WorldWideScience

Sample records for safety principles safety

  1. Safety Principles

    Directory of Open Access Journals (Sweden)

    V. A. Grinenko

    2011-06-01

    Full Text Available The offered material in the article is picked up so that the reader could have a complete representation about concept “safety”, intrinsic characteristics and formalization possibilities. Principles and possible strategy of safety are considered. A material of the article is destined for the experts who are taking up the problems of safety.

  2. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2006-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  3. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2007-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  4. Fundamental Safety Principles

    International Nuclear Information System (INIS)

    Abdelmalik, W.E.Y.

    2011-01-01

    This work presents a summary of the IAEA Safety Standards Series publication No. SF-1 entitled F UDAMENTAL Safety PRINCIPLES p ublished on 2006. This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purposes. Safety measures and security measures have in common the aim of protecting human life and health and the environment. These safety principles are: 1) Responsibility for safety, 2) Role of the government, 3) Leadership and management for safety, 4) Justification of facilities and activities, 5) Optimization of protection, 6) Limitation of risks to individuals, 7) Protection of present and future generations, 8) Prevention of accidents, 9)Emergency preparedness and response and 10) Protective action to reduce existing or unregulated radiation risks. The safety principles concern the security of facilities and activities to the extent that they apply to measures that contribute to both safety and security. Safety measures and security measures must be designed and implemented in an integrated manner so that security measures do not compromise safety and safety measures do not compromise security.

  5. Principles of electrical safety

    CERN Document Server

    Sutherland, Peter E

    2015-01-01

    Principles of Electrical Safety discusses current issues in electrical safety, which are accompanied by series' of practical applications that can be used by practicing professionals, graduate students, and researchers. .  Provides extensive introductions to important topics in electrical safety Comprehensive overview of inductance, resistance, and capacitance as applied to the human body Serves as a preparatory guide for today's practicing engineers

  6. HSE's safety assessment principles for criticality safety

    International Nuclear Information System (INIS)

    Simister, D N; Finnerty, M D; Warburton, S J; Thomas, E A; Macphail, M R

    2008-01-01

    The Health and Safety Executive (HSE) published its revised Safety Assessment Principles for Nuclear Facilities (SAPs) in December 2006. The SAPs are primarily intended for use by HSE's inspectors when judging the adequacy of safety cases for nuclear facilities. The revised SAPs relate to all aspects of safety in nuclear facilities including the technical discipline of criticality safety. The purpose of this paper is to set out for the benefit of a wider audience some of the thinking behind the final published words and to provide an insight into the development of UK regulatory guidance. The paper notes that it is HSE's intention that the Safety Assessment Principles should be viewed as a reflection of good practice in the context of interpreting primary legislation such as the requirements under site licence conditions for arrangements for producing an adequate safety case and for producing a suitable and sufficient risk assessment under the Ionising Radiations Regulations 1999 (SI1999/3232 www.opsi.gov.uk/si/si1999/uksi_19993232_en.pdf). (memorandum)

  7. Basic safety principles: Lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Erp, J.B. van [Argonne National Lab., IL (United States)

    1997-09-01

    The presentation reviews the following issues: basic safety principles and lessons learned; some conclusions from the Kemeny report on the accident at TMI; some recommendations from the Kemeny report on the accident at TMI; conclusions and recommendations from the Rogovin report on the accident on TMI; instrumentation deficiencies (from Rogovin report).

  8. Basic safety principles: Lessons learned

    International Nuclear Information System (INIS)

    Erp, J.B. van

    1997-01-01

    The presentation reviews the following issues: basic safety principles and lessons learned; some conclusions from the Kemeny report on the accident at TMI; some recommendations from the Kemeny report on the accident at TMI; conclusions and recommendations from the Rogovin report on the accident on TMI; instrumentation deficiencies (from Rogovin report)

  9. GM Food. Fundamental safety principles

    Directory of Open Access Journals (Sweden)

    Lorena GALLARDO

    2017-08-01

    Full Text Available This paper aims to provide a concise exposition of some of the most basic legal principles linked to the process of evaluation of genetically modified food safety, revealing their most salient features and also highlighting the deficiencies that some of them bring along in their application to the products under study.

  10. Basic safety principles for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1989-01-01

    To ensure the safety operation of nuclear power plant, one should strictly adhere to the implelmentation of safety codes and the establishment of nuclear safety code system, as well as the applicable basic safety principles of nuclear power plants. This article briefly introduce the importance of nuclear codes and its economic benefits and the implementation of basic safety principles to be accumulated in practice for many years by various countries

  11. Safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    Vuorinen, A.

    1993-01-01

    The role and purpose of safety principles for nuclear power plants are discussed. A brief information is presented on safety objectives as given in the INSAG documents. The possible linkage is discussed between the two mentioned elements of nuclear safety and safety culture. Safety culture is a rather new concept and there is more than one interpretation of the definition given by INSAG. The defence in depth is defined by INSAG as a fundamental principle of safety technology of nuclear power. Discussed is the overall strategy for safety measures, and features of nuclear power plants provided by the defence-in-depth concept. (Z.S.) 7 refs

  12. Safety assessment principles for nuclear plants

    International Nuclear Information System (INIS)

    1992-01-01

    The present Safety Assessment Principles result from the revision of those which were drawn up following a recommendation arising from the Sizewell-B enquiry. The principles presented here relate only to nuclear safety; there is a section on risks from normal operation and accident conditions and the standards against which those risks are assessed. A major part of the document deals with the principles that cover the design of nuclear plants. The revised Safety assessment principles are aimed primarily at the safety assessment of new nuclear plants but they will also be used in assessing existing plants. (UK)

  13. Basic safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    Nuclear power plant safety requires a continuing quest for excellence. All individuals concerned should constantly be alert to opportunities to reduce risks to the lowest practicable level. The quest, however, is most likely to be fruitful if it is based on an understanding of the underlying objectives and principles of nuclear safety, and the way in which its aspects are interrelated. This report is an attempt to provide a logical framework for such an understanding. The proposed objectives and principles of nuclear safety are interconnected and must be taken as a whole; they do not constitute a menu from which selection can be made. The report takes account of current issues and developments. It includes the concept of safety objectives and the use of probabilistic safety assessment. Reliability targets for safety systems are discussed. The concept of a 'safety culture' is crucial. Attention has been paid to the need for planning for accident management. The report contains objectives and principles. The objectives state what is to be achieved; the principles state how to achieve it. In each case, the basic principle is stated as briefly as possible. The accompanying discussion comments on the reasons for the principle and its importance, as well as exceptions, the extent of coverage and any necessary clarification. The discussion is as important as the principle it augments. 4 figs

  14. International consensus on safety principles

    International Nuclear Information System (INIS)

    Warnecke, E.

    1993-01-01

    The International Atomic Energy Agency (IAEA) has been regularly requested by its Member States to provide evidence that radioactive waste can be managed safely and to help demonstrate a harmonization of approach at the international level by providing safety documents. In response, IAEA established a special series of safety documents devoted to radioactive waste management. These documents will be elaborated within the Radioactive Waste Safety Standards (RADWASS) programme [1,2] which covers all aspects of radioactive waste management. The RADWASS programme develops a series of international consensus documents on all parts of the safe management of radioactive waste, including disposal. The purpose of the RADWASS programme is to (i) document existing international consensus in the approaches and methodologies for safe radioactive waste management, (ii) create a mechanism to establish consensus where it does not exist and (iii) provide Member States with a comprehensive series of internationally agreed upon documents to complement national standards and criteria. This paper describes the RADWASS programme, and covers the structure, implementation plans and status of documents under preparation

  15. Overview of the fundamental safety principles

    International Nuclear Information System (INIS)

    Chishinga, Milton Mulenga

    2015-02-01

    The primary objective of this work was to provide an overview of the International Atomic Energy (IAEA) document; 'Fundamental Safety principles, SF.1'. The document outlines ten (10) fundamental principles which provide the basis for an effective the radiation protection framework. The document is the topmost in the hierarchy of the IAEA Safety Standards Series. These principles are the foundation of the nuclear safety put stringent obligations on Parties under the Convention on Nuclear Safety. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. The fundamental Safety objective of protecting people individually and collectively and the environment has to be achieved without unduly limiting the operation of facilities or the conduct of activities that give rise to risks. The thematic areas covered are; responsibility for safety, role of government, leadership and management for safety, justification of facilities and activities, optimization of protection, limitation of risks to individuals, protection of present and future generations, prevention of accidents, emergency preparedness and response and protective actions to reduce existing or unregulated radiation risks. Appropriate recommendations have been provided for effective application of the principles by Governments, Regulatory Bodies and Operating Organizations of facilities and Nuclear Installations the give rise to radiation risks. (au)

  16. Safety

    International Nuclear Information System (INIS)

    1998-01-01

    A brief account of activities carried out by the Nuclear power plants Jaslovske Bohunice in 1997 is presented. These activities are reported under the headings: (1) Nuclear safety; (2) Industrial and health safety; (3) Radiation safety; and Fire protection

  17. SAFETY

    CERN Multimedia

    C. Schaefer and N. Dupont

    2013-01-01

      “Safety is the highest priority”: this statement from CERN is endorsed by the CMS management. An interpretation of this statement may bring you to the conclusion that you should stop working in order to avoid risks. If the safety is the priority, work is not! This would be a misunderstanding and misinterpretation. One should understand that “working safely” or “operating safely” is the priority at CERN. CERN personnel are exposed to different hazards on many levels on a daily basis. However, risk analyses and assessments are done in order to limit the number and the gravity of accidents. For example, this process takes place each time you cross the road. The hazard is the moving vehicle, the stake is you and the risk might be the risk of collision between both. The same principle has to be applied during our daily work. In particular, keeping in mind the general principles of prevention defined in the late 1980s. These principles wer...

  18. SAFETY

    CERN Multimedia

    Niels Dupont

    2013-01-01

    CERN Safety rules and Radiation Protection at CMS The CERN Safety rules are defined by the Occupational Health & Safety and Environmental Protection Unit (HSE Unit), CERN’s institutional authority and central Safety organ attached to the Director General. In particular the Radiation Protection group (DGS-RP1) ensures that personnel on the CERN sites and the public are protected from potentially harmful effects of ionising radiation linked to CERN activities. The RP Group fulfils its mandate in collaboration with the CERN departments owning or operating sources of ionising radiation and having the responsibility for Radiation Safety of these sources. The specific responsibilities concerning "Radiation Safety" and "Radiation Protection" are delegated as follows: Radiation Safety is the responsibility of every CERN Department owning radiation sources or using radiation sources put at its disposition. These Departments are in charge of implementing the requi...

  19. Environment, health and safety guiding principles

    International Nuclear Information System (INIS)

    1997-06-01

    The Canadian Energy Pipeline Association (CEPA) has taken a leadership role in promoting responsible planning, management and work practices that meet the pipeline industry's environment, health and safety objectives. This brochure contains CEPA's environment, health and safety statement. It lists the guiding principles developed and endorsed by CEPA and its member companies in support of protecting the environment and the health and safety of its employees and the public. The 11 CEPA member companies are: Alberta Natural Gas Company Ltd., ATCO Gas Services Ltd., Foothills Pipe Lines Ltd., Interprovincial Pipe Line Inc., NOVA Gas Transmission Limited, TransGas Limited, Trans Mountain Pipe Line Company Ltd., Trans-Northern Pipelines Inc., Trans Quebec and Maritimes Pipeline Inc., and Westcoast Energy Inc

  20. General design safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Guide provides the safety principles and the approach that have been used to implement the Code in the Safety Guides. These safety principles and the approach are tied closely to the safety analyses needed to assist the design process, and are used to verify the adequacy of nuclear power plant designs. This Guide also provides a framework for the use of other design Safety Guides. However, although it explains the principles on which the other Safety Guides are based, the requirements for specific applications of these principles are mostly found in the other Guides

  1. Safety

    International Nuclear Information System (INIS)

    2001-01-01

    This annual report of the Senior Inspector for the Nuclear Safety, analyses the nuclear safety at EDF for the year 1999 and proposes twelve subjects of consideration to progress. Five technical documents are also provided and discussed concerning the nuclear power plants maintenance and safety (thermal fatigue, vibration fatigue, assisted control and instrumentation of the N4 bearing, 1300 MW reactors containment and time of life of power plants). (A.L.B.)

  2. Assessment of IAEA safety series no. 75-INSAG-3 - ''basic safety principles for nuclear power plants''

    International Nuclear Information System (INIS)

    1989-01-01

    The International Atomic Energy Agency Safety Series No. 75-INSAG--3, 'Basic Safety Principles for Nuclear Power Plants' is reviewed in the light of the Advisory Committee on Nuclear Safety reports ACNS--2, 'Safety Objectives for Nuclear Activities in Canada', and ACNS--4, 'Recommended General Safety Requirements for Nuclear Power Plants'. The INSAG safety objectives are consistent with the safety objectives stated in ACNS--2 but are less general, applying only to nuclear power plants. The INSAG safety principles are, in general, consistent with the requirements stated in ACNS--4 but put more emphasis on 'safety culture'. They give little attention to reactor plant effluents, waste management, or decommissioning. (fig., 5 refs.)

  3. Safety principles and design management of Chashma Nuclear Power Plant

    International Nuclear Information System (INIS)

    Geng Qirui; Cheng Pingdong

    1997-01-01

    The basic safety consideration and detailed design principles in the design of Chashma Nuclear Power Plant is elaborated. The management within the frame setting up by 'safety culture' and 'quality culture'

  4. SAFETY

    CERN Multimedia

    M. Plagge, C. Schaefer and N. Dupont

    2013-01-01

    Fire Safety – Essential for a particle detector The CMS detector is a marvel of high technology, one of the most precise particle measurement devices we have built until now. Of course it has to be protected from external and internal incidents like the ones that can occur from fires. Due to the fire load, the permanent availability of oxygen and the presence of various ignition sources mostly based on electricity this has to be addressed. Starting from the beam pipe towards the magnet coil, the detector is protected by flooding it with pure gaseous nitrogen during operation. The outer shell of CMS, namely the yoke and the muon chambers are then covered by an emergency inertion system also based on nitrogen. To ensure maximum fire safety, all materials used comply with the CERN regulations IS 23 and IS 41 with only a few exceptions. Every piece of the 30-tonne polyethylene shielding is high-density material, borated, boxed within steel and coated with intumescent (a paint that creates a thick co...

  5. Analysis of School Food Safety Programs Based on HACCP Principles

    Science.gov (United States)

    Roberts, Kevin R.; Sauer, Kevin; Sneed, Jeannie; Kwon, Junehee; Olds, David; Cole, Kerri; Shanklin, Carol

    2014-01-01

    Purpose/Objectives: The purpose of this study was to determine how school districts have implemented food safety programs based on HACCP principles. Specific objectives included: (1) Evaluate how schools are implementing components of food safety programs; and (2) Determine foodservice employees food-handling practices related to food safety.…

  6. Safety

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    Aspects of fission reactors are considered - control, heat removal and containment. Brief descriptions of the reactor accidents at the SL-1 reactor (1961), Windscale (1957), Browns Ferry (1975), Three Mile Island (1979) and Chernobyl (1986) are given. The idea of inherently safe reactor designs is discussed. Safety assessment is considered under the headings of preliminary hazard analysis, failure mode analysis, event trees, fault trees, common mode failure and probabalistic risk assessments. These latter can result in a series of risk distributions linked to specific groups of fault sequences and specific consequences. A frequency-consequence diagram is shown. Fatal accident incidence rates in different countries including the United Kingdom for various industries are quoted. The incidence of fatal cancers from occupational exposure to chemicals is tabulated. Human factors and the acceptability of risk are considered. (U.K.)

  7. Applying principles from safety science to improve child protection.

    Science.gov (United States)

    Cull, Michael J; Rzepnicki, Tina L; O'Day, Kathryn; Epstein, Richard A

    2013-01-01

    Child Protective Services Agencies (CPSAs) share many characteristics with other organizations operating in high-risk, high-profile industries. Over the past 50 years, industries as diverse as aviation, nuclear power, and healthcare have applied principles from safety science to improve practice. The current paper describes the rationale, characteristics, and challenges of applying concepts from the safety culture literature to CPSAs. Preliminary efforts to apply key principles aimed at improving child safety and well-being in two states are also presented.

  8. The main goals and principles of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Huseynov, V.

    2015-01-01

    The use of modern radiation technology expands in various fields of human activity. The most advanced approach, methods and technologies and also radiation technologies are of great importance in industrial, medical, agricultural, construction, science, education, and etc. areas of the fastest growing Azerbaijan Republic. Ensuring of nuclear and radiation safety, safety standards, main principles and conception of safety play a crucial role. The following ten principles are taken as a basis to ensure safety measures. 1. Responsible for ensuring safety; 2. The role of government; 3. Leadership and management of security interests; 4. Devices and justification of activity; 5. Optimization of preservation; 6. Limiting of risks for physical persons; 7. The protection of present and future generations; 8. The prevention of accidents; 9. Emergency preparedness and response; 10. Reducing of risks of existing and unregulated radiation protection measures. The safety principles are applied together

  9. Graphical symbols -- Safety colours and safety signs -- Part 1: Design principles for safety signs in workplaces and public areas

    CERN Document Server

    International Organization for Standardization. Geneva

    2002-01-01

    This International Standard establishes the safety identification colours and design principles for safety signs to be used in workplaces and in public areas for the purpose of accident prevention, fire protection, health hazard information and emergency evacuation. It also establishes the basic principles to be applied when developing standards containing safety signs. This part of ISO 3864 is applicable to workplaces and all locations and all sectors where safety-related questions may be posed. However, it is not applicable to the signalling used for guiding rail, road, river, maritime and air traffic and, generally speaking, to those sectors subject to a regulation which may differ.

  10. Nuclear Safety Bureau: safety objectives and principles for the proposed ANSTO reactor

    International Nuclear Information System (INIS)

    Westall, D.

    1993-01-01

    Siting criteria and safety assessment principles were previously promulgated by the Australian Atomic Energy Commission (AAEC), and have been applied by ANSTO and the Nuclear Safety Bureau (NSB). The NSB is revising these criteria and principles to take account of evolving nuclear safety standards and practices. The NSB Safety and Siting Assessment Principles (SSAP) are presented and it is estimated that it will provide a comprehensive basis for the safety assessment of research reactors in Australia, and be applicable to all stages of a reactor project: siting: design and construction; operation; modification; and decommissioning. The SSAP are similar to the principles promulgated by the AAEC, in that probabilistic safety criteria are set for assessment of design, however these criteria are complimentary to a deterministic design basis approach. This is a similar approach to that recently published by the UK Nuclear Installations Inspectorate 4 . Siting principles are now also included, where they were previously separate, and require a consideration of the consequences of severe accidents which are an extension of accidents catered for by the design of the plant. Criteria for radiation doses due to normal operations and design basis accidents are included in the principles for safety assessment. 9 refs

  11. Fissile materials principles of criticality safety in handling and processing

    International Nuclear Information System (INIS)

    1976-01-01

    This Swedish Standard consists of the English version of the International Standard ISO 1709-1975-Nuclear energy. Fissile materials. Principles of criticality safety in handling and processing. (author)

  12. Safety principles and design criteria for nuclear power stations

    International Nuclear Information System (INIS)

    Gazit, M.

    1982-01-01

    The criteria and safety principles for the design of nuclear power stations are presented from the viewpoint of a nuclear engineer. The design, construction and operation of nuclear power stations should be carried out according to these criteria and safety principles to ensure, to a reasonable degree, that the likelihood of release of radioactivity as a result of component failure or human error should be minimized. (author)

  13. PRINCIPLES OF SAFETY IN LAPAROSCOPIC CHOLECYSTECTOMY

    Directory of Open Access Journals (Sweden)

    Tomaž Benedik

    2003-12-01

    Full Text Available Background. After more than decade of routine use of laparoscopic cholecystectomy for treatment of symptomatic gallbladder stones, the incidence of biliary injuries, which are potentially life threatening and cause prolonged hospitalization and major morbidity, seems to be increased in laparoscopic cholecystectomy compared with open operation. Injury rate was from some reports 2.5 to 4 times higher than with open operation. There are many proposed classifications of types of biliary injuries.The most frequent direct causes of laparoscopic biliary injury are misidentification of the common bile duct, cautery injuries to the bile duct and improper application of clips to the cystic duct.Conclusions. To avoid misidentification of ducts one should conclusively identify cystic duct and artery, the structures to be divide, in every laparoscopic cholecystectomy. To achieve that goal, Calot’s triangle must be dissected free of fat and fibrous – tissue and the lower end of the gallbladder must be dissected of the liver bed. The only two structures entering the gallbladder should be visible – cystic duct and artery. With avoidance of blind application of cautery and clips to control bleeding one should avoid injury of bile duct. Low cautery settings should be used in portal dissections to prevent arc.With meticulous care in dissection and conclusive identification of cystic duct and artery we can prevent injuries of bile duct, which still have impermissible high incidence. In the article 504 laparoscopic cholecystectomies performed at the Department of abdominal surgery in BPD in 2002 were analysed. We follow priciples of safety in laparoscopic cholecystectomy. There were no biliary injuries reports.

  14. Legal principles of regulatory administration and nuclear safety regulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyeong Hui; Cheong, Sang Kee [Hannam Univ., Taejon (Korea, Republic of)

    2000-12-15

    This research presents a critical analysis and evaluation of principles of administrative laws in order to provide framework of structural reform on the nuclear safety regulation system. The focus of this analysis and evaluation is centered around the area of origin of regulatory administrative laws; authorities of regulation; procedures of regulatory actions; regulatory enforcement; and administrative relief system. In chapter 2 the concept of regulatory administration is analysed. Chapter 3 identifies the origin of regulatory administration and the principles of administration laws. It also examines legal nature of the nuclear safety standard. In relation to regulatory authorities. Chapter 4 identifies role and responsibility of administration authorities and institutions. It also examines fundamental principles of delegation of power. Then the chapter discusses the nuclear safety regulation authorities and their roles and responsibilities. Chapter 5 classifies and examines regulatory administration actions. Chapter 6 evaluates enforcement measure for effectiveness of regulation. Finally, chapter 7 discusses the administrative relief system for reviewing unreasonable regulatory acts.

  15. Tolerability of risk, safety assessment principles and their implications for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Ewing, D.J.F.; Campbell, J.F.

    1994-01-01

    This paper gives a regulatory view of probabilistic safety assessment as seen by the Nuclear Installations Inspectorate (NII) and in the light of the general regulatory risk aims set out in the Health and Safety Executive's (HSE) The tolerability of risk from nuclear power stations (TOR) and in Safety assessment principles for nuclear plants (SAPs), prepared by NII on behalf of the HSE. Both of these publications were revised and republished in 1992. This paper describes the SAPs, together with the historical background, the motivation for review, the effects of the Sizewell and Hinkley Point C public inquiries, changes since the original versions, comparison with international standards and use in assessment. For new plant, probabilistic safety analysis (PSA) is seen as an essential tool in balancing the safety of the design and in demonstrating compliance with TOR and the SAPs. (Author)

  16. Advancing perinatal patient safety through application of safety science principles using health IT.

    Science.gov (United States)

    Webb, Jennifer; Sorensen, Asta; Sommerness, Samantha; Lasater, Beth; Mistry, Kamila; Kahwati, Leila

    2017-12-19

    The use of health information technology (IT) has been shown to promote patient safety in Labor and Delivery (L&D) units. The use of health IT to apply safety science principles (e.g., standardization) to L&D unit processes may further advance perinatal safety. Semi-structured interviews were conducted with L&D units participating in the Agency for Healthcare Research and Quality's (AHRQ's) Safety Program for Perinatal Care (SPPC) to assess units' experience with program implementation. Analysis of interview transcripts was used to characterize the process and experience of using health IT for applying safety science principles to L&D unit processes. Forty-six L&D units from 10 states completed participation in SPPC program implementation; thirty-two (70%) reported the use of health IT as an enabling strategy for their local implementation. Health IT was used to improve standardization of processes, use of independent checks, and to facilitate learning from defects. L&D units standardized care processes through use of electronic health record (EHR)-based order sets and use of smart pumps and other technology to improve medication safety. Units also standardized EHR documentation, particularly related to electronic fetal monitoring (EFM) and shoulder dystocia. Cognitive aids and tools were integrated into EHR and care workflows to create independent checks such as checklists, risk assessments, and communication handoff tools. Units also used data from EHRs to monitor processes of care to learn from defects. Units experienced several challenges incorporating health IT, including obtaining organization approval, working with their busy IT departments, and retrieving standardized data from health IT systems. Use of health IT played an integral part in the planning and implementation of SPPC for participating L&D units. Use of health IT is an encouraging approach for incorporating safety science principles into care to improve perinatal safety and should be incorporated

  17. Culture of safety. Indicators of culture of safety. Stage of culture of safety. Optimization of radiating protection. Principle of precaution. Principle ALARA. Procedure ALARA

    International Nuclear Information System (INIS)

    Mursa, E.

    2006-01-01

    Object of research: is the theory and practice of optimization of radiating protection according to recommendations of the international organizations, realization of principle ALARA and maintenance of culture of safety (SC) on the nuclear power plant. The purpose of work - to consider the general aspects of realization of principle ALARA, conceptual bases of culture of safety, as principle of management, and practice of their introduction on the nuclear power plant. The work has the experts' report character in which the following questions are presented: The recommendations materials of the IAEA and other international organizations have been assembled, systematized and analyzed. The definitions, characteristics and universal SC features, and also indicators as a problem of parameters and quantitative SC measurements are described in details advanced. The ALARA principles - principle of precaution; not acceptance of zero risk; choice of a principle ALARA; model of acceptable radiation risk are described. The methodology of an estimation of culture of safety level and practical realization of the ALARA principle in separate organization is shown on a practical example. The SC general estimation at a national level in Republic of Moldova have been done. Taking into consideration that now Safety Culture politics are introduced only in relation to APS, in this paper the attempt of application of Safety Culture methodology to Radiological Objects have been made (Oncological Institute of the Republic of Moldova and Special Objects No.5101 and 5102 for a long time Storage of the Radioactive Waste). (authors)

  18. Principles of nuclear safety and words for defining them

    International Nuclear Information System (INIS)

    Alonso, A.

    1997-01-01

    The principles on which nuclear safety is based may be formulated accurately but, however, the words and expressions used often determine the public's perception of what it is desired to convey. The author of this article reflects on the meaning of words which must be suitably explained to achieve effectiveness and clarity in transmitting a message. (Author)

  19. New Innovative Ethical Principles in Increasing Road Safety

    Directory of Open Access Journals (Sweden)

    Igor Miletić

    2013-06-01

    Full Text Available Research Question (RQ: Future managers are faced daily with a variety of ethical dilemmas in traffic that need to be balanced by the interests of all participants. The question is whether a new innovative model of ethical principles could be developed that would increase road safety.Purpose: The a im is to raise the level of social responsibility and relationship of participants in traffic as well as warn all participants on the importance of safety. In addition, the purpose is to share suggestions to other researchers for further research studies in the area of increasing traffic safety.Method: We carried out a quantitative study (survey among first year post-graduate students studying at a higher education school focused on quality management in south-eastern Slovenia. The article presents five different ethical scenarios.Results: The participants have very similar views on judging individual ethical dilemmas. The desire to increase road safety, have led to new useful suggestions for further study of innovative new ethical principles in the field of safety, such as: no death victims annually, adequate road infrastructure, improved vehicle technology, video surveillance systems, and so on.Organization: Relevant authorities should promote models of ethical thinking and the introduction of codes of conduct at an early age. As such, the state, police, rescuers, fire departments, hospitals, and so on, would have fewer deaths due to serious traffic accidents.Society: By taking these results and further research suggestions into account, society would gain a new model that would be based on zero accidents annually.Originality: Research in the field of ethics and innovative ethical principles of traffic safety is limited. The article presents practical examples of ethical and moral decision-making that we encounter in daily traffic. But nothing much is done to make it better ("every day the same story".Limitations/Future Research: The research study

  20. Recommended safety objectives, principles and requirements for mini-reactors

    International Nuclear Information System (INIS)

    1991-05-01

    Canadian and international publications containing objectives, principles and requirements for the safety of nuclear facilities in general and nuclear power plants in particular have been reviewed for their relevance to mini-reactors. Most of the individual recommendations, sometimes with minor wording changes, are applicable to mini-reactors. However, some prescriptive requirements for the shutdown, emergency core cooling and containment systems of power reactors are considered inappropriate for mini-reactors. The Advisory Committee on Nuclear Safety favours a generally non-prescriptive approach whereby the applicant for a mini-reactor license is free to propose any means of satisfying the fundamental objectives, but must convince the regulatory agency to that effect. To do so, a probabilistic safety assessment (PSA) would be the favoured procedure. A generic PSA for all mini-reactors of the same design would be acceptable. Notwithstanding this non-prescriptive approach, the ACNS considers that it would be prudent to require the existence of at least one independent shutdown system and two physically independent locations from which the reactor can be shut down and the shutdown condition monitored, and to require provision for an assumed loss of integrity of the primary cooling system's boundary unless convincing arguments to the contrary are presented. The ACNS endorses in general the objectives and fundamental principles proposed by the interorganizational Small Reactor Criteria working group, and intends to review and comment on the documents on specific applications to be issued by that working group

  1. Basic safety principles of KLT-40C reactor plants

    International Nuclear Information System (INIS)

    Beliaev, V.; Polunichev, V.

    2000-01-01

    The KLT-40 NSSS has been developed for a floating power block of a nuclear heat and power station on the basis of ice-breaker-type NSSS (Nuclear Steam Supply System) with application of shipbuilding technologies. Basic reactor plant components are pressurised water reactor, once-through coil-type steam generator, primary coolant pump, emergency protection rod drive mechanisms of compensate group-electromechanical type. Basic RP components are incorporated in a compact steam generating block which is arranged within metal-water shielding tank's caissons. Domestic regulatory documents on safety were used for the NSSS design. IAEA recommendations were also taken into account. Implementation of basic safety principles adopted presently for nuclear power allowed application of the KLT-40C plant for a floating power unit of a nuclear co-generation station. (author)

  2. Nuclear safety

    International Nuclear Information System (INIS)

    Tarride, Bruno

    2015-10-01

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  3. Safety and health: Principles and practices in the laboratory

    International Nuclear Information System (INIS)

    Fakhrul Razi Ahmadun; Guan, Chuan Teong; Mohd Halim Shah Ismail

    2005-01-01

    Ignorance, carelessness or improper practices in the laboratory or the improper handling of hazardous or toxic materials may lead to work accidents and work-related ill-health. Laboratory users and administrators cannot afford to overlook these possible consequences due to the misconduct of laboratory practices and should decide how best to manage the health and safety aspects in the laboratory. This book has been written for safety representatives of colleges and universities, for lectures, teachers and students, and for researchers working in laboratories. It is also for everyone responsible for laboratory safety, laboratory accidents and their consequences. The emphasis is on hazards to health and safety, with the focus on the general hazards in the laboratory, how they arise and how to prevent, how to eliminate and control them. Special hazards will also be discussed such as radiation hazards and human factors. This book also provides information on governmental and non-governmental agencies and authorities, emergency contact numbers of relevant authorities, a list of Malaysia occupational safety and health related legislation and some useful occupational safety and health web sites. Readers will find that the information contained in this book will serve as the foundation for laboratory users safety policy. A set of Laboratory Safety Forms for a typical laboratory is also available in the appendix for reference. Laboratory users can use and adapt these forms for their own laboratory requirements. (author)

  4. Principles and Practices of Occupational Safety and Health: Administrator's Manual.

    Science.gov (United States)

    Occupational Safety and Health Administration, Washington, DC.

    The manual guides an instructor in conducting a training course for first-line supervisors to familiarize them with six aspects relating to the Occupational Safety and Health Act of 1970: (1) requirements of the Act, (2) compliance with its standards, (3) identification of health and safety hazards, (4) correction of adverse conditions, (5) record…

  5. Principles and standards of nuclear safety and their implementation

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1979-01-01

    Nuclear safety starts with the design of a nuclear facility and is only completed with its decommissioning. In the various phases of a nuclear facility's lifetime, safety evaluations are required. The licensing prerequisites for construction, operation, modification, decommissioning are based on elements of the relevant national legislation and related ordinances as well as on international regulations. They should be expanded by a system of criteria and standards spelling out the proven practice as developed over the last decades in the industrialized countries and by international organizations such IAEA with its safety codes and guides. (NEA) [fr

  6. Basic safety principles and practice of WWERs in Hungary

    International Nuclear Information System (INIS)

    Voeroess, L.

    1992-01-01

    The nuclear safety is the actual subject of this presentation and it is considered to be the most important issue, and its permanent improvement is the key responsibility. We share the opinion, that everybody who works in the field of nuclear power generation has to be at such a high level, both in respect of the professional and the moral aspects, which would practically exclude occurrence of accidents causing adverse environmental effects. We are aware that another severe accident occurring in any country of the world would put the whole nuclear industry into a hopeless situation, which - as we have already seen - would seriously influence the Hungarian energy system as well. I try to illustrate in my presentation how can our WWER reactors be evaluated in the highlight of the internationally accepted safety requirements, how safe can they be considered and what can we do in order to ensure at every time the appropriate level of safety. 22 refs, 15 figs

  7. Operation safety of control systems. Principles and methods

    International Nuclear Information System (INIS)

    Aubry, J.F.; Chatelet, E.

    2008-01-01

    This article presents the main operation safety methods that can be implemented to design safe control systems taking into account the behaviour of the different components with each other (binary 'operation/failure' behaviours, non-consistent behaviours and 'hidden' failures, dynamical behaviours and temporal aspects etc). To take into account these different behaviours, advanced qualitative and quantitative methods have to be used which are described in this article: 1 - qualitative methods of analysis: functional analysis, preliminary risk analysis, failure mode and failure effects analyses; 2 - quantitative study of systems operation safety: binary representation models, state space-based methods, event space-based methods; 3 - application to the design of control systems: safe specifications of a control system, qualitative analysis of operation safety, quantitative analysis, example of application; 4 - conclusion. (J.S.)

  8. Patient safety principles in family medicine residency accreditation standards and curriculum objectives

    Science.gov (United States)

    Kassam, Aliya; Sharma, Nishan; Harvie, Margot; O’Beirne, Maeve; Topps, Maureen

    2016-01-01

    Abstract Objective To conduct a thematic analysis of the College of Family Physicians of Canada’s (CFPC’s) Red Book accreditation standards and the Triple C Competency-based Curriculum objectives with respect to patient safety principles. Design Thematic content analysis of the CFPC’s Red Book accreditation standards and the Triple C curriculum. Setting Canada. Main outcome measures Coding frequency of the patient safety principles (ie, patient engagement; respectful, transparent relationships; complex systems; a just and trusting culture; responsibility and accountability for actions; and continuous learning and improvement) found in the analyzed CFPC documents. Results Within the analyzed CFPC documents, the most commonly found patient safety principle was patient engagement (n = 51 coding references); the least commonly found patient safety principles were a just and trusting culture (n = 5 coding references) and complex systems (n = 5 coding references). Other patient safety principles that were uncommon included responsibility and accountability for actions (n = 7 coding references) and continuous learning and improvement (n = 12 coding references). Conclusion Explicit inclusion of patient safety content such as the use of patient safety principles is needed for residency training programs across Canada to ensure the full spectrum of care is addressed, from community-based care to acute hospital-based care. This will ensure a patient safety culture can be cultivated from residency and sustained into primary care practice. PMID:27965349

  9. Safety Training: Ergonomics - Applying ergonomic principles in the workplace

    CERN Multimedia

    Isabelle Cusato

    2010-01-01

        We propose a half day awareness session on the hazards posed by a poor posture while working on a screen (back pain, eyestrain, sore wrists…) and best practices to address them. The next sessions will be held on 18 November 2010 (morning session in French and afternoon session in English). The registration via the Safety Training catalogue is mandatory. Places will be allocated in order of receipt. For any further information, please contact Isabelle Cusato, 73811.  

  10. 21 CFR 170.20 - General principles for evaluating the safety of food additives.

    Science.gov (United States)

    2010-04-01

    ... food additives. 170.20 Section 170.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Food Additive Safety § 170.20 General principles for evaluating the safety of food additives. (a) In reaching a...

  11. 21 CFR 570.20 - General principles for evaluating the safety of food additives.

    Science.gov (United States)

    2010-04-01

    ... food additives. 570.20 Section 570.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES Food Additive Safety § 570.20 General principles for evaluating the safety of food additives. (a) In reaching a...

  12. Playground Safety

    Science.gov (United States)

    ... Prevention Fall Prevention Playground Safety Poisoning Prevention Road Traffic Safety Sports Safety Get Email Updates To receive ... at the Consumer Product Safety Commission’s Playground Safety website . References U.S. Consumer Product Safety Commission. Injuries and ...

  13. General principles of nuclear safety management related to research reactor decommissioning

    International Nuclear Information System (INIS)

    Banciu, Ortenzia; Vladescu, Gabriela

    2003-01-01

    The paper contents the general principles applicable to the decommissioning of research reactors to ensure a proper nuclear safety management, during both decommissioning activities and post decommissioning period. The main objective of decommissioning is to ensure the protection of workers, population and environment against all radiological and non-radiological hazards that could result after a reactor shutdown and dismantling. In the same time, it is necessary, by some proper provisions, to limit the effect of decommissioning for the future generation, according to the new Romanian, IAEA and EU Norms and Regulations. Assurance of nuclear safety during decommissioning process involves, in the first step, to establish of some safety principles and requirements to be taken into account during whole process. In the same time, it is necessary to perform a series of analyses to ensure that the whole process is conducted in a planned and safe manner. The general principles proposed for a proper management of safety during research reactor decommissioning are as follows: - Set-up of all operations included in a Decommissioning Plan; - Set-up and qualitative evaluation of safety problems, which could appear during normal decommissioning process, both radiological and nonradiological risks for workers and public; - Set-up of accident list related to decommissioning process the events that could appear both due to some abnormal working conditions and to some on-site and off-site events like fires, explosions, flooding, earthquake, etc.); - Development and qualitative/ quantitative evaluation of scenarios for each incidents; - Development (and evaluation) of safety indicator system. The safety indicators are the most important tools used to assess the level of nuclear safety during decommissioning process, to discover the weak points and to establish safety measures. The paper contains also, a safety case evaluation (description of facility according to the decommissioning

  14. NSC confirms principles for safety review on Radioactive Waste Burial Facilities

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Nuclear Safety Commission authorized the scope of Principles for Safety Examination on Radioactive Waste Burial Facilities as suitable, the draft report for which was established by the Special Committee on Safety Standards of Radioactive Waste (Chairman Prof. Masao Sago, Science University of Tokyo) and reported on March 10 to the NSC. The principles include the theory that the facility must be controlled step by step, corresponding to the amount of radioactivity over 300 to 400 years after the burial of low-level solid radioactive waste with site conditions safe even in the event of occurrence of a natural disaster. The principles will be used for administrative safety examination against the application of the business on low-level radioactive waste burial facility which Japan Nuclear Fuel Industries, Inc. is planning to install at Rokkashomura, Aomori Prefecture. (author)

  15. Principles of developing the knowledge portal on safety of nuclear facilities

    International Nuclear Information System (INIS)

    Klevtsov, A.; Orlov, V.Yu.; Trubchaninov, S.A.

    2010-01-01

    The general principles of developing the knowledge portal on safety of nuclear facilities are considered in the article. In future, these principles can be used for implementing the project on development of the knowledge portal for the State Nuclear Regulatory Committee of Ukraine.

  16. Mitigation of Severe Accident Consequences Using Inherent Safety Principles

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Cahalan, J.E.

    2009-01-01

    Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to

  17. Roy's safety-first portfolio principle in financial risk management of disastrous events.

    Science.gov (United States)

    Chiu, Mei Choi; Wong, Hoi Ying; Li, Duan

    2012-11-01

    Roy pioneers the concept and practice of risk management of disastrous events via his safety-first principle for portfolio selection. More specifically, his safety-first principle advocates an optimal portfolio strategy generated from minimizing the disaster probability, while subject to the budget constraint and the mean constraint that the expected final wealth is not less than a preselected disaster level. This article studies the dynamic safety-first principle in continuous time and its application in asset and liability management. We reveal that the distortion resulting from dropping the mean constraint, as a common practice to approximate the original Roy's setting, either leads to a trivial case or changes the problem nature completely to a target-reaching problem, which produces a highly leveraged trading strategy. Recognizing the ill-posed nature of the corresponding Lagrangian method when retaining the mean constraint, we invoke a wisdom observed from a limited funding-level regulation of pension funds and modify the original safety-first formulation accordingly by imposing an upper bound on the funding level. This model revision enables us to solve completely the safety-first asset-liability problem by a martingale approach and to derive an optimal policy that follows faithfully the spirit of the safety-first principle and demonstrates a prominent nature of fighting for the best and preventing disaster from happening. © 2012 Society for Risk Analysis.

  18. SafetyBarrierManager, a software tool to perform risk analysis using ARAMIS's principles

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2017-01-01

    of the ARAMIS project, Risø National Laboratory started developing a tool that could implement these methodologies, leading to SafetyBarrierManager. The tool is based on the principles of “safety‐barrier diagrams”, which are very similar to “bowties”, with the possibility of performing quantitative analysis......The ARAMIS project resulted in a number of methodologies, dealing with among others: the development of standard fault trees and “bowties”; the identification and classification of safety barriers; and including the quality of safety management into the quantified risk assessment. After conclusion....... The tool allows constructing comprehensive fault trees, event trees and safety‐barrier diagrams. The tool implements the ARAMIS idea of a set of safety barrier types, to which a number of safety management issues can be linked. By rating the quality of these management issues, the operational probability...

  19. : Principles of safety measures of sports events organizers without the involvement of police

    OpenAIRE

    Buchalová, Kateřina

    2013-01-01

    Title: Principles of safety measures of sports events organizers without the involvement of police Objectives: The aim of this thesis is a description of security measures at sporting events organizers. Methods: The thesis theoretical style is focused on searching for available sources of study and research, and writing their summary comparing safety measures of the organizers. Results: This work describes the activities of the organizers of sports events and precautions that must be provided...

  20. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Pruvost, N.L.; Paxton, H.C.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators

  1. Nuclear criticality safety guide

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; Paxton, H.C. [eds.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  2. Safety assessment principles for reactor protection systems in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Philp, W

    1990-07-01

    The duty of Nuclear Installations Inspectorate (NII) is to see that the appropriate standards are developed, achieved and maintained by the plant operators, and to monitor and regulate the safety of the plant by means of its powers under the licence. It does not issue standards or codes of practice for NPPs, but it requires each plant operator to develop its own safety criteria and requirements. The following relevant issues are described: NII assessment principles and societal risks; principles and guidance for the assessment of rector protection systems; assessment of reactor shutdown systems.

  3. Safety assessment principles for reactor protection systems in the United Kingdom

    International Nuclear Information System (INIS)

    Philp, W.

    1990-01-01

    The duty of Nuclear Installations Inspectorate (NII) is to see that the appropriate standards are developed, achieved and maintained by the plant operators, and to monitor and regulate the safety of the plant by means of its powers under the licence. It does not issue standards or codes of practice for NPPs, but it requires each plant operator to develop its own safety criteria and requirements. The following relevant issues are described: NII assessment principles and societal risks; principles and guidance for the assessment of rector protection systems; assessment of reactor shutdown systems

  4. Research on regularized mean-variance portfolio selection strategy with modified Roy safety-first principle.

    Science.gov (United States)

    Atta Mills, Ebenezer Fiifi Emire; Yan, Dawen; Yu, Bo; Wei, Xinyuan

    2016-01-01

    We propose a consolidated risk measure based on variance and the safety-first principle in a mean-risk portfolio optimization framework. The safety-first principle to financial portfolio selection strategy is modified and improved. Our proposed models are subjected to norm regularization to seek near-optimal stable and sparse portfolios. We compare the cumulative wealth of our preferred proposed model to a benchmark, S&P 500 index for the same period. Our proposed portfolio strategies have better out-of-sample performance than the selected alternative portfolio rules in literature and control the downside risk of the portfolio returns.

  5. AIRLINE COMPANIES ECONOMIC SAFETY FUNDAMENTAL PRINCIPLES WITHIN THE SYSTEM OF NATIONAL SAFETY

    Directory of Open Access Journals (Sweden)

    Dmitry Bezzubov

    2017-11-01

    Full Text Available Purpose: an analysis of existing threats, dangers and challenges to aviation enterprises in today's conditions and formulating the basic foundations for the development of methods for ensuring the economic security of aviation enterprises. Determination of the place and role of economic security of aviation enterprises in the national security system. Research methods: Using the comparative method of scientific knowledge, the main threats in the activity of aviation enterprises have been identified and the main provisions for increasing the level of economic stability and transport safety of aviation enterprises have been identified through the use of a formal legal and imperative method. Results: The problem of economic security of aviation enterprises is determined through the teaching of administrative, air, space law and the application of the findings of the science of economics and management. Each of the sciences forms an interdisciplinary approach to the issue of economic security of aviation enterprises in the national security system. In the modern economic system, the problem of the economic security of aviation enterprises is formed through the prism of the state's activities and the possibilities for interference in the activities of economic entities in the aviation sphere. The definition of economic security of aviation enterprises in the national security system is determined through the presence of the following economic and legal factors: a increasing the level of protection of passengers and pilots from acts of unlawful interference; B the formation of quality of aircraft servicing as an element of reducing the risk of accidents in aviation transport; c the mathematical increase in the number of incidents in aviation transport; c the integral relationship between the economic performance of the airline company and the quality of passenger service; d the need and possibility of using air transport for humanitarian missions

  6. The application of integrated safety management principles to the Tritium Extraction Facility project

    International Nuclear Information System (INIS)

    Hickman, M.O.; Viviano, R.R.

    2000-01-01

    The DOE has developed a program that is accomplishing a heightened safety posture across the complex. The Integrated Safety Management (ISM) System (ISMS) program utilizes five core functions and seven guiding principles as the basis for implementation. The core functions define the work scope, analyze the hazards, develop and implement hazard controls, perform the work, and provide feedback for improvement. The guiding principles include line management responsibility, clear roles and responsibilities, competence per responsibilities, identification of safety standards/requirements, tailored hazard control, balanced priorities, and operations authorization. There exists an unspecified eighth principle, that is, worker involvement. A program requiring the direct involvement of the employees who are actually performing the work has been shown to be quite an effective method of communicating safety requirements, controlling work in a safe manner, and reducing safety violations and injuries. The Tritium Extraction Facility (TEF) projects, a component of the DOE's Commercial Light Water Reactor Tritium Production program, has taken the ISM principles and core functions and applied them to the project's design. The task of the design team is to design a facility and systems that will meet the production requirements of the DOE tritium mission as well as a design that minimizes the workers' exposure to adverse safety situations and hazards/hazardous materials. During the development of the preliminary design for the TEF, design teams consisted of not only designers but also personnel who had operational experience in the existing tritium and personnel who had operational experience in the existing tritium and personnel who had specialized experience from across the DOE complex. This design team reviewed multiple documents associated with the TEF operation in order to identify and document the hazards associated with the tritium process. These documents include hazards

  7. Adjustment of the Brazilian radioprotection standards to the safety principles of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.; Py Junior, Delcy de A.

    2013-01-01

    The International Atomic Energy Agency (IAEA) has a recommendation with 10 basic safety principles (Fundamental Safety Principles Safety Fundamentals series, number SF-1), which are: 1) Responsibility for safety; 2) Role for government; 3) Leadership and management for safety; 4) Justification of facilities and activities; 5) Optimization of protection; 6) Limitation of risk to individuals; 7) Protection of present and futures generations; 8) Prevention of accidents; 9) Emergency preparedness and response and 10) Protection actions to reduce existing or unregulated radiations risk. The aim of this study is to verify that the Brazilian standards of radiation protection meet the principles described above and how well suited to them. The analysis of the national radiation protection regulatory system, developed and deployed by the National Nuclear Energy Commission (CNEN), showed that out of the ten items, two are covered partially, the number 2 and 10. The others are fully met. The item 2 the fact that the regulatory body (CNEN) be stock controller of a large company in the sector put in check its independence as a regulatory body. In item 10 the Brazilian standard of radiation protection does not provide explicit resolution of environmental liabilities

  8. Safety strategy

    International Nuclear Information System (INIS)

    Schultheiss, G.F.

    1980-01-01

    The basis for safety strategy in nuclear industry and especially nuclear power plants is the prevention of radioactivity release inside or outside of the technical installation. Therefore either technical or administrative measures are combined to a general strategy concept. This introduction will explain in more detail the following topics: - basic principles of safety - lines of assurance (LOA) - defense in depth - deterministic and probabilistic methods. This presentation is seen as an introduction to the more detailed discussion following in this course, nevertheless some selected examples will be used to illustrate the aspects of safety strategy development although they might be repeated later on. (orig.)

  9. State of the art of probabilistic safety analysis (PSA) in the FRG, and principles of a PSA-guideline

    International Nuclear Information System (INIS)

    Balfanz, H.P.

    1987-01-01

    Contents of the articles: Survey of PSA performed during licensing procedures of an NPP; German Nuclear Standards' requirements on the reliability of safety systems; PSA-guideline for NPP: Principles and suggestions; Motivation and tasks of PSA; Aspects of the methodology of safety analyses; Structure of event tree and fault tree analyses; Extent of safety analyses; Performance and limits of PSA. (orig./HSCH)

  10. Development of safety principles for the design of future nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The main purpose of this TECDOC is to propose updates to existing safety principles which could be used as a basis for developing safety principles for the design of future NPPs. Accordingly, this document is intended to be useful to reactor designers, owners, operators, researchers and regulators. It is also expected that this document can contribute to international harmonization of safety approaches, and that it will help ensure that future reactors will be designed worldwide to a high standard of safety. As such, these proposed updates are intended to provide general guidance which, if carefully and properly implemented, will result in reactor designs with enhanced safety characteristics beyond those currently in operation. This enhancement results from the fact that the proposals are derived from the lessons learned from more recent operational experience, R and D, design, testing, and analysis developed over the past decade or so, as well as from attempts to reflect the current trends in reactor design, such as the introduction of new technologies. 8 refs, 3 figs.

  11. Development of safety principles for the design of future nuclear power plants

    International Nuclear Information System (INIS)

    1995-06-01

    The main purpose of this TECDOC is to propose updates to existing safety principles which could be used as a basis for developing safety principles for the design of future NPPs. Accordingly, this document is intended to be useful to reactor designers, owners, operators, researchers and regulators. It is also expected that this document can contribute to international harmonization of safety approaches, and that it will help ensure that future reactors will be designed worldwide to a high standard of safety. As such, these proposed updates are intended to provide general guidance which, if carefully and properly implemented, will result in reactor designs with enhanced safety characteristics beyond those currently in operation. This enhancement results from the fact that the proposals are derived from the lessons learned from more recent operational experience, R and D, design, testing, and analysis developed over the past decade or so, as well as from attempts to reflect the current trends in reactor design, such as the introduction of new technologies. 8 refs, 3 figs

  12. Auto Safety

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Auto Safety KidsHealth / For Parents / Auto Safety What's in this ... by teaching some basic rules. Importance of Child Safety Seats Using a child safety seat (car seat) ...

  13. Integrated Safety in ''SARAF'

    International Nuclear Information System (INIS)

    Dickstein, P.; Grof, Y.; Machlev, M.; Pernick, A.

    2004-01-01

    As of the very early stages of the accelerator project at the Soreq Nuclear Research Center ''SARAF'' a safety group was established which has been an inseparable participant in the planning and design of the new facility. The safety group comprises of teams responsible for the shielding, radiation protection and general industrial safety aspects of ''SARAF''. The safety group prepared and documented the safety envelope for the accelerator, dealing with the safety requirements and guidelines for the first, pre-operational, stages of the project. The safety envelope, though based upon generic principles, took into account the accelerator features and the expected modes of operation. The safety envelope was prepared in a hierarchical structure, containing Basic Principles, Basic Guidelines, General Principles for Safety Implementation, Safety Requirements and Safety Underlining Issues. The above safety envelope applies to the entire facility, which entails the accelerator itself and the experimental areas and associated plant and equipment utilizing and supporting the production of the accelerated particle beams

  14. Regulations of 19 August 1978 on the optional principles of the Nuclear Safety Committee

    International Nuclear Information System (INIS)

    1978-01-01

    These regulations were published in the Turkish Official Gazette of 19 August 1978 and were made pursuant to Decree no. 7/9141 of 1975 on licensing of nuclear installations which established the Nuclear Safety Committee. They determine the duties and responsibilities of the Committee, its qualifications, its operating principles and its relations with the Nuclear Safety Assistance Service set up in the Turkish Atomic Energy Commission for the purposes of assisting its Secretary General. The regulations also lay down the procedures to be applied for consultations on granting licences. (NEA) [fr

  15. Safety philosophy and design principles for systems and components of nuclear power plant: external event

    International Nuclear Information System (INIS)

    Lopes, J.P.G.

    1986-01-01

    In nuclear power plants, some systems and components are designed to withstand external impacts. Such systems and components are those which have to perform their functions even during and after the occurrences of an earthquake, for example, fulfilling the safety objectives and avoiding the release of radioactive material to the environment. The aim of this report is to introduce the safety philosophy and design principles for systems/components to perform their functions during and after the occurrence of an earthquake, as applied by NUCLEN for Angra 2 and 3. (Author) [pt

  16. Basic safety principles of INSAG and their application in radioactive waste management

    International Nuclear Information System (INIS)

    Baer, A.J.

    2000-01-01

    The International Nuclear Safety Advisory Group (INSAG) has, in INSAG-11, attempted to show what safety principles are common to all applications of all sources of radiation. It has been considered that these general principles should apply to all industrial activities. A comparison of INSAG-11 with Article 11 of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) shows that the management of radioactive waste is but a special case of industrial activity and follows the same safety rules. The importance of the Joint Convention comes, however, from the fact that it is a politically important document, requiring ratification by the parliaments of the contracting parties. The safe management of radioactive waste implies that five types of issue must be taken into consideration, not only technical and ethical ones, but also socio-political, economic and ecological ones. By comparison, sustainable development in its three dimensions (temporal, spatial and sectorial) has five components (ecology, economics, ethics, socio-politics and technology), just like the safe management of radioactive waste. The consequence of this is that if management is treated as a particular case of sustainable development, it will not be accepted by society. The conclusions are that technology alone can not ensure the safety of radioactive waste management and that society will always give priority to socio-political issues over technological ones. Furthermore, it is crucial that people involved in the management of radioactive waste learn to communicate better and to listen more attentively. Their efforts will only succeed when they incorporate all the components that determine the fabric of our society. (author)

  17. Revamping occupational safety and health training: Integrating andragogical principles for the adult learner

    Directory of Open Access Journals (Sweden)

    Alex Albert

    2013-09-01

    Full Text Available Despite attempts to improve safety performance, the construction industry continues to account for a disproportionate rate of injuries. A large proportion of these injuries occur because workers are unable to recognize and respond to hazards in dynamic and unpredictable environments. Unrecognized hazards expose workers to unanticipated risks and can lead to catastrophic accidents. In order to enhance hazard recognition skills, employers often put new and experienced workers through formal hazard recognition training programs. Unfortunately, current training programs primarily rely on instructor-centric pedagogical approaches, which are insensitive to the adult learning process. In order to ensure effective adult learning, training programs must integrate learner-centric andragogical principles to improve engagement and retention in adult trainees. This paper aims to discuss training program elements that can potentially accelerate the adult learning process while improving safety knowledge retention. To this end, the researchers reviewed relevant literature on the cognitive processes of adult learning, essential components of effectual training programs and developed a reliable framework for the training and transfer of safety knowledge. A case example of successfully using the framework is also presented. The results of the study will provide safety trainers and construction professionals with valuable information on developing effective hazard recognition and receptor training programs, with the goal of improving construction safety performance.

  18. A new principle for low-cost hydrogen sensors for fuel cell technology safety

    Energy Technology Data Exchange (ETDEWEB)

    Liess, Martin [Rhein Main University of Applied Sciences, Rüsselsheim, Wiesbaden (Germany)

    2014-03-24

    Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S.

  19. Application of the Pareto principle to identify and address drug-therapy safety issues.

    Science.gov (United States)

    Müller, Fabian; Dormann, Harald; Pfistermeister, Barbara; Sonst, Anja; Patapovas, Andrius; Vogler, Renate; Hartmann, Nina; Plank-Kiegele, Bettina; Kirchner, Melanie; Bürkle, Thomas; Maas, Renke

    2014-06-01

    Adverse drug events (ADE) and medication errors (ME) are common causes of morbidity in patients presenting at emergency departments (ED). Recognition of ADE as being drug related and prevention of ME are key to enhancing pharmacotherapy safety in ED. We assessed the applicability of the Pareto principle (~80 % of effects result from 20 % of causes) to address locally relevant problems of drug therapy. In 752 cases consecutively admitted to the nontraumatic ED of a major regional hospital, ADE, ME, contributing drugs, preventability, and detection rates of ADE by ED staff were investigated. Symptoms, errors, and drugs were sorted by frequency in order to apply the Pareto principle. In total, 242 ADE were observed, and 148 (61.2 %) were assessed as preventable. ADE contributed to 110 inpatient hospitalizations. The ten most frequent symptoms were causally involved in 88 (80.0 %) inpatient hospitalizations. Only 45 (18.6 %) ADE were recognized as drug-related problems until discharge from the ED. A limited set of 33 drugs accounted for 184 (76.0 %) ADE; ME contributed to 57 ADE. Frequency-based listing of ADE, ME, and drugs involved allowed identification of the most relevant problems and development of easily to implement safety measures, such as wall and pocket charts. The Pareto principle provides a method for identifying the locally most relevant ADE, ME, and involved drugs. This permits subsequent development of interventions to increase patient safety in the ED admission process that best suit local needs.

  20. Nuclear safety

    International Nuclear Information System (INIS)

    1991-02-01

    This book reviews the accomplishments, operations, and problems faced by the defense Nuclear Facilities Safety Board. Specifically, it discusses the recommendations that the Safety Board made to improve safety and health conditions at the Department of Energy's defense nuclear facilities, problems the Safety Board has encountered in hiring technical staff, and management problems that could affect the Safety Board's independence and credibility

  1. Safety balance: Analysis of safety systems

    International Nuclear Information System (INIS)

    Delage, M.; Giroux, C.

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses

  2. Drug Safety

    Science.gov (United States)

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  3. System principles, mathematical models and methods to ensure high reliability of safety systems

    Science.gov (United States)

    Zaslavskyi, V.

    2017-04-01

    Modern safety and security systems are composed of a large number of various components designed for detection, localization, tracking, collecting, and processing of information from the systems of monitoring, telemetry, control, etc. They are required to be highly reliable in a view to correctly perform data aggregation, processing and analysis for subsequent decision making support. On design and construction phases of the manufacturing of such systems a various types of components (elements, devices, and subsystems) are considered and used to ensure high reliability of signals detection, noise isolation, and erroneous commands reduction. When generating design solutions for highly reliable systems a number of restrictions and conditions such as types of components and various constrains on resources should be considered. Various types of components perform identical functions; however, they are implemented using diverse principles, approaches and have distinct technical and economic indicators such as cost or power consumption. The systematic use of different component types increases the probability of tasks performing and eliminates the common cause failure. We consider type-variety principle as an engineering principle of system analysis, mathematical models based on this principle, and algorithms for solving optimization problems of highly reliable safety and security systems design. Mathematical models are formalized in a class of two-level discrete optimization problems of large dimension. The proposed approach, mathematical models, algorithms can be used for problem solving of optimal redundancy on the basis of a variety of methods and control devices for fault and defects detection in technical systems, telecommunication networks, and energy systems.

  4. Safety culture

    International Nuclear Information System (INIS)

    Keen, L.J.

    2003-01-01

    Safety culture has become a topic of increasing interest for industry and regulators as issues are raised on safety problems around the world. The keys to safety culture are organizational effectiveness, effective communications, organizational learning, and a culture that encourages the identification and resolution of safety issues. The necessity of a strong safety culture places an onus on all of us to continually question whether the safety measures already in place are sufficient, and are being applied. (author)

  5. Guiding principles for the implementation of non-animal safety assessment approaches for cosmetics: skin sensitisation.

    Science.gov (United States)

    Goebel, Carsten; Aeby, Pierre; Ade, Nadège; Alépée, Nathalie; Aptula, Aynur; Araki, Daisuke; Dufour, Eric; Gilmour, Nicola; Hibatallah, Jalila; Keller, Detlef; Kern, Petra; Kirst, Annette; Marrec-Fairley, Monique; Maxwell, Gavin; Rowland, Joanna; Safford, Bob; Schellauf, Florian; Schepky, Andreas; Seaman, Chris; Teichert, Thomas; Tessier, Nicolas; Teissier, Silvia; Weltzien, Hans Ulrich; Winkler, Petra; Scheel, Julia

    2012-06-01

    Characterisation of skin sensitisation potential is a key endpoint for the safety assessment of cosmetic ingredients especially when significant dermal exposure to an ingredient is expected. At present the mouse local lymph node assay (LLNA) remains the 'gold standard' test method for this purpose however non-animal test methods are under development that aim to replace the need for new animal test data. COLIPA (the European Cosmetics Association) funds an extensive programme of skin sensitisation research, method development and method evaluation and helped coordinate the early evaluation of the three test methods currently undergoing pre-validation. In May 2010, a COLIPA scientific meeting was held to analyse to what extent skin sensitisation safety assessments for cosmetic ingredients can be made in the absence of animal data. In order to propose guiding principles for the application and further development of non-animal safety assessment strategies it was evaluated how and when non-animal test methods, predictions based on physico-chemical properties (including in silico tools), threshold concepts and weight-of-evidence based hazard characterisation could be used to enable safety decisions. Generation and assessment of potency information from alternative tools which at present is predominantly derived from the LLNA is considered the future key research area. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Nuclear safety and regulation

    International Nuclear Information System (INIS)

    Kim, Hho Jung

    2000-03-01

    This book contains 12 chapters, which are atom and radiation, nuclear reactor and kinds of nuclear power plant, safeguard actuation system and stability evaluation for rock foundation of nuclear power plant, nuclear safety and principle, safety analysis and classification of incident, probabilistic safety assessment and major incident, nuclear safety regulation, system of nuclear safety regulation, main function and subject of safety regulation in nuclear facilities, regulation of fuel cycle and a nuclear dump site, protection of radiation and, safety supervision and, safety supervision and measurement of environmental radioactivity.

  7. 75 FR 8239 - School Food Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP...

    Science.gov (United States)

    2010-02-24

    ... (HACCP); Approval of Information Collection Request AGENCY: Food and Nutrition Service, USDA. ACTION... Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP) was published on... must be based on the (HACCP) system established by the Secretary of Agriculture. The food safety...

  8. The main ecological principles of ensuring safety of man and biosphere in the handling of radioactive wastes

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.

    1999-01-01

    This paper provides an assessment of ecological safety in the handling of radioactive wastes in the territory of Russia. The following problems are considered: the main sources of radioactive wastes and spent nuclear fuel; assessments of collective dose from the enterprises of the nuclear fuel cycle in Russia; and principles and criteria for ensuring ecological safety when handling radioactive wastes

  9. Basic principles on the safety evaluation of the HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Nishihara, Tetsuo; Tazawa, Yujiro; Tachibana, Yukio; Kunitomi, Kazuhiko

    2009-03-01

    As HTGR hydrogen production systems, such as HTTR-IS system or GTHTR300C currently being developed by Japan Atomic Energy Agency, consists of nuclear reactor and chemical plant, which are without a precedent in the world, safety design philosophy and regulatory framework should be newly developed. In this report, phenomena to be considered and events to be postulated in the safety evaluation of the HTGR hydrogen production systems were investigated and basic principles to establish acceptance criteria for the explosion and toxic gas release accidents were provided. Especially for the explosion accident, quantitative criteria to the reactor building are proposed with relating sample calculation results. It is necessary to treat abnormal events occurred in the hydrogen production system as an 'external events to the nuclear plant' in order to classify the hydrogen production system as no-nuclear facility' and basic policy to meet such requirement was also provided. (author)

  10. Seismic design and performance of nuclear safety related RC structures based on new seismic design principle

    International Nuclear Information System (INIS)

    Murugan, R.; Sivathanu Pillai, C.; Chattopadhyaya, S.; Sundaramurthy, C.

    2011-01-01

    Full text: Seismic design of safety related Reinforced Concrete (RC) structures of Nuclear power plants (NPP) in India as per the present AERB codal procedures tries to ensure predominantly elastic behaviour under OBE so that the features of Nuclear Power Plant (NPP) necessary for continued safe operation are designed to remain functional and prevent accident (collapse) of NPP under SSE for which certain Structures, Systems and Components (SSCs) those are necessary to ensure the capability to shut down the reactor safely, are designed to remain functional. While the seismic design principles of non safety related structures as per Indian code (IS 1893-2002) are ensuring elastic behaviour under DBE and inelastic behaviour under MCE by utilizing ductility and energy dissipation capacity of the structure effectively. The design principle of AERB code is ensuring elastic behaviour under OBE and is not enlightening much inference about the overall structural behaviour under SSE (only ensuring the capability of certain SSCs required for safe shutdown of reactor). Various buildings and structures of Indian Nuclear power plant are classified from the basis of associated safety functions in a descending order in according with their roles in preventions and mitigation of an accident or support functions for prevention. This paper covers a comprehensive seismic analysis and design methodology based on the AERB codal provisions followed for safety related RC structure taking Diesel Generator Building of PFBR as a case study and study and investigates its performance under OBE and SSE by carrying out Non-linear static Pushover analysis. Based on the analysis, observed variations, recommendations are given for getting the desired performance level so as to implement performance based design in the future NPP design

  11. Reactor safety

    International Nuclear Information System (INIS)

    Butz, H.P.; Heuser, F.W.; May, H.

    1985-01-01

    The paper comprises an introduction into nuclear physics bases, the safety concept generally speaking, safety devices of pwr type reactors, accident analysis, external influences, probabilistic safety assessment and risk studies. It further describes operational experience, licensing procedures under the Atomic Energy Law, research in reactor safety and the nuclear fuel cycle. (DG) [de

  12. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  13. Economics of food safety in chains: a review of general principles

    NARCIS (Netherlands)

    Valeeva, N.I.; Meuwissen, M.P.M.; Huirne, R.B.M.

    2004-01-01

    The increased demand for safer food has resulted in the development and introduction of new food safety standards and regulations to reach a higher level of food safety. An integrated approach of controlling food safety throughout the entire food chain (`farm to table`) has become an important issue

  14. Pragmatic application of the precautionary principle to deal with unknown safety challenges

    International Nuclear Information System (INIS)

    Frappier, G.; Viktorov, A.

    2011-01-01

    Nuclear power technology has matured over a number of decades to the point where our understanding of the technology under a wide variety of circumstances is quite high. Despite this high degree of maturity, discoveries of new challenges occasionally surface. These may arise from either unusual or unexpected operational conditions or new experimental findings from ongoing research. With the early realization that such discoveries could occur, a conscious effort was made to take precautions against their negative impacts. Principles such as defence-in-depth, designing for high reliability, incorporation of robust safety margins and use of justified conservatisms are key examples of established practices that are embedded in national regulatory regimes of most, if not all countries with nuclear programs. Because of these provisions the safety cases of the current generation of reactors proved to be quite resilient to discoveries of earlier unrecognized challenges. A fundamentally important element in the management of “unknown unknowns” is a healthy research programme. Such a programme is especially necessary as a precondition for understanding potential impacts from changes in operating conditions or implementation of novel design features. A research programme helps minimizing chances of stumbling on “unknown unknowns”, and allows resolution of emerging issues to by virtue of the accumulated understanding and capability to predict challenges to safety. In the few instances when discoveries occurred with recognized negative effects on safety, these spurred changes in operating conditions, maintenance or testing practices, design modifications, as well as required targeted research projects. This paper outlines several CANDU-specific “discoveries” in the field of thermalhydraulics, illustrating past “unknown unknowns” and the actions taken to address those. The main message, however, is to point out that both the industry and the regulator should

  15. Pragmatic application of the precautionary principle to deal with unknown safety challenges

    Energy Technology Data Exchange (ETDEWEB)

    Frappier, G.; Viktorov, A., E-mail: gerry.frappier@cnsc-ccsn.gc.ca, E-mail: alex.viktorov@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2011-07-01

    Nuclear power technology has matured over a number of decades to the point where our understanding of the technology under a wide variety of circumstances is quite high. Despite this high degree of maturity, discoveries of new challenges occasionally surface. These may arise from either unusual or unexpected operational conditions or new experimental findings from ongoing research. With the early realization that such discoveries could occur, a conscious effort was made to take precautions against their negative impacts. Principles such as defence-in-depth, designing for high reliability, incorporation of robust safety margins and use of justified conservatisms are key examples of established practices that are embedded in national regulatory regimes of most, if not all countries with nuclear programs. Because of these provisions the safety cases of the current generation of reactors proved to be quite resilient to discoveries of earlier unrecognized challenges. A fundamentally important element in the management of “unknown unknowns” is a healthy research programme. Such a programme is especially necessary as a precondition for understanding potential impacts from changes in operating conditions or implementation of novel design features. A research programme helps minimizing chances of stumbling on “unknown unknowns”, and allows resolution of emerging issues to by virtue of the accumulated understanding and capability to predict challenges to safety. In the few instances when discoveries occurred with recognized negative effects on safety, these spurred changes in operating conditions, maintenance or testing practices, design modifications, as well as required targeted research projects. This paper outlines several CANDU-specific “discoveries” in the field of thermalhydraulics, illustrating past “unknown unknowns” and the actions taken to address those. The main message, however, is to point out that both the industry and the regulator should

  16. Procedures to relate the NII safety assessment principles for nuclear reactors to risk

    CERN Document Server

    Kelly, G N; Hemming, C R

    1985-01-01

    Within the framework of the Public Inquiry into the proposed pressurised water reactor (PWR) at Sizewell, estimates were made of the levels of individual and societal risk from a PWR designed in a manner which would conform to the safety assessment principles formulated by the Nuclear Installations Inspectorate (NII). The procedures used to derive these levels of risk are described in this report. The opportunity has also been taken to revise the risk estimates made at the time of the Inquiry by taking account of additional data which were not then available, and to provide further quantification of the likely range of uncertainty in the predictions. This re-analysis has led to small changes in the levels of risk previously evaluated, but these are not sufficient to affect the broad conclusions reached before. For a reactor just conforming to the NII safety assessment principles a maximum individual risk of fatal cancer of about 10 sup - sup 6 per year of reactor operation has been estimated; the societal ris...

  17. Principles of Automation for Patient Safety in Intensive Care: Learning From Aviation.

    Science.gov (United States)

    Dominiczak, Jason; Khansa, Lara

    2018-06-01

    The transition away from written documentation and analog methods has opened up the possibility of leveraging data science and analytic techniques to improve health care. In the implementation of data science techniques and methodologies, high-acuity patients in the ICU can particularly benefit. The Principles of Automation for Patient Safety in Intensive Care (PASPIC) framework draws on Billings's principles of human-centered aviation (HCA) automation and helps in identifying the advantages, pitfalls, and unintended consequences of automation in health care. Billings's HCA principles are based on the premise that human operators must remain "in command," so that they are continuously informed and actively involved in all aspects of system operations. In addition, automated systems need to be predictable, simple to train, to learn, and to operate, and must be able to monitor the human operators, and every intelligent system element must know the intent of other intelligent system elements. In applying Billings's HCA principles to the ICU setting, PAPSIC has three key characteristics: (1) integration and better interoperability, (2) multidimensional analysis, and (3) enhanced situation awareness. PAPSIC suggests that health care professionals reduce overreliance on automation and implement "cooperative automation" and that vendors reduce mode errors and embrace interoperability. Much can be learned from the aviation industry in automating the ICU. Because it combines "smart" technology with the necessary controls to withstand unintended consequences, PAPSIC could help ensure more informed decision making in the ICU and better patient care. Copyright © 2018 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  18. IAEA Safety Standards

    International Nuclear Information System (INIS)

    2016-09-01

    The IAEA Safety Standards Series comprises publications of a regulatory nature covering nuclear safety, radiation protection, radioactive waste management, the transport of radioactive material, the safety of nuclear fuel cycle facilities and management systems. These publications are issued under the terms of Article III of the IAEA’s Statute, which authorizes the IAEA to establish “standards of safety for protection of health and minimization of danger to life and property”. Safety standards are categorized into: • Safety Fundamentals, stating the basic objective, concepts and principles of safety; • Safety Requirements, establishing the requirements that must be fulfilled to ensure safety; and • Safety Guides, recommending measures for complying with these requirements for safety. For numbering purposes, the IAEA Safety Standards Series is subdivided into General Safety Requirements and General Safety Guides (GSR and GSG), which are applicable to all types of facilities and activities, and Specific Safety Requirements and Specific Safety Guides (SSR and SSG), which are for application in particular thematic areas. This booklet lists all current IAEA Safety Standards, including those forthcoming

  19. Vaccine Safety

    Science.gov (United States)

    ... During Pregnancy Frequently Asked Questions about Vaccine Recalls Historical Vaccine Safety Concerns FAQs about GBS and Menactra ... CISA Resources for Healthcare Professionals Evaluation Current Studies Historical Background 2001-12 Publications Technical Reports Vaccine Safety ...

  20. SAFETY FIRST

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ensuring safety while peacefully utilizing nuclear energy is a top priority for China A fter a recent earthquake in Japan caused radioactive leaks at a nuclear power plant in Tokyo, the safety of nuclear energy has again aroused public attention.

  1. ITER safety

    International Nuclear Information System (INIS)

    Raeder, J.; Piet, S.; Buende, R.

    1991-01-01

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  2. Water Safety

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Water Safety KidsHealth / For Parents / Water Safety What's in ... remains your best measure of protection. Making Kids Water Wise It's important to teach your kids proper ...

  3. Environmental, safety, and health engineering

    International Nuclear Information System (INIS)

    Woodside, G.; Kocurek, D.

    1997-01-01

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics

  4. Food safety

    Science.gov (United States)

    ... safety URL of this page: //medlineplus.gov/ency/article/002434.htm Food safety To use the sharing features on this page, please enable JavaScript. Food safety refers to the conditions and practices that preserve the quality of food. These practices prevent contamination and foodborne ...

  5. General principles of the nuclear criticality safety for handling, processing and transportation fissile materials in the USSR

    International Nuclear Information System (INIS)

    Vnukov, V.S.; Rjazanov, B.G.; Sviridov, V.I.; Frolov, V.V.; Zubkov, Y.N.

    1991-01-01

    The paper describes the general principles of nuclear criticality safety for handling, processing, transportation and fissile materials storing. Measures to limit the consequences of critical accidents are discussed for the fuel processing plants and fissile materials storage. The system of scientific and technical measures on nuclear criticality safety as well as the system of control and state supervision based on the rules, limits and requirements are described. The criticality safety aspects for various stages of handling nuclear materials are considered. The paper gives descriptions of the methods and approaches for critical risk assessments for the processing facilities, plants and storages. (Author)

  6. The management and disposal of radioactive wastes - safety principles and guidelines

    International Nuclear Information System (INIS)

    Linsley, G.; Bell, M.; Saire, D.

    1991-01-01

    This paper describes the current plans for the establishment of the Radioactive Waste Safety Standards (RADWASS), a new series of IAEA documents in the Safety Series category intended to set out internationally agreed approaches to the safe management and disposal or radioactive waste. RADWASS is being implemented to document the harmonization which exists in the approaches to establishing safety in the field of radioactive waste management and disposal at the international level. (au)

  7. Safety- barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2008-01-01

    Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....

  8. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk...... analysis with operational safety management....

  9. The application of redundancy-related basic safety principles to the 1400 MWE reactor core standby cooling system

    International Nuclear Information System (INIS)

    Bertrand, R.

    1990-01-01

    This memorandum shall provide the background for the work of the European Community Commission which is to analyze safety principles relating to redundancy. The redundancy-related basic safety principles applied in French nuclear power plants are the following: . the single-failure criterion, . provisions additional to application of the single-failure criterion. These are mainly provisions made at the design stage to minimize risks associated with common cause failures or the risks of human error which can lead to such failures: - protection against hazards of internal and external origin, - the geographical or physical separation of equipment, - the independence of electrical power supplies and distribution systems, - the additional resources and associated operating procedures making it possible to accommodate total loss of the safety systems. The scope also includes the operating rules which ensure availability of redundant safety-related equipment. The provisions relating to the single-failure criterion are detailed in Basic Safety Rule 1.3.A appended. The application of these principles proposed by the operating organization and accepted by the safety authorities for the design and operation of the standby core cooling system (System RIS) is explained

  10. Safety handbook

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of the Australian Nuclear Science and Technology Organization's Safety Handbook is to outline simply the fundamental procedures and safety precautions which provide an appropriate framework for safe working with any potential hazards, such as fire and explosion, welding, cutting, brazing and soldering, compressed gases, cryogenic liquids, chemicals, ionizing radiations, non-ionising radiations, sound and vibration, as well as safety in the office. It also specifies the organisation for safety at the Lucas Heights Research Laboratories and the responsibilities of individuals and committees. It also defines the procedures for the scrutiny and review of all operations and the resultant setting of safety rules for them. ills

  11. Safety design

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Shiozawa, Shusaku

    2004-01-01

    JAERI established the safety design philosophy of the HTTR based on that of current reactors such as LWR in Japan, considering inherent safety features of the HTTR. The strategy of defense in depth was implemented so that the safety engineering functions such as control of reactivity, removal of residual heat and confinement of fission products shall be well performed to ensure safety. However, unlike the LWR, the inherent design features of the high-temperature gas-cooled reactor (HTGR) enables the HTTR meet stringent regulatory criteria without much dependence on active safety systems. On the other hand, the safety in an accident typical to the HTGR such as the depressurization accident initiated by a primary pipe rupture shall be ensured. The safety design philosophy of the HTTR considers these unique features appropriately and is expected to be the basis for future Japanese HTGRs. This paper describes the safety design philosophy and safety evaluation procedure of the HTTR especially focusing on unique considerations to the HTTR. Also, experiences obtained from an HTTR safety review and R and D needs for establishing the safety philosophy for the future HTGRs are reported

  12. Nuclear Safety

    International Nuclear Information System (INIS)

    1978-09-01

    In this short paper it has only been possible to deal in a rather general way with the standards of safety used in the UK nuclear industry. The record of the industry extending over at least twenty years is impressive and, indeed, unique. No other industry has been so painstaking in protection of its workers and in its avoidance of damage to the environment. Headings are: introduction; how a nuclear power station works; radiation and its effects (including reference to ICRP, the UK National Radiological Protection Board, and safety standards); typical radiation doses (natural radiation, therapy, nuclear power programme and other sources); safety of nuclear reactors - design; key questions (matters of concern which arise in the public mind); safety of operators; safety of people in the vicinity of a nuclear power station; safety of the general public; safety bodies. (U.K.)

  13. Nuclear energy - Fissile materials - Principles of criticality safety in storing, handling and processing

    International Nuclear Information System (INIS)

    1995-01-01

    This International Standard specifies the basic principles and limitations which govern operations with fissile materials. It discusses general criticality safety criteria for equipment design and for the development of operating controls, while providing guidance for the assessment of procedures, equipment, and operations. It does not cover quality assurance requirements or details of equipment or operational procedures, nor does it cover the effects of radiation on man or materials, or sources of such radiation, either natural or as the result of nuclear chain reactions. Transport of fissile materials outside the boundaries of nuclear establishments is not within the scope of this International Standard and should be governed by appropriate national and international standards and regulations. These criteria apply to operations with fissile materials outside nuclear reactors but within the boundaries of nuclear establishments. They are concerned with the limitations which must be imposed on operations because of the unique properties of these materials which permit them to support nuclear chain reactions. These principles apply to quantities of fissile materials in which nuclear criticality can be established

  14. Safety culture

    International Nuclear Information System (INIS)

    1991-01-01

    The response to a previous publication by the International Nuclear Safety Advisory Group (INSAG), indicated a broad international interest in expansion of the concept of Safety Culture, in such a way that its effectiveness in particular cases may be judged. This report responds to that need. In its manifestation, Safety Culture has two major components: the framework determined by organizational policy and by managerial action, and the response of individuals in working within and benefiting by the framework. 1 fig

  15. Safety; Avertissement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This annual report of the Senior Inspector for the Nuclear Safety, analyses the nuclear safety at EDF for the year 1999 and proposes twelve subjects of consideration to progress. Five technical documents are also provided and discussed concerning the nuclear power plants maintenance and safety (thermal fatigue, vibration fatigue, assisted control and instrumentation of the N4 bearing, 1300 MW reactors containment and time of life of power plants). (A.L.B.)

  16. Visit safety

    CERN Document Server

    2012-01-01

    Experiment areas, offices, workshops: it is possible to have co-workers or friends visit these places.     You already know about the official visits service, the VIP office, and professional visits. But do you know about the safety instruction GSI-OHS1, “Visits on the CERN site”? This is a mandatory General Safety Instruction that was created to assist you in ensuring safety for all your visits, whatever their nature—especially those that are non-official. Questions? The HSE Unit will be happy to answer them. Write to safety-general@cern.ch.   The HSE Unit

  17. Food Safety Programs Based on HACCP Principles in School Nutrition Programs: Implementation Status and Factors Related to Implementation

    Science.gov (United States)

    Stinson, Wendy Bounds; Carr, Deborah; Nettles, Mary Frances; Johnson, James T.

    2011-01-01

    Purpose/Objectives: The objectives of this study were to assess the extent to which school nutrition (SN) programs have implemented food safety programs based on Hazard Analysis and Critical Control Point (HACCP) principles, as well as factors, barriers, and practices related to implementation of these programs. Methods: An online survey was…

  18. Safety Systems

    Science.gov (United States)

    Halligan, Tom

    2009-01-01

    Colleges across the country are rising to the task by implementing safety programs, response strategies, and technologies intended to create a secure environment for teachers and students. Whether it is preparing and responding to a natural disaster, health emergency, or act of violence, more schools are making campus safety a top priority. At…

  19. Safety First

    Science.gov (United States)

    Taft, Darryl

    2011-01-01

    Ned Miller does not take security lightly. As director of campus safety and emergency management at the Des Moines Area Community College (DMACC), any threat requires serious consideration. As community college administrators adopt a more proactive approach to campus safety, many institutions are experimenting with emerging technologies, including…

  20. Problems encountered in embodying the principles of ICRP-26 and the revised IAEA safety standards into UK national legislation

    International Nuclear Information System (INIS)

    Beaver, P.F.

    1979-01-01

    This paper describes the United Kingdom procedures and format for safety legislation and goes on to show how the necessary legislation for radiological protection will fit into the general framework. The United Kingdom, as a member of the European Community and EURATOM, is bound to implement the Euratom Directive on radiological protection within the next few years. The latest draft of the Directive takes account of the recommendations of ICRP-26 and further, a recent draft of the revised IAEA Basic Safety Standards is a composite of both the Directive and ICRP-26. Thus, the effect of embodying the principles of the Directive is to embody the principles of ICRP-26 and the Basic Safety Standards. Some of the problems which have been met are described and in particular there is discussion of the problems arising from the incorporation of the three ICRP-26 facets of dose control, namely justification, optimization and limitation, into a legislative package. The UK system of evolving safety legislation now requires considerable participation by all the parties affected (or by their representatives). This paper indicates that the involvement of persons affected, coupled with a legislative package which consists of a hierarchy of (a) regulations; (b) codes of practice; and (c) guidance notes, will result in the fundamental principles of ICRP-26 being incorporated into UK legislation in a totally acceptable way. (author)

  1. Framework of nuclear safety and safety assessment

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    2007-01-01

    Since enormous energy is released by nuclear chain reaction mainly as a form of radiation, a great potential risk accompanies utilization of nuclear energy. Safety has been continuously a critical issue therefore from the very beginning of its development. Though the framework of nuclear safety that has been established at an early developmental stage of nuclear engineering is still valid, more comprehensive approaches are required having experienced several events such as Three Mile Island, Chernobyl, and JCO. This article gives a brief view of the most basic principles how nuclear safety is achieved, which were introduced and sophisticated in nuclear engineering but applicable also to other engineering domains in general. (author)

  2. Safety culture

    International Nuclear Information System (INIS)

    Drukraroff, C.

    2010-01-01

    The concept of Safety Culture was defined after Chernobyl's nuclear accident in 1986. It has not been exempt from discussion interpretations, adding riders, etc..., over the last 24 years because it has to do with human behavior and performance in the organizations. Safety Culture is not an easy task to define, assess and monitor. The proof of it is that today we still discussing and writing about it. How has been the evolution of Safety Culture at the Juzbado Factory since 1985 to today?. What is the strategy that we will be following in the future. (Author)

  3. Radiation safety

    International Nuclear Information System (INIS)

    1996-04-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. The health effects of radiation - both natural and artificial - are relatively well understood and can be effectively minimized through careful safety measures and practices. The IAEA, together with other international and expert organizations, is helping to promote and institute Basic Safety Standards on an international basis to ensure that radiation sources and radioactive materials are managed for both maximum safety and human benefit

  4. Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E G [ed.

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  5. Elements of nuclear safety

    CERN Document Server

    Libmann, Jacques

    1996-01-01

    This basically educational book is intended for all involved in nuclear facility safety. It dissects the principles and experiences conducive to the adoption of attitudes compliant with what is now known as "safety culture". This book is accessible to a wide range of readers.

  6. International nuclear safety

    International Nuclear Information System (INIS)

    Wolff, P.H.W.

    1978-01-01

    The background to the development of internationally agreed safety principles and practices is discussed. The activities of the IAEA and the scope, structure, and organisation of its programme of Reactor Safety Codes and Guides are described. Attention is drawn to certain areas needing further considerations. (UK)

  7. Reactor safety

    International Nuclear Information System (INIS)

    Meneley, D.A.

    The people of Ontario have begun to receive the benefits of a low cost, assured supply of electrical energy from CANDU nuclear stations. This indigenous energy source also has excellent safety characteristics. Safety has been one of the central themes of the CANDU development program from its very beginning. A great deal of work has been done to establish that public risks are small. However, safety design criteria are now undergoing extensive review, with a real prospect of more stringent requirements being applied in the future. Considering the newness of the technology it is not surprising that a consensus does not yet exist; this makes it imperative to discuss the issues. It is time to examine the policies and practice of reactor safety management in Canada to decide whether or not further restrictions are justified in the light of current knowledge

  8. Safety first!

    CERN Multimedia

    2016-01-01

    Among the many duties I assumed at the beginning of the year was the ultimate responsibility for Safety at CERN: the responsibility for the physical safety of the personnel, the responsibility for the safe operation of the facilities, and the responsibility to ensure that CERN acts in accordance with the highest standards of radiation and environmental protection.   The Safety Policy document drawn up in September 2014 is an excellent basis for the implementation of Safety in all areas of CERN’s work. I am happy to commit during my mandate to help meet its objectives, not least by ensuring the Organization makes available the necessary means to achieve its Safety objectives. One of the main objectives of the HSE (Occupational Health and Safety and Environmental Protection) unit in the coming months is to enhance the measures to minimise CERN’s impact on the environment. I believe CERN should become a role model for an environmentally-aware scientific research laboratory. Risk ...

  9. Radiation safety

    International Nuclear Information System (INIS)

    Jain, Priyanka

    2014-01-01

    The use of radiation sources is a privilege; in order to retain the privilege, all persons who use sources of radiation must follow policies and procedures for their safe and legal use. The purpose of this poster is to describe the policies and procedures of the Radiation Protection Program. Specific conditions of radiation safety require the establishment of peer committees to evaluate proposals for the use of radionuclides, the appointment of a radiation safety officer, and the implementation of a radiation safety program. In addition, the University and Medical Centre administrations have determined that the use of radiation producing machines and non-ionizing radiation sources shall be included in the radiation safety program. These Radiation Safety policies are intended to ensure that such use is in accordance with applicable State and Federal regulations and accepted standards as directed towards the protection of health and the minimization of hazard to life or property. It is the policy that all activities involving ionizing radiation or radiation emitting devices be conducted so as to keep hazards from radiation to a minimum. Persons involved in these activities are expected to comply fully with the Canadian Nuclear Safety Act and all it. The risk of prosecution by the Department of Health and Community Services exists if compliance with all applicable legislation is not fulfilled. (author)

  10. Criticality safety

    International Nuclear Information System (INIS)

    Walker, G.

    1983-01-01

    When a sufficient quantity of fissile material is brought together a self-sustaining neutron chain reaction will be started in it and will continue until some change occurs in the fissile material to stop the chain reaction. The quantity of fissile material required is the 'Critical Mass'. This is not a fixed quantity even for a given type of fissile material but varies between quite wide limits depending on a number of factors. In a nuclear reactor the critical mass of fissile material is assembled under well-defined condition to produce a controllable chain reaction. The same materials have to be handled outside the reactor in all stages of fuel element manufacture, storage, transport and irradiated fuel reprocessing. At any stage it is possible (at least in principle) to assemble a critical mass and thus initiate an accidental and uncontrollable chain reaction. Avoiding this is what criticality safety is all about. A system is just critical when the rate of production of neutrons balances the rate of loss either by escape or by absorption. The factors affecting criticality are, therefore, those which effect neutron production and loss. The principal ones are:- type of nuclide and enrichment (or isotopic composition), moderation, reflection, concentration (density), shape and interaction. Each factor is considered in detail. (author)

  11. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  12. Using Principles of Quality and Safety Education for Nurses in School Nurse Continuing Education

    Science.gov (United States)

    Rosenblum, Ruth K.; Sprague-McRae, Julie

    2014-01-01

    School nurses require ongoing continuing education in a number of areas. The Quality and Safety Education for Nurses (QSEN) framework can be utilized in considering school nurses' roles and developing continuing education. Focusing on neurology continuing education, the QSEN framework is illustrated with the example of concussion management…

  13. Principles and Practices of Occupational Safety and Health: Student Manual: Booklet One.

    Science.gov (United States)

    Occupational Safety and Health Administration, Washington, DC.

    The manual is the first of six student manuals for use in a course on occupational health and safety for supervisory personnel. The manual contains lessons 1-3 of the 15 consecutively-numbered lessons, each of which contains study questions (and answers) interwoven with the text and review questions at the end of each section. Lesson 1 (three…

  14. Principles and Practices of Occupational Safety and Health: Student Manual: Booklet Five.

    Science.gov (United States)

    Occupational Safety and Health Administration, Washington, DC.

    The manual is the fifth of six student manuals for use in a course on occupational health and safety for supervisory personnel. The manual contains lessons 14 and 15 of the 15 consecutively-numbered lessons, each of which contains study questions (and answers) interwoven with the text and review questions at the end of each section. Lesson 14…

  15. Safety first. Status reports on the IAEA's safety standards

    International Nuclear Information System (INIS)

    Webb, G.; Karbassioun, A.; Linsley, G.; Rawl, R.

    1998-01-01

    Documents in the IAEA's Safety Standards Series known as RASS (Radiation Safety Standards) are produced to develop an internally consistent set of regulatory-style publications that reflects an international consensus on the principles of radiation protection and safety and their application through regulation. In this article are briefly presented the Agency's programmes on Nuclear Safety Standards (NUSS), Radioactive Waste Safety Standards (RADWASS), and Safe Transport of Radioactive Materials

  16. Safety of spanish nuclear park. Analysis of the fundamental principles of security of nuclear facilities and activities

    International Nuclear Information System (INIS)

    2010-01-01

    The aim of this study is to analyze the fundamental principles underlying the safety of nuclear installations and activities, which defined the International Atomic Energy Agency (IAEA). These principles determine the roles of government and responsibilities of the holders of power, explain how to achieve security and nuclear energy to justify the society, present and future and the environment from the risks of ionizing radiation, both and explain natural and man must be managed as waste that occur or have occurred in the past. (Author)

  17. Enhancing operational nuclear safety

    International Nuclear Information System (INIS)

    Sengoku, Katsuhisa

    2008-01-01

    's safety standards and program which provides the safety objective following the 10 fundamental safety principles. The safety requirements defines the functional conditions required for safety and the safety guides provides user-friendly and up-to-date practical guidance representing good/best practices to fulfill the requirements. The IAEA provides safety review services and fields safety review teams upon request of member states for the regulatory, the International Regulatory Review Team (IRRT) and Operational Safety Review Team (OSART) and Peer Review of the Operational and Safety Performance Experience Review (PROSPER). The OSART programme's purpose is to assist member states in enhancing the operational safety of individual nuclear power plants and to promote the continuous development of operational safety within all member states by the dissemination of information on good practice. The OSART Mission Results (OSMIR) database contains the results from 73 OSART missions and 54 follow up visits from 1991 and its continually updated. The Asian Nuclear Safety Network (ANSN) was established to pool and share existing and new technical knowledge and practical experience to further improve the safety of nuclear installation in Asia. In summary, the enhancement of the GNSR is anchored in the recognition that all the states are in the same boat and the increasing importance of sharing and mutual learning, sharing knowledge and experience through regional and global networking. It requires joint and coordinated strategy by all states. The IAEA is willing and ready to support the GNSR through the establishment and application of safety standards, and safety review and advisory services and international instruments. (Author)

  18. SAFETY INSTRUCTION AND SAFETY NOTE

    CERN Multimedia

    TIS Secretariat

    2002-01-01

    Please note that the SAFETY INSTRUCTION N0 49 (IS 49) and the SAFETY NOTE N0 28 (NS 28) entitled respectively 'AVOIDING CHEMICAL POLLUTION OF WATER' and 'CERN EXHIBITIONS - FIRE PRECAUTIONS' are available on the web at the following urls: http://edms.cern.ch/document/335814 and http://edms.cern.ch/document/335861 Paper copies can also be obtained from the TIS Divisional Secretariat, email: TIS.Secretariat@cern.ch

  19. System safety education focused on flight safety

    Science.gov (United States)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  20. The safe management of sources of radiation: Principles and strategies. INSAG-11. A report by the International Nuclear Safety Advisory Group (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The IAEA activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring safety of nuclear power plants, the IAEA established the International Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating commonly shared safety principles. The present report deals with the general principles governing the safety of all sources of radiation and with application of these principles. It intends to show that, at the conceptual level, the distinction traditionally made between nuclear safety and radiation protection is hardly justifiable. It is intended primarily for those non-specialists who need to take decisions about safe management of sources of radiation and who wish to gain a better understanding of the approach followed in managing the safety of these sources

  1. The safe management of sources of radiation: Principles and strategies. INSAG-11. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    1999-01-01

    The IAEA activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring safety of nuclear power plants, the IAEA established the International Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating commonly shared safety principles. The present report deals with the general principles governing the safety of all sources of radiation and with application of these principles. It intends to show that, at the conceptual level, the distinction traditionally made between nuclear safety and radiation protection is hardly justifiable. It is intended primarily for those non-specialists who need to take decisions about safe management of sources of radiation and who wish to gain a better understanding of the approach followed in managing the safety of these sources

  2. Management of safety culture

    International Nuclear Information System (INIS)

    Kavsek, D.

    2004-01-01

    The strengthening of safety culture in an organization has become an increasingly important issue for nuclear industry. A high level of safety performance is essential for business success in intensely competitive global environment. This presentation offers a discussion of some principles and activities used in enhancing safety performance and appropriate safety behaviour at the Krsko NPP. Over the years a number of events have occurred in nuclear industry that have involved problems in human performance. A review of these and other significant events has identified recurring weaknesses in plant safety culture and policy. Focusing attention on the strengthening of relevant processes can help plants avoid similar undesirable events. The policy of the Krsko NPP is that all employees concerned shall constantly be alert to opportunities to reduce risks to the lowest practicable level and to achieve excellence in plant safety. The most important objective is to protect individuals, society and the environment by establishing and maintaining an effective defense against radiological hazard in the nuclear power plant. It is achieved through the use of reliable structures, components, systems, and procedures, as well as plant personnel committed to a strong safety culture. The elements of safety culture include both organizational and individual aspects. Elements commonly included at the organizational level are senior management commitment to safety, organizational effectiveness, effective communication, organizational learning, and a culture that encourages identification and resolution of safety issues. Elements identified at the individual level include personal accountability, a questioning attitude, communication, procedural adherence, etc.(author)

  3. The IAEA safety standards

    International Nuclear Information System (INIS)

    Karbassioun, Ahmad

    1995-01-01

    During the development of the NUSS standards, wide consultation was carried out with all the Member States to obtain a consensus and the programme was supervised by a Senior Advisory Group consisting of senior safety experts from 13 countries. This group of senior regulators later became what is now known as the Nuclear Safety Standards Advisory Group (NUSSAG) and comprises of senior regulatory experts from 16 countries. The standards that were developed comprise of four types of documents: safety fundamentals; codes of practice; safety guides; and safety practices. The safety fundamentals set out the basic objectives, concepts and principles for nuclear safety in nuclear power plants. The codes of practice, are of a legislative nature, and establish the general objectives that must be fulfilled to ensure adequate nuclear power plant safety. They cover five areas: governmental organization; siting, design, operation and quality assurance. The safety guides, administrative in character, recommend procedures and acceptable technical solutions to implement the codes and guides by presenting further details gained from Member States, on the application and interpretation of individual concepts in the NUSS codes and guides. In total in the NUSS series there is currently one Fundamentals document, five Codes of Practice and fifty-six Safety Guides

  4. Safety indicators for the safety assessment of radioactive waste disposal. Sixth report of the Working Group on Principles and Criteria for Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    2003-09-01

    The report describes a few indicators that are considered to be the most promising for assessing the long term safety of disposal systems. The safety indicators that are discussed here may be applicable to a range of disposal systems for different waste types, including near surface disposal facilities for low level waste. The appropriateness of the different indicators may, however, vary depending on the characteristics of the waste, the facility and the assessment context. The focus of the report is thus on the use of time-scales of containment and transport, and radionuclide concentrations and fluxes, as indicators of disposal system safety, that may complement the more usual safety indicators of dose and risk. Summarised are the broad elements that a safety case for an underground radioactive waste disposal facility should possess and the role and use of performance and safety indicators within these elements. An overview of performance and safety indicators is given. The use is discussed of dose and risk as safety indicators and, in particular, problems that can arise in their use. Also presented are some specific indicators that have the potential to be used as complementary safety indicators. Discussed is also how fluxes of naturally occurring elements and radionuclides due to the operation of natural processes such as erosion and groundwater discharge may be quantified for comparison with fluxes of waste derived contaminants

  5. Radiation safety

    International Nuclear Information System (INIS)

    Van Riessen, A.

    2002-01-01

    Full text: Experience has shown that modem, fully enclosed, XRF and XRD units are generally safe. This experience may lead to complacency and ultimately a lowering of standards which may lead to accidents. Maintaining awareness of radiation safety issues is thus an important role for all radiation safety officers. With the ongoing progress in technology, a greater number of radiation workers are more likely to use a range of instruments/techniques - eg portable XRF, neutron beam analysis, and synchrotron radiation analysis. The source for each of these types of analyses is different and necessitates an understanding of the associated dangers as well as use of specific radiation badges. The trend of 'suitcase science' is resulting in scientists receiving doses from a range of instruments and facilities with no coordinated approach to obtain an integrated dose reading for an individual. This aspect of radiation safety needs urgent attention. Within Australia a divide is springing up between those who work on Commonwealth property and those who work on State property. For example a university staff member may operate irradiating equipment on a University campus and then go to a CSIRO laboratory to operate similar equipment. While at the University State regulations apply and while at CSIRO Commonwealth regulations apply. Does this individual require two badges? Is there a need to obtain two licences? The application of two sets of regulations causes unnecessary confusion and increases the workload of radiation safety officers. Radiation safety officers need to introduce risk management strategies to ensure that both existing and new procedures result in risk minimisation. A component of this strategy includes ongoing education and revising of regulations. AXAA may choose to contribute to both of these activities as a service to its members as well as raising the level of radiation safety for all radiation workers. Copyright (2002) Australian X-ray Analytical

  6. Cryogenic safety organisation at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  7. Leadership and Management for Safety. General Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    his Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  8. Leadership and Management for Safety. General Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  9. Leadership and Management for Safety. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  10. Leadership and Management for Safety. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  11. Leadership and Management for Safety. General Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factor, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations (registrants and licensees) and other organizations concerned with facilities and activities that give rise to radiation risks

  12. Posiva's application for a decision in principle concerning a disposal facility for spent nuclear fuel. STUK's statement and preliminary safety appraisal

    International Nuclear Information System (INIS)

    Ruokola, E.

    2000-03-01

    In May 1999, Posiva Ltd submitted to the Government an application, pursuant to the Nuclear Energy Act, for a Decision in Principle on a disposal facility for spent nuclear fuel from the Finnish nuclear power plants. The Ministry of Trade and Industry requested the Radiation and Nuclear Safety Authority (STUK) to draw up a preliminary safety appraisal concerning the proposed disposal facility. In the beginning of this report, STUK's statement to the Ministry and Industry concerning the proposed disposal facility is given. In that statement, STUK concludes that the Decision in Principle is currently justified from the standpoint of safety. The statement is followed by a safety appraisal, where STUK deems, how the proposed disposal concept, site and facility comply with the safety requirements included in the Government's Decision (478/1999). STUK's preliminary safety appraisal was supported by contributions from a number of outside experts. A collective opinion by an international group of ten distinguished experts is appended to this report. (orig.)

  13. Safety organization

    International Nuclear Information System (INIS)

    Lutz, M.

    1984-06-01

    After a rapid definition of a nuclear basis installation, the national organization of nuclear safety in France is presented, as also the main organizations concerned and their functions. This report shows how the licensing procedure leading to the construction and exploitation of such installations is applied in the case of nuclear laboratories of research and development: examinations of nuclear safety problems are carried out at different levels: - centralized to define the frame out of which the installation has not to operate, - decentralized to follow in a more detailed manner its evolution [fr

  14. Operational safety

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The PNL Safety, Standards and Compliance Program contributed to the development and issuance of safety policies, standards, and criteria; for projects in the nuclear and nonnuclear areas. During 1976 the major emphasis was on developing criteria, instruments and methods to assure that radiation exposure to occupational personnel and to people in the environs of nuclear-related facilities is maintained at the lowest level technically and economically practicable. Progress in 1976 is reported on the preparation of guidelines for radiation exposure; Pu dosimetry studies; the preparation of an environmental monitoring handbook; and emergency instrumentation preparedness

  15. The principles of measurement and of safety surveillance for the PCPV/helium-loop

    International Nuclear Information System (INIS)

    Zemann, H.

    1977-10-01

    The operating conditions of the PCVP/Helium-Loop are surveyed by gauges within the structural concrete, inside the vessel and at the auxiliary equipment Data are compared by the operator to the limits given by design and material properties. Under continuous operation the PCPV will be surveyed by an automatic safety system which will be able to detect the arise of unsafe operating conditions and initiate preventive reactions. (author)

  16. Examples of safety culture practices

    International Nuclear Information System (INIS)

    1997-01-01

    This report has been prepared to illustrate the concepts and principles of safety culture produced in 1991 by the International Safety Advisory Group as 75-INSAG-4. It provides a small selection of examples taken from a worldwide collection of safety performance evaluations (e.g. IAEA safety series, national regulatory inspections, utility audits and a plant assessments). These documented evaluations collectively provide a database of safety performance strengths and weakness, and related safety culture observations. The examples which have been selected for inclusion in this report are those which are considered worthy of special mention and which illustrate a specific attribute of safety culture given in 75-INSAG-4

  17. Patient safety

    African Journals Online (AJOL)

    Page 1 .... BMJ 2012;344:e832. Table 2. Unsafe medical care. Structural factors. Organisational determinants. Structural accountability (accreditation and regulation). Safety culture. Training, education and human resources. Stress and fatigue .... for routine take-off and landing, yet doctors feel that it is demeaning to do so?

  18. Sun Safety

    Science.gov (United States)

    ... Children from the Sun? Are There Benefits to Spending Time Outdoors? The Surgeon General’s Call to Action to Prevent Skin Cancer Related Resources Sun Safety Tips for Men Tips for Families Tips for Schools Tips for Employers Tips for ...

  19. Improved safety at CERN

    CERN Multimedia

    2006-01-01

    As announced in Weekly Bulletin No. 43/2006, a new approach to the implementation of Safety at CERN has been decided, which required taking some managerial decisions. The guidelines of the new approach are described in the document 'New approach to Safety implementation at CERN', which also summarizes the main managerial decisions I have taken to strengthen compliance with the CERN Safety policy and Rules. To this end I have also reviewed the mandates of the Safety Commission and the Safety Policy Committee (SAPOCO). Some details of the document 'Safety Policy at CERN' (also known as SAPOCO42) have been modified accordingly; its essential principles, unchanged, remain the basis for the safety policy of the Organisation. I would also like to inform you that I have appointed Dr M. Bona as the new Head of the Safety Commission until 31.12.2008, and that I will proceed soon to the appointment of the members of the new Safety Policy Committee. All members of the personnel are deemed to have taken note of the d...

  20. Dynamic Safety Cases for Through-Life Safety Assurance

    Science.gov (United States)

    Denney, Ewen; Pai, Ganesh; Habli, Ibrahim

    2015-01-01

    We describe dynamic safety cases, a novel operationalization of the concept of through-life safety assurance, whose goal is to enable proactive safety management. Using an example from the aviation systems domain, we motivate our approach, its underlying principles, and a lifecycle. We then identify the key elements required to move towards a formalization of the associated framework.

  1. Safety-barrier diagrams as a safety management tool

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2009-01-01

    Safety-barrier diagrams and “bow-tie” diagrams have become popular methods in risk analysis and safety management. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The latter's relation to other methods such as fault trees and Bayesian...

  2. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  3. [Economic analysis versus the principle of guaranteed safety in blood transfusion].

    Science.gov (United States)

    Moatti, J P; Loubière, S; Rotily, M

    2000-06-01

    This article shows that policies aimed at reducing risks of infectious agents transmissible through blood unfortunately follow a law of 'diminishing returns': increasing marginal costs have to be devoted for limited reductions in the risks of contamination through blood donations. Therefore, the economic cost-effectiveness analysis is appropriate to identify screening strategies which may minimize costs to reach a certain level of safety. Moreover, economic analysis can contribute to public debates about the level of residual risk that society is willing to accept. Empirical results from French studies about screening for hepatitis C virus (HCV) in individuals who have received blood transfusions and in blood donations are presented to illustrate these points.

  4. Inland Waterway Environmental Safety

    Science.gov (United States)

    Reshnyak, Valery; Sokolov, Sergey; Nyrkov, Anatoliy; Budnik, Vlad

    2018-05-01

    The article presents the results of development of the main components of the environmental safety when operating vessels on inland waterways, which include strategy selection ensuring the environmental safety of vessels, the selection and justification of a complex of environmental technical means, activities to ensure operation of vessels taking into account the environmental technical means. Measures to ensure environmental safety are developed on the basis of the principles aimed at ensuring environmental safety of vessels. They include the development of strategies for the use of environmental protection equipment, which are determined by the conditions for wastewater treatment of purified sewage and oily bilge water as well as technical characteristics of the vessels, the introduction of the process of the out-of-the-vessel processing of ship pollution as a technology for their movement. This must take into account the operating conditions of vessels on different sections of waterways. An algorithm of actions aimed at ensuring ecological safety of operated vessels is proposed.

  5. Safety Regulation Implemented by Gosatomnadzor of Russia

    International Nuclear Information System (INIS)

    Gutsalov, A.T.; Bukrinsky, A.M.

    2001-01-01

    The principles and approaches used by Gosatomnadzor of Russia in establishing safety goals are described. The link between safety goals and safety culture is demonstrated. Information on nuclear regulatory activities in Russia is also presented

  6. [A safety culture in hospitals].

    NARCIS (Netherlands)

    J.F. Lange (Johan); C.M. Dekker-van Doorn (Connie); M.H.T.M. Haerkens (Mark H. T. M.); J. Klein (Jan)

    2011-01-01

    textabstractPatient safety is currently a central issue in health care. Many principles of patient safety, such as a safety management system, have been copied from high-risk industries. However, without a fundamental understanding of the differences between health care and industry, most incentives

  7. Purpose, Principles, and Challenges of the NASA Engineering and Safety Center

    Science.gov (United States)

    Gilbert, Michael G.

    2016-01-01

    NASA formed the NASA Engineering and Safety Center in 2003 following the Space Shuttle Columbia accident. It is an Agency level, program-independent engineering resource supporting NASA's missions, programs, and projects. It functions to identify, resolve, and communicate engineering issues, risks, and, particularly, alternative technical opinions, to NASA senior management. The goal is to help ensure fully informed, risk-based programmatic and operational decision-making processes. To date, the NASA Engineering and Safety Center (NESC) has conducted or is actively working over 600 technical studies and projects, spread across all NASA Mission Directorates, and for various other U.S. Government and non-governmental agencies and organizations. Since inception, NESC human spaceflight related activities, in particular, have transitioned from Shuttle Return-to-Flight and completion of the International Space Station (ISS) to ISS operations and Orion Multi-purpose Crew Vehicle (MPCV), Space Launch System (SLS), and Commercial Crew Program (CCP) vehicle design, integration, test, and certification. This transition has changed the character of NESC studies. For these development programs, the NESC must operate in a broader, system-level design and certification context as compared to the reactive, time-critical, hardware specific nature of flight operations support.

  8. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  9. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  10. Safety aspects

    International Nuclear Information System (INIS)

    Wider, H.U.

    1997-01-01

    It is assumed that in an accelerator-driven system (ADS) the same type of accidents can be envisaged as in critical reactors. After briefly describing the basic safety features of ADS, the first investigations of the behaviour of an accelerator driven fast oxide reactor during an unprotected loss-of-flow accident and the investigation of reactivity accidents in a large sodium-cooled ADS are presented

  11. Cryogenics safety

    International Nuclear Information System (INIS)

    Reider, R.

    1977-01-01

    The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described

  12. Safety Checklist

    Science.gov (United States)

    1994-05-01

    given prior to issuing or renewing an OF 346? 13. Are operators’ DA Forms 348 reviewed annually for— a. Safety awards? b. Expiration of permits...place oily polishing rags or waste in covered metal cans? d. Store paint in tightly closed containers? e. Warn family members to never use gasoline...15 cream or lotion on exposed skin (face, hands, feet)? 3. Avoid extended periods of unprotected exposure to the sun? Heat cramp, heat exhaustion

  13. Relationship of safety culture and process safety

    International Nuclear Information System (INIS)

    Olive, Claire; O'Connor, T. Michael; Mannan, M. Sam

    2006-01-01

    Throughout history, humans have gathered in groups for social, religious, and industrial purposes. As the conglomeration of people interact, a set of underlying values, beliefs, and principles begins to develop that serve to guide behavior within the group. These 'guidelines' are commonly referred to as the group culture. Modern-day organizations, including corporations, have developed their own unique cultures derived from the diversity of the organizational interests and the background of the employees. Safety culture, a sub-set of organizational culture, has been a major focus in recent years. This is especially true in the chemical industry due to the series of preventable, safety-related disasters that occurred in the late seventies and eighties. Some of the most notable disasters, during this time period, occurred at Bhopal, Flixborough, and Seveso. However, current events, like the September 11th terrorist attacks and the disintegration of the Columbia shuttle, have caused an assessment of safety culture in a variety of other organizations

  14. Nuclear safety

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  15. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  16. Nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  17. Nuclear safety culture and nuclear safety supervision

    International Nuclear Information System (INIS)

    Chai Jianshe

    2013-01-01

    In this paper, the author reviews systematically and summarizes up the development process and stage characteristics of nuclear safety culture, analysis the connotation and characteristics of nuclear safety culture, sums up the achievements of our country's nuclear safety supervision, dissects the challenges and problems of nuclear safety supervision. This thesis focused on the relationship between nuclear safety culture and nuclear safety supervision, they are essential differences, but there is a close relationship. Nuclear safety supervision needs to introduce some concepts of nuclear safety culture, lays emphasis on humanistic care and improves its level and efficiency. Nuclear safety supervision authorities must strengthen nuclear safety culture training, conduct the development of nuclear safety culture, make sure that nuclear safety culture can play significant roles. (author)

  18. Shutdown Safety in NEK

    International Nuclear Information System (INIS)

    Gluhak, Mario; Senegovic, Marko

    2014-01-01

    Industry performance analysis since 2004 has revealed that 23% of the events reported to WANO occurred during outage periods. Given the fact that a plant is in the outage only 5 percent of the time, this emphasizes the importance of shutdown safety and measures station staffs undertake to maintain effective barriers to safety margins during the outage. Back in 1990s, the industry adopted guidance to meet safety requirements by focusing on safety functions. Both WANO and INPO released various documents, reports and guidelines to help accomplish those requirements. However, in the last decade inadequate 'defence in depth' has led to several events affecting shutdown safety and challenging one of the most important nuclear safety principles: 'The special characteristics of nuclear technology are taken into account in all decisions and actions. Reactivity control, continuity of core cooling, and integrity of fission product barriers are valued as essential, distinguishing attributes of nuclear station work environment'. NEK has recognized the importance of 'defence in depth'Industry performance analysis since 2004 has revealed that 23% of the events reported to WANO occurred during outage periods. Given the fact that a plant is in the outage only 5 percent of the time, this emphasizes the importance of shutdown safety and measures station staffs undertake to maintain effective barriers to safety margins during the outage. Back in 1990s, the industry adopted guidance to meet safety requirements by focusing on safety functions. Both WANO and INPO released various documents, reports and guidelines to help accomplish those requirements. However, in the last decade inadequate 'defence in depth' has led to several events affecting shutdown safety and challenging one of the most important nuclear safety principles: 'The special characteristics of nuclear technology are taken into account in all decisions and actions. Reactivity

  19. Nuclear power and safety

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Some aspects of safety of nuclear power with special reference to Indian nuclear power programme are discussed. India must develop technology to protect herself from the adverse economic impact arising out of the restrictive regime which is being created through globalization of safety and environmental issues. Though the studies done and experience gained so far have shown that the PHWR system adopted by India has a number of superior safety features, research work is needed in the field of operation and maintenance of reactors and also in the field of reactor life extension through delaying of ageing effects. Public relations work must be pursued to convince the public at large of the safety of nuclear power programme. The new reactor designs in the second stage of evolution are based on either further improvement of existing well-proven designs or adoptions of more innovative ideas based on physical principles to ensure a higher level of safety. The development of Indian nuclear power programme is characterised by a balanced approach in the matter of assuring safety. Safety enforcement is not just looked upon as a pure administrative matter, but experts with independent minds are also involved in safety related matters. (M.G.B.)

  20. The development of safety requirements

    International Nuclear Information System (INIS)

    Jorel, M.

    2009-01-01

    This document describes the safety approach followed in France for the design of nuclear reactors. This safety approach is based on safety principles from which stem safety requirements that set limiting values for specific parameters. The improvements in computerized simulation, the use of more adequate new materials, a better knowledge of the concerned physical processes, the changes in the reactor operations (higher discharge burnups for instance) have to be taken into account for the definition of safety criteria and the setting of limiting values. The developments of the safety criteria linked to the risks of cladding failure and loss of primary coolant are presented. (A.C.)

  1. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  2. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  3. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  4. Nuclear safety legislation and supervision in China

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-02-01

    The cause for the urgent need of nuclear safety legislation and supervision in China is firstly described, and then a brief introduction to the basic principle and guideline of nuclear safety is presented. Finally the elaboration on the establishment of nuclear safety regulatory system, the enactment of a series of regulations and safety guides, and the implementation of licencing, nuclear safety supervision and research for ensuring the safety of nuclear energy, since the founding of the National Nuclear Safety Administration, are introduced

  5. Nuclear safety in France

    International Nuclear Information System (INIS)

    Laverie, M.

    1981-02-01

    The principles and rules governing the safety of nuclear installations are defined as from three fundamental principles and three practical rules as follows: First principle: the operator is responsible and of the highest order. Second principle: the public authorities exercise their control responsibility with respect to the design, construction and running of the installations. Third principle: nuclear safety, this is to accept that man and his technique are not infallible and that one must be prepared to control the unpredictable. First rule: the installations must include several 'lines of defence' in succession and to the extent where this is possible these must be independent of each other. Second rule: procedures are required and supervised by the Government Departments. Third rule: nuclear safety requires that any incident or anomaly must undergo an analysis in depth and is also based on a standing 'clinical' examination of the installations. The definition is given as to how the public authorities exercise their intervention: terms and conditions of the intervention by the safety authorities, authorization procedures, surveillance of the installations, general technical regulations. Two specific subjects are presented in the addendum, (a) the choice of nuclear power station sites in France and (b) the storage of radioactive wastes [fr

  6. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Chinese Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  7. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  8. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  9. Safety training

    CERN Multimedia

    SC Unit

    2009-01-01

    Habilitation électrique A course entitled "Habilitation électrique pour personnel de laboratoire" (electrical safety qualification for laboratory personnel) will be held on 22 and 23 June. Registration by e-mail to isabelle.cusato@cern.ch. Explosion Hazards in the handling of flammable solvents and gases A course entitled "Explosion Hazards in the handling of flammable solvents and gases" given in French will be held on 18-19 June 2009. This course is obligatory for all FGSOs at CERN, and it is recommended for anyone handling flammable gas or solvents. To sign up please visit this page. For more information please contact Isabelle Cusato, tel. 73811.

  10. SAFETY NOTES

    CERN Document Server

    TIS Secretariat

    2001-01-01

    Please note that the revisions of safety notes no 3 (NS 3 Rev. 2) and no 24 (NS 24 REV.) entitled respectively 'FIRE PREVENTION FOR ENCLOSED SPACES IN LARGE HALLS' and 'REMOVING UNBURIED ELV AND LVA ELECTRIC CONDUITS' are available on the web at the following urls: http://edmsoraweb.cern.ch:8001/cedar/doc.download?document_id=322811&version=1&filename=version_francaise.pdf http://edmsoraweb.cern.ch:8001/cedar/doc.download?document_id=322861&version=2&filename=version_francaise.pdf Paper copies can also be obtained from the TIS Divisional Secretariat, email tis.secretariat@cern.ch

  11. The role of probabilistic safety assessment and probabilistic safety criteria in nuclear power plant safety

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this Safety Report is to provide guidelines on the role of probabilistic safety assessment (PSA) and a range of associated reference points, collectively referred to as probabilistic safety criteria (PSC), in nuclear safety. The application of this Safety Report and the supporting Safety Practice publication should help to ensure that PSA methodology is used appropriately to assess and enhance the safety of nuclear power plants. The guidelines are intended for use by nuclear power plant designers, operators and regulators. While these guidelines have been prepared with nuclear power plants in mind, the principles involved have wide application to other nuclear and non-nuclear facilities. In Section 2 of this Safety Report guidelines are established on the role PSA can play as part of an overall safety assurance programme. Section 3 summarizes guidelines for the conduct of PSAs, and in Section 4 a PSC framework is recommended and guidance is provided for the establishment of PSC values

  12. Safety first

    CERN Multimedia

    2012-01-01

    Safety is a priority for CERN. That is a message I conveyed in my New Year’s address and that I reiterated at one of the first Enlarged Directorate meetings of 2012 when I outlined five key safety objectives for the year, designed and implemented according to accepted international standards.   As we move from spring to summer, it’s time to take stock of how we are doing. Objective number one for 2012, which overarches everything else, is to limit the number of incidents in the workplace. That means systematically investigating and acting on every incident that involves work stoppage, along with all the most frequent workplace accidents: falls, trips and slips. The performance indicator we set ourselves is the percentage of investigations and follow-ups completed. Year on year, these figures are rising but we can never be complacent, and must strive to reach and sustain 100% follow-up. The second objective is to improve hazard control, with a focus in 2012 on chemical ha...

  13. Is Safety in Danger?

    DEFF Research Database (Denmark)

    Broncano-Berrocal, Fernando

    2014-01-01

    In “Knowledge Under Threat” (Philosophy and Phenomenological Research 2012), Tomas Bogardus proposes a counterexample to the safety condition for knowledge. Bogardus argues that the case demonstrates that unsafe knowledge is possible. I argue that the case just corroborates the well-known require......In “Knowledge Under Threat” (Philosophy and Phenomenological Research 2012), Tomas Bogardus proposes a counterexample to the safety condition for knowledge. Bogardus argues that the case demonstrates that unsafe knowledge is possible. I argue that the case just corroborates the well......-known requirement that modal conditions like safety must be relativized to methods of belief formation. I explore several ways of relativizing safety to belief-forming methods and I argue that none is adequate: if methods were individuated in those ways, safety would fail to explain several much-discussed cases. I...... then propose a plausible externalist principle of method individuation. On the one hand, relativizing safety to belief-forming methods in the way suggested allows the defender of safety to account for the cases. On the other hand, it shows that the target known belief of Bogardus’s example is safe. Finally, I...

  14. Safety tests file

    International Nuclear Information System (INIS)

    2011-01-01

    The design and operation of nuclear power plants is governed by strict and clearly defined regulations designed to ensure their safety in all circumstances. Since the first nuclear reactors were commissioned, the basic safety principles and the corresponding practical requirements have constantly evolved and been enhanced, benefiting from operating experience feedback from reactors around the world (about 500 production reactors currently in service). Reactor safety has from the outset been built around the 'defense in depth' concept, which aims to prevent melting of the core and radioactive releases into the environment. It can be summarized as follows: over and above all the measures taken to prevent accidents, the principle that accidents do occur has to be accepted. We then assess their consequences and take steps to contain them at the level of severity at which they occur. (authors)

  15. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  16. Safety in construction industry

    International Nuclear Information System (INIS)

    Khan, A.M.

    1979-01-01

    Causative factors of accidents in construction industry in the context of experience of construction work of the Rajasthan Atomic Power Project are enumerated. The aspect of accident cost - direct and indirect - is discussed briefly. Setting up of a safety set-up at construction sites is emphasized and principles which should guide the accident prevention programme are spelt out. (M.G.B.)

  17. Safety for Users

    CERN Multimedia

    HR Department

    2008-01-01

    CERN welcomes more than 8000 Users every year. The PH Department as host to these scientific associates requires the highest safety standards. The PH Safety Office has published a Safety Flyer for Users. Important safety topics and procedures are presented. Although the Flyer is intended primarily to provide safety information for Users, the PH Safety Office invites all those on the CERN sites to keep a copy of the flyer as it gives guidance in matters of safety and explains what to do in the event of an emergency. Link: http://ph-dep.web.cern.ch/ph-dep/Safety/SafetyOffice.html PH-Safety Office PH Department

  18. Safety for Users

    CERN Multimedia

    HR Department

    2008-01-01

    CERN welcomes more than 8000 Users every year. The PH Department as host to these scientific associates requires the highest safety standards. The PH Safety Office has published a safety flyer for Users. Important safety topics and procedures are presented. Although the flyer is intended primarily to provide safety information for Users, the PH Safety Office invites all those on the CERN sites to keep a copy of the flyer as it gives guidance in matters of safety and explains what to do in the event of an emergency. The flyer is available at: http://ph-dep.web.cern.ch/ph-dep/Safety/SafetyOffice.html PH-Safety Office PH Department

  19. Health and safety manual

    International Nuclear Information System (INIS)

    1980-02-01

    The manual consists of the following chapters: general policies and administration; the Environmental Health and Safety Department; the Medical Services Department: biological hazards; chemical safety; confined space entry; cryogenic safety; electrical safety; emergency plans; engineering and construction; evacuations, trenching, and shoring; fire safety; gases, flammable and compressed; guarding, mechanical; ladders and scaffolds, work surfaces; laser safety; materials handling and storage; noise; personal protective equipment; pressure safety; radiation safety, ionizing and non-ionizing; sanitation; seismic safety; training, environmental health and safety; tools, power and hand-operated; traffic and transportation; and warning signs and devices

  20. Safety first

    Energy Technology Data Exchange (ETDEWEB)

    Harvie, W.

    1997-06-01

    Expansion of international business opportunities for Canadian producers and service companies brings with it a dimension almost never considered on home base - security. It was pointed out that once abroad, safety and defence of people and equipment can become significant problems in many parts of the world. The nature of the security risks involved, and how best to deal with them, were discussed. The use of consultants, mostly foreign ones to date, and the kind of assistance they can provide, everything from written reports on the local situation to counter surveillance training, and bodyguard services, have been described. Examples of recent involvements with guerilla groups demanding `revolutionary war taxes`, kidnapping executives for ransom, due diligence investigations of potential partners, and the like, have been provided to illustrate the unique character of the problem, and the constant need for being alert, educated to risks, and being prepared to react to risk situations.

  1. Safety flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, R.T.

    1977-01-17

    The patent application relates to an inertial energy storage device employing a safety flywheel which is made of flexible material such as a twisted rope ring. The rigidity required for such a device is achieved through centrifugal forces inherent in such a device when it is operating. A small number of the strands of the rope ring have a tensile strength that is lower than the vast majority of the strands of the rope ring whereby should any of these strands fail, they will begin to whiplash allowing such a failure to be detected and braked before a catastrophic failure occurs. This is accomplished by the inclusion of glass tubes located around the periphery of the flywheel. The tubes are in communication with a braking fluid reservoir. The flywheel and glass tubes are enclosed within a vacuum-tight housing.

  2. Construction safety

    CERN Document Server

    Li, Rita Yi Man

    2013-01-01

    A close-to-ideal blend of suburb and city, speedy construction of towers of Babylon, the sparkling proportion of glass and steel buildings’ facade at night showcase the wisdom of humans. They also witness the footsteps, sweats and tears of architects and engineers. Unfortunately, these signatures of human civilizations are swathed in towering figures of construction accidents. Fretting about these on sites, different countries adopt different measures on sites. This book firstly sketches the construction accidents on sites, followed by a review on safety measures in some of the developing countries such as Bermuda, Egypt, Kuwait and China; as well as developed countries, for example, the United States, France and Singapore. It also highlights the enormous compensation costs with the courts’ experiences in the United Kingdom and Hong Kong.

  3. Tritium inventories and tritium safety design principles for the fuel cycle of ITER

    International Nuclear Information System (INIS)

    Cristescu, I.R.; Cristescu, I.; Doerr, L.; Glugla, M.; Murdoch, D.

    2007-01-01

    Within the tritium plant of ITER a total inventory of about 2-3 kg will be necessary to operate the machine in the DT phase. During plasma operation, tritium will be distributed in the different sub-systems of the fuel cycle. A tool for tritium inventory evaluation within each sub-system of the fuel cycle is important with respect to both the process of licensing ITER and also for operation. It is very likely that measurements of total tritium inventories may not be possible for all sub-systems; however, tritium accounting may be achieved by modelling its hold-up within each sub-system and by validating these models in real-time against the monitored flows and tritium streams between the sub-systems. To get reliable results, an accurate dynamic modelling of the tritium content in each sub-system is necessary. A dynamic model (TRIMO) for tritium inventory calculation reflecting the design of each fuel cycle sub-systems was developed. The amount of tritium needed for ITER operation has a direct impact on the tritium inventories within the fuel cycle sub-systems. As ITER will function in pulses, the main characteristics that influence the rapid tritium recovery from the fuel cycle as necessary for refuelling are discussed. The confinement of tritium within the respective sub-systems of the fuel cycle is one of the most important safety objectives. The design of the deuterium/tritium fuel cycle of ITER includes a multiple barrier concept for the confinement of tritium. The buildings are equipped with a vent detritiation system and re-circulation type room atmosphere detritiation systems, required for tritium confinement barrier during possible tritium spillage events. Complementarily to the atmosphere detritiation systems, in ITER a water detritiation system for tritium recovery from various sources will also be operated

  4. Global safety

    Directory of Open Access Journals (Sweden)

    Dorien J. DeTombe

    2010-08-01

    Full Text Available Global Safety is a container concept referring to various threats such as HIV/Aids, floods and terrorism; threats with different causes and different effects. These dangers threaten people, the global economy and the slity of states. Policy making for this kind of threats often lack an overview of the real causes and the interventions are based on a too shallow analysis of the problem, mono-disciplinary and focus mostly only on the effects. It would be more appropriate to develop policy related to these issues by utilizing the approaches, methods and tools that have been developed for complex societal problems. Handling these complex societal problems should be done multidisciplinary instead of mono-disciplinary. In order to give politicians the opportunity to handle complex problems multidisciplinary, multidisciplinary research institutes should be created. These multidisciplinary research institutes would provide politicians with better approaches to handle this type of problem. In these institutes the knowledge necessary for the change of these problems can be created through the use of the Compram methodology which has been developed specifically for handling complex societal problems. In a six step approach, experts, actors and policymakers discuss the content of the problem and the possible changes. The framework method uses interviewing, the Group Decision Room, simulation models and scenario's in a cooperative way. The methodology emphasizes the exchange of knowledge and understanding by communication among and between the experts, actors and politicians meanwhile keeping emotion in mind. The Compram methodology will be further explained in relation to global safety in regard to terrorism, economy, health care and agriculture.

  5. The impact of the definition of the precautionary principle in EU Food Safety Law

    NARCIS (Netherlands)

    Szajkowska, A.

    2010-01-01

    Regulation 178/2002 contains a definition of the precautionary principle. This is the first time a legal definition of the principle has been formulated for all EU food law. This fact, however, has been given hardly any attention in literature. It is all the more surprising because the lack of clear

  6. Principles and practice of radiation safety and protection in the application of nuclear techniques in water resource development and management

    International Nuclear Information System (INIS)

    Mallam, S. P.

    2000-07-01

    Nigeria, as is the case with many other countries of the world, is facing a problem with water supply and there is therefore a need to diversify the technology employed in the search for and management of water resources. Nuclear technology, including the use of isotopes (natural and artificial) has been found to be able to play a vital role in this search. The application of this technology is wide and varied in the types of radiation sources that can be applied as well as the type of problems that need to be solved. for example, in the search for groundwater, environmental isotopes such as 3 H and 14 C may be applied while NAA and XRF may become useful in the monitoring of fresh water quality. Neutron moisture probes and gamma-gamma well logging are sources of radiation that may be employed in the management of water sources for proper irrigation just as active and stable isotopes may be applied as tracers for the detection of leaks in pipes for domestic water. Because of this diversity, the radiation safety and protection problems associated with the application of nuclear technology in water resource development and management will depend on the particular condition of use. In this paper the aspects of radiation safety and the protection of human health and the environment from the detrimental effects of ionising radiation will be considered. The presentation will underscore the importance of an understanding of the nature and properties of ionising radiation and the associated hazards, familiarise participants with terminology used in radiation protection, highlight the relevant legislation in radiation safety and protection, give the basic principles of radiation protection with an emphasis on the importance of keeping doses as low as reasonably achievable (ALARA)

  7. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir

    2011-01-01

    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  8. Seismic Safety Guide

    International Nuclear Information System (INIS)

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls

  9. Seismic Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Eagling, D.G. (ed.)

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  10. Fire safety

    International Nuclear Information System (INIS)

    Keski-Rahkonen, O.; Bjoerkman, J.; Hostikka, S.; Mangs, J.; Huhtanen, R.; Palmen, H.; Salminen, A.; Turtola, A.

    1998-01-01

    According to experience and probabilistic risk assessments, fires present a significant hazard in a nuclear power plant. Fires may be initial events for accidents or affect safety systems planned to prevent accidents and to mitigate their consequences. The project consists of theoretical work, experiments and simulations aiming to increase the fire safety at nuclear power plants. The project has four target areas: (1) to produce validated models for numerical simulation programmes, (2) to produce new information on the behavior of equipment in case of fire, (3) to study applicability of new active fire protecting systems in nuclear power plants, and (4) to obtain quantitative knowledge of ignitions induced by important electric devices in nuclear power plants. These topics have been solved mainly experimentally, but modelling at different level is used to interpret experimental data, and to allow easy generalisation and engineering use of the obtained data. Numerical fire simulation has concentrated in comparison of CFD modelling of room fires, and fire spreading on cables on experimental data. So far the success has been good to fair. A simple analytical and numerical model has been developed for fire effluents spreading beyond the room of origin in mechanically strongly ventilated compartments. For behaviour of equipment in fire several full scale and scaled down calorimetric experiments were carried out on electronic cabinets, as well as on horizontal and vertical cable trays. These were carried out to supply material for CFD numerical simulation code validation. Several analytical models were developed and validated against obtained experimental results to allow quick calculations for PSA estimates as well as inter- and extrapolations to slightly different objects. Response times of different commercial fire detectors were determined for different types of smoke, especially emanating from smoldering and flaming cables to facilitate selection of proper detector

  11. Nuclear Safety Charter

    International Nuclear Information System (INIS)

    2008-01-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and subcontractors are treated

  12. Safety of Research Reactors. Safety Requirements

    International Nuclear Information System (INIS)

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  13. CERN's new safety policy

    CERN Multimedia

    2014-01-01

    The documents below, published on 29 September 2014 on the HSE website, together replace the document SAPOCO 42 as well as Safety Codes A1, A5, A9, A10, which are no longer in force. As from the publication date of these documents any reference made to the document SAPOCO 42 or to Safety Codes A1, A5, A9 and A10 in contractual documents or CERN rules and regulations shall be deemed to constitute a reference to the corresponding provisions of the documents listed below.   "The CERN Safety Policy" "Safety Regulation SR-SO - Responsibilities and organisational structure in matters of Safety at CERN" "General Safety Instruction GSI-SO-1 - Departmental Safety Officer (DSO)" "General Safety Instruction GSI-SO-2 - Territorial Safety Officer (TSO)" "General Safety Instruction GSI-SO-3 - Safety Linkperson (SLP)" "General Safety Instruction GSI-SO-4 - Large Experiment Group Leader In Matters of Safety (LEXGLI...

  14. Management of safety, safety culture and self assessment

    International Nuclear Information System (INIS)

    Carnino, A.

    2000-01-01

    Safety management is the term used for the measures required to ensure that an acceptable level of safety is maintained throughout the life of an installation, including decommissioning. The safety culture concept and its implementation are described in part one of the paper. The principles of safety are now quite well known and are implemented worldwide. It leads to a situation where harmonization is being achieved as indicated by the entry into force of the Convention on Nuclear Safety. To go beyond the present nuclear safety levels, management of safety and safety culture will be the means for achieving progress. Recent events which took place in major nuclear power countries have shown the importance of the management and the consequences on safety. At the same time, electricity deregulation is coming and will impact on safety through reductions in staffing and in operation and maintenance cost at nuclear installations. Management of safety as well as its control and monitoring by the safety authorities become a key to the future of nuclear energy.(author)

  15. Contractor safety

    International Nuclear Information System (INIS)

    Blanton, M.L.; Montgomery, E.W.

    1991-01-01

    The recent trend in the United States and Shell Oil Company EandP has been to increase use of contractors to do specialized work. Many companies now use contractors almost exclusively for operations such as drilling, well workovers, construction, and many specialty and routine maintenance tasks. Today, approximately 75% of Shell Oil Company's actual operating work force in EandP is contract. Clearly, HSandE considerations must become an increasingly important part of the contractor selection process. This paper reports on the Shell Oil Company's evolution from a bidder selection process to a program of Matching Owner and Contractor. Well has begun to expand efforts to make better assessments of contractor's HSandE capabilities and values in pre-bid considerations. Focus is on pre-bid evaluations to select contractors that have strong HSandE commitments and values. Contractor safety performance in this industry must be brought up to the same standards as operating companies. In Shell Oil EandP is only willing to contractors who can and are willing to do that

  16. Safety analysis fundamentals

    International Nuclear Information System (INIS)

    Wright, A.C.D.

    2002-01-01

    This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations

  17. Safety - Multiple Languages

    Science.gov (United States)

    ... bosanski (Bosnian) PDF Fire Safety at Home - English MP3 Fire Safety at Home - bosanski (Bosnian) MP3 Fire Safety at Home - English MP4 Fire Safety ... Burmese) PDF Home Safety Checklist - myanma bhasa (Burmese) MP3 Minnesota Department of Health Chinese, Simplified (Mandarin dialect) ( ...

  18. Patient safety: Safety culture and patient safety ethics

    DEFF Research Database (Denmark)

    Madsen, Marlene Dyrløv

    2006-01-01

    ,demonstrating significant, consistent and sometimes large differences in terms of safety culture factors across the units participating in the survey. Paper 5 is the results of a study of the relation between safety culture, occupational health andpatient safety using a safety culture questionnaire survey......Patient safety - the prevention of medical error and adverse events - and the initiative of developing safety cultures to assure patients from harm have become one of the central concerns in quality improvement in healthcare both nationally andinternationally. This subject raises numerous...... challenging issues of systemic, organisational, cultural and ethical relevance, which this dissertation seeks to address through the application of different disciplinary approaches. The main focus of researchis safety culture; through empirical and theoretical studies to comprehend the phenomenon, address...

  19. The principles of nuclear safety in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Pfaffelhuler, J.K.

    1980-01-01

    A survey of the nuclear installations in the Federal Republic of Germany is presented. Also, the necessary preparations for a country, which wants to introduce nuclear power and the legal basis, the technical principles and the licensing procedure as practised in the Federal Republic of Germany are discussed. (A.L.) [pt

  20. Safety principles and technical criteria for the underground disposal of high level radioactive wastes

    International Nuclear Information System (INIS)

    1989-01-01

    The main objective of this book is to set out an internationally agreed set of principles and criteria for the design of deep underground repositories for the disposal of high level radioactive wastes. This book is concerned with the post-closure period. Consideration of the operational requirements which must be met when wastes are being handled, stored and emplaced are not therefore included

  1. WNA's Policy Document : sustaining global best practices in uranium, mining and processing, principles for managing radiation, health and safety, waste and the environment

    International Nuclear Information System (INIS)

    Saint-Pierre, S.; Waste Management and Decommissioning Working Group-WM and DW

    2008-01-01

    The worldwide community of uranium mining and processing recognizes that managing radiation, health and safety, waste and the environment is paramount. Such responsible management applies at all stages of planning and activities. Today we are acting to ensure that all parties directly involved in uranium mining and processing strive to achieve the highest levels of excellence in these fields. We are doing so by sustaining a strong safety culture based on a commitment to common, internationally shared principles. This paper sets out principles for the management of radiation, health and safety, waste and the environment applicable to sites throughout the world. In national and regional settings where nuclear fuel cycle activities are well developed, these principles already serve as the underpinning for 'Codes of Practice' that govern uranium mining and processing. In any given setting, a Code of Practice is needed to guide practical implementation of these principles according to the regional, national or site-specific context. These principles are published in the belief that they hold special relevance for emerging uranium producing countries that do not yet have fully developed regulations for the control of radiation, health and safety, waste and the environment associated with uranium mining and processing. The principles are equally relevant for operators, contractors, and regulators newly engaged in uranium mining and processing. Once national regulations are fully developed, they can be expected to embody these principles. Each principle affirmed here will not apply to the same extent for each party. Ultimately, the precise allocation of responsibilities must be set at the national and local levels. This document holds the status of a policy and ethical declaration by the full WNA membership, which the global nuclear industry. The principles affirmed here are supported by key relevant international organizations, including the IAEA and the global mining

  2. Experiences in assessing safety culture

    International Nuclear Information System (INIS)

    Spitalnik, J.

    2002-01-01

    Based on several Safety Culture self-assessment applications in nuclear organisations, the paper stresses relevant aspects to be considered when programming an assessment of this type. Reasons for assessing Safety Culture, basic principles to take into account, necessary resources, the importance of proper statistical analyses, the feed-back of results, and the setting up of action plans to enhance Safety Culture are discussed. (author)

  3. AST-500 safety analysis experience

    Energy Technology Data Exchange (ETDEWEB)

    Falikov, A A; Bakhmetiev, A M; Kuul, V S; Samoilov, O B [OKBM, Nizhny Novgorod (Russian Federation)

    1997-09-01

    Characteristic AST-type NHR safety features and requirements are described briefly. The main approaches and results of design and beyond-design accidents analyses for the AST-500 NHR, and the results of probabilistic safety assessments are considered. It is concluded that the AST-500 possesses a high safety level in virtue of the development and realization in the design of self-protection, passivity and defence-in-depth principles. (author). 9 refs, 2 figs.

  4. Safety and reliability assessment

    International Nuclear Information System (INIS)

    1979-01-01

    This report contains the papers delivered at the course on safety and reliability assessment held at the CSIR Conference Centre, Scientia, Pretoria. The following topics were discussed: safety standards; licensing; biological effects of radiation; what is a PWR; safety principles in the design of a nuclear reactor; radio-release analysis; quality assurance; the staffing, organisation and training for a nuclear power plant project; event trees, fault trees and probability; Automatic Protective Systems; sources of failure-rate data; interpretation of failure data; synthesis and reliability; quantification of human error in man-machine systems; dispersion of noxious substances through the atmosphere; criticality aspects of enrichment and recovery plants; and risk and hazard analysis. Extensive examples are given as well as case studies

  5. Organization and Nuclear Safety: Safety culture

    International Nuclear Information System (INIS)

    Martin Marquinez, A.

    1998-01-01

    This book presents the experience in nuclear safety and its influence in the exploitation on nuclear power plants. The safety organization and quality management before and after Chernobylsk and three mile island accidents

  6. Posiva's application for a decision in principle concerning a disposal facility for spent nuclear fuel. STUK's statement and preliminary safety appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Ruokola, E. [ed.

    2000-03-01

    In May 1999, Posiva Ltd submitted to the Government an application, pursuant to the Nuclear Energy Act, for a Decision in Principle on a disposal facility for spent nuclear fuel from the Finnish nuclear power plants. The Ministry of Trade and Industry requested the Radiation and Nuclear Safety Authority (STUK) to draw up a preliminary safety appraisal concerning the proposed disposal facility. In the beginning of this report, STUK's statement to the Ministry and Industry concerning the proposed disposal facility is given. In that statement, STUK concludes that the Decision in Principle is currently justified from the standpoint of safety. The statement is followed by a safety appraisal, where STUK deems, how the proposed disposal concept, site and facility comply with the safety requirements included in the Government's Decision (478/1999). STUK's preliminary safety appraisal was supported by contributions from a number of outside experts. A collective opinion by an international group of ten distinguished experts is appended to this report. (orig.)

  7. Flu Vaccine Safety Information

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Flu Vaccine Safety Information Questions & Answers Language: English (US) ... safety of flu vaccines monitored? Egg Allergy Are flu vaccines safe? Flu vaccines have good safety record. ...

  8. Bathroom safety - children

    Science.gov (United States)

    Well child - bathroom safety ... be put in charge of a younger child's safety. There should be an adult in the bathroom ... sure grandparents, friends, and other caretakers follow bathroom safety guidelines. Make sure your child's daycare also follows ...

  9. Bathroom safety - adults

    Science.gov (United States)

    Older adult bathroom safety; Falls - bathroom safety ... You may need to have safety bars in your bathroom. These grab bars should be secured vertically or horizontally to the wall, not diagonally. DO NOT use ...

  10. Behavioral based safety approaches

    International Nuclear Information System (INIS)

    Maria Michael Raj, I.

    2009-01-01

    Approach towards the establishment of positive safety culture at Heavy Water Plant, Tuticorin includes the adoption of several important methodologies focused on human behavior and culminates with achievement of Total Safety Culture where Quality and Productivity are integrated with Safety

  11. A major safety overhaul

    CERN Multimedia

    2003-01-01

    A redefined policy, a revamped safety course, an environmental project... the TIS (Technical Inspection and Safety) Division has begun a major safety overhaul. Its new head, Wolfgang Weingarten, explains to the Bulletin why and how this is happening.

  12. Animal Product Safety Information

    Science.gov (United States)

    ... Home Animal & Veterinary Safety & Health Product Safety Information Product Safety Information Share Tweet Linkedin Pin it More ... to report adverse experiences with veterinary drugs. Additional Product Information Questions and Answers: Evanger’s Dog and Cat ...

  13. Car Seat Safety

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Car Seat Safety KidsHealth / For Parents / Car Seat Safety ... certified child passenger safety technician.) Guidelines for Choosing Car Seats Choose a seat with a label that ...

  14. Practice Hospital Bed Safety

    Science.gov (United States)

    ... Home For Consumers Consumer Updates Practice Hospital Bed Safety Share Tweet Linkedin Pin it More sharing options ... It depends on the complexity of the bed." Safety Tips CDRH offers the following safety tips for ...

  15. Nuclear and radiation safety policy

    International Nuclear Information System (INIS)

    Mikus, T; Strycek, E.

    1998-01-01

    Slovenske elektrarne (SE) is a producer of electricity and heat, including from nuclear fuel source. The board of SE is ultimately responsible for nuclear and radiation safety matters. In this leaflet main principles of maintaining nuclear and radiation safety of the Company SE are explained

  16. Lightning Safety Tips and Resources

    Science.gov (United States)

    ... Services Careers Contact Us Glossary Safety National Program Lightning Safety Tips and Resources Weather.gov > Safety > Lightning Safety Tips and Resources Lightning Resources Lightning strikes ...

  17. New Safety rules

    CERN Multimedia

    Safety Commission

    2008-01-01

    The revision of CERN Safety rules is in progress and the following new Safety rules have been issued on 15-04-2008: Safety Procedure SP-R1 Establishing, Updating and Publishing CERN Safety rules: http://cern.ch/safety-rules/SP-R1.htm; Safety Regulation SR-S Smoking at CERN: http://cern.ch/safety-rules/SR-S.htm; Safety Regulation SR-M Mechanical Equipment: http://cern.ch/safety-rules/SR-M.htm; General Safety Instruction GSI-M1 Standard Lifting Equipment: http://cern.ch/safety-rules/GSI-M1.htm; General Safety Instruction GSI-M2 Standard Pressure Equipment: http://cern.ch/safety-rules/GSI-M2.htm; General Safety Instruction GSI-M3 Special Mechanical Equipment: http://cern.ch/safety-rules/GSI-M3.htm. These documents apply to all persons under the Director General’s authority. All Safety rules are available at the web page: http://www.cern.ch/safety-rules The Safety Commission

  18. Radiological safety and control

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Kim, Ki Sub

    1995-01-01

    The practical objective of radiological safety control is intended for achievement and maintenance of appropreately safe condition in environmental control for activities involving exposure from the use of radiation. In order to establish these objectives, we should be to prevent deterministic effects and to limit the occurrence stochastic effects to level deemed to be acceptable by the application of general principles of radiation protection and systems of dose limitation based on ICRP recommendations. 34 tabs., 19 figs., 11 refs. (Author) .new

  19. Radiation safety and control

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Kim, Gi Sub.

    1996-12-01

    The principal objective of radiological safety control is intended for achievement and maintenance of appropriately safe condition in environmental control for activities involving exposure from the use of radiation. In order to establish these objective, we should be to prevent deterministic effects and to limit the occurrence stochastic effects to level deemed to be acceptable by the application of general principles of radiation protection and systems of dose limitation based on ICRP recommendations. (author). 22 tabs., 13 figs., 11 refs

  20. DOE standard: Firearms safety

    International Nuclear Information System (INIS)

    1996-02-01

    Information in this document is applicable to all DOE facilities, elements, and contractors engaged in work that requires the use of firearms as provided by law or contract. The standard in this document provides principles and practices for implementing a safe and effective firearms safety program for protective forces and for non-security use of firearms. This document describes acceptable interpretations and methods for meeting Order requirements

  1. DOE standard: Firearms safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Information in this document is applicable to all DOE facilities, elements, and contractors engaged in work that requires the use of firearms as provided by law or contract. The standard in this document provides principles and practices for implementing a safe and effective firearms safety program for protective forces and for non-security use of firearms. This document describes acceptable interpretations and methods for meeting Order requirements.

  2. Safety design requirements for safety systems and components of JSFR

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Shimakawa, Yoshio; Yamano, Hidemasa; Kotake, Shoji

    2011-01-01

    Safety design requirements for JSFR were summarized taking the development targets of the FaCT project and design feature of JSFR into account. The related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, goals of GIF, basic principle of INPRO etc. were also taken into account so that the safety design requirements can be a next-generation global standard. The development targets for safety and reliability are set based on those of FaCT, namely, ensuring safety and reliability equal to future LWR and related fuel cycle facilities. In order to achieve these targets, the defence-in-depth concept is used as the basic safety design principle. General features of the safety design requirements are 1) Achievement of higher reliability, 2) Achievement of higher inspectability and maintainability, 3) Introduction of passive safety features, 4) Reduction of operator action needs, 5) Design consideration against Beyond Design Basis Events, 6) In-Vessel Retention of degraded core materials, 7) Prevention and mitigation against sodium chemical reactions, and 8) Design against external events. The current specific requirements for each system and component are summarized taking the basic design concept of JSFR into account, which is an advanced loop-type large-output power plant with a mixed-oxide-fuelled core. (author)

  3. Safety margins in deterministic safety analysis

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)

  4. More safety by improving the safety culture

    International Nuclear Information System (INIS)

    Laaksonen, J.

    1993-01-01

    In its meeting in 1986, after Chernobyl accident, the INSAG group concluded, that the most important reason for the accident was lack of safety culture. Later the group realized that the safety culture, if it is well enough, can be used as a powerful tool to assess and develop practices affecting safety in any country. A comprehensive view on the various aspects of safety culture was presented in the INSAG-4 report published in 1991. Finland was among the first nations include the concept of safety culture in its regulations. This article describes the roles of government and the regulatory body in creating a national safety culture. How safety culture is seen in the operation of a nuclear power plant is also discussed. (orig.)

  5. Safety provisions of nuclear power plants

    International Nuclear Information System (INIS)

    Niehaus, F.

    1994-01-01

    Safety of nuclear power plants is determined by a deterministic approach complemented by probabilistic considerations. Much use has been made of the wealth of information from more than 6000 years of reactor operation. Design, construction and operation is governed by national and international safety standards and practices. The IAEA has prepared a set of Nuclear Safety Standards as recommendations to its Member States, covering the areas of siting, design, operations, quality assurance, and governmental organisations. In 1988 the IAEA published a report by the International Nuclear Safety Advisory Group on Basic Safety Principles for Nuclear Power Plants, summarizing the underlying objectives and principles of excellence in nuclear safety and the way in which its aspects are interrelated. The paper will summarize some of the key safety principles and provisions, and results and uses of Probabilistic Safety Assessments. Some comments will be made on the safety of WWER 440/230 and WWER-1000 reactors which are operated on Bulgaria. 8 figs

  6. Industrial safety, origins and current situation

    International Nuclear Information System (INIS)

    Gil Sarralbo, J. F.

    2011-01-01

    Basic Introduction to Industrial Safety, purpose and expected outcome. Concepts and fundamental principles that support it. Brief overview of its evolution over the course of history. The current legal basis in Spain for Industrial Safety. (Author) 4 refs.

  7. Radiation safety systems at the NSLS

    International Nuclear Information System (INIS)

    Dickinson, T.

    1987-04-01

    This report describes design principles that were used to establish the radiation safety systems at the National Synchrotron Light Source. The author described existing safety systems and the history of partial system failures. 1 fig

  8. The role of PSA in safety management

    International Nuclear Information System (INIS)

    Szikszai, T.

    1997-01-01

    The presentation discusses the following issues: defence in depth principle (the role of the barriers, how does PSA represents the barriers?); the safety management and nuclear power plants; the probabilistic and deterministic approaches; the PSA applications and safety management

  9. A Methodological Framework for Software Safety in Safety Critical Computer Systems

    OpenAIRE

    P. V. Srinivas Acharyulu; P. Seetharamaiah

    2012-01-01

    Software safety must deal with the principles of safety management, safety engineering and software engineering for developing safety-critical computer systems, with the target of making the system safe, risk-free and fail-safe in addition to provide a clarified differentaition for assessing and evaluating the risk, with the principles of software risk management. Problem statement: Prevailing software quality models, standards were not subsisting in adequately addressing the software safety ...

  10. LFR safety approach and main ELFR safety analysis results

    International Nuclear Information System (INIS)

    Bubelis, E.; Schikorr, M.; Frogheri, M.; Mansani, L.; Bandini, G.; Burgazzi, L.; Mikityuk, K.; Zhang, Y.; Lo Frano, R.; Forgione, N.

    2013-01-01

    LFR safety approach: → A global safety approach for the LFR reference plant has been assessed and the safety analyses methodology has been developed. → LFR follows the general guidelines of the Generation IV safety concept recommendations. Thus, improved safety and higher reliability are recognized as an essential priority. → The fundamental safety objectives and the Defence-in-Depth (DiD) approach, as described by IAEA Safety Guides, have been preserved. → The recommendations of the Risk and Safety Working Group (RSWG) of GEN-IV IF has been taken into account: • safety is to be “built-in” in the fundamental design rather than “added on”; • full implementation of the Defence-in-Depth principles in a manner that is demonstrably exhaustive, progressive, tolerant, forgiving and well-balanced; • “risk-informed” approach - deterministic approach complemented with a probabilistic one; • adoption of an integrated methodology that can be used to evaluate and document the safety of Gen IV nuclear systems - ISAM. In particular the OPT tool is the fundamental methodology used throughout the design process

  11. Design provisions for safety

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1983-01-01

    Design provisions for safety of nuclear power plants are based on a well balanced concept: the public is protected against a release of radioactive material by multiple barriers. These barriers are protected according to a 'defence-in-depth' principle. The reactor safety concept is primarily aimed at the prevention of accidents, especially fuel damage. Additionally, measures for consequence limitation are provided in order to prevent a severe release of radioactivity to the environment. However, it is difficult to judge the overall effectiveness of such devices. In a comprehensive safety analysis it has to be shown that the protection systems and safeguards work with sufficient reliability in the event of an accident. For the reliability assessment deterministic criteria (single failure, redundancy, fail-safe, demand for diversity) play an important role. Increasing efforts have been made to assess reliability quantitatively by means of probabilistic methods. It is now usual to perform reliability analyses of essential systems of nuclear power plants in the course of licensing procedures. As an additional level of emergency measures for a further reduction of hazards a reasonable amount of accident information has to be transferred. Operational experience may be considered as an important feedback to the design of plant safety features. Operator training has to include, besides skill in performing of operating procedures, the training of a flexible response to different accident situations. Experience has shown that the design provisions for safety could prevent dangerous release of the radioactive material to the environment after an accident has occurred. For future developments of reactor safety, extensive analyses of operating experience are of great importance. The main goal should be to enhance the reliability of measures for accident prevention, which prevent the core from meltdown or other damages

  12. Safety: Preventive Medicine.

    Science.gov (United States)

    Kotula, John R.; Digenakis, Anthony

    1985-01-01

    Underscores the need for community colleges to practice safety within the institutions and to instruct students in workplace safety procedures and requirements. Reviews Occupational Safety and Health Act (OSHA) regulations and their impact on industry and education. Looks at the legal responsibilities of colleges for safety. (DMM)

  13. Safety in construction?

    NARCIS (Netherlands)

    Swuste, P.H.J.J.

    2013-01-01

    The available literature on Construction Safety is not very optimistic about the chances of evidence-based safety in the construction industry exerting a positive influence. Many articles indicate that the structures and processes that are designed to ensure safety in the industry are poor. Safety

  14. On personal safety culture

    International Nuclear Information System (INIS)

    Chen Zigen

    1996-01-01

    The paper mainly expounds the personal safety culture, including the following aspects: the attitude to exploration, strict methods and the habit of exchange etc. It points out that straightening the education of safety culture and heightening the level of personal safety culture can get not only high-level safety but also high-level quality

  15. Fusion safety status report

    International Nuclear Information System (INIS)

    1986-10-01

    This report includes information on a) tritium handling and safety; b) activation product generation and release; c) lithium safety; d) superconducting magnet safety; e) operational safety and shielding; f) environmental impact; g) recycling, decommissioning and waste management; and h) accident analysis. Recommendations for high priority research and development are presented, as well as the current status in each area

  16. Nuclear safety - Topical issues

    International Nuclear Information System (INIS)

    1995-01-01

    The following topical issues related to nuclear safety are discussed: steam generators; maintenance strategies; control rod drive nozzle cracks; core shrouds cracks; sump strainer blockage; fire protection; computer software important for safety; safety during shutdown; operational safety experience; external hazards and other site related issues. 5 figs, 5 tabs

  17. Better Science Through Safety.

    Science.gov (United States)

    Gerlovich, Jack A.; Downs, Gary E.

    Following a brief description of the major components found effective in school safety programs (safety management, education, and services) and data on school accidents in Iowa, this book addresses various aspects of safety related to science instruction, emphasizing that responsibility for safety must be shared by both teacher and students.…

  18. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  19. Safety culture. Keys for sustaining progress

    International Nuclear Information System (INIS)

    Barraclough, I.; Carnino, A.

    1998-01-01

    Principles of nuclear safety are now well known and being put into practice around the world, leading to a degree of international harmonization in safety standards. Continued improvement in levels of safety requires the development of a comprehensive 'safety culture' at all levels of an organization, with visible and consistent leadership from senior management. This article reviews the main elements required for establishing and sustaining a good safety culture at nuclear installations that involves staff at all levels

  20. Safety of magnetic fusion facilities: Requirements

    International Nuclear Information System (INIS)

    1996-05-01

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved

  1. Global nuclear safety culture

    International Nuclear Information System (INIS)

    1997-01-01

    As stated in the Nuclear Safety Review 1996, three components characterize the global nuclear safety culture infrastructure: (i) legally binding international agreements; (ii) non-binding common safety standards; and (iii) the application of safety standards. The IAEA has continued to foster the global nuclear safety culture by supporting intergovernmental collaborative efforts; it has facilitated extensive information exchange, promoted the drafting of international legal agreements and the development of common safety standards, and provided for the application of safety standards by organizing a wide variety of expert services

  2. Safety at CERN

    CERN Document Server

    2009-01-01

    Safety is an integral part of our working lives, and should be in our minds whatever job we do at CERN. Ultimately, safety is the responsibility of the Director General – your safety is my concern. That’s why I have this week appointed a new Safety Policy Committee (SAPOCO) that reflects the new Organizational structure of CERN. CERN’s Staff Rules and Regulations clearly lay out in chapter 3 the scope of safety at CERN as well as my responsibilities and yours in safety matters. At CERN, safety is considered in the broadest sense, encompassing occupational Health and Safety, environmental protection, and the safety of equipment and installations. It is my responsibility to put appropriate measures in place to ensure that these conditions are met. And it is the responsibility of us all to ensure that we are fully conversant with safety provisions applicable in our areas of work and that we comply with them. The appointment of a n...

  3. China's Work Safety Report

    Institute of Scientific and Technical Information of China (English)

    Liang Jiakun

    2005-01-01

    @@ General Situation of China's Work Safety in 2004 In 2004, the national work safety situation remained stable as a whole and gained momentum to improve. The totality of accidents held the line and began to drop. The safety conditions in industrial,mining, and commercial/trading enterprises improved. Progress was made in ensuring work safety in the relevant industries and fields. The safety situation in most provinces (autonomous regions, municipalities directly under the Central Government) kept stable.

  4. Regulatory principles, safety policy

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1977-01-01

    Objectives of radiation protection. Basic radiobiological information. Current radiation protection requirements: ICRP recommendations a) limits on individual doses for workers and general public b) additional general limitation. National and international radiation protection standards. Recent extension of ICRP dose limitation system: individual dose limits for occupational and public exposure; collective doses and dose commitments; justification of a practice; the concept of 'as low as reasonably achievable (ALARA)'; optimization of radiation protection. Operational radiation protection: application of optimization procedures to controllable sources a) control of occupational exposure b) control of public exposure. Application of optimization procedures to uncontrollable sources. (orig.) [de

  5. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  6. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  7. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  8. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  9. Operation safety of control systems. Principles and methods; Surete de fonctionnement des systemes de commande. Principes et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, J.F. [Institut National Polytechnique, 54 - Nancy (France); Chatelet, E. [Universite de Technologie de Troyes, 10 (France)

    2008-09-15

    This article presents the main operation safety methods that can be implemented to design safe control systems taking into account the behaviour of the different components with each other (binary 'operation/failure' behaviours, non-consistent behaviours and 'hidden' failures, dynamical behaviours and temporal aspects etc). To take into account these different behaviours, advanced qualitative and quantitative methods have to be used which are described in this article: 1 - qualitative methods of analysis: functional analysis, preliminary risk analysis, failure mode and failure effects analyses; 2 - quantitative study of systems operation safety: binary representation models, state space-based methods, event space-based methods; 3 - application to the design of control systems: safe specifications of a control system, qualitative analysis of operation safety, quantitative analysis, example of application; 4 - conclusion. (J.S.)

  10. Occupational safety motivation

    DEFF Research Database (Denmark)

    Pedersen, Louise; Kines, Pete

    2010-01-01

    Background: Motivation is one of the most important factors for safety behaviour and for implementing change in general. However, theoretical and psychometric studies of safety performance have traditionally treated safety motivation, safety compliance and safety participation unidimensionally....... At the same time many motivation questionnaire items are seldom founded on theory and/or do not account for the theories’ ontological and epistemological differences, e.g. of how knowledge, attitude and action are related. Present questionnaire items tap into occupational safety motivation in asking whether...... or not respondents ‘are’ motivated and whether they feel that safety is important or worthwhile. Another important aspect is ‘what’ motivates workers to comply to and participate in safety. The aim of this article is to introduce a new theory-based occupational safety motivation scale which is validated...

  11. Nuclear law - Nuclear safety

    International Nuclear Information System (INIS)

    Pontier, Jean-Marie; Roux, Emmanuel; Leger, Marc; Deguergue, Maryse; Vallar, Christian; Pissaloux, Jean-Luc; Bernie-Boissard, Catherine; Thireau, Veronique; Takahashi, Nobuyuki; Spencer, Mary; Zhang, Li; Park, Kyun Sung; Artus, J.C.

    2012-01-01

    This book contains the contributions presented during a one-day seminar. The authors propose a framework for a legal approach to nuclear safety, a discussion of the 2009/71/EURATOM directive which establishes a European framework for nuclear safety in nuclear installations, a comment on nuclear safety and environmental governance, a discussion of the relationship between citizenship and nuclear, some thoughts about the Nuclear Safety Authority, an overview of the situation regarding the safety in nuclear waste burying, a comment on the Nome law with respect to electricity price and nuclear safety, a comment on the legal consequences of the Fukushima accident on nuclear safety in the Japanese law, a presentation of the USA nuclear regulation, an overview of nuclear safety in China, and a discussion of nuclear safety in the medical sector

  12. Achieving best practice in OHS: improving Occupational Health and Safety (OHS) by the application of knowledge management principles

    OpenAIRE

    Verhagen, Clifford

    2016-01-01

    Safety impacts on the lives of every person, every day, at home, travelling to work, at work and in recreation. Unfortunately, at times when safety breaks down people get injured and sometimes are killed. Work is an all too common place where these break downs occur. Every year in Australia, hundreds of people die at work and many more are permanently disabled; their lives and the lives of those around them will never be the same again. There have been many approaches by state and fede...

  13. Aquatic sports and safety

    Directory of Open Access Journals (Sweden)

    Володимир Миколайович Зюзь

    2016-11-01

    Full Text Available Aquatic sports or boating, has become a mass sport and recreation. It is as delightful a holiday as one might wish for, gaining strength around the world and especially in Ukraine. More and more people are eager to see the beauty of the underwater world, enjoy exciting sailing races, long journeys along beautiful rivers and unexplored areas, as well as smooth sailing at the height of the season. The article analyzes the modern aquatic (water tourism hazards that can lie in wait for a person in the water during camping trips and various boating competitions. This kind of sports is dangerous in principle, as aqueous medium is always perilous whether water is rough or calm. Accidents are always possible and tourists may find themselves in water, hypothermia, impossibility to breathe, impactions against different objects in the water resulting. Ships, food and equipment may also be damaged or lost, that is the consequences may be extremely negative. This article includes description of boating types, extreme forms of boating, the design features of the swimming facilities used in boating, practical skills and the ability to apply the facilities; characteristics of waves and currents; types of rivers; forms and methods of transportation and rescue of the drowning people; rendering assistance and first aid to the victims; promotion of safety rules on the water during the boating. The main goals and objectives in preparing aquatic tourism professionals whose main duty is safety, training topics, theoretical and practical materials for training the basics of safety that makes it possible to get acquainted with all the requirements have been discussed. The first attempt to develop general educational standards in training professionals in water sports and safety basing on the new priorities and the principles of modern vocational education has been made in the articles

  14. Storytelling and Safety Culture

    International Nuclear Information System (INIS)

    Packer, C.

    2016-01-01

    The paper uses a five-part model of nuclear safety as the basis for discussion of how the oral culture in an organization contributes to (or can potentially undermine) the understanding of safety, the commitment to safe practices and the formation of group identity which is the product of effective cultural leadership. It explores some differences between oral and literate forms of expression, how these interact, and why both are essential parts of nuclear safety culture. It looks at how oral forms impact safety culture, and how by understanding the power of the oral culture leaders can be more effective in shaping people’s understanding and commitment to the essential practices of nuclear safety. Oral forms of expression in cultures are highly stable because they are repeated as “stories” and as ritualistic patterns. They are the only forms of language that “live inside us”, so they are essential for things such as communicating principles and forming a sense of group identity. Oral forms can be exceptionally long-lasting and can (and do) influence cultures sometimes decades after they first come into being. In other words, (and for good and bad) they have an exceptional ability to survive change. This is because oral stories are like magic flowers. Every time the story is told its seeds spring out and scatter, and are planted in every hearer. Then any one of those listeners can carry the story forwards into the future and retell it so another magic flower is born. Compelling stories are therefore always alive, they only die when they are replaced with a more compelling story.

  15. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  16. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt' standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  17. ITER-FEAT safety

    International Nuclear Information System (INIS)

    Gordon, C.W.; Bartels, H.-W.; Honda, T.; Raeder, J.; Topilski, L.; Iseli, M.; Moshonas, K.; Taylor, N.; Gulden, W.; Kolbasov, B.; Inabe, T.; Tada, E.

    2001-01-01

    Safety has been an integral part of the design process for ITER since the Conceptual Design Activities of the project. The safety approach adopted in the ITER-FEAT design and the complementary assessments underway, to be documented in the Generic Site Safety Report (GSSR), are expected to help demonstrate the attractiveness of fusion and thereby set a good precedent for future fusion power reactors. The assessments address ITER's radiological hazards taking into account fusion's favourable safety characteristics. The expectation that ITER will need regulatory approval has influenced the entire safety design and assessment approach. This paper summarises the ITER-FEAT safety approach and assessments underway. (author)

  18. Nuclear Safety Culture

    International Nuclear Information System (INIS)

    2017-01-01

    Ethics is caring about people and Safety is caring that no physical harm comes to people.Therefore Safety is a type of Ethical Behavior. Culture: is The Way We Do Things Here.Safety Culture is mixture of organization traditions, values, attitudes and behaviors modeled by Its leaders and internalized by its members that serve to make nuclear safety the overriding priority. Safety Culture is that assembly of characteristics and attitudes in Organisations and individuals which established that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance

  19. Reactor system safety assurance

    International Nuclear Information System (INIS)

    Mattson, R.J.

    1984-01-01

    The philosophy of reactor safety is that design should follow established and conservative engineering practices, there should be safety margins in all modes of plant operation, special systems should be provided for accidents, and safety systems should have redundant components. This philosophy provides ''defense in depth.'' Additionally, the safety of nuclear power plants relies on ''safety systems'' to assure acceptable response to design basis events. Operating experience has shown the need to study plant response to more frequent upset conditions and to account for the influence of operators and non-safety systems on overall performance. Defense in depth is being supplemented by risk and reliability assessment

  20. Beyond safety accountability

    CERN Document Server

    Geller, E Scott

    2001-01-01

    Written in an easy-to-read conversational tone, Beyond Safety Accountability explains how to develop an organizational culture that encourages people to be accountable for their work practices and to embrace a higher sense of personal responsibility. The author begins by thoroughly explaining the difference between safety accountability and safety responsibility. He then examines the need of organizations to improve safety performance, discusses why such performance improvement can be achieved through a continuous safety process, as distinguished from a safety program, and provides the practic

  1. Nordic studies in reactor safety

    International Nuclear Information System (INIS)

    Pershagen, N.

    1993-01-01

    The Nordic Nuclear Safety Research Programme SIK programme in reactor safety is part of a major joint Nordic research effort in nuclear safety. The report summarizes the achievements of the SIK programme, which was carried out during 1990-1993 in collaboration between Nordic nuclear utilities, safety authorities, and research institutes. Three main projects were successfully completed dealing with: 1) development and application of a living PSA concept for monitoring the risk of core damage, and of safety indicators for early warning of possible safety problems; 2) review and intercomparison of severe accident codes, case studies of potential core melt accidents in nordic reactors, development of chemical models for the MAAP code, and outline of a system for computerized accident management support; 3) compilation of information about design and safety features of neighbouring reactors in Germany, Lithuania and Russia, and for naval reactors and nuclear submarines. The report reviews the state-of-the-art in each subject matter as an introduction to the individual project summaries. The main findings of each project are highlighted. The report also contains an overview of reactor safety research in the Nordic countries and a summary of fundamental reactor safety principles. (au) (69 refs.)

  2. Application of ergonomics principles in underground mines through the Occupational Safety and Health Management System--OSHMS OHSAS 18.001:2007.

    Science.gov (United States)

    de Arruda, Agnaldo Fernando Vieira; Gontijo, Leila Maral

    2012-01-01

    The underground mining activity is regarded as one of the activities that cause most accidents, deaths and illnesses in the world, highlighting the coal mines. This study examined how ergonomics principles can help improve this environment, reduce the number of accidents and occupational diseases, train and empower workers and leaders and humanize the activities of the duty cycle of an underground mine. For this, it was developed a conceptual model of safety managing and health at work for the underground mining through the incorporation of ergonomics principles in the Occupational Safety and Health Management System and OHSAS 18001 (2007). The elaboration of the model was based on analysis of the environments and stages of work in underground mines and the PDCA cycle to ensure continuous improvement.

  3. Safety KPIs - Monitoring of safety performance

    Directory of Open Access Journals (Sweden)

    Andrej Lališ

    2014-09-01

    Full Text Available This paper aims to provide brief overview of aviation safety development focusing on modern trends represented by implementation of Safety Key Performance Indicators. Even though aviation is perceived as safe means of transport, it is still struggling with its complexity given by long-term growth and robustness which it has reached today. Thus nowadays safety issues are much more complex and harder to handle than ever before. We are more and more concerned about organizational factors and control mechanisms which have potential to further increase level of aviation safety. Within this paper we will not only introduce the concept of Key Performance Indicators in area of aviation safety as an efficient control mechanism, but also analyse available legislation and documentation. Finally we will propose complex set of indicators which could be applied to Czech Air Navigation Service Provider.

  4. Probabilistic safety criteria at the safety function/system level

    International Nuclear Information System (INIS)

    1989-09-01

    A Technical Committee Meeting was held in Vienna, Austria, from 26-30 January 1987. The objectives of the meeting were: to review the national developments of PSC at the level of safety functions/systems including future trends; to analyse basic principles, assumptions, and objectives; to compare numerical values and the rationale for choosing them; to compile the experience with use of such PSC; to analyse the role of uncertainties in particular regarding procedures for showing compliance. The general objective of establishing PSC at the level of safety functions/systems is to provide a pragmatic tool to evaluate plant safety which is placing emphasis on the prevention principle. Such criteria could thus lead to a better understanding of the importance to safety of the various functions which have to be performed to ensure the safety of the plant, and the engineering means of performing these functions. They would reflect the state-of-the-art in modern PSAs and could contribute to a balance in system design. This report, prepared by the participants of the meeting, reviews the current status and future trends in the field and should assist Member States in developing their national approaches. The draft of this document was also submitted to INSAG to be considered in its work to prepare a document on safety principles for nuclear power plants. Five papers presented at the meeting are also included in this publication. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  5. ERGONOMICS safety course

    CERN Multimedia

    SC Unit

    2008-01-01

    Two sessions of the ERGONOMICS safety course will be held on November 27, 2008, in French and in English. PLEASE SIGN-UP! •\tErgonomie - Sensibilisation à l’ergonomie bureautique (Nov 27, 08:30-12:30, in French) https://edh.cern.ch/Document/TRN/new?course=077M00 •\tErgonomics - Applying ergonomic principles in the workplace (Nov 27, 13:30-17:30, in English) https://edh.cern.ch/Document/TRN/new?course=077M10 You will receive an invitation via e-mail once your EDH request is completed and fully signed. For further information, please contact Isabelle CUSATO (73811).

  6. ERGONOMICS safety course

    CERN Multimedia

    SC Unit

    2008-01-01

    Two sessions of the ERGONOMICS safety course will be held on November 27, 2008, in French and in English. PLEASE SIGN-UP! Ergonomie - Sensibilisation à l’ergonomie bureautique (Nov 27, 08:30-12:30, in French) https://edh.cern.ch/Document/TRN/new?course=077M00 Ergonomics - Applying ergonomic principles in the workplace (Nov 27, 13:30-17:30, in English) https://edh.cern.ch/Document/TRN/new?course=077M10 You will receive and invitation via e-mail once your EDH request is completed and fully signed. For further information, please contact Isabelle CUSATO (73811).

  7. ERGONOMICS safety course

    CERN Multimedia

    SC Unit

    2008-01-01

    Two sessions of the ERGONOMICS safety course will be held on November 27, 2008, in French and in English. PLEASE SIGN-UP! Ergonomie - Sensibilisation à l’ergonomie bureautique (Nov 27, 08:30-12:30, in French) https://edh.cern.ch/Document/TRN/new?course=077M00 Ergonomics - Applying ergonomic principles in the workplace (Nov 27, 13:30-17:30, in English) https://edh.cern.ch/Document/TRN/new?course=077M10 You will be invited by email after your EDH request is completed and fully signed. For further information, please contact Isabelle CUSATO (73811).

  8. Multimegawatt Space Reactor Safety

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1989-01-01

    The Multimegawatt (MMW) Space Reactor Project supports the Strategic Defense Initiative Office requirement to provide reliable, safe, cost-effective, electrical power in the MMW range. Specifically, power may be used for neutral particle beams, free electron lasers, electromagnetic launchers, and orbital transfer vehicles. This power plant technology may also apply to the electrical power required for other uses such as deep-space probes and planetary exploration. The Multimegawatt Space Reactor Project, the Thermionic Fuel Element Verification Program, and Centaurus Program all support the Multimegawatt Space Nuclear Power Program and form an important part of the US Department of Energy's (DOE's) space and defense power systems activities. A major objective of the MMW project is the development of a reference flight system design that provides the desired levels of public safety, health protection, and special nuclear material (SNM) protection when used during its designated missions. The safety requirements for the MMW project are a hierarchy of requirements that consist of safety requirements/regulations, a safety policy, general safety criteria, safety technical specifications, safety design specifications, and the system design. This paper describes the strategy and philosophy behind the development of the safety requirements imposed upon the MMW concept developers. The safety organization, safety policy, generic safety issues, general safety criteria, and the safety technical specifications are discussed

  9. Cryogenic Safety Rules and Guidelines at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    CERN defines and implements a Safety Policy that sets out the general principles governing safety at CERN. As an intergovernmental organisation, CERN further establishes its own Safety Rules as necessary for its proper functioning. In this process, it takes into account the laws and regulation of the Host States (France and Switzerland), EU regulations and directives, as well as international regulations, standards and directives. For the safety of cryogenic equipment, this is primarily covered by the Safety Regulation for Mechanical Equipment and the General Safety Instruction for Cryogenic Equipment. In addition, CERN has also developed Safety Guidelines to support the implementation of these safety rules, covering cryogenic equipment and oxygen deficiency hazard assessment and mitigation. An overview of the cryogenic safety rules and these safety guidelines will be presented.

  10. Nuclear safety in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1979-01-01

    A brief description of the main safety aspects of the French nuclear energy programme and of the general safety organization is followed by a discussion on the current thinking in CEA on some important safety issues. As far as methodology is concerned, the use of probabilistic analysis in the licensing procedure is being extensively developed. Reactor safety research is aimed at a better knowledge of the safety margins involved in the present designs of both PWRs and LMFBRs. A greater emphasis should be put during the next years in the safety of the nuclear fuel cycle installations, including waste disposals. Finally, it is suggested that further international cooperation in the field of nuclear safety should be developed in order to insure for all countries the very high safety level which has been achieved up till now. (author)

  11. Safety, risk and Harrisburg

    International Nuclear Information System (INIS)

    Titterton, E.

    1979-06-01

    The author discusses public attitudes to safety, industrial accidents and reactor accidents, in particular the accident at Three-Mile Island. Arguments in favour of nuclear power, including its relative safety, are presented

  12. Carbon Monoxide Safety

    Science.gov (United States)

    ... with the Media Fire Protection Technology Carbon monoxide safety outreach materials Keep your community informed about the ... KB | Spanish PDF 592 KB Handout: carbon monoxide safety Download this handout and add your organization's logo ...

  13. Farm Health and Safety

    Science.gov (United States)

    ... the United States. Farms have many health and safety hazards, including Chemicals and pesticides Machinery, tools and ... inspection and maintenance can help prevent accidents. Using safety gloves, goggles and other protective equipment can also ...

  14. Fires and Food Safety

    Science.gov (United States)

    ... Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... JSR 286) Actions ${title} Loading... Fires and Food Safety Fire! Few words can strike such terror. Residential ...

  15. Swimming Pool Safety

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Safety & Prevention Immunizations All Around At Home At Play ... Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to ...

  16. Motor Vehicle Safety

    Science.gov (United States)

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  17. National Patient Safety Foundation

    Science.gov (United States)

    ... News Member Testimonials Lifetime Members Stand Up for Patient Safety Welcome Stand Up Members Stand Up e-News ... PLS Webcast Archives Stand Up Templates and Logos Patient Safety Coalition Coalition Overview Coalition Member Roster Members-Only ...

  18. Security vs. Safety.

    Science.gov (United States)

    Sturgeon, Julie

    1999-01-01

    Provides administrative advice on how some safety experts have made college campuses safer and friendlier without breaking the budget. Tips on security and advice on safety management that encompasses the whole environment are highlighted. (GR)

  19. Fire Safety (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Fire Safety KidsHealth / For Parents / Fire Safety What's in ... event of a fire emergency in your home. Fire Prevention Of course, the best way to practice ...

  20. National Safety Council

    Science.gov (United States)

    ... work, in homes and communities, and on the road through leadership, research, education and advocacy. NSC Newsletter Sign up for our newsletter! Like Us on Facebook National Safety Council © National Safety Council. All rights reserved. Contact ...

  1. Gun Safety (For Kids)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Gun Safety KidsHealth / For Kids / Gun Safety What's in ... from guns outside the home. If You Have Guns in Your Home If your parents keep guns ...

  2. General safety aspects

    International Nuclear Information System (INIS)

    1998-01-01

    In this part next aspects are described: (1) Priority to safety; (2) Financial and human resources;; (3) Human factor; (4) Operator's quality assurance system; (5) Safety assessment and Verification; (6) Radiation protection and (7) Emergency preparedness

  3. MICROBIOLOGICAL SAFETY BIBLIOGRAPHY

    Science.gov (United States)

    More than a thousand articles on biological safety in infectious disease laboratories are listed for the use of supervisors responsible for the safety of laboratory personnel. An author index is included.

  4. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  5. Water safety and drowning

    Science.gov (United States)

    ... among people of all ages. Learning and practicing water safety is important to prevent drowning accidents. ... Water safety tips for all ages include: Learn CPR . Never swim alone. Never dive into water unless ...

  6. Preharvest food safety.

    Science.gov (United States)

    Childers, A B; Walsh, B

    1996-07-23

    Preharvest food safety is essential for the protection of our food supply. The production and transport of livestock and poultry play an integral part in the safety of these food products. The goals of this safety assurance include freedom from pathogenic microorganisms, disease, and parasites, and from potentially harmful residues and physical hazards. Its functions should be based on hazard analysis and critical control points from producer to slaughter plant with emphasis on prevention of identifiable hazards rather than on removal of contaminated products. The production goal is to minimize infection and insure freedom from potentially harmful residues and physical hazards. The marketing goal is control of exposure to pathogens and stress. Both groups should have functional hazard analysis and critical control points management programs which include personnel training and certification of producers. These programs must cover production procedures, chemical usage, feeding, treatment practices, drug usage, assembly and transportation, and animal identification. Plans must use risk assessment principles, and the procedures must be defined. Other elements would include preslaughter certification, environmental protection, control of chemical hazards, live-animal drug-testing procedures, and identification of physical hazards.

  7. DOE handbook electrical safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  8. Electrical safety guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  9. Nuclear safety in France

    International Nuclear Information System (INIS)

    Queniart, D.

    1989-12-01

    This paper outlines the organizational and technical aspects of nuclear safety in France. From the organization point of view, the roles of the operator, of the safety authority and of the Institute for Protection and Nuclear Safety are developed. From the technical viewpoint, the evolution of safety since the beginning of the French nuclear programme, the roles of deterministic and probabilistic methods and the severe accident policy (prevention and mitigation, venting containment) in France are explained

  10. Generic safety documentation model

    International Nuclear Information System (INIS)

    Mahn, J.A.

    1994-04-01

    This document is intended to be a resource for preparers of safety documentation for Sandia National Laboratories, New Mexico facilities. It provides standardized discussions of some topics that are generic to most, if not all, Sandia/NM facilities safety documents. The material provides a ''core'' upon which to develop facility-specific safety documentation. The use of the information in this document will reduce the cost of safety document preparation and improve consistency of information

  11. Aviation Safety Issues Database

    Science.gov (United States)

    Morello, Samuel A.; Ricks, Wendell R.

    2009-01-01

    The aviation safety issues database was instrumental in the refinement and substantiation of the National Aviation Safety Strategic Plan (NASSP). The issues database is a comprehensive set of issues from an extremely broad base of aviation functions, personnel, and vehicle categories, both nationally and internationally. Several aviation safety stakeholders such as the Commercial Aviation Safety Team (CAST) have already used the database. This broader interest was the genesis to making the database publically accessible and writing this report.

  12. Safety management of software-based equipment

    CERN Document Server

    Boulanger, Jean-Louis

    2013-01-01

    A review of the principles of the safety of software-based equipment, this book begins by presenting the definition principles of safety objectives. It then moves on to show how it is possible to define a safety architecture (including redundancy, diversification, error-detection techniques) on the basis of safety objectives and how to identify objectives related to software programs. From software objectives, the authors present the different safety techniques (fault detection, redundancy and quality control). "Certifiable system" aspects are taken into account throughout the book. C

  13. General safety considerations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document presents the full filling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 4 of the document contains some details about the priority to safety, financial and human resources, human factors, quality assurance, safety assessment and verification, radiation protection and emergency preparedness.

  14. SFR Safety Considerations

    International Nuclear Information System (INIS)

    Glatz, Jean-Paul

    2012-01-01

    Objectives of the Safety and Operation Project: • analysis and experiments that support approaches and assess performance of specific safety features, • development and verification of computational tools and validation of models employed in safety assessment and facility licensing, and • valorisation of reactor operation, from experience and testing in operating SFR plants

  15. General safety considerations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This document presents the full filling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 4 of the document contains some details about the priority to safety, financial and human resources, human factors, quality assurance, safety assessment and verification, radiation protection and emergency preparedness.

  16. Nuclear safety regulations

    International Nuclear Information System (INIS)

    1998-01-01

    The Departmental Rules and The Safety Guides were issued by the NNSA in 1998. The NNSA performed the activities of propagation and implementation of nuclear safety regulations at QTNPP in order to improve the nuclear safety culture of operating organization and construct and contract organizations

  17. General safety considerations

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents the full filling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 4 of the document contains some details about the priority to safety, financial and human resources, human factors, quality assurance, safety assessment and verification, radiation protection and emergency preparedness

  18. Nuclear health and safety

    International Nuclear Information System (INIS)

    1991-04-01

    Numerous environmental, safety, and health problems found at other Department of Energy (DOE) defense nuclear facilities precipitated a review of these conditions at DOE's contractor-operated Pantex Plant, where our nation's nuclear weapons are assembled. This book focuses the review on examining key safety and health problems at Pantex and determining the need for external safety oversight of the plant

  19. Safety-in-numbers

    DEFF Research Database (Denmark)

    Elvik, Rune; Bjørnskau, Torkel

    2017-01-01

    Highlights •26 studies of the safety-in-numbers effect are reviewed. •The existence of a safety-in-numbers effect is confirmed. •Results are consistent. •Causes of the safety-in-numbers effect are incompletely known....

  20. General safety considerations

    International Nuclear Information System (INIS)

    1998-01-01

    This document presents the full filling of the Brazilian obligations under the Convention on Nuclear Safety. The Chapter 4 of the document contains some details about the priority to safety, financial and human resources, human factors, quality assurance, safety assessment and verification, radiation protection and emergency preparedness

  1. Leadership and safety culture. Leadership for safety

    International Nuclear Information System (INIS)

    Fischer, Erwin; Nithack, Eckhard

    2016-01-01

    The meaning of leadership for safety in the nuclear industry is pointed out. This topic has became an increasing rank since the German ''Energiewende''. Despite the phase-out of the German NPP's nuclear safety and the belonging safety culture needs to be well maintained. A challenge for the whole organisation. Following the challenge to operate nuclear power plants towards Operational Excellence a highly skilled and motivated organisation is needed. Therefore Leadership is a valuable success factor.

  2. Leadership and safety culture. Leadership for safety

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Erwin; Nithack, Eckhard [PreussenElektra GmbH, Hannover (Germany)

    2016-08-15

    The meaning of leadership for safety in the nuclear industry is pointed out. This topic has became an increasing rank since the German ''Energiewende''. Despite the phase-out of the German NPP's nuclear safety and the belonging safety culture needs to be well maintained. A challenge for the whole organisation. Following the challenge to operate nuclear power plants towards Operational Excellence a highly skilled and motivated organisation is needed. Therefore Leadership is a valuable success factor.

  3. Globalisation and blood safety.

    Science.gov (United States)

    Farrugia, Albert

    2009-05-01

    safety and supply. It is only through an appreciation of the basic needs of transfusion medicine, including the enunciation of appropriate principles to manage, rather than eliminate, risks, that the challenges imposed by globalisation may be overcome.

  4. Risk assessment of pesticides and other stressors in bees: Principles, data gaps and perspectives from the European Food Safety Authority.

    Science.gov (United States)

    Rortais, Agnès; Arnold, Gérard; Dorne, Jean-Lou; More, Simon J; Sperandio, Giorgio; Streissl, Franz; Szentes, Csaba; Verdonck, Frank

    2017-06-01

    Current approaches to risk assessment in bees do not take into account co-exposures from multiple stressors. The European Food Safety Authority (EFSA) is deploying resources and efforts to move towards a holistic risk assessment approach of multiple stressors in bees. This paper describes the general principles of pesticide risk assessment in bees, including recent developments at EFSA dealing with risk assessment of single and multiple pesticide residues and biological hazards. The EFSA Guidance Document on the risk assessment of plant protection products in bees highlights the need for the inclusion of an uncertainty analysis, other routes of exposures and multiple stressors such as chemical mixtures and biological agents. The EFSA risk assessment on the survival, spread and establishment of the small hive beetle, Aethina tumida, an invasive alien species, is provided with potential insights for other bee pests such as the Asian hornet, Vespa velutina. Furthermore, data gaps are identified at each step of the risk assessment, and recommendations are made for future research that could be supported under the framework of Horizon 2020. Finally, the recent work conducted at EFSA is presented, under the overarching MUST-B project ("EU efforts towards the development of a holistic approach for the risk assessment on MUltiple STressors in Bees") comprising a toolbox for harmonised data collection under field conditions and a mechanistic model to assess effects from pesticides and other stressors such as biological agents and beekeeping management practices, at the colony level and in a spatially complex landscape. Future perspectives at EFSA include the development of a data model to collate high quality data to calibrate and validate the model to be used as a regulatory tool. Finally, the evidence collected within the framework of MUST-B will support EFSA's activities on the development of a holistic approach to the risk assessment of multiple stressors in bees. In

  5. A systematic approach to safety case maintenance

    International Nuclear Information System (INIS)

    Kelly, T.P.; McDermid, J.A.

    2001-01-01

    A crucial aspect of safety case management is the ongoing maintenance of the safety argument through life. Throughout the operational life of any system, changing regulatory requirements, additional safety evidence and a changing design can challenge the corresponding safety case. In order to maintain an accurate account of the safety of the system, all such challenges must be assessed for their impact on the original safety argument. This is increasingly being recognised by many safety standards. However, many safety engineers are experiencing difficulties with safety case maintenance at present, the prime reason being that they do not have a systematic and methodical approach by which to examine the impact of change on safety argument. The size and complexity of safety arguments and evidence being presented within safety cases is increasing. Nowhere is this more apparent than for Electrical, Electronic and Programmable Electronic systems attempting to comply with the requirements and recommendations of software and hardware safety standards such as and UK Defence Standards 00-54 [MoD. 00-54 Requirements of Safety Related Electronic Hardware in Defence Equipment. Ministry of Defence, Interim Defence Standard, 1999], 00-55 []. However, this increase in safety case complexity exacerbates problems of comprehension and maintainability later on in the system lifecycle. This paper defines and describes a tool-supported process, based upon the principles of goal structuring, that attempts to address these difficulties through facilitating the systematic impact assessment of safety case challenges

  6. OPG waterways public safety program

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, T [Ontario Power Generation Inc., Niagara Falls, ON (Canada)

    2009-07-01

    Ontario Power Generation (OPG) has 64 hydroelectric generating stations, 241 dams, and 109 dams in Ontario's registry with the International Commission on Large Dams (ICOLD). In 1986, it launched a formal dam safety program. This presentation addressed the importance of public safety around dams. The safety measures are timely because of increasing public interaction around dams; the public's unawareness of hazards; public interest in extreme sports; easier access by recreational vehicles; the perceived right of public to access sites; and the remote operation of hydroelectric stations. The presentation outlined the OPG managed system approach, with particular reference to governance; principles; standards and procedures; and aspects of implementation. Specific guidelines and governing documents for public safety around dams were identified, including guidelines for public safety of waterways; booms and buoys; audible warning devices and lights; public safety signage; fencing and barricades; and risk assessment for public safety around waterways. The presentation concluded with a discussion of audits and management reviews to determine if safety objectives and targets have been met. figs.

  7. Perceptions of safety in the workplace

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1980-01-01

    The concept of safety in the workplace is changing. Safety First was a slogan generated at a time when life and limb were at significant risk in many industries. Now much more subtle effects, such as late health effects due to industrial exposure and trauma, including mental stress, have become a concern to the safety specialists. Despite the changes in the concepts of safety today, the principles of safety in the workplace remain the same. They are management leadership, procedures, safe work conditions, safety training for supervisors and employees, medical surveillance, and careful accident reporting, investigation and record keeping

  8. Safety indicators in different time frames for the safety assessment of underground radioactive waste repositories. First report of the INWAC subgroup on principles and criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-10-01

    Principles and criteria for the disposal of long lived radioactive waste involve issues which go beyond those normally considered in the basic system of radiation protection. Safety criteria based on radiation risk an dose limitation are commonly accepted as the principal basis for judging the acceptability of radioactive waste repositories. However, the long time-scales of interest mean that risks or doses to future individuals cannot be predicted with any certainty as they depend, amongst other things, on assumptions made about the integrity of the waste matrix, the man-made barriers, the geology, the dispersion of groundwater, etc. and future biospheric conditions and human lifestyles. This document discusses various safety indicators and their applicability in the context of the future time-scales which have to be considered in safety assessments of deep geologic repositories. Quantitative assessment are based on numerical estimates of consequences (e.g. risk or dose) and the assessment is made against numerical criteria. Qualitative assessments are based on estimates of hazard potential which are not exact or absolute and the assessment is made against criteria which may not be numerically defined. Examples of such criteria are the convenient reference values provided by levels of radionuclides in the natural environment. Refs, figs and tabs

  9. Nuclear Safety Review 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis.

  10. Nuclear Safety Review 2013

    International Nuclear Information System (INIS)

    2013-07-01

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis

  11. Safety culture : a significant influence on safety in transportation

    Science.gov (United States)

    2017-08-01

    An organizations safety culture can influence safety outcomes. Research and experience show that when safety culture is strong, accidents are less frequent and less severe. As a result, building and maintaining strong safety cultures should be a t...

  12. Annual report on occupational safety 1985

    International Nuclear Information System (INIS)

    1986-09-01

    This report presents information on occupational safety relating to the Company's employees for the year 1985, and compares data with figures for the previous year. The following headings are listed: principle activities of BNFL, general policy and organisation, radiological safety, including whole body, skin and extremity, and internal organ doses, non-radiological safety, incidents reportable to the health and safety executive. (U.K.)

  13. Improving operating room safety

    Directory of Open Access Journals (Sweden)

    Garrett Jill

    2009-11-01

    Full Text Available Abstract Despite the introduction of the Universal Protocol, patient safety in surgery remains a daily challenge in the operating room. This present study describes one community health system's efforts to improve operating room safety through human factors training and ultimately the development of a surgical checklist. Using a combination of formal training, local studies documenting operating room safety issues and peer to peer mentoring we were able to substantially change the culture of our operating room. Our efforts have prepared us for successfully implementing a standardized checklist to improve operating room safety throughout our entire system. Based on these findings we recommend a multimodal approach to improving operating room safety.

  14. Nuclear safety in perspective

    DEFF Research Database (Denmark)

    Andersson, K.; Sjöberg, B.M.D.; Lauridsen, Kurt

    2003-01-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicat-ing on the subject in society. The project, which has been built around a number of seminars, wassupported by limited research in three sub......-projects: Risk assessment Safety analysis Strategies for safety management The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems forregulatory oversight are de-scribed in the nuclear area and also, to widen the perspective, for other...

  15. Uncertain safety: allocating responsibilities for safety

    National Research Council Canada - National Science Library

    2009-01-01

    Flood prevention, food safety, the transport of hazardous substances, infectious diseases, the risk of new Technologies and many other threats to public health and the environment call for ongoing public alertness...

  16. Safety for Older Consumers: Home Safety Checklist

    Science.gov (United States)

    ... and switches have cover plates installed so no wiring is exposed. U nused receptacles have safety covers ... pour gasoline into a kerosene heater. Review the installation and operating instructions. Call the manufacturer or your ...

  17. Safety in Cryogenics – Safety device sizing

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The calculation is separated in three operations: o The estimation of the loads arriving on the component to protect, o The calculation of the mass flow to evacuate, o And the sizing of the safety device.

  18. IAEA safety fundamentals: the safety of nuclear installations and the defence in depth concept

    International Nuclear Information System (INIS)

    Aro, I.

    2005-01-01

    This presentation is a replica of the similar presentation provided by the IAEA Basic Professional Training Course on Nuclear Safety. The presentation utilizes the IAEA Safety Series document No. 110, Safety Fundamentals: the Safety of Nuclear Installations. The objective of the presentation is to provide the basic rationale for actions in provision of nuclear safety. The presentation also provides basis to understand national nuclear safety requirements. There are three Safety Fundamentals documents in the IAEA Safety Series: one for nuclear safety, one for radiation safety and one for waste safety. The IAEA is currently revising its Safety Fundamentals by combining them into one general Safety Fundamentals document. The IAEA Safety Fundamentals are not binding requirements to the Member States. But, a very similar text has been provided in the Convention on Nuclear Safety which is legally binding for the Member State after ratification by the Parliament. This presentation concentrates on nuclear safety. The Safety Fundamentals documents are the 'policy documents' of the IAEA Safety Standards Series. They state the basic objectives, concepts and principles involved in ensuring protection and safety in the development and application of atomic energy for peaceful purposes. They will state - without providing technical details and without going into the application of principles - the rationale for actions necessary in meeting Safety Requirements. Chapter 7 of this presentation describes the basic features of defence in depth concept which is referred to in the Safety Fundamentals document. The defence in depth concept is a key issue in reaching high level of safety specifically at the design stage but as the reader can see the extended concept also refers to the operational stage. The appendix has been taken directly from the IAEA Basic Professional Training Course on Nuclear Safety and applied to the Finnish conditions. The text originates from the references

  19. The safety of light water reactors

    International Nuclear Information System (INIS)

    Pershagen, B.

    1986-04-01

    The book describes the principles and practices of reactor safety as applied to the design, regulation and operation of both pressurized water reactors and boiling water reactors. The central part of the book is devoted to methods and results of safety analysis. Some significant events are described, notably the Three Mile Island accident. The book concludes with a chapter on the PIUS principle of inherent reactor safety as applied to the SECURE type of reactor developed in Sweden. (G.B.)

  20. Safety system function trends

    International Nuclear Information System (INIS)

    Johnson, C.

    1989-01-01

    This paper describes research to develop risk-based indicators of plant safety performance. One measure of the safety-performance of operating nuclear power plants is the unavailability of important safety systems. Brookhaven National Laboratory and Science Applications International Corporation are evaluating ways to aggregate train-level or component-level data to provide such an indicator. This type of indicator would respond to changes in plant safety margins faster than the currently used indicator of safety system unavailability (i.e., safety system failures reported in licensee event reports). Trends in the proposed indicator would be one indication of trends in plant safety performance and maintenance effectiveness. This paper summarizes the basis for such an indicator, identifies technical issues to be resolved, and illustrates the potential usefullness of such indicators by means of computer simulations and case studies

  1. Supervision of nuclear safety - IAEA requirements, accepted solutions, trends

    International Nuclear Information System (INIS)

    Jurkowski, M.

    2007-01-01

    Ten principles of the nuclear safety, based on the IAEA's standards are presented. Convention on Nuclear Safety recommends for nuclear safety landscape, the control transparency, culture safety, legal framework and knowledge preservation. Examples of solutions accepted in France, Finland, and Czech Republic are discussed. New trends in safety fundamentals and Integration Regulatory Review are presented

  2. Optimization of safety equipment outages improves safety

    International Nuclear Information System (INIS)

    Cepin, Marko

    2002-01-01

    Testing and maintenance activities of safety equipment in nuclear power plants are an important potential for risk and cost reduction. An optimization method is presented based on the simulated annealing algorithm. The method determines the optimal schedule of safety equipment outages due to testing and maintenance based on minimization of selected risk measure. The mean value of the selected time dependent risk measure represents the objective function of the optimization. The time dependent function of the selected risk measure is obtained from probabilistic safety assessment, i.e. the fault tree analysis at the system level and the fault tree/event tree analysis at the plant level, both extended with inclusion of time requirements. Results of several examples showed that it is possible to reduce risk by application of the proposed method. Because of large uncertainties in the probabilistic safety assessment, the most important result of the method may not be a selection of the most suitable schedule of safety equipment outages among those, which results in similarly low risk. But, it may be a prevention of such schedules of safety equipment outages, which result in high risk. Such finding increases the importance of evaluation speed versus the requirement of getting always the global optimum no matter if it is only slightly better that certain local one

  3. Nuclear Safety Culture & Leadership in Slovenske Elektrarne

    International Nuclear Information System (INIS)

    Janko, P.

    2016-01-01

    This presentation shows practically how nuclear safety culture is maintained and assessed in Slovenske elektrarne, supported by human performance program and leadership model. Safety is the highest priority and it must be driven by the Leaders in the field. Human Performance is key to safety and therefore key to our success. Safety Policy of our operating organization—licence holder, is in line with international best practices and nuclear technology is recognised as special and unique. All nuclear facilities adopt a clear safety policy and are operated with overriding priority to nuclear safety, the protection of nuclear workers, the general public and the environment from risk of harm. The focus is on nuclear safety, although the same principles apply to radiological safety, industrial safety and environmental safety. Safety culture is assessed regularly based (every two years) on eight principles for strong safety culture in nuclear utilities. Encourage excellence in all plant activities and to go beyond compliance with applicable laws and regulations. Adopt management approaches embodying the principles of Continuous Improvement and risk Management is never ending activity for us. (author)

  4. Safety class methodology

    International Nuclear Information System (INIS)

    Donner, E.B.; Low, J.M.; Lux, C.R.

    1992-01-01

    DOE Order 6430.1A, General Design Criteria (GDC), requires that DOE facilities be evaluated with respect to ''safety class items.'' Although the GDC defines safety class items, it does not provide a methodology for selecting safety class items. The methodology described in this paper was developed to assure that Safety Class Items at the Savannah River Site (SRS) are selected in a consistent and technically defensible manner. Safety class items are those in the highest of four categories determined to be of special importance to nuclear safety and, merit appropriately higher-quality design, fabrication, and industrial test standards and codes. The identification of safety class items is approached using a cascading strategy that begins at the 'safety function' level (i.e., a cooling function, ventilation function, etc.) and proceeds down to the system, component, or structure level. Thus, the items that are required to support a safety function are SCls. The basic steps in this procedure apply to the determination of SCls for both new project activities, and for operating facilities. The GDC lists six characteristics of SCls to be considered as a starting point for safety item classification. They are as follows: 1. Those items whose failure would produce exposure consequences that would exceed the guidelines in Section 1300-1.4, ''Guidance on Limiting Exposure of the Public,'' at the site boundary or nearest point of public access 2. Those items required to maintain operating parameters within the safety limits specified in the Operational Safety Requirements during normal operations and anticipated operational occurrences. 3. Those items required for nuclear criticality safety. 4. Those items required to monitor the release of radioactive material to the environment during and after a Design Basis Accident. Those items required to achieve, and maintain the facility in a safe shutdown condition 6. Those items that control Safety Class Item listed above

  5. Safety of nuclear fuel cycle facilities. Safety requirements

    International Nuclear Information System (INIS)

    2008-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific reference include aspects of nuclear fuel generation, storage, reprocessing and disposal. Contents: 1. Introduction; 2. The safety objective, concepts and safety principles; 3. Legal framework and regulatory supervision; 4. The management system and verification of safety; 5. Siting of the facility; 6. Design of the facility; 7. Construction of the facility; 8. Commissioning of the facility; 9. Operation of the facility; 10. Decommissioning of the facility; Appendix I: Requirements specific to uranium fuel fabrication facilities; Appendix II: Requirements specific to mixed oxide fuel fabrication facilities; Appendix III: Requirements specific to conversion facilities and enrichment facilities

  6. Nuclear safety policy statement in korea

    International Nuclear Information System (INIS)

    Kim, W.S.; Kim, H.J.; Choi, K.S.; Choi, Y.S.; Park, D.K.

    2006-01-01

    fixed. It includes 5 regulatory principles such as Independence, Openness, Clarity, Efficiency and Reliability. It also stipulates 14 safety policy directions in the areas such as maintaining highest nuclear safety level, consistent development of safety standards. improving regulatory competence, promoting safety culture, etc. The government's declaration of this new statement will show the strong commitment of nuclear safety and for enhancing transparency of safety regulation and also establishing public trust and confidence in nuclear safety. Incorporating safety policy directions suggested in this new statement, measures for safety enhancement in nuclear and radiation related facilities could be effectively implemented. As this safety policy statement embraces major safety policy directions for at least next 10 years, it will be used as a good basis of enhancing nuclear safety by regulator and licensees in the future

  7. Safety logic systems of PFBR

    International Nuclear Information System (INIS)

    Sambasivan, S. Ilango

    2004-01-01

    Full text : PFBR is provided with two independent, fast acting and diverse shutdown systems to detect any abnormalities and to initiate safety action. Each system consists of sensors, signal processing systems, logics, drive mechanisms and absorber rods. The absorber rods of the first system are Control and Safety Rods (CSR) and that of the second are called as Diverse Safety Rods (DSR). There are nine CSR and three DSR. While CSR are used for startup, control of reactor power, controlled shutdown and SCRAM, the DSR are used only for SCRAM. The respective drive mechanisms are called as CSRDM and DSRDM. Each of these two systems is capable of executing the shutdown satisfactorily with single failure criteria. Two independent safety logic systems based on diverse principles have been designed for the two shut down systems. The analog outputs of the sensors of Core Monitoring Systems comprising of reactor flux monitoring, core temperature monitoring, failed fuel detection and core flow monitoring systems are processed and converted into binary signals depending on their instantaneous values. Safety logic systems receive the binary signals from these core-monitoring systems and process them logically to protect the reactor against postulated initiating events. Neutronic and power to flow (P/Q) signals form the inputs to safety logic system-I and temperature signals are inputs to the safety logic system II. Failed fuel detection signals are processed by both the shut down systems. The two logic systems to actuate the safety rods are also based on two diverse designs and implemented with solid-state devices to meet all the requirements of safety systems. Safety logic system I that caters to neutronic and P/Q signals is designed around combinational logic and has an on-line test facility to detect struck at faults. The second logic system is based on dynamic logic and hence is inherently safe. This paper gives an overview of the two logic systems that have been

  8. Resolving conflicting safety cultures

    International Nuclear Information System (INIS)

    Slider, J.E.; Patterson, M.

    1993-01-01

    Several nuclear power plant sites have been wounded in the crossfire between two distinct corporate cultures. The traditional utility culture lies on one side and that of the nuclear navy on the other. The two corporate cultures lead to different perceptions of open-quotes safety culture.close quotes This clash of safety cultures obscures a very important point about nuclear plant operations: Safety depends on organizational learning. Organizational learning provides the foundation for a perception of safety culture that transcends the conflict between utility and nuclear navy cultures. Corporate culture may be defined as the knowledge, attitudes, and beliefs shared by employees of a given company. Safety culture is the part of corporate culture concerning shared attitudes and beliefs affecting individual or public safety. If the safety culture promotes behaviors that lead to greater safety, employees will tend to open-quotes do the right thingclose quotes even when circumstances and formal guidance alone do not ensure that actions will be correct. Safety culture has become particularly important to nuclear plant owners and regulators as they have sought to establish and maintain a high level of safety in today's plants

  9. Metrics design for safety assessment

    NARCIS (Netherlands)

    Luo, Yaping; van den Brand, M.G.J.

    2016-01-01

    Context:In the safety domain, safety assessment is used to show that safety-critical systems meet the required safety objectives. This process is also referred to as safety assurance and certification. During this procedure, safety standards are used as development guidelines to keep the risk at an

  10. Leadership and Safety Culture: Leadership for Safety

    International Nuclear Information System (INIS)

    Fischer, E.

    2016-01-01

    Following the challenge to operate Nuclear Power Plants towards operational excellence, a highly skilled and motivated organization is needed. Therefore, leadership is a valuable success factor. On the other hand a well-engineered safety orientated design of NPP’s is necessary. Once built, an NPP constantly requires maintenance, ageing management and lifetime modifications. E.ON tries to keep the nuclear units as close as possible to the state of the art of science and technology. Not at least a requirement followed by our German regulation. As a consequence of this we are continuously challenged to improve our units and the working processes using national and international operational experiences too. A lot of modifications are driven by our self and by regulators. That why these institutions — authorities and independent examiners—contribute significantly to the safety success. Not that it is easy all the day. The relationship between the regulatory body, examiners and the utilities should be challenging but also cooperative and trustful within a permanent dialog. To reach the common goal of highest standards regarding nuclear safety all parties have to secure a living safety culture. Without this attitude there is a higher risk that safety relevant aspects may stay undetected and room for improvement is not used. Nuclear operators should always be sensitized and follow each single deviation. Leaders in an NPP-organization are challenged to create a safety-, working-, and performance culture based on clear common values and behaviours, repeated and lived along all of our days to create a least a strong identity in the staffs mind to the value of safety, common culture and overall performance. (author)

  11. Safety study application guide

    International Nuclear Information System (INIS)

    1993-07-01

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly open-quotes lowclose quotes) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, open-quotes Technical Safety Requirements,close quotes and 5480.23, open-quotes Nuclear Safety Analysis Reports.close quotes A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis

  12. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    Science.gov (United States)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  13. Discussion on the safety classification of nuclear safety mechanical equipment

    International Nuclear Information System (INIS)

    Shen Wei

    2010-01-01

    The purpose and definition of the equipment safety classification in nuclear plant are introduced. The differences of several safety classification criterions are compared, and the object of safety classification is determined. According to the regulation, the definition and category of the safety functions are represented. The safety classification method, safety classification process, safety class interface, and the requirement for the safety class mechanical equipment are explored. At last, the relation of the safety classification between the mechanical and electrical equipment is presented, and the relation of the safety classification between mechanical equipment and system is also presented. (author)

  14. The safety of nuclear installations

    International Nuclear Information System (INIS)

    1993-01-01

    This Safety Fundamental publication sets out basic objectives, concepts and principles for ensuring safety that can be used both by the IAEA in its international assistance operations and by Member States in their national nuclear programmes. These Safety Fundamentals apply primarily to those nuclear installations in which the stored energy developed in certain situations could potentially results in the release of radioactive material from its designated location with the consequent risk of radiation exposure of people. These principles are applicable to a broad range of nuclear installations, but their detailed application will depend on the particular technology and the risks posed by it. In addition to nuclear power plants, such installations may include: research reactors and facilities, fuel enrichment, manufacturing and reprocessing plants; and certain facilities for radioactive waste treatment and storage

  15. Formal Safety versus Real Safety: Quantitative and Qualitative Approaches to Safety Culture – Evidence from Estonia

    Directory of Open Access Journals (Sweden)

    Järvis Marina

    2016-10-01

    Full Text Available This paper examines differences between formal safety and real safety in Estonian small and medium-sized enterprises. The results reveal key issues in safety culture assessment. Statistical analysis of safety culture questionnaires showed many organisations with an outstanding safety culture and positive safety attitudes. However, qualitative data indicated some important safety weaknesses and aspects that should be included in the process of evaluation of safety culture in organisations.

  16. Safety culture and public acceptance

    International Nuclear Information System (INIS)

    Mikhalevich, Alexander A.

    2002-01-01

    After the Chernobyl NPP accident a public acceptance has become a key factor in nuclear power development all over the world. Therefore, nuclear safety culture should be based not only on technical principles, responsibilities, supervision, regulatory provisions, emergency preparedness, but the public awareness of minimum risk during the operation and decommissioning of NPPs, radioactive waste management, etc. (author)

  17. Food and feed safety assessment

    NARCIS (Netherlands)

    Kuiper, H.A.; Paoletti, Claudia

    2015-01-01

    The general principles for safety and nutritional evaluation of foods and feed and the potential health risks associated with hazardous compounds are described as developed by the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) and further elaborated in the

  18. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  19. Reliability and safety engineering

    CERN Document Server

    Verma, Ajit Kumar; Karanki, Durga Rao

    2016-01-01

    Reliability and safety are core issues that must be addressed throughout the life cycle of engineering systems. Reliability and Safety Engineering presents an overview of the basic concepts, together with simple and practical illustrations. The authors present reliability terminology in various engineering fields, viz.,electronics engineering, software engineering, mechanical engineering, structural engineering and power systems engineering. The book describes the latest applications in the area of probabilistic safety assessment, such as technical specification optimization, risk monitoring and risk informed in-service inspection. Reliability and safety studies must, inevitably, deal with uncertainty, so the book includes uncertainty propagation methods: Monte Carlo simulation, fuzzy arithmetic, Dempster-Shafer theory and probability bounds. Reliability and Safety Engineering also highlights advances in system reliability and safety assessment including dynamic system modeling and uncertainty management. Cas...

  20. Safety advice sheets

    CERN Multimedia

    HSE Unit

    2013-01-01

    You never know when you might be faced with questions such as: when/how should I dispose of a gas canister? Where can I find an inspection report? How should I handle/store/dispose of a chemical substance…?   The SI section of the DGS/SEE Group is primarily responsible for safety inspections, evaluating the safety conditions of equipment items, premises and facilities. On top of this core task, it also regularly issues “Safety Advice Sheets” on various topics, designed to be of assistance to users but also to recall and reinforce safety rules and procedures. These clear and concise sheets, complete with illustrations, are easy to display in the appropriate areas. The following safety advice sheets have been issued so far: Other sheets will be published shortly. Suggestions are welcome and should be sent to the SI section of the DGS/SEE Group. Please send enquiries to general-safety-visits.service@cern.ch.

  1. Safety objectives for 2014

    CERN Multimedia

    HSE Unit

    2014-01-01

    This is the third year in which the CERN Management has presented annual safety objectives for the Organization, the “HSE Objectives”.   The HSE objectives for 2014, which were announced by the Director-General at his traditional New Year’s address to the staff and were presented at the first Enlarged Directorate meeting of the year, have been drawn up and agreed in close collaboration between the DSOs, the HSE Unit and the DG himself. From safety in the workplace to radiation and environmental protection, the document emphasises that “Safety is a priority for CERN” and that safety policy is a key element in how the Organization is run. And, like all policies, it generates objectives that “serve as a general framework for action”. The HSE objectives are broken down into the following fields: occupational health and safety on sites and in the workplace, radiation protection, radiation safety, environmental protection, emerge...

  2. Thermal reactor safety

    International Nuclear Information System (INIS)

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport

  3. Radiation safety audit

    International Nuclear Information System (INIS)

    Kadadunna, K.P.I.K.; Mod Ali, Noriah

    2008-01-01

    Audit has been seen as one of the effective methods to ensure harmonization in radiation protection. A radiation safety audit is a formal safety performance examination of existing or future work activities by an independent team. Regular audit will assist the management in its mission to maintain the facilities environment that is inherently safe for its employees. The audits review the adequacy of facilities for the type of use, training, and competency of workers, supervision by authorized users, availability of survey instruments, security of radioactive materials, minimization of personnel exposure to radiation, safety equipment, and the required record keeping. All approved areas of use are included in these periodic audits. Any deficiency found in the audit shall be corrected as soon as possible after they are reported. Radiation safety audit is a proactive approach to improve radiation safety practices and identify and prevent any potential radiation accident. It is an excellent tool to identify potential problem to radiation users and to assure that safety measures to eliminate or reduce the problems are fully considered. Radiation safety audit will help to develop safety culture of the facility. It is intended to be the cornerstone of a safety program designed to aid the facility, staff and management in maintaining a safe environment in which activities are carried out. The initiative of this work is to evaluate the need of having a proper audit as one of the mechanism to manage the safety using ionizing radiation. This study is focused on the need of having a proper radiation safety audit to identify deviations and deficiencies of radiation protection programmes. It will be based on studies conducted on several institutes/radiation facilities in Malaysia in 2006. Steps will then be formulated towards strengthening radiation safety through proper audit. This will result in a better working situation and confidence in the radiation protection community

  4. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  5. Thermal reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  6. Food Safety & Standards

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ An increasing number of people have realized that food safety is an important issue for public health. It not only concerns public health and safety, but also has direct influence on national economic progress and social development. The development and implementation of food safety standards play a vital role in protecting public health, as well as in standardizing and facilitating the sound development of food production and business.

  7. Environment, safety and health

    International Nuclear Information System (INIS)

    Luzianovich, L.Ch.; Fardeau, J.C.; Darras, M.

    2000-01-01

    Environment, safety and health were the three topics discussed by the WOC 8 working group of the worldwide gas congress. Environment protection has become a major preoccupation and constraint for natural gas industry at the dawn of the new millennium. It is closely linked with the safety of installation and with the health of workmen who exploit or use natural gas energy: methane emissions, health and safety in gas industry, environment management and evaluation. (J.S.)

  8. Advanced fuels safety comparisons

    International Nuclear Information System (INIS)

    Grolmes, M.A.

    1977-01-01

    The safety considerations of advanced fuels are described relative to the present understanding of the safety of oxide fueled Liquid Metal Fast Breeder Reactors (LMFBR). Safety considerations important for the successful implementation of advanced fueled reactors must early on focus on the accident energetics issues of fuel coolant interactions and recriticality associated with core disruptive accidents. It is in these areas where the thermal physical property differences of the advanced fuel have the greatest significance

  9. Safety standards for near surface disposal and the safety case and supporting safety assessment for demonstrating compliance with the standards

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The report presents the safety standards for near surface disposal (ICRP guidance and IAEA standards) and the safety case and supporting safety assessment for demonstrating compliance with the standards. Special attention is paid to the recommendations for disposal of long-lived solid radioactive waste. The requirements are based on the principle for the same level of protection of future individuals as for the current generation. Two types of exposure are considered: human intrusion and natural processes and protection measures are discussed. Safety requirements for near surface disposal are discussed including requirements for protection of human health and environment, requirements or safety assessments, waste acceptance and requirements etc

  10. The Safety Case and Safety Assessment for the Disposal of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    This Safety Guide provides guidance and recommendations on meeting the safety requirements in respect of the safety case and supporting safety assessment for the disposal of radioactive waste. The safety case and supporting safety assessment provide the basis for demonstration of safety and for licensing of radioactive waste disposal facilities and assist and guide decisions on siting, design and operations. The safety case is also the main basis on which dialogue with interested parties is conducted and on which confidence in the safety of the disposal facility is developed. This Safety Guide is relevant for operating organizations preparing the safety case as well as for the regulatory body responsible for developing the regulations and regulatory guidance that determine the basis and scope of the safety case. Contents: 1. Introduction; 2. Demonstrating the safety of radioactive waste disposal; 3. Safety principles and safety requirements; 4. The safety case for disposal of radioactive waste; 5. Radiological impact assessment for the period after closure; 6. Specific issues; 7. Documentation and use of the safety case; 8. Regulatory review process.

  11. Human factors in safety assessment. Safety culture assessment

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang; Wang Yiqun; Huang Weigang

    1996-01-01

    This paper analyses the present conditions and problems in enterprises safety assessment, and introduces the characteristics and effects of safety culture. The authors think that safety culture must be used as a 'soul' to form the pattern of modern safety management. Furthermore, they propose that the human safety and synthetic safety management assessment in a system should be changed into safety culture assessment. Finally, the assessment indicators are discussed

  12. Structural safety - Is the safety margin measurable

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-01-01

    In ensuring the structural safety of the nuclear components one must be aware of the uncertainties related to the material deorientation, loadings and other operational conditions, geometrical dimensions as well as the service environment. Furthermore, the validation of the analysis tools and procedures is of great importance in overall safety assessment of a pressure retaining component. In order to identify and quantify the concerns and risks arising from the uncertainties in the safety related issue intensive research is being carried out all over the world, in particular, on the ageing, plant life extension and management of old nuclear power plants. The presentation includes a general survey of the factors relevant to the assessment of safe and reliable operation of a nuclear component throughout its planned service life. Certain aspects are outlined based on the research work being carried out at the Technical Research Centre of Finland (VTT)(orig.)

  13. Enhancing operational safety

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, J S

    1997-09-01

    The presentation briefly considers the following aspects concerning enhancing operational safety of NPP: licensed control room supervision, reactivity changes, personnel access to control room, simulator training.

  14. FOOD SAFETY TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory develops screening assays, tests and modifies biosensor equipment, and optimizes food safety testing protocols for the military and civilian sector...

  15. Lift truck safety review

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter's Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given

  16. Safety performance indicators program

    International Nuclear Information System (INIS)

    Vidal, Patricia G.

    2004-01-01

    In 1997 the Nuclear Regulatory Authority (ARN) initiated a program to define and implement a Safety Performance Indicators System for the two operating nuclear power plants, Atucha I and Embalse. The objective of the program was to incorporate a set of safety performance indicators to be used as a new regulatory tool providing an additional view of the operational performance of the nuclear power plants, improving the ability to detect degradation on safety related areas. A set of twenty-four safety performance indicators was developed and improved throughout pilot implementation initiated in July 1998. This paper summarises the program development, the main criteria applied in each stage and the results obtained. (author)

  17. Nuclear power safety economics

    International Nuclear Information System (INIS)

    Legasov, V.A.; Demin, V.F.; Shevelev, Ya.V.

    1984-01-01

    The existing conceptual and methodical basis for the decision-making process insuring safety of the nuclear power and other (industrial and non-industrial) human activities is critically analyzed. Necessity of development a generalized economic safety analysis method (GESAM) is shown. Its purpose is justifying safety measures. Problems of GESAM development are considered including the problem of costing human risk. A number of suggestions on solving them are given. Using the discounting procedure in the assessment of risk or detriment caused by harmful impact on human health is substantiated. Examples of analyzing some safety systems in the nuclear power and other spheres of human activity are given

  18. Patient Safety Culture

    DEFF Research Database (Denmark)

    Kristensen, Solvejg

    of health care professional’s behaviour, habits, norms, values, and basic assumptions related to patient care; it is the way things are done. The patient safety culture guides the motivation, commitment to and know-how of the safety management, and how all members of a work place interact. This thesis......Patient safety is highly prioritised in the Danish health care system, never the less, patients are still exposed to risk and harmed every day. Implementation of a patient safety culture has been suggested an effective mean to protect patients against adverse events. Working strategically...

  19. Lift truck safety review

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  20. Safety balance: Analysis of safety systems; Bilans de surete: analyse par les organismes de surete

    Energy Technology Data Exchange (ETDEWEB)

    Delage, M; Giroux, C

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses.

  1. MDEP Common Position No DICWG-09. Common position on safety design principles and supporting information for the overall I and C architecture

    International Nuclear Information System (INIS)

    2015-01-01

    The overall I and C architecture establishes the assignment of plant functions to individual I and C systems and the specification of the interface requirements of the individual I and C systems, including the layout of communications between individual I and C systems. Modern digital I and C (DI and C) is more integrated and performs more functions (e.g. self - tests, enhanced data communication) than did the earlier generations of I and C systems. This increased integration and functionality can contribute to more complexity. A well designed overall I and C architecture will ensure a proper implementation of the relevant safety principles (e.g. defense-in-depth concept) in order to ensure safe operation, and to facilitate the safety demonstration. The Digital Instrumentation and Controls Working Group (DICWG) has agreed that a common position on this topic is warranted given the increase of use of Digital I and C in new reactor designs, its safety implications, and the need to develop a common understanding from the perspectives of regulatory authorities. This action follows the DICWG examination of the regulatory requirements of the participating members and of relevant industry standards and IAEA documents. The DICWG proposes a common position based on its recent experience with the new reactor application reviews and operating plant issues

  2. European protection principles against external hazards by means of Emergency Power Supply and Control Safety System Building in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gallinat, Dipl Ing [Max Aicher Engineering GmbH, Freilassing (Germany)

    2016-10-15

    One of the most important nuclear power plant safety requirements is a redundant and independent power system. This requires such a design of emergency power systems that failure of one will not adversely impact the other. External hazards of natural origin or linked to human activity could potentially affect plant safety. The general objective of the design provisions is to ensure that the safety functions of the systems and components required to return the plant to a safe shutdown state and to prevent and limit radioactive release are not adversely affected. As external hazards are site dependent, Technical Guidelines specify that 'it is not necessary to take all of the hazards in a standardized design; such external hazards as external flooding, drought, ice formation and toxic, corrosive or combustible gases may be dealt with only for a specific plant, on a plant specific basis'. In accordance with the Technical Guidelines, external hazards are taken into consideration at the design stage consistently with internal events or hazards. The basic design principle is to protect against external hazards in accordance with the Technical Guidelines using a 'load case' procedure.

  3. Safety case plan 2008

    International Nuclear Information System (INIS)

    2008-07-01

    Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy) Posiva is preparing to submit the construction license application for a spent fuel repository by the end of the year 2012. The long-term safety section supporting the license application is based on a safety case, which, according to the internationally adopted definition, is a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository. In 2005, Posiva presented a plan to prepare such a safety case. The present report provides a revised plan of the safety case contents mentioned above. The update of the safety case plan takes into account the recommendations made by the Radiation and Nuclear Safety Authority (STUK) about improving the focus and further developing the plan. Accordingly, particular attention is given to the quality management of the safety case work, the management of uncertainties and the scenario methodology. The quality management is based on the ISO 9001:2000 standard process thinking enhanced with special features arising from STUK's YVL Guides. The safety case production process is divided into four main sub-processes. The conceptualisation and methodology sub-process defines the framework for the assessment. The critical data handling and modelling sub-process links Posiva's main technical and scientific activities to the production of the safety case. The assessment sub-process analyses the consequences of the evolution of the disposal system in various scenarios, classified either as part of the expected evolution or as disruptive scenarios. The compliance and confidence sub-process is responsible for final evaluation of compliance of the assessment results with the regulatory criteria and the overall confidence in the safety case. As in the previous safety case plan, the safety case will be based on several reports, but

  4. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  5. Highway Safety Program Manual: Volume 3: Motorcycle Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 3 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on aspects of motorcycle safety. The purpose and specific objectives of a State motorcycle safety program are outlined. Federal authority in the highway safety area and general policies…

  6. Safety Training: Basic Safety and Access Courses

    CERN Multimedia

    Antonella Vignes

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various existing on-site hazards, and how to recognize and avoid them. Safety course changes The current organization for basic safety courses is changing. There will be two main modifications: the organization of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organizational changes This concerns the existing basic safety training, currently called level1, level2 and level3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, attendees will systematically follow the...

  7. Safety Training: basic safety and access courses

    CERN Multimedia

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various hazards existing on site, and how to recognise and avoid them. Safety course changes The current organisation of basic safety courses is changing. There will be two main modifications: the organisation of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organisational changes This concerns the existing basic safety training, currently called level 1, level 2 and level 3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, participants will systematically follow...

  8. Workplace Safety and Health Topics: Safety & Prevention

    Science.gov (United States)

    ... 1, 2018 Content source: National Institute for Occupational Safety and Health Education and Information Division Email Recommend Tweet YouTube Instagram Listen Watch RSS ABOUT About CDC Jobs Funding LEGAL Policies Privacy FOIA No Fear Act OIG 1600 Clifton Road Atlanta , GA 30329-4027 USA 800-CDC-INFO ( ...

  9. Compatibility of safety and security

    International Nuclear Information System (INIS)

    Jalouneix, J.

    2013-01-01

    Nuclear safety means the achievement of proper operating conditions, prevention of accidents or mitigation of accident consequences, resulting in protection of workers, the public and the environment from undue radiation hazards while nuclear security means the prevention and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear material. Nuclear safety and nuclear security present large similarities in their aim as in their methods and are mutually complementary in the field of protection with regard to the risk of sabotage. However they show specific attributes in certain areas which leads to differences in their implementation. For instance security culture must integrate deterrence and confidentiality while safety culture implies transparency and open dialogue. Two important design principles apply identically for safety and security: the graded approach and the defense in depth. There are also strong similarities in operating provisions: -) a same need to check the availability of the equipment, -) a same need to treat the experience feedback, or -) a same need to update the basic rules. There are also strong similarities in emergency management, for instance the elaboration of emergency plans and the performance of periodic exercises. Activities related to safety of security of an installation must be managed by a quality management system. For all types of nuclear activities and facilities, a well shared safety culture and security culture is the guarantee of a safe and secure operation. The slides of the presentation have been added at the end of the paper

  10. Laser safety and practice

    International Nuclear Information System (INIS)

    Low, K.S.

    1995-01-01

    Lasers are finding increasing routine applications in many areas of science, medicine and industry. Though laser radiation is non-ionizing in nature, the usage of high power lasers requires specific safety procedures. This paper briefly outlines the properties of laser beams and various safety procedures necessary in their handling and usage. (author)

  11. Safety in cardiac surgery

    NARCIS (Netherlands)

    Siregar, S.

    2013-01-01

    The monitoring of safety in cardiac surgery is a complex process, which involves many clinical, practical, methodological and statistical issues. The objective of this thesis was to measure and to compare safety in cardiac surgery in The Netherlands using the Netherlands Association for

  12. Safety in Aquaculture

    Science.gov (United States)

    Durborow, Robert M.; Myers, Melvin L.

    2016-01-01

    In this article, occupational safety interventions for agriculture-related jobs, specifically in aquaculture, are reviewed. Maintaining quality of life and avoiding economic loss are two areas in which aquaculturists can benefit by incorporating safety protocols and interventions on their farms. The information in this article is based on farm…

  13. Seeking a safety culture

    International Nuclear Information System (INIS)

    Lee, T.

    1993-01-01

    Human organisational failure has been shown to play a significant role in major accidents world-wide in both the nuclear and non-nuclear industries. A recent report called Organising for Safety, published by The Health and Safety Commission, suggests that the nuclear industry should give organisational factors the same emphasis as it does the reduction of equipment failures and individual error. (Author)

  14. Bicycle Safety in Action.

    Science.gov (United States)

    National Commission on Safety Education, Washington, DC.

    This material was designed to assist schools in teaching bicycle safety. As the population grows and competition for road space increases, it is more imperative than ever that we concentrate attention on the need for caution among pupil cyclists. The pamphlet: (1) discusses the role of bicycle safety in classroom instruction and in student…

  15. Introducing Laboratory Safety.

    Science.gov (United States)

    DeLorenzo, Ronald

    1985-01-01

    Presents a simple, 10-item quiz designed to make students aware that they must learn laboratory safety. The items include questions on acid/base accidents, several types of fire extinguishers, and safety glassses. Answers and some explanations are included. (DH)

  16. Safety Behaviors and Stuttering

    Science.gov (United States)

    Lowe, Robyn; Helgadottir, Fjola; Menzies, Ross; Heard, Rob; O'Brian, Sue; Packman, Ann; Onslow, Mark

    2017-01-01

    Purpose: Those who are socially anxious may use safety behaviors during feared social interactions to prevent negative outcomes. Safety behaviors are associated with anxiety maintenance and poorer treatment outcomes because they prevent fear extinction. Social anxiety disorder is often comorbid with stuttering. Speech pathologists reported in a…

  17. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    2000-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  18. Idaho Safety Manual.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This manual is intended to help teachers, administrators, and local school boards develop and institute effective safety education as a part of all vocational instruction in the public schools of Idaho. This guide is organized in 13 sections that cover the following topics: introduction to safety education, legislation, levels of responsibility,…

  19. Modelling blood safety

    NARCIS (Netherlands)

    Janssen, M.P.

    2010-01-01

    This thesis describes the development and application of methods and models to support decision making on safety measures aimed at preventing the transmission of infections by blood donors. Safety measures refer to screening tests for blood donors, quarantine periods for blood plasma, or methods for

  20. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Ro, Seong Ki; Shin, Hee Seong; Park, Seong Won; Shin, Young Joon.

    1997-06-01

    Nuclear criticality safety guide was described for handling, transportation and storage of nuclear fissile materials in this report. The major part of the report was excerpted frp, TID-7016(revision 2) and nuclear criticality safety written by Knief. (author). 16 tabs., 44 figs., 5 refs

  1. Nuclear power reactor safety

    International Nuclear Information System (INIS)

    Pon, G.A.

    1976-10-01

    This report is based on the Atomic Energy of Canada Limited submission to the Royal Commission on Electric Power Planning on the safety of CANDU reactors. It discusses normal operating conditions, postulated accident conditions, and safety systems. The release of radioactivity under normal and accident conditions is compared to the limits set by the Atomic Energy Control Regulations. (author)

  2. SRP reactor safety evolution

    International Nuclear Information System (INIS)

    Rankin, D.B.

    1984-01-01

    The Savannah River Plant reactors have operated for over 100 reactor years without an incident of significant consequence to on or off-site personnel. The reactor safety posture incorporates a conservative, failure-tolerant design; extensive administrative controls carried out through detailed operating and emergency written procedures; and multiple engineered safety systems backed by comprehensive safety analyses, adapting through the years as operating experience, changes in reactor operational modes, equipment modernization, and experience in the nuclear power industry suggested. Independent technical reviews and audits as well as a strong organizational structure also contribute to the defense-in-depth safety posture. A complete review of safety history would discuss all of the above contributors and the interplay of roles. This report, however, is limited to evolution of the engineered safety features and some of the supporting analyses. The discussion of safety history is divided into finite periods of operating history for preservation of historical perspective and ease of understanding by the reader. Programs in progress are also included. The accident at Three Mile Island was assessed for its safety implications to SRP operation. Resulting recommendations and their current status are discussed separately at the end of the report. 16 refs., 3 figs

  3. Introduction to safety theory

    International Nuclear Information System (INIS)

    Meyna, A.

    1982-01-01

    After a general introduction to safety theory, safety characteristics are defined and quantified. This is followed by a calculation of the safety characteristics of simple, safety-relevant systems in general and in consideration of common-mode errors. The qualitative and quantitative role of human errors is discussed for various models, and a simple man-machine model is developed for investigation of common-mode errors and human error. The main part of the paper deals with safety analysis in complex systems. After a general review, the common inductive and deductive methods of analysis are presented and commented on and their fields of application discussed. Analytical and simulation codes are presented as methods of evaluation for big, complex event trees - i.e. ''hazard trees in the sense of safety engineering (as a subset of safety relevance). After a basic classification and mathematical formulation of Markovian processes, the author shows that these may be used successfully for calculation of safety characteristics if transition rates are constant and if the number of system states is limited. (orig./RW) [de

  4. Nuclear safety in perspective

    International Nuclear Information System (INIS)

    Andersson, K.; Sjoeberg, B.M.D.; Lauridsen, K.; Wahlstroem, B.

    2002-06-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicating on the subject in society. The project, which has been built around a number of seminars, was supported by limited research in three sub-projects: 1) Risk assessment, 2) Safety analysis, and 3) Strategies for safety management. The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems for regulatory oversight are described in the nuclear area and also, to widen the perspective, for other industrial areas. Transparency and public participation are described as key elements in good risk communication, and case studies are given. Environmental Impact Assessment and Strategic Environmental Assessment are described as important overall processes within which risk communication can take place. Safety culture, safety indicators and quality systems are important concepts in the nuclear safety area are very useful, but also offer important challenges for the future. They have been subject to special attention in the project. (au)

  5. Safety analysis for 'Fugen'

    International Nuclear Information System (INIS)

    1997-10-01

    The improvement of safety in nuclear power stations is an important proposition. Therefore also as to the safety evaluation, it is important to comprehensively and systematically execute it by referring to the operational experience and the new knowledge which is important for the safety throughout the period of use as well as before the construction and the start of operation of nuclear power stations. In this report, the results when the safety analysis for ''Fugen'' was carried out by referring to the newest technical knowledge are described. As the result, it was able to be confirmed that the safety of ''Fugen'' has been secured by the inherent safety and the facilities which were designed for securing the safety. The basic way of thinking on the safety analysis including the guidelines to be conformed to is mentioned. As to the abnormal transient change in operation and accidents, their definition, the events to be evaluated and the standards for judgement are reported. The matters which were taken in consideration at the time of the analysis are shown. The computation programs used for the analysis were REACT, HEATUP, LAYMON, FATRAC, SENHOR, LOTRAC, FLOOD and CONPOL. The analyses of the abnormal transient change in operation and accidents are reported on the causes, countermeasures, protective functions and results. (K.I.)

  6. Summertime Health and Safety

    Centers for Disease Control (CDC) Podcasts

    This CDC series features topics on staying safe and healthy during the summer, whether on the road or on the water. Podcasts provide tips for general audiences on avoiding water-related injuries, driving safely, safety when outdoors, and celebrating safety on the 4th of July.

  7. Aviation safety and ICAO

    NARCIS (Netherlands)

    Huang, Jiefang

    2009-01-01

    The thesis addresses the issue of aviation safety under the rule of law. Aviation safety is a global concern. While air transport is considered a safe mode of travel, it is susceptible to inherent risks of flight, the use of force, and terrorist acts. Consequently, within the framework of the

  8. The principle of safety evaluation in medicinal drug - how can toxicology contribute to drug discovery and development as a multidisciplinary science?

    Science.gov (United States)

    Horii, Ikuo

    2016-01-01

    Pharmaceutical (drug) safety assessment covers a diverse science-field in the drug discovery and development including the post-approval and post-marketing phases in order to evaluate safety and risk management. The principle in toxicological science is to be placed on both of pure and applied sciences that are derived from past/present scientific knowledge and coming new science and technology. In general, adverse drug reactions are presented as "biological responses to foreign substances." This is the basic concept of thinking about the manifestation of adverse drug reactions. Whether or not toxic expressions are extensions of the pharmacological effect, adverse drug reactions as seen from molecular targets are captured in the category of "on-target" or "off-target", and are normally expressed as a biological defense reaction. Accordingly, reactions induced by pharmaceuticals can be broadly said to be defensive reactions. Recent molecular biological conception is in line with the new, remarkable scientific and technological developments in the medical and pharmaceutical areas, and the viewpoints in the field of toxicology have shown that they are approaching toward the same direction as well. This paper refers to the basic concept of pharmaceutical toxicology, the differences for safety assessment in each stage of drug discovery and development, regulatory submission, and the concept of scientific considerations for risk assessment and management from the viewpoint of "how can multidisciplinary toxicology contribute to innovative drug discovery and development?" And also realistic translational research from preclinical to clinical application is required to have a significant risk management in post market by utilizing whole scientific data derived from basic and applied scientific research works. In addition, the significance for employing the systems toxicology based on AOP (Adverse Outcome Pathway) analysis is introduced, and coming challenges on precision

  9. Nuclear Safety. 1997

    International Nuclear Information System (INIS)

    1998-01-01

    A quick review of the nuclear safety at EDF may be summarized as follows: - the nuclear safety at EDF maintains at a rather good standard; - none of the incidents that took place has had any direct impact upon safety; - the availability remained good; - initiation of the floor 4 reactor generation (N4 unit - 1450 MW) ensued without major difficulties (the Civaux 1 NPP has been coupled to the power network at 24 december 1997); - the analysis of the incidents interesting from the safety point of view presents many similarities with earlier ones. Significant progress has been recorded in promoting actively and directly a safe operation by making visible, evident and concrete the exertion of the nuclear operation responsibility and its control by the hierarchy. The report develops the following chapters and subjects: 1. An overview on 1997; 1.1. The technical issues of the nuclear sector; 1.2. General performances in safety; 1.3. The main incidents; 1.4. Wastes and radiation protection; 2. Nuclear safety management; 2.1. Dynamics and results; 2.2. Ameliorations to be consolidated; 3. Other important issues in safety; 3.1. Probabilistic safety studies; 3.2. Approach for safety re-evaluation; 3.3. The network safety; 3.4. Crisis management; 3.5. The Lifetime program; 3.6. PWR; 3.7. Documentation; 3.8. Competence; 4. Safety management in the future; 4.1. An open future; 4.2. The fast neutron NPP at Creys-Malville; 4.3. Stabilization of the PWR reference frame; 4.4. Implementing the EURATOM directive regarding the radiation protection standards; 4.5. Development of biomedical research and epidemiological studies; 4.6. New regulations concerning the liquid and gaseous effluents; 5. Visions of an open future; 5.1. Alternative views upon safety ay EDF; 5.2. Safety authority; 5.3. International considerations; 5.4. What happens abroad; 5.5. References from non-nuclear domain. Four appendices are added referring to policy of safety management, policy of human factors in NPPs

  10. Safety Assessment for Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    In the past few decades, international guidance has been developed on methods for assessing the safety of predisposal and disposal facilities for radioactive waste. More recently, it has been recognized that there is also a need for specific guidance on safety assessment in the context of decommissioning nuclear facilities. The importance of safety during decommissioning was highlighted at the International Conference on Safe Decommissioning for Nuclear Activities held in Berlin in 2002 and at the First Review Meeting of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management in 2003. At its June 2004 meeting, the Board of Governors of the IAEA approved the International Action Plan on Decommissioning of Nuclear Facilities (GOV/2004/40), which called on the IAEA to: ''establish a forum for the sharing and exchange of national information and experience on the application of safety assessment in the context of decommissioning and provide a means to convey this information to other interested parties, also drawing on the work of other international organizations in this area''. In response, in November 2004, the IAEA launched the international project Evaluation and Demonstration of Safety for Decommissioning of Facilities Using Radioactive Material (DeSa) with the following objectives: -To develop a harmonized approach to safety assessment and to define the elements of safety assessment for decommissioning, including the application of a graded approach; -To investigate the practical applicability of the methodology and performance of safety assessments for the decommissioning of various types of facility through a selected number of test cases; -To investigate approaches for the review of safety assessments for decommissioning activities and the development of a regulatory approach for reviewing safety assessments for decommissioning activities and as a basis for regulatory decision making; -To provide a forum

  11. International views on nuclear safety

    International Nuclear Information System (INIS)

    Birkhofer, A.

    2002-01-01

    Safety has always been an important objective in nuclear technology. Starting with a set of sound physical principles and prudent design approaches, safety concepts have gradually been refined and cover now a wide range of provisions related to design, quality and operation. Research, the evaluation of operating experiences and probabilistic risk assessments constitute an essential basis and international co-operation plays a significant role in that context. Concerning future developments a major objective for new reactor concepts, such as the EPR, is to practically exclude a severe core damage accident with large scale consequences outside the plant. (author)

  12. Formalizing Probabilistic Safety Claims

    Science.gov (United States)

    Herencia-Zapana, Heber; Hagen, George E.; Narkawicz, Anthony J.

    2011-01-01

    A safety claim for a system is a statement that the system, which is subject to hazardous conditions, satisfies a given set of properties. Following work by John Rushby and Bev Littlewood, this paper presents a mathematical framework that can be used to state and formally prove probabilistic safety claims. It also enables hazardous conditions, their uncertainties, and their interactions to be integrated into the safety claim. This framework provides a formal description of the probabilistic composition of an arbitrary number of hazardous conditions and their effects on system behavior. An example is given of a probabilistic safety claim for a conflict detection algorithm for aircraft in a 2D airspace. The motivation for developing this mathematical framework is that it can be used in an automated theorem prover to formally verify safety claims.

  13. Integrated Safety in Design

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken; Jørgensen, Kirsten

    2014-01-01

    An on-going research project investigates the inclusion of health and safety considerations in the design phase as a means to achieve a higher level of health and safety in the construction industry. Moreover, the approach is coupled to the overall quality efforts. Two architectural firms and two...... consulting engineering firms are project participants. The hypothesis is that health and safety problems in execution can be prevented through better planning in the early stages of the construction processes and that accidents are prevented by providing safety. In the first stage of the research project...... a theoretical framework is developed from a combination of existing literature on health and safety and a mapping of existing practices based on interviews in all four companies. The interviews revealed that the basic knowledge on OHS among architects and engineers is limited. Also currently designers typically...

  14. HTGR safety philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Joksimovic, V.; Fisher, C. R. [General Atomic Co., San Diego, CA (USA)

    1981-01-15

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity.

  15. Safety culture in transport

    International Nuclear Information System (INIS)

    Decobert, V.

    1998-01-01

    'Safety culture' is a wording that appeared first in 1986, during the evaluation of what happened during the Tchernobyl accident. Safety culture is defined in the IAEA 75-INSAG-4 document as the characteristics and attitude which, in organizations and in men behaviours, make that questions related to safety of nuclear power plants benefits, in priority, of the attention that they need in function of their importance. The INSAG-4 document identifies three different elements necessary to the development of the safety culture: commitment of the policy makers, commitment of the managers of the industry, and commitment of individuals. This paper gives examples to show how safety culture is existing in the way Transnucleaire performs the activities in the field of transport of nuclear materials. (author)

  16. Seismic Safety Guide

    International Nuclear Information System (INIS)

    Eagling, D.G.

    1985-01-01

    The Seismic Safety Guide provides facilities managers with practical guidelines for administering a comprehensive earthquake safety program. Most facilities managers, unfamiliar with earthquake engineering, tend to look for answers in techniques more sophisticated than required to solve the actual problems in earthquake safety. Often the approach to solutions to these problems is so academic, legalistic, and financially overwhelming that mitigation of actual seismic hazards simply does not get done in a timely, cost-effective way. The objective of the Guide is to provide practical advice about earthquake safety so that managers and engineers can get the job done without falling into common pitfalls, prolonged diagnosis, and unnecessary costs. It is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, non-structural elements, life lines, and risk management. 5 references

  17. Operational and environmental safety

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The responsibility of the DOE Office of Operational and Environmental Safety is to assure that DOE-controlled activities are conducted in a manner that will minimize risks to the public and employees and will provide protection for property and the environment. The program supports the various energy technologies by identifying and resolving safety problems; developing and issuing safety policies, standards, and criteria; assuring compliance with DOE, Federal, and state safety regulations; and establishing procedures for reporting and investigating accidents in DOE operations. Guidelines for the radiation protection of personnel; radiation monitoring at nuclear facilities; an assessment of criticality accidents by fault tree analysis; and the preparation of environmental, safety, and health standards applicable to geothermal energy development are discussed

  18. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  19. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joksimovic, V.; Fisher, C.R.

    1981-01-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity. (author)

  20. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joskimovic, V.; Fisher, C.R.

    1980-08-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the US. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity

  1. Preliminary Study on the Revision of Nuclear Safety Policy Statement

    International Nuclear Information System (INIS)

    Lee, Y. E.; Lee, S. H.; Chang, H. S.; Choi, K. S.; Jung, S. J.

    2011-01-01

    Nuclear safety policy in Korea is currently declared in the Nuclear Safety Charter as the highest tier document and safety principles and directions are announced in the Nuclear Safety Policy Statement. As the circumstances affecting on the nuclear safety policy change, it needs to revise the Statement. This study aims to develop the revised Nuclear Safety Policy Statement to declare that securing safety is a prerequisite to the utilization of nuclear energy, and that all workers in nuclear industry and regulatory body must adhere to the principle of priority to safety. As a result, two different types of revision are being prepared as of August. One is based on the spirit of Nuclear Safety Charter as well as the direction of future-oriented safety policies including the changes in the environment after declaration of the Statement. The other is to declare the fundamental safety objective and safety principles as the top philosophy of national nuclear safety policy by adopting the '10 Safety Principles in IAEA Safety Fundamental' instead of the current Charter. Both versions of revision are subject to further in-depth discussion. However once the revision is finalized and declared, it would be useful to accomplish effectively the organizational responsibilities and to enhance the public confidence in nuclear safety by performing the regulatory activities in a planned and systematic manner and promulgating the government's dedication to priority to safety

  2. Assessment of Safety Culture

    International Nuclear Information System (INIS)

    Bilic Zabric, T.; Kavsek, D.

    2006-01-01

    A strong safety culture leads to more effective conduct of work and a sense of accountability among managers and employees, who should be given the opportunity to expand skills by training. The resources expended would thus result in tangible improvements in working practices and skills, which encourage further improvement of safety culture. In promoting an improved safety culture, NEK has emphasized both national and organizational culture with an appropriate balance of behavioural sciences and quality management systems approaches. In recent years there has been particular emphasis put on an increasing awareness of the contribution that human behavioural sciences can make to develop good safety practices. The purpose of an assessment of safety culture is to increase the awareness of the present culture, to serve as a basis for improvement and to keep track of the effects of change or improvement over a longer period of time. There is, however, no single approach that is suitable for all purposes and which can measure, simultaneously, all the intangible aspects of safety culture, i.e. the norms, values, beliefs, attitudes or the behaviours reflecting the culture. Various methods have their strengths and weaknesses. To prevent significant performance problems, self-assessment is used. Self-assessment is the process of identifying opportunities for improvement actively or, in some cases, weaknesses that could cause more serious errors or events. Self-assessments are an important input to the corrective action programme. NEK has developed questionnaires for safety culture self-assessment to obtain information that is representative of the whole organization. Questionnaires ensure a greater degree of anonymity, and create a less stressful situation for the respondent. Answers to questions represent the more apparent and conscious values and attitudes of the respondent. NEK proactively co-operates with WANO, INPO, IAEA in the areas of Safety Culture and Human

  3. Does the concept of safety culture help or hinder systems thinking in safety?

    Science.gov (United States)

    Reiman, Teemu; Rollenhagen, Carl

    2014-07-01

    The concept of safety culture has become established in safety management applications in all major safety-critical domains. The idea that safety culture somehow represents a "systemic view" on safety is seldom explicitly spoken out, but nevertheless seem to linger behind many safety culture discourses. However, in this paper we argue that the "new" contribution to safety management from safety culture never really became integrated with classical engineering principles and concepts. This integration would have been necessary for the development of a more genuine systems-oriented view on safety; e.g. a conception of safety in which human, technological, organisational and cultural factors are understood as mutually interacting elements. Without of this integration, researchers and the users of the various tools and methods associated with safety culture have sometimes fostered a belief that "safety culture" in fact represents such a systemic view about safety. This belief is, however, not backed up by theoretical or empirical evidence. It is true that safety culture, at least in some sense, represents a holistic term-a totality of factors that include human, organisational and technological aspects. However, the departure for such safety culture models is still human and organisational factors rather than technology (or safety) itself. The aim of this paper is to critically review the various uses of the concept of safety culture as representing a systemic view on safety. The article will take a look at the concepts of culture and safety culture based on previous studies, and outlines in more detail the theoretical challenges in safety culture as a systems concept. The paper also presents recommendations on how to make safety culture more systemic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Improving safety on rural local and tribal roads safety toolkit.

    Science.gov (United States)

    2014-08-01

    Rural roadway safety is an important issue for communities throughout the country and presents a challenge for state, local, and Tribal agencies. The Improving Safety on Rural Local and Tribal Roads Safety Toolkit was created to help rural local ...

  5. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    Science.gov (United States)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  6. Safety Climate, Perceived Risk, and Involvement in Safety Management

    OpenAIRE

    Kouabenan , Dongo Rémi; Ngueutsa , Robert ,; Safiétou , Mbaye

    2015-01-01

    International audience; This article examines the relationship between safety climate, risk perception and involvement in safety management by first-line managers (FLM). Sixty-three FLMs from two French nuclear plants answered a questionnaire measuring perceived workplace safety climate, perceived risk, and involvement in safety management. We hypothesized that a positive perception of safety climate would promote substantial involvement in safety management, and that this effect would be str...

  7. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This publication supports the Safety Requirements on the Safety of Nuclear Power Plants: Design. This Safety Guide was prepared on the basis of a systematic review of all the relevant publications including the Safety Fundamentals, Safety of Nuclear Power Plants: Design, current and ongoing revisions of other Safety Guides, INSAG reports and other publications that have addressed the safety of nuclear power plants. This Safety Guide also provides guidance for Contracting Parties to the Convention on Nuclear Safety in meeting their obligations under Article 14 on Assessment and Verification of Safety. The Safety Requirements publication entitled Safety of Nuclear Power Plants: Design states that a comprehensive safety assessment and an independent verification of the safety assessment shall be carried out before the design is submitted to the regulatory body. This publication provides guidance on how this requirement should be met. This Safety Guide provides recommendations to designers for carrying out a safety assessment during the initial design process and design modifications, as well as to the operating organization in carrying out independent verification of the safety assessment of new nuclear power plants with a new or already existing design. The recommendations for performing a safety assessment are suitable also as guidance for the safety review of an existing plant. The objective of reviewing existing plants against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The methods and the recommendations of this Safety Guide can also be used by regulatory bodies for the conduct of the regulatory review and assessment. Although most recommendations of this Safety Guide are general and applicable to all types of nuclear reactors, some specific recommendations and examples apply mostly to water cooled reactors. Terms such as 'safety assessment', 'safety analysis' and 'independent

  8. Complementary safety assessments - Report by the French Nuclear Safety Authority

    International Nuclear Information System (INIS)

    2011-12-01

    As an immediate consequence of the Fukushima accident, the French Authority of Nuclear Safety (ASN) launched a campaign of on-site inspections and asked operators (mainly EDF, AREVA and CEA) to make complementary assessments of the safety of the nuclear facilities they manage. The approach defined by ASN for the complementary safety assessments (CSA) is to study the behaviour of nuclear facilities in severe accidents situations caused by an off-site natural hazard according to accident scenarios exceeding the current baseline safety requirements. This approach can be broken into 2 phases: first conformity to current design and secondly an approach to the beyond design-basis scenarios built around the principle of defence in depth. 38 inspections were performed on issues linked to the causes of the Fukushima crisis. It appears that some sites have to reinforce the robustness of the heat sink. The CSA confirmed that the processes put into place at EDF to detect non-conformities were satisfactory. The complementary safety assessments demonstrated that the current seismic margins on the EDF nuclear reactors are satisfactory. With regard to flooding, the complementary safety assessments show that the complete reassessment carried out following the flooding of the Le Blayais nuclear power plant in 1999 offers the installations a high level of protection against the risk of flooding. Concerning the loss of electrical power supplies and the loss of cooling systems, the analysis of EDF's CSA reports showed that certain heat sink and electrical power supply loss scenarios can, if nothing is done, lead to core melt in just a few hours in the most unfavourable circumstances. As for nuclear facilities that are not power or experimental reactors, some difficulties have appeared to implement the CSA approach that was initially devised for reactors. Generally speaking, ASN considers that the safety of nuclear facilities must be made more robust to improbable risks which are not

  9. French PWR Safety Philosophy

    International Nuclear Information System (INIS)

    Conte, M. M.

    1986-01-01

    The first 900 MWe units, built under the American Westinghouse licence and with reference to the U. S. regulation, were followed by 28 standardized units, C P1 and C P2 series. Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. As early as 1976, this experience was taken into account by French Safety organisms to discuss, with Electricite de France, the safety options for the planned 1300 MWe units, P4 and P4 series. In 1983, the new reactor scheduled, Ni4 series 1400 MWe, is a totally French design which satisfies the French regulations and other French standards and codes. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach each of them having possibilities and limits. Increasing knowledge and lessons learned from operating experience have contributed to the French safety philosophy improvement. The methodology now applied to safety evaluation develops a new facet of the in depth defense concept by taking highly unlikely events into consideration, by developing the search of safety consistency of the design, and by completing the deterministic approach by the probabilistic one

  10. Nuclear safety. Improvement programme

    International Nuclear Information System (INIS)

    2000-01-01

    In this brochure the improvement programme of nuclear safety of the Mochovce NPP is presented in detail. In 1996, a 'Mochovce NPP Nuclear Safety Improvement Programme' was developed in the frame of unit 1 and 2 completion project. The programme has been compiled as a continuous one, with the aim to reach the highest possible safety level at the time of commissioning and to establish good preconditions for permanent safety improvement in future. Such an approach is in compliance with the world's trends of safety improvement, life-time extension, modernisation and nuclear station power increase. The basic document for development of the 'Programme' is the one titled 'Safety Issues and their Ranking for WWER 440/213 NPP' developed by a group of IAEA experts. The following organisations were selected for solution of the safety measures: EUCOM (Consortium of FRAMATOME, France, and SIEMENS, Germany); SKODA Prague, a.s.; ENERGOPROJEKT Prague, a.s. (EGP); Russian organisations associated in ATOMENERGOEXPORT; VUJE Trnava, a.s

  11. Does competition influence safety?

    International Nuclear Information System (INIS)

    Pamme, H.

    2000-01-01

    Competition in the deregulated electricity market does not leave nuclear power plants unaffected. Operators seek to run their plants at maximum availability and with optimized cost structures so that specific generating costs are minimized. The 'costs of safety', with their fixed-cost character, are elements of this cost structure. Hence the question whether safety is going to suffer under the cost pressure on the market. The study shows that the process of economic optimization does not permit cost minimization for its own sake in the area of operating costs which can be influenced by management or are 'avoidable'. The basis of assessment rather must be potential risks which could entail losses of availability. Prophylactic investments made in order to avoid losses of availability to a large extent also imply unchanged or even higher levels of safety. Economic viability and safety thus are closely correlated. Competition in a deregulated marekt so far has not done any direct harm to plant safety. An even more efficient use of scarce funds and, hopefully, a tolerable political environment should allow the safety level of nuclear power plants to be upheld, and safety culture to be maintained, also in the future. (orig.) [de

  12. Development of fusion safety standards

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Petti, D.A.; Dinneen, G.A.; Herring, J.S.; DeLooper, J.; Levine, J.D.; Gouge, M.J.

    1996-01-01

    Two new U.S. Department of Energy (DOE) standards have been prepared to assist in the design and regulation of magnetic fusion facilities. They are DOE-STD-6002-96, 'Safety of Magnetic Fusion Facilities - Requirements,' and DOE-STD-6003-96 'Safety of Magnetic Fusion Facilities - Guidance.' The first standard sets forth requirements, mostly based on the Code of Federal Regulations, deemed necessary for the safe design and operation of fusion facilities and a set of safety principles to use in the design. The second standard provides guidance on how to meet the requirements identified in DOE-STD-6002-96. It is written specifically for a facility such as the International Thermonuclear Experimental Reactor (ITER) in the DOE regulatory environment. As technical standards, they are applicable only to the extent that compliance with these standards is included in the contracts of the developers. 7 refs., 1 fig

  13. Radiation Safety of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Hussein, A.Z.

    2009-01-01

    The wide spread of Electromagnetic Waves (EMW) through the power lines, multimedia, communications, devices, appliances, etc., are well known. The probable health hazards associated with EMW and the radiation safety criteria are to be reviewed. However, the principles of the regulatory safety are based on radiation protection procedure, intervention to combat the relevant risk and to mitigate consequences. The oscillating electric magnetic fields (EMF) of the electromagnetic radiation (EMR) induce electrical hazards. The extremely high power EMR can cause fire hazards and explosions of pyrotechnic (Rad Haz). Biological hazards of EMF result as dielectric heat, severe burn, as well as the hazards of eyes. Shielding is among the technical protective measures against EMR hazards. Others are limitation of time of exposure and separation distance apart of the EMR source. Understanding and safe handling of the EMR sources are required to feel safety.

  14. Management of construction safety at KKNPP site

    International Nuclear Information System (INIS)

    Khare, P.K.

    2016-01-01

    Construction is considered as one of the most hazardous activities owing to the number of accidents and injuries. At KKNPP, management of industrial safety has been envisaged since the preliminary stage of construction planning, including design aspects. The governing principles of safety management are evolved from the Factories Act, 1948, the Atomic Energy(Factories) Rules, 1996, AERB safety guidelines on Control of works (2011) and Corporate HSE policy of NPCIL (2014). Numerous risk assessment and hazard control measures are adopted consistently to ensure a safe work environment during the construction, which includes Job Hazard Analysis, work permit through Computerized Maintenance Management System, safety procedures, exclusive safety training facility for the contractor's workmen, safety motivational measures, safety surveillance and reporting through Safety Related Deficiencies Management System. Assessment of efficacy of safety management system is continuously done through safety audits and observations are being circulated and discussed in committee meetings. Fire safety is also being taken care of since inception of project work. Well-equipped fire station with trained fire fighters was made available since the beginning as per AERB safety standard on fire protection system for Nuclear facilities. Fire prevention measures specific to the work are implemented during all activities. (author)

  15. Operating experience: safety perspective

    International Nuclear Information System (INIS)

    Piplani, Vivek; Krishnamurthy, P.R.; Kumar, Neeraj; Upadhyay, Devendra

    2015-01-01

    Operating Experience (OE) provides valuable information for improving NPP safety. This may include events, precursors, deviations, deficiencies, problems, new insights to safety, good practices, lessons and corrective actions. As per INSAG-10, an OE program caters as a fundamental means for enhancing the defence-in-depth at NPPs and hence should be viewed as ‘Continuous Safety Performance Improvement Tool’. The ‘Convention on Nuclear Safety’ also recognizes the OE as a tool of high importance for enhancing the NPP safety and its Article 19 mandates each contracting party to establish an effective OE program at operating NPPs. The lessons drawn from major accidents at Three Mile Island, Chernobyl and Fukushima Daiichi NPPs had prompted nuclear stalwarts to change their safety perspective towards NPPs and to frame sound policies on issues like safety culture, severe accident prevention and mitigation. An effective OE program, besides correcting current/potential problems, help in proactively improving the NPP design, operating and maintenance procedures, practices, training, etc., and thus plays vital role in ensuring safe and efficient operation of NPPs. Further it enhances knowledge with regard to equipment operating characteristics, system performance trends and provides data for quantitative and qualitative safety analysis. Besides all above, an OE program inculcates a learning culture in the organisation and thus helps in continuously enhancing the expertise, technical competency and knowledge base of its staff. Nuclear and Radiation Facilities in India are regulated by Atomic Energy Regulatory Board (AERB). Operating Plants Safety Division (OPSD) of AERB is involved in managing operating experience activities. This paper provides insights about the operating experience program of OPSD, AERB (including its on-line data base namely OPSD STAR) and its utilisation in improving the regulations and safety at Indian NPPs/projects. (author)

  16. Safety shutdown separators

    Science.gov (United States)

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  17. French PWR safety philosophy

    International Nuclear Information System (INIS)

    Conte, M.

    1986-05-01

    Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach, each of them having possibilities and limits. As a consequence of the global risk objective set in 1977 for nuclear reactors, safety analysis was extended to the evaluation of events more complex than the conventional ones, and later to the evaluation of the feasibility of the offsite emergency plans in case of severe accidents

  18. Annual Safety Report 1981

    International Nuclear Information System (INIS)

    1982-09-01

    A safety report from Section K (Nuclear Physics) of the Dutch National Institute for Nuclear and High Energy Physics is presented for 1981. The report begins with general matters concerning safety policy at NIKHEF, licences and expenditure. Works accidents (none of them radiological) are detailed and accident prevention considered. The measurement programme for neutron radiation in the vicinity of the accelerator is described and the results are discussed. The means and results of personnel dosimetry are also presented. The report is concluded with a list of publications concerning safety aspects at NIKHEF. (C.F.)

  19. Safety philosophy in Plowshare

    International Nuclear Information System (INIS)

    Thalgott, R.H.

    1969-01-01

    A nuclear device can be detonated safely when it can ascertained that the detonation can be accomplished without injury to people, either directly or indirectly, and without unacceptable damage to the ecological system and natural or man made structures. This philosophy has its origin in the nuclear weapons testing program dating back to the first detonation in 1945 and applies without reservation to PIowshare projects. This paper therefore will outline the mechanics employed by government in implementing this safety philosophy. The talk will describe those type of actions taken by safety oriented organizations and committees to assure that necessary and desirable safety reviews are conducted. (author)

  20. Managing electrical safety

    CERN Document Server

    Wiggins, James H, Jr

    2001-01-01

    Managing Electrical Safety provides an overview of electric basics, hazards, and established standards that enables you to understand the hazards you are likely to encounter in your workplace. Focusing on typical industrial environments-which utilize voltages much higher than household or office circuits-the author identifies the eight key components of an electrical safety program and examines each using a model safety management process. You'll learn how to identify electrical hazards, how to prescribe necessary electrical Personal Protective Equipment, how to ensure that equipment is de-ene

  1. Nuclear safety chains

    International Nuclear Information System (INIS)

    Robbins, M.C.; Eames, G.F.; Mayell, J.R.

    1981-01-01

    An original scheme has been developed for expressing the complex interrelationships associated with the engineered safeguards provided for a nuclear power station. This management tool, based upon network diagrams called Nuclear Safety Chains, looks at the function required of a particular item of safety plant, defines all of the vital supplies and support features necessary for successful operation, and expresses them in visual form, to facilitate analysis and optimisation for operations and maintenance staff. The safety chains are confined to manual schemes at present, although they are designed to be compatible with modern computer techniques. Their usefulness with any routine maintenance planning application on high technology plant is already being appreciated. (author)

  2. Safety philosophy in Plowshare

    Energy Technology Data Exchange (ETDEWEB)

    Thalgott, R H [Nevada Operations Office, U.S. Atomic Energy Commission (United States)

    1969-07-01

    A nuclear device can be detonated safely when it can ascertained that the detonation can be accomplished without injury to people, either directly or indirectly, and without unacceptable damage to the ecological system and natural or man made structures. This philosophy has its origin in the nuclear weapons testing program dating back to the first detonation in 1945 and applies without reservation to PIowshare projects. This paper therefore will outline the mechanics employed by government in implementing this safety philosophy. The talk will describe those type of actions taken by safety oriented organizations and committees to assure that necessary and desirable safety reviews are conducted. (author)

  3. Radiation and waste safety

    International Nuclear Information System (INIS)

    1997-01-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. Nuclear radiation is a powerful source of benefit to mankind, whether applied in the field of medicine, agriculture, environmental management or elsewhere. The health effects of radiation - both natural and artificial - are relatively well understood and can be minimized through careful safety measures and practices. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Safety Department aiming at establishing Basic Safety Standard requirements in all Member States. (IAEA)

  4. Food Safety Concerns

    Institute of Scientific and Technical Information of China (English)

    HUYONG

    2004-01-01

    In China, there is an old saying:food is the first necessity of humans. The main concern of the Chinese used to be the security of the food supply rather than the safety of the food itself. However,after a long time fighting food shortages,China became self-sufficient in food in 1995. At this time, the country began for the first time to regulate food safety. Yet China has still not established a legal systern efficient in ensuring this safety. Many problems are rooted in the administration regime and China's priority of economic development.

  5. Nuclear regulation and safety

    International Nuclear Information System (INIS)

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed

  6. Nuclear safety in France

    International Nuclear Information System (INIS)

    Servant, J.

    1979-12-01

    The main areas of nuclear safety are considered in this paper, recalling the laws and resolutions in force and also the appropriate authority in each case. The following topics are reviewed: radiological protection, protection of workers, measures to be taken in case of an accident, radioactive effluents, impact on the environment of non-nuclear pollution, nuclear plant safety, protection against malicious acts, control and safeguard of nuclear materials, radioisotopes, transport of radioactive substances, naval propulsion, waste management, nuclear plant decommissioning and export of nuclear equipment and materials. Finally, the author describes the role of the general Secretariat of the Interdepartmental Committee on Nuclear Safety

  7. AGI Safety Literature Review

    OpenAIRE

    Everitt, Tom; Lea, Gary; Hutter, Marcus

    2018-01-01

    The development of Artificial General Intelligence (AGI) promises to be a major event. Along with its many potential benefits, it also raises serious safety concerns (Bostrom, 2014). The intention of this paper is to provide an easily accessible and up-to-date collection of references for the emerging field of AGI safety. A significant number of safety problems for AGI have been identified. We list these, and survey recent research on solving them. We also cover works on how best to think of ...

  8. LTE for public safety

    CERN Document Server

    Liebhart, Rainer; Wong, Curt; Merkel , Jürgen

    2015-01-01

    The aim of the book is to educate government agencies, operators, vendors and other regulatory institutions how LTE can be deployed to serve public safety market and offer regulatory / public safety features. It is written in such a way that it can be understood by both technical and non-technical personnel with just introductory knowledge in wireless communication. Some sections and chapters about public safety services offered by LTE network are intended to be understood by anyone with no knowledge in wireless communication.

  9. OSART Independent Safety Culture Assessment (ISCA) Guidelines

    International Nuclear Information System (INIS)

    2016-01-01

    in this publication follows the same principles as the IAEA methodology for safety culture self-assessments, but has one more essential data collection source, as it includes the OSART team’s data findings in the analysis. This publication can also be used whenever independent safety culture assessments are performed as a standalone or as add-on modules for other types of safety review service. Nevertheless, an integrated approach helps to ensure diversity of competences, and so the assessment addresses all aspects of nuclear safety. This publication updates IAEA Services Series No. 16, SCART Guidelines

  10. INTEGRATED SAFETY MANAGEMENT SYSTEM IN AIR TRAFFIC SERVICES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2014-06-01

    Full Text Available The article deals with the analysis of the researches conducted in the field of safety management systems.Safety management system framework, methods and tools for safety analysis in Air Traffic Control have been reviewed.Principles of development of Integrated safety management system in Air Traffic Services have been proposed.

  11. Safety Tips: Basketball (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Safety Tips: Basketball KidsHealth / For Parents / Safety Tips: Basketball ... make sure they follow these tips. Why Basketball Safety Is Important Fortunately, very few basketball injuries are ...

  12. Safety culture in Ignalina NPP, regulatory view

    Energy Technology Data Exchange (ETDEWEB)

    Maksimovas, G [VATESI (Lithuania)

    1997-09-01

    The presentation describes how success on the way to a high level Safety Culture in Ignalina NPP may be achieved by daily, well motivated activities with good attitude and proper management participation, ensuring the development and proper implementation of Safety Culture principles within the activities of Operational organization of Ignalina NPP.

  13. Safety culture in the nuclear field

    International Nuclear Information System (INIS)

    2005-09-01

    The council of IAEA governors ratified twelve elemental principles of physical protection of nuclear matters and installations. These principles will be included in the future updating of the international convention on the physical protection. The F basic principle proposes a definition of the safety culture and recommends that its implementation and its perenniality to be a reality in the concerned organisms.It appears as necessary to precise the concept of safety culture. The twelve principles are as follow: A State liability, B liability during international transports, C legislative and regulatory framework, D competent authority, E operators liability, F safety culture, G threats, H graduated approach, I deep defence, J assurance of the quality, K emergency plan, L confidentiality. The present document is complementary of INSAG-4, 1991 (safety series number 75, INSAG-4 safety culture, a report by the international nuclear safety advisory group, IAEA, 1991) that presents a concept of safety culture. It proposes also, in a particular chapter, the comparisons( common points and specificities) between safety culture and security culture. (N.C.)

  14. Safety culture in Ignalina NPP, regulatory view

    International Nuclear Information System (INIS)

    Maksimovas, G.

    1997-01-01

    The presentation describes how success on the way to a high level Safety Culture in Ignalina NPP may be achieved by daily, well motivated activities with good attitude and proper management participation, ensuring the development and proper implementation of Safety Culture principles within the activities of Operational organization of Ignalina NPP

  15. Winning public confidence in radiation safety standards

    International Nuclear Information System (INIS)

    Skelcher, B.W.

    1982-01-01

    Evaluations using cost/benefit analysis and the ALARA principle should take account of psychological as well as material considerations. Safety is a basic human need which has to be met. It is also subjective and therefore has to be understood by the individual. The professional health physicist has a duty to see that radiation safety is understood by the general public. (author)

  16. 77 FR 44174 - Procedures for Safety Investigations

    Science.gov (United States)

    2012-07-27

    ... of safety investigations. The rule is intended to state clearly the Board's policy and procedures for... statutory authority, when appropriate, following standard safety investigation policies, practices, and... has adhered to the regulatory philosophy and the applicable principles of regulation as set forth in...

  17. The spirit of safety: oriental safety culture

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J. [Science Council of Japan, Tokyo (Japan)

    1996-09-01

    Failure of a large system causes disasters. However, after an accident, the causes are frequently attributed to human error when the operators do not survive the accident. It might be difficult to prove that the real cause of the accident is human error. Process decision program chart (PDPC) would be a useful tool in indicating the causes of an accident since it can clearly show that if the operator made the correct choice, the safety of the system could be maintained. The case of the incident of the nuclear reactor at Mihama unit 2 is indicated by PDPC in which the sequence of events and the operations are indicated in this paper together with the safe operation. One can easily understand the cause of the incident and the way to avoid it. Also, PDPC for the Three Mile Island (TMI) accident is shown. Initially, in order to prevent an accident, mental training and safety culture is most important. The oriental safety culture based on Zentoism, a school of Buddhism is discussed. (orig.)

  18. The spirit of safety: oriental safety culture

    International Nuclear Information System (INIS)

    Kondo, J.

    1996-01-01

    Failure of a large system causes disasters. However, after an accident, the causes are frequently attributed to human error when the operators do not survive the accident. It might be difficult to prove that the real cause of the accident is human error. Process decision program chart (PDPC) would be a useful tool in indicating the causes of an accident since it can clearly show that if the operator made the correct choice, the safety of the system could be maintained. The case of the incident of the nuclear reactor at Mihama unit 2 is indicated by PDPC in which the sequence of events and the operations are indicated in this paper together with the safe operation. One can easily understand the cause of the incident and the way to avoid it. Also, PDPC for the Three Mile Island (TMI) accident is shown. Initially, in order to prevent an accident, mental training and safety culture is most important. The oriental safety culture based on Zentoism, a school of Buddhism is discussed. (orig.)

  19. Facilities management and industrial safety

    International Nuclear Information System (INIS)

    2003-06-01

    This book lists occupation safety and health acts with purpose, definition and management system of safety and health, enforcement ordinance of occupation safety and health acts and enforcement regulations such as general rules, safety and health cover, system of management on safety and health, regulation of management on safety and health, regulations of harmfulness and protection of danger, heath management for workers, supervisor and command and inspection of machine and equipment.

  20. A review of human factors principles for the design and implementation of medication safety alerts in clinical information systems

    OpenAIRE

    Phansalkar, Shobha; Edworthy, Judy; Hellier, Elizabeth; Seger, Diane L; Schedlbauer, Angela; Avery, Anthony J; Bates, David W

    2010-01-01

    The objective of this review is to describe the implementation of human factors principles for the design of alerts in clinical information systems. First, we conduct a review of alarm systems to identify human factors principles that are employed in the design and implementation of alerts. Second, we review the medical informatics literature to provide examples of the implementation of human factors principles in current clinical information systems using alerts to provide medication decisio...

  1. System safety education focused on system management

    Science.gov (United States)

    Grose, V. L.

    1971-01-01

    System safety is defined and characteristics of the system are outlined. Some of the principle characteristics include role of humans in hazard analysis, clear language for input and output, system interdependence, self containment, and parallel analysis of elements.

  2. Safety goals and safety culture opening plenary. 2. Safety Regulation Implemented by Gosatomnadzor of Russia

    International Nuclear Information System (INIS)

    Gutsalov, A.T.; Bukrinsky, A.M.

    2001-01-01

    This paper describes principles and approaches used by Gosatomnadzor of Russia in establishing safety goals. The link between safety goals and safety culture is demonstrated. The paper also contains information on nuclear regulatory activities in Russia. Regulatory documents of Gosatomnadzor of Russia do not provide precise definitions of safety goals as IAEA documents INSAG-3 or INSAG-12 do. However, overall activities of Gosatomnadzor of Russia are directed to the achievement of these safety goals, as Gosatomnadzor of Russia is a federal executive authority responsible for the regulation of nuclear and radiation safety in accordance with the Russian Federal Law 'On the Use of Nuclear Energy'. Thus, in the Statement of the Policy of the Russian Regulatory Authority, enacted in 1992, it was established that the overall activities of Gosatomnadzor of Russia are directed to the achievement of the main goal. This goal is to establish conditions that ensure that personnel, the public, and the environment are protected from unacceptable radiation and nonproliferation of nuclear materials. The practical application of such a method as given by the publication of Statements of Policy of Gosatomnadzor of Russia may be considered as a safety culture element. 'General Provisions of NPP Safety Ensuring' (OPB-88/ 97) is a regulatory document of the highest level in the hierarchy of regulatory documents of Gosatomnadzor of Russia. It establishes quantitative values of safety goals as do the foregoing IAEA documents. Thus, this regulatory document sets up the following: 1. The estimated total probability of severe accidents should not exceed 10 5 /reactor.yr. 2. The estimated probability of the worst possible radioactive release to the environment specified in the standards should not exceed 10 -7 /reactor.yr in the case of severe beyond-design-basis accidents. 3. The probability of a reactor vessel failure should not exceed 10 -7 /reactor.yr. The foregoing values are somehow

  3. Systems Safety and Engineering Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Systems Safety and Engineering Division conducts engineering, research, and analysis to improve transportation safety, capacity, and resiliency. We provide...

  4. Airfield Ground Safety

    National Research Council Canada - National Science Library

    Petrescu, Jon

    2000-01-01

    .... The system developed under AGS, called the Ground Safety Tracking and Reporting System, uses multisensor data fusion from in-pavement inductive loop sensors to address a critical problem affecting out nation's airports: runway incursions...

  5. First Aid and Safety

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español First Aid & Safety Keeping your child safe is your top ... do in an emergency, how to stock a first-aid kit, where to call for help, and more. ...

  6. Vaccine Safety Datalink

    Science.gov (United States)

    The Vaccine Safety Datalink is part of the National Immunization Program within the Centers for Disease Control and Prevention and was started in recognition of gaps in the scientific knowledge of rare vaccine side effects.

  7. Organizational Culture and Safety

    Science.gov (United States)

    Adams, Catherine A.

    2003-01-01

    '..only a fool perseveres in error.' Cicero. Humans will break the most advanced technological devices and override safety and security systems if they are given the latitude. Within the workplace, the operator may be just one of several factors in causing accidents or making risky decisions. Other variables considered for their involvement in the negative and often catastrophic outcomes include the organizational context and culture. Many organizations have constructed and implemented safety programs to be assimilated into their culture to assure employee commitment and understanding of the importance of everyday safety. The purpose of this paper is to examine literature on organizational safety cultures and programs that attempt to combat vulnerability, risk taking behavior and decisions and identify the role of training in attempting to mitigate unsafe acts.

  8. Safety Commission databases support

    CERN Document Server

    Petit, S; CERN. Geneva. TS Department

    2005-01-01

    A collaboration project between the Safety Commission (SC) and the Controls, Safety and Engineering databases group (TS/CSE) started last year. The aim of this collaboration is to transfer several SC applications from their local environments onto the D7i-MTF EDMS framework, for which the TS/CSE group is responsible. Different domains of activity and projects have been defined in the areas of equipment management, safety inspections, accidents and risks management. Priorities have been established in collaboration with SC. This paper presents the new Safety Inspections Management system (SIM) which will be put in production before the summer 2005 and reviews the constraints of both the users and the development and operational framework that needed to be taken into account. The technical solutions adopted to assure a successful production start-up and operation of the SIM system are described. Progress on other on-going projects and plans for the next year are also reported.

  9. Connected vehicle applications : safety.

    Science.gov (United States)

    2016-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  10. Agricultural Health and Safety

    Science.gov (United States)

    ... that occur while living, working, or visiting agricultural work environments (primarily farms) are considered agricultural injuries, whether or ... of Labor's Occupational Safety & Health Administration (OSHA) supports safe and healthful working conditions by setting and enforcing standards and by ...

  11. Safety in paediatric imaging

    International Nuclear Information System (INIS)

    Carter, D.; Filice, I.; Murray, D.; Thomas, K.

    2006-01-01

    Those of us working in a dedicated paediatric environment are aware of the important safety issues with regard to paediatrics. Our goal when working with paediatric patients, the goal is to obtain the best quality images while keeping patients safe and their distress to a minimum. This article will discuss some of the issues regarding paediatric safety in a diagnostic imaging department, including radiation doses and the risk to paediatric patients, reducing medication errors, safe sedation practice and environmental safety. Also discussed are some conditions requiring special consideration to maintain patient safety such as epiglottitis and suspected child abuse. Promotion of a patient/family-centered care system will create an environment of trust where parents or guardians will know that their children are being well cared for in a safe, effective environment. (author)

  12. Archetypes for Organisational Safety

    Science.gov (United States)

    Marais, Karen; Leveson, Nancy G.

    2003-01-01

    We propose a framework using system dynamics to model the dynamic behavior of organizations in accident analysis. Most current accident analysis techniques are event-based and do not adequately capture the dynamic complexity and non-linear interactions that characterize accidents in complex systems. In this paper we propose a set of system safety archetypes that model common safety culture flaws in organizations, i.e., the dynamic behaviour of organizations that often leads to accidents. As accident analysis and investigation tools, the archetypes can be used to develop dynamic models that describe the systemic and organizational factors contributing to the accident. The archetypes help clarify why safety-related decisions do not always result in the desired behavior, and how independent decisions in different parts of the organization can combine to impact safety.

  13. State Traffic Safety Information

    Data.gov (United States)

    Department of Transportation — The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic...

  14. Safety aspects of siting

    International Nuclear Information System (INIS)

    Rosen, M.

    1976-01-01

    Outline of parameters to be considered in site selection, radiation safety, and mechanisms of radiation release. Radiation doses in tablular form for areas at various distances from the plant. (HP) [de

  15. Prediction of Safety Incidents

    Data.gov (United States)

    National Aeronautics and Space Administration — Safety incidents, including injuries, property damage and mission failures, cost NASA and contractors thousands of dollars in direct and indirect costs. This project...

  16. Nuclear health and safety

    International Nuclear Information System (INIS)

    1990-04-01

    This report summarizes the responsiveness of DOE and contractors to findings contained in DOE technical safety appraisals and environmental surveys. These appraisals and surveys have been done at DOE facilities and sites to find out the extent of the environmental, safety, and health problems and to prioritize them for corrective action. As of January 1990, DOE computer data showed over 1,700 safety and health problems and almost 1,300 environmental problems. The majority of these problems, however, have not yet been corrected. GAO also looked at the extent to which DOE has developed a computerized tracking system to monitor the status of its environmental, safety, and health problems. GAO found that the computer system lacks important information, such as various field office and independent appraisals. Inclusion of this information would provide a more complete picture of the problems at the site

  17. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  18. Injury & Safety Report - Legacy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Injury & Safety Report is a mandatory post trip legal document observers fill out to report any injuries they have incurred, illnesses they have had, or...

  19. NASA's Software Safety Standard

    Science.gov (United States)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  20. Maine highway safety plan

    Science.gov (United States)

    2010-01-01

    Each September 1, the MeBHS must provide NHTSA a comprehensive plan to reduce : traffic crashes and resulting deaths, injuries and property damage. The Highway Safety : Plan (HSP) serves as Maines application for available federal funds for these ...

  1. Reactor safety systems

    International Nuclear Information System (INIS)

    Kafka, P.

    1975-01-01

    The spectrum of possible accidents may become characterized by the 'maximum credible accident', which will/will not happen. Similary, the performance of safety systems in a multitude of situations is sometimes simplified to 'the emergency system will/will not work' or even 'reactors are/ are not safe'. In assessing safety, one must avoid this fallacy of reducing a complicated situation to the simple black-and-white picture of yes/no. Similarly, there is a natural tendency continually to improve the safety of a system to assure that it is 'safe enough'. Any system can be made safer and there is usually some additional cost. It is important to balance the increased safety against the increased costs. (orig.) [de

  2. Fire Safety Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all fire safety deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection...

  3. Practicing Fireworks Safety

    Science.gov (United States)

    ... Numbers — Infographic Five Steps to Safer Champagne Celebrations Fireworks Eye Safety Leer en Español: Lesiones oculares causadas ... professionals this year. Real People, Real Injuries from Fireworks Stacy: Woman’s Vision Saved After Devastating Fireworks Injury ...

  4. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  5. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  6. Safety of Nuclear Power Plants: Commissioning and Operation. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the requirements to be met to ensure the safe operation of nuclear power plants. It takes into account developments in areas such as long term operation of nuclear power plants, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication

  7. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  8. Safety considerations of PWR's

    International Nuclear Information System (INIS)

    Arnold, W.H. Jr.

    1977-01-01

    The safety of the central station pressurized water reactor is well established and substantiated by its excellent operating record. Operating data from 55 reactors of this type have established a record of safe operating history unparalleled by any modern large scale industry. The 186 plants under construction require a continuing commitment to maintain this outstanding record. The safety of the PWR has been further verified by the recently completed Reactor Safety Study (''Rasmussen'' Report). Not only has this study confirmed the exceptionally low risk associated with PWR operation, it has also introduced a valuable new tool in the decision making process. PWR designs, utilizing the philosophy of defense in depth, provide the bases for evaluating margins of safety. The design of the reactor coolant system, the containment system, emergency core cooling system and other related systems and components provide substantial margins of safety under both normal and postulated accident conditions even considering simultaneous effects of earthquakes and other environmental phenomena. Margins of safety in the assessment of various postulated accident conditions, with emphasis on the postulated loss of reactor coolant accident (LOCA), have been evaluated in depth as exemplified by the comprehensive ECCS rulemaking hearings followed by imposition of very conservative Nuclear Regulatory Commission requirements. When evaluated on an engineering best estimate approach, the significant margins to safety for a LOCA become more apparent. Extensive test programs have also substantiated margins to safety limits. These programs have included both separate effects and systems tests. Component testing has also been performed to substantiate performance levels under adverse combinations of environmental stress. The importance of utilizing past experience and of optimizing the deployment of incremental resources is self evident. Recent safety concerns have included specific areas such

  9. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1983-12-01

    The semiannual progress report 1983/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1983 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. (orig./RW) [de

  10. Bracebridge dam safety presentation

    Energy Technology Data Exchange (ETDEWEB)

    Kulchycky, Vince [Bracebridge Generation Ltd. (Canada)

    2011-07-01

    In Bracebridge, Ontario, hydroelectric generators have been in use since 1901. Bracebridge Generation is now upgrading the Wilson's Falls unit from 600kW to 2900kW. Bracebridge Generation addressed public safety with an independent audit and signage, fencing, booms and buoys installed. Unfortunately these measures did not prevent a recent drowning at the utility's site. More widespread warnings and safety education were seen as measures to stop people from swimming on the utility's property.

  11. Software system safety

    Science.gov (United States)

    Uber, James G.

    1988-01-01

    Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.

  12. Laquinimod Safety Profile

    DEFF Research Database (Denmark)

    Sørensen, Per Soelberg; Comi, Giancarlo; Vollmer, Timothy L

    2017-01-01

    the safety profile of laquinimod versus placebo. Adverse events (AEs), laboratory value changes, and potential risks identified in preclinical studies were evaluated in participants in ALLEGRO and BRAVO treated with at least one dose of laquinimod or matching placebo (1:1 random assignment). RESULTS...... laquinimod studies demonstrate a safety profile comprising benign or manageable AEs and asymptomatic laboratory findings with a clear temporal pattern. Potential risks noted in preclinical studies were not observed....

  13. Nuclear safety project

    International Nuclear Information System (INIS)

    1982-06-01

    The Annual Report 1981 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1981 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on - work completed - results obtained - plans for future work. This report was compiled by the project management. (orig.) [de

  14. Objectives of safety evaluation

    International Nuclear Information System (INIS)

    Rosen, M.

    1980-01-01

    An examination of the safety aspects of exported nuclear power plants demonstrates that additional and somewhat special considerations exist for these plants. In view of this and the generally small regulatory staffs of importing coutnries, suggestions are given for measures which should be taken by various organizations involved in the export and import of nuclear power facilities to raise the level of the very essential safety assessment. (orig.)

  15. Project Nuclear Safety

    International Nuclear Information System (INIS)

    1981-11-01

    The semiannual progress report 1981/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1981 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics, work performed, results obtained, plans for future work. This report was compiled by the project management. (orig.) [de

  16. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  17. Safety Auditing and Assessments

    Science.gov (United States)

    Goodin, James Ronald (Ronnie)

    2005-01-01

    Safety professionals typically do not engage in audits and independent assessments with the vigor as do our quality brethren. Taking advantage of industry and government experience conducting value added Independent Assessments or Audits benefits a safety program. Most other organizations simply call this process "internal audits." Sources of audit training are presented and compared. A relation of logic between audit techniques and mishap investigation is discussed. An example of an audit process is offered. Shortcomings and pitfalls of auditing are covered.

  18. Safety of nuclear installations

    International Nuclear Information System (INIS)

    Esteves, R.G.

    1987-01-01

    The safety philosophy of a PWR type reactor distinguishing three levels of safety, is presented. At the first level, the concept of reactivity defining coefficients which measure the reactivity variation is introduced. At the second level, the reactor protection system establishing the design criteria to assure the high reliability, is defined. At the third level, the protection barriers to contain the consequences of accident evolution, are defined. (M.C.K.) [pt

  19. Fire, safety and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-02-01

    Correct ventilation in tunnel environments is vital for the comfort and safety of the people passing through. This article gives details of products from several manufacturers of safety rescue and fire fighting equipment, fire and fume detection equipment, special fire resistant materials, fire resistant hydraulic oils and fire dampers, and ventilation systems. Company addresses and fax numbers are supplied. 4 refs., 5 tabs., 10 photos.

  20. Nuclear safety project

    International Nuclear Information System (INIS)

    1984-11-01

    The semiannual progress report 1984/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1984 in the nuclear safety field by KfK institutes and departements and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./RW) [de