL-MA-70 QAP Quality Assurance Plan No. WTC-050 Rev. 2, issue date May 3, 1996. This QAPP has been developed specifically for the BCCP. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of decontaminating B-Cell and project related operations within the 324 Building as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations) are covered in the Building 324 QAPP. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping, and HSRCM-1, Hanford Site Radiological Control Manual, The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing, PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to 10 CFR 83 0.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be

  8. FEP report for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This report documents the analysis and processing of features, events and processes, FEPs, that has been carried out within the safety assessment SR-Site, and forms an important part of the reporting of the project. The main part of the work was conducted within the earlier safety assessment SR-Can, which was a preparatory stage for the SR-Site assessment. The overall objective of the FEP analysis and processing in both SR-Can and SR-Site included development of a database of features, events and processes, an SKB FEP database, in a format that facilitates both a systematic analysis of FEPs and documentation of that FEP analysis, as well as facilitating revisions and updates to be made in connection with new safety assessments. The primary objective in SR-Site was to establish an SR-Site FEP catalogue within the framework of the SKB FEP database. This FEP catalogue was required to contain all FEPs that needed to be handled in SR-Site and is an update of the corresponding SR-Can FEP catalogue that was established for the SR-Can assessment. The starting point for the handling of FEPs in SR-Site was the SR-Can version of the SKB FEP database and associated SR-Can reports. The SR-Can version of the SKB FEP database includes the SR-Can FEP catalogue, as well as the sources for the identification of FEPs in SR-Can, namely the SR 97 processes and variables, Project FEPs in the NEA International FEP database version 1.2 and matrix interactions in the Interaction matrices developed for a deep repository of the KBS-3 type. Since the completion of the FEP work within SR-Can, an updated electronic version, version 2.1, of the NEA FEP database has become available. Compared with version 1.2 of the NEA FEP database, version 2.1 contains FEPs from two more projects. As part of SR-Site, all new Project FEPs in version 2.1 of the NEA FEP database have been mapped according to the methodology adopted in SR-Can resulting in an SR-Site version of the SKB FEP database. The SKB FEP

  9. FEP report for the safety assessment SR-Site

    International Nuclear Information System (INIS)

    2010-12-01

    This report documents the analysis and processing of features, events and processes, FEPs, that has been carried out within the safety assessment SR-Site, and forms an important part of the reporting of the project. The main part of the work was conducted within the earlier safety assessment SR-Can, which was a preparatory stage for the SR-Site assessment. The overall objective of the FEP analysis and processing in both SR-Can and SR-Site included development of a database of features, events and processes, an SKB FEP database, in a format that facilitates both a systematic analysis of FEPs and documentation of that FEP analysis, as well as facilitating revisions and updates to be made in connection with new safety assessments. The primary objective in SR-Site was to establish an SR-Site FEP catalogue within the framework of the SKB FEP database. This FEP catalogue was required to contain all FEPs that needed to be handled in SR-Site and is an update of the corresponding SR-Can FEP catalogue that was established for the SR-Can assessment. The starting point for the handling of FEPs in SR-Site was the SR-Can version of the SKB FEP database and associated SR-Can reports. The SR-Can version of the SKB FEP database includes the SR-Can FEP catalogue, as well as the sources for the identification of FEPs in SR-Can, namely the SR 97 processes and variables, Project FEPs in the NEA International FEP database version 1.2 and matrix interactions in the Interaction matrices developed for a deep repository of the KBS-3 type. Since the completion of the FEP work within SR-Can, an updated electronic version, version 2.1, of the NEA FEP database has become available. Compared with version 1.2 of the NEA FEP database, version 2.1 contains FEPs from two more projects. As part of SR-Site, all new Project FEPs in version 2.1 of the NEA FEP database have been mapped according to the methodology adopted in SR-Can resulting in an SR-Site version of the SKB FEP database. The SKB FEP

  10. Development of Occupational Safety and Health Requirement Management System (OSHREMS Software Using Adobe Dreamweaver CS5 for Building Construction Project

    Directory of Open Access Journals (Sweden)

    Abas Nor Haslinda

    2017-01-01

    Full Text Available The construction industry sector is considered as being risky with frequent and high accident rate. According to Social Security Organization (SOCSO, the construction accidents has arisen from time to time. Construction Industry Development Board (CIDB has developed the Safety and Health Assessment System in Construction (SHASSIC for evaluating the performance of a contractor in construction project by setting out the safety and health management and practices, however the requirement checklist provided is not comprehensive. Therefore, this study aims to develop a software system for facilitating OSH in building construction project, namely OSH requirements management system (OSHREMS, using Adobe Dreamweaver CS5 and Sublime Text as PHP editor. The results from a preliminary study which was conducted through interviews showed that, the respondents were only implementing the basic requirements that comply with legislations, with the absence of appropriate and specific guideline in ensuring occupational safety and health (OSH at the workplace. The tool will be benefits for contractors and other parties to effectively manage the OSH requirements for their projects based on project details.

  11. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    Energy Technology Data Exchange (ETDEWEB)

    Tuunanen, J.; Tuomainen, M. [VTT Processes (Finland)

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  12. Reports on research projects in the field of reactor safety sponsored by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1978-09-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), der Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD. (orig./HP) 891 HP [de

  13. Reports on research projects in the field of reactor safety sponsored by the Federal Ministry for research and technology

    International Nuclear Information System (INIS)

    1979-09-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power-plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD. (orig.) [de

  14. Redox processes in the safety case of deep geological repositories of radioactive wastes. Contribution of the European RECOSY Collaborative Project

    International Nuclear Information System (INIS)

    Duro, L.; Bruno, J.; Grivé, M.; Montoya, V.; Kienzler, B.; Altmaier, M.; Buckau, G.

    2014-01-01

    Highlights: • The RECOSY project produced results relevant for the Safety Case of nuclear disposal. • We classify the safety related features where RECOSY has contributed. • Redox processes effect the retention of radionuclides in all repository subsystems. - Abstract: Redox processes influence key geochemical characteristics controlling radionuclide behaviour in the near and far field of a nuclear waste repository. A sound understanding of redox related processes is therefore of high importance for developing a Safety Case, the collection of scientific, technical, administrative and managerial arguments and evidence in support of the safety of a disposal facility. This manuscript presents the contribution of the specific research on redox processes achieved within the EURATOM Collaborative Project RECOSY (REdox phenomena COntrolling SYstems) to the Safety Case of nuclear waste disposal facilities. Main objectives of RECOSY were related to the improved understanding of redox phenomena controlling the long-term release or retention of radionuclides in nuclear waste disposal and providing tools to apply the results to Performance Assessment and the Safety Case. The research developed during the project covered aspects of the near-field and the far-field aspects of the repository, including studies relevant for the rock formations considered in Europe as suitable for hosting an underground repository for radioactive wastes. It is the intention of this paper to highlight in which way the results obtained from RECOSY can feed the scientific process understanding needed for the stepwise development of the Safety Case associated with deep geological disposal of radioactive wastes

  15. Report on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1978-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power-plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of advanced reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT which will appear in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC and the OECD. (orig./HP) [de

  16. Nuclear safety in perspective

    DEFF Research Database (Denmark)

    Andersson, K.; Sjöberg, B.M.D.; Lauridsen, Kurt

    2003-01-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicat-ing on the subject in society. The project, which has been built around a number of seminars, wassupported by limited research in three sub......-projects: Risk assessment Safety analysis Strategies for safety management The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems forregulatory oversight are de-scribed in the nuclear area and also, to widen the perspective, for other...

  17. Safety analyses for sodium-cooled fast reactors with pelletized and sphere-pac oxide fuels within the FP-7 European project PELGRIMM - 15386

    International Nuclear Information System (INIS)

    Maschek, W.; Andriolo, L.; Matzerath-Boccaccini, C.; Delage, F.; Parisi, C.; Del Nevo, A.; Abbate, G.; Schmitt, D.

    2015-01-01

    The European FP-7 project PELGRIMM addresses the development of Minor-Actinide (MA) bearing oxide fuel for Sodium-cooled Fast Reactors. Optionally, both MA homogeneous recycling and heterogeneous recycling is investigated with pellet and sphere-pac fuel. A first safety assessment of sphere-pac fuelled cores should be given in the Work Package 4 of the project. This assessment is in continuity with the former FP-7 CP-ESFR project. Within the CP-ESFR project the CONF2 core design has been developed characterized by a core with a large upper sodium plenum to reduce the coolant void worth. This optimized core has been chosen for the safety analyses in PELGRIMM. The task within the PELGRIMM project is thus a safety assessment of the CONF2 core loaded either with pellets or with sphere-pac fuel. The investigations started with the design of the CONF2 core with sphere-pac fuel and the determination of core safety parameters and burn-up behavior. The neutronic analyses have been performed with the MCNPX code. Variants of the CONF2 core contain up to 4% Am in the fuel. The results revealed an extended void worth (core + upper plenum) for an Am free core of 1 up to 3 dollars for the 4% Am core. Thermal-hydraulic design analyses have been performed by RELAP5-3D. The accident simulations should be performed by different codes, some of which focus on the initiation phase of the accident, as SAS4A, BELLA and the MAT5DYN code, whereas the SIMMER-III code will also deal with the later accident phases and a potential whole core melting. The codes had to be adapted to the specifics of the sphere-pac fuel, in particular to the thermal conductivity and gap conditions. Analyses showed that the safety assessment has to take into account two main phases. Starting up the core, the green fuel shows a reduced fuel thermal conductivity. After restructuring within a couple of hours, the thermal conductivity recovers and the fuel temperature decreases. The main objective of the safety analyses

  18. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  19. Report on the research projects in the field of reactor safety sponsored by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1978-09-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F -Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work, The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD. (orig./HP) 891 HP [de

  20. Handling of future human actions in the safety assessment SR-Site

    International Nuclear Information System (INIS)

    2010-12-01

    This report documents the future human actions, FHA, considered in the long-term safety analysis of a KBS-3 repository. The report is one of the supporting documents to the safety assessment SR-Site (see further the Main report /SKB 2011/). The purpose of this report is to provide an account of general considerations concerning FHA, the methodology applied in SR-Site to assess FHA, the aspects of FHA needed to be considered in the evaluation of their impact on a deep geological repository and to select and analyse representative scenarios for illustrative consequence analysis. The main focus of this report is a time period when institutional control has ceased to be effective, thereby permitting inadvertent intrusion. However, a brief discussion of the earlier period when the repository has been closed, sealed and continuously kept under institutional control is also provided. General The potential exposure to large quantities of radiotoxic material is an inescapable consequence of the deposition of spent nuclear fuel in a final repository, and consequently intrusion into the repository needs to be considered in repository design and safety assessment. In accordance with ICRP recommendations /ICRP 2000/, intrusion in the post-closure phase of institutional control and beyond is primarily prevented through the design of the repository. In addition to that there will presumably continue to be safeguards measures, preservation of information (record keeping) and possibly some sort of markers placed at the site. During the institutional control period, activities at the site have to be restricted or directed if they have the potential to interfere with or hinder surveillance of the site, but this does not necessarily rule out all forms of access to the area. Also the fact that the repository contains fissile materials is an important aspect. Control of safeguards measures will most likely be upheld by national as well as international agencies. Furthermore, the

  1. Handling of future human actions in the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This report documents the future human actions, FHA, considered in the long-term safety analysis of a KBS-3 repository. The report is one of the supporting documents to the safety assessment SR-Site (see further the Main report /SKB 2011/). The purpose of this report is to provide an account of general considerations concerning FHA, the methodology applied in SR-Site to assess FHA, the aspects of FHA needed to be considered in the evaluation of their impact on a deep geological repository and to select and analyse representative scenarios for illustrative consequence analysis. The main focus of this report is a time period when institutional control has ceased to be effective, thereby permitting inadvertent intrusion. However, a brief discussion of the earlier period when the repository has been closed, sealed and continuously kept under institutional control is also provided. General The potential exposure to large quantities of radiotoxic material is an inescapable consequence of the deposition of spent nuclear fuel in a final repository, and consequently intrusion into the repository needs to be considered in repository design and safety assessment. In accordance with ICRP recommendations /ICRP 2000/, intrusion in the post-closure phase of institutional control and beyond is primarily prevented through the design of the repository. In addition to that there will presumably continue to be safeguards measures, preservation of information (record keeping) and possibly some sort of markers placed at the site. During the institutional control period, activities at the site have to be restricted or directed if they have the potential to interfere with or hinder surveillance of the site, but this does not necessarily rule out all forms of access to the area. Also the fact that the repository contains fissile materials is an important aspect. Control of safeguards measures will most likely be upheld by national as well as international agencies. Furthermore, the

  2. Nuclear safety in perspective

    International Nuclear Information System (INIS)

    Andersson, K.; Sjoeberg, B.M.D.; Lauridsen, K.; Wahlstroem, B.

    2002-06-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicating on the subject in society. The project, which has been built around a number of seminars, was supported by limited research in three sub-projects: 1) Risk assessment, 2) Safety analysis, and 3) Strategies for safety management. The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems for regulatory oversight are described in the nuclear area and also, to widen the perspective, for other industrial areas. Transparency and public participation are described as key elements in good risk communication, and case studies are given. Environmental Impact Assessment and Strategic Environmental Assessment are described as important overall processes within which risk communication can take place. Safety culture, safety indicators and quality systems are important concepts in the nuclear safety area are very useful, but also offer important challenges for the future. They have been subject to special attention in the project. (au)

  3. Multimegawatt Space Reactor Safety

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1989-01-01

    The Multimegawatt (MMW) Space Reactor Project supports the Strategic Defense Initiative Office requirement to provide reliable, safe, cost-effective, electrical power in the MMW range. Specifically, power may be used for neutral particle beams, free electron lasers, electromagnetic launchers, and orbital transfer vehicles. This power plant technology may also apply to the electrical power required for other uses such as deep-space probes and planetary exploration. The Multimegawatt Space Reactor Project, the Thermionic Fuel Element Verification Program, and Centaurus Program all support the Multimegawatt Space Nuclear Power Program and form an important part of the US Department of Energy's (DOE's) space and defense power systems activities. A major objective of the MMW project is the development of a reference flight system design that provides the desired levels of public safety, health protection, and special nuclear material (SNM) protection when used during its designated missions. The safety requirements for the MMW project are a hierarchy of requirements that consist of safety requirements/regulations, a safety policy, general safety criteria, safety technical specifications, safety design specifications, and the system design. This paper describes the strategy and philosophy behind the development of the safety requirements imposed upon the MMW concept developers. The safety organization, safety policy, generic safety issues, general safety criteria, and the safety technical specifications are discussed

  4. The TRAIN-project: railway safety and the train driver information environment and work situation. A summary of the main results

    Energy Technology Data Exchange (ETDEWEB)

    Kecklund, L. [MTO Psychology and Swedish National Rail Administration (Sweden); Ingre, M.; Kecklund, G.; Soederstroem, M.; Aakerstedt, T. [National Inst. for Psychosocial Factors and Health (Sweden); Lindberg, E. [Swedish National Rail Administration (Sweden); Jansson, A.; Olsson, E.; Sandblad, B. [Uppsala Univ. (Sweden). Dept. of Human-Computer Interaction; Almqvist, P. [Swedish State Railways (Sweden)

    2001-07-01

    The TRAIN project investigates traffic safety related risks, focusing in particular on the train driver work situation, use of information but also on the supporting safety organisation. It is an on-going project funded and managed by Swedish National Rail Administration and carried out by independent researchers. The project provides a multi-disciplinary investigation by use of a man-technology-organisation (MTO) perspective. Activities performed are task analysis, evaluation of the drivers use of information and interaction with the ATP system as well as analyses of stress, mental workload and work hours. Several methods are being used such as interviews, questionnaires, diaries, activity monitoring and videotapes. This paper gives an overview of the project as well as a short summary of the main results. Detailed results are presented in separate reports as started in the reference list. Some of the main results are that the drivers report severe problems concerning sleepiness on early morning shifts, problems with maintenance on vehicles, lack of information supporting the planning task as well as problems in understanding ATP functions. Two groups of drivers having a feed-back related as opposed to a feed-forward driving style could be identified. In conclusion there is a great need to perform more scientific studies of human factors and railway safety as well as to implement safety management programs including professional human factors competence in the railway industries. (orig.)

  5. Annual safety research report, JFY 2012

    International Nuclear Information System (INIS)

    2013-08-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had compiled 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (5 subjects and each subject having several research projects totaled 20), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 6), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). In addition to these 49 research projects of 18 subjects in 6 areas, JNES worked on 19 research projects of 7 subjects in added areas (specific research projects on of the disaster at Fukushima Daiichi NPP accident and other challenges JNES considered necessary) in JFY 2012. This annual safety research report summarized respective achievements and state of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2012 Edition as well as the situation of the reflection for the safety regulations, and also described 16 research projects of 4 subjects: examination for new safety regulation (8 research projects), development of newly necessary evaluation methods (one research project), evaluation of the validity for the work for convergence at Fukushima Daiichi NPP accident (4 research project) and horizontal development to other nuclear power plants (3 research projects), and 3 research projects of 3 subjects as other challenges. A list of JNES

  6. Analysis of Correlations between the Level of Partnering Relations and their Influence on the Time, Cost, Quality and Safety of Implementation of Construction Projects

    Directory of Open Access Journals (Sweden)

    Radziszewska-Zielina Elżbieta

    2014-11-01

    Full Text Available The present paper uses the developed model of the influence of partnering relations on the time, cost, quality and safety of implementation of construction projects. On its basis, a questionnaire has been created and a preliminary survey has been conducted. The paper presents an analysis of correlations between the level of partnering relations in the context of the partnering measures indicated in the model and their influence on the time, cost, quality and safety of implementation of construction projects. The analysis was conducted based on the data collected in 52 construction projects. The values of the Spearman rank correlation coefficient and the Pearson product-moment correlation coefficient have been calculated for the examined relations. The analysis allowed for indicating the measures of partnering whose improvement most often brings benefits with regard to the time, cost, quality and safety of implementation of construction projects. Among the 80 analysed correlations, the ones identified as strong were: 15 relations connected with the time, 8 with the cost, 5 with the quality and 1 with the safety of implementation of construction projects.

  7. The water reactor safety research project index: a description of the computerized system for its databank

    International Nuclear Information System (INIS)

    Della Loggia, E.; Primavera, R.

    1993-01-01

    The water reactor nuclear safety research project index has been published by the CEC for many years as a compilation of information on research projects relating to LWR nuclear safety. Since 1981, it has been published, alternatively with NEA (OECD), every second year. The number of contributions from research organizations in Community member countries has steadily increased and reached the level of 1 700 pages, in which more than 600 project descriptions have been collected. In 1988, for the first time, the document was produced using a computerized system developed with the assistance of the ISEI (Institute for Systems Engineering and Informatics) of JRC Ispra. The data have been stored in a computer based in Ispra. The system allows searching a preselected set of subjects through the information stored in the computer: it makes the updating of the projects description much easier and makes the retrieval of the data possible. This report presents a short description of the computerized system developed for the databank of the index. The computerized system presented in this report is structured in a quite general way and for that reason can be adapted very easily to every field where a databank needs to be constituted in order to collect extended information on several projects. (authors). 6 figs., 5 tabs., 5 refs

  8. Safety upgrading of Novi Han Repository under IAEA TC Project BUL/4/005 achievements and future plans

    International Nuclear Information System (INIS)

    Stefanova, I.

    2003-01-01

    The report presents the safety upgrading of the Novi Han Repository under the IAEA TC Project BUL/4/005. The Project covers: identification of radionuclide inventory; characterisation of the disposal vaults; site characterisation; safety assessment; upgrading of the monitoring and radiation control; selection of treatment and conditioning processes and a conceptual design for a new waste processing and storage facility and other direct measures for safety improvement. The current inventory is identified and presented in the report. Schemes of the vault for solid wastes and vault for biological wastes are given, demonstrating reinforced concrete, stainless steel lining, and hydro insulation are presented. Several studies for safety assessment are made between 1997 and 2003. The operational safety assessment for disposal in existing facilities gives the annual risk for: spilling of waste package during upload (7.58.10 -9 ); spilling of waste package in transport accident (2.90.10 -9 ); fire scenario (3.50.10 - 1 3 ); radionuclide release due to flooding or earthquake (5.05.10 -4 ). The monitoring radiation control is upgraded according to the regulatory guidance and covered the site, restricted zone (1 km) and supervised zone (5 km). The types of analyses made are: Direct measurement of the dose rate -TLD; Direct measurements of the dose rate - portable surveillance monitors; In situ gamma spectrometry; Gamma spectrometry; Gross beta, gross alpha; Liquid scintillation spectrometry. The analyses show no transfer od radionuclides to the environment. The individual radiation control shows no evidence for specific radiation pathology. The operational radiation control service premises and transport vehicles. The following is measured: gamma dose rate; beta exposure; alpha exposure; neutron radiation; contamination level. Under the development is a detailed technical design supply of equipment for characterization of waste, including hot cell for control over high level

  9. Vandellos 1 decommissioning project. Safety before, during and after

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2002-01-01

    The Nuclear Power Plant of Vandellos 1, a gas-graphite reactor (GCR), started operation in the 70's after 17 years running the decommissioning process began in 1998, and is expected to finish at the end of 2002 with the level 2 of decommissioning with a practically total scope reached, except the concrete reactor vessel and its internals that will remain for another 25 years in surveillance state (dormancy) until their total dismantling. During the last four years the activities related to decontamination and disassembly of the power plant system as well as the management of all this material have been carried out. One of the last phases of the project that will be performed this year, without doubt, one of the most representative of the operative difficulty of the task is the disassembly of some buildings which are more than 80 meters high and with some structures weighing more than 3.000 t, an operation, which is spectacular in terms of volume and mass involved. However one has to keep in mind that it has been preceded by the of clearance process of all these structures to be disassembled this summer. Hundred of thousands of radiological measures will confirm with guarantee that the destination of the dismantled materials is the correct one, assuring the protection of people and the environment. This is a process which has to integrate the principles of radiological safety and industrial safety. First, it has to be guaranteed that structures and components are below the values authorised by authorities for their free release, and, secondly, that the planned sequence of the process and manoeuvres in the disassembly of these colossal structures assures safety. (author)

  10. FUNMIG Integrated Project results and conclusions from a safety case perspective

    International Nuclear Information System (INIS)

    Schwyn, B.; Wersin, P.; Rüedi, J.; Schneider, J.; Altmann, S.; Missana, T.; Noseck, U.

    2012-01-01

    The scope of the FUNMIG Integrated Project (IP) was to improve the knowledge base on biogeochemical processes in the geosphere which are relevant for the safety of radioactive waste repositories. An important part of this project involved the interaction between data producers (research) and data users (radioactive waste management organisations in Europe). The aim thereof was to foster the benefits of the research work for performance assessment (PA), and in a broader sense, for the safety case of radioactive waste repositories. For this purpose a specifically adapted procedure was elaborated. Thus, relevant features, events and processes (FEPs) for the three host rock types, clay, crystalline and salt, were taken from internationally accepted catalogues and mapped onto each of the 108 research tasks conducted during the FUNMIG project by a standardised procedure. The main outcome thereof was a host-rock specific tool (Task Evaluation Table) in which the relevance and benefits of the research results were evaluated both from the PA and research perspective. Virtually all generated data within FUNMIG are related to the safety-relevant FEP-groups “transport mechanisms” and “retardation”. Generally speaking, much of the work within FUNMIG helped to support and to increase confidence in the simplified PA transport and retardation models used for calculating radionuclide (RN) transport through the host rock. Some of the studies on retardation processes (e.g. coupled sorption-redox processes at the mineral–water interface) yielded valuable data for all three rock types dealt within the IP. However, most of the studies provided improved insight regarding host-rock specific features and processes, the majority of this work being dedicated to clay-rich and crystalline host rocks. For both of these host rock types, FUNMIG has significantly contributed to improving understanding on a conceptual level, both by providing new experimental data at different spatial

  11. Annual safety research report, JFY 2010

    International Nuclear Information System (INIS)

    2011-09-01

    In the safety infrastructure research working group report, 'the effective conducting of nuclear safety infrastructure research', published by METI in March 2010, the roles of regulatory agencies and JNES and their cooperation, and the research road map for nuclear safety regulation researches were summarized. As for the regulatory issues the governments or JNES considered necessary, JNES had compiled' safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (4 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 11), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 5), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 5) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 7). In JFY 2010, JNES worked on the 53 research projects of 17 subjects in 6 areas as safety researches. This annual safety research report summarized respective achievements and stage of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2010 Edition as well as the situation of the reflection for the safety regulations. (T. Tanaka)

  12. An evaluation of repository-induced disturbances for a KBS-3 type repository

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D.; McLeod, R.; McEwen, T. [QuantiSci, Melton Mowbray (United Kingdom)

    1998-03-01

    This report considers the potential physical and chemical perturbations caused by the excavation, operation and backfilling and sealing of a KBS-3 type repository for spent fuel in Sweden. Parts of the underground excavations are likely to remain open to the atmosphere for up to several decades. Time-dependent changes to the chemical environment and the properties of the geological formation will be occurring as well as the initial disturbance of construction and subsequent changes after backfilling. In addition, this report also discusses issues that arise from the co-disposal of spent fuel and intermediate level waste. The processes which are likely to act during each stage of a repository from construction through to backfilling and sealing have been reviewed and the degree to which these processes are understood and represented within the performance assessment is discussed. The areas of particular interest are: The coupling of thermal, hydrogeological and mechanical processes with particular reference to the development of the near-field; Understanding the transient process of re-saturation with particular reference to the buffer material surrounding the waste canisters, including chemical changes to the material; The impact of accidental events during the construction and operational phases of work and their possible consequence on the long term performance of the repository; Chemical issues relating to the co-disposal of spent fuel and intermediate level wastes within a single facility. When consideration of transient processes and coupling is discussed, it is apparent that numerical tools and a complete understanding to provide quantitative information is lacking. The importance of the engineered barrier system within the performance assessment for spent fuel disposal is recognised and the emphasis is placed on the understanding of the coupled processes in the evolution in the near-field of the geosphere 45 refs, 4 fig, 2 tabs

  13. An evaluation of repository-induced disturbances for a KBS-3 type repository

    International Nuclear Information System (INIS)

    Savage, D.; McLeod, R.; McEwen, T.

    1998-03-01

    This report considers the potential physical and chemical perturbations caused by the excavation, operation and backfilling and sealing of a KBS-3 type repository for spent fuel in Sweden. Parts of the underground excavations are likely to remain open to the atmosphere for up to several decades. Time-dependent changes to the chemical environment and the properties of the geological formation will be occurring as well as the initial disturbance of construction and subsequent changes after backfilling. In addition, this report also discusses issues that arise from the co-disposal of spent fuel and intermediate level waste. The processes which are likely to act during each stage of a repository from construction through to backfilling and sealing have been reviewed and the degree to which these processes are understood and represented within the performance assessment is discussed. The areas of particular interest are: The coupling of thermal, hydrogeological and mechanical processes with particular reference to the development of the near-field; Understanding the transient process of re-saturation with particular reference to the buffer material surrounding the waste canisters, including chemical changes to the material; The impact of accidental events during the construction and operational phases of work and their possible consequence on the long term performance of the repository; Chemical issues relating to the co-disposal of spent fuel and intermediate level wastes within a single facility. When consideration of transient processes and coupling is discussed, it is apparent that numerical tools and a complete understanding to provide quantitative information is lacking. The importance of the engineered barrier system within the performance assessment for spent fuel disposal is recognised and the emphasis is placed on the understanding of the coupled processes in the evolution in the near-field of the geosphere

  14. Safety criteria for the future LMFBR's in France and main safety issues for the rapide 1500 project

    International Nuclear Information System (INIS)

    Justin, F.; Natta, M.; Orzoni, G.

    1985-04-01

    The main safety criteria for future LMFBR in France and the related issues for the RAPIDE 1500 project are presented and discussed. The evolutions with respect to SUPERPHENIX options and requirements are emphasized, in particular for the concerns of the prevention of core melt accidents, fuel damage limits and related required performances of the protection system, since one main option is not to consider whole core melt accidents in the containment design. One shall also point out the advantages of some mitigating features which were nevertheless added in the containment design, although without any explicit consideration for core melt accidents

  15. Industrial safety management with emphasis on construction safety

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2016-01-01

    Safety professionals, line managers, team leaders and concerned workers today eagerly discuss to find out the best safety approach for their workplace. Some research suggested that behaviour based and comprehensive ergonomics approaches lead in average reduction of injuries. This article discusses 'the science and engineering' behind improvement in industrial safety aspects particularly at construction sites through various safety approaches. A high degree of commitment to safety by the project management and rigorous and proactive measures are essential to prevent accidents at construction sites particularly in DAE units because of its sensitivity. Persistent efforts by the project management are needed for sustainable and committed safety at work place. The number of fatalities occurring from construction work in DAE units is sometimes disturbing and fall of person from height and through openings are the major causes for serious accidents

  16. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the MandO is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment

  17. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1997-02-19

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the M&O is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment.

  18. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the Atmospheric Environment Safety Technology Project

    Science.gov (United States)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This study analyzed aircraft incidents in the NASA Aviation Safety Reporting System (ASRS) that apply to two of the three technical challenges (TCs) in NASA's Aviation Safety Program's Atmospheric Environment Safety Technology Project. The aircraft incidents are related to airframe icing and atmospheric hazards TCs. The study reviewed incidents that listed their primary problem as weather or environment-nonweather between 1994 and 2011 for aircraft defined by Federal Aviation Regulations (FAR) Parts 121, 135, and 91. The study investigated the phases of flight, a variety of anomalies, flight conditions, and incidents by FAR part, along with other categories. The first part of the analysis focused on airframe-icing-related incidents and found 275 incidents out of 3526 weather-related incidents over the 18-yr period. The second portion of the study focused on atmospheric hazards and found 4647 incidents over the same time period. Atmospheric hazards-related incidents included a range of conditions from clear air turbulence and wake vortex, to controlled flight toward terrain, ground encounters, and incursions.

  19. Reports on the research projects in the field of reactor safety supported by the Federal Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1975-03-01

    The Bundesminister fuer Forschung und Technologie (BMFT) is promoting financial plans for reactor safety research. Objective research should improve the safety of light water reactors and minimize the risk for the environment. The Forschungsbetreuung at IRS (IRS-FB) as consultants to the BMFT provides information about the research planning. In addition, information is given about the projects RS 100 and At T 85a sponsored by the Bundesminister des Innern (BMI). Individual reports will be furnished and put into standard form by the research contractors. Each report gives informations about: the work accomplished, the results produced, the outlook extension of the work. The initial report of a research project describes in addition the purpose of the work. Reports of the project 'Nuclear Safety' (PNS) have been added to those ones concerning the projects sponsored by the BMFT or the BMI. The PNS is being conducted by the Gesellschaft fuer Kernforschung mbH (GfK), Karlsruhe. IRS-F-23 is informing of the activities during the fourth quarter of 1974 (October 1st - December 31st 1974). Detailed technical information can be requested from IRS-FB. (orig.) [de

  20. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance

  1. Charged-particle beam: a safety mandate

    International Nuclear Information System (INIS)

    Young, K.C.

    1983-01-01

    The Advanced Test Accelerator (ATA) is a recent development in the field of charged particle beam research at Lawrence Livermore National Laboratory. With this experimental apparatus, researchers will characterize intense pulses of electron beams propagated through air. Inherent with the ATA concept was the potential for exposure to hazards, such as high radiation levels and hostile breathing atmospheres. The need for a comprehensive safety program was mandated; a formal system safety program was implemented during the project's conceptual phase. A project staff position was created for a safety analyst who would act as a liaison between the project staff and the safety department. Additionally, the safety analyst would be responsible for compiling various hazards analyses reports, which formed the basis of th project's Safety Analysis Report. Recommendations for safety features from the hazards analysis reports were incorporated as necessary at appropriate phases in project development rather than adding features afterwards. The safety program established for the ATA project faciliated in controlling losses and in achieving a low-level of acceptable risk

  2. Reports on the research projects in the field of reactor safety sponsored by the Federal Ministry of Science and Technology

    International Nuclear Information System (INIS)

    1975-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the safety program 'Reactor Safety' are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT - Secretary of State for Research and Technology). Objective of this program is to continue improving the safety of LWR, in order to minimize the risk for the environment. With grant assistance from the Bundesminister des Innern (BMI - Secretary of State for Home Affairs) research contracts in the field of reactor safety are being performed. Results of these projects should contribute to resolve questions arising nuclear licensing procedures. The Forschungsbetreuung (FB - research supervision department) at the Institute for Reactor Safety (IRS), as consultants to BMFT and BMI, provides information about the progress of investigations. Individual reports will be prepared and put into standard forms by the research contractors. Each report gives information on: 1) the work accomplished, 2) the results obtained, 3) the work planned to be continued. Initial reports of research projects describe in addition the purpose of the work. A BMFT-research program on the safety of Fast Breeders (Schneller Brutreaktor - SBR) is presently under discussion. In order to define several problems, investigations included in the present compilation (RS 139, 140, 143, 162) will be previously performed. (orig.) [de

  3. Reports covering research projects in the field of reactor safety supported by the German Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1976-03-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the safety program 'Reactor Safety' are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT - Secretary of State for Research and Technology). Objective of this program is to continue improving the safety of LWR, in order to minimize the risk for the environment. With grant assistance from the Bundesminister des Innern. (BMI - Secretary of State for Home Affairs) research cont racts in the field of reactor safety are being performed. Results of these projects should contribute to resolve questions arising nuclear licensing procedures. The Forschungsbetreuung (FB - research supervision department) at the Institute for Reactor Safety (IRS), as consultants to BMFT and BMI, provides information about the progress of investigations. Individual reports will be prepared and put into standard forms by the research contractors. Each report gives information on: 1) the work accomplished, 2) the results obtained, 3) the work planned to be continued. Initial reports of research projects describe in addition the purpose of the work. A BMFT-research program on the safety of Fast Breeders (Schneller Brutreaktor - SBR) is presently under discussion. In order to define several problems, investigations included in the present compilation (RS 139, 140, 143, 162) will be previously performed. (orig.) [de

  4. Reports on the research projects in the field of reactor safety sponsored by the Federal Ministry of Science and Technology

    International Nuclear Information System (INIS)

    1976-12-01

    Investigations on the safety of light water reactors (LWR) being performed in the framework of the safety program 'Reactor Safety' are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT - Secretary of State for Research and Technology). Objective of this program is to continue improving the safety of LWR, in order to minimize the risk for the environment. With grant assistance from the Bundesminister des Innern (BMI - Secretary of State for Home Affairs) research contrcts in the field of reactor safety are being performed. Results of these projects should contribute to resolve questions arising nuclear licensing procedures. The Forschungsbetreuung (FB - research supervision department) at the Institute for Reactor Safety (IRS), as consultants to BMFT and BMI, provides information about the progress of investigations. Individual reports will be prepared and put into standard forms by the research contractors. Each report gives information on: 1) the work accomplished, 2) the results obtained, 3) the work planned to be continued. Initial reports of research projects describe in addition the purpose of the work. A BMFT-research program on the safety of Fast Breeders (Schneller Brutreaktor - SRB) is presently under discussion. In order to define several problems, investigations included in the present compilation (RS 139, 140, 143, 162) will be previously performed. (orig.) [de

  5. Effects of water inflow and early water uptake on buffer and backfill materials in a KBS-3V repository

    International Nuclear Information System (INIS)

    Boergesson, L.; Sanden, T.; Dueck, A.; Nilsson, U.; Goudarzi, R.; Andersson, L.; Jensen, V.

    2012-01-01

    Document available in extended abstract form only. Bentonite is an excellent sealing material when it has reached full water saturation and swelling pressure. However, bentonite is not good for sealing inflowing water from fractures with potential to build high water pressure. It cannot stop inflow of water at the depth of a repository. The water inflow into the pellets filled slots in the deposition holes and the tunnels in a KBS-3V repository is expected to continue until these slots are water filled and the water flow stopped by an end plug. Then the water pressure gradient is transferred from the fracture/bentonite interface to the plug and the bentonite will have time to homogenize and seal. This scenario leads to a number of processes that can either be harmful to the bentonite or affect the water saturation and homogenization evolution. Last year a project (EVA) started in order to investigate the processes involved by this early water inflow. The project aims at developing a model for the processes piping, erosion, water filling of pellets filled slots, early water absorption and resulting water pressure increase against the plug. The project studies the effects of water inflow in deposition holes and deposition tunnels and the emergence of piping and erosion during installation and wetting of the buffer and backfill until all slots and the pellet fillings have been water filled and piping and erosion have ceased. The project includes laboratory tests of nine different processes and modeling. The laboratory program includes tests of the following processes: 1. Erosion; 2. Piping; 3. Water flow in pellet filled slots; 4. Sealing ability of bentonite; 5. Water absorption of the bentonite blocks; 6. Formation of water or gel pockets in a pellet filled slot; 7. Formation and outflow of bentonite gel; 8. Self-sealing of cracks by eroding water; 9. Buffer swelling before placement of backfill. The laboratory tests are ongoing and preliminary results and

  6. Geosphere process report for the safety assessment SR-Can

    International Nuclear Information System (INIS)

    Skagius, Kristina

    2006-09-01

    This report documents geosphere processes identified as relevant to the long-term safety of a KBS- repository, and forms an important part of the reporting of the safety assessment SR-Can. The detailed assessment methodology, including the role of the process report in the assessment, is described in the SR-Can Main report. The following excerpts describe the methodology, and clarify the role of this process report in the assessment. The repository system, broadly defined as the deposited spent nuclear fuel, the engineered barriers surrounding it, the host rock and the biosphere in the proximity of the repository, will evolve over time. Future states of the system will depend on the initial state of the system, a number of radiation related, thermal, hydraulic, mechanical, chemical and biological processes acting within the repository system over time, and external influences acting on the system. A methodology in ten steps has been developed for SR-Can described below. Identification of factors to consider (FEP processing): This step consists of identifying all the factors that need to be included in the analysis. Experience from earlier safety assessments and KBS-specific and international databases of relevant features, events and processes influencing long-term safety are utilised. Based on the results of the FEP processing, an SR-Can FEP catalogue, containing FEPs to be handled in SR-Can, has been established. The initial state of the system is described based on the design specifications of the KBS repository, a descriptive model of the repository site and a site-specific layout of the repository. The initial state of the fuel and the engineered components is that immediately after deposition, as described in the SR-Can Initial state report. The initial state of the geosphere and the biosphere is that of the natural system prior to excavation, as described in the site descriptive models. The repository layouts adapted to the sites are provided in underground

  7. Geosphere process report for the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Skagius, Kristina [Kemakta Konsult AB, Stockholm (SE)] (ed.)

    2006-09-15

    This report documents geosphere processes identified as relevant to the long-term safety of a KBS- repository, and forms an important part of the reporting of the safety assessment SR-Can. The detailed assessment methodology, including the role of the process report in the assessment, is described in the SR-Can Main report. The following excerpts describe the methodology, and clarify the role of this process report in the assessment. The repository system, broadly defined as the deposited spent nuclear fuel, the engineered barriers surrounding it, the host rock and the biosphere in the proximity of the repository, will evolve over time. Future states of the system will depend on the initial state of the system, a number of radiation related, thermal, hydraulic, mechanical, chemical and biological processes acting within the repository system over time, and external influences acting on the system. A methodology in ten steps has been developed for SR-Can described below. Identification of factors to consider (FEP processing): This step consists of identifying all the factors that need to be included in the analysis. Experience from earlier safety assessments and KBS-specific and international databases of relevant features, events and processes influencing long-term safety are utilised. Based on the results of the FEP processing, an SR-Can FEP catalogue, containing FEPs to be handled in SR-Can, has been established. The initial state of the system is described based on the design specifications of the KBS repository, a descriptive model of the repository site and a site-specific layout of the repository. The initial state of the fuel and the engineered components is that immediately after deposition, as described in the SR-Can Initial state report. The initial state of the geosphere and the biosphere is that of the natural system prior to excavation, as described in the site descriptive models. The repository layouts adapted to the sites are provided in underground

  8. Reports on the research projects in the field of nuclear safety sponsored by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1979-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The CRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD.(orig./HP) [de

  9. Reports on the research projects in the field of nuclear safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1980-06-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-progress reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT, which will appear in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC and the OECD. (orig./HP) [de

  10. The International Science and Technology Center (ISTC) and ISTC projects related to nuclear safety. Information review

    International Nuclear Information System (INIS)

    Tocheny, Lev V.

    2003-01-01

    The ISTC is an intergovernmental organization created ten years ago by Russia, USA, EU and Japan in Moscow. The Center supports numerous science and technology projects in different areas, from biotechnologies and environmental problems to all aspects of nuclear studies, including those focused on the development of effective innovative concepts and technologies in the nuclear field, in general, and for improvement of nuclear safety, in particular. The presentation addresses some technical results of the ISTC projects as well as methods and approaches employed by the ISTC to foster close international collaboration and manage projects towards fruitful results. (author)

  11. Numerical modelling of fracture displacements due to thermal load from a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva; Olofsson, Stig-Olof [Itasca Geomekanik AB, Stockholm (Sweden)

    2002-01-01

    The objective of the project has been to estimate the largest shear displacements that could be expected on a pre-existing fracture located in the repository area, due to the heat release from the deposited waste. Two-dimensional numerical analyses using the 'Universal Distinct Element Code' (UDEC) have been performed. The UDEC models represent a vertical cross section of a KBS-3 type repository with a large planar fracture intersecting a deposition hole at the repository centre. The extension, dip and mechanical properties of the fracture were changed in different models to evaluate the influence of these parameters on fracture shear displacements. The fracture was modelled using a Coulomb slip criterion with no cohesion and no dilation. The rock mass surrounding the fracture was modelled as a homogeneous, isotropic and elastic material, with a Young's modulus of 40 GPa. The initial heat release per unit repository area was assumed to be 8W/m{sup 2} (total power/total repository area). The shear displacements occur due to the thermal expansion of the rock surrounding the heat generating canisters. The rock mass is almost free to expand vertically, but is constrained horizontally, which gives a temperature-induced addition of shear stresses in the plane of the fracture. The shear movement of the fracture therefore follows the temperature development in the surrounding rock and the maximum shear displacement develops about 200 years after the waste deposition. Altogether, twenty cases are analysed. The maximum shear displacement, which occurs at the fracture centre, amounts to 0.2-13.8 cm depending on the fracture parameters. Among the analysed cases, the largest shear values, about 13 cm, was calculated for the cases with about 700 m long fractures with a shear stiffness of 0.005 GPa/m. Also, for large fractures with a higher shear stiffness of 5 GPa/m, but with a low friction angle (15 deg), the shear displacement reaches similar magnitudes, about

  12. NASA's Software Safety Standard

    Science.gov (United States)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  13. Status of the design and safety project for the sodium-cooled fast reactor as a generation IV nuclear energy system

    International Nuclear Information System (INIS)

    Niwa, Hajime; Fiorini, Gian-Luigi; Sim, Yoon-Sub; Lennox, Tom; Cahalan, James E.

    2005-01-01

    The Design and Safety Project Management Board (DSPMB) was established under the Sodium Cooled Fast Reactor (SFR) System Steering Committee (SSC) in the Generation IV international Forum. The DSPMB will promote collaborative R and D activities on reactor core design, and safety assessment for candidate systems, and also integrate these results together with those from other PMBs such as advanced fuel and component to a whole fast reactor system in order to develop high performance systems that will satisfy the goals of Generation IV nuclear energy systems. The DSPMB has formulated the present R and D schedules for this purpose. Two SFR concepts were proposed: a loop-type system with primarily a MOX fuel core and a pool-type system with a metal fuel core. Study of innovative systems and their evaluation will also be included. The safety project will cover both the safety assessment of the design and the preparation of the methods/tools to be used for the assessment. After a rather short viability phase, the project will move to the performance phase for development of performance data and design optimization of conceptual designs. This paper describes the schedules, work packages and tasks for the collaborative studies of the member countries. (author)

  14. Surveys of research projects concerning nuclear facility safety, financed by the Federal Ministry of the Interior

    International Nuclear Information System (INIS)

    1986-05-01

    Each progress report is a collection of individual reports, categorized by subject matter. They are a documentation of the contractor's progress, rendered by themselves on standardized forms, published, for the sake of general information on progress made in investigations concerning reactor safety, by the project attendance department of the GRS. The individual reports have serial numbers. Each report includes particulars of the objective, work carried out, results obtained and plans for project continuation. (orig./HP) [de

  15. Are automatic systems the future of motorcycle safety? A novel methodology to prioritize potential safety solutions based on their projected effectiveness.

    Science.gov (United States)

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Baldanzini, Niccolò; Happee, Riender; Pierini, Marco

    2017-11-17

    Motorcycle riders are involved in significantly more crashes per kilometer driven than passenger car drivers. Nonetheless, the development and implementation of motorcycle safety systems lags far behind that of passenger cars. This research addresses the identification of the most effective motorcycle safety solutions in the context of different countries. A knowledge-based system of motorcycle safety (KBMS) was developed to assess the potential for various safety solutions to mitigate or avoid motorcycle crashes. First, a set of 26 common crash scenarios was identified from the analysis of multiple crash databases. Second, the relative effectiveness of 10 safety solutions was assessed for the 26 crash scenarios by a panel of experts. Third, relevant information about crashes was used to weigh the importance of each crash scenario in the region studied. The KBMS method was applied with an Italian database, with a total of more than 1 million motorcycle crashes in the period 2000-2012. When applied to the Italian context, the KBMS suggested that automatic systems designed to compensate for riders' or drivers' errors of commission or omission are the potentially most effective safety solution. The KBMS method showed an effective way to compare the potential of various safety solutions, through a scored list with the expected effectiveness of each safety solution for the region to which the crash data belong. A comparison of our results with a previous study that attempted a systematic prioritization of safety systems for motorcycles (PISa project) showed an encouraging agreement. Current results revealed that automatic systems have the greatest potential to improve motorcycle safety. Accumulating and encoding expertise in crash analysis from a range of disciplines into a scalable and reusable analytical tool, as proposed with the use of KBMS, has the potential to guide research and development of effective safety systems. As the expert assessment of the crash

  16. The Barselina Project Phase 4 Summary report. Ignalina Unit 2 Probabilistic Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Gunnar [ES-Konsult AB, Stockholm (Sweden); Hellstroem, P. [RELCON AB, Solna (Sweden); Zheltobriuch, G.; Bagdonas, A. [Ignalina Power Plant, Visaginas (Lithuania)

    1996-12-01

    The Barselina Project was initiated in the summer of 1991. The project is a multilateral co-operation between Lithuania, Russia and Sweden. The long range objective is to establish common perspectives and unified bases for assessment of severe accident risks and needs for remedial measures for the RBMK reactors. The Swedish BWR Barsebaeck is used as reference plant and the Lithuanian RBMK Ignalina as application plant. During phase 3, from March, 1993 to June, 1994, a full scope Probabilistic Safety Analysis (PSA) model of the Ignalina Nuclear Power Plant unit 2 (INPP-2) was developed to identify possible safety improvement of risk importance. The probabilistic methodology was applied on a plant specific basis for a channel type reactor of RBMK design. To increase the realism of the risk model a set of deterministic analyses were performed and plant/RBMK-specific data bases were developed and used. A general concept for analysing this type of reactor was developed. During phase 4, July 1994 to September 1996, the PSA was further developed, taking into account plant changes, improved modeling methods and extended plant information concerning dependencies (area events, dynamic effects, electrical and signal dependencies). The updated model is quantified and new results and conclusions are evaluated.

  17. MULTI-AGENT MODEL OF SAFETY MANAGEMENT IN PLANNING PROJECTS FOR THE CREATION OF OBJECTS WITH MASS STAY OF PEOPLE

    Directory of Open Access Journals (Sweden)

    Олег Богданович ЗАЧКО

    2017-03-01

    Full Text Available In today's conditions, with increasing of the scale of industrialization the Ukraine's major cities, also increases the threat of emergency situations (ES, disasters and accidents at the objects with the mass stay of people (OMSP. Inadequate level of paying attention to the exploitation of OMSP at all stages of the project lifecycle gives its tangible negative consequences. The analysis of statistics for the last 5-10 years has shown the significant growth of dynamics of mortality after emergencies on enterprises, which shows that in most cases the cause of these deaths is the lack of strict management consistency across all hierarchy management structure that is the project-oriented management, ignorance the rules of fire safety at the workplace, lack of automatic fire alarm systems and alarm systems and extinguishing, especially in the regional context. Therefore, the definition of the concept of objects with the mass stay of people using safety-oriented approach will allow them to identify and ultimately increase security at such objectsIn the article the literary analysis of the available scientific studies. Developed multi-agent safety management model in planning projects for the creation of objects with the mass stay of people.

  18. Safety standards for express roads : research in the framework of the European research project Safety Standards for Road Design and Redesign SAFESTAR, Workpackages 3.4.

    NARCIS (Netherlands)

    Hummel, T.

    1999-01-01

    The objective of the SAFESTAR project is the formulation of design standards or recommendations exclusively based on safety arguments. Workpackage 3 (WP3) of SAFESTAR, of which this report is the concluding report, should result in design recommendations for single and dual-carriageway express roads

  19. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    International Nuclear Information System (INIS)

    Hopper, Calvin Mitchell

    2011-01-01

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT and SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT and SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National

  20. Development of a harmonized approach to safety assessment of decommissioning: Lessons learned from international experience (DeSa project)

    International Nuclear Information System (INIS)

    Percival, K.; Nokhamzon, J.-G.; Ferch, R.; Batandjieva, B.

    2006-01-01

    The number of nuclear facilities being or planned to be shutdown as they reach the end of their design life, due to accidents or other political and social factors has been increasing worldwide. This has led to an increase in the awareness of regulators and operators of the importance of development and implementation of adequate safety requirements and criteria for decommissioning of these facilities. A general requirement at international and national levels, even for new facilities to be commissioned, is the development of a decommissioning plan, which includes evaluation of potential radiological consequences to public and workers during planned and accidental decommissioning activities. Experience has been gained in the safety assessment of decommissioning at various sites with different complexities and hazard potentials. This experience shows that various approaches have been used in conducting safety assessments and that there is a need for harmonisation of these approaches and for transferring the good practice and lessons learned to other countries, in particular developing countries with limited financial and human resources. The IAEA launched an international project on Evaluation and Demonstration of Safety during Decommissioning (DeSa) in 2004 to provide a forum for exchange of lessons learned between site operators, regulators, safety assessors and other specialists in safety assessment of decommissioning of nuclear power plants, research reactors, laboratories, nuclear fuel cycle facilities, etc. This paper presents the lessons learned through the project up to date, i.e.; (i) a common approach to safety assessment is being applied worldwide with the following steps - establishment of assessment framework; description of the facility; definition of decommissioning activities; hazard identification and analysis; calculation of consequences; and analysis of results; (ii) a deterministic approach to safety assessment is most commonly applied; (iii) a

  1. Design for safety: theoretical framework of the safety aspect of BIM system to determine the safety index

    Directory of Open Access Journals (Sweden)

    Ai Lin Evelyn Teo

    2016-12-01

    Full Text Available Despite the safety improvement drive that has been implemented in the construction industry in Singapore for many years, the industry continues to report the highest number of workplace fatalities, compared to other industries. The purpose of this paper is to discuss the theoretical framework of the safety aspect of a proposed BIM System to determine a Safety Index. An online questionnaire survey was conducted to ascertain the current workplace safety and health situation in the construction industry and explore how BIM can be used to improve safety performance in the industry. A safety hazard library was developed based on the main contributors to fatal accidents in the construction industry, determined from the formal records and existing literature, and a series of discussions with representatives from the Workplace Safety and Health Institute (WSH Institute in Singapore. The results from the survey suggested that the majority of the firms have implemented the necessary policies, programmes and procedures on Workplace Safety and Health (WSH practices. However, BIM is still not widely applied or explored beyond the mandatory requirement that building plans should be submitted to the authorities for approval in BIM format. This paper presents a discussion of the safety aspect of the Intelligent Productivity and Safety System (IPASS developed in the study. IPASS is an intelligent system incorporating the buildable design concept, theory on the detection, prevention and control of hazards, and the Construction Safety Audit Scoring System (ConSASS. The system is based on the premise that safety should be considered at the design stage, and BIM can be an effective tool to facilitate the efforts to enhance safety performance. IPASS allows users to analyse and monitor key aspects of the safety performance of the project before the project starts and as the project progresses.

  2. New IAEA guidance on safety culture

    International Nuclear Information System (INIS)

    Haage, Monica; )

    2012-01-01

    Monica Haage described a project for Kozloduy Nuclear Power Plant in Bulgaria which was also funded by the Norwegian government. This project included the development of guidance documents and training on self-assessment and continuous improvement of safety culture. A draft IAEA safety culture survey was also developed as part of this project in collaboration with St Mary's University, Canada. This project was conducted in parallel with an IAEA project to develop new safety reports on safety culture self-assessment and continuous improvement. A safety report on safety culture during the pre-operational phases of NPPs has also been drafted. The IAEA approach to safety culture assessment was outlined and core principles of the approach were discussed. These include the use of several assessment methods (survey, interview, observation, focus groups, document review), and two distinct levels of analysis. The first is a descriptive analysis of the observed cultural characteristics from each assessment method and overarching themes. This is followed by a 'normative' analysis comparing what has been observed with the desirable characteristics of a strong, positive, safety culture, as defined by the IAEA safety culture framework. The application of this approach during recent Operational Safety Assessment Review Team (OSART) missions was described along with key learning points

  3. Characteristics of the safety climate in teams with world-class safety ...

    African Journals Online (AJOL)

    interact to deliver a project successfully in terms of cost .... small-scale accidents occurring at high frequency and from diverse ... the team dynamics of role players in a construction project and .... modified safety pyramid to measure the impact of the safety climate ...... Methodological Centre for Vocational Education and.

  4. Choice of method - evaluation of strategies and systems for disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    2010-10-01

    This report deals with the question of how the Swedish spent nuclear fuel is to be disposed of. What are the requirements? What are the alternatives? In the main chapter of the report, an evaluation is made of the KBS-3 method compared with other strategies and systems for final disposal of spent nuclear fuel. An appendix to the report presents in general terms how the KBS-3 method has developed from the end of the 1970s up to today. The report is one of a number of supporting documents for SKB's applications for construction and operation of the final repository for spent nuclear fuel. In parallel with and as a basis for the present report, SKB has prepared the reports Principer, strategier och system foer slutligt omhaendertagande av anvaent kaernbraensle ('Principles, strategies and systems for final disposal of spent nuclear fuel') /Grundfelt 2010a/, Jaemfoerelse mellan KBS-3-metoden och deponering i djupa borrhaal foer slutlig foervaring av anvaent kaernbraensle ('Comparison between the KBS-3 method and deposition in deep boreholes for final disposal of spent nuclear fuel') /Grundfelt 2010b/ and Utvecklingen av KBS-3- metoden. Genomgaang av forskningsprogram, saekerhetsanalyser, myndighetsgranskningar samt SKB:s internationella forskningssamarbete ('Development of the KBS-3 method. Review of research programmes, safety assessments, regulatory reviews and SKB's international research cooperation') /SKB 2010a/. The reports are in Swedish, but contain summaries in English. The first report is an update of the comprehensive account of alternative methods presented by SKB in 2000. The second report presents a comparison between the KBS-3 method and the Deep Boreholes concept, plus a status report on research and development in the area of Deep Boreholes. The last report describes how the KBS-3 method has been developed from the end of the 1970s up to today. It further describes how the method has been further developed and refined over the years, but also what the

  5. Choice of method - evaluation of strategies and systems for disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-15

    This report deals with the question of how the Swedish spent nuclear fuel is to be disposed of. What are the requirements? What are the alternatives? In the main chapter of the report, an evaluation is made of the KBS-3 method compared with other strategies and systems for final disposal of spent nuclear fuel. An appendix to the report presents in general terms how the KBS-3 method has developed from the end of the 1970s up to today. The report is one of a number of supporting documents for SKB's applications for construction and operation of the final repository for spent nuclear fuel. In parallel with and as a basis for the present report, SKB has prepared the reports Principer, strategier och system foer slutligt omhaendertagande av anvaent kaernbraensle ('Principles, strategies and systems for final disposal of spent nuclear fuel') /Grundfelt 2010a/, Jaemfoerelse mellan KBS-3-metoden och deponering i djupa borrhaal foer slutlig foervaring av anvaent kaernbraensle ('Comparison between the KBS-3 method and deposition in deep boreholes for final disposal of spent nuclear fuel') /Grundfelt 2010b/ and Utvecklingen av KBS-3- metoden. Genomgaang av forskningsprogram, saekerhetsanalyser, myndighetsgranskningar samt SKB:s internationella forskningssamarbete ('Development of the KBS-3 method. Review of research programmes, safety assessments, regulatory reviews and SKB's international research cooperation') /SKB 2010a/. The reports are in Swedish, but contain summaries in English. The first report is an update of the comprehensive account of alternative methods presented by SKB in 2000. The second report presents a comparison between the KBS-3 method and the Deep Boreholes concept, plus a status report on research and development in the area of Deep Boreholes. The last report describes how the KBS-3 method has been developed from the end of the 1970s up to today. It further describes how the method has been further developed and

  6. Methodology - evaluation of strategies -and the system for taking care of spent nuclear fuel; Metodval - utvaerdering av strategier och system foer att ta hand om anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-15

    This report deals with the question of how the Swedish spent nuclear fuel is to be disposed of. What are the requirements? What are the alternatives? In the main chapter of the report, an evaluation is made of the KBS-3 method compared with other strategies and systems for final disposal of spent nuclear fuel. An appendix to the report presents in general terms how the KBS-3 method has developed from the end of the 1970s up to today. The report is one of a number of supporting documents for SKB's applications for construction and operation of the final repository for spent nuclear fuel. In parallel with and as a basis for the present report, SKB has prepared the reports 'Principer, strategier och system foer slutligt omhaendertagande av anvaent kaernbraensle' ('Principles, strategies and systems for final disposal of spent nuclear fuel') /Grundfelt 2010a/, 'Jaemfoerelse mellan KBS-3-metoden och deponering i djupa borrhaal foer slutlig foervaring av anvaent kaernbraensle' ('Comparison between the KBS-3 method and deposition in deep boreholes for final disposal of spent nuclear fuel') /Grundfelt 2010b/ and 'Utvecklingen av KBS-3-metoden. Genomgaang av forskningsprogram, saekerhetsanalyser, myndighetsgranskningar samt SKB:s internationella forskningssamarbete' ('Development of the KBS-3 method. Review of research programmes, safety assessments, regulatory reviews and SKB's international research cooperation') /SKB 2010a/. The reports are in Swedish, but contain summaries in English. The first report is an update of the comprehensive account of alternative methods presented by SKB in 2000. The second report presents a comparison between the KBS-3 method and the Deep Boreholes concept, plus a status report on research and development in the area of Deep Boreholes. The last report describes how the KBS-3 method has been developed from the end of the 1970s up to today. It further describes how the

  7. Safety in offshore engineering an academic course covering safety in offshore wind

    NARCIS (Netherlands)

    Cerda Salzmann, D.J.

    2011-01-01

    Offshore projects are known for their challenging conditions, generally leading to high risks. Therefore no offshore project can go without a continuous and extensive assessment on safety issues. The Delft University of Technology is currently developing a course "Safety in Offshore Engineering"

  8. Criticality Safety Lessons Learned in a Deactivation and Decommissioning Environment [A Guide for Facility and Project Managers

    Energy Technology Data Exchange (ETDEWEB)

    Nirider, L. Tom

    2003-08-06

    This document was designed as a reference and a primer for facility and project managers responsible for Deactivation and Decommissioning (D&D) processes in facilities containing significant inventories of fissionable materials. The document contains lessons learned and guidance for the development and management of criticality safety programs. It also contains information gleaned from occurrence reports, assessment reports, facility operations and management, NDA program reviews, criticality safety experts, and criticality safety evaluations. This information is designed to assist in the planning process and operational activities. Sufficient details are provided to allow the reader to understand the events, the lessons learned, and how to apply the information to present or planned D&D processes. Information is also provided on general lessons learned including criticality safety evaluations and criticality safety program requirements during D&D activities. The document also explores recent and past criticality accidents in operating facilities, and it extracts lessons learned pertinent to D&D activities. A reference section is included to provide additional information. This document does not address D&D lessons learned that are not pertinent to criticality safety.

  9. THE EVALUATION OF THE IMPLEMENTATION OF CONTRACTOR SAFETY MANAGEMENT SYSTEM (CSMS PROGRAM ON TURNAROUND PROJECT (TA AT PT. PUPUK SRIWIDJAJA (PUSRI PALEMBANG

    Directory of Open Access Journals (Sweden)

    Muhammad Arif

    2016-03-01

    Full Text Available Background :Turnaround is one of the done by contractor in which if it is not managed well, it could cause work accident. The purpose of this study was to evaluate the implementation of contractor safety management system (CSMS program on turnaround project at PT. Pupuk Sriwidjaja Palembang. Method : This study was a qualitative study. The information was obtained from deep interview, observation and the study of document. The data was analyzed by using content analysis. The validity of the instruments was tested through triangulation of sources, method and data Result : The program implementation Contractor Safety Management System (CSMS on a turnaround project is already well underway only on projects in addition to departments turnaround K3 & LH less involved in the risk assessment stage, pre-qualification and selection of contractors. Conclusion : The implementation of the program Contractor Safety Management System (CSMS on a turnaround project at PT. Pupuk Sriwidjaja Palembang are in accordance with the Code of Labor Management Health, Safety and Environmental Protection Contractor BPMIGAS. It is advisable to PT. Pupuk Sriwidjaja Palembang in order to improve communication between departments procure goods and services with K3 and LH-related departments work tendered as the risk assessment stage, pre-qualification and selection on work tendered. Need sanctions against contractors who do not regularly report performance data K3.

  10. The Hungarian model project: Strengthening training for operational safety at Paks nuclear power plant

    International Nuclear Information System (INIS)

    Mautner Markhof, F.

    1998-01-01

    The Hungarian Model project (HMP) reflects the commitment to constant increase of safety and reliability of the NPP Paks, the Government of Hungary and the IAEA. It includes some of the most important nuclear power objectives of Paks NPP, namely the strengthening of NPP personnel training and competence through the application of international best practice, the systematic approach to training (SAT), for training operation and maintenance personnel; setting up a state of-the-art maintenance training center (MTC) at Paks and enhancing safety culture at Paks NPP. The IAEA supported implementation of the HMP through fellowships and scientific visits, expert missions, provision of hardware and software for SAT application, and supply od major new uncontaminated items of actual WWER equipment for the MTC

  11. Assessment of a KBS-3 nuclear waste repository as a plane of weakness

    Energy Technology Data Exchange (ETDEWEB)

    Loennqvist, Margareta; Kristensson, Ola; Faelth, Billy (Clay Technology AB, Lund (Sweden))

    2010-06-15

    The objective of this study is to investigate if the KBS-3 repository can act as a plane of weakness when subjected to different loads. These loads may cause either shear- or tensile fracturing. In this report these two modes of fracturing are simply referred to as 'Shearing' and 'Sheeting', respectively. The sensitivity of the rock mass to the presence of a system of tunnels is studied by means of numerical modelling using the two-dimensional distinct element code UDEC. In order to study the stability against shearing, the slip behaviours of two cases are compared: - A single fracture embedded in a portion of rock. - A single fracture embedded in a portion of rock is cutting through a system of tunnels, i.e. a repository. The evaluation concerns three issues: - How the presence of a system of tunnels affects the stability of the rock mass. - How the presence of a system of tunnels affects the shear displacements in the hypothetical case of complete failure. - How the tunnel spacing affects the stability and shear displacements. The above is investigated for a number of in situ stress states. The stress states are varied in absolute magnitude, ratio between major and minor principal stress and inclination of the major stress with respect to the fracture plane. The results from the models are used to evaluate the stability of the repository rock mass against shear failure in terms of Factor of Safety (FoS). The results indicate that the stability margin in the fracture has a limited sensitivity to the presence of the tunnels and to the tunnel spacing. Including tunnels with 40 m spacing gives a reduction of the stability margin by about 20% at a maximum. Applying the stress state where the stresses are oriented in order to give maximum instability gives a FoS higher than 1.4 for all tunnel spacings larger than 20 m. The stability is also evaluated using stress input from dynamic earthquake simulations. The FoS quantity is calculated based on the

  12. Assessment of a KBS-3 nuclear waste repository as a plane of weakness

    International Nuclear Information System (INIS)

    Loennqvist, Margareta; Kristensson, Ola; Faelth, Billy

    2010-06-01

    The objective of this study is to investigate if the KBS-3 repository can act as a plane of weakness when subjected to different loads. These loads may cause either shear- or tensile fracturing. In this report these two modes of fracturing are simply referred to as 'Shearing' and 'Sheeting', respectively. The sensitivity of the rock mass to the presence of a system of tunnels is studied by means of numerical modelling using the two-dimensional distinct element code UDEC. In order to study the stability against shearing, the slip behaviours of two cases are compared: - A single fracture embedded in a portion of rock. - A single fracture embedded in a portion of rock is cutting through a system of tunnels, i.e. a repository. The evaluation concerns three issues: - How the presence of a system of tunnels affects the stability of the rock mass. - How the presence of a system of tunnels affects the shear displacements in the hypothetical case of complete failure. - How the tunnel spacing affects the stability and shear displacements. The above is investigated for a number of in situ stress states. The stress states are varied in absolute magnitude, ratio between major and minor principal stress and inclination of the major stress with respect to the fracture plane. The results from the models are used to evaluate the stability of the repository rock mass against shear failure in terms of Factor of Safety (FoS). The results indicate that the stability margin in the fracture has a limited sensitivity to the presence of the tunnels and to the tunnel spacing. Including tunnels with 40 m spacing gives a reduction of the stability margin by about 20% at a maximum. Applying the stress state where the stresses are oriented in order to give maximum instability gives a FoS higher than 1.4 for all tunnel spacings larger than 20 m. The stability is also evaluated using stress input from dynamic earthquake simulations. The FoS quantity is calculated based on the normal- and shear

  13. AREVA advanced safety IC solutions and licensing experience for new nuclear builds and modernization projects - 15545

    International Nuclear Information System (INIS)

    Fourestie, B.; Pickelmann, J.; Richter, S.; Hilsenkopf, P.; Paris, P.

    2015-01-01

    Regulatory requirements for the Instrumentation and Control (IC) for Nuclear Power Plants have become significantly more stringent during the last 10 years in the areas of software development and qualification, traceability, diversity, or seismic requirements for instance, and with the introduction of new standards (such as the IEC 62566, or the IEC 62003). Based on a large and comprehensive experience gained from projects in several regulatory environments and different plant types (including non-OEM plants), AREVA has developed and adapted its processes and products to provide state-of-the-art IC solutions in full compliance with the regulatory demands and requirements in terms of robustness (independence, defense-in-depth, diversity and cyber-security). In this paper we present the safety IC platforms developed by AREVA. These platforms include TELEPERM XS as the computerized safety IC platform for class 1 system implementation, the Qualified Display System (QDS) for safety classified screen-based interface, and UNICORN as fully diverse analog safety IC platform for backup systems

  14. Safety at Work : Research Methodology

    NARCIS (Netherlands)

    Beurden, van K. (Karin); Boer, de J. (Johannes); Brinks, G. (Ger); Goering-Zaburnenko, T. (Tatiana); Houten, van Y. (Ynze); Teeuw, W. (Wouter)

    2012-01-01

    In this document, we provide the methodological background for the Safety atWork project. This document combines several project deliverables as defined inthe overall project plan: validation techniques and methods (D5.1.1), performanceindicators for safety at work (D5.1.2), personal protection

  15. Radiological and environmental consequences. Final report of the Nordic Nuclear Safety Research project BOK-2

    International Nuclear Information System (INIS)

    Palsson, S.E.

    2002-11-01

    Final report of the Nordic Nuclear Safety Research project BOK-2, Radiological and Environmental Consequences. The project was carried out 1998-2001 with participants from all the Nordic countries. Representatives from the Baltic States were also invited to some of the meetings and seminars. The project consisted of work on terrestrial and marine radioecology and had a broad scope in order to enable participation of research groups with various fields of interest. This report focuses on the project itself and gives a general summary of the studies undertaken. A separate technical report summarises the work done by each research group and gives references to papers published in scientific journals. The topics in BOK-2 included improving assessment of old and recent fallout, use of radionuclides as tracers in Nordic marine areas, improving assessment of internal doses and use of mass spectrometry in radioecology. (au)

  16. Optimization of safety on pavement preservation projects.

    Science.gov (United States)

    2011-01-01

    To achieve a goal of reducing highway crash fatalities by 4% each year to improve roadway safety, the Georgia Department of Transportation (GDOT) is actively seeking opportunities to incorporate safety improvements into its current pavement preservat...

  17. Reports of reactor safety research projects sponsored by the Federal Ministry for Research and Technology (BMFT)

    International Nuclear Information System (INIS)

    1984-04-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. the individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by he FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWRS 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  18. Krsko NPP Quality Assurance Plan Application to Nuclear Safety Upgrade Projects (PCFV System and PAR System)

    International Nuclear Information System (INIS)

    Biscan, Romeo; Fifnja, Igor

    2014-01-01

    Nuklearna Elektrarna Krsko (NEK) has undertaken Nuclear Safety Upgrade Projects as a safety improvement driven by the lessons learned from the Fukushima-Daiichi Accident. Among other projects, new modification 1008-VA-L Passive Containment Filtered Vent (PCFV) System has been installed which acts as the last barrier minimizing the release of radioactive material into the environment in case of failure of all safety systems, and to insure containment integrity during beyond design basis accidents (BDBA). In addition, modification 1002-GH-L Severe Accident Hydrogen Control System (PAR) has been implemented to prevent and mitigate the consequences of explosive gas generation (hydrogen and carbon monoxide) in case of reactor core melting. To ensure containment integrity for all design basis accidents (DBA) and BDBA conditions, NEK has eliminated existing safety-related electrical recombiners, replaced them with two safety-related passive autocatalytic recombiners (PARs) and added 20 new PARs designed for the BDBA conditions. Krsko NPP Quality Assurance Plan has been applied to Nuclear Safety Upgrade Projects (PCFV System and PAR System) through the following activities: · Internal audit of modification process was performed. · Supplier audits were performed to evaluate QA program efficiency of the main design organization and engineering organizations. · Evaluation and approval of Suppliers were performed. · QA engineer was involved in the review and approval of 1008-VA-L and 1002-GH-L modification documentation (Conceptual Design Package, Design Modification Package, Installation Package, Field Design Change Request, Problem/Deficiency Report, and Final Documentation Package). · Purchasing documentation for modifications 1008-VA-L and 1002-GH-L (technical specifications, purchase orders) has been verified and approved by QA. · QA and QC engineers were involved in oversight of production and testing of the new 1008-VA-L and 1002-GH-L plant components.

  19. ELFR: The European Lead Fast Reactor. Design, Safety Approach and Safety Characteristics

    International Nuclear Information System (INIS)

    Alemberti, Alessandro

    2012-01-01

    • In the framework of the LEADER project, the safety approach for a Lead cooled fast reactor has been defined and, in particular, all the possible challenges to the main safety functions and their mechanisms have been specified, in order to better define the needed provisions. • On the basis of the above and taking into account the results of the safety analyses performed during previous project (ELSY), a reference configuration of the ELFR plant has been consolidated, by improving and updating the plant design features. In particular, the emerged safety concerns have been analyzed in the LEADER project and a new set of design options and safety provisions have been proposed. • The combination of favourable Lead coolant inherent characteristics and plant design features, specifically developed to face identified challenges, resulted in a very robust and forgiving design, even in very extreme conditions, as a Fukushima-like scenario

  20. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  1. Alternative buffer material. Status of the ongoing laboratory investigation of reference materials and test package 1

    International Nuclear Information System (INIS)

    Svensson, Daniel; Dueck, Ann; Nilsson, Ulf; Olsson, Siv; Sanden, Torbjoern; Lydmark, Sara; Jaegerwall, Sara; Pedersen, Karsten; Hansen, Staffan

    2011-07-01

    Bentonite clay is part of the Swedish KBS-3 design of final repositories for high level radioactive waste. Wyoming bentonite with the commercial name MX-80 (American Colloid Co) has long been the reference for buffer material in the KBS-3 concept. Extending the knowledge base of alternative buffer materials will make it possible to optimize regarding safety, availability and cost. For this reason the field experiment Alternative Buffer Material (ABM) was started at Aespoe Hard Rock Laboratory during 2006. The experiment includes three medium-scale test packages, each consisting of a central steel tube with heaters, and a buffer of compacted clay. Eleven different clays were chosen for the buffers to examine effects of smectite content, interlayer cations and overall iron content. Also bentonite pellets with and without additional quartz are being tested. The buffer in package 1 had been subjected to wetting by formation water and heating for more than two years (at 130 deg C for ∼ 1 year) when it was retrieved and analyzed. The main purposes of the project were to characterise the clays with respect to hydro-mechanical properties, mineralogy and chemical composition and to identify any differences in behaviour or long term stability. The diversity of clays and the heater of steel also make the experiment suitable for studies of iron-bentonite interactions. This report concerns the work accomplished up to now and is not to be treated as any final report of the project

  2. Alternative buffer material. Status of the ongoing laboratory investigation of reference materials and test package 1

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Daniel [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Dueck, Ann; Nilsson, Ulf; Olsson, Siv; Sanden, Torbjoern [Clay Technology AB, Lund (Sweden); Lydmark, Sara; Jaegerwall, Sara; Pedersen, Karsten [Microbial Analytics Sweden AB, Moelnlycke (Sweden); Hansen, Staffan [LTH Lund Univ., Lund (Sweden)

    2011-07-15

    Bentonite clay is part of the Swedish KBS-3 design of final repositories for high level radioactive waste. Wyoming bentonite with the commercial name MX-80 (American Colloid Co) has long been the reference for buffer material in the KBS-3 concept. Extending the knowledge base of alternative buffer materials will make it possible to optimize regarding safety, availability and cost. For this reason the field experiment Alternative Buffer Material (ABM) was started at Aespoe Hard Rock Laboratory during 2006. The experiment includes three medium-scale test packages, each consisting of a central steel tube with heaters, and a buffer of compacted clay. Eleven different clays were chosen for the buffers to examine effects of smectite content, interlayer cations and overall iron content. Also bentonite pellets with and without additional quartz are being tested. The buffer in package 1 had been subjected to wetting by formation water and heating for more than two years (at 130 deg C for {approx} 1 year) when it was retrieved and analyzed. The main purposes of the project were to characterise the clays with respect to hydro-mechanical properties, mineralogy and chemical composition and to identify any differences in behaviour or long term stability. The diversity of clays and the heater of steel also make the experiment suitable for studies of iron-bentonite interactions. This report concerns the work accomplished up to now and is not to be treated as any final report of the project.

  3. Integrated Safety in Design

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken; Jørgensen, Kirsten

    2014-01-01

    An on-going research project investigates the inclusion of health and safety considerations in the design phase as a means to achieve a higher level of health and safety in the construction industry. Moreover, the approach is coupled to the overall quality efforts. Two architectural firms and two...... consulting engineering firms are project participants. The hypothesis is that health and safety problems in execution can be prevented through better planning in the early stages of the construction processes and that accidents are prevented by providing safety. In the first stage of the research project...... a theoretical framework is developed from a combination of existing literature on health and safety and a mapping of existing practices based on interviews in all four companies. The interviews revealed that the basic knowledge on OHS among architects and engineers is limited. Also currently designers typically...

  4. Main outcomes from the EURATOM-ROSATOM ERCOSAM SAMARA parallel projects for hydrogen safety of LWR - 15357

    International Nuclear Information System (INIS)

    Paladino, D.; Kiselev, A.

    2015-01-01

    ERCOSAM and SAMARA are the acronyms for 2 parallel projects co-financed respectively by EURATOM and ROSATOM during the 2010-2014 period with the general aim to advance the knowledge on the phenomenology associated to the hydrogen and steam spreading and stratification in the LWR containment during a severe accident. The important peculiarity of the project was its experimental and analytical investigation of the impact of safety systems such as spray, coolers and PAR (Passive Autocatalytic Recombiners) on the distribution of gas species (hydrogen, steam and air). The main outcomes of the ERCOSAM-SAMARA projects are presented in this paper. The research needs, which could be considered in follow-up activities, are also identified. (authors)

  5. Nuclear criticality safety program for environmental restoration projects

    International Nuclear Information System (INIS)

    Marble, R.C.; Brown, T.D.

    1994-05-01

    The Fernald Environmental Management Project (FEMP), formerly known as the Feed Materials Production Center (FMPC), is located on a 1050 acre site approximately twenty miles northwest of Cincinnati, Ohio. The production area of the site covers approximately 136 acres in the central portion of the site. Surrounding the core production area is a buffer consisting of leased grazing land, reforested land, and unused areas. The uranium processing facility was designed and constructed in the early 1950s. During the period from 1952 to 1989 the site produced uranium feed material and uranium products used in the United States weapons complex. Production at the site ended in 1989, when the site was shut down for what was expected to be a short period of time. However, the FUTC was permanently shut down in 1991, and the site's mission was changed from production to environmental restoration. The objective of this paper is to give an update on activities at the Fernald Site and to describe the Nuclear Criticality Safety issues that are currently being addressed

  6. Integrated Safety in ''SARAF'

    International Nuclear Information System (INIS)

    Dickstein, P.; Grof, Y.; Machlev, M.; Pernick, A.

    2004-01-01

    As of the very early stages of the accelerator project at the Soreq Nuclear Research Center ''SARAF'' a safety group was established which has been an inseparable participant in the planning and design of the new facility. The safety group comprises of teams responsible for the shielding, radiation protection and general industrial safety aspects of ''SARAF''. The safety group prepared and documented the safety envelope for the accelerator, dealing with the safety requirements and guidelines for the first, pre-operational, stages of the project. The safety envelope, though based upon generic principles, took into account the accelerator features and the expected modes of operation. The safety envelope was prepared in a hierarchical structure, containing Basic Principles, Basic Guidelines, General Principles for Safety Implementation, Safety Requirements and Safety Underlining Issues. The above safety envelope applies to the entire facility, which entails the accelerator itself and the experimental areas and associated plant and equipment utilizing and supporting the production of the accelerated particle beams

  7. Specific safety measures for emergency lanes and shoulders of motorways : a proposal for motorways' authorities in the framework of the European research project Safety Standards for Road Design and Redesign SAFESTAR, Workpackage 1.1.

    NARCIS (Netherlands)

    Braimaister, L.

    1999-01-01

    This workpackage is one of seven workpackages of the European SAFESTAR project, launched by DG VII. Directing on safety standards and recommendations for the Trans-European Roadway Network (TERN), the workpackage considered safety measures on emergency lanes (stopping strips), which are inherent

  8. Proposal of a risk-factor-based analytical approach for integrating occupational health and safety into project risk evaluation.

    Science.gov (United States)

    Badri, Adel; Nadeau, Sylvie; Gbodossou, André

    2012-09-01

    Excluding occupational health and safety (OHS) from project management is no longer acceptable. Numerous industrial accidents have exposed the ineffectiveness of conventional risk evaluation methods as well as negligence of risk factors having major impact on the health and safety of workers and nearby residents. Lack of reliable and complete evaluations from the beginning of a project generates bad decisions that could end up threatening the very existence of an organization. This article supports a systematic approach to the evaluation of OHS risks and proposes a new procedure based on the number of risk factors identified and their relative significance. A new concept called risk factor concentration along with weighting of risk factor categories as contributors to undesirable events are used in the analytical hierarchy process multi-criteria comparison model with Expert Choice(©) software. A case study is used to illustrate the various steps of the risk evaluation approach and the quick and simple integration of OHS at an early stage of a project. The approach allows continual reassessment of criteria over the course of the project or when new data are acquired. It was thus possible to differentiate the OHS risks from the risk of drop in quality in the case of the factory expansion project. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT EAST-WEST DRIFT SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    1999-06-08

    The purpose of this analysis is to systematically identify and evaluate hazards related to the design of the Yucca Mountain Project Exploratory Studies Facility (ESF) East-West Cross Drift. This analysis builds upon prior ESF System Safety Analyses and incorporates TS Main Drift scenarios, where applicable, into the East-West Drift scenarios. This System Safety Analysis (SSA) focuses on the personnel safety and health hazards associated with the engineered design of the East-West Drift. The analysis also evaluates other aspects of the East-West Drift, including purchased equipment (e.g., scientific mapping platform) or Systems/Structures/Components (SSCs) and out-of-tolerance conditions. In addition to recommending design mitigation features, the analysis identifies the potential need for procedures, training, or Job Safety Analyses (JSAs). The inclusion of this information in the SSA is intended to assist the organization(s) (e.g., constructor, Safety and Health, design) responsible for these aspects of the East-West Drift in evaluating personnel hazards and augment the information developed by these organizations. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with East-West Drift SSCs in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into SSC designs. (2) Add safety features and capabilities to existing designs. (3) Develop procedures and conduct training to increase worker awareness of potential hazards, reduce exposure to hazards, and inform personnel of the

  10. Project Guarantee 1985. Final repository for high-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Final disposal of radioactive waste involves preventing the waste from returning from the repository location into the biosphere by means of successively arranged containment measures known as safety barriers. In the present volume NGB 85-04 of the series of reports for Project 'Guarantee' 1985, the safety barrier system for the type C repository for high-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). Safety barriers take the form of both technically constructed containment measures and the siting of the repository in suitable geological formations. The technical safety barrier system in the case of high-level waste comprises: the waste solidification matrix (borosilicate glass), massive steel canisters, encasement of the waste canisters, encasement of the waste canisters in highly compacted bentonite, sealing of vacant storage space and access routes on repository closure. The natural geological safety barriers - the host rock and overlying formations provide sufficiently long deep groundwater flow times from the repository location to the earth's surface and for additional lengthening of radionuclide migration times by means of various chemical and physical retardation mechanisms. The stability of the geological formations is so great that hydrogeological system is protected for a sufficient length of time from deterioration caused, in particular, by erosion. Observations in the final section of the report indicate that input data for the type C repository safety

  11. Oskarshamn 1-project FENIX

    International Nuclear Information System (INIS)

    Sjoeqvist, N.G.

    1994-01-01

    This paper summarizes the actions to be taken in a large re-start and backfitting project such as the Fenix project. It describes the organization, planning and financial management, safety criteria and licensing procedures, safety concept report, health and safety. The results from the unique full system decontamination of the reactor pressure vessel is described. The project is still ongoing and therefore other results and lessons learnt are not reported. (author) 9 figs

  12. Innovation and Safety. A prestudy

    International Nuclear Information System (INIS)

    Rollenhagen, Carl; Hansson, Sven Ove; Hortberg, Johan; Jakobsson, Fredrik; Zhau, Victoria Jing; Mojeri, Sara

    2010-04-01

    The project summarized in this report was initiated to explore relations between innovation and safety. The first two sections of the report discuss some previously conducted research and give a general background to the subject. It is concluded that safety research and innovation research, by and large, has developed as separate academic disciplines. The concepts of 'innovative safety culture' and 'safe innovation cultures' are suggested as two concepts that can be used to integrate research: innovative safety cultures depart from safety culture research but attempts to introduce an innovative dimension with the aim to create adaptive and innovative safety cultures that efficiently can handle risks arising from existing innovations. Safe innovation cultures have focus on innovation itself, but with the ambition to introduce concepts and methods from safety research in the innovative processes. Three subprojects conducted in the context of the present research are summarized. The first project examines how an existing organization (e.g. SKB - Swedish Nuclear Fuel and Waste Management) attempts to integrate both innovative activities and operative activities in the same organisation. Interviews with key personnel explored different views about how innovative and safety work coexists in the organisation. The second project focuses on how major retrofit projects of a nuclear power plant is managed in parallel to operative activities (e.g. operating the plant on an everyday basis). By means of an innovative technique (e.g. system groups) seminars were held to suggest improvements in the technical change process. The third project conducted a risk analysis of a major organisational change (e.g. control centres for energy distribution). Experiences from the three projects are finally discussed in terms of similarities and differences associated with the cultures for innovation and safety. Suggestions for further research are made

  13. Clinical Trial Electronic Portals for Expedited Safety Reporting: Recommendations from the Clinical Trials Transformation Initiative Investigational New Drug Safety Advancement Project.

    Science.gov (United States)

    Perez, Raymond P; Finnigan, Shanda; Patel, Krupa; Whitney, Shanell; Forrest, Annemarie

    2016-12-15

    Use of electronic clinical trial portals has increased in recent years to assist with sponsor-investigator communication, safety reporting, and clinical trial management. Electronic portals can help reduce time and costs associated with processing paperwork and add security measures; however, there is a lack of information on clinical trial investigative staff's perceived challenges and benefits of using portals. The Clinical Trials Transformation Initiative (CTTI) sought to (1) identify challenges to investigator receipt and management of investigational new drug (IND) safety reports at oncologic investigative sites and coordinating centers and (2) facilitate adoption of best practices for communicating and managing IND safety reports using electronic portals. CTTI, a public-private partnership to improve the conduct of clinical trials, distributed surveys and conducted interviews in an opinion-gathering effort to record investigator and research staff views on electronic portals in the context of the new safety reporting requirements described in the US Food and Drug Administration's final rule (Code of Federal Regulations Title 21 Section 312). The project focused on receipt, management, and review of safety reports as opposed to the reporting of adverse events. The top challenge investigators and staff identified in using individual sponsor portals was remembering several complex individual passwords to access each site. Also, certain tasks are time-consuming (eg, downloading reports) due to slow sites or difficulties associated with particular operating systems or software. To improve user experiences, respondents suggested that portals function independently of browsers and operating systems, have intuitive interfaces with easy navigation, and incorporate additional features that would allow users to filter, search, and batch safety reports. Results indicate that an ideal system for sharing expedited IND safety information is through a central portal used by

  14. 75 FR 53701 - Clinical Studies of Safety and Effectiveness of Orphan Products Research Project Grant (R01...

    Science.gov (United States)

    2010-09-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0394] Clinical Studies of Safety and Effectiveness of Orphan Products Research Project Grant (R01); Correction AGENCY: Food and Drug Administration, HHS. ACTION: Notice; correction. SUMMARY: The Food and Drug...

  15. Design, construction and initial state of the underground openings

    International Nuclear Information System (INIS)

    2010-12-01

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the underground openings for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the underground openings at final disposal, backfilling or closure. In addition, the report provides input to the operational safety report, SR-Operation, on how the underground openings shall be constructed and inspected. The report presents the design premises and the methodology applied to design the underground openings and adapt them the to the site conditions so that they conform to the design premises. It presents the reference design at Forsmark and its conformity to the design premises. It also describes the reference methods to be applied to construct and inspect the different kinds of underground openings. Finally, the initial state of the underground openings and its conformity to the design premises is presented

  16. Design, construction and initial state of the underground openings

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the underground openings for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the underground openings at final disposal, backfilling or closure. In addition, the report provides input to the operational safety report, SR-Operation, on how the underground openings shall be constructed and inspected. The report presents the design premises and the methodology applied to design the underground openings and adapt them the to the site conditions so that they conform to the design premises. It presents the reference design at Forsmark and its conformity to the design premises. It also describes the reference methods to be applied to construct and inspect the different kinds of underground openings. Finally, the initial state of the underground openings and its conformity to the design premises is presented

  17. Criticality Safety Lessons Learned in a Deactivation and Decommissioning Environment [A Guide for Facility and Project Managers

    International Nuclear Information System (INIS)

    NIRIDER, L.T.

    2003-01-01

    This document was designed as a reference and a primer for facility and project managers responsible for Deactivation and Decommissioning (D and D) processes in facilities containing significant inventories of fissionable materials. The document contains lessons learned and guidance for the development and management of criticality safety programs. It also contains information gleaned from occurrence reports, assessment reports, facility operations and management, NDA program reviews, criticality safety experts, and criticality safety evaluations. This information is designed to assist in the planning process and operational activities. Sufficient details are provided to allow the reader to understand the events, the lessons learned, and how to apply the information to present or planned D and D processes. Information is also provided on general lessons learned including criticality safety evaluations and criticality safety program requirements during D and D activities. The document also explores recent and past criticality accidents in operating facilities, and it extracts lessons learned pertinent to D and D activities. A reference section is included to provide additional information. This document does not address D and D lessons learned that are not pertinent to criticality safety

  18. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1979-12-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed hear are of a continuing nature. Results and conclusions described may change as the work continues

  19. Inventory of Federal energy-related environment and safety research for FY 1979. Volume II. Project listings and indexes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    This volume contains summaries of FY 1979 government-sponsored environment and safety research related to energy arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each contributing agency. Information elements included in the summary listings are project title, principal investigators, research organization, project number, contract number, supporting organization, funding level, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in the back of this volume.

  20. Inventory of Federal energy-related environment and safety research for FY 1979. Volume II. Project listings and indexes

    International Nuclear Information System (INIS)

    1980-12-01

    This volume contains summaries of FY 1979 government-sponsored environment and safety research related to energy arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each contributing agency. Information elements included in the summary listings are project title, principal investigators, research organization, project number, contract number, supporting organization, funding level, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in the back of this volume